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Bounds, Benefits, and Bad Air: Welfare Impacts of
Pollution Alerts

By MICHAEL L. ANDERSON, MINWOO HYUN, AND JAECHEOL LEE *

Though air-quality alert systems (AQAS) cover more than 1.7 billion
people worldwide, there has been little welfare analysis of these sys-
tems. This paper presents a theoretical framework for deriving lower
bounds on the net benefits of an AQAS and applies it to a South Korean
system currently covering over 51 million people. Estimating a regres-
sion discontinuity design, we find that an alert issuance reduced youth
respiratory expenditures by 30% and adult cardiovascular expenditures
by 23%. The overall system reduced externalized health expenditures
by 28.6 million dollars during 2016−2017, with a minimum benefit-cost
ratio of 7.1:1. Including dynamic impacts of alerts increases the min-
imum benefits (benefit-cost ratio) to 36.7 million dollars (9.2:1). Our
findings imply that the AQAS generates significant net benefits and sug-
gests that manipulation of air quality data, which has been observed in
other contexts, may negatively impact social welfare.

Air quality alert systems, which notify individuals of unhealthy pollution levels, are
widespread throughout the world, covering over 1.7 billion people. For example, the
United States (US) Environmental Protection Agency (EPA) manages the Air Quality
Alert Program in the New England Area, and California air quality districts each run
their own alert systems. In the United Kingdom, the Department for Environment, Food,
and Rural Affairs issues pollution alerts. In Beijing, environmental authorities enacted
a four-tier warning policy in 2013, expanded nationwide in 2014, and the South Korean
government in 2015 launched a new air quality alert system (AQAS) as well.1 These pro-
grams encourage the public to wear particulate-filtering masks, stay indoors, and reduce
strenuous activities to mitigate health damages from air pollution.

Despite their increasing popularity, there has been little empirical analysis of the wel-
fare impacts of these programs. In this work, we exploit the structure of the South Korean
AQAS to estimate a regression discontinuity (RD) design using pollution measurements
as the running variable. Combining economic theory with our estimates, we establish
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analyzed secondary data on human subjects under Korea National Institute for Bioethics Policy IRB P01-201811-22-008.

1See Appendix Table A1 for more examples of alert systems.
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2 AIR QUALITY ALERTS’ BENEFITS

a lower bound on the health-related net benefits of the AQAS and an upper bound on
the operating costs. This yields lower bounds on net benefits and benefit-cost ratios.
Importantly, our estimates are net of the welfare loss due to avoidance behavior.

Our analysis contributes directly to two strands of literature. The first strand focuses on
the health impacts of air-quality alerts. In seminal work, Neidell (2009) exploited high-
frequency time-series variation to demonstrate that minors with asthma benefited from
ozone alerts via a decrease Los Angeles inpatient hospital admissions due to breathing
difficulties. Janke (2014) generalized these results to England and further established an
effect on emergency department (ED) admissions for minors. Chen et al. (2018) found
marginally significant reductions in asthma-related ED visits in Toronto due to alerts, and
Mullins and Bharadwaj (2015) demonstrated that the announcement of environmental
episodes in Chile could reduce mortality rates in older adults.2 Recently, Aguilar-Gomez
(2020) examined air quality warnings in Mexico City and found that, when combined
with driving restrictions, they reduced ED visits.3

The second emerging strand examines the effects of air pollution information on wel-
fare measures. Ito and Zhang (2020) found that willingness-to-pay for air purifiers in
China increased following the 2013 disclosure of air-quality information by the US Em-
bassy in Beijing. Barwick et al. (2020) demonstrated that avoidance behaviors, such
as air purifier sales and the timing of credit-card purchases, changed in response to the
Chinese government providing real-time air quality monitoring data to the public. Gao,
Song and Timmins (2021) exploited the disclosure of PM2.5 data in China to estimate
the impact of relaxing information constraints on hedonic valuation.

More generally, our paper contributes to a broad literature exploring the value of infor-
mation provision to the public. Previous studies found that public information provision
can affect behavior in many contexts, including restaurant hygiene (Jin and Leslie, 2003),
sales taxes (Chetty, Looney and Kroft, 2009), calorie labeling (Bollinger, Leslie and
Sorensen, 2011), restaurant quality (Anderson and Magruder, 2012), and toxic releases
(Mastromonaco, 2015). Further targeting of information may affect choices in a vari-
ety of contexts as well, from school choice to health insurance to electricity consumption
(Hastings and Weinstein, 2008; Kling et al., 2012; Ito, 2014; Jessoe and Rapson, 2014). It
also relates to work on establishing bounds for welfare analysis in situations with limited
information (Manski et al., 1997; Finkelstein and Hendren, 2020; Kang and Vasserman,
2021).

Finally, our paper is relevant to a series of studies investigating potential efforts to ma-
nipulate pollution information for political or economic gain. Several studies found evi-
dence that particulate matter (PM) measurements cluster right below politically-significant
thresholds, compliance with which is important for government officials’ promotions
(Andrews, 2008; Chen et al., 2012; Ghanem and Zhang, 2014; Zou, 2021). Recent work
demonstrated that reported PM concentrations increased following the automation of

2A related body of research explores who responds to air quality alerts but does not estimate effects on health
outcomes (Noonan, 2014; Ward and Beatty, 2016; Saberian, Heyes and Rivers, 2017).

3Prior to the addition of driving restrictions, the study cannot reject the null hypothesis of no effect on health
outcomes.
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pollution monitoring (Greenstone et al., 2021). Though our analysis does not focus on
manipulation of air pollution observations, our results demonstrate the potential welfare
consequences of such information distortion.

We make several contributions to the literature. First, our work represents, to the
best of our knowledge, the first welfare analysis of these widespread alert systems (as
opposed to general air-quality monitoring). This contribution is possible because we
analyze health expenditures, rather than raw visit counts or deaths, and we apply a the-
oretical framework that, combined with our novel health expenditure data, allow us to
estimate sharp lower bounds on benefits that are net of the costs of avoidance behavior.4

Second, while previous work on the benefits of alert systems exploited time-series or
panel variation, we implement a RD design to study health-related outcomes.5 Finally,
while most analyses of AQASs have occurred in developed countries, the pollution levels
in our study region are more representative of developing and middle-income countries

I. Background and data

South Korea is an advanced economy that nevertheless suffers from high levels of par-
ticulate pollution. According to the Organization for Economic Cooperation and Devel-
opment (OECD), South Korea’s level of PM2.5 (particulates less than 2.5 micrometers
in diameter) is the highest among all OECD countries. The average PM2.5 concentration
level recorded in 2015 was over 30 µg/m3, while the mean of other member countries
was under 15 µg/m3 Organization for Economic Cooperation and Development (2018).
In response the South Korean government launched a new air quality alert system in
2015. The primary objective of the alert system is to reduce negative health effects by
providing citizens with the necessary information to take precautionary measures.

Municipal governments of major cities issue the alerts. When the level of PM2.5 or
PM10 exceeds a certain threshold in an alert region within a city, the local government
announces a PM warning for the region (Figure 1). Citizens are encouraged to curtail
outdoor activities, wear face masks, drink water, and use public transportation (Table 1).
Authorities disseminate the public health warning through mass media (e.g., radio, tele-
vision, and online news articles), public road signs, and wireless services (text messages
and mobile applications).

Given the widespread dissemination, most people are likely informed when air quality
warnings are issued. To determine whether citizens are more cognizant of air quality
when alerts are issued, we analyzed internet search keywords in NAVER, a search engine
accounting for 75% of all web searches in South Korea. The keywords include three

4In much of the existing literature on air quality alerts, the avoidance behavior is the object of interest, but its welfare
impact cannot be quantified. Barwick et al. (2020) addresses avoidance behavior costs by estimating two specific types
of avoidance behavior: air purifier purchases and outdoor shopping trips. These behaviors are less relevant to air quality
alerts, since air purifiers are durable goods, and many of the benefits of alerts accrue to minors.

5The one exception we are aware of is Chen et al. (2018), which implements a RD to study health outcomes. Their
study appears underpowered however, yielding a single significant t-statistic of exactly 2.0 across 12 outcomes tested,
with no visual evidence of a break for any health outcome. Ito and Zhang (2020) exploits a spatial pollution discontinuity
at the Huai River, but the study’s effect of information disclosure is identified using a post-2013 indicator. Neidell (2009),
Neidell (2010), and Liu, He and Lau (2018) estimate RD designs in the context of avoidance behavior.
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phrases: (i) air pollution alert; (ii) particulate matter; and (iii) air quality. Figure 2
indicates that searches for these keywords increased dramatically during the days on
which alerts were issued.6

PM alerts are triggered based on hourly monitor readings of PM2.5 and PM10. When
the new alert system began, both the 24-hour average and the 2-hour minimum values
served as measurement criteria for issuing the alerts. After about a year, the Ministry of
Environment (MOE) settled on the 2-hour minimum value as the sole standard. Advi-
sories were then issued when the hourly average PM2.5 (PM10) in an alert region was
over 90 µg/m3 (150 µg/m3) for two consecutive hours (Table 1). These advisories re-
mained in effect until the 1-hour level of PM2.5 (PM10) dropped below 50 µg/m3 (100
µg/m3).7 We retrieved the alert information from the website of the Korea Environment
Corporation (KECO). There were a total of 230 region-days or 1,427 district-days with
alerts during 2016–2017, the coverage period of our health spending data.8

Our health spending data cover daily per-capita spending by district in 2016 and 2017.9

The dataset comes from the National Health Insurance Service (NHIS) of South Korea,
which covers the country’s entire population (all individuals must join). Our data repre-
sent a 10% random sample of insurance subscribers in seven major cities: Seoul, Busan,
Daegu, Daejeon, Incheon, Gwangju, and Ulsan. Their combined population is 23 mil-
lion, or 44% of the population of South Korea. Hence, our dataset includes about 2.3
million individuals. We requested separate spending measures by disease type (cardio-
vascular disease and respiratory disease) and age group (minors: 0−19; adults: 20−64;
and older adults: 65 and older).10 The health spending data are summarized in Table 2.

Our data cover most health-care expenditures, including outpatient care (e.g. clinics
and doctors’ offices), hospitals (inpatient and emergency department visits), public health
centers, and most prescription medications. Three features are noteworthy. First, while
the data include inpatient hospital visits (i.e. overnight stays), there is often a temporal
gap of a week or more between the onset of symptoms and an inpatient admission, as
an inpatient hospitalization requires several rounds of referrals for all but the most acute
cases. As the temporal unit of our data is daily, we exclude spending on inpatient stays
from our analysis to reduce the noise in our dependent variable.

Second, we further exclude outpatient visits to tertiary hospitals in our main analysis.
In the South Korean healthcare system, outpatient visits to primary (clinics) and sec-
ondary facilities (hospitals and general hospitals) typically do not require referrals, but

6This study was approved by the Institutional Review Board of the Korean National Institute for Bioethics Policy.
7When the level of PM is more extreme, governments issue a second-level warning. The PM thresholds are 180

µg/m3 and 300 µg/m3 for PM2.5 and PM10 respectively. Our identification strategy utilizes observations around the
threshold of the first-level warnings, as second-level warnings are rare. Therefore, we use terms such as advisory, alert,
and warning interchangeably to indicate the first-level warning. Also note that in July 2018, the PM2.5 thresholds for
issuance and cancellation were lowered to 75 µg/m3 and 35 µg/m3 respectively. This date lies outside of our analytic
data set.

8Our dataset includes 73 districts across 14 alert regions.
9Due to privacy concerns, the dataset can be used only in selected data centers in South Korea. Furthermore, NHIS

does not allow the sharing or publication of any type of processed data, except for summary statistics, figures, and
regression results.

10Cardiovascular diseases are those in the “I” category according to the International Classification of Diseases, 10th
revision (ICD-10). Respiratory diseases are those in the “J” category according to ICD-10.
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visits to tertiary general hospitals do.11 The referral process leads to a delay between
the onset of symptoms and actual outpatient visits, and our main dependent variables ac-
cordingly exclude tertiary visit healthcare costs. Nevertheless, we test the robustness of
our results to this exclusion by running regressions that include tertiary outpatient visits.
The results are qualitatively similar to the main results, with coefficients and standard
errors of generally comparable magnitudes.

Third, our health expenditure data consist of the sum of private copayments and public
coverage. Therefore, our regression coefficients can be interpreted as changes in total
health expenditures in the covered categories. It is worth noting that the out-of-pocket
payment ratio ranges from 10% to 50%, implying substantial coverage by the social
health care system.12 Overall, the South Korean health care system subsidized 70% of
the total healthcare spending on outpatient visits. We thus interpret 70% of the spending
to represent external costs from the patient’s perspective.

II. Theoretical framework

We develop a parsimonious model of an individual’s avoidance behavior to motivate
and interpret our empirical analysis. Consider a representative individual i choosing
an activity level a. The individual gains utility from activities that involve pollution
exposure and loses utility from getting sick. Her utility function is:

(1) Ui(ai, pm) = bi(ai)− spvt
i ps(ai, pm)

where bi(a) represents the benefits of activity level a, spvt
i represents the private costs

(pecuniary and non-pecuniary) of getting sick, and ps(a, pm) represents the probability
of getting sick given activity level a and PM level pm. One could imagine more general
utility functions — e.g. pm could affect b as well — but to motivate our bounding
exercise this model suffices.

To interpret our RD estimand, note that it compares days on which the PM level is just
above the alert threshold (pm ↓ c) to those on which it is just below the alert threshold
(pm ↑ c). Thus, pm itself remains approximately constant near the threshold c,13 but
perceived PM, denoted as pmi, changes.14 Specify individual beliefs as

pmi =

{
pmavg if pm = pm ↑ c
pmhi if pm = pm ↓ c

where pmavg represents average PM conditional on being below the threshold c and
pmhi represents average PM conditional on being above the threshold c. For our bound-
ing exercise we assume that pmhi ≈ c, or at least that |pmhi− c| << |pmavg− c|. This

11Appendix Table A2 presents definitions of these types of medical institutions.
12Appendix Table A3 presents details on insurance coverage by treatment location.
13Appendix Table A4 confirms that average PM levels do not change discontinuously at the RD threshold.
14In our actual data, the hourly PM level is distinct from the running variable, as the latter depends on the maximum

2-hour minimum PM level. For notational simplicity, we treat PM as the running variable in the theoretical model, but in
Appendix A1 we show that our conclusions generalize to a model in which the running variable is a function of PM.



6 AIR QUALITY ALERTS’ BENEFITS

representation is a reasonable approximation of our actual PM data.15 More generally,
the approximation only needs to be sufficiently accurate that the alerts do not cause indi-
viduals to behave less optimally than they would absent the alert’s information.

Individuals maximize utility by choosing activity levels ai = argmaxa Ui(a, pmi). Then

Ui =

{
Ui(ai(pmavg),c) if pm = pm ↑ c
Ui(ai(pmhi),c) if pm = pm ↓ c

An individual’s private change in utility from PM crossing the alert threshold is

∆ Ui =Ui(ai(pmhi),c)−Ui(ai(pmavg),c) =(2)
[bi(ai(pmhi))−bi(ai(pmavg))]− spvt

i [ps(ai(pmhi),c)− ps(ai(pmavg),c)].

Naturally ∆ Ui ≥ 0 since pmhi ≈ c and ai = argmaxa Ui(a, pmi) — i.e. more accu-
rate PM information can only (weakly) increase the individual’s utility — but accurately
quantifying ∆ Ui is challenging even with good data on spvt

i . This challenge arises be-
cause it is difficult to estimate bi(ai), the benefits of different activities (and thus the costs
of avoidance behaviors); ai may be high dimensional, and researchers rarely have data
on all, or even most, elements of ai.

To motivate our welfare-bounding exercise, consider the public net benefits of the
individual’s choices:

(3) Wi =Ui(ai, pm)+Ei.

Wi, the social welfare accruing from i’s choices, equals private welfare Ui plus the
externalities associated with i’s choices, Ei. Then

(4) ∆ Wi = ∆ Ui +∆ Ei.

Since ∆ Ui ≥ 0, ∆ Ei represents a lower bound on the social net benefits of crossing the
alert threshold. By aggregating ∆ Ei across individuals and alert days, we can estimate a
lower bound on the gross social benefits of the alert system. Combined with data on the
costs of the system, we can estimate lower bounds on benefit-cost ratios.

For the bound to be nontrivial, the researcher must have data on meaningful exter-
nalities associated with individuals’ choices. In our context, health expenditures — the
majority (about 70%) of which are reimbursed by public funds — represent such an ex-
ternality.

15For example, in our PM2.5 data, pmavg = 22.7, pmhi = 66.7, and c = 57.5. Thus pmhi is much closer to c than
pmavg is. In this context c represents the average PM2.5 level when the running variable is close to the threshold, which
differs from the running variable itself (see previous note).
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III. Regression discontinuity design

We employ a RD design to estimate the causal impact of PM alerts on health spending.
The RD focuses on the point where the running variable (RV) exceeds a threshold at
which the probability of treatment changes discontinuously. The identifying assumption
is that the only difference between observations right above and below the threshold
is the assignment of the treatment; other factors affecting the outcome are continuous
around the threshold. It then follows that we can attribute the discontinuous change of
the outcome variable to the treatment assignment.

In this paper, the issuance of advisories corresponds to the treatment, with health
spending as the outcome. The running variable is the daily maximum of 2-hour min-
imum PM values. For example, in the case of PM2.5, an advisory occurs when the
PM2.5 level is over 90 µg/m3 for two consecutive hours. Hence, when the 2-hour min-
imum exceeds 90 µg/m3, the alert triggers. We calculate the daily maximum of these
hourly 2-hour minimum values and code the running variable at the daily level (for a
given region).

As discussed in the background section, there are two pollutants that trigger the is-
suance of alerts, PM2.5 and PM10. Following Cattaneo et al. (2020), we calculate the
daily maximum of 2-hour minimum values for PM2.5 and PM10, normalize them by
their respective thresholds (90 µg/m3 and 150 µg/m3), and take the larger one as the
assignment variable for the RD. By doing so, we construct one normalized assignment
variable whose treatment threshold is zero (Table 1).16 This running variable is similar
to the minimum distance to the nearest threshold elucidated in Cattaneo et al. (2020).

The running variable does not perfectly determine alert issuance for (at least) two rea-
sons. First, municipal governments also consider weather conditions when determining
whether to announce an alert. Thus alerts are not issued on some days on which the
normalized running variable exceeds zero. Second, the thresholds for issuance and can-
cellation are different. For example, suppose that an alert was issued at 2 PM Monday,
when the 2-hour minimum PM2.5 exceeded 90 µg/m3. If the hourly PM2.5 level re-
mains at 60 µg/m3 until the end of Tuesday, the alert remains in effect through Tuesday,
as the PM2.5 cancellation threshold is 50 µg/m3. Nevertheless, the normalized running
variable for Tuesday is −30. For these reasons we estimate a fuzzy RD (FRD) design.17

After setting a bandwidth h around the threshold, we retain observations with running-
variable values falling within h units of the threshold. We run the following first-stage
and reduced-form regressions:

(5) Alertit = γ11(P̃Mit ≥ 0)+γ2P̃Mit +γ3P̃Mit1(P̃Mit ≥ 0)+X1itθ 1+X2tφ 1+δ1i+uit

16For additional details on calculating the running variable, see Appendix A2.
17A concern may arise regarding the discrepancy between the thresholds of issuance and cancellation. To address this

concern, we also present FRD results without these cases, and these results are comparable to our baseline FRD estimates
(see Appendix Table A7).
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(6) Yit = β11(P̃Mit ≥ 0)+β2P̃Mit +β3P̃Mit1(P̃Mit ≥ 0)+X1itθ 2 +X2tφ 2 +δ2i + εit

Yit represents health expenditures in district i on day t, P̃Mit is the normalized running
variable (described above), and Alertit is an indicator variable for an air-quality alert.
X1it includes temperature and precipitation controls, X2t includes year-month, day-of-
week, and holiday fixed effects, and δi are district fixed effects. While these controls
are not strictly necessary for identification, they substantially improve the precision of
our regressions (Cellini, Ferreira and Rothstein, 2010).18 We population weight our
regressions to make the estimates more representative and further improve precision,
and we cluster the standard errors by running variable value or date to account for spatial
correlation in alerts and health spending across districts.19 When discussing t-statistics,
to be conservative we default to whichever of the two standard errors is larger.

To estimate the FRD and recover the local average treatment effect (LATE), we divide
β̂1 by γ̂1, yielding:

(7) τ̂FRD =
β̂1

γ̂1

In practice we estimate τ̂FRD using two-stage least squares (2SLS). Equations (6) and
(7) estimate the contemporaneous effect of an alert on health expenditures. The panel
nature of our data, however, introduces additional considerations that are absent from
most cross-sectional RDs. First, the asymmetry in the thresholds for issuance and can-
cellation ensures that many air quality alerts last for two to three consecutive days.20 One
could thus conceptualize of the treatment as a single 48- to 72-hour alert. Second, the
possibility of dynamic effects represents a potential violation of the stable unit treatment
value assumption (SUTVA) — the treatment on day t could have spillover effects on the
outcome on day t +1.

We address this complication in two ways. First, as a robustness check, we trim the
estimation sample to exclude days following a day with an air quality alert. This esti-
mation sample yields similar results. Second, while the contemporaneous regressions
(Equations (6) and (7)) appear to generate estimates that are internally valid (based on
the results referenced above), they may yield an incomplete picture of the total effect
of an air quality alert. In particular, they do not capture any dynamic effects of an alert
that persist beyond one day. In principle these effects could shift the net impact in either
direction. For example, if avoidance behavior yields health benefits beyond 24 hours,
the dynamic effects could increase the net impact. Alternatively, if individuals intertem-

18The adjusted R2 in our main outcome regressions is in the range of 0.8 to 0.9 (Tables 4 and 5), implying that
including the controls reduces the standard errors by a factor of 2 to 3.

19Unlike typical panel data sets, serial correlation over time has little impact in our context, because the independent
variable of interest, γ11(P̃Mit ≥ 0), exhibits very modest time-series correlation. Clustering by district (to account for
time-series correlation) generates much smaller standard errors, and two-way clustering by district and date generates
standard errors that are similar in size to clustering by date.

20Out of the total 134 region-by-alert episodes, 45 episodes were single-day alerts, and the remaining 89 warnings
were issued for two days or more in a row.
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porally substitute activities, resulting in higher than average activity on the day after an
alert, then accounting for dynamic effects could decrease the net impact.

To capture dynamic effects, we estimate an alternative fuzzy RD that specifies the de-
pendent variable as a rolling 3-day sum of health expenditures. Specifically, we estimate
the reduced-form regression as:

(8) Y+
it = β11(P̃Mit ≥ 0)+β2P̃Mit +β3P̃Mit1(P̃Mit ≥ 0)+X1itθ 2 +X2tφ 2 +δ2i + εit

Y+
it represents health expenditures in district i on days t, t + 1, and t + 2 (i.e. Y+

it =

∑
2
s=0Yit+s). Other variables remain as defined before, and we continue to population

weight the regression. Since the treatment is effectively a multi-day alert (given the
asymmetry of the activation and cancellation thresholds), we also estimate a specification
in which we omit treated days whose previous dates were also treated with an air quality
alert. For example, if an alert was issued on January 1 and 2, January 2 is omitted,
to avoid “double counting” the alert’s impact when conducting policy simulations in
Section V.21

Before presenting the estimates we note two details about the FRD regressions. First,
FRD estimates may be sensitive to the polynomial degree of the running variable. For
robustness we also check results using a specification with a quadratic in the running vari-
able.22 Second, the FRD results may be sensitive to the choice of bandwidth, h. To find
a default bandwidth for our analysis, we follow Calonico, Cattaneo and Titiunik (2014,
2015) (CCT). The CCT criteria yield optimal bias-corrected bandwidths ranging from 17
to 22 for our dataset (Appendix Table A5), so we chose h = 20 as the default bandwidth.
To demonstrate robustness, however, we report results from bandwidth choices of 16, 20,
and 24.

IV. Results

A. Contemporaneous effects

Figure 3 plots treatment probability by the running variable using a binned scatter plot.
The figure demonstrates a large discontinuity in the probability of treatment around the
RD threshold. Table 3 presents corresponding first-stage estimates of Equation (5) for
three bandwidth choices (16, 20, and 24). Crossing the RD threshold corresponds to an

21As an alternative strategy, we considered supplementing Equation (6) with lagged values of the treatment, similar
to the “one-step” estimator in Cellini, Ferreira and Rothstein (2010). This specification, however, would require us to
trim the sample on multiple dimensions. For example, with two lagged values of treatment we would need to trim the
estimation sample based on the contemporaneous running variable and one- and two-day lags of the running variable. In
practice this would reduce our estimation sample to an impractical degree. Given that almost all treatment episodes consist
of two consecutive days of alerts, we chose to instead sum the outcome over several days and regard each episode of two-
day treatments as a single treatment. This strategy also avoids the need to consider different sequences of treatments
(Lechner, 2009; Anderson, 2017).

22Following the arguments in Gelman and Imbens (2019), we do not try higher-order polynomials in the running
variable.
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approximate 60 percentage point increase in the probability of an alert. This discontinu-
ity is robust to choice of bandwidth and highly significant in all cases, with F-statistics
between 25 and 50. There is no significant “first-stage” effect on average PM levels
(Appendix Table A4), however, which is consistent with the lack of any binding alert-
associated restrictions on activity or emissions. We thus interpret our RD health effects
as resulting purely from avoidance behavior rather than from reductions in ambient pol-
lution levels.

Figure 4 plots health expenditures, converted to spending per capita in US cents, by the
running variable using a binned scatter plot. The left panels present respiratory-illness
expenditures, while the right panels present cardiovascular-illness expenditures. From
top to bottom, the panels present expenditures for minors (under age 20), adults (age
20-64), and older adults (over age 64).

The top-left panel reveals a sharp decline in respiratory expenditures for minors at
the RD threshold, and a notable, though less pronounced, decline in these expenditures
for adults. In contrast there is less evidence of a decline for older adults. The top-
right panel reveals no change in cardiovascular expenditures for minors, likely because
cardiovascular diagnoses are rare for this age group. The middle-right and bottom-right
panels, however, reveal drops in cardiovascular-illness expenditures for adults and older
adults at the RD threshold.

Tables 4 and 5 present corresponding reduced-form and 2SLS estimates of Equations
(6) and (7) for the preferred bandwidth of h = 20. Table 4 reports results for respiratory
disease, while Table 5 reports results for cardiovascular disease. In each table, the top
panel presents reduced-form estimates (i.e. estimates corresponding to Figure 4), and
the bottom panel presents 2SLS estimates. Each column corresponds to a different age
group: minors, adults, older adults, and all ages.

The tables confirm the patterns observed in Figure 4. In Table 4, an alert induces
a highly significant decrease in respiratory-illness expenditures for minors (t = −3.2).
The point estimate implies a reduction of 15 cents per capita, or approximately 30%
percent of mean expenditures below the RD threshold.23 For older age groups the change
in respiratory-illness expenditures is insignificant at the RD threshold. Nevertheless,
the overall reduction in respiratory-illness expenditures at the threshold is statistically
significant (t =−2.4).

In Table 5, an alert induces significant decreases in cardiovascular-illness expenditures
for adults (age 20-64) and older adults (t = −2.9 and t = −2.5 respectively). The point
estimates imply reductions of 2.8 and 9.6 cents per capita respectively, or about 23%
and 14% of mean expenditures below the RD threshold. For minors, there is no sig-
nificant change in cardiovascular-illness expenditures at the RD threshold. The overall
reduction in cardiovascular-illness expenditures at the threshold is statistically significant
(t =−3.0), however.

23When calculating percentage effects, we take the mean of the dependent variable when the running variable lies
between −20 and 0.
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B. Dynamic effects

Air pollution alerts may have lagged effects — either because an alert lasts more than
one day or because avoidance behavior yields dividends over multiple days — further
decreasing healthcare costs beyond the dates of alert issuance. It is also possible that
the healthcare costs rebound, attenuating the magnitude of the decreases demonstrated
in Tables 4 and 5. To incorporate lagged effects into our analysis of social net benefits,
we estimate FRD regressions with a rolling sum of 3-day healthcare expenditures as the
dependent variable (Equation (8)).

Table 6 reports results from estimating Equation (8). The coefficient magnitudes are
larger than the corresponding coefficients presented in Tables 4 and 5, by factors ranging
from 2.5 to 2.8 when focusing on all age groups and the first row of each sub-panel. The
larger magnitudes can be partially explained by the nature of the South Korean AQAS,
where many alerts last for at least one day beyond the initial date of issuance. Indeed,
80 of 134 unique alerts were issued for more than one day, and the average number of
days per alert is approximately 1.87. Nevertheless, this figure cannot fully explain the
differences in the magnitudes mentioned above, which hints at potential lagged decreases
in healthcare costs even after an alert expires.

To avoid double counting benefits when we conduct policy simulations, the estimation
sample for the second row in each panel of Table 6 omits alert days on which the previous
day was covered by an alert.24 In general, the coefficients decrease in size; nevertheless,
they are still approximately comparable in overall magnitude. Compared to the results
in the first rows, the overall effects decrease by 8% to 19%. Compared to estimates of
contemporaneous effects, the coefficients are 2.2 or 2.5 times larger — figures above
1.87, or the average number of days per alert.

C. Robustness

We first test the robustness of our results to including health expenditures from out-
patient visits to tertiary hospitals. The medical referral process, which is required when
visiting a tertiary hospital, generates a gap between the onset of symptoms and actual
outpatient visits. We excluded those visits in our main analysis to clearly identify the
immediate impacts of the AQAS, and we do not expect their inclusion to qualitatively
change our main results since these expenditures comprise less than 15% of the total
outpatient expenditures. Tables 7 and 8 confirm that our estimates are robust to the in-
clusion of tertiary outpatient visits. The coefficients and standard errors are of similar
magnitudes to the analogous estimates in Tables 4 and 5.

Table 9 estimates a variety of alternative specifications to demonstrate the robustness
of our results. The most important modeling choice in most RD studies is the bandwidth

24Consider an alert that lasts for two consecutive days. If both days from the alert are within the analysis bandwidth
(defined by PM levels), the 3-day impacts of both alert days would be counted separately even though there is a two-day
overlap between the two 3-day sums of healthcare spending. By dropping alert days that immediately follow an alert day,
we filter out any secondary sets of overlapping 3-day sums for that particular alert.
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for the local linear regressions. The first three rows in each table present reduced-form
estimates utilizing bandwidths of 16, 20 (our baseline specification), and 24.25 In the
top panel of Table 9, the magnitude and significance of respiratory-illness effects for
minors and all age groups remain stable across all bandwidths. In the bottom panel,
cardiovascular-illness effects for both adult groups and all ages are statistically signifi-
cant for the smaller bandwidth, in line with the main results, but they become insignif-
icant for the larger bandwidth. We note, however, that the motivation for choosing a
larger bandwidth is to trade off increased bias for a smaller standard error; in this context
the standard error actually rises with the bandwidth, likely due to the increased mean-
squared error associated with higher pollution levels (see Figure 4), suggesting little gain
from using a larger bandwidth. Appendix Table A6 reports analogous results for the
dynamic effects specification; for both disease categories, the pooled age-group results
remain statistically significant at all three bandwidths (16, 20, and 24).

Another concern in our context is the timing of advisories. In some instances, alerts
may be triggered early in the morning but cancelled by 9 am; in others they may not
be triggered until the evening. In either case, we would not expect the alerts to have
meaningful effects on behavior. The last row in both panels of Table 9 filters out days
with alerts cancelled before 9 am or triggered after 7 pm. As expected, the coefficients
become slightly larger in magnitude and remain statistically significant.

In Appendix A3, we report a wide range of alternative specifications and robustness
checks. Briefly, we find no evidence of manipulation of the running variable near the
RD threshold (Appendix Figures A1 and A2) or a discontinuity in the control variables
(Appendix Figure A3). Removing alert days on which the air quality warning was is-
sued too late or too early yields similar results, as does accounting for the asymmetry in
thresholds for alert issuance and cancellation (Appendix Table A7). We demonstrate that
controlling for a quadratic of the running variable, a quadratic of the temperature vari-
able, or the air quality variables (PM10, PM2.5, PM10 and PM2.5, and the Air Quality
Index (AQI)) does not change our main conclusions (Appendix Tables A8 and A9). Our
findings are also robust to using alternative sets of time fixed effects (Appendix Table
A8) or clustering at different levels (Appendix Table A10). To test for spatial spillovers
of alerts, we estimate the FRD regressions with the largest running variable observed
in an adjacent alert region; Appendix Table A11 finds no effect of an adjacent region’s
alert on the focal region’s health expenditures. Finally, we perform falsification tests by
changing the RD threshold by 20, 30, or 50 units from the true threshold; Appendix Ta-
ble A11 demonstrates no statistically significant results at these placebo thresholds.

V. Discussion

We highlight several of our empirical findings. First, our results provide new in-
sights on responses across broader disease categories. Previous studies on air pollution

252SLS estimates are identical to the reduced-form estimates after rescaling coefficients and standard errors by 1.6,
as the first-stage estimates are insensitive to bandwidth choice.
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alerts have primarily analyzed respiratory symptoms — Neidell (2009) found effects on
asthma-related hospitalizations, and Janke (2014) found effects on respiratory emergency
admissions.26 Our findings suggest that effects are not limited to respiratory diagnoses,
as cardiovascular disease spending of adults also decreased significantly.

Second, our results yield novel findings of alerts’ effects for adults. Neidell (2009)
and Janke (2014) found statistically significant impacts of air quality warnings for the
youngest ages.27 In contrast, our results reveal that the benefits of air quality warnings
may not be restricted to minors. While minors’ health spending was reduced by 12.6
million USD, prime-age and older adults also demonstrated significant health expendi-
ture decreases due to alerts, amounting to 20.4 million and 8 million USD, respectively.
Our results imply that alerts can motivate all age groups to take appropriate avoidance
measures, reducing the negative impacts of air pollution.

To calculate total benefits from decreased healthcare expenditures, we first tabulate the
number of people exposed to the alerts in the seven major South Korean cities. As the
FRD estimates measure the reduction in health spending per capita, we multiply the FRD
estimates by the population affected by the alerts. Based on the coefficients of spend-
ing in the both disease categories across all ages, which sum to 9.1 cents per capita, the
total reduction in health expenditures during 2016−2017 in seven major cities was ap-
proximately 41 million USD. This estimate considers only the alerts’ contemporaneous
effects. Incorporating dynamic effects into the calculation increases the reduction by
about one third, for a total reduction in health expenditures of approximately 52 million
USD.28

Combined with our theoretical framework, the empirical findings presented above can
provide a lower bound on the gross benefits from the AQAS. Specifically, our framework
implies that the reduction in public healthcare expenditures represents a lower bound on
the gross benefits of the AQAS. Our health expenditure data contain the sum of private
copayments and public coverage, with an approximate ratio of 7:3. Thus, approximately
70% of the FRD coefficients represents a reduction in public expenditures. Applying this
share to the total expenditure reductions computed above yields lower bounds on gross
benefits that amount to 18.4 million USD (respiratory) and 10.2 million USD (cardiovas-
cular) respectively. Figure 5 presents lower bounds on gross benefits by age group, with
non-elderly adults realizing the largest gross benefits. Benefits using estimates from the
dynamic specification (Table 6) are somewhat larger than those using estimates from the
contemporaneous specification (Tables 4 and 5) (24.5 million USD for respiratory and
12.2 million USD for cardiovascular), as the former captures a larger change in health
expenditures than the latter.

26Chen et al. (2018) also find weak evidence of an effect on asthma-related visits.
27Mullins and Bharadwaj (2015) and Aguilar-Gomez (2020) both find effects of pollution warnings on elderly health

outcomes. In their contexts, however, the warnings also reduce pollution levels, suggesting a direct effect of pollution on
health. Our study estimates the pure effect of alerts on health expenditures, as measured PM does not change at the RD
threshold. Furthermore, our welfare analysis framework would not apply to policies which reduce emissions, as these
policies entail additional implicit net costs.

28For this calculation we must assume that the benefits of alerts do not decrease as the pollution level rises above the
RD threshold, as our RD estimates are local to the RD threshold. This assumption seems plausible, however, as health
damages must weakly increase with pollution, so the benefits of avoidance behavior likely increase as well.
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To quantify AQAS net benefits and benefit-cost ratios, we collected reports on environ-
mental expenditures from the websites of the seven major cities’ municipal governments.
The cost of managing the alert system in 2017 was estimated at 2 million USD. To be
conservative we include a wide range of expenditures in this estimate, from the price of
sending alerts via text messages to the maintenance cost of the air pollution monitors.29

As we could not obtain complete expenditure information for 2016, we assume that costs
would be similar to 2017, yielding a total cost of 4 million USD in 2016−2017.30 The
cost is considerably lower than the total health benefit calculated above, 28.6 million
USD, yielding an approximate benefit:cost ratio of 7.1:1 and a net benefit of 24.6 mil-
lion USD for 2016−2017. Incorporating the dynamic effects further increases the net
benefits and the benefit:cost ratio to 32.7 million USD and 9.2:1, respectively. 31

We also explore the potential welfare gains from expanding the alert system’s covered
range. For this analysis we consider two scenarios. In the first scenario, we assume that
advisories are issued on all days on which the running variable exceeds zero (i.e. the
fuzzy RD becomes a sharp RD). In the second scenario, we assume that the government
tightens the advisory criterion for PM2.5 from 90 µg/m3 to 75 µg/m3 during our anal-
ysis period (2016−2017). This corresponds to an actual policy the government enacted
starting July 2018. In both scenarios we assume that the magnitudes of the alerts’ effects
remain similar to our FRD estimates.32,33

We find that expanding the alert system’s coverage could yield significant benefits.
Figure 6 presents net benefits for the baseline scenario and the two alternative scenar-
ios. Issuing alerts whenever the RD threshold is exceeded would have reduced health
expenditures by an additional 5.7 million USD (Scenario A) during our sample period,
bringing the total reduction to 42.4 million USD (right panel). Lowering the threshold
for alert issuance from 90 µg/m3 to 75 µg/m3 (for PM2.5) would have reduced total
health expenditures by 76.5 million USD (Scenario B) during our sample period (right
panel), or a 109% increase from the baseline policy. Notably, this corresponds to the cur-
rent alert criteria, implemented in July 2018. In all scenarios the benefits greatly exceed
the costs, indicated by the solid or dashed horizontal lines for comparison.

29Appendix Tables A12 and A13 list the expenditure items and the sum of these expenditures by metropolitan city,
respectively. See Appendix A2 for additional details.

30Government expenditures may vary year-to-year. We collected similar information for 2018 and found that total
2018 expenditures were approximately 2.8 million USD.

31Utilizing the 2018 expenditures as the reference cost leads to the total costs of 5.6 million USD. The corresponding
net benefit is about 23 million USD, with a benefit:cost ratio of approximately 5.1:1. When considering dynamic effects,
the total net benefit is 31.1 million USD, and the associated benefit:cost ratio is 6.6:1.

32Concerns may arise regarding “alert fatigue” in these simulations, as the number of days with alert issuance neces-
sarily increases. It is worth noting, however, that the number of treated days remains modest even in those scenarios. The
rates of alert district-days are 2.67%, 2.81%, and 4.57% in the baseline scenario, Scenario A, and Scenario B, respectively.
We thus assume that alert fatigue does not become a serious concern in these simulations.

33A related concern is that non-advisory days on which the running variable exceeds zero (“non-compliant” days)
systematically differ from advisory days on which the running variable exceeds zero (“compliant” days). Indeed, as
shown in Table 1, weather conditions influence alert issuance. We thus compared precipitation and temperature across
non-compliant and compliant days falling within the running variable interval of [0, 40]. Average precipitation and tem-
perature on non-compliant days were 0.65 mm and 3.121 C, respectively, with standard deviations of 5.12 mm and 2.24 C.
Average precipitation and temperature on compliant days were 1.215 mm and 7.618 C, respectively, with standard devia-
tions of 6.12 mm and 3.79 C. We assume that these modest meteorological differences would not yield large differences
in the alerts’ impacts.
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VI. Conclusion

Combining our RD estimates with a theoretical framework, we find lower bounds on
the benefits of the South Korean air pollution alert system that greatly exceed the costs
of operating the system. Given the insignificant changes in average PM levels at the
RD threshold, we interpret our results as a “pure” effect of avoidance behavior, rather
than a combined effect of avoidance behavior and reduced ambient pollution levels. Our
results thus stand in contrast to those from some recent work, which found effects only
in contexts in which alerts were combined with policies to reduce ambient pollution
levels (Mullins and Bharadwaj, 2015; Aguilar-Gomez, 2020). Our theoretical frame-
work is likely to prove applicable in other settings in which individuals endogenously
respond to information provision but there are substantial externalities. For example,
one might bound the welfare benefits of restaurant hygiene grade cards using the reduc-
tion in insurance-covered hospitalization costs (Jin and Leslie, 2003) or the benefits of
electricity usage information using the reduction in environmental damages (Jessoe and
Rapson, 2014).

Our study also highlights that manipulation of air pollution information for economic
and political gains may be costly. If pollution alerts are not issued due to manipulation,
the public may not engage in welfare-enhancing avoidance behaviors. Despite the alerts’
benefits, governments may have incentives to distort air pollution information if they
worry about temporary economic declines from decreased outdoor activities (Min, 2019).
Furthermore, local government officials may have incentives to manipulate air pollution
levels for more favorable evaluations (Andrews, 2008; Chen et al., 2012; Ghanem and
Zhang, 2014; Zou, 2021). Our findings imply that these distortions can reduce public
health and generate additional healthcare expenditures.

A primary limitation of our study is that the results apply specifically to South Korean
metropolitan areas. While these areas are economically important in themselves, with a
combined population of over 23 million, our estimates may not generalize to other coun-
tries. Nevertheless, there are good reasons to believe that our main qualitative finding
— an AQAS can generate meaningful welfare gains — applies to other contexts. First,
previous studies have found significant reductions in some types of healthcare utilization
due to air-quality alerts. For example, Neidell (2009) found that alert-induced avoidance
behavior decreased Los Angeles asthma hospitalizations between 12 and 60 percent,
and Janke (2014) found that even alerts for “moderate” pollution levels reduced asthma
admissions by 8 percent in England. Furthermore, South Korean healthcare prices are
remarkably low by developed-country standards. For example, relative to South Korea,
2016 per capita health expenditures (PPP-adjusted) were 60 percent higher in the United
Kingdom, 77 percent higher in France, 113 percent higher in Sweden, and 270 percent
higher in the United States (Lorenzoni and Koechlin, 2017). Thus, even if avoidance be-
havior or high pollution levels are less prevalent in other countries than in South Korea,
overall impacts on health expenditures may still be of similar magnitude.
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FIGURE 1. ALERT CLUSTERS FOR SEVEN MAJOR CITIES IN SOUTH KOREA

Notes: Panels A through G depict the alert clusters in Busan, Daejeon, Daegu, Gwangju, Incheon,
Seoul, and Ulsan respectively. Different colors (in a given city) represent different alert clusters.
Border lines separate districts in each major city area.
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FIGURE 2. ALERT COUNTS AND KEYWORD SEARCH RESULTS RELATED TO AIR QUALITY INFORMATION

Notes: The red series represents the daily count of air quality alerts, and the blue series represents
searches for “air pollution alert”, “particulate matter”, or “air quality” on NAVER. The maximum
value of daily keyword search counts is set to 100.



AIR QUALITY ALERTS’ BENEFITS 21

Notes: Each point represents the population-weighted average of observations in a given
bin, the width of which is 5 units. The y-axis indicates the average probability of a
particulate matter advisory. The x-axis indicates the value of the running variable (a
threshold-normalized function of PM).

FIGURE 3. TREATMENT DISCONTINUITY
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Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is 5 units. The y-axis indicates the per capita level of residualized health expenditures, in US
cents (11.5 KRW = 0.01 USD). The residualization was performed with respect to day-of-week, year-
by-month, holiday, and district fixed effects. The x-axis indicates the value of the running variable (a
threshold-normalized function of PM).

FIGURE 4. OUTCOME DISCONTINUITY
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FIGURE 5. POTENTIAL HEALTH BENEFITS BY AGE GROUP

Notes: The left (right) panel plots lower bounds on gross benefits by age groups using esti-
mates from Tables 4 and 5 (Table 6). To bound gross benefits we scale the table coefficients
by the average share of health expenditures that are publicly covered (70%).
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FIGURE 6. COST-BENEFIT COMPARISON AND POTENTIAL HEALTH BENEFITS

Notes: The left (right) panel plots lower bounds on gross benefits by scenario using esti-
mates from Tables 4 and 5 (Table 6). To bound gross benefits we scale the table coefficients
by the average share of health expenditures that are publicly covered (70%). “Baseline”
represents the policy during the sample period, “Scenario A” represents a policy that trig-
gers an alert whenever the running variable crosses the relevant threshold, and “Scenario
B” represents a policy that lowers the PM2.5 threshold to the value adopted in July 2018.
The solid (dashed) line represents the total system maintenance cost for the analytic period
(2016−2017) using 2018 (2017) as the reference year for costs.
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TABLE 1—THRESHOLDS AND GUIDELINES OF SOUTH KOREAN PM ADVISORIES

PM Advisory Thresholds

PM10 PM2.5

Issuance Over 150 µg/m3

for 2 hours
Over 90 µg/m3

for 2 hours

Cancellation Under 100 µg/m3

for 1 hour
Under 50 µg/m3

for 1 hour

Target Groups Guidelines

General
Population

· Stay indoors and reduce outdoor activities
·Wear hygiene masks when you go outside
· Reduce emissions (e.g. use public transportation)
· Avoid roadways and construction sites

Children
& Teenagers

· Reduce or forbid outdoor classes.
· Replace outdoor activities with indoor activities.
· Enhance the hygiene management of dining facilities

The Elderly · Enhance the hygiene management of dining facilities

Source: AirKorea, Korea Environment Cooperation
https://www.airkorea.or.kr/, accessed on Sep 30, 2021
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TABLE 2—SUMMARY STATISTICS - BANDWIDTH 40

Full Sample Bandwidth = 40

Mean SD Min Max Mean SD Min MaxRespiratory
Expenditures

Minors (0−19) 46.0 23.2 0 201.8 50.1 24.9 0 171.6
Adults (20−64) 21.3 14.0 0 239.8 23.3 14.8 0 147.2
Older Adults (≥ 65) 13.8 7.8 0 59.6 15.2 8.3 0 50.6

Cardiovascular
Expenditures

Minors (0−19) 0.1 1.7 0 316.5 0.1 3.1 0 316.5
Adults (20−64) 12.2 7.5 0 107.6 12.0 7.4 0 107.6
Older Adults (≥ 65) 65.1 42.7 0 268.9 64.3 42.1 0 248.5

Treatment
& Covariates

Alert 0.03 0.2 0 1 0.1 0.3 0 1
PM10 (µg/m3) 44.5 22.0 2.8 253.9 68.4 18.8 19.3 170.3
PM25 (µg/m3) 25.1 12.9 1.6 109.5 41.8 13.4 6.6 109.5
Precipitation (mm) 3.1 12.2 0 313.8 1.1 4.5 0 67
Temperature (°C) 13.8 9.9 -16.4 32.5 10.7 8.3 -9.3 32

Notes: The number of district-day observations are 53,363 and 10,547 for the full sample and the sample
based on a bandwidth of 40, respectively. Morbidity spending variables are in US cents per capita (11.5
KRW = 0.01 USD).
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TABLE 3—FIRST-STAGE REGRESSION RESULTS

Bandwidth

16 20 24

1(RV >= 0) 0.636
(0.091)
[0.122]

0.622
(0.091)
[0.114]

0.618
(0.092)
[0.110]

Adjusted R2 0.708 0.720 0.728
F-statistics 46.029 65.351 89.686

N 1,857 2,530 3,380
Notes: This table reports three first-stage estimates of the change in advisory likelihood when the
running variable crosses the RD threshold. These estimates are based on coefficients from three
separate local-linear regressions, one for each reported bandwidth. The dependent variable in all
regressions is an advisory indicator, and the independent variable of interest is an indicator for the
running variable being above the RD threshold. All regressions control for the running variable, an
interaction between the running variable and the indicator for the running variable being above the
RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed effects. The
level of observation is the district by day, and observations are population weighted. Parentheses
(square brackets) contain standard errors clustered by the running variable (day of sample).
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TABLE 4—RD RESULTS FOR RESPIRATORY DISEASES

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0) −9.412
(2.326)
[2.930]

−2.346
(1.391)
[1.379]

−2.661
(1.674)
[1.860]

−3.624
(1.437)
[1.528]

RV −0.074
(0.143)
[0.140]

−0.041
(0.043)
[0.045]

0.002
(0.062)
[0.069]

−0.038
(0.056)
[0.057]

RV ·1(RV >= 0) 0.645
(0.167)
[0.225]

0.214
(0.113)
[0.078]

0.167
(0.129)
[0.108]

0.270
(0.110)
[0.088]

2SLS

1(RV >= 0) −15.03
(4.709)
[5.674]

−3.777
(2.195)
[2.127]

−4.303
(2.753)
[2.804]

−5.829
(2.397)
[2.495]

RV 0.039
(0.204)
[0.170]

−0.013
(0.062)
[0.055]

0.035
(0.084)
[0.083]

−0.006
(0.084)
[0.071]

RV ·1(RV >= 0) 0.596
(0.243)
[0.305]

0.204
(0.112)
[0.078]

0.156
(0.127)
[0.106]

0.254
(0.120)
[0.105]

Adjusted R2 0.836 0.866 0.797 0.893
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top panel) and four 2SLS
local-linear regressions (bottom panel). The dependent variable in all regressions is respiratory disease
expenditures for the relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the
independent variable of interest in the reduced-form (2SLS) regressions is an indicator for the running
variable being above the RD threshold (advisory indicator). All regressions control for the running variable,
an interaction between the running variable and the indicator for the running variable being above the
RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed effects. The level of
observation is the district by day, and observations are population weighted. Parentheses (square brackets)
contain standard errors clustered by the running variable (day of sample). The bandwidth is set to 20 in all
regressions.
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TABLE 5—RD RESULTS FOR CARDIOVASCULAR DISEASES

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0) −0.025
(0.021)
[0.022]

−1.757
(0.513)
[0.481]

−5.962
(2.070)
[2.250]

−2.026
(0.573)
[0.622]

RV 0.003
(0.001)
[0.001]

0.056
(0.023)
[0.020]

0.234
(0.102)
[0.113]

0.066
(0.024)
[0.026]

RV ·1(RV >= 0) −0.003
(0.002)
[0.002]

0.012
(0.035)
[0.037]

−0.083
(0.158)
[0.213]

0.006
(0.038)
[0.049]

2SLS

1(RV >= 0) −0.040
(0.032)
[0.035]

−2.828
(0.976)
[0.767]

−9.641
(3.849)
[3.677]

−3.259
(1.086)
[1.008]

RV 0.003
(0.001)
[0.001]

0.077
(0.029)
[0.023]

0.308
(0.104)
[0.124]

0.090
(0.030)
[0.029]

RV ·1(RV >= 0) −0.003
(0.002)
[0.002]

0.005
(0.042)
[0.045]

−0.109
(0.152)
[0.228]

−0.003
(0.039)
[0.055]

Adjusted R2 0.029 0.794 0.847 0.869
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top panel) and four 2SLS
local-linear regressions (bottom panel). The dependent variable in all regressions is cardiovascular disease
expenditures for the relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the
independent variable of interest in the reduced-form (2SLS) regressions is an indicator for the running
variable being above the RD threshold (advisory indicator). All regressions control for the running variable,
an interaction between the running variable and the indicator for the running variable being above the
RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed effects. The level of
observation is the district by day, and observations are population weighted. Parentheses (square brackets)
contain standard errors clustered by the running variable (day of sample). The bandwidth is set to 20 in all
regressions.
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TABLE 6—DYNAMIC IMPACTS

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Dependent Variable

3-day Spending
−38.220
(11.551)
[13.769]

−10.703
(3.952)
[4.661]

−12.977
(4.951)
[6.624]

−16.125
(4.777)
[5.935]

3-day Spending
without Later

Alert Days

−38.616
(12.422)
[16.370]

−7.122
(3.258)
[3.262]

−8.202
(4.427)
[4.651]

−13.005
(4.473)
[5.381]

Cardiovascular Illness

Dependent Variable

3-day Spending
−0.064
(0.086)
[0.075]

−5.279
(1.907)
[1.993]

−30.388
(12.229)
[12.987]

−8.042
(2.657)
[3.057]

3-day Spending
without Later

Alert Days

0.023
(0.100)
[0.094]

−4.486
(1.706)
[2.040]

−36.044
(11.875)
[13.975]

−7.414
(2.515)
[3.303]

Notes: This table reports results from 16 2SLS local-linear regressions. The dependent variable in all
regressions is three-day respiratory or cardiovascular disease expenditures (from day t to day t +2) for the
relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the independent variable
of interest is an advisory indicator. All regressions control for the running variable, an interaction between
the running variable and the indicator for the running variable being above the RD threshold, temperature,
precipitation, and year-by-month and day-of-week fixed effects. The level of observation is the district
by day, and observations are population weighted. Parentheses (square brackets) contain standard errors
clustered by the running variable (day of sample). The bandwidth is set to 20 in all regressions. N = 2,530
in the first row of each panel. The last row of each panel drops from the sample advisory district-days on
which the previous district-day experienced an advisory, which results in N = 2,228.
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TABLE 7—RD RESULTS FOR RESPIRATORY DISEASES, WITH VISITS TO TERTIARY GENERAL HOSPITALS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0) −8.804
(2.344)
[2.887]

−2.260
(1.385)
[1.381]

−2.532
(1.655)
[1.866]

−3.446
(1.426)
[1.505]

RV −0.086
(0.145)
[0.142]

−0.045
(0.044)
[0.045]

0.011
(0.064)
[0.072]

−0.044
(0.057)
[0.058]

RV ·1(RV >= 0) 0.627
(0.166)
[0.227]

0.218
(0.112)
[0.079]

0.173
(0.131)
[0.114]

0.270
(0.109)
[0.088]

2SLS

1(RV >= 0) −14.062
(4.662)
[5.484]

−3.639
(2.184)
[2.134]

−4.095
(2.696)
[2.829]

−5.543
(2.367)
[2.450]

RV 0.020
(0.204)
[0.170]

−0.018
(0.063)
[0.055]

0.021
(0.084)
[0.086]

−0.003
(0.084)
[0.071]

RV ·1(RV >= 0) 0.581
(0.237)
[0.297]

0.208
(0.110)
[0.079]

0.162
(0.127)
[0.110]

0.254
(0.118)
[0.104]

Adjusted R2 0.839 0.866 0.796 0.897
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top panel) and four 2SLS
local-linear regressions (bottom panel). The dependent variable in all regressions is respiratory disease ex-
penditures for the relevant age group, including visits to tertiary general hospitals and measured in cents
per capita (11.5 KRW = 0.01 USD). The independent variable of interest in the reduced-form (2SLS) re-
gressions is an indicator for the running variable being above the RD threshold (advisory indicator). All
regressions control for the running variable, an interaction between the running variable and the indicator
for the running variable being above the RD threshold, temperature, precipitation, and year-by-month and
day-of-week fixed effects. The level of observation is the district by day, and observations are population
weighted. Parentheses (square brackets) contain standard errors clustered by the running variable (day of
sample). The bandwidth is set to 20 in all regressions.
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TABLE 8—RD RESULTS FOR CARDIOVASCULAR DISEASES, WITH VISITS TO TERTIARY GENERAL HOSPITALS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0) −0.096
(0.054)
[0.062]

−1.877
(0.527)
[0.509]

−5.992
(2.133)
[2.421]

−2.133
(0.618)
[0.681]

RV 0.005
(0.003)
[0.003]

0.059
(0.025)
[0.021]

0.216
(0.100)
[0.118]

0.065
(0.025)
[0.028]

RV ·1(RV >= 0) −0.003
(0.007)
[0.008]

0.012
(0.038)
[0.039]

−0.032
(0.155)
[0.214]

0.014
(0.042)
[0.052]

2SLS

1(RV >= 0) −0.153
(0.095)
[0.113]

−3.022
(1.024)
[0.789]

−9.691
(3.930)
[3.786]

−3.431
(1.168)
[1.073]

RV 0.006
(0.006)
[0.004]

0.082
(0.082)
[0.025]

0.291
(0.102)
[0.129]

0.091
(0.033)
[0.033]

RV ·1(RV >= 0) 0.003
(0.007)
[0.007]

0.003
(0.044)
[0.045]

−0.058
(0.147)
[0.227]

0.005
(0.041)
[0.057]

Adjusted R2 0.022 0.799 0.854 0.874
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top panel) and four 2SLS
local-linear regressions (bottom panel). The dependent variable in all regressions is cardiovascular disease
expenditures for the relevant age group, including visits to tertiary general hospitals and measured in cents
per capita (11.5 KRW = 0.01 USD). The independent variable of interest in the reduced-form (2SLS) re-
gressions is an indicator for the running variable being above the RD threshold (advisory indicator). All
regressions control for the running variable, an interaction between the running variable and the indicator
for the running variable being above the RD threshold, temperature, precipitation, and year-by-month and
day-of-week fixed effects. The level of observation is the district by day, and observations are population
weighted. Parentheses (square brackets) contain standard errors clustered by the running variable (day of
sample). The bandwidth is set to 20 in all regressions.
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TABLE 9—ROBUSTNESS CHECKS

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Sample Modification

Bandwidth: 16
−12.504
(4.256)
[4.779]

−4.357
(2.293)
[2.071]

−4.468
(2.626)
[2.752]

−5.851
(2.492)
[2.391]

Bandwidth: 20
−15.033
(4.709)
[5.674]

−3.777
(2.195)
[2.127]

−4.303
(2.753)
[2.804]

−5.829
(2.397)
[2.495]

Bandwidth: 24
−14.049
(4.521)
[5.666]

−2.876
(2.008)
[2.009]

−2.393
(2.918)
[2.857]

−4.867
(2.254)
[2.387]

Without
Late/Early Advisories

−16.274
(5.243)
[6.248]

−4.093
(2.316)
[2.268]

−4.687
(2.944)
[2.996]

−6.320
(2.550)
[2.675]

Cardiovascular Illness

Sample Modification

Bandwidth: 16
−0.042
(0.039)
[0.035]

−2.781
(0.889)
[0.675]

−7.426
(2.897)
[3.327]

−2.994
(0.900)
[0.864]

Bandwidth: 20
−0.153
(0.095)
[0.113]

−3.022
(1.024)
[0.789]

−9.691
(3.930)
[3.786]

−3.431
(1.168)
[1.073]

Bandwidth: 24
−0.019
(0.030)
[0.035]

−1.654
(1.016)
[0.838]

−4.469
(4.320)
[3.850]

−1.870
(1.219)
[1.087]

Without
Late/Early Advisories

−0.043
(0.034)
[0.038]

−3.064
(1.050)
[0.834]

−10.502
(4.217)
[4.012]

−3.533
(1.160)
[1.091]

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent variable in all regressions
is respiratory or cardiovascular disease expenditures for the relevant age group, measured in cents per capita
(11.5 KRW = 0.01 USD), and the independent variable of interest is an advisory indicator. All regressions
control for the running variable, an interaction between the running variable and the indicator for the running
variable being above the RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed
effects. The level of observation is the district by day, and observations are population weighted. Parentheses
(square brackets) contain standard errors clustered by the running variable (day of sample). The bandwidth is
set to 20 unless otherwise noted. For bandwidths of 16, 20, and 24, N = 1,857, 2,530, and 3,380 respectively.
The last row in each panel drops from the sample advisory district-days on which the advisory was cancelled
before 9 am or triggered after 7 pm, which results in N = 2,443.
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Online Appendix

A1. Generalization of Theoretical Framework

For ease of exposition we present a model in which average daily PM is the running
variable, but in our application the running variable is the maximum 2-hour minimum
PM level (over one day). Here we show that our model’s conclusions hold if the running
variable is an arbitrary function of daily PM.

Suppose that individuals base their behavior on daily mean PM, pm, while the running
variable is a different function of daily pm, f (pm). The RD estimand then compares
days on which f (pm) is just above the alert threshold ( f (pm) ↓ c) to those on which it is
just below the alert threshold ( f (pm) ↑ c).

Specify individual beliefs as

pmi =

{
pmavg if f (pm) = f (pm) ↑ c
pmhi if f (pm) = f (pm) ↓ c

where pmavg represents average daily mean PM conditional on f (pm) being below
the threshold c and pmhi represents average daily mean PM conditional on f (pm) being
above the threshold c. Let pmc be average daily mean PM conditional on f (pm) = c.
For our bounding exercise we assume that pmhi ≈ pmc, or at least that |pmhi− pmc|<<
|pmavg− pmc|. This representation is a reasonable approximation of our actual PM data.
For example, in our PM2.5 data, pmavg = 22.7, pmhi = 66.7, and pmc = 57.5. Thus pmhi

is much closer to pmc than pmavg is. More generally, the approximation only needs to be
sufficiently accurate that the alerts do not cause individuals to behave less optimally than
they would absent the alert’s information.

Individuals maximize utility by choosing activity levels ai = argmaxa Ui(a, pmi). Then

Ui =

{
Ui(ai(pmavg), pmc) if f (pm) = f (pm) ↑ c
Ui(ai(pmhi), pmc) if f (pm) = f (pm) ↓ c

An individual’s private change in utility from PM crossing the alert threshold is

∆ Ui =Ui(ai(pmhi), pmc)−Ui(ai(pmavg), pmc) =

[bi(ai(pmhi))−bi(ai(pmavg))]− spvt
i [ps(ai(pmhi), pmc)− ps(ai(pmavg), pmc)].

Naturally ∆ Ui ≥ 0 since pmhi ≈ pmc and ai = argmaxa Ui(a, pmi) — i.e. more accu-
rate PM information can only (weakly) increase the individual’s utility — but accurately
quantifying ∆ Ui is challenging even with good data on spvt

i . This challenge arises be-
cause it is difficult to estimate bi(ai), the benefits of different activities (and thus the costs
of avoidance behaviors); ai may be high dimensional, and researchers rarely have data
on all, or even most, elements of ai.



AIR QUALITY ALERTS’ BENEFITS 35

A2. Additional Data Notes

Procedure for Calculating Running Variable: To be consistent with the particulate
pollution alert system, we first calculate the 2-hour-minimum of particulate matter (PM2h min

dh )
in hour h on day d. Next, we obtain a daily maximum of 2-hour-minimum PM measures
in each hour and subtract the alert thresholds (c), where c = 150 in case of PM10 and
c = 90 (or 75 since March 27th of 2018) in case of PM2.5. These transformations gen-
erate the daily running variables (rvd). Last, we utilize the running variables rounded to
the nearest integer. The process may be summarized as follows:

1. PM2h min
dh = min

h
{PMd(h−1),PMdh} (d : date, h : hour)

2. PM2h min max
d = max

d
{PM2h min

dh }

3. rvd = PM2h min max
d − c

4. Rounding rvd to the nearest integer

As expected, our running variable has a tight correlation with PM10 and PM2.5, re-
spectively. It is thus reasonable to believe the running variable captures the relationship
between particulate pollution and health expenditures in the main regression. Neverthe-
less, we also control for different combinations of air quality variables as a robustness
check (Appendix Table A9).

Cost Evaluation of Air Pollution Alert System: To determine alert system costs, we
first searched for reports about environmental expenditures from the seven major cities
in our study. We identified a category entitled “Air Pollution Management System -
Public Management Cost.” Among the items listed under this category, we selected the
ones related to the air pollution alert system (Appendix Table A12). We considered not
only directly related items, such as the cost for issuing alerts via SMS, but also broadly
related items, such as the management cost of air pollution monitors. Appendix Table
A13 presents the total costs of the alert system for each city.

A3. Additional Robustness Checks

Manipulation Test: In other contexts researchers have found evidence that pollution
measurements are manipulated to remain below certain thresholds. While the officials
charged with determining alerts in our context face no obvious incentives to manipulate
PM measurements, we nevertheless check to see whether there is any “missing” density
of the running variable above the RD threshold. Appendix Figures A1 and A2 plot the
distribution of the daily and hourly running variables, respectively. In both graphs, we
see no unusual decrease in the density of observations above the threshold.

Control Continuity: Our main control variables are weather variables. We test the con-
tinuity of the two weather variables in our model, temperature and precipitation, at the
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RD threshold. Appendix Figure A3 shows the average temperature and precipitation per
district and day-of-the-sample plotted against the running variable, which lies in the in-
terval [−40,40]. There is no visual evidence of a discontinuity in either weather variable
at the RD threshold.

Asymmetry in the Thresholds for Alert Issuance and Cancellation: Following the
issuance of an alert, the running variable generally needs to drop substantially below the
RD threshold before the alert gets canceled. To test the sensitivity of our results to this
asymmetry in issuance and cancellation of alerts, we consider two sample restrictions.
First, we trim the sample to exclude alert days following the first day of an air quality
alert and report parameter estimates obtained from the main specification. Alternatively,
we drop out alert days on which the running variable is below zero. The results of these
exercises, reported in Appendix Table A7, suggest that our estimates are not sensitive to
the asymmetry in the issuance and cancellation thresholds.

No Treatment During Nighttime Hours: It seems unlikely that most individuals mod-
ify their behavior in response to an air quality alert issued during nighttime hours. As
a robustness check, we estimate FRD regressions when dropping district-days on which
alerts were issued between 6 AM and 9 PM or between 8 AM and 8 PM. The results,
reported in Appendix Table A7, are of similar magnitude to the estimates from our base
model.

Alternative RD Specifications: Appendix Table A8 reports estimates from alternative
RD specifications that control for a quadratic of the running variable. The health expen-
diture effects are of similar magnitude and statistical significance as our main results. We
also check robustness to specifications in which we control for a quadratic in temperature
or in which we control for year and month fixed effects instead of year-by-month fixed
effects. Both sets of results are qualitatively similar to our main estimates.

Addition of Different Air Quality Variables We interpret our results as representing
benefits of avoidance behavior. If the alerts had a direct effect on pollution levels, how-
ever, then our results would represent a combination of the benefits of avoidance behav-
ior and lower ambient pollution levels. Appendix Table A4 demonstrates that there is no
discontinuous change in ambient PM levels at the RD threshold. As an extra check we
estimate specifications, reported in Appendix Table A9 that control for PM10, PM2.5,
both PM measures, or the AQI. The addition of these air-quality controls has virtually no
impact on our RD estimates.

Different Standard Error Clusters: The panel nature of our data is atypical for a RD
design. We thus consider the impacts of different clustering choices for the standard er-
rors. Appendix Table A10 reports the standard errors clustered at different combinations
of spatial and time units. All coefficients that were significant in Tables 4 and 5 remain
significant across all clustering choices.
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Spillover Effects: Our RD estimates could be attenuated if alerts affect health spending
in adjacent regions. To address this concern, we estimate the impact of PM alerts in the
nearest alert region to region r on the outcome variables in region r. Appendix Table
A11 demonstrates that the RD estimates are not statistically significant across all three
age groups, suggesting an absence of spillover effects of the alerts to other regions.

Falsification Test: As the final robustness check, we estimate effects at alternative
“placebo” RD thresholds. Specifically, we construct alternative running variables by
subtracting 20, 30, or 50 units from PM10 and PM2.5 concentration. All of the estimates
for alternative running variables are statistically insignificant (Appendix Table A11), as
would be expected if our research design is valid.
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FIGURE A1. HISTOGRAM OF RUNNING VARIABLE (DAILY)

FIGURE A2. HISTOGRAM OF RUNNING VARIABLE (HOURLY)

Notes: The red line denotes the RD threshold of zero.
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Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is 5 units. The y-axis indicates the average temperature or rainfall. The x-axis indicates the
value of the running variable (a threshold-normalized function of PM).

FIGURE A3. CONTINUITY OF CONTINUOUS CONTROL VARIABLES
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TABLE A1—EXAMPLES OF ALERT SYSTEMS IN THE WORLD

Alert Policies Country Regions
Covered

Estimated
Population
Covered

(mil.)

Related
Links

4-tier Alert system China All 1,387.2 LINK

Particulate Matter
Alerts

South
Korea All 51.7 LINK

EnviroFlash US Many 193.8 LINK

Public Weather
Alerts Canada Ontario 14.6 LINK

Air quality alerts Australia New South
Wales 8.2 LINK

Sistema de
Monitoreo

Atmosférico
Mexico Mexico

City 8.8 LINK

Haze Alerts Singapore All 5.6 LINK

Pollution Alerts UK All 66.7 LINK

Notes: This list includes examples of prominent air-quality alert systems worldwide, but it is not com-
prehensive. The Chinese 4-tier Alert system coverage was calculated by summing the populations of the
second-tier administrative units in which air pollution monitors are installed. EnviroFlash coverage was
calculated based on the population in counties where the US EPA manages air pollution monitors. All links
were checked on 20 September 2021.

https://link.springer.com/content/pdf/10.1007/s10018-017-0196-3.pdf
https://www.airkorea.or.kr/web
http://www.enviroflash.info/assets/pdf/EnviroFlash_factSheet.pdf
https://www.ontario.ca/document/air-quality-ontario-2017-report/air-quality-health-index-and-air-quality-alerts#section-2
https://www.dpie.nsw.gov.au/air-quality/air-quality-alerts
http://www.aire.cdmx.gob.mx/default.php?opc=%27ZaBhnmI=%27
https://www.haze.gov.sg
https://uk-air.defra.gov.uk/latest/alerts
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TABLE A2—TYPES OF MEDICAL INSTITUTIONS IN SOUTH KOREA

Levels of
Institutions

Types of
Institutions Description

Tertiary
Tertiary
General

Hospitals

· The Minister of Health and Welfare may designate
a general hospital providing highly specialized
medical services for treating serious diseases
as a tertiary hospital among general hospitals.

Secondary

General
Hospitals · A general hospital shall have at least 100 beds.

Hospitals · Hospitals shall have at least 30 beds or beds for
long-term care.

Primary

Public
Health
Centers

· Publicly owned regional healthcare institutions

Clinic
· A medical institution in which a doctor, dentist,

or oriental medical doctor provides
medical services primarily to outpatients

Sources: Korea Law Translation Center, Korea Legislation Research Institute
https://elaw.klri.re.kr/kor service/lawView.do?hseq=53532&lang=ENG, accessed on Sep 15, 2021

Notes: Source link provides additional details on the definitions of each institution type.



42 AIR QUALITY ALERTS’ BENEFITS

TABLE A3—OUT-OF-POCKET PAYMENTS FOR OUTPATIENT VISITS IN THE SOUTH KOREAN HEALTHCARE SYSTEM

Type of
Institutions Cases Out-of-pocket Payments

Tertiary
Hospitals

Normal
Patients

· 100% of consultation fee +
40% of remaining medical expenses
· (Pregnant Women) 40% of total medical expenses
· (Age < 1) 20% of total medical expenses

General
Hospitals

Urban
Areas

· 50% of total medical expenses
· (Pregnant Women) 40% of total medical expenses
· (Age < 1) 20% of total medical expenses

Rural
Areas

· 45% of total medical expenses
· (Pregnant Women) 40% of total medical expenses
· (Age < 1) 20% of total medical expenses

Hospitals

Urban
Areas

· 40% of total medical expenses
· (Pregnant Women) 20% of total medical expenses
· (Age < 1) 10% of total medical expenses

Rural
Areas

· 35% of total medical expenses
· (Pregnant Women) 40% of total medical expenses
· (Age < 1) 20% of total medical expenses

Clinics

Age ≥ 65

·₩1,500 when total medical expenses ≤₩15,000
· 10% when total medical expenses
> ₩15,000 & ≤₩20,000
· 20% when total medical expenses
> ₩20,000 & ≤₩25,000
· 30% when total medical expenses > ₩25,000

Age < 65
· 30% of total medical expenses
· (Pregnant Women) 10% of total medical expenses
· (Age < 1) 5% of total medical expenses

Public
Health
Centers

Age ≥ 6
· 30% when total medical expenses > ₩12,000
·₩500−₩2,200 depending on cases

when total medical expenses ≤₩12,000

Age < 6
· 21% when total medical expenses > ₩12,000
·₩500−₩2,200 depending on cases

when total medical expenses ≤₩12,000

Sources: Health Insurance Review and Assessment Service (HIRA) of South Korea
https://www.hira.or.kr/dummy.do?pgmid=HIRAA030056020110 (in Korean), accessed on Sep 10, 2021

Notes: ₩ indicates Korean Won (KRW). 10,000 KRW is equivalent to approximately 8.7 USD. While this
table shows general out-of-pocket payment ratios, it does not describe every specific case that could result
in different ratios of out-of-pocket payments. For more details, refer to source link above.
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TABLE A4—FRD RESULTS USING PARTICULATE MATTER AS DEPENDENT VARIABLES

Bandwidths

Dependent Variable 16 20 24

PM10
0.331

(4.989)
1.685

(4.112)
4.190

(3.362)

PM2.5
-3.613
(4.363)

-4.738
(4.692)

-4.098
(4.590)

Notes: This table reports results from six 2SLS local-linear regressions. The dependent variable in
all regressions is PM10 or PM2.5, measured in cents µg/m3, and the independent variable of interest
is an advisory indicator. All regressions control for the running variable, an interaction between the
running variable and the indicator for the running variable being above the RD threshold, temper-
ature, precipitation, and year-by-month and day-of-week fixed effects. The level of observation is
the district by day, and observations are population weighted. Parentheses contain standard errors
clustered by the day of sample. The bandwidth varies across columns as noted.
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TABLE A5—OPTIMAL BANDWIDTH

Dependent Variable Optimal Bandwidth

Resp. (All) 18.321
Resp. (Adults) 19.293
Resp. (Older Adults) 20.526
Resp. (Minors) 17.135
Cardio. (All) 21.084
Cardio. (Adults) 21.354
Cardio. (Older Adults) 20.611
Cardio. (Minors) 17.726
Resp. (All, 3-Day Rolling Sum) 17.088
Resp. (Adults, 3-Day Rolling Sum) 18.185
Resp. (Older Adults, 3-Day Rolling Sum) 22.185
Resp. (Minors, 3-Day Rolling Sum) 17.466
Cardio. (All, 3-Day Rolling Sum) 28.363
Cardio. (Adults, 3-Day Rolling Sum) 24.260
Cardio. (Older Adults, 3-Day Rolling Sum) 34.249
Cardio. (Minors, 3-Day Rolling Sum) 18.898

Notes: This table reports “optimal” bandwidths for different dependent variables, computed using
methods from Calonico, Cattaneo and Titiunik (2014, 2015).
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TABLE A6—ANALYSIS OF DYNAMIC EFFECTS WITH DIFFERENT BANDWIDTHS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Sample Modification

Bandwidth: 16
−32.087
(10.967)

−10.266
(4.058)

−11.953
(5.892)

−14.688
(5.065)

Bandwidth: 20
−38.220
(13.769)

−10.703
(4.662)

−12.977
(6.624)

−16.125
(5.935)

Bandwidth: 24
−32.998
(13.702)

−7.851
(4.715)

−8.139
(6.878)

−12.693
(5.882)

Cardiovascular Illness

Sample Modification

Bandwidth: 16
−0.146
(0.089)

−4.796
(1.682)

−25.911
(12.085)

−7.034
(2.533)

Bandwidth: 20
−0.064
(0.075)

−5.279
(1.993)

−30.388
(12.987)

−8.042
(3.057)

Bandwidth: 24
0.007

(0.076)
−3.785
(2.059)

−26.687
(12.366)

−6.718
(3.081)

N
Bandwidth 16: 1,857
Bandwidth 20: 2,530
Bandwidth 24: 3,380

Notes: This table reports results from 24 2SLS local-linear regressions with varying bandwidths (16, 20, or
24). The dependent variable in all regressions is three-day respiratory or cardiovascular disease expenditures
(from day t to day t +2) for the relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and
the independent variable of interest is an advisory indicator. All regressions control for the running variable, an
interaction between the running variable and the indicator for the running variable being above the RD threshold,
temperature, precipitation, and year-by-month and day-of-week fixed effects. The level of observation is the
district by day, and observations are population weighted. Parentheses contain standard errors clustered by day
of sample.
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TABLE A7—ROBUSTNESS CHECK - EXCLUSION OF LATER ALERT DAYS AND REMOVAL OF EARLY/LATE ALERTS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Sample Modification

Without Later
Alert Days

−13.622
(6.692)

−1.563
(1.290)

−1.229
(1.396)

−3.579
(2.006)

Without Later
Alert Days of RV < 0

−13.213
(4.678)

−3.412
(1.855)

−3.812
(2.432)

−5.219
(2.174)

Without
9PM−6AM

−16.274
(6.248)

−4.093
(2.268)

−4.687
(2.996)

−6.320
(2.675)

Without
8PM−8AM

−17.759
(6.908)

−4.428
(2.451)

−5.113
(3.281)

−6.856
(2.918)

Cardiovascular Illness

Sample Modification

Without Later
Alert Days

−0.025
(0.045)

−2.056
(0.746)

−8.425
(3.484)

−2.237
(0.896)

Without Later
Alert Days of RV< 0

−0.036
(0.030)

−2.387
(0.619)

−8.204
(2.897)

−2.723
(0.815)

Without
9PM−6AM

−0.043
(0.038)

−3.064
(0.834)

−10.502
(4.012)

−3.533
(1.091)

Without
8PM−8AM

−0.047
(0.041)

−3.315
(0.924)

−11.457
(4.495)

−3.833
(1.218)

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent variable in all regressions
is respiratory or cardiovascular disease expenditures for the relevant age group, measured in cents per capita
(11.5 KRW = 0.01 USD), and the independent variable of interest is an advisory indicator. All regressions
control for the running variable, an interaction between the running variable and the indicator for the running
variable being above the RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed
effects. The level of observation is the district by day, and observations are population weighted. Parentheses
contain standard errors clustered by day of sample. The bandwidth is set to 20 in all regressions. In each panel,
the first excludes alert days following the first day of an air quality alert, and the second row excludes alert days
on which the running variable falls below zero. The third row excludes days on which the alert was cancelled
before 6 am or triggered after 9 pm, while the fourth row excludes days on which the alert was cancelled before
8 am or triggered after 8 pm.
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TABLE A8—FRD COEFFICIENTS WITH DIFFERENT SPECIFICATIONS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Specification Modification

Quadratic RV
−18.220
(11.167)

−7.586
(3.221)

−7.718
(4.404)

−9.607
(4.337)

Quadratic Temperature
−15.611
(5.710)

−4.064
(2.105)

−4.569
(2.808)

−6.167
(2.499)

Alternative Time FE
−14.502
(5.698)

−2.982
(2.152)

−3.274
(2.858)

−5.045
(2.495)

Cardiovascular Illness

Specification Modification

Quadratic RV
−0.028
(0.074)

−4.611
(1.487)

−14.329
(6.994)

−5.138
(1.714)

Quadratic Temperature
−0.039
(0.035)

−2.702
(0.776)

−9.022
(3.607)

−3.126
(1.020)

Alternative Time FE
−0.041
(0.034)

−2.650
(0.760)

−9.286
(3.561)

−3.128
(0.983)

Notes: This table reports results from 24 2SLS local-linear regressions. The dependent variable in all regressions
is respiratory or cardiovascular disease expenditures for the relevant age group, measured in cents per capita (11.5
KRW = 0.01 USD), and the independent variable of interest is an advisory indicator. All regressions control for the
running variable, an interaction between the running variable and the indicator for the running variable being above
the RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed effects. The first, second,
and third rows in each panel add controls for a quadratic in the running variable, a quadratic in temperature, and year
and month fixed effects (instead of year-by-month fixed effects) respectively. The level of observation is the district
by day, and observations are population weighted. Parentheses (square brackets) contain standard errors clustered
by the running variable (day of sample). The bandwidth is set to 20 in all regressions.



48 AIR QUALITY ALERTS’ BENEFITS

TABLE A9—ROBUSTNESS CHECK - ADDITION OF AIR POLLUTION COVARIATES

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Added Covariates

PM10
−14.665
(5.249)

−3.294
(1.912)

−3.860
(2.507)

−5.379
(2.253)

PM2.5
−14.232
(5.117)

−3.558
(1.970)

−4.033
(2.536)

−5.486
(2.274)

PM10 & PM2.5
−14.531
(5.100)

−3.296
(1.902)

−3.849
(2.491)

−5.353
(2.230)

AQI
−14.626
(5.462)

−3.489
(1.933)

−3.863
(2.589)

−5.510
(2.300)

Cardiovascular Illness

Added Covariates

PM10
−0.036
(0.037)

−2.654
(0.733)

−8.957
(3.537)

−3.076
(0.948)

PM2.5
−0.045
(0.035)

−2.790
(0.733)

−9.510
(3.529)

−3.174
(0.945)

PM10 & PM2.5
−0.037
(0.036)

−2.663
(0.731)

−8.995
(3.545)

−3.076
(0.942)

AQI
−0.027
(0.038)

−2.760
(0.755)

−8.890
(3.502)

−3.080
(0.956)

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent variable in all re-
gressions is respiratory or cardiovascular disease expenditures for the relevant age group, measured in cents
per capita (11.5 KRW = 0.01 USD), and the independent variable of interest is an advisory indicator. All
regressions control for the running variable, an interaction between the running variable and the indicator
for the running variable being above the RD threshold, temperature, precipitation, and year-by-month and
day-of-week fixed effects. The first, second, third, and fourth rows in each panel add controls for PM10,
PM2.5, both PM10 and PM2.5, and the AQI, respectively (averaged across the day). The level of observa-
tion is the district by day, and observations are population weighted. Parentheses contain standard errors
clustered by day of sample. The bandwidth is set to 20 in all regressions.
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TABLE A10—ROBUSTNESS CHECK - STANDARD ERRORS WITH DIFFERENT CLUSTERS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

FRD Coefficient −15.033 −3.777 −4.303 −5.829

Clustering Level

Province by Day of Week (5.345) (1.568) (1.953) (1.938)

Province by Day of Sample (6.114) (2.140) (2.621) (2.524)

Region by Day of Week (5.217) (1.497) (1.929) (1.880)

Region by Day of Sample (6.081) (2.110) (2.592) (2.490)

District by Day of Week (1.828) (0.645) (1.171) (0.751)

District (2.077) (0.886) (1.010) (1.014)

Cardiovascular Illness

FRD Coefficient −0.040 −2.828 −9.641 −3.259

Clustering Level

Province by Day of Week (0.042) (0.954) (4.199) (1.253)

Province by Day of Sample (0.038) (0.834) (3.742) (1.033)

Region by Day of Week (0.042) (0.923) (3.966) (1.209)

Region by Day of Sample (0.038) (0.813) (3.607) (1.001)

District by Day of Week (0.039) (0.462) (2.645) (0.569)

District (0.036) (0.518) (2.336) (0.540)

Notes: This table reports different standard errors for eight 2SLS local-linear regressions. The dependent variable
in all regressions is respiratory or cardiovascular disease expenditures for the relevant age group, measured in cents
per capita (11.5 KRW = 0.01 USD), and the independent variable of interest is an advisory indicator. All regressions
control for the running variable, an interaction between the running variable and the indicator for the running variable
being above the RD threshold, temperature, precipitation, and year-by-month and day-of-week fixed effects. The
level of observation is the district by day, and observations are population weighted. In each panel parentheses
contain standard errors clustered by province by day-of-week (second row), province by day-of-sample (third row),
region by day-of-week (fourth row), region by day-of-sample (fifth row), district by day-of-week (sixth row), and
district (seventh row). The bandwidth is set to 20 in all regressions.
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TABLE A11—ROBUSTNESS CHECK - SPILLOVER EFFECT AND FALSIFICATION TESTS

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Specification Modification

Spillover
−0.029
(4.658)

0.217
(1.180)

0.453
(1.778)

0.147
(1.743)

Falsification (−20)
0.381

(1.528)
0.296

(0.478)
0.832

(0.792)
0.334

(0.634)

Falsification (−30)
1.424

(1.023)
0.036

(0.333)
−0.186
(0.520)

0.286
(0.430)

Falsification (−50)
−0.658
(0.715)

−0.335
(0.232)

−0.391
(0.358)

−0.400
(0.310)

Cardiovascular Illness

Specification Modification

Spillover
0.029

(0.023)
0.295

(0.809)
−1.054
(4.547)

0.074
(1.067)

Falsification (−20)
0.007

(0.025)
−0.062
(0.340)

−0.458
(1.951)

−0.037
(0.461)

Falsification (−30)
−0.046
(0.017)

−0.072
(0.257)

−0.923
(1.656)

−0.206
(0.380)

Falsification (−50)
−0.014
(0.009)

0.102
(0.131)

1.226
(0.821)

0.197
(0.193)

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent variable in all regressions is
respiratory or cardiovascular disease expenditures for the relevant age group, measured in cents per capita (11.5 KRW
= 0.01 USD), and the independent variable of interest is an advisory indicator, which is shifted either geographically
or generated by shifting the running variable by a constant. In each panel, the first row shifts the advisory indicator to
correspond to an advisory in the nearest alert region to region i. The second, third, and fourth rows use an advisory
indicator that is generated after shifting the running variable downwards by 20, 30, or 50 units respectively. All
regressions control for the running variable, an interaction between the running variable and the indicator for the
running variable being above the RD threshold, temperature, precipitation, and year-by-month and day-of-week
fixed effects. The level of observation is the district by day, and observations are population weighted. Parentheses
contain standard errors clustered by day of sample. The bandwidth is set to 20 in all regressions.
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TABLE A12—LIST OF BUDGET ITEMS RELATED TO ALERT SYSTEM

City Item

Gwangju Air Pollution Monitor - Electricity Cost
Gwangju Line Rental for Air Quality Warning System
Gwangju Air Pollution Monitor Management Cost (General)
Gwangju Air Pollution Monitor - Automatic Control System
Gwangju Air Pollution Monitor Alert System
Daejeon Advertisement - Electronic Board Fee
Daejeon Line Rental for Air Pollution Management System
Daejeon Air Pollution Management System - Maintenance Cost
Daejeon Air Pollution Management System - Establishment Cost
Daejeon Air Pollution Monitor - Installation Cost
Daegu Line Rental for Air Quality Warning System
Daegu Air Pollution Alert System - Maintenance Cost
Busan Air Pollution Monitor - Maintenance Cost
Busan Air Pollution Monitor Data Collecting Machine - Maintenance Cost
Busan Air Pollution Monitor - Battery Change
Busan Indoor Air Quality Monitor - Maintenance Cost
Busan Indoor Air Quality Monitor Data Collecting Machine - Maintenance Cost
Busan Air Pollution Alert System - Maintenance Cost
Busan Sampling & Analysis Equipment - Maintenance Cost
Busan Air Pollution Monitor - Maintenance Cost
Busan Indoor Air Quality Monitor - Maintenance Cost
Busan Air Pollution Monitor - Electronic Board Maintenance Cost
Seoul Air Pollution Information System - Office Management Cost
Seoul Air Pollution Information System - Maintenance Cost
Seoul Air Pollution Information System - SMS Service
Seoul Air Quality Modeling System Construction
Seoul Air Quality Evaluation Program Development
Seoul Air Quality Real-Time Information Provision System Construction
Seoul Air Pollution Information System - IT Development
Seoul Ambient Air Quality Situation Room Construction
Seoul Ambient Air Quality Information Service Infrastructure
Seoul Air Quality Information System - Supervision
Seoul Air Pollution Information System - IT Solution & Planning Development
Ulsan Advertisement - Electronic Board Fee
Ulsan Air Pollution Monitor - Electricity Cost
Ulsan Line Rental for Air Pollution Monitor
Ulsan Ambient Air Quality Situation Room - Maintenance Cost
Ulsan Air Pollution Monitor - Outsourcing Maintenance Cost
Ulsan Air Pollution Monitor Equipment - Maintenance Cost
Ulsan Air Pollution Monitor - Maintenance Cost
Ulsan Environmental Measurement Equipment Inspection Cost
Ulsan Air Pollution Monitor - Battery Change

Incheon Air Pollution Monitoring - Public Cost
Incheon Air Pollution Monitoring - Equipment Maintenance Cost
Incheon Environmental Measurement Equipment Inspection Cost
Incheon Air Pollution Monitor - Movement Cost
Incheon Air Pollution Monitor - Outsourcing Maintenance Cost
Incheon Environment Automatic Monitoring System - Outsourcing Maintenance Cost
Incheon Air Pollution Monitor Network Establishment

Notes: Each row reports an item related to the alert system in each city.
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TABLE A13—COSTS OF THE AIR POLLUTION ALERT SYSTEM MANAGEMENT

City Cost [USD, 2017] Cost [USD, 2018]

Gwangju 190,751 192,317
Daejeon 151,530 190,887
Daegu 293,925 309,012
Busan 375,257 471,538
Seoul 187,879 634,157
Ulsan 329,588 464,695

Incheon 485,627 571,334

Toal 2,014,558 2,833,940

Notes: Each row reports the system management cost of air quality alerts in the
seven major cities in the sample.




