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1 Introduction

Since the mid-1980, the nature of financial intermediation has been changed in a dramatic way by

the emergence of securitization and secured lending techniques, giving rise to a more market-based

financial system. Shadow banking can be viewed as the product of this market-based financial

system; to take one of the most salient examples, it is widely acknowledged that maturity and

credit transformation in the shadow banking system contributed to the asset price appreciation in

U.S. real estate markets prior to the 2007–09 financial crisis.

Although the underlying economic mechanism of shadow banking has been well studied by

many leading scholars (Adrian and Shin, 2009, 2013; Gennaioli et al., 2013; Duffie, 2019) since the

onset of the 2007–09 financial crisis, our paper focuses on one missing piece in the literature on

shadow banking. Adrian et al. (2012) explain it vividly:

Like the traditional banking system, the shadow banking system conducts credit inter-

mediation. However, unlike the traditional banking system, where credit intermediation

is performed “under one roof”—that of a bank—in the shadow banking system, it is

performed through a daisy-chain of non-bank financial intermediaries in a multi step

process. . . . The shadow banking system performs these steps of shadow credit inter-

mediation in a strict, sequential order with each step performed by a specific type of

shadow bank and through a specific funding technique. . . . The intermediation chain al-

ways starts with origination and ends with wholesale funding, and each shadow bank

appears only once in the process.

The thrust of the above description is the concept of a “chain.” The common theme in

the various shadow banking businesses anatomized by Adrian et al. (2012) is the step-by-step

maturity/liquidity and credit transformation, often initiated by loan origination. This is then

followed by so-called “loan warehousing,” which refers to the act of collecting a significant volume

of eligible loans in a special purpose vehicle (SPV), which then issues asset-backed commercial

papers (ABCP) to the public, as well as issues loans to the next layer of asset-backed securities

(ABS) warehousing. As shown in Figure 1, which we take from Adrian et al. (2012), this process

might further involve an ABS collateralized-debt-obligation (CDO), but eventually reaches the

wholesale funding markets that are populated by money market investors as well as long-term fixed

income investors (say pension funds and insurance companies).

We emphasize that the intermediation credit chain is more general than the stark example of

the shadow banking system prior-to the 2007–09 financial crisis. In most modern financial systems,

money market mutual funds (MMMFs) issue daily “debt” to households, but hold commercial

papers with maturity of one to six months. These commercial papers are issued by banks and

other nonbank financial institutions that fund even longer-term and riskier projects. They form

the most basic intermediation credit chain. Regulators have increasingly expressed concerns over

these nonbank financial intermediaries, which have grown significantly since the global financial

crisis (Aramonte et al., 2021).
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Figure 1: Illustration of the Credit Intermediation Chain

This figure is from Adrian et al. (2012)

Figure 2 plots the credit intermediation index over time, which is the ratio of total liabilities

of all sectors in the economy over the total end-user liability. Similar to the “money multiplier”

idea, Greenwood and Scharfstein (2013) argue that the credit intermediation index approximates

the average credit chain length in the economy, where the total end-user liability is approximated

by domestic nonfinancial sector liabilities and the total liabilities of all sectors are measured by the

sum of financial and nonfinancial sector liabilities. This ratio grew significantly during the 1990s

when structured finance and securitization became popular, consistent with the view in Adrian et

al. (2012) mentioned above. It decreased slightly after the global financial crisis, but remains at a

high level from a historical perspective. During the last decade, each dollar from investors flows

through about 2.2 layers of financial intermediaries on average before reaching the final borrower

with potentially wide variation among the types of financing.

Despite the extensive literature on shadow banking and its policy implications, it still remains

an open question why market participants rely on layers of intermediaries instead of just one (layer

of) intermediary to take funding from households and lend it out directly to firms. It is possible

that a long credit chain could lure unsophisticated households investors into being the ultimate

funding provider; but remember that professional money market funds often invest on behalf of

these households. Another often-mentioned explanation is regularity arbitrage; under this view,

a long financing chain is intentionally created to obscure certain financial activities conducted

by financial institutions. The great body of empirical studies (Acharya et al., 2013; Karolyi and

Taboada, 2015; Demyanyk and Loutskina, 2016) on regulatory arbitrage certainly lends support to

this view, but it does not explain the rapid growth of the securitization market in the first place
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Figure 2: Credit Intermediation Index, 1960–2020

This figure plots the credit intermediation index, following the definition in Greenwood and Scharfstein (2013). It is

calculated as the ratio of the total liability of all domestic sectors to the total liability of domestic nonfinancial

sectors. Both series are obtained from the Flow of Funds at the annual level.

around the mid-1980’s. In fact, there is evidence that securitization is best explained as contracting

innovation instead of pure regulatory arbitrage (Calomiris and Mason, 2004).

We shed new light on the economics of credit chains by considering a dynamic model, in

which a long-lived entrepreneur borrows from overlapping generations (OLG) of households. The

entrepreneur has a time-discount rate α ∈ (0, 1), and is endowed with a project that matures with

certain probability each period and produces cash flows upon maturity. Households, on the other

hand, are born with endowments e and live for two periods, but do not receive any discount over

their consumption across the two periods.

The relative impatience wedge built into our model implies that the (impatient) entrepreneur

would like to pledge out future cash flows and borrows from (patient) households to consume early.

However, households are OLG, and their trading in the secondary market needs to be facilitated

by financial intermediaries. We hence introduce a third group, “experts”; they are financial inter-

mediaries who can manage funds and facilitate liquidation and trading in the secondary market.

All experts also have the same discount rate as the entrepreneur.

The entrepreneur can borrow via layers of funds that are managed by the experts, or directly

from OLG households. We assume an exogenous contract maturity rate; each layer of funds opti-

mally designs its debt contract (e.g., debt face value) taking as given other layers’ contracts and

households’ strategies. When contracts mature, the borrower—whether the entrepreneur or an in-

termediary fund—needs to rollover its debt. Rollover fails when the cash-flow realization falls below

an endogenous threshold, in which case the borrower defaults. Creditors liquidate this borrower’s

assets in the secondary market, where experts serve as buyers who then resell to the next cohort
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of households. In addition, households pay a dead-weight bankruptcy cost per layer.

Because secondary trading of any long-term securities across cohorts of households involves

impatient intermediary experts who demand compensation, the entrepreneur can borrow more from

OLG households by using short-term (debt) contracts. This is because short-term contracts mini-

mize the maturity mismatch between the OLG households and the long-term project. Essentially,

our model captures the growing appetite for money-like assets in recent decades, as has been well

documented in Greenwood et al. (2015) and Carlson et al. (2016).

Interestingly, in our model, a credit chain can increase the entrepreneur’s borrowing capacity

even further; put differently, a credit chain can supply more money-like securities. Section 2

illustrates the key mechanism, which is new to the literature, by a simple numerical example.

When the entrepreneur directly borrow using short-term debt, a negative interim shock forces

the entrepreneur’s project to be liquidated. In contrast, in the credit chain structure where the

entrepreneur borrows (using long-term debt) from a fund who then borrows (using short-term debt)

from households, following an interim negative fundamental shock, it is the fund’s asset—which is

the debt issued by the entrepreneur—that is liquidated. This preserves the subsequent short-term

debt claims over the entrepreneur’s project, and hence avoids inefficient secondary market trading

in the continuation game if future rollover is successful.

As explained above, our model features a stylized trade-off: The impatient entrepreneur would

like to pledge out as many cash flows as possible, including future ones; but the associated secondary

market liquidation losses will be high. By comparing the borrowing capacities induced by these

two cases, our example highlights that the two-layered credit chain structure helps insulate interim

negative fundamental shocks and protect the underlying real project (held by the entrepreneur firm)

cash flows from heavy discounts in liquidations. In this way, the credit chain structure reduces the

tension between maximizing the cash flow pledged out and minimizing liquidation losses, just like

what special purpose vehicles (SPVs) achieve in practice.

Section 4 characterizes the equilibrium credit chain in our model. For relatively low funding

available e, the equilibrium contracts are shown to be time invariant and layer independent. The

time invariant feature is mainly due to the fact that the fundamental is i.i.d., while the layer

independence is more subtle. When choosing the optimal contract, each fund trades the proceeds

received today against the probability of future rollover failures. Funds closer to households have

fewer rollover concerns and would like to borrow more, but are constrained by securities (contracts)

they acquire from layers above. Competitive intermediary funds then imply all layers have the same

contract in equilibrium. Both contract features (stationarity and layer independence) are important

for tractability, which allows us to study the equilibrium chain length.

We show that the equilibrium chain length minimizes households’ run threshold. The benefit

of borrowing via layers is best illustrated by considering the extreme case without exogenous dead-

weight bankruptcy cost; in such a case, the equilibrium chain length is infinity. Households with

liquidity needs value short-term debt, but issuing short-term debt against long-term illiquid assets

is risky and involves severe liquidation loss when rollover fails. Borrowing via credit chains eases

the tension. The intermediate layers preserve subsequent short-term debt claims. So when rollover
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fails, future cash flows are not discounted as heavily as otherwise. Intermediating via credit chains

meets the liquidity needs of the households and simultaneously reduces liquidation losses. This

intuition echoes that in Section 2’s example, where the credit chain insulates some part of the

project’s future cash flows from the heavy liquidation discount.

Similar to Samuelson (1958), “money” (debt) in our model serves the important role of storing

value and transferring wealth. Along this direction, we endogenize the available funding from

households e in Section 5 and investigate whether the decentralized credit chain is excessively long

compared to the constrained efficient benchmark. The answer is yes, implying that restricting the

chain length can improve total welfare. This is mainly due to the coordination issue between the

entrepreneur, who determines the contract but takes the chain length as given, and the funds in the

last layer, which determine the chain length but take the contract as given. A shorter credit chain

limits rollover risks and, as a result, increases borrowing capacity in every period, which further

reduces rollover risks.

Though examining a similar economic phenomenon, our paper differs fundamentally from the

literature of asset trading chains. Oftentimes, these papers focus on certain specific market frictions

that prevent the asset seller (with a relatively low valuation) from directly selling to the first-best

buyer (with the highest valuation); there is, thus, an intermediary who holds the asset temporarily.

In this literature, these financial frictions could be either information asymmetry in Glode and Opp

(2016), or over-the-counter search frictions in Shen et al. (2021).1 Our focus is on intermediation

credit chains where one agent’s liability is another agent’s asset, a feature that we often see in the

shadow banking system.

Literature Review

Our paper belongs to a recent literature that studies the role and frictions of credit chains, motivated

by the growing intermediation chain in the U.S. financial system, particularly in the shadow banking

sector (Adrian and Shin, 2010; Adrian et al., 2012). Glode and Opp (2021) focus on strategic debt

renegotiation when agents are connected through liabilities in an exogenously given debt chain.

They show that the chain structure gives rise to externalities in renegotiation because even though

bargaining is bilateral, it affects and depends on renegotiation outcomes in other parts of the chain.

In Donaldson and Micheler (2018), credit chains arise when banks rely more on non-resaleable

debt, such as repos. The repo borrowing in their framework is similar to borrowing via layers in

our setting. In both papers, liquidation losses are smaller in defaults when the borrowing is done

via layers; the difference is that, instead of assuming exemption of automatic stay, we start with

a common type of frictions and show that having a layer in the middle endogenously results in

smaller default losses. Our theory mainly applies to structured investment vehicles and commercial

1With a slightly broader interpretation, our model also sheds light on “rehypothecation,” i.e., the reuse of collateral

in secured financing transactions, which is also called “collateral chains” and is a widespread practice to enhance

market functioning between banks and nonbanks (Infante and Saravay, 2020). Because most repo transactions in

the U.S. are conducted on an “outright” basis with complete ownership transfer at each leg, rehypothecation in a

collateral chain is closer to asset trading chains in our opinion.
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paper markets, rather than repos. Di Maggio and Tahbaz-Salehi (2017) study how the distribution

of collateral along the credit chain matters for the intermediation capacity and systemic stability.

Different from the existing literature, we highlight the asset insulation benefit of intermediating

through credit chains.

There is a long literature on the theory of financial intermediation. We focus on the benefit of

having multiple layers of intermediaries instead of just one, which is the robust prediction in leading

models of financial intermediation. Leland and Pyle (1977) suggest that intermediaries can help

resolve information asymmetries between borrowers and lenders, an economic force that is absent

in our model. Diamond (1984) shows that financial intermediaries reduce monitoring cost through

diversifying projects’ idiosyncratic risks; but we do not have idiosyncratic risks in our model and

the insulation role of layers in our model is separate from diversification.

Conceptually our paper is closer to Diamond and Rajan (2001). There, an intermediary is

necessary—again, a single layer is enough—because it has specific skill in collecting repayments

from the firms and can also commit to repaying its creditors by offering demand deposits. Like

our paper, Diamond and Rajan (2001) micro-founds the continuation game after asset liquidation,

and show that intermediaries increase recovery value if default happens. But inalienable human

capital (of entrepreneurs/bankers), which is the backbone of Hart and Moore (1998) and Diamond

and Rajan (2001), plays no role in our mechanism; instead, we rely on the households’ short-term

liquidity needs combined with secondary market trading frictions.

We built upon the literature on bank runs and instability of short-term debt (Diamond and

Dybvig, 1983; Calomiris and Kahn, 1991; Goldstein and Pauzner, 2005). We adopt a dynamic debt

run setting akin to He and Xiong (2012), but focusing on how runs interact with the endogenous

multi-layer structure. The runs between layers in our model capture the repo market and com-

mercial paper runs by institutional investors during the global financial crisis, which has been well

studied in the literature (Gorton and Metrick, 2012; Copeland et al., 2014; Krishnamurthy et al.,

2014; He and Manela, 2016; Schmidt et al., 2016).

Our work is also related to the network and contagion literature. Allen and Gale (2000)

and Elliott et al. (2014) show how financial networks provide diversification and insurance against

liquidity shocks, but on the other hand, leads to fragility and cascades of failures. Acemoglu et al.

(2015) also demonstrates how small shocks can spread through the network and become systemic

risks. Instead of considering general network structures, we focus on a simple form of network,

i.e. chains, and endogenize both the contracts among layers as well as the length of the credit

chain. Similar to us, Allen et al. (2012) also consider rollover risks of short-term debt in clustered

structures. However, we emphasize that having multiple layers can actually reduce the overall

rollover risks.

In addition to credit chains, recent literature has also investigated asset trading chains, where

an asset is bought and re-sold by a sequence of dealers before it reaches the final buyer. Glode

and Opp (2016) show trading via a sequence of moderately informed intermediaries can reduce

allocation inefficiency caused by asymmetric information. A sufficient long intermediation chain

can also eliminate trading inefficiencies caused by agents with monopoly power screening coun-
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terparties (Glode et al., 2019). The literature has also examined the length and price dispersion

of intermediation chains in an over-the-counter (OTC) market with search frictions (Atkeson et

al., 2015; Hugonnier et al., 2019; Sambalaibat, 2021; Shen et al., 2021). Trading chains arise in

equilibrium because of search frictions and/or heterogeneous asset valuation among investors. Our

focus is on credit chains where one agent’s liability is another agent’s asset.

2 An Example: Model Mechanism and Intuition

This section provides a simplified example to illustrate the key intuition of our paper.

2.1 Set-up

Consider a four-date-three-period setting t = 0, 1, 2, 3, with timeline given in Figure 3. All agents

are risk neutral.

Households. Households are one-period overlapping generations (OLG). Cohort t is born at the

beginning of period t, endowed with 1 unit of consumption goods, and has access to a storage

technology with zero net return. This cohort can consume ct > 0 or invest in financial market, but

leaves the economy at the beginning of period t + 1 and consume ct+1 > 0. Households utility is

ct + ct+1, so that there is no discount between periods.

Entrepreneur, project, and financial contracts. There is a long-term project that produces

cash flows y ≥ 0 at the end of period t = 3. Good news could arrive with probability p ∈ (0, 1) in

period t = 1, 2. If good news arrives in either period, then y = 1; otherwise, y = 0. The arrival of

good news is independent across periods.

The project is owned by an entrepreneur who leaves the economy at the end of period 0.

Therefore the entrepreneur maximizes the payment of cohort-0 households, by pledging out as

much as cash flows to households in different generations. We consider thee financial contracts:

three-period debt, two-period debt, and one-period debt. Project only pays cash flow at the end of

period 3.

Debt refinance/rollover and secondary market. Toward the end of period t, if the contract

(say short-term debt) has matured, then the firm will refinance the debt payment to cohort t − 1

households from cohort t households. We will call this event “rollover the debt,” and throughout

the paper we use the word “refinance” and “rollover” interchangeably. If refinance/rollover fails,

then the firm has to liquidate its asset at a discount, which is α fraction of next cohort’s valuation

of the asset. The micro-foundation is that the firm has to sell the asset first to distress experts, who

have discount rate α. The discount experts then sell the asset to the cohort t. Hence the proceeds

received by the firm is α fraction of cohort t’s valuation, which is endogenously determined in

equilibrium. If instead the contract has not matured yet, the existing households (the t− 1 cohort)

can sell the securities to a specialized financial intermediary sector, who then sells the securities to
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Figure 3: Timing

This figure illustrates the timing of the example in Section 2.

cohort t at the end of period t. The intermediary again has a discount rate of α. Same as in the

liquidation case, if cohort t is willing to pay 1 unit for the security, cohort t− 1 can only receive α

units. In other words, liquidation and secondary market trading are treated exactly the same.

Two-layer financing structure with intermediary fund. We departure from the existing

literature by studying a two-layer financing structure. Other than issuing debts directly to house-

holds, the firm can also adopt a two-layer financing structure where the firm issues short-term debt

to an intermediary fund, who then finances itself by issuing its own debt to OLG households. When

rollover fails, either at the fund layer or the firm layer, the corresponding creditors liquidates their

debt holdings issued by one layer above.

2.2 A Numeric Example

To illustrate the model mechanism, we provide a numeric example with α = 0.5 and p = 0.6. For

simplicity we consider four financing structures: three-period debt, two-period debt, one-period

debt, and a two-layer credit chain. The three-period debt case serves as benchmark; it has the

longest maturity. Our discussion focuses on why the two-layer financial intermediation can increase

the entrepreneur’s borrowing capacity, though the comparison between long-term contracts and

short-term debt is also useful in delivering the intuition.

In the following calculation, we take the contract (including face value) as given; Appendix

A verifies that they are optimal given the financing structure in each case, thanks to the binary

distribution of cash-flows and that entrepreneur maximizes period 0 proceeds received.

Case 0: Long-Term Three-Period Debt The entrepreneur directly issues long-term claims

(i.e., three-period debt) against the entire cash-flows to cohort 0, who will then sell it to cohort 2

and 3 later. Since each sale on the market incurs a discount α = 0.5, the entrepreneur is able to
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Figure 4: Illustration of the Example

(a) Direct Financing via Two-Period Debt

(b) Direct Financing via One-Period Debt

(c) Two-Layer Credit Chain

This figure illustrates different financing structures in the example of Section 2. Panel (a) illustrates the flow of

money in case 1: direct financing using a two-period debt followed by a one-period debt. Panel (b) illustrates the

flow of money in case 2: direct financing using only one-period debt. Panel (c) illustrates the flow of money in case

3: financing via a fund. The funding structure between the entrepreneur and the intermediate fund is the same as

that in panel (a) and the funding structure between the intermediate fund the households is the same as that in

panel (b).
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raise (at most)

P0 (three-period debt) = 0.6× 0.52 + 0.4× 0.6× 0.5 = 0.21 (1)

Case 1: Long-Term Two-Period Debt The entrepreneur first issues two-period debt to house-

holds that matures in period 2, with face value D2. The entrepreneur then issues another one-period

debt from period 2 to 3, with face value D3 and issuance proceeds P2. We are interested in the

amount of proceeds P0 that the entrepreneur can raise at period 0.

At t = 2, the entrepreneur can raise P2 = 1 if good news has arrived, otherwise P2 = 0. To

maximize the payout to cohort-1 households, the entrepreneur will set the period 2 debt face value

to be D2 = 1.2 This implies that rollover is only successful when good news has been realised,

in which cohort-1 creditors receive 1. (There is no discount applied in the good state, which

contributes to Case 1’s advantage over Case 0.) If no good news has arrived, the entrepreneur is

forced into liquidation with liquidation value equals to 0.

In period 1, if good news arrives, then cohort-1 creditors can for sure receive D2 = 1 in the

next period; otherwise, cohort-1 can receive D2 = 1 with probability p = 0.6 in the next period.

Hence cohort-1’s valuation for debt is 0.6× 1 + 0.4× 0.6× 1 = 0.84.

At the end of period 1, cohort 0 can sell the debt contract to cohort 1, with a discount rate α,

receiving 0.5× 0.84 = 0.42

P0(two-period debt) = 0.42 (2)

This is larger than the 0.21 that he can raise by issuing three-period debt. Unlike the three-period

debt case, not all cash flows here are discounted by α: when rollover is successful in period 2, the

debt payment flowing to the cohort 2 involves no discount.

Case 2: Short-Term One-Period Debt The entrepreneur issues one period debt contract

with face value Dt that matures in period t. The proceeds from issuing Dt is Pt−1. The structure

is illustrated in Figure 4b.

The calculation of t = 2 is the same as before: we have P2 = D2 = 1 if good news has arrived.

At t = 1, P1 can be calculated as the expected payment at t = 2. If good news arrives in period 1,

then P1 = 1, otherwise P1 = 0.6. As shown in Appendix A, rollover again is only successful in the

good state, in which case without any discount the creditors receive the full face value D1 = 1. In

the bad state, the entrepreneur is forced into liquidation, with a liquidation value of α times the

expected future cash-flows: 0.52 × 0.6 = 0.15.

We then calculate the t = 0 price of D1 to be:

P0 (one-period debt) = 0.6× 1 + 0.4× 0.15 = 0.66. (3)

By issuing short-term debt, the entrepreneur can (at most) raise 0.66 in period 0. This is larger

than the 0.42 raised in the two-period debt case.

2This result is due to the binary structure in our example. Setting a significantly lower face value could help avoid

liquidation in the bad state, but the payout of this riskless debt is too small.
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Case 3: Two-Layer Credit Chain Consider the following two-layer structure with financial

intermediaries. The entrepreneur issues a two-period debt to the intermediary from period 0 to

period 2, with a face value D2; the t = 0 price is P0. The intermediary then issues one period

debt to the households, with face value D1 in period 1 and D2 in period 2. This structure, which

combines Case 1 and Case 2, is illustrated in Figure 4c. In this example, the intermediary layer

also features a maturity transformation, i.e., the debt contract between the entrepreneur and the

fund is longer than the one between the fund and households.

The calculation of t = 2 is the same as before: we have P2 = D2 = 1 if good news has arrived,

otherwise P2 = 0. Same as before, D1 = 1, so rollover is only successful if good news arrives in

period 1.

When rollover fails in period 1, the fund’s asset, which is a debt claim with face value D2 over

the project, is liquidated at the secondary market. (In case 2, it is as if the entire project gets

liquidated in this scenario; there we rule out the possibility that the entrepreneur sells its liquidated

asset to funds, which we consider in the formal model). The value of that claim is 0.6 × 1 = 0.6,

hence the proceeds from the liquidation is 0.5× 0.6 = 0.3.

We now calculate P0, which equals the expected payment to be received in period 1

P0 (two-layer) = 0.6× 1 + 0.4× 0.3 = 0.72. (4)

The entrepreneur is able to raise 0.72 via a two-layer structure with an intermediary fund, which

is even larger than the proceeds from one-period debt direct financing in case 2.

2.3 Intuition

Three-period contract has the longest maturity, followed by two-period contract in case 1, and the

one-period contract in case 2. Compared with long-term contracts (either three-period debt in case

0 or two-period debt in case 1), the benefit of issuing short-term debt in case 2 comes from the fact

that successfully rolling over debt avoids transaction cost in the secondary market. In Appendix

A, we show the difference between the case 2 and 1 is:

P0 (one-period)− P0 (two-period) = p︸︷︷︸
g

(1− α)− (1− p)p︸ ︷︷ ︸
bg

α(1− α) (5)

The first term captures the fact that if rollover is successful in period 1 (good news arrives), then

there is no discount applied to y = 1. The second term captures the cost of short-term debt: if

rollover fails in period 1 (no good news arrives), then the entrepreneur’s asset has to be liquidated,

even if good news eventually arrives (with probability p). In this case, the α discount is applied

twice. However, in the two-period debt case, if rollover is successful in period 2, then the second

discount can be avoided. On net, the benefit of short-term debt is larger than the cost. The

benefit of short-debt over equity is even larger, since equity has the longest effective maturity. The

mechanism is similar.

The difference between the short-debt case and two-layer case comes from the fact that liqui-

dating the project–which is the entrepreneur’s asset–is more costly than liquidating fund’s asset.
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We show that

P0 (two-layer)− P0 (one-period debt) = (1− p)p︸ ︷︷ ︸
bg

α(1− α). (6)

To see the intuition, we know that rollover fails in the bad state of t = 1 for both cases. In the

short-debt case, the entrepreneur fails to rollover, and the project is liquidated; this implies that y

will be discounted twice no matter what happens in the subsequent period t = 2. In contrast, in

the two-layer case, the intermediary fails to rollover, and it is fund’s asset — which is a one-period

debt backed by the firm — is liquidated. There, if t = 2 is in good state, then entrepreneur can

still successfully rollover debt and y is only discounted once. In other words, in the case when

period 1 rollover fails, the two-layer structure preserves subsequent short-term debt claims, instead

of repeatedly discounting future cash flow. Compared with the previous cases, two-layer financing

structure provides the benefit of short-term debt yet avoids the additional liquidation losses in the

one-period debt.

We make two remarks before moving to analyze the full dynamic model.

Remark 1 Our example highlights a key trade-off that is new to the literature. The impatient

entrepreneur would like to pledging out as much cash flows as possible at t = 0, including future ones;

but the associated secondary market liquidation losses will be high. We show that the credit chain

structure reduces the tension between maximizing cash flow pledged out and minimizing liquidation

losses, because the two-layered credit chain structure, just like special purpose vehicles (SPVs) that

we observe in the practice, helps insulate interim negative fundamental shocks and protect the

underlying real firms from heavy discounts.

Remark 2 Our main dynamic model will feature credit chains with general L layers. If we gener-

alize the numerical example in this section to a project that matures in L periods, the logic behind

the benefit of credit chains illustrated in Section 2.3 implies that an (L−1)-layer credit chain should

be formed, where the layer ` holds debt with maturity L− ` and issue debt with maturity L− `− 1.

Though intuitive, this leads to intractability in a dynamic setting. In our main model, instead of

deterministic debt maturity as in the example, we assume that each layer’s debt contract matures

with some random probability, and also matures if above-layers’ debts mature. As we will show,

this random maturity setup is much more tractable, while generating similar maturity structure and

same economic mechanisms as in the example.3

3 The Model

In this section we first present each ingredient on our dynamic model. We then write down the

optimization problem for each fund in different layers in the credit chain, before we define the

equilibrium formally in this economy.

3Suppose that each debt will mature in each period with an exogenous probability λd, for all layers. Then the

effective maturity of debt at layer-` is 1−(1−λd)`, which means layer-` effectively hold debt with maturity 1−(1−λd)`

and issue debt with maturity 1− (1− λd)`+1.
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3.1 The Setting

We consider a discrete-time economy, in which there are three types of risk-neutral agents: OLG

households, a long lived entrepreneur, and a group of long lived experts.

Endowment, agents, and timing. A long-lived entrepreneur with a discount rate α ∈ (0, 1)

(hereafter he) has a long term project at t = 0 that matures with a constant probability λy in

each of following periods; the project produces nothing before maturity and the game ends. More

specifically, within each period t > 0, the public “news” on the cash-flow yt ≥ 0 arrives at the

beginning of the period, where yt is i.i.d. across periods. The entrepreneur operates the project

during the period; if the project matures during the period with probability λy, it delivers yt units of

consumption good at the end of period. (We will explain the timing in more detail soon.) Denote

by H (·) the cumulative distribution function (CDF) and by h(·) the corresponding probability

density function (PDF).

There are OLG households in this economy. Cohort t is born in period t and leaves the economy

at the end of period t+1. Each cohort consists of a measure 1 of representative households, who are

endowed with e units of consumption good when born. They can choose to consume ctt in period t

or invest in the securities issued by the firm or funds, and consume ctt+1 in period t+ 1 (and then

leave the market). Household’s utility is ctt + ctt+1. In Section 5 we will consider a richer setting

where the endowment e is endogenized.

There is another financial intermediary sector which consists of a group of “experts.” In

contrast to OLG households, each expert (hereafter she) is long lived, and with a discount rate α ∈
(0, 1); for simplicity we take the experts’ discount rate to be the same as that of the entrepreneur’s.

In our model, expert can serve different roles in the financial market; they can operate some funds

who raise financing from households and in turn provide credit to the firm; or they can run distress

funds who purchase liquidated assets in the secondary market. There are many interpretations for

the their discount rate α besides their opportunity costs of time; for instance, following He and

Krishnamurthy (2012) and He and Krishnamurthy (2013), experts needs to commit certain equity

capital to operate the distressed funds, which is costly.

Note that we have set both the entrepreneur and experts to have the same time-discount rate

α, while (each) household cohort is more patient with a discount rate 1. This implies that in our

model the gain of trade comes from financing from households. Just as illustrated in our simple

example in Section 2, the key issue is how to sell the project’s cash flows from the hands of relatively

impatient entrepreneur to the patient but OLG households.

We now explain the timing of the model. As shown in Figure 5, at the beginning of each

period, everyone learns the value of yt first; then whether debt contracts mature or not. Cohort-t

households are then born, and after that, cohort-t − 1 households (who receive the debt payment

or liquidation value) leave the economy. At the end of each period, whether the project matures or

not is realized. We denote the information set at the end of period t by Ft.
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Figure 5: Timing

This figure illustrates the timing of events in each period for Section 3.

Debt contracts. Financing contracts in our model are restricted to the class of “debt”-like

contracts. More specifically, let T be the contract termination time (either project or debt matures,

which is a stopping time measurable to Ft). Denote by πt a generic debt contract; we assume that

it takes the form of πt = {F̃y,s, Fd,s+1}Ts=t, with an exogenously given debt maturity parameter λd.
4

More specifically, this contract specifies that the future promised payments from the debtor to the

creditor are

F̃y,s · 1project matures at period s, w.p. λy + Fd,s+1 · 1debt matures at period s+ 1, w.p. λd , (7)

where both {F̃y,s} and {Fd,s+1} are Fs-measurable for any s ≥ t. Note, the information set Fs
includes the realisation of yt as well as whether debt from previous period has matured. The time

indexes for F̃y,s and Fd,s+1 reflect the fact that a new debt contract is signed after the existing

debt matures with y’s information in hand, but before knowing whether project matures or not;

see Figure 5.

We impose limited liability throughout the paper, so that F̃y,s(ys) has to be bounded by

the project payoff: F̃y,s(ys) ≤ ys. We assume that F̃y,s takes the form of a debt contract, i.e.

F̃y,s(ys) = min(Fy,s, ys) for some optimally chosen face value Fy,s. (In the optimal contract, Fy,s

equals some endogenous constant F ∗y .) If debt matures in period s but ys is sufficiently low, then

4We focus on credit chain length and therefore leave endogenous debt maturity choice to future research. As we

explain in Section 4.4, adding layers to the credit chain has certain advantage over maturity shortening. For models

with endogenous debt maturity structure, see He and Milbradt (2016) and Hu et al. (2021).

14



F̃y,s ≤ ys is constrained to be low and the entrepreneur/fund may not be able to raise enough

funding from the market to rollover its debt. In contrast, the “promised” payment at the debt

maturity {Fd,s+1} cannot depend on tomorrow’s fundamental ys+1. We will later show that in the

optimal contract Fd,s+1 is constant over time (i.e., Fd,s+1 = F ∗d ). For simplicity we focus on debt

contracts that are issued at par, so that F ∗d is also the value of debt when rollover is successful.

We emphasize that it is the “debtness” of {Fd,s+1}, not the “debtness” of F̃y,s(ys), that drives

our result. As we will see, inefficient liquidation caused by rigid debt payment only occurs after a

debt contract matures (and when the yt is sufficiently low), while the game ends without inefficient

liquidation after the project matures.5

From now on we denote by the contract πt the sequence of face values {Fy,s, Fd,s+1}Ts=t. Denote

the space of debt contracts by Π ≡ RT−t+1
+ ×RT−t+ , so that each period t all funds (and entrepreneur)

can choose πt ∈ Π if their previous debt contracts mature. For simplicity, to rule out dilution

concerns, we assume that any debt contract is with a covenant so that issuers (the firm or funds)

cannot raise new debt before their existing debt matures.

We further allow creditors, after knowing the realization of yt, to renegotiate by “prepaying” the

debt contract. Effectively, in our model creditors have the option of unilaterally triggering the debt

to “mature,” so that they pay the lender Fd and eliminate all future obligations. Without loss of

generality we focus on renegotiation proof contracts; in other words this renegotiation never occurs

along the equilibrium path. Shortly we will show that, this renders our model to be “stationary,”

so that the optimal debt contract chosen at any period along the equilibrium path is independent

of history.6 We therefore will suppress the time t index in the following model description, unless

necessary.

Credit chain and prepayment clauses along the chain. The model starts with the en-

trepreneur who owns the project issues debt at period 0 to household creditors via a credit chain.

See Figure 6 for an illustration.

Consider a credit chain with length L, and a fund in the chain is indexed by its position l,

where 0 ≤ l ≤ L. A fund in layer l borrows from layer l+ 1 using a debt contract πl = {Fy,l, Fd,l}.
We refer to 0-layer fund of a credit chain as the firm with real project—the ultimate borrower, and

L-layer as the households—the ultimate lenders. And, we call funds that sit at layer i < l (i > l) to

be the upper (lower) layers of fund l. With slight abuse of notation, we use Fy,l (or Fd,l) to denote

the payment when the project (or debt) matures at the corresponding period.

The debt contracts in the credit chain needs to have some other “prepayment” clauses if other

debt contracts (or the project) in the chain mature. We assume the following. First, when the

5We follow the corporate finance literature that inefficient liquidation cost is a fraction of continuation fundamental

value, because “experts” who are managing the distressed funds are less patient.
6Because of the stationary structure of the fundamental (i.e., yt’s are i.i.d.), the optimal debt contracts would have

been stationary if we assume debt contracts to be short-term. Essentially, the prepayment option (of the lenders) is

the minimum element to guarantee the stationarity of optimal contracting in our model. It is also worth emphasizing

that this prepayment option, which is about the debt itself, differs from “the prepayment clauses” introduced shortly,

which are regarding prepayments triggered by events along the credit chain.
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Figure 6: Credit Chains

This figure illustrates the structure of the credit chain. Layer-0 is the entrepreneur, holding the project on the asset

side and issuing debt contract π0 to layer-1 funds. Funds in layer-1 hold the debt issued by layer-0 on the asset side,

and issue debt contract π1 to layer-2. The households hold debt contract πL−1 issued by the last layer of funds,

layer-(L− 1).

real project matures, the creditors of layer l get paid by Fy,l and the game ends. Due to limited

liability, we have

Fy,l ≤ Fy,l−1 ≤ yt for ∀l, (8)

and hence this payment trickles down to the households. (In equilibrium Fy,l = Fy,l−1 for l > 1.)

We can define Fy,−1 ≡ yt.
Second, when l+1’s debt claim issued by l matures, all the debts issued by lower layers i ≥ l+1

mature, and the payment from l+ 1—whether l makes it full or gets liquidated—will trickle down

to the ultimate household creditors who will then leave the economy avoiding the secondary market

transaction costs. Our analysis takes this “prepayment” clause as given; however, we conjecture that

this will be the outcome of optimal contracting, as it facilitates the payment directly to departing

households as soon as possible, avoiding secondary market transaction costs (to be introduced

shortly). Finally, it follows from these prepayment clauses that if multiple contracts in different

layers mature, only the one with the highest layer (the smallest layer number) matters.

Without loss of generality we focus on the class of issue-at-par debt contracts, i.e., their market

values at issuance equal their face value, so that Fd,l is also the value of debt issued by layer l.

Because the layer-l fund is essentially using its asset holding with a market value of Fd,l−1 to back
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its debt issuance with a market value of Fd,l, and fund managers have no initial wealth, we impose

the following condition throughout the paper:

Fd,l ≤ Fd,l−1 ≤ e for ∀l. (9)

The first part of the condition (9) essentially rules out the “Ponzi” scheme by any fund in which a

fund maintains a debt that is underfunded relative to its asset holdings but keeps rolling over this

debt from OLG households. A side benefit of this assumption is that it simplifies the prepayment

process, as the cash-flows trickle down to the bottom. The second part Fd,l ≤ e in condition (9)

captures the fact that households can only afford to pay e.

To simplify expression, we refer to the scenario that “either the project matures, or any debt

contract issued by any fund i ∈ {1, · · · , l − 1} matures” simply as that “layers above l mature.”

Credit chain, debt rollover, and secondary market. We have explained the payment flow

along the credit chain following a debt maturing event in a fund l. Now consider a borrower fund

l who needs to refinance/rollover its debt contract (so that contractual payments can ensue as

described above).

Suppose that rollover is successful, i.e., the fund l is able to raise enough money in the market

to pay back Fd,l to fund l+1, which occurs when y exceeds above certain endogenous threshold ŷ in

equilibrium. (We will show shortly that ŷ = Fy.) Due to prepayment clauses, all debt between layer

l and the households matures. The fund l can use the proceeds raised from new-born households

to pay back Fd,l, so that all funds between layer l and the households are paid in full with the

common face value, as well as the departing households. Since the optimal chain length does not

change, they can renegotiate and form a new credit chain with the optimal length of L.7

Otherwise, when y < ŷ, rollover fails. Creditors take over and liquidate the asset held by fund

l, which could be the real project of the firm, or the debt issued by some intermediary fund l − 1.

The liquidation occurs on the secondary market where the buyers are experts (who run distressed

funds), who then sell this asset to the next cohort of households at a price Bl(y, L), where subscript

l refers to the layer that fails to rollover.

We assume that with probability β ∈ [0, 1], the chain is restored immediately, in which case

the next cohort values the debt at VL(L). With probability 1 − β, the households need to hold

the debt issued by layer-l directly for one period and the chain is restored in the following period

absent another run. We essentially need some bankruptcy cost, and a probabilistic delay of chain

length restoration is perhaps the simplest way to capture this inefficiency.8 Layer l−1 and the new

funds brought in via restoration can (re)design new contracts given to their creditors. We derive

7There are many different ways to implement the same outcome, as essentially in this arrangement departing

households receive the payment Fd,l financed by new-born households. For instance, all funds can simply ask their

corresponding lender funds for rollover. In the final layer, the new-born households simply replace departing house-

holds. The credit chain stays exactly the same going forward.
8For simplicity, we have assumed that restoration (to the optimal credit chain length) occurs for sure after one pe-

riod. Our mechanism goes through in another stationary setting where restoration occurs with a constant probability

β each period.

17



Bl(y, L) in Section 3.2, and show that the liquidation value Bl(y, L) is higher for a greater l. As

we explain shortly, that the liquidation value increases with the chain position l is the key feature

that drives the benefit of a longer credit chain in the market solution.

In the case when layer-0 (the entrepreneur) fails to rollover its debt, bankruptcy occurs, but we

assume the expert finds the original entrepreneur to continue running the project (so the original

chain is restored). The rationale is that the original entrepreneur has the most project-specific

human capital and skills.9 We specify the entrepreneur’s exact payoff in Section 3.2.2.

We further assume that there is a restructuring/legal cost c ≥ 0 for each layer that is experi-

encing this bankruptcy, which is paid by households. We will study the special case of c = 0. To

summarize, the direct creditor fund l recovers min (αBl(y, L), Fd,l) from the liquidation of fund l’s

asset (intermediated by experts), where the liquidation value Bl(y, L) is endogenously determined

in equilibrium. This payment then trickles down to the ultimate creditors and departing households

hence receive

min (αBl(y, L), Fd,l)− c · (L− l).

3.2 Value Functions and Bellman Equation

Denote period t value function of layer l fund by Vl,t(yt, πl,t;πl−1,t, L), which is evaluated after

debt maturity is realised and before the project maturity is realised; see Figure 5. Fund l takes

as given the debt contract from its preceding layer πl−1,t and the credit chain length L, which

will be determined endogenously in equilibrium. From now on we will suppress the time subscript

Vl(y, π;πl−1, L) thanks to stationarity in our model. For the entrepreneur with l = 0, we have

π−1 ≡ ∅, and Fy,−1 ≡ y;

while for households with l = L, we have

πL ≡ ∅, and Fy,l ≡ 0.

Throughout the paper, subscripts indicate positions in the chain. Denote the market price of the

debt issued by layer-l under contract πl,t by Pl(πl, y;πl−1, L). It is a function of the contract set

by layer-l (πl) and the project fundamental (y), taking as given the total chain length (L) and

the contract from the layer above (πl−1). We may write Pl(πl, y;πl−1, L) simply as Pl(y) whenever

there is no risk of confusion.

3.2.1 Fund managers

Layer-l’s (0 < l < L) payoff in period 0 is then

Pl(πl, y;πl−1, L)− Pl−1(y) + Vl(y, πl;πl−1, L). (10)

9This assumption ensures that the private loss in a bankruptcy is the same as the social loss.
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Here, layer-l issues its debt πl for a proceed of Pl, and then purchases the debt from layer-(l − 1)

at a price of Pl−1, where Pl and Pl−1 are the market prices of the underlying debt. The last term

captures its continuation payoff.

In subsequent periods, if the debt issued by layer-l (l < L) matures, then layer-l needs to

refinance the debt. If Pl − Fd,l ≥ 0, rollover is successful, and layer-l’s value is

Pl(πl, y;πl−1, L)− Fd,l + Vl(y, πl;πl−1, L). (11)

If rollover fails (Pl < Fd,l), the layer-l fund asset gets liquidated and the manager recovers nothing.

We can write V (y, πl;πl−1, l, L) for 0 < l < L recursively as (where we have followed the

convention to use prime to indicate variables in the next period),

Vl(y, πl;πl−1, L) = λy (F̃y,l−1 − F̃y,l)︸ ︷︷ ︸
Project matures

(12)

+ (1− λy)α

{
(1− λd)l+1E

[
Vl(y

′, πl;πl−1, L)︸ ︷︷ ︸
Neither debt issued by nor held by layer l matures

] (13)

+

l−1∑
i=0

(1− λd)iλdE
[
1irollover(−Fd,l + Fd,l−1 − P ′l−1 + max

π′l

(P ′l + Vl(y
′, π′l;π

′
l−1, L)))︸ ︷︷ ︸

Debt held by layer l matures

]

(14)

+ (1− λd)lλdE
[

1lrollover(−Fd,l + max
π′l

(P ′l + Vl(y
′, π′l;πl−1, L)))︸ ︷︷ ︸

Debt held by layer l does not mature but debt issued by layer l matures

]}

(15)

where we denote 1irollover = 1 if and only if layer-i successfully rolls-over its debt. The first

part captures the payoff to layer-l when the project matures with probability λy; otherwise with

probability 1− λy, we have the next three terms in the curly brackets.

The first term (13) in the curly bracket captures the continuation value of layer-l when neither

its asset side nor liability side matures, which occurs with probability (1 − λd)l+1. Here the fund

manager as an expert discount her future by α, and y′ is the next period project cash flow realization.

The second term (14) in the curly bracket captures the payoff if layer-l’s asset side matures;

this happens whenever debt issued by any layer-i (i < l) matures. In this case, if rollover is not

successful, layer-l’s payoff is simply 0. When rollover is successful, the layer-l receives Fd,l−1 from its

debtors, and pays Fd,l to its creditors. In the refinancing stage, it receives P ′l from its new creditors

and gives P ′l−1 to its debtors. Going forward, layer l’s valuation is V (y′, π′l;π
′
l−1, l, L), where π′l is

the new contract issued by layer-l and π′l−1 is a new contract given to layer-l. We highlight that

fund l is optimally choosing a new contract π′l to maximize the sum of new debt proceeds and its

continuation payoff P ′l + Vl(y
′, π′l;πl−1, L).

Finally, the last term in (15), which occurs with probability (1−λd)lλd, considers the expected

payoff to layer-l if debt issued by layer-l matures but layer-l’s asset has not matured yet. In this
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case, if rollover is successful, layer-l raises P ′l , pays off Fd,l to existing creditors and chooses a new

contract π′l. Otherwise layer-l’s payoff is 0.

3.2.2 Entrepreneur

Recall that entrepreneur is labeled as layer 0. Just like fund managers, the entrepreneur’s value is

given by:

V0(y, π0;L) = λy(y − F̃y,l)︸ ︷︷ ︸
Project matures

+(1− λy)α

{
(1− λd)E

[
V0(y′, π0;L)︸ ︷︷ ︸

Debt issued by layer-0 does not mature

] (16)

+ λdE
[
10
rollover(−Fd,0 + max

π′0

(P ′0 + V0(y′, π′0;L)))︸ ︷︷ ︸
Debt issued by layer-0 matures and rollover succeeds

+ (17)

(1− 10
rollover)[(β + (1− β)(1− λy)α)(−P ′−1 + max

π′0

(P ′0 + V0(y′, π′0;L)))]︸ ︷︷ ︸
Debt issued by layer-0 matures and rollover fails

]}
. (18)

Similar to the value function of fund managers, the second term of Eq. (16) captures the

continuation value when debt does not mature, and (17) captures the value when debt matures

and rollover is successful. The main difference between the entrepreneur’s payoff and intermediary

funds’ payoffs is reflected in the last term in Eq. (18), when debt matures but rollover fails.

Because of the entrepreneur’s unique human capital in the project, he is re-hired back after

the bankruptcy if the chain is restored.10 Essentially, the expert in the distress fund sells the

project back to the entrepreneur at price P ′−1 (one can view the distress fund as layer −1). The

entrepreneur takes price P ′−1 as given, chooses a new contract π′0 (and hence initializes a new chain)

to maximize the sum of proceeds from issuing debt (P ′0) and his continuation value (V0). This is

crucial for keeping the contract stationary over time. Since the entrepreneur has no savings when

he is rehired,11 the price charged by the distress fund P ′−1 cannot be larger than the debt proceeds

that the entrepreneur can raise P ′0. We assume the distress fund has all the bargaining power so

that P ′−1 = P ′0.12

3.2.3 Households

Now consider the value function of households. Regardless of whether debt matures or whether

rollover is successful, the new-born households are paying PL−1 for the debt. So their payoff is

e− PL−1(y) + VL(y;πL−1, L). (19)

10The chain is restored with probability β this period, and (1− β)(1− λy) in the next period. Discount rate α is

applied to the continuation value if restoration happens in the next period.
11Due to the discount rate α, the entrepreneur would not save the debt proceeds from before.
12This assumption implies that the liquidation value equals the fair value of the debt, a property that is consistent

with how liquidation value is determined when other layers are broken.
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In equilibrium, households are paying the competitive price, PL−1(y) = VL(y;πL−1, L), which is

defined recursively as below:

VL(y;πL−1, L) = λy F̃y,L−1︸ ︷︷ ︸
Project matures

(20)

+ (1− λy)

{
(1− λd)LE[αVL(y′;πL−1, L, L)︸ ︷︷ ︸

Debt does not mature

] (21)

+
L−1∑
l=0

(1− λd)lλdE[1lrolloverFd,l−1 + (1− 1lrollover)(αBl(y, L)− c(L− l))︸ ︷︷ ︸
Debt matures

]

}
.

(22)

Similar to before, F̃y,L−1 is the payoff to households if the project matures. Given F̃y,L−1 =

min(Fy,L−1, y), a sufficiently low y < ŷ—hence a sufficiently low min(Fy,L−1, y)—implies that VL is

too low to convince the new cohort of households to rollover the debt. Therefore Fy,L−1 is closely

tied with the run threshold ŷ. If neither the project nor the debt matures, then the departing

households resell their debt on the secondary market, at a discount α. If the project does not

mature but debt issued by layer-l matures, then the households get paid by Fd,l−1 if rollover is

successful (the first part of (22) inside the expectation). Otherwise, layer-l’s asset (debt issued by

layer–(l− 1)) is liquidated, and the households only receive the liquidation proceeds αBl(y, L) net

of the legal cost c(L − l) (the second part of Eq. (22) inside the expectation), where Bl(y, L) is

the price of liquidated asset at which the experts sell to the market at the beginning of the next

period.

We now determine Bl(y, L) from the perspective of the buyer (i.e., new households), with the

following valuation equation:

Bl(y, L) =β VL(L)︸ ︷︷ ︸
If chain is restored

+(1− β)
{

λyF̃y,l−1︸ ︷︷ ︸
Project matures

+(1− λy)
[
(1− λd)l E[αVL(y′;L)]︸ ︷︷ ︸

Debt does not mature

(23)

+
l−1∑
i=0

λd(1− λd)iE [1irolloverFd,i−1 + (1− 1irollover)(αBi(y, L)− c(l − i))]
]

︸ ︷︷ ︸
Debt matures

}
. (24)

With probability β, the chain is restored to length L immediately, in which case the households’

valuation for the debt is VL. With probability 1 − β, households hold the liquidated asset (debt

issued by layer i− 1) directly for one period, and the chain is restored to L in the following period.

If the project matures during this period, then households get paid F̃y,l−1 (define F̃y,−1 ≡ y); if

neither the project nor the debt matures, then it is sold to the next cohort of households at discount

α. Since the next cohort of households will hold debt issued by the restored chain, their valuation

of debt is VL. This is the same term as in Eq. (21). Lastly, if the project does not mature but

debt matures, then the households either get paid by Fd,i−1 if rollover is successful or receive the

liquidation proceeds αBi(y, L)− c(l− i) if rollover fails. The liquidation loss is different depending

on where the chain breaks. We will show soon that Bl(y, L) is increasing in l.
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3.3 Equilibrium Definition

Define Π̂ as the set of feasible contracts that are renegotiation proof and subject to the resource

constraint (imposed by limited endowment from OLG households):

Π̂ ≡ {π ∈ Π : VL({Fy,s, Fd,s+1}Ts=t, L) ≤ Fd,t ≤ e for ∀t}. (25)

Definition 1 The equilibrium credit chain is a set of contracts {πl,t}0≤l≤L−1 and credit chain

length L∗ such that

1. When layer-l’s liability matures,13

πl = arg max
π∈Π̂

1lrollover(Pl(y, π;πl−1, L
∗) + Vl(y, π;πl−1, L

∗)), (26)

s.t. Fy,l ≤ Fy,l−1 ≤ y in (8) Fd,l ≤ Fd,l−1 ≤ e in (9). (27)

2. The equilibrium L∗ is such that the final layer of fund manager (L∗ − 1) prefers to borrow

directly from households than to borrow via other fund managers:

PL∗−1(L∗) + VL∗−1(L∗) ≥ PL∗−1(L∗ + l) + VL∗−1(L∗ + l) for l ≥ 1. (28)

Furthermore, for all other funds 0 < l < L∗ − 1,

Pl(L
∗) + Vl(L

∗) ≥ Pl(l + 1) + Vl(l + 1). (29)

In other words, the funds in intermediary layers prefer to borrow via other funds than to

borrow from the households.

3. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (30)

4 Equilibrium Credit Chain

We analyze the equilibrium credit chain in this section. We first show the stationarity of optimal

contract under certain parameterization assumption, and further establish that the optimal contract

is independent of the position in the chain. We then characterize and analyze the equilibrium credit

chain length L∗ in equilibrium.

4.1 Optimal Contract

Layer-l chooses a new contract for its creditors when either the debt issued by himself or the debt

held by himself matures, i.e., the event 1lrollover in Eq. (14) and (15) occurs. There, we can see

13When t = 0, 1lrollover = 1 for all l.
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layer-l’s (0 < l < L) problem is equivalent to:

max
πl

Pl + Vl(y, πl;πl−1, L) (31)

s.t. Pl = Pl+1 + Vl+1(y, πl+1;πl, L) (32)

Fd,l ≤ Fd,l−1 Fy,l ≤ Fy,l−1. (33)

Optimal contracting: stationarity and layer independence. Throughout the paper we

impose the following assumption on our parameterization.

Assumption 1 The primitives of our model satisfies:

e ≤ ē (34)

where ē is defined by

ē = max
y∈(e, e

λy
)

λy(1− α)
1−H(y)

h(y)
− c

 log(1−λd)
cH(y)

cH(y)(1−λd)+(1−H(y))(1−α)λdē

1− cH(y)
cH(y)(1−λd)+(1−H(y))(1−α)λdē

+ 1− 1

λd

 (35)

Under Assumption 1, the optimal contract in our economy is independent of history. This station-

arity feature is convenient for our analysis. In essence, Assumption 1 guarantees that inequality

(9) always binds (so that in the optimal contract Fd,l,t = e), and it is more likely to be true when e

is relatively small. We put back the time subscript only in this subsection; and later we will omit

∗ when we refer to the optimal contract.

Assumption 2 The following inequality holds for all y,

λy
(1− λy)e

1− (1− λy)αH(y)

h(y)
− 1 ≥ 0 (36)

We make assumption 2 to ensure the uniqueness of the equilibrium rollover threshold F ∗y .

For later analysis, we denote by ml the probability that layer l’s asset does not mature

ml ≡ (1− λd)l, (37)

which satisfies 1−ml+1 = 1−ml +mlλd. We present the main result on the equilibrium contract

in Proposition 1.

Proposition 1 Under Assumption 1, the optimal debt contract is stationary and independent of

fund position l, so that F̃y,l,t = min(yt, F
∗
y ), and Fd,l,t = e. Under Assumption 2, the equilibrium

rollover threshold F ∗y is the unique solution to the following equation

e = λyFy +
[
0 0 ... 0 1

]
︸ ︷︷ ︸

1×(L+1)

(Ψ(Fy)
−1η(Fy))

︸ ︷︷ ︸
=vL(L)

(38)

where Ψ is a (L + 1) × (L + 1) matrix and η is a (L + 1) × 1 vector, with both being functions of

Fy. The exact expressions for Ψ and η are in Appendix B.1.
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The formal proof is in Appendix B. Household’s valuation for the debt VL(L), together with

all the liquidation values Bl(L) (0 ≤ l ≤ L− 1), forms a system of linear equations with dimension

L+ 1. We solve this system of linear equations and take the last entry which is the value of vL(L),

to be last part in Eq. (38). Matrix Ψ and vector η only depend on Fy and exogenous parameters.

We start explaining the intuition of stationarity. First, we point out that Fy,l,t+s = ŷl,t+s,

which is the rollover threshold of fund l in the credit chain. When designing the contract in

period t, yt is observed but whether project matures or not is still uncertain. The fund l chooses

F̃y,l,t = min(Fy,l,t, y) in order to convince the new-cohort households to refinance the maturing debt,

and he has no incentive to promise more than what is needed—of course, unless it cannot afford.

This reasoning implies that Fy,l,t = ŷl,t is exactly the minimal threshold level for successful rollover;

and whenever yt < Fy,l,t the fund l’s fundamental is falling short of this threshold, leading to a

rollover failure. This logic applies to future periods as well. Importantly, because the entrepreneur

and funds can always renegotiate Fy,l,t+s (s ≥ 1) down to the minimum value at which they can

refinance the debt in period t+ s, in a renegotiation-proof contract Fy,l,t+s = ŷl,t+s equals the run

threshold for all periods.

We first explain why Fd,l,t+s(s ≥ 0) is independent of both t and s. Thanks to the i.i.d. nature

of fundamental shocks y, without rollover concerns Fd,l,t+s should be constant over time (both t

and s). However, when y is small, borrowers who face rollover difficulties may try to increase future

promised payments Fd,l,t+s in order to refinance today. This possibility is ruled out by Assumption

1, which guarantees that Fd,l,t+s ≤ e binds for all t + s. That Fd,l,t+s = Fd,l is constant over time

immediately implies that the endogenous rollover threshold Fy,l,t+s is also constant over time, i.e.

Fy,l,t+s = Fy,l.

We next explain why Fd,l is independent of layer position l. The main concern for setting a

high Fd,l is that it increases the probability of rollover failures. Because the market is competitive,

via debt prices top layers (layers with small l) internalize the rollover risks faced by all layers below.

This implies that layers further away from households tend to set smaller Fd,l. As a result, the first

part of inequality (9) binds and all layers have the same Fd.

Lastly, given that the optimal Fd,l = Fd is the same across layers, Fy,l has to be the same

as well. To see this, thanks to market competition Vl({Fy,l, Fd,l}; {Fy,l−1, Fd,l−1}, L) = 0. When

Fd,l−1 = Fd,l = Fd, the above equation is satisfied if and only if Fy,l = Fy,l−1. Intuitively, if Fy,l−1

is smaller than Fy,l, then layer-l earns positive spread when the project matures, implying strictly

positive profit in expectation. This cannot be true under perfect competition.

Characterizing the optimal contracts. Given the contract is stationary and layer indepen-

dent, the run thresholds for all layers are the same and constant over time. We can simplify the

households’ value function by taking advantage of the fact that Fd,l = Fd and E[1lrollover] = H(Fy)

(recall H(·) is the cumulative distribution function of y):
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VL({Fy, Fd}, L; y) = λy min(Fy, y) (39)

+ (1− λy)[mLαVL + (1−mL)(1−H(Fy))Fd +H(Fy)
L−1∑
l=0

mlλd(αE[Bl(y
′, L)|y′ ≤ Fy]− c(L− l))]︸ ︷︷ ︸

vL({Fy,Fd},L)

. (40)

We further define vL(L) to be the part of VL(L) that is independent of the current realization of y:

vL({Fy, Fd}, L) ≡ VL(L)− λy min(Fy, y) (41)

Because vL({Fy, Fd}, L) only depends on total chain length L and contract parameters (Fy, Fd), it

is constant over time.

Conditional on rollover being successful (y ≥ Fy), the households’ valuation of the debt VL(L)

should equal Fd. Therefore the following equation pins down Fy as a function of Fd and L,

λyFy + vL({Fy, Fd}, L) = Fd. (42)

Under Assumption 1, Fd ≤ e is binding; we have explained that this is crucial for the optimal

contracting being stationary. After plugging in Fd = e, solving for the debt value (VL(L)) and liq-

uidation values (Bl(L)), we get Eq. (38) which determines the equilibrium Fy. Lastly, Assumption

2 guarantees that the equilibrium F ∗y is unique.

4.2 Credit Chain Length

For any given Fd and L, define Fy(Fd, L) as the solution to Eq. (42). The next proposition

characterizes the equilibrium credit chain length L∗.

Proposition 2 The equilibrium chain length L∗ is characterized by

L∗ = arg min
L

Fy(e, L), (43)

which is characterized by the following equation uniquely:

0 = λd(1− λd)L
∗
(1−H(Fy))(1− α)e− cH(Fy)(1− (1− λd)L

∗+1). (44)

Proof: See Appendix C.

As explained in the previous section, Fy corresponds to the run threshold. Given Fd = e,

payoff of funds in all layers is decreasing in Fy. Funds in layer L− 1 will only borrow via another

layer of funds if extending the credit chain reduces Fy. Otherwise, they will borrow directly from

the households. Hence, the equilibrium L effectively minimizes Fy. Since all layers have the same

Fy, deviating by borrowing from the households directly would lead to a chain length with higher

Fy, and lower payoff. Hence no layer has incentive to deviate.

Eq. (44) is the first order condition that determines the equilibrium chain length L∗. The

first term gives the marginal benefit of longer chains, which comes from the wedge of time discount
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factors between households (1) and the entrepreneur/fund managers (1 − α). A longer chain

facilitates maturity transformation, insulates asset from large liquidation losses and hence generates

higher value from the lending relationship. We will isolate and explain in detail the different benefits

in Section 4.4. On the cost side, when rollover fails, the bankruptcy cost is increasing in the number

of layers disrupted. Hence the second term in Eq. (44), capturing marginal cost of more layers, is

proportional to bankruptcy cost c and probability of rollover failure H(Fy).

4.3 Liquidation Value

As illustrated by the simple example in Section 2, part of the goal for financial intermediaries

to form credit chains is to increase the liquidation value Bl(y, L) toward departing households.

Consistent with the intuition illustrated in the simple example, the next proposition formally gives

two key properties of Bl(y, L) that drive the benefit of a long-chain (in a decentralized market).

These two properties will be critical in understanding the result in Section 4.4.

Proposition 3 The following features of liquidation value Bl(y, L) hold

1. Liquidation value Bl(y, L) is increasing in l for L ≤ L∗ and any l ≤ L.

2. Liquidation value BL−j(y, L) is increasing in L for L ≤ L∗ and any j ≤ L.

Proof: See Appendix D.

Proposition 3 shows that the liquidation value Bl(y, L) depends on l, the position where the

chain breaks. As l increases, the chain’s breaking point becomes further away from the entrepreneur

and in the same time closer to the households (i.e., L − l). The second part in Proposition 3, by

fixing the distance to households (j in the second part), highlights that the key is being further

away from the entrepreneur. This is important for why layer-structures emerge in equilibrium. If

the key reason for higher liquidation value is for the bankruptcy layer to be closer to households,

then the equilibrium chain length should be as short as possible. In contrast, establishing more

layers is the only way to take advantage of the benefit if a higher liquidation value is driven by a

greater distance from from the entrepreneur.

To see the mechanism behind this result, consider the asset being liquidated when the breaking

point is further away from the entrepreneur. This asset in liquidation is the debt directly issued

by one layer above, but essentially can be considered as a collection of debt contracts issued by

all layers above. Evaluating this asset in liquidation, investors understand that there are possible

future (before the project matures) favorable fundamental y realizations under which debt payments

flow toward departing households in a frictionless way (i.e., without the discount factor α). Because

this possibility is greater if the layer is further away from the entrepreneur, the liquidation value is

increasing in its distance to the entrepreneur.

We highlight that the above intuition is exactly the same as in our example in Section 2,

which shows that two-layer structure dominates that of short-debt. Essentially, compared to the

short-term debt structure, the two-layer structure insulates interim negative shocks and protects
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underlying long term cash flows from being discounted repeatedly. Proposition 3 confirms that the

force in our simple example also exists in the model: The more the layers between the point of

bankruptcy and the underlying project, the greater the protection.

4.4 Special Case: c = 0

The special case of no restructuring cost, i.e. c = 0, helps illustrate the benefit of setting up long

chains. In essence, as explained shortly, a longer chain effectively insulates the project and reduces

liquidation loss during rollover failures. Because there is zero physical cost when rollover fails given

c = 0, the optimal chain length becomes infinity.

Corollary 1 When c = 0, the equilibrium length of credit chain is infinity.

Proof: See Appendix E.

To see the benefit of long chains, consider the difference in households value when the chain

length is L versus L+ 1. Using equation (40), one can show that

vL+1(L+ 1)− vL(L) =
(1− λy)(1−H(Fy))λdmL(Fd − α

=Fd︷ ︸︸ ︷
E[VL(L)|y ≥ Fy])

1− (1− λy)α(mL+1 +H(Fy)KL+1)
> 0. (45)

where the constant Kl ≤ 1−ml for any l ≥ 0 (see Appendix E for detailed derivation and expression

for Kl.). This implies that the last layer of funds always prefer to keep extending the credit chain.

To better understand the benefit of adding more layers, consider a hypothetical structure,

where there are only L layers, but the maturity rate between households (layer L) and the last

fund (layer L− 1) is 1− (1− λd)2 instead of λd; this way, households hold debt contracts with an

aggregate maturity rate of 1 − (1 − λd)L+1.14 In principle, the hypothetical structure alters the

debt maturity in the last layer without changing the number of layers, which helps isolate the debt

maturity effect only.

Denote by ṼL the households’ value function from this hypothetical structure, and correspond-

ingly B̃l(L) the liquidation value when layer l fails to rollover its debt. We have

ṼL({Fy, Fd}, L) =λy min(Fy, y) + (1− λy)E[mL+1αṼL + (1−mL+1)1yt+1≥FyFd (46)

+ 1yt+1<Fy

L−2∑
i=0

miλdαB̃i(L) + 1yt+1<FymL−1(1− (1− λd)2)αB̃L−1(L)], (47)

and let us compare the difference between ṼL and VL:

ṼL − VL =
(1− λy)λdmL(1−H(Fy))(Fd − αE[VL(L)|y ≥ Fy])

1− (1− λy)α(mL+1 +H(Fy)KL+1)︸ ︷︷ ︸
=vL+1(L+1)−vL(L) in Eq.(45)

− (1− λy)λdmLH(Fy)(B̃L(L)− B̃L−1(L))

1− (1− λy)α(mL+1 +H(Fy)KL+1)︸ ︷︷ ︸
net benefit of one more layer

.

(48)

14Because of prepayment clauses, household’s debt matures as long as one of the layer’s debt matures. With L+ 1

layers, the probability of household’s debt maturing is 1−m(L+ 1) = 1− (1−λd)L+1. In the hypothetical structure,

the probability of household’s debt maturing is 1− (1− λd)L−1(1− λd)2 = 1− (1− λd)L+1.
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By design, the difference between ṼL and VL comes from the fact that debt held by households

effectively has shorter maturity in the hypothetical structure. Short-term debt is preferable because

households are short-lived and reselling debt involves a discount. Consider the situation where

the debt issued by layer L − 1 matures in the hypothetical structure but does not in our L-

layer structure, and rollover is successful. In the hypothetical structure, households who hold the

matured debt leave the economy with a full debt payment Fd. In contrast, in our L-layer case, it

is as if there is no debt matures on the entire chain, and households who need to resell debt at a

discount receive αVL(L) only. When rollover is successful (y ≥ Fy), we know VL(L) = Fd. Hence

αE[VL(L)|y ≥ Fy] = αFd < Fd, first term on the right hand side of Eq. (48) is positive. Mapping

back to our example in Section 2, this reflects the difference between short-term debt and long-term

contract.

More importantly, there is a downside to shortening the effective debt maturity. Because debt

maturity shortening raises the probability of rollover failure, second term in Eq. (48) is negative

and captures the additional liquidation loss B̃L − B̃L−1 when rollover fails for the hypothetical

structure. This additional term is a loss (B̃L − B̃L−1 > 0) due to Proposition 3. We show that,

however, adding a layer (without changing the maturity faced by households) removes this cost, as

evident from Eq. (48) which compares ṼL− VL in with vL+1− vL in Eq. (45). This decomposition

highlights that the unique benefit of having multiple layers is to increase the liquidation value

(reduce liquidation loss) by insulating the final project from interim negative shocks, as illustrated

by the comparison between two-layer structure and short-term debt in our example.

4.5 Comparative Statics

The previous subsection illustrates that intermediaries in the market would like to extend the credit

chains. When c > 0, additional cost in the case of rollover failure increases with L, leading the

optimal chain length to be finite.

Proposition 4 Under Assumption 1, the equilibrium credit chain length is decreasing in bankruptcy

cost c and increasing in project maturity rate λy.

∂L∗

∂c
≤ 0,

∂L∗

∂β
> 0 and

∂L∗

∂λy
≥ 0. (49)

Proof: See Appendix F.

Figure 7 plots several numerical illustrations of comparative statics with respect to c and λy,

together with other two parameters (λd and e). Intuitively, when the liquidation cost c is higher,

it is more costly to add layers, hence in equilibrium chain length is shorter. Related, when β is

larger, the liquidation loss is smaller, which motivates more maturity transformation and a longer

chain. On the other hand, the more likely the project matures (a higher λy), the less severe the

rollover risk, and hence the longer the equilibrium credit chain.

Recall under Assumption 1 the outstanding debt market value, which is also the face par-

value, is binding at the endogenously given households endowment e. A lager e has the following

28



Figure 7: Comparative Statics of Credit Chain Length

Numerical illustration of comparative statics related to chain length L. Parameter values (unless specified in the

x-axis): β = 0.5, λd = 0.1, c = 0.2, α = 0.2, λy = 0.6, g(y) = γ exp(−γy), γ = 0.1, e = 2.

two opposing forces. On one hand, the benefit of maturity transformation, which is proportional

to the market value of debt, is larger. On the other hand, a larger debt face value implies a greater

probability of a run conditional on debt maturing, which favors a shorter credit chain. The trade-

off of these two forces depends on how binding the constraint Fd ≤ e is. When e is close to the

unconstrained optimal Fd, the second force dominates, i.e., a larger e leads to a shorter credit chain

length in order to limit the rollover risk. This is demonstrated in Figure 7.

Regarding the contract maturity rate, the larger the λd, the smaller the marginal benefit of

increasing maturity rate of debt held by households (proportional to (1 − λy)λdmL). This force

pushes towards shorter credit chain via the maturity channel. Moreover, the marginal benefit via

the asset insulation channel is also proportional to (1 − λy)λdmL (the second term in Eq. (48)),

which decreases in λd. Both forces imply a shorter equilibrium chain length when λd is larger.

Finally, one may ask how the discount rate of experts in our economy, i.e., α, impacts the

equilibrium credit chain length. The direct effect of a greater α reduces chain length. This is because

a greater α implies a smaller wedge in relative impatience between the entrepreneur/managers and

households, therefore a smaller benefit of maturity transformation. On the other hand, a greater
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α also implies a smaller liquidation loss, so the cost of maintaining long chains is smaller as well.

In general the net effect of α is ambiguous.

5 Welfare Analysis

In this section, we focus on whether the decentralized equilibrium is constrained-efficient from the

social planner’s perspective. Specifically, we ask the following question: Can the social planner

improve welfare by restricting the credit chain length, say via a regulation which caps the credit

chain length? Throughout the analysis, we assume that the only tool that the social planner has

is to adjust the credit chain length, which affects the resulting market equilibrium (i.e., the debt

contracts and allocations).

The answer to the above question is yes—welfare is larger if the social planner limits the chain

length. The key source of inefficiency comes from the fact that it is the bottom part of the chain

(layer L − 1) who determines the total chain length. But the bottom layer does not take into

account its impact on top layer’s contract design and profit.

5.1 Model Modification

We modify the setup slightly for a richer equilibrium outcome while maintaining the stationarity

feature over time. The key difference from the model in Section 3 is that we now allow households,

before entering the financial market, to choose endogenously how much to set aside for purchasing

debt offered by funds.

Cohort t of households are born with endowment e with utility ct + ct+1, where ct is the

consumption in period t and ct+1 is the consumption in t + 1. Households can either consume

immediately (ct) or save via the credit chain (i.e., purchasing debts issued funds) at an endogenous

rate rt. So far, this is equivalent to our previous setup. We modify the setting slightly as follows.

• When cohort t households are born and before yt is realised, each household chooses cDt to

consume. Here, “D” stands for day;

• After yt realises, households can choose to consume cNt ≥ 0 in addition (“N” stands for night)

or save via the credit chain. However, households only receive a utility of 1 − ε per unit of

cNt . This implies that i) households period t consumption is ct = cDt + (1− ε)cNt ; and ii) they

invest e− cDt − cNt ≥ 0 in the credit chain either through buying debt or purchasing asset;

• In period t+1, households collect money from the credit chain (or proceeds from liquidation),

consume and exit the economy.

• We assume households cannot observe historical contracts; Section 5.2 discusses the role of

this assumption.

Essentially, ε > 0 leads to an irreversible day consumption decision cDt , leaving e−cDt at households’

hands for their investment in credit chains.
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In this modified setting, households take the credit chain and its equilibrium return rt as given,

and solve the following problem,

max
cDt ≥0,cNt ≥0

mlE[cDt + (1− ε)cNt (y; NM)1cNt (y;NM)≥0 + rt(e− cDt − cNt (y; NM))] (50)

(1−ml)E[cDt + (1− ε)cNt (y; M)1cNt (y;M)≥0 + rt(e− cDt − cNt (y; M))] (51)

s.t. cDt + cNt ≤ e. (52)

where cNt (y; M) (cNt (y; NM)) is night consumption when the debt held by previous cohort of house-

holds matures (does not mature). In the case when debt has not matured or rollover fails, cNt (y; NM)

so households will consume in the night. When debt matures and rollover is successful, we have

cNt (y; M) = 0. As before, contracts {Fy, Fd} are layer independent.

Throughout our analysis we focus on the case where ε → 0; we will show that this limiting

case maps to our baseline model exactly, except with an endogenous day consumption cDt . Because

households who obtain a linear utility (1 − ε)cNt are essentially endowed with a constant savings

technology with a constant rate 1− ε, when ε→ 0 we have the endogenous return from investing in

the credit chain rt → 1. Furthermore, ε → 0 implies that cDt → e − Fd, i.e., given the equilibrium

debt (face) value Fd households set aside just enough funds for potential debt purchase (after a

sufficiently favorable y realization, if some debt matures along the credit chain.)

We make the above seemingly stark assumptions to ensure that the modified model exactly

matches the baseline model solved in Section 4. The key economic mechanism will be the same

if we adopt a “smoother” modification, which features endogenous but irreversible financial-skill

investment decision for young households. To establish a clean inefficiency result, we only need

some endogenous margin in the amount of resource that is available to invest in the project (via

credit chains).15

5.2 Optimality Condition of Fd

We have emphasized that our modified model features an endogenous households’ cDt decision and

hence an endogenous equilibrium debt value Fd, which will binds in equilibrium at e− cDt .

Households who do not observe historical contracts will save based on their (rational) expec-

tation of contracts offered by the equilibrium credit chain. Therefore we determine Fd by the

entrepreneur’s first order condition from maximizing P0 + V0, as shown in Eq. (53):

15More specifically, cohort t households can spend I ∈ [0, e] before yt is realized. After the yt realization, households

with remaining endowment e − I > 0 can purchase debt issued by funds as in our main model, or save in a linear

saving technology whose return is R(I); and they consume the proceeds when they leave the economy. Importantly,

R′(I) > 0 and R′′(I) < 0; in words, young households can “invest” I in their financial skills to improve the return

of their savings technology R(I). This extended model nests our main model in Section 3 by setting I = 0 and

R(0) = 1. What we really need is the endogenous margin embedded in I (or cD in the main text) that helps establish

the inefficiency.
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(1− α) (1−mL)(1−H(Fy))− h(Fy)
dFy,t
dFd,t

∣∣∣
Fd,t=Fd︸ ︷︷ ︸

= 1
λy

L−1∑
l=0

λdml (Fd − αBl(Fy, L) + c(L− l)) ≥ 0. (53)

To understand (53), we note that generally speaking the benefit of a larger Fd comes from the wedge

between the interest rate 1 and the entrepreneur/funds time discount rate α, whereas the cost is

rooted in rollover failure. Condition (53) is derived from considering a one shot (more precisely,

downward) deviation of Fd,t at period t from the entrepreneur’s perspective. Since the households

cannot observe contracts or realisation of y when making daytime consumption decisions, cDt+s is

constant over time and Fd,t+s ≤ e−cDt+s for all s ≥ 1 thanks to households’ irreversible consumption

choice. The entrepreneur who face this constraint effectively takes all future Fd,t+s (s ≥ 1) as given

when evaluating any deviation of Fd,t in period t, and it follows that all future Fy,t+s (s ≥ 1) is

fixed as well due to the contract’s prepayment option.16 This explains that only the adjustment of

Fy,t is considered when evaluating the deviation of Fd,t.

To sum up, given the binding constraint of Fd,t ≤ e− cDt , any Fd for which the left hand side

of Eq. (53) is weakly positive constitutes an equilibrium (so entrepreneur never wants to lower

Fd). Within this class of equilibria, because our goal is to compare the welfare of decentralized

equilibria to the one under the planner’s constrained-efficient solution, we focus on the equilibrium

that yields the highest welfare, which is the one that satisfies Eq. (53) exactly:

(1− α) (1−mL)(1−H(Fy))− h(Fy)
1

λy

L−1∑
l=0

λdml (Fd − αBl(Fy, L) + c(L− l)) = 0. (54)

Before moving on to the next section, we stress that Condition (54) just amounts to one type

of equilibrium selection (i.e., the one with the highest welfare). We can motivate this equilibrium

selection by the following equivalent setting, in which the key driver is the non-transparency of credit

chain. Note that when initiating the contract at time 0, the cohort 0 households naturally observe

the proposed contract before making the daytime consumption decision. In contrast, because credit

chains are typically obscure due to the complicated layer structure, later cohorts cannot observe the

contract history in the credit chain. As a result, in period 0, the entrepreneur picks Fd to satisfy

Eq. (53) exactly, taking all future Fd’s as given. This alternative setup yields the same equilibrium

outcome as characterized by Condition (54).

5.3 Special Case c = 0 Revisited

We come back to the special case when c = 0. As explained in Section 4.4 Corollary 1, the

equilibrium chain length is infinity regardless of β, and Fy is determined by VL=∞({Fy, Fd}, L =

∞) = Fd. As before in Section 4.2, Fy(Fd, L) denotes the solution to Fd = VL({Fy, Fd}, L) for any

given Fd and L.

16Otherwise, the entrepreneur can refinance later at lower Fy’s and prepay the current contract.
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We now consider whether the social planner can improve the welfare by constrain the chain

length L to be a finite number, taking into account that the equilibrium contract parameters are

affected by the chain length. The total social welfare W is given by:

W ({Fy, Fd}, L) =e+ λyy + (1− λy)[(1−m)(1−H(Fy))((1− α)Fd + αE[W |y > Fy])

+ αλdH(Fy)
L−1∑
l=0

ml (E[W |y ≤ Fy] + bl − vL(L) +mlEW ) . (55)

In Eq. (55), (1−m)(1−H)(1−α)Fd, which captures the benefit of a larger Fd due to the difference

in impatience between households and the entrepreneur, is increasing in Fd. But a higher Fd is also

costly as it raises run thresholds; and a longer credit chain results in more maturity transformation

and increases the chance that a run occurs (fixing the run threshold). It is also useful to point

out that Fy only impacts the welfare through the probability of rollover failure H(Fy). When the

project matures and Fy is actually paid out, it is merely a transfer from the entrepreneur to the

households and hence only has redistribution effect in that case.

Consider the impact of varying credit chain length on the total welfare, evaluated at the

decentralised equilibrium L =∞ in the baseline case of c = 0:

dW

dFd︸︷︷︸
>0

∣∣
L=∞

dFd
dL︸︷︷︸
<0

∣∣
L=∞ +

dW

dFy

∣∣
L=∞

dFy
dL︸︷︷︸
=0

∣∣
L=∞ +

dW

dL︸︷︷︸
=0

∣∣
L=∞ < 0, (56)

where all the terms are evaluated at the point of the decentralized equilibrium. As shown in

Proposition 2, in the decentralized market, the equilibrium L is chosen to minimize Fy(Fd, L).

Hence
dFy
dL = 0 and the entire second term disappears. Furthermore, the direct effect of chain

length on welfare, dW
dL , is also 0 at the decentralized equilibrium thanks to the last layer’s first

order condition. In other words, for any given value of Fd, the equilibrium Fy and L are socially

efficient.

This leaves us only the first term in the welfare evaluation. The equilibrium Fd is decreasing

in chain length L. When the chain is shorter, the degree of maturity mismatch is reduced and

the chance of run given any run threshold is smaller. As a result, the entrepreneur increases the

borrowing amount Fd. Moreover, welfare is increasing in Fd, i.e., the first term in Eq. (56) is

strictly negative; we will explain this property shortly. As a result, we have the next proposition.

Proposition 5 Suppose that c = 0. For any β ∈ [0, 1], relative to the decentralized equilibrium,

the social planner can improve total welfare by reducing the credit chain length L.

Proof: See Appendix G.

In the decentralized market solution, the last layer in the credit chain decides the equilibrium

chain length, taking the borrowing face value Fd as given. The top layer — the entrepreneur —

optimally chooses the borrowing amount Fd, taking the credit chain length as given because he is

unable to control the borrowing decision of other funds in the chain. Hence the impact of chain
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length L on Fd is not internalised by any agent. This coordination issue between the top layer and

bottom layer of the chain gives rise to inefficiency.

For the impact of L on Fd to matter, it must be the case that the value of Fd itself is sub-

optimal. The suboptimality of Fd is rooted in the fact that entrepreneur and funds design Fd

period by period and cannot commit to future contract values. Just like the key friction in the

setting of dynamic debt runs (He and Xiong, 2012) — today’s agent take future run decisions as

given— today’s entrepreneur and funds also take future borrowing amount as given. As a result,

the marginal cost (by increasing run probability) from raising borrowing amount only at time t is

more severe than if all future borrowing amount is increased.

To see this point clearly, consider the cost of raising Fd,t from a fund’s or the entrepreneur’s

perspective. When its debt matures, more financing will need to be raised from the market in order

to pay back the previous cohort. Since Fd is taken as given for all future periods, only Fy can be

adjusted, which directly leads to higher run probability than otherwise. On the other hand, the

social planner understands all Fd’s can be adjusted in equilibrium. Therefore, the decentralized

equilibrium Fd is too small relative to social planner’s optimal solution.

To summarize, reducing credit chain length L improves total welfare. When the chain is

shorter, the entrepreneur increases the borrowing amount Fd in equilibrium and the social value

generated from the lending relationship is higher.

Connection to the role of money in Samuelson (1958) Our result is related to the seminal

work of Samuelson (1958), who illustrates the important role of money as storage of value in OLG

models. In our model, the debt issued by the credit chain is essentially money that facilitates the

transfer of wealth among generations.17 Since the money is privately produced, the “trust” in the

money is endogenous and the entrepreneur/funds cannot issue unlimited amount. Our result shows

that the amount of money produced in the decentralized equilibrium is too low relative to the social

solution. This inefficiency arises from the coordination issue among different cohorts and the social

planner can partially alleviate this coordination problem by restricting chain length, which reduces

the rollover risk and degree of strategic complementarity among different periods. This effect of

credit chain length is not internalised by any private agent in the market as explained above.

5.4 General Case of c > 0

Proposition 6 shows the inefficiency exists for general cases as well: When c > 0, the decentralised

equilibrium has finite chain length when β = 1. The intuition is the same as in the previous section.

Proposition 6 For any 1− α ≥ λy and β = 1, relative to the decentralized equilibrium, the social

planner can improve total welfare by reducing the credit chain length L.

Proof: See Appendix G.

Although we have not been able to prove this result in the most general case of c > 0 and

β ∈ (0, 1), all numerical solutions so far support this claim. Figure 8 provides such a numerical

17The entrepreneur can be thought of as cohort −1.
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Figure 8: Social v.s. Private Welfare and Probability of Run

Numerical illustration of what happens when social planner restricts chain length L. Social welfare increases and

probability of a run decreases. Parameter values: β = 1, λd = 0.1, c = 0.15, α = 0.4, λy = 0.6, g(y) = γ exp(−γy),

γ = 0.4.

illustration. The orange dot shows on the right side of each sub-figure denotes decentralized equi-

librium. As L becomes lower, total welfare turns larger. The probability of a run occurring in any

period is also lower when the credit chain is shorter.

6 Conclusion

By highlighting a feature that we often see in the modern market-based financial system, we study

a new dimension of the credit intermediation where one agent’s liability is another agent’s asset

in the credit chain. We illustrate the trade-off of credit chains in our framework, characterize the

equilibrium credit chain, and then study the policy implication of regulating the credit chain from

a welfare perspective.

Different from existing research that only looks at systemic risk for each part of the financial

system one at a time, our paper tries to provide a holistic view of the financial system when

analyzing risks and welfare. This is important because regulations that impact one sector of the

financial system will induce changes in the whole sector, affecting other institutions that interact

with that sector. Without a model that includes the linkages among different institutions, we

cannot properly assess the impact of any individual institution or policy.
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Appendix A Equilibrium in the Example

As a benchmark, the entrepreneur can issue three-period debt to cohort 0, who will then sell the

debt to cohort 1 and 2 later. The price of the equity contract is

P0(three-period debt) = [p+ (1− p)p]α2 (57)

The entrepreneur’s payoff is P0(three-period debt).

A.1 Direct Financing Using Two-Period Contract

Here we consider the general case where the debt face value is D2. We show that in equilibrium

D2 is such that rollover is only successful in the good state.

We solve the problem backward. In period 2, the firm can at most raise P2 = 1 from cohort 2.

This happens when good news has arrived, otherwise, P2 = 0. If D2 = 0, then the firm is never in

liquidation; if 1 ≤ D2 > 0, the firm is only liquidated if no good news has arrived; finally, if D2 > 1,

the firm will always be liquidated.

D2


≤ 0 never liquidate

∈ (0, 1] only liquidate when no good news arrives

> 1 always liquidate.

(58)

The amount of money that can be raised in period 0 is,

P0(D2) = 1D2≤0αD2 + 10<D2≤1[p+ (1− p)p]αD2 + 1D2>1[p+ (1− p)p]α2 (59)

The entrepreneur chooses D2 to maximize P0,

D2 = 1 (60)

P0 (two-period debt) = [p+ (1− p)p]α (61)

Liquidation only happens in period 2 and when no good news arrives. Compared with the three-

period debt case,

P0 (two-period debt)− P0(three-period debt) = [p+ (1− p)p]α(1− α) (62)

In the three-period debt case, discount is always applied twice on the final cash flow. In the two-

period debt case, α is always applied once due to the trading in period 1. However, if debt is

rolled over successful in period 2, then final cash flow need not be discounted again. That situation

happens with probability p+ (1− p)p and the saving is 1− α.

A.2 Direct Financing Using One-Period Contract

The problem in period 2 is the same as in the two-period contract case

D2


≤ 0 never liquidate

∈ (0, 1] only liquidate when no good news arrives

> 1 always liquidate.

(63)
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So the proceeds of issuing debt in period 1 if good news arrives is,

P1(g;D2,g) = 1D2,g≤0D2,g + 10<D2,g≤1D2,g + 1D2,g>1α (64)

if good news has not arrived in period 1, then

P1(b;D2,b) = 1D2,b≤0D2,b + 10<D2,b≤1pD2,b + 1D2,b>1pα (65)

Given the amount of money that can be raised in period 1 (P1),

D1

≤ P1,b never liquidate

∈ (P1,b, P1,g] liquidate if no good news > P1,g always liquidate
(66)

The amount of money that can be raised in period 0 is

P0(D1, D2) =1D1≤P1,b
D1 + 1P1,b<D1≤P1,g [pD1 + (1− p)pα2] + 1D1>P1,gα

2[p+ (1− p)p] (67)

The entrepreneur’s problem is to

max
D1,D2

P0(D1, D2) (68)

Solution is the following

D2,g = D2,b = 1 (69)

D1 = 1 (70)

P0(one-period debt) = p+ (1− p)pα2 (71)

So liquidation in period 2 happens when no good news arrives and liquidation in period 1 happens

when no good news arrives in period 1.

Comparing the funds raised via one-period debt with the funds raised via two-period debt,

P0(one-period debt)− P0(two-period debt) = p(1− α)︸ ︷︷ ︸
Rollover succeeds

−(1− p)αp(1− α)︸ ︷︷ ︸
Rollover fails

(72)

The benefit comes from avoiding transaction cost in the secondary market when short-term debt

can be successfully rolled-over.

A.3 Financing via Intermediary Funds

Similar to before, we solve the problem backward. The problem at period 2 is exactly the same as

the previous subsection,

D2


≤ 0 never liquidate

∈ (0, 1] only liquidate when no good news arrives

> 1 always liquidate.

(73)
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Same as before, the proceeds of issuing debt in period 1 if good news arrives is,

P1(g;D2,g) = 1D2,g≤0D2,g + 10<D2,g≤1D2,g + 1D2,g>1α (74)

if good news has not arrived in period 1, then

P1(b;D2,b) = 1D2,b≤0D2,b + 10<D2,b≤1pD2,b + 1D2,b>1pα (75)

Next, we consider the issuance of debt in period 0. Given the amount of money that can be

raised in period 1 (P1),

D1


≤ P1,b fund never liquidates

∈ (P1,b, P1,g] fund only liquidates when no good news

> P1,g fund always liquidates

(76)

Notice the liquidation in period 1 is at the fund level, i.e. the asset being sold on the market is the

debt contract between the entrepreneur and the fund.

The amount of money that can be raised in period 0 is

P0(D1, D2) =1D1≤P1,b
D1 + 1P1,b<D1≤P1,g [pD1 + (1− p)αp] (77)

+ 1D1>P1,g(p+ (1− p)p)α (78)

The entrepreneur’s problem is maxD1,D2 P0, this gives us

D2,g = D2,b = 1 (79)

D1 = 1 (80)

P0(two-layer) = p+ (1− p)pα (81)

Comparing this with the one-period direct financing case

P0(two-layer)− P0(one-period debt) = (1− p)pα(1− α) (82)

The difference occurs in the case when no good news arrive in period 1, so rollover fails in

the first period. In the one-period debt financing case, the entrepreneur’s asset is being liquidated,

where as in the two-period financing case, only the fund’s asset is being liquidated. Since short-term

asset incurs lower discount on the secondary market, the indirect financing method is able to raise

more funds.

Appendix B Proof for Proposition 1

We first show that Fd,l,t = Fd,l, i.e. the optimal Fd for each layer is constant over time if the

managers do not face rollover issues in this period. We start from the problem between layer

(L− 1) and the households. Layer (L− 1) is given a contract πL−2 by layer (L− 2); the contract

specifies a sequence of payments if debt matures {Fd,L−2,t}Tt=0 and a payment if project matures
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Fy,L−2. T is the stopping time, either when the contract or when the project matures. Plugging in

PL−1, layer L− 1 maximizes the following,

max
Fd,l−1

−PL−2 + λyFy,L−2 + (1− λy)E
[
(1− λd)Lα(VL−1(y′, πL−1;πL−2, L) + VL(y′;πL−1, L)) (83)

+
L−2∑
i=0

(1− λd)i[λd1irollover(αVL−1(y, π′L−1;π′L−2, L) + αFd,L−2 + (1− α)Fd,l−1) + (1− 1irollover)(αBi(y, L)− c(L− i− 1))]

(84)

+ (1− λd)L−1λd1
L−1
rollover(αVL−1(y, π′L−1;πL−2, L) + (1− α)Fd,l−1) + (1− 1L−1

rollover)(αBL−1(y, L)− c)
]

(85)

s.t. Fd,l−1 ≤ Fd,L−2 (86)

The first order condition with respect to Fd,l−1,t is

0 =− µλdL−1,t + E[(1− α)

L−1∑
i=0

(1− λd)iλd1irollover] (87)

+ (1− λd)L−1λd
dPr(rollover at layer L− 1)

dFd,l−1,t
(Fd,l−1,t − αBL−1(y, L) + c) (88)

where µλdL−1,t is the Lagrangian Multiplier in front of Fd,L−2,t − Fd,L−1,t ≥ 0.

If πL−2 = π∗L−2 is stationary and Fd,L−2,t is constant over time, then F ∗d,l−1,t = Fd,l−1.
The same logic applies to F ∗d,l,t = Fd,l for all 0 ≤ l ≤ L − 1. For 0 ≤ l < L − 1, its objective

can be written as

max
Fd,l
−Pl−1 + λyFy,l−1 + (1− λy)α

{
(1− λd)l+2EVl(y′, πl;πl−1, L) + (1− λd)l+1λdE(1− 1l+1

rollover)Vl(y
′, π′l;πl−1, L) (89)

+

l−1∑
i=0

(1− λd)iλdE[1irollover(Fd,l−1 − Fd,l+1 − P ′l−1 − P
′
l + max

π′
l

(P ′l + Vl(y
′, π′l;π

′
l−1, L)) + max

π′
l+1

(P ′l+1 + Vl+1(y′, π′l+1;πl, L)))]

(90)

+ (1− λd)lλdE[1lrollover(−Fd,l+1 − P ′l + max
π′
l

(P ′l + Vl(y
′, π′l;πl−1, L))) + max

πl+1′
(P ′l+1 + Vl+1(y′, π′l+1;πl, L))] (91)

+ (1− λd)l+2EVl+1(y′, πl+1;πl, L) + (1− λd)l+1λdE[1l+1
rollover(−Fd,l+1 + max

π′
l+1

Vl+1(y′, π′l+1;πl, L))]
}

+ Pl+1 (92)

we know in equilibrium P ′l−1 = maxπ′l(P
′
l+Vl(y

′, π′l;π
′
l−1, L)) and P ′l = maxπ′l+1

(P ′l+1+Vl+1(y′, π′l+1;π′l, L)),

so the above can be simplified as

max
Fd,l
−Pl−1 + λyFy,l−1 + (1− λy)α

{
(1− λd)l+2EVl(y′, πl;πl−1, L) + (1− λd)l+1λdE(1− 1l+1

rollover)Vl(y
′, π′l;πl−1, L) (93)

+

l−1∑
i=0

(1− λd)iλdE[1irollover(Fd,l−1 − Fd,l+1)] + (1− λd)lλdE[1lrollover(−Fd,l+1 + Vl(y
′, π′l;πl−1, L) + Vl+1(y′, π′l+1;π′l, L) + P ′l+1)]

(94)

+ (1− λd)l+2EVl+1(y′, πl+1;πl, L) + (1− λd)l+1λdE[1l+1
rollover(−Fd,l+1 + P ′l+1 + Vl+1(y′, π′l+1;πl, L))]

}
+ Pl+1 (95)

subject to Fd,l,t ≤ Fd,l−1,t. Denote the Lagrangian multiplier as µλdl,t . The first order condition of

Fd,l,1 is

0 =− µλdl,1 + µλdl+1,1 +
dPl+1

dFd,l,1
(96)

=− µλdl,t + µλdl+1,t + (1− λd)lλd
dPr(rollover at layer l)

dFd,l,1
(Fd,l−1 − αBL−1(y, L) + c) (97)
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The first order condition with respect to Fd,l,t is

0 =− µλdl,t + µλdl+1,t +
dPl+1

dFd,l,t
(98)

=− µλdl,t + µλdl+1,t + (1− λd)lλd
dPr(rollover at layer l)

dFd,l,t
(Fd,l−1 − αBl−1(y, L) + c) (99)

If π∗l−1 does not depend on history and is stationary, then it is straightforward that F ∗d,l,t = Fd,l.

Next, we show that Fd,l = Fd across layers. Since the problem is identical over time, we loose

the time subscript. The first order condition with respect to Fd,l−1 in equilibrium is

0 =− µλdL−1 + (1− α)

L−1∑
l=0

(1− λd)lλdPr(rollover at layer l)+ (100)

(1− λd)L−1λd
dPr(rollover at layer L− 1)

dFd,l−1
[Fd,l−1 − αBl−1(y, L) + c] (101)

The first order condition with respect to Fd,l for 0 < l < L− 1 is,

0 =− µλdl + µλdl+1 + (1− λd)lλd
dPr(rollover at layer l)

dFd,l
(Fd,l−1 − αBl(y, L) + c(L− l)) (102)

For l = 0, the first order condition is

0 =− µλd0 + µλd1 + λd
dPr(rollover at layer l)

dFd,0
(Fd,l−1 − αBl(y, L) + c(L− l)) (103)

Substituting in all the Lagrangian multipliers.

0 =− µλd0 + (1− α)
L−1∑
l=0

(1− λd)lλdPr(rollover at layer l)

+

L−1∑
l=0

(1− λd)lλd
dPr(rollover at layer l)

dFd,l
(Fd,l−1 − αBl(y, L) + c(L− l)) (104)

Denote layer-0’s choice as Fd,0 = Fd, satisfying equation (104). If µλd0 > 0, then Fd = e, and since

µλdL−1 ≥ µ
λd
L−2 ≥ ... ≥ µ

λd
0 > 0 (105)

so all the constraints are binding, i.e. Fd,l−1 = Fd,L−2 = ... = Fd.

If µλd0 = 0, then Fd < e, it must be the case that dPr(rollover at layer l)
dFd,l

< 0 holds for at least

one l. Denote l̂ as the smallest l such that dPr(rollover at layer l)
dFd,l

< 0. This implies that for l < l̂,
dPr(rollover at layer l)

dFd,l
= 0, so the first order conditions for Fd,l (l ≥ l̂) are the same as that for

Fd,0. In other words, Fd,l = Fd. For l < l̂, we have µλdl > 0, so the constraint is binding, i.e.

Fd,l−1 = Fd,L−2 = ... = Fd,l̂−1 = Fd.

So far we have shown that when there is no rollover concerns, we have Fd,l,t = Fd being constant

over time and across layers. Now we just to show when y is small, and when the money raised
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from the unconstrained optimal contract is smaller than the amount owed, the managers cannot

deviate and set higher Fd. For managers in layer 1 to layer L− 1, because Fd,l ≤ Fd,l−1 is binding,

they cannot set higher Fd. For layer 0, as we will show in Appendix B, Assumption 1 ensures that

Fd,0 ≤ e is binding. Hence the entrepreneur at layer 0 cannot deviate and set higher Fd either. As

a result, Fd,l,t = Fd for all layer l and time t.

We next proceed to show that Fy,l,t = min(Fy,l−1,t, Fy,l), where Fy,l is a function of Fd,l.

At time t, for a given sequence of future payments {Fy,L−1,t+j}∞j=1, there exists Fy,L−1,t such

that

PL−1 = VL({Fy,L−1,t, {Fy,L−1,t+j}∞j=1, Fd,l−1}, L) = R̂ (106)

Because yt is i.i.d. across periods, Fy,L−1,t does not depend on the history of y.

Since the fund manager can always renegotiate with the households, it must be the case that

Fy,l−1,t ≤ min{Fy,L−1,t, Fy,L−2,t} (107)

If Fy,l−1,t < min(Fy,L−1,t, Fy,L−2,t), then by setting F̃y,l−1,t = min(Fy,L−1,t, Fy,L−2,t) and setting

F̃y,L−1,t+1 = Fy,L−1,t+1 − α(min(Fy,L−1,t, Fy,L−2,t) − Fy,l−1,t), both the households and the fund

manager remain indifferent. So without loss of generality, we can assume

Fy,l−1,t = min(Fy,L−1,t, Fy,L−2,t) (108)

Next, we proceed to show Fy,L−1,t must be a constant.

Given our hypothesized form of Fy,L−2 and the fact that yt is i.i.d., the distribution of Fy,L−2,t

is stationary. If Fλy ,t < Fλy ,t+1, then it must exist j, such that

Et[Fy,L−1,t+j ] > Et+1[Fy,L−1,t+j+1] (109)

⇒Et[min(Fy,L−1,t+j , Fy,L−2,t+j)] > Et+1[(Fy,L−1,t+j+1, Fy,L−2,t+j+1)] (110)

⇒Fy,L−1,t+j > Fy,L−1,t+j+1 (111)

However, at time t+ j, the problem faced by the fund is exactly the same as at time t because of

stationarity: at both point t and t+j, the manager is trying to find the best subsequent of payment

such the debt is worth Fd,l−1 to households. The two problems are identical. Hence it must be the

case that

Fy,L−1,t+j < Fy,L−1,t+j+1 (112)

This is a contradiction. So Fy,L−1,t = Fy,l−1, i.e. it must be a constant over time.

Next, we consider the lending relationship between layer l − 1 and layer l (1 ≤ l < L),

Similar to before, because creditors can always renegotiate

Fy,l−1,t ≤ min{Fy,L−1,t, Fy,L−2,t} (113)

where Fy,L−1,t is defined as

Pl−1({Fy,L−1,t, {Fy,l−1,t+j}∞j=0, Fd,l−1}) = Fd,l−1 (114)
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If Fy,l−1,t < min{Fy,L−1,t, Fy,L−2,t}, we show then there is a (weakly) better contract for layer l− 1

manager. Denote ∆ = min(Fy,L−1,t, Fy,L−2,t)− Fy,L−2,t. Set F̃y,l−1,t = min(Fy,L−1,t, Fy,L−2,t), and

F̃y,L−1,t+1 = Fy,L−1,t+1 −
λy∆

α(1− λy)[(1− λd)l+1λy + (1− λd)lλdPr(rollover at layer l)λy + (1− λd)lλd
dPr(rollover at layer l)

dFy,l−1
Vl]

(115)

layer l’s payoff then remains unchanged. For layer l − 1, the change in payoff is also 0. Hence

without loss of generality, we can assume

Fy,l−1,t = min(Fy,L−1,t, Fy,L−2,t) (116)

The proof for Fy,L−1,t = Fy,l−1 carries directly over for a general l Fy,L−1,t = Fy,l−1. Hence

Fy,l−1,t = min(Fy,l−1, Fy,L−2,t) (117)

For layer 0 (the entrepreneur),

Fy,0,t = min(Fy, yt) (118)

We have now established stationarity. We move on to show Fd,l = Fd, and Fy,l = Fy, i.e. they are

the same constant across layers.

Lastly, we show Fy,l = Fy follows from Fd,l = Fd. By the definition of Fy,l,

Fd,l = Pl+1 + Vl+1({Fd,l+1, Fy,l+1}; {Fd,l, Fy,l}) (119)

In competition, it must be the case that

Pl = Pl+1 + Vl+1 (120)

Pl = Fd,l = Fd (121)

The same is true for Pl+1 = Fd. This implies

Vl+1({Fd, Fy,l+1}; {Fd, Fy,l}) = 0 (122)

From the HJB of Vl+1, we can see that it is proportional to Fy,l − Fy,l+1. Hence for Vl+1 = 0, it

must be the case that

Fy,l = Fy,l+1 = Fy (123)

As mentioned before, in equilibrium, Fy is the minimal payment if project matures such that

the new households are willing to rollover debt, for a given Fd. By definition

Fd = VL({Fy, Fd}, L) for y ≥ Fy (124)

⇒Fd = λyFy + vL({Fy, Fd}, L) (125)

Since all layers have the same Fy and rollover fails when y < Fy, we have

Pr(rollover at layer l) = 1−H(Fy) (126)
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Plug this expression in the first order condition of Fd, we get

− µλd0 + (1− α)
L−1∑
l=0

mlλd(1−H(Fy))−
L−1∑
l=0

mlλdh(Fy)
dFy
dFd

(Fd − αBl(Fy, L) + c(L− l)) = 0

(127)

µλd0 (e− Fd) = 0 (128)

µλd0 ≥ 0 (129)

When Fd ≤ e is binding,

dFy
dFd

=
1

λy
(130)

hence

(1− α)(1−mL)(1−H(Fy))−
L−1∑
l=0

mlλdh(Fy)
1

λy
(Fd − αBl(Fy, L) + c(L− l)) (131)

≥(1− α)(1−mL)(1−H(Fy))−
L−1∑
l=0

mlλdh(Fy)
1

λy
(Fd + c(L− l)) (132)

Under Assumption 1, the above equation is greater than or equal to 0. Hence Fd = e.

B.1 Solving for Value Functions

Similar to the definition of vL(L), define bl(L) as the stationary component of Bl(L),

bl(L) ≡ Bl(L)− λy min(Fy, y) (133)

Using the expressions for Bl(L) and VL(L), we can write them in matrix form,

Ψ


b0(L)

b1(L)

...

bL−1(L)

vL(L)

 = η (134)
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where

Ψ =


1 0 0 ... 0 −β
0 1 0 ... 0 −β
...

0 0 0 ... 1 −β
0 0 0 ... 0 1

 (135)

− (1− λy)H(Fy)αλd



0 0 0 ... 0 0 0

(1− β)m0 0 0 ... 0 0 0

(1− β)m0 (1− β)m1 0 ... 0 0 0

(1− β)m0 (1− β)m1 (1− β)m2 ... 0 0 0

...

(1− β)m0 (1− β)m1 (1− β)m2 ... (1− β)mL−2 0 0

m0 m1 m2 ... mL−2 mL−1 0


(136)

and

η =(1− λy)[αλy
∫ Fy

ydH(y) + (1−H(Fy))e− cH(Fy)(1−
1

λd
)]


1− β
1− β
...

1− β
1

+


(1− β)λyµy

0

...

0

0


(137)

+ (1− λy)[α(e− λyFyH(Fy))− (1−H(Fy))e+ cH(Fy)(1−
1

λd
)]


(1− β)m0

(1− β)m1

...

(1− β)mL−1

mL

 (138)

− (1− λy)cH(Fy)


0

(1− β)

...

(1− β)(L− 1)

L

 (139)

We can further simplify vL as

vL =(1− λy)
{

(1− λy)(1− β)H(Fy)αλdM ×
(
IL − (1− β)(1− λy)H(Fy)αλdM̂ − β(1− λy)H(Fy)αλd1LM

)−1
η[1 : L]

+
αmL(e− λyFyH(Fy)) + αλy

∫ Fy ydH(y) + (1−mL)(1−H(Fy))e− cH(Fy)(L+ (1− 1
λd

)(1−mL))

1− β(1− λy)H(Fy)αλdM(IL − (1− β)(1− λy)H(Fy)αλdM̂)−11L

}
(140)

where IL is the identity matrix of dimension L, 1L is a L× 1 vector of 1’s, M is a 1×L vector
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where Mi = mi−1, η[1 : L] is the first L elements of η. And finally,

M̂ =


0 0 0 ... 0 0

m0 0 0 ... 0 0

m0 m1 0 ... 0 0

...

m0 m1 m2 ... mL−2 0


B.2 Existence and Uniqueness of Fy

A given cohort of household’s strategy (run threshold) is Fy =
e−vL(F ′y)

λy
, where F ′y is other cohort’s

strategy. A symmetric equilibrium is where Fy = F ′y. Moreover,

e−vL(F ′y)

λy

dF ′y
≤ 1 at the equilibrium

point.

Given the following

e− vL(0)

λy
> 0 lim

x→∞

e− vL(x)

λy
− x < 0 (141)

there exists at least one intersection of y = e−vL(x)
λy

with y = x from above. So equilibrium exists.

Next, to argue uniqueness, we just need to show that
d
e−vL(Fy)

λy

dFy
≤ 1 ⇔ λy +

dvL(Fy)
dF )y ≥ 0. As

shown before,

dvL
dFy

>
−(1− λy)[λymLαH + h((1−mL)(1− α)Fd + c

∑L−1
i=0 λdmi(L− i) + α

∑L−1
i=0 λdmi(vL − bi(L)))]

1− (1− λy)(1−mL)αH
(142)

λy +
dvL
dFy

>
λy − (1− λy)[λyαH + h((1−mL)(1− α)Fd + c

∑L−1
i=0 λdmi(L− i) + α

∑L−1
i=0 λdmi(vL − bi(L)))]

1− (1− λy)(1−mL)αH

(143)

>
λy(1− (1− λy)αH)− (1− λy)h(1−mL)e

1− (1− λy)(1−mL)αH
(144)

The last term is positive for all Fy under Assumption 2.

Appendix C Proof for Proposition 2

In equilibrium, Fy(Fd, L) is determined by Fd = λyFy + vL(L) and Fd = e

vL =(1− λy)
[
mα(e+ λy

∫ Fy

yh(y)dy − λyHFy) + (1−m)(1−H)e− cH
L−1∑
i=0

λdmi(L− i) (145)

L−1∑
i=0

miλdαE[Bi(y, L)|y ≤ Fy]
]

(146)

where

L−1∑
i=0

λdmi(L− i) = L+ (1− 1

λd
)(1− (1− λd)L) (147)
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In equilibrium, L∗ = arg maxL vL(L). Taking difference with respect to L (dvL(L) = vL(L) −
vL−1(L− 1)),

dvL(L)

dL
= (1− λy)

[
− λd(1− λd)L−1α(e+ λy

∫ Fy

yh(y)dy − λyHFy) + λd(1− λd)L−1(1−H)e

(148)

+ λd(1− λd)L−1αλy

∫ Fy

yh(y)dy + λd(1− λd)L−1αHbL(L) +H(1−m)α
dvL(L)

dL
− cH(1− (1− λd)L)

(149)

L−2∑
i=0

miλdα (E[Bi(y, L)|y ≤ Fy]− E[Bi(y, L− 1)|y ≤ Fy])︸ ︷︷ ︸
=
dE[Bi(y,L)|y≤Fy ]

dL

]
(150)

To examine
dE[Bi(y,L)|y≤Fy ]

dL ,

dE[Bi(y, L)|y ≤ Fy]
dL

= β
dvL(L)

dL
+ (1− β)(1− λy)

[
(1− λd)iα

dvL(L)

dL
+

i−1∑
l=0

λdmlα
dE[Bl(y, L)|y ≤ Fy]

dL

]
(151)

At dvL(L)
dL = 0,

dE[Bi(y,L)|y≤Fy ]
dL = 0 for all 1 ≤ i ≤ L. And bL(L) = vL(L). Hence the first order

condition with respect to L is,

FOCL,prv = (1−H)(1− α)λd(1− λd)Le− cH + cH(1− λd)L+1 = 0 (152)

The second order condition for L holds

∂FOCL,prv
∂L

= (1−H)(1− α)λde(1− λd)Llog(1− λd) + cH(1− λd)L+1log(1− λd) < 0 (153)

Appendix D Proof for Proposition 3

As shown in Appendix C, we have

(1−H)(1− α)λdmLFd − cH + cH(1− λd)L+1 = 0 (154)

For i = L,

vL − bL−1 = (1− β)(1− λy)
[
λdmL((1−H)(1− α)Fd − αH(vL − bL−1(L)))− cH(1−mL)

]
(155)

vL − bL−1 =
(1−H)(1− α)λdmL−1Fd − cH + cH(1− λd)L

1 + (1− β)(1− λd)αH
> 0 (156)
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Suppose for all l where L ≥ l ≥ i, we have bl ≥ bl−1, then

bi − bi−1 = (1− β)(1− λy)
[
λdmi((1−H)(1− α)Fd − αH(vL − bi−1(L)))− cH(1−mi)

]
(157)

= (1− β)(1− λy)
[
λdmi((1−H)(1− α)Fd − αH(vL − bi(L) + bi(L)− bi−1(L)))− cH(1−mi)

]
(158)

= (1− β)(1− λy)
(1−H)(1− α)λdmiFd − λdmiαH(vL − bi)− cH(1−mi)

1 + (1− β)(1− λy)λdmiαH
(159)

Since we have bi+1 − bi > 0, we have

(1−H)(1− α)λdmi+1Fd − αHλdmi+1(vL − bi)− cH(1−mi+1) > 0 (160)

(1−H)(1− α)λdFd − αHλd(vL − bi) + cH > 0 (161)

Hence

bi − bi−1 = (1− β)(1− λy)
(1−H)(1− α)λdmiFd − λdmiαH(vL − bi)− cH(1−mi)

1 + (1− β)(1− λy)λdmiαH
(162)

>
(1−H)(1− α)λdmi+1Fd − αHmi+1(vL − bi)− cH(1−mi+1)

1 + (1− β)(1− λy)λdmiαH
(163)

=
bi+1 − bi

(1− β)(1− λy)[1 + (1− β)(1− λy)λdmiαH]
> 0 (164)

Hence we have bi(L) and hence Bi(y, L) increase in i.

Appendix E Proof for Corollary 1

We prove the equilibrium chain length is infinity by showing that the firm manager’s payoff is

always higher with more layers of financial intermediaries, for a given set of contract parameters.

From the proof of optimal contract, it is straightforward that rollover fails when y < Fy. This

is true for any layer l. Suppose VL({Fy, Fd}, L) = Fd, we will show that VL+1({Fy, Fd}, L+1) > Fd,

which implies the equilibrium Fy(Fd, L + 1) < Fy(Fd, L). In the following proof, unless specified

otherwise, Fy = Fy(Fd, L).

We can re-write households’ value function as,

VL({Fy, Fd}, L) =λy min(Fy, y) + (1− λy)E[mLαVL + (1−mL)1yt+1≥FyFd (165)

+ 1yt+1<Fy

L−1∑
i=0

miλdαBi(L)] (166)

consider adding a layer, households’ value function becomes

VL+1({Fy, Fd}, L+ 1) =λy min(y, Fy) + (1− λy)E[mL+1αVL+1 + (1−mL+1)1yt+1≥FyFd (167)

+ 1yt+1<Fy

L∑
i=0

miλdαBi(L+ 1)] (168)

50



To compare the two,

VL+1 − VL =vL+1 − vL = (1− λy)E
[
mL+1α[vL+1 − vL]− λmLαVL(L) (169)

+ λdmL1yt+1≥FyFd +mLλ1yt+1<FyαBL(L+ 1) + 1yt+1<Fy

L−1∑
i=0

miλdα(Bi(L+ 1)−Bi(L))
]

(170)

=(1− λy)E
[
mL+1α[vL+1 − vL] + λdmL1yt+1≥Fy(Fd − αVL) (171)

+ 1yt+1<Fy

L∑
i=0

miλdα(Bi(L+ 1)−Bi(L))
]

(172)

where BL(L) = VL(L). First of all, Fd > αVL. Moreover, we show that Bi(L + 1) − Bi(L) > 0 as

well.

Bi(L+ 1)−Bi(L) = bi(L+ 1)− bi(L) (173)

bi(L+ 1)− bi(L) = β(vL+1(L+ 1)− vL(L)) + (1− β)(1− λy)
i−1∑
l=0

αH(Fy)(bl(L+ 1)− bl(L))

(174)

and

b0(L+ 1)− b0(L) = [β + (1− β)(1− λy)α](vL+1(L+ 1)− vL(L)) (175)

Denote
∑n−1

l=0 λdml(bl(L+ 1)− bl(L)) by Kn× (vL+1(L+ 1)− vL(L)), and define K0 = λd[β + (1−
β)(1− λy)α]. For n ≥ 1,

Kn = βλd(1− λd)n + [1 + λd(1− λd)n(1− β)(1− λy)αH]Kn−1 (176)

Kn +
β

(1− β)(1− λy)αH
= [1 + λd(1− λd)n(1− β)(1− λy)αH](Kn−1 +

β

(1− β)(1− λy)αH
)

(177)

⇒ Kn = Πn
l=1[1 + λd(1− λd)l(1− β)(1− λy)αH]

(
K0 +

β

(1− β)(1− λy)αH

)
− β

(1− β)(1− λy)αH
(178)

Plug in
∑L

l=0 λdml(bl(L+ 1)− bl(L)) = KL × (vL+1(L+ 1)− vL(L)),

vL+1(L+ 1)− vL(L) =
(1− λy)(1−H(Fy))λdmL(Fd − αE[VL(L)|y ≥ Fy])

1− (1− λy)α(mL+1 +HKL+1)
(179)

Since

b0(L+ 1)− b0(L) < vL+1(L+ 1)− vL(L) (180)

⇒ b1(L+ 1)− b1(L) < vL+1(L+ 1)− vL(L) (181)

51



Suppose for any l < i, we have bl(L+ 1)− bl(L) < vL+1(L+ 1)− vL(L), then from Eq. (174), we

can show

bi(L+ 1)− bi(L) < vL+1(L+ 1)− vL(L) (182)

Hence

Kn <

n−1∑
i=0

λdmi < 1−mn (183)

So the denominator 1− (1− λy)α(mL+1 +HKL+1) is positive. Hence,

vL+1(L+ 1)− vL(L) > 0 (184)

Which means to make the households break-even, Fy(L+ 1) < Fy(L).

Layer L−1 manager’s value is decreasing in Fy(L+1). Hence, in equilibrium, the chain length

is infinity.

Appendix F Proof for Proposition 4

F.1 Comparative statics with respect to c

We first consider the comparative statics with respect to the per layer bankruptcy cost c,

∂FOCL,prv
∂c

=
∂FOCL,prv

∂Fy

∂Fy
∂c
−H(1− (1− λd)L+1) (185)

∂Fy
∂c

= −
∂vL(L)
∂c

λy + ∂vL(L)
∂Fy

(186)

∂vL(L)

∂c
< 0 ⇒ ∂Fy

∂c
> 0 (187)

∂FOCL,prv
∂Fy

= −h[(1− α)λd(1− λd)Le+ c(1− (1− λd)L+1)] < 0 (188)

⇒
∂FOCL,prv

∂c
< 0 (189)

By implicit function theorem,

∂L∗

∂c
< 0 (190)

F.2 Comparative statics with respect to λy

Lastly, we consider the comparative statics with respect to project maturity rate λy.

∂FOCL,prv
∂λy

=
∂FOCL,prv

∂Fy

∂Fy
∂λy

(191)
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As shown in the previous part,

∂FOCL,prv
∂Fy

< 0 (192)

The other part,

∂Fy
∂λy

= −
∂vL(L)
∂λy

λy + ∂vL(L)
∂Fy

(193)

∂vL(L)

∂λy
= Fy − vL(L) (194)

We know vL(L) ≤ e, and λyFy + (1− λy)vL(L) = e, it must be the case that

Fy ≥ e ≥ vL(L) (195)

Hence

∂vL(L)

∂λy
≥ 0 (196)

∂Fy
∂λy

≤ 0 (197)

⇒
∂FOCL,prv

∂λy
≥ 0 (198)

By implicit function theorem,

∂L∗

∂λy
≥ 0 (199)

Appendix G Proof for Proposition 6

Households take L and rt as given, and solves the following problem,

max
c1,t,c2,t

mlE[c1,t + (1− ε)c2,t(y; NM)1c2,t(y;NM)≥0 + rt(e− c1,t − c2,t(y; NM))] (200)

(1−ml)E[c1,t + (1− ε)c2,t(y; M)1c2,t(y;M)≥0 + rt(e− c1,t − c2,t(y; M))] (201)

s.t. c1,t + c2,t ≤ e (202)

where rt is the return from investing in the credit chain.

When I1 ≤ e− Fd, first order condition wrt I1 and I2 (with ε→ 0)

[c1,t] : 1− r (203)

[c2,t] : (1− ε)− r (204)

So c1,t ≥ e− Fd.
When c1,t > e− Fd, it’s first order condition is

[c1,t] : mε+ (1−m)εH(Fy) + (1−m)(1− rt) (205)

[c2,t] : (1− ε)− rt (206)

as ε→ 0, rt → 1 and c1,t → e− Fd.
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G.1 Equilibrium

Households observe nothing when making day-time consumption decisions. We want to show

the following conditions characterize a class of equilibria indexed by Fd. Households consume

cDt = e− Fd during the day, and save the rest in the night. Fd satisfies the following equilibrium

(1− α)(1−mL)(1−H(Fy))− h(Fy)
dFy,t
dFd,t

∣∣∣
Fd,t=Fd︸ ︷︷ ︸

= 1
λy

L−1∑
l=0

λdml(Fd − αBl(Fy,t, L) + c(L− l)) ≥ 0

(207)

where
dFy,t
dFd,t

is derived from the implicit function theorem using the equation below.

Fd,t = λyFy,t + vL({Fy, Fd}, L) (208)

and Fd is taken as given for all future periods.

To show this is an equilibrium, We consider one-time deviations. First, note that deviating

Fd,t from Fd to Fd+δ (δ > 0) is not feasible, because Fd,t ≤ Fd = e−cD has to hold. Next, consider

deviating downward to Fd− δ (δ > 0), just for Fd,t. The cost is (1−α)(1−mL)(1−H(Fy)). Fixing

future Fd’s, the benefit of this deviation is h(Fy)
dFy
dFd

∑L−1
l=0 λdml(Fd −αBl(Fy, L) + c(L− l)). If we

allow future Fd’s to be adjusted, note that it can only be adjusted downwards. The decrease in run

probability, which is the benefit of such deviation, is even less. According to inequality (207), the

cost of such deviation is larger than benefit. As a result, we have shown this is an equilibrium, at

least when we only consider one-shot deviations.

Denote the Fd at which (207) holds at equality by F̄d. Next, we argue that for F ′d > F̄d,

Fd,t = F ′d for all t it is not a stationary equilibrium. Because (1 − α)(1 − mL)(1 − H(Fy)) −
h(Fy)

dFy
dFd

∑L−1
l=0 λdml(Fd − αBl(Fy, L) + c(L− l)) is decreasing in Fd, at F ′d > F̄d, we have

(1− α)(1−mL)(1−H(Fy))− h(Fy)
1

λy

L−1∑
l=0

λdml(Fd − αBl(Fy, L) + c(L− l))
∣∣∣
Fd=F ′d

< 0 (209)

So the benefit of deviating from F ′d to F ′d − δ is h(Fy)
dFy
dFd

∑L−1
l=0 λdml(Fd − αBl(y, L) + c(L − l))

larger than the cost (1− α)(1−mL)(1−H(Fy)). As a result, this cannot be an equilibrium.

Hence, we have a continuum of equilibria characterized by (207). We focus on the one that

has the largest welfare within this class of equilibria, which is when Fd = F̄d.

G.2 Special Case c = 0 and β ∈ [0, 1]

In the special case when c = 0, the equilibrium chain length is infinity.

dW

dFd

dFd
dL

+
dW

dFy

dFy
dL

+
dW

dL
(210)

54



where dW
dL is proportional to FOCL,prv(L) plus

∑L−1
l=0 λd

d(bl(L)−vL(L))
dL . As we have shown before,

dvL
dL

= 0⇒ dbl(L)

dL
= 0 for 0 ≤ l ≤ L− 1 (211)

Hence when evaluated at the private optimal L =∞, dW
dL

∣∣∣
L=∞

= 0.

From second order condition, we know

∂FOCFL,prv
∂L

≤ 0 (212)

Furthermore,

∂FOCL,prv
∂Fd

∣∣∣
L=∞

= −chdFy
dFd

< 0 (213)

By implicit function theorem,

dFd
dL

< 0 (214)

Finally,

dW

dFd
=(1− α)(1−H)− h

(
dFy
dFd

) ∞∑
i=0

λdmi(Fd,t − αBi(L)) (215)

+Hα
∞∑
l=0

mlλd

(
d(bl(L)− vL(L))

dFd
+
d(bl(L)− vL(L))

dFy

(
dFy
dFd

))
(216)

Given the expression of bl,

bl − vL(L) = (1− β)(1− λy)[−(ml −mL)(1− α)(1−H)Fd +
L−1∑
i=l

λdmiαH(vL − bi)] (217)

b0 − vL(L) = (1− β)(1− λy)[−(1− α)(1−H)Fd +

L−1∑
i=0

λdmiαH(vL − bi)] (218)

Plug in

b0 = βvL + (1− β)(1− λy)α[(1−H)Fd + λyX(Fy) +HvL] (219)

Denote
d
∑L
l=0(bl(L)−vL(L))

dFd
by D(Fd) and

d
∑L
l=0(bl(L)−vL(L))

dFy
by D(Fy),

αHD(Fd) = −(1− β)(1− λy)(1−H) + [(1− β)(1− (1− λy)αH) + αH]
dvL
dFd

(220)

Using the expression for vL,

dvL
dFd

= (1− λy)[1−H + αHD(Fd)] (221)
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Using equation (220) and (221), we get

αHD(Fd) =
αH(1− λy)(1−H)

1− (1− λy)αH
> 0 (222)

dvL
dFd

= (1− λy)
1−H

1− (1− λy)αH
(223)

Similarly,

αHD(Fy) = (1− β)(1− λy)(1− α)hFd + (1− β)(1− (1− λy)αH)
dvL
dFy

(224)

dvL
dFy

= (1− λy)[−hFd(1− α) + αh
∞∑
l=0

mlλd(bl − vL) + αHD(Fy)] (225)

⇒ αHD(Fy) =
(1− β)(1− λy)αHhFd + (1− β)(1− (1− λy)αH)(1− λy)αh

∑∞
l=0mlλd(bl − vL)

1− (1− λy)(1− β)(1− (1− λy)αH)

(226)

Evaluating dW
dFd

at the private optimal point, we get

dW

dFd
=HαD(Fd) +HαD(Fy)

1− dvL
dFd

λy + dvL
dFy

+ h

(
dvL
dFd
− 1

λy + dvL
dFy

+
1

λy

) ∞∑
i=0

λdmi(Fd,t − αBi(L)) (227)

(228)

As shown previously, dbl(L)
dFy

is decreasing in l. This implies D(Fy) ≥ 0. It is also straightforward

that
1− dvL

dFd

λy+
dvL
dFy

> 0 and Fd,t ≥ αBi(L).

The only term left to consider is
dvL
dFd
−1

λy+
dvL
dFy

+ 1
λy

=
dvL
dFd

+ 1
λy

dvL
dFy

λy+
dvL
dFy

dvL
dFy

= (1− λy)
[(1− β)(1− λy)αHhFd + αh

∑∞
l=0mlλd(bi − vL)

1− (1− λy)(1− β)(1− (1− λy)αH)
− hFd(1− α)

]
(229)

use the first order condition of Fd,

αh
∞∑
l=0

mlλd(bi − vL) = −λy(1− α)(1−H) + h(1− α)Fd (230)

Moreover, hFd
λy
≥ (1− α)(1−H).

dvL
dFd

+
1

λy

dvL
dFy

=
(1−H)(1− λy)

[1− (1− λy)αH][1− (1− λy)(1− β)(1− (1− λy)αH)]
(231)

×
{

1− (1− (1− λy)αH)
[
− (1− α)(1− β)(1− λy)[αH + (1− α)(1− (1− λy)αH)] (232)

+ (1− α) + (1− λy)(1− β)
]}

> 0 (233)

Hence

dW

dFd︸︷︷︸
>0

dFd
dL︸︷︷︸
<0

< 0 (234)

reducing L increases welfare.
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G.3 Special Case with c > 0 and β = 1

For the managers, they take future values of Fd as given, so

dFy
dFd

=
1

λy
(235)

The equilibrium Fd is determined by

FOCFd,prv(Fd) = (1− α)(1−mL)(1−H)− h 1

λy

L−1∑
l=0

λdml(Fd,t − αBl(y, L) + c(L− l)) (236)

The equilibrium L is determined by dvL(L)
dL = 0:

FOCL,prv(L) = (1−H)(1− α)λd(1− λd)LFd − c(1− (1− λd)L+1)H = 0 (237)

Consider total welfare W and how welfare changes if the social planner regulates L,

dW

dFd

dFd
dL

+
dW

dFy

dFy
dL

+
dW

dL
(238)

It is straightforward to show that dW
dL

∣∣∣
L=L∗

= 0 and
dFy
dL

∣∣∣
L=L∗

= 0. To evaluate the first term,

dW

dFd
=(1− α)(1−ml)(1−H)− h

(
dFy
dFd

) L−1∑
i=0

λdmi(Fd,t − αBi(L) + c(L− i)) (239)

When evaluated as the private equilibrium, we first show(
dFy
dFd

)socl
=

1− dvL
dFd

λy + dvL
dFy

<
1

λy
(240)

Consider(
dFy
dFd

)socl
− 1

λy
=

1− dvL
dFd

λy + dvL
dFy

− 1

λy
=
−λy dvLdFd

− dvL
dFy

λy(λy + dvL
dFy

)
(241)

dvL
dFd

=
(1− λy)[mLα+ (1−mL)(1−H)]

1− (1− λy)αH(1−mL)
(242)

dvL
dFy

=
−(1− λy)[λymLαH + h((1−mL)(1− α)Fd + c

∑L−1
l=0 λdml(L− l))]

1− (1− λy)αH(1−mL)
(243)

λy
dvL
dFd

+
dvL
dFy

=
(1− λy)

1− (1− λy)αH(1−mL)

[
λymLα(1−H) + λy(1−mL)(1−H) (244)

− λy(1− α)(1−mL)(1−H)
]
> 0 (245)

The last equation is using the first order condition of Fd.

So dW
dFd

> 0 at the decentralised equilibrium point. Next, we want to evaluate the sign of dFd
dL . From

the second order condition of L, we know

∂FOCL,prv
∂L

≤ 0 (246)

57



Furthermore,

∂FOCL,prv
∂Fd

= −m′(1−H)(1− α) + h

(
dFy
dFd

)socl
[m′(1− α)Fd − c(1−m)] (247)

= m′(1− α)
[
Fd

h

H

(
dFy
dFd

)socl
− (1−H)

]
(248)

Using FOCFd,prv(Fd) = 0 and plug in the expression of
(
dFy
dFd

)socl
to get

Fdh

(
dFy
dFd

)socl
− (1−H)H (249)

=

Fdh
λy

[1− (1− λy)αH(1−mL)− (1− λy)[mLα+ (1−mL)(1−H)]]

λy − λy(1− λy)αH − (1− λy)λy(1− α)(1−mL)(1−H))
− (1−H)H (250)

From the first order condition of Fd, h ≥ (1−α)(1−H)λy
Fd

,

Fdh

(
dFy
dFd

)socl
− (1−H)H (251)

=
(1−H)

λy − λy(1− λy)αH − (1− λy)λy(1− α)(1−mL)(1−H))
(252)

×
[
(1− α)(1− (1− λy)αH − (1− λy)(α(1−H) + (1− α)(1−H)(1−mL))) (253)

−Hλy[1− (1− λy)αH − (1− λy)(1− α)(1−H)(1−mL)]
]

(254)

When 1− α ≥ λy, we have

(1− α)[1− (1− λy)αH − (1− λy)(α(1−H) + (1− α)(1−H)(1−mL))] (255)

≥λy[1− (1− λy)αH − (1− λy)(α(1−H) + (1− α)(1−H)(1−mL))] (256)

≥Hλy[1− (1− λy)αH − (1− λy)(1− α)(1−H)(1−mL)] (257)

Hence

∂FOCL,prv
∂Fd

≤ 0 (258)

By implicit function theorem,

dFd
dL
≤ 0 (259)

Hence

dW

dFd︸︷︷︸
≥0

dFd
dL︸︷︷︸
≤0

+
dW

dFy

dFy
dL︸︷︷︸
=0

+
dW

dL︸︷︷︸
=0

≤ 0 (260)

So the social planner can increase total welfare by limiting the credit chain length.

How will the fragility change? We define fragility as (1−ml)H, which is the probability of bankruptcy

in any period.

d(1−m)H

dL
= −m′H + (1−m)h

(
dFy
dFd

)socl
dFd
dL

(261)
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To determine dFd
dL ,

dFd
dL

=−
∂FOCλd,prv

∂L
∂FOCλd,prv

∂Fd

(262)

=−
m′(1− α)

[
Fd

h
H

(
dFy
dFd

)socl
− (1−H)

]
−h
(
dFy
dFd

)prv
(1−m)− (1−α)(1−m)(1−H)(

dFy
dFd

)prv ∂2Fy
∂F 2

d

(263)

∂2Fy
∂F 2

d

=(1− λy)(1−m)h

[(
dFy
dFd

)prv]2

(264)

dFd
dL

=

m′(1− α)

[
Fd

h
H

(
dFy
dFd

)socl
− (1−H)

]
h
(
dFy
dFd

)prv
(1−m) + (1− α)(1−m)2(1−H)(1− λy)h

(
dFy
dFd

)prv (265)

Hence

d(1−m)H

dL
= −m′H +

m′(1− α)(1− (1− λy)(mα+ (1−m)(1−H)))

[
Fd

h
H

(
dFy
dFd

)socl
− (1−H)

]
1 + (1− α)(1−m)(1−H)(1− λy)

(266)

Fdh

(
dFy
dFd

)socl
≤ (1−H)(1− (1− λy)(mα+ (1−m)(1−H))) (267)

d(1−m)H

dL
≥ −m′

[
H −

(1− α)[1− (1− λy)(mα+ (1−m)(1−H))]
[

(1−H)(1−(1−λy)(mα+(1−m)(1−H)))
H − (1−H)

]
1 + (1− α)(1−m)(1−H)(1− λy)

]
(268)

This could be positive or negative. We can work out conditions under which restricting L would result in

lower vulnerability.

59


	Introduction
	An Example: Model Mechanism and Intuition
	Set-up
	A Numeric Example
	Intuition

	The Model
	The Setting
	Value Functions and Bellman Equation
	Fund managers
	Entrepreneur
	Households

	Equilibrium Definition

	Equilibrium Credit Chain
	Optimal Contract
	Credit Chain Length
	Liquidation Value
	Special Case: c = 0
	Comparative Statics

	Welfare Analysis
	Model Modification
	Optimality Condition of Fd
	Special Case c=0 Revisited
	General Case of c>0

	Conclusion
	Equilibrium in the Example
	Direct Financing Using Two-Period Contract
	Direct Financing Using One-Period Contract
	Financing via Intermediary Funds

	Proof for Proposition 1
	Solving for Value Functions
	Existence and Uniqueness of Fy

	Proof for Proposition 2
	Proof for Proposition 3
	Proof for Corollary 1
	Proof for Proposition 4
	Comparative statics with respect to c
	Comparative statics with respect to y

	Proof for Proposition 6
	Equilibrium
	Special Case c = 0 and [0, 1]
	Special Case with c > 0 and = 1




