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1 Introduction

A central feature of growth is that new ideas improve production technologies. At

the same time, as Romer (1990) emphasized, ideas are inherently non-rivalrous.

In principle, sharing ideas should lead to similarity in production methods and

productivity. However, not all people, firms, and countries are equally able to

adopt new ideas in their original form, or to adopt them at all. Barriers to adoption

can be large (Parente and Prescott, 1994), making ideas excludable, and hence,

creating dissimilarity in production methods and productivity. The dynamics of

innovation and knowledge diffusion can then shape similarities and differences

in technology across countries. However, it has been challenging to disentangle

directly from the data the dynamics of knowledge, as well as the effects coming

from innovating new ideas versus adopting existing ideas that were created somewhere

else.1

In this paper, we formalize the idea that the footprints of knowledge dynamics

are reflected in the dynamics of expenditure patterns, and more specifically, in

the substitution patterns of trade shares between countries. From a Ricardian

perspective, these observable outcomes are the consequence of the distribution of

productivity across countries and goods at any point in time. Since heterogeneity

in productivity determines patterns of comparative advantage and specialization

across countries, trade flows should reflect the creation and spread of ideas that

give rise to the different technologies used in the production of goods. In particular,

countries with more similar technologies should specialize in the same or very

similar goods and hence, they should have very elastic substitution patterns with

each other.

We connect a Ricardian model of trade featuring a max-stable multivariate Fréchet

distribution of productivity over space to a model of global innovation and knowledge

diffusion. The creation and spread of ideas across countries over time changes the

world-wide productivity distribution, and hence the observed patterns of trade,

captured by the expenditure substitution elasticities.

The model starts by clearly separating innovation from diffusion. Ideas of different

quality are discovered over time by individual countries according to a Poisson

1For efforts to measure technology adoption and knowledge diffusion directly see Comin and
Hobijn (2004), Comin and Hobijn (2010), and Bloom, Hassan, Kalyani, Lerner, and Tahoun (Bloom
et al.). Also see Comin and Mestieri (2014) for a review.
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process — innovation is exogenous. Conditional on an innovation’s discovery

location and time, other countries learn about the idea through time. While any

location can use an idea, leading to non-rivalry, locations may differ in the ability

to apply the idea, leading to partial excludability. Over time, the applications

of each idea across locations may change over time, which, together with the

creation of new ideas, determines the dynamics of knowledge. The concept of the

applicability of an idea in a particular location is key for distinguishing innovation

from diffusion and for obtaining productivity distributed as a multivariate max-

stable Fréchet with an arbitrary correlation over space. We establish this last result

by applying the spectral representation theorem for max-stable processes (De Haan,

1984; Penrose, 1992; Stoev and Taqqu, 2005; Kabluchko, 2009; Wang and Stoev,

2010), which generates max-stable processes from Poisson processes.2

A max-stable Fréchet distribution of productivity allows for heterogenous patterns

of correlation in productivity across production locations, and delivers closed-

form solutions for expenditure shares. In particular, this distribution spans the

entire class of Generalized Extreme Value (GEV) import demand system (McFadden,

1978). This class features rich substitution elasticities, departs from Independence

of Irrelevant Alternatives (IIA), approximates any demand system satisfying gross

substitutes (Fosgerau et al., 2013), and encompasses the large body of quantitative

trade models inspired by Eaton and Kortum (2002) (see Lind and Ramondo, 2021,

for details).

Loosely speaking, the lack of correlation in productivity across locations reflects

knowledge acquired mainly through innovation, while high correlation in productivity

reflects knowledge acquired mainly through diffusion. In turn, high correlation

leads to high substitutability in expenditure, while low correlation in productivity

leads to low elasticities of substitution. In the extreme, if ideas are never shared

between countries, there can be no similarity in technology, productivity is independent

across countries, expenditure has a Constant Elasticity of Substitution (CES), and

IIA holds, as it is the case in Eaton and Kortum (2001).

Additionally, a key feature of Ricardian trade models is head-to-head competition:

Producers of the same good compete for a market, with the lowest-cost source

supplying the market. Because in our model diffusion occurs in a particular idea

to produce a given good or variety, it is diffusion that tightens up head-to-head

2The spectral representation theorem for max-stable processes has previously been used by
Dagsvik (1994) in the context of decision theory.
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competition across suppliers in different countries, and hence, increases their substitutability

in demand.

Overall, the link that we establish between GEV import demand and the underlying

innovation and diffusion processes of ideas provides a framework to infer knowledge

dynamics from estimates of trade elasticities over time.

Related literature. This paper builds on the literature that generates Fréchet productivity

from Poisson processes. The basic idea was introduced in Kortum (1997) and used

in the context of a trade model by Eaton and Kortum (2001). If the production

technology is determined by the best “idea”, or blueprint, and if ideas become

available according to a Poisson process, then after a sufficiently long period of

time productivity can be approximated by an extreme value distribution. We

depart from this approach by leveraging tools from the spectral representation of

max-stable processes rather than from the extreme value theory. In this way, we are

able to: (1) generalize from the case of independent Fréchet to the case of Fréchet

with arbitrary dependence, while preserving the max-stability property key to the

tractability of models of head-to-head competition; and (2) provide exact rather

than asymptotic results.

The literature that followed Kortum (1997) and Eaton and Kortum (2001), such as

Buera and Oberfield (2020), has been restricted to the case of independent Fréchet.

As a consequence, the resulting models struggle to capture how the offsetting

forces of innovation and diffusion shape correlation in productivity. Moreover,

in those models, diffusion is modeled as sampling ideas across, rather than within,

goods, so that sharing ideas does not increase head-to-head competition across

suppliers.3 A key feature of our model is that, because ideas are specific to goods,

diffusion occurs within a good across locations. In this way, this knowledge flow

increases head-to-head competition among suppliers, leading to more elastic expenditure

elasticities.

Our treatment of diffusion is closer to the model of international diffusion in Eaton

and Kortum (1999). In their model, as in ours, ideas are specific to goods, have

a common quality component across countries, and diffuse with a lag to other

locations. Their model, however, does not include trade flows, and it is restricted to

an independent Fréchet technological frontier. In contrast, we expand the model to

3This is also the case in Cai et al. (2020). The main difference is that their model of innovation
and diffusion incorporates trade in many sectors. Additionally, while in Buera and Oberfield (2020),
international trade is a vehicle for diffusion, in Cai et al. (2020), as in our model, it is not.
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include Ricardian trade and use tools from the literature on max-stable processes to

obtain a Fréchet technological frontier with arbitrary correlation across locations.

By doing so, we are able to link the underlying knowledge dynamics to the properties

of observed trade shares.

Papers such as Perla et al. (2021) and Sampson (2016b) introduce models where

(endogenous) innovation, diffusion, and trade interact to generate growth.4 While

our model is not as rich as theirs in terms of the micro foundations for innovation

and diffusion, we depart from their modeling approach and use tools from the

literature on max-stable process together with Ricardian trade as in Eaton and

Kortum (2002). This allows us to generate import demand systems that are not

restricted to CES. We do follow previous work by the same authors (Perla and

Tonetti, 2014; Sampson, 2016a) and model diffusion as a process in which not only

the ideas currently used in production are evaluated for adoption, but any idea is.

Finally, our approach to model global innovation and diffusion has similar consequences

for productivity to the ones in the model by Benhabib et al. (2021) where "[i]nnovation

stretches the distribution [of productivity], while adoption compresses it." We go a

step further and, in the context of an open economy, we link those distributions to

Ricardian trade, using tools suitable to obtain closed-form solutions in models of

head-to-head competition.

2 Set Up

Time is continuous and indexed by t ∈ R. The world economy has a finite number

of locations, ` ∈ L ≡ {1, . . . , L}. Each location, e.g. a country, represents a

labor market with wage given by W`(t) that is populated by a measure N`(t) of

individuals. These individuals are immobile across locations, inelastically supply

their labor, consume a continuum of tradable goods, v ∈ [0, 1], and have CES

preferences with elasticity of substitution η > 0.

Production of each good v in location ` is done with an only-labor constant-return-

to-scale technology,

Y`(t, v) = Z`(t, v)L`(t, v),

where Z`(t, v) is good-location-time specific productivity. We focus on the case of
4Using a multi-sector model. the focus of Sampson (2016b) is, similarly to Cai et al. (2020)’s, on

how innovation and diffusion affect comparative advantage across countries.
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frictionless trade so that there is a common market for goods. This simplifies the

notation to only one location subscript without changing any of our results.

We follow Eaton and Kortum (2002) (EK) and model productivity as a random

draw across varieties and locations. Over time, productivity is a stochastic process,

{Z`(t, v)}(`,t)∈{1,...,L}×R.

We proceed as follows. First, we develop a model of innovation and diffusion

where productivity is the result of locations creating and adopting ideas, and where

innovation tends to reduce technological similarity, while diffusion tends to increase

it. Next, we show that this structure, combined with a Poisson assumption on

innovation and an independence assumption on diffusion, is necessary and sufficient

to characterize a distribution of productivity that exhibits correlation over space

and the property of max stability.5 This property is key to ensure closed-form

expressions for aggregate expenditure and prices in models of head-to-head competition.

The model encompasses the special case of independent productivity across production

locations, as in EK, but allows for richer patterns of technological similarity across

countries, as in Lind and Ramondo (2021).

2.1 Ideas and productivity

For each good, there exists an infinite, but countable, set of ideas: i = 1, 2, . . . .

Each idea represents a physical production technique (e.g., a blueprint) for a good

and may be applied in different locations. The productivity of each idea has two

components. First, the quality of the idea, Qi(v), represents the overall efficiency

of the idea and is common to all locations. Second, the idea’s productivity has a

location and time specific component,Ai`(t, v), which we refer to as the applicability

of the idea in location ` at time t. This term captures the costs of technology

adoption, which may differ across both locations and time, creating differences

in the productivity of the idea (see Parente and Prescott, 1994). Applicability of

an idea is the key concept in our model. It will allow us to cleanly distinguish

between innovation and diffusion, introduce time-varying technological similarity

(or lackof) across locations, and time-varying correlation (or lack of) in productivity

over space.

5Productivity is a max stable process with Fréchet marginal distributions if for any integer J and
υj ≥ 0, `j ∈ {1, . . . , L} and tj ∈ R for j = 1, . . . , J the distribution of maxj=1,...,J υjZ`j (tj , v) is
Fréchet. See Stoev and Taqqu (2005).
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Together, quality and applicability combine to shape the productivity of idea i

at location ` at time t: Qi(v)Ai`(t, v). The first term generates heterogeneity in

productivity across ideas, while the second term generates, for each idea, heterogeneity

in productivity across locations.

Ideas can be used anywhere, which makes them non-rival. They are, however,

partially excludable due to differences in applicability across locations: some ideas

are more productive in some locations than in others. For example, a location is

completely excluded from using an idea if its applicability at a point in time is zero.

Among locations with knowledge of an idea—i.e. with positive applicability—

technological similarity arises from similarity in applicability.

Finally, we assume that productivity for good v in location ` at time t is the result of

choosing the best idea available to them. The following assumption summarizes

the overall structure for productivity.

Assumption 1 (Technology Adoption). For each v ∈ [0, 1], there exists an infinite,

but countable, set of ideas, i = 1, 2, . . . , with quality, Qi(v) > 0, and applicabilities,

Ai`(t, v) ≥ 0 for each ` = 1, . . . , L and t ∈ R, such that

Z`(t, v) = max
i=1,2,...

Qi(v)Ai`(t, v). (1)

If a new idea i to produce a good v becomes available to a location `, this idea

gets adopted only if its overall efficiency is higher than the efficiency of an already

available idea. The overall efficiency of an idea can be high because its quality

Qi(v) is high, or because its applicability Ai`(t, v) in that location ` at time t is high.

However, if that location does not have a very good application of a high-quality

idea, some other location could easily overtake it via diffusion —i.e. by drawing a

better application of the idea.

Changes in productivity over time reflect changes in the applicability of ideas,

either due to the innovation of new ideas, or the diffusion of existing ideas, as

described next.

2.2 Innovation and diffusion

The applicability of an idea at a location can change over time due to innovation

and diffusion. In particular, an idea can be unknown to a location either because
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the idea has not been innovated yet—and its applicability is zero in all locations—

or because the location has not learned about it from another location.6 While

innovation makes an idea available for the very first time somewhere—when applicability

in some location goes from zero to some positive number, diffusion either makes

the idea available to new locations, or changes the way an idea is applied in locations

with prior knowledge of the idea.

Formally, the time when an idea first arrives in location ` is ti`(v) ≡ inf{t ∈ R |
Ai`(t, v) > 0}, while the time when an idea is innovated—its discovery time—is the

first time when the idea becomes available to some location, t∗i (v) ≡ min` ti`(v).

We next put stochastic structure on innovation.

Assumption 2 (Poisson Innovation). The innovation history, {Qi(v), t∗i (v)}i=1,2,...,

consists of the points of a Poisson process. Ideas with quality q at time t get innovated

with intensity θq−θ−1dqdΛ(t) for some θ > 0 and measure Λ.

Assumption 2 implies that the expected number of ideas discovered up to time t

with quality above q is q−θΛ(t). The variable Λ(t) is the expected number of ideas

with quality of at least 1 that have been discovered up to time t. Among ideas with

quality of at least q, quality is independently and identically distributed Pareto

with shape θ and lower bound q. A lower θ means a fatter tail so that innovation

can create very good ideas. Furthermore, each idea’s quality is independent of its

discovery time.

An intuitive way of thinking about the distribution of ideas’ quality is that qualities

are drawn at the beginning of time and and locations are just randomly discovering

them. Assumption 2 means that there are many more low-quality ideas than high-

quality ideas to be discovered, so that most likely a location will discover a low-

quality idea. However, occasionally, they get a really good idea. Our structure

departs from the previous literature (Kortum, 1997) in that locations do not draw

ideas’ quality (distributed Pareto), conditional on the idea’s (Poisson) arrival. Rather,

ideas of different qualities arrive at different rates as indicated by Assumption

2. What do we gain with this structure? Rather than using the extreme value

theorem, which leads asymptotically to an independent Fréchet distribution for

productivity, our structure for technology leads to exact results and to a max-stable

6While the infinite set of ideas for good v, i = 1, 2, . . . , represents all the physical production
techniques that will ever exists for a good, before an idea is innovated, applicability is zero
everywhere and all locations are excluded from using the idea.
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multivariate Fréchet distribution for productivity with arbitrary correlation. As

we show in Section 3, the Pareto tail of quality determines the shape of the Fréchet

distribution for productivity; if this assumption did not hold, productivity would

no longer be distributed Fréchet.

To distinguish between innovation and diffusion we group ideas according to their

discovery time, and keep track of the distribution of applicability among those

ideas. In this way, while innovation refers to the very first time applicability

turns positive, diffusion refers to any change to the applicability of an idea across

production locations after its discovery. We only require one restriction on the

diffusion process to ensure max-stable productivity.

Assumption 3 (Independent Diffusion). Applicability is a measurable stochastic process,

which is independent of quality and independent and identically distributed across ideas

conditional on discovery time with
∫ t
−∞ E[Ai`(t, v)θ | t∗i (v) = t∗]dΛ(t∗) <∞ for all t ∈ R.

Assumption 3 means that improvements in applicability are just as likely to occur

for low quality as for high quality ideas—locations cannot select only the highest

quality ideas to learn about. One consequence of Assumption 3 is that we only

need to condition the distribution of applicability on the discovery time of an idea

in order to keep track of how the idea diffuses. Formally, the state variable for the

world economy at time t is given by the measure of ideas with quality of at least 1

and applicability below some vector (a1, . . . , aL),

M(a1, . . . , aL; t) ≡
∫ t

−∞
P[Ai`(t, v) ≤ a` ∀` | t∗i (v) = t∗]dΛ(t∗). (2)

Besides Assumption 3, we require no further restrictions on the dynamics of diffusion

to ensure max-stability. However, to clearly separate the effects of innovation from

the effects of diffusion and to ensure that M evolves continuously over time we

impose a further restriction. We assume that each idea is innovated in a unique

discovery location, `∗i (v),7 and at a unique time. This assumption implies that ideas

arrive to locations other than the discovery location with a lag. As a consequence,

no idea is initially shared and all shared knowledge arises from diffusion. The

unique discovery time implies that discovery times are continuously distributed,

and we denote the rate at which ideas with quality above one are discovered in `∗

7Formally, for each idea, there exists a location, `∗i (v), such that for ` = `∗i (v), t∗i (v) = ti`(v) and
∀` 6= `∗i (v), t∗i (v) < ti`(v).
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by λ`∗(t) ≡ P[`∗i (v) = `∗ | t∗i (v) = t∗]∂Λ(t)/∂t.8

Together these uniqueness assumptions imply that M in (2) becomes additively

separable,

M(a1, . . . , aL; t) =
L∑

`∗=1

∫ t

−∞
F (a1, . . . , aL | t∗, `∗; t)λ`∗(t∗)dt∗, (3)

where F (a1, . . . , aL | t∗, `∗; t) ≡ P[Ai`(t, v) ≤ a` ∀` | t∗i (v) = t∗, `∗i (v) = `∗] denotes

the conditional distribution of applicability across all locations. The dynamics ofM

can then be decomposed into an innovation effect and a diffusion effect as follows:

∂

∂t
M(a1, . . . , aL; t) =

L∑
`∗=1

F ∗(a`∗ | `∗, t; t)λ`∗(t)︸ ︷︷ ︸
Innovation Effect

+
L∑

`∗=1

∫ t

−∞

∂

∂t
F (a1, . . . , aL | `∗, t∗; t)λ`∗(t∗)dt∗︸ ︷︷ ︸

Diffusion Effect

,

(4)

where F ∗(a`∗ | `∗, t; t) ≡ P[Ai`∗(t, v) ≤ a`∗ | `∗i (v) = `∗, t∗i (v) = t] denotes the

conditional distribution of applicability in the discovery location. The first term in

(4) captures how the innovation of new ideas at time t impacts the evolution of M .

Applicability is concentrated in the discovery location, and the joint distribution of

applicability among new ideas is simply the marginal distribution in the discovery

location. Hence, the overall effect of innovation is additively separable across

locations because ideas arrive as a Poisson process (Assumption 2) and have a

unique discovery location. In contrast, the second term captures the diffusion of

ideas that were innovated in the past: though separable across discovery locations

(indexed by `∗), this term is not separable across production locations (indexed by

`). Conditional on the discovery time and location of an idea, the effect of diffusion

is captured by the evolution of the joint distribution of applicability.

So far, our model delivers a simple expression for the global evolution of knowledge,

with a clear distinction between the contribution of innovation versus diffusion.

Diffusion allows ideas, which are not shared initially, to be shared across production

locations, while innovation reduces the prevalence of shared ideas. Although

our model is parsimonious, it captures the non-rival trait of ideas —they can be

shared across locations— while also allowing for excludability —some locations

have limited access to ideas. In turn, the dynamics of innovation and diffusion

8Endogenous innovation would entail to endogeneize λ`∗—e.g., proportional to the number of
researchers in a country.
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give rise to a max-stable Fréchet distribution of productivity over time and space,

as we show next.

3 Productivity as Max-Stable Fréchet

We now provide a closed-form characterization for the distribution of productivity

across locations and its evolution over time, given the dynamics of innovation

and diffusion. The key result is that the proposed structure for innovation and

diffusion generates productivity that is distributed max-stable multivariate Fréchet

across locations. In turn, this distribution leads to closed-form results for expenditure

shares.

Proposition 1 (Max-stable Fréchet Productivity). Productivity is a measurable max-

stable process with Fréchet marginal distributions if and only if Assumptions 1, 2, and 3

hold. In this case, the joint distribution of productivity across locations at time t is max-

stable multivariate Fréchet,

P [Z1(t, v) ≤ z1, . . . , ZL(t, v) ≤ zL] = exp
[
−G(T1(t)z

−θ
1 , . . . , TL(t)z−θL ; t)

]
. (5)

The shape parameter is θ > 0, the scale parameter for each location is

T`(t) ≡
∫
aθ`dM(a1, . . . , aL; t), (6)

and the correlation function is

G(x1, . . . , xL; t) ≡
∫

max
`

aθ`
T`(t)

x`dM(a1, . . . , aL; t). (7)

Proof. See Appendix A.

The marginal distribution of productivity in each country is Fréchet and characterized

by the scale parameter T`(t) and shape parameter θ. The shape parameter regulates

the heterogeneity of productivity over the continuum of goods, and it is the same

Pareto-tail parameter that regulates the heterogeneity of the quality of ideas. When

quality is more fat-tailed (lower θ), there is more dispersion in productivity across

goods within each production location. The location’s scale parameter T`(t) captures

average applicability of ideas in location ` at time t.
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Turning to the joint distribution of productivity, the correlation functionG captures

the dependence structure of productivity across locations and, therefore, patterns

of technological similarity. Indeed, this function directly reflects the state of knowledge,

M . The correlation has two key properties. First, it is homogenous of degree

one, ensuring that the joint distribution of productivity is max-stable—i.e. the

distribution of the maximum of productivity across any subset of production locations

is also Fréchet with shape θ. Second, the function G has mixed partial derivatives

that exist (almost everywhere) and are continuous up to order K, with the k’th

partial derivative of G with respect to k distinct arguments non-negative if k is

odd and non-positive if k is even. This “sign-switching” property allows us to

sign substitution elasticities, which, as we show in Section 4, reflect the curvature

(or lackof) of this function.9

From (5), it is easy to see that the case of an additive correlation function corresponds

to independent productivity across locations. Correlation in productivity arises

when G has curvature. Previous models of innovation and diffusion that generate

a max-stable Fréchet productivity distribution exclusively focus on the case of

independent productivity (e.g. Kortum, 1997; Eaton and Kortum, 1999, 2001; Buera

and Oberfield, 2020).

We next turn to concrete examples to illustrate the interactions between innovation

and diffusion to generate correlation (or lackof) in productivity.

3.1 Examples

Suppose that ideas are never shared across locations after being innovated—ideas

stay in their discovery location. In this case, the idea’s applicability is degenerate

at zero in all locations except for the discovery location at all times. Hence, the

measure of ideas becomes

M(a1, . . . , aL; t) =
L∑

`∗=1

∫ t

−∞
F ∗(a` | `∗, t∗; t)λ`∗(t∗)dt∗. (8)

Using Proposition 1, we get the productivity distribution,

P [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] = exp

[
−

L∑
`=1

T`(t)z
−θ
`

]
, (9)

9The function G is also unbounded: G(x1, . . . , xK)→∞ as xk →∞ for any k = 1, . . . ,K.
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with scales given by average applicability among the stock of ideas previously

discovered in the location, and an additive correlation function.10

The lack of shared ideas across locations, together with the Poisson assumption

on the arrival of ideas, leads to independent productivity across locations. This

is precisely what leads to independence of productivity in Eaton and Kortum

(2001) — an innovation-only model based on Poisson arrival of ideas and where

ideas never leave their discovery location. It is also the reason for independence

of productivity in models of diffusion such as Buera and Oberfield (2020). In

that model, locations sample productivities in other locations and update their

productivity depending on the realization of a proportional adjustment, which

is drawn from a Pareto distribution. In terms of our model, diffusion in Buera

and Oberfield (2020) generates an applicability level that is related to the sampled

productivity level, but it also generates a new quality level and therefore it is

effectively a completely new idea specific to the new location. Effectively, diffusion

generates new ideas that are never shared and this leads to independent productivity

over space.

The case presented above establishes that a necessary condition for correlation

in productivity is the sharing of ideas across locations. To make this concrete,

consider the case of ideas that are instantly shared across all location once they

diffuse. Further, assume that once an idea is known in a production location, its

applicability is distributed as a unit Fréchet, independent across locations, and

with shape σ > θ. The measure of ideas at time t is given by a combination of

non-shared and shared ideas,

M(a1, . . . , aL; t) =
L∑
`=1

[
e−a

−σ
` (1− δ`(t)) + e−

∑L
`′=1 a

−σ
`′ δ`(t)

]
Λ`(t), (10)

10Derivation of (9):

− lnP [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] =

∫
max
`
aθ`z
−θ
` d

L∑
`=1

∫ t

−∞
P[Ai`(t, v) ≤ a` | `∗i (v) = `, t∗i (v) = s]λ`(s)ds

=

L∑
`=1

∫ t

−∞

∫
aθ`z
−θ
` dP[Ai`(t, v) ≤ a` | `∗i (v) = `, t∗i (v) = s]λ`(s)ds =

L∑
`=1

T`(t)z
−θ
` .

12



where Λ`(t) ≡
∫ t
−∞ λ`(s)ds and

δ`(t) ≡
∫ t

−∞
P[∃`′ 6= ` s.t. Ai`′(t, v) > 0 | `∗i (v) = `, t∗i (v) = s]

λ`(s)

Λ`(t)
ds

is the fraction of ideas innovated in ` that have diffused to the rest of the world. In

this case, the productivity distribution is

P[Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] = exp

−Γ(ρ)
L∑
`=1

(1− δ`(t))z−θ` + δ`(t)

(
L∑

`′=1

z
− θ

1−ρ
`′

)1−ρ
Λ`(t)

 ,

(11)

where ρ ≡ 1−θ/σ.11 This case is a "convex" combination of the case of independence

and symmetric correlation. Productivity may be correlated across production locations

and the extent of correlation depends on the fraction of ideas innovated by each

country that have diffused to the rest of the world. In one extreme, if there is

no diffusion, then δ`(t) = 0 for all discovery locations and this case reduces to

(9) where ideas are never shared from the discovery location and productivity

is independent Fréchet. On the other extreme, if all ideas diffuse immediately

after being innovated, then δ`(t) → 1 for all locations and we get a multivariate θ-

Fréchet distribution with correlation parameterized by ρ ∈ [0, 1).12 The amount of

correlation in productivity reflects the heterogeneity in the applicability of an idea

across locations, captured by σ. As σ → θ, applicability is as fat-tailed as the quality

component of an idea, ρ → 0, and productivity is independent across locations,

despite the existence of diffusion. In contrast, as σ → ∞, there is no dispersion

in applicability across locations, and ρ → 1. In this case, productivity is perfectly

correlated across locations and diffusion equalizes productivity everywhere.

11Derivation of (11):

G(T1(t)x1, . . . , TL(t)xL; t) =

∫
max
`
aθ`x`dM(a1, . . . , aL)

=

L∑
`=1

∫
aθ`x`de

−a−σ` (1− δ`(t))Λ`(t) +

∫
max
`
aθ`x`d

L∏
`′=1

e−a
−σ
`′

L∑
`=1

δ`(t)Λ`(t)

=

L∑
`=1

Γ(1− θ/σ)(1− δ`(t))Λ`(t)x` + Γ(1− θ/σ)

(∑
`

x
σ/θ
`

)θ/σ L∑
`=1

δ`(t)Λ`(t).

12The case of instantaneous diffusion coincides with the case of multinational production in
Ramondo and Rodríguez-Clare (2013): Technologies from ` are correlated across production
locations `

′
, with correlation given by ρ, while technologies are independent across source countries

`. Our model of innovation and diffusion lays out the knowledge primitives behind the Fréchet
multinational production model.
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This example illustrates that not only the extent of diffusion determines the degree

of correlation in productivity, but also that different applications of the same idea

across production locations need to be relatively similar for correlation to arise.

That is, differences in applicability across production locations must be small relative

to differences in quality across ideas. If applicability were as dispersed as idea

quality, specific applications of an idea are virtually new ideas because they generate

productivity differences that are just as large. Technological similarity only arises

when differences in productivity due to idea quality are large relative to heterogeneity

in productivity due to location-specific applications of ideas.

Summing up, departures from independent productivity require not only shared

ideas, but also relatively similar applicability of those ideas across locations. Put

differently, differences in productivity across locations using the same idea cannot

be too large.

As a final example, consider the case of exponential diffusion as in Eaton and

Kortum (1999). Suppose that for an idea innovated in ` at time t, the probability

of diffusion to `′ by time t′ is 1 − e−ε``′ (t
′−t) and is independent across locations.

Hence, the fraction of ideas innovated in ` that have diffused to the locations in

any set L ⊂ {1, . . . , L} but not yet diffused to any other locations is

δ`(L, t) ≡
∫ t

−∞

{∏
`′∈L

[
1− e−ε``′ (t−t∗)

] ∏
`′ /∈L

e−ε``′ (t−t
∗)

}
λ`(t

∗)

Λ`(t)
dt∗

where ε`` =∞. As in the previous example, assume that once an idea is known in

a location its applicability is distributed Fréchet with shape σ > θ and independent

across locations. The measure of ideas at time t is

M(a1, . . . , aL; t) =
L∑
`=1

∑
L⊂{1,...,L}

e−
∑
`′∈L a

−σ
`′ δ`(L, t)Λ`(t),

reflecting the fact that each discovery location `may have ideas that already diffused

to some locations but not others. Using again Proposition 1, the distribution of

productivity is

P[Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] = exp

−Γ(ρ)
L∑
`=1

∑
L⊂{1,...,L}

(∑
`′∈L

z
− θ

1−ρ
`

)1−ρ

δ`(L, t)Λ`(t)

 ,
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where ρ ≡ 1− θ/σ. Again, if ρ = 0, productivity is independent across locations.

As our examples demonstrate, Proposition 1 enables us to characterize the consequences

of diffusion for technological similarity by providing a closed-form solution for

the joint distribution of productivity in terms of the underlying measure of ideas.

Correlation in productivity reflects the joint distribution of applicability across

production locations, a result of the dynamics of innovation and diffusion. In turn,

correlation in productivity determines the patterns of Ricardian trade: Locations

with very similar technology face strong head-to-head competition with each other.

These are very substitutable locations from the perspective of the importer. Additionally,

only diffusion gets reflected in changes in substitution patterns across patterns

over time, as we show in the next section.

4 Expenditure and Substitution Elasticities

We now proceed to characterize how innovation and diffusion shape trade flows

and their substitution patterns through the evolution of correlation in productivity

across space. Our results connect models of knowledge diffusion to the large

empirical literature estimating trade elasticities. The main takeaway is that departures

from CES expenditure imply that ideas are shared across space.

We present results for the case of no trade costs to simplify the analysis. The

extension to an economy with trade frictions is straightforward and does not change

the main intuition of the results.13

We assume that good markets are perfectly competitive. Given wages W`(t), head-

to-head competition means that the lowest-cost location serves the destination

market for good v at time t,

P (t, v) = min
`

W`(t)

Z`(t, v)
.

Thanks to max-stability (see Lind and Ramondo, 2021), and further assuming that

13With an iceberg-type trade cost to ship goods from production location ` to final destination
n, τ`n(t) > 1, the price index would have the subscript n, Pn(t) and trade shares would have
bilateral subscript, π`n(t). In turn, the elasticities will reflect the substitution patterns between
source countries ` and `′ to serve a particular final destination n, ε`,`′,n(t).
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θ > η − 1, the share of expenditure allocated to production location ` is

π`(t) ≡
X`(t)

X(t)
=
T`(t)W`(t)

−θG`(T1(t)W1(t)
−θ, . . . , TL(t)WL(t)−θ; t)

G(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)
(12)

where G`(x1, . . . , xL; t) ≡ ∂G(x1,...,xL;t)
∂x`

, and the price index is

P (t) = γG(T1(t)W1(t)
−θ, . . . , TL(t)WL(t)−θ; t)−

1
θ

where γ ≡ Γ
(
θ+1−η
θ

) 1
1−η .

The import demand system in (12) has the same functional form as choice probabilities

in generalized extreme value (GEV) discrete choice models (McFadden, 1978, 1981).

Accordingly, we refer to it as a GEV import demand system. The shape of the

import demand system comes entirely from the correlation function. For example,

the case of independent productivity with an additive correlation function reduces

the expression in (12) to the case of a CES import demand (Eaton and Kortum, 2002;

Arkolakis et al., 2012), π`(t) = T`W`(t)
−θ/

∑L
`′=1 T`′W`′(t)

−θ. Here, it is immediate

to see that the case of no diffusion, which leads to an additive correlation function,

implies CES import demand, and hence, very special substitution patterns, as we

show next.

Using (12), we can calculate the expenditure elasticity of goods from ` to changes

in the real wage in `′ as

ε`,`′(t) ≡
∂ ln π`(t)

∂ ln
W`′ (t)
P (t)

= −θ
[
1{` = `′}+

T`′(t)W`′(t)
−θG``′(T1(t)W1(t)

−θ, . . . , TL(t)WL(t)−θ; t)

G`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)

]
,

(13)

whereG``′(x1, . . . , xL; t) ≡ ∂2

∂x`∂x`′
G(x1, . . . , xL; t). BecauseG``′ is negative, the elasticity

of substitution for ` 6= `′ is positive, as expected from a demand system in the

gross-substitute class.

We can clearly see that the curvature of the correlation function, G``′/G`, generates

departures from CES expenditure. When the correlation function is additive —and

productivity is independent — the second term inside the brackets in (13) drops

out. In this case, the own-price elasticity is −θ and the cross-price elasticity is 0,

reflecting Independence of Irrelevant Alternatives (IIA). Any departure from CES

arises from some curvature in the correlation function — that is, from dependence

of productivity across production locations.
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In turn, correlation in productivity arises when production locations share ideas.

How are expenditure elasticities connected to the underlying process of ideas? We

can write expenditure shares and expenditure elasticities in terms of the measure

of ideas at each time t. The substitution patterns in expenditure between location

` and `′ are related to how similar applicability of ideas is in those two locations

— captured by the shape of the function M . Similar applicability translates into

stronger head-to-head competition and higher substitutability.

Proposition 2 (Expenditure shares and substitution elasticities). Under Assumptions 1,

2, and 3, if M is differentiable, then cross-price elasticities of substitution are

ε`,`′(t) =

(
W`(t)

P (t)

)−θ
1

π`(t)

∫ ∞
0

W`′ (t)

W`(t)
aθ+1
` M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`; t

)
da`,

(14)

for `′ 6= `, where M``′(a1, . . . , aL; t) ≡ ∂2

∂a`∂a`′
M(a1, . . . , aL; t), the own-price elasticity is

ε`,`(t) = −θ −
∑

`′ 6=` ε`,`′(t), and expenditure shares can be expressed as

π`(t) =

(
W`(t)

P (t)

)−θ ∫ ∞
0

aθ`M`

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`.

Proof. See Appendix B.

Here, a` represents a level of applicability in `. The corresponding cost that `′

needs to compete is W`′ (t)
W`(t)

a`. The integrals in (14) are over a ray from the origin

representing applicability levels at which each country is competitive with location

`. In turn,M``′ captures the joint density of applicability between ` and `′, conditional

on applicability in all other locations. The cross-price elasticity then reflects the

likelihood that ` and `′ have higher applicability than all other locations and that

they are head to head competitors. Hence, given wages and expenditure, increases

in ε`,`′(t) should reflect an increase in the bilateral sharing of competitive ideas.

A related point refers to the evolution over time of the cross-price elasticity: Its

dynamics is due to diffusion only. The expression in (4) shows that the contribution

of innovation to changes in the measure of ideas M is additively separable across

locations. When ideas are not initially shared, all similarity in applicability between

locations comes from diffusion. Thus, holding fixed wages and trade shares, changes
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in cross-price elasticities over time only reflect the evolution of shared ideas,

∂

∂t
M``′(a1, . . . , aL; t) =

L∑
`∗=1

∫ t

−∞

∂

∂t

∂2

∂a`∂a′`
F (a1, . . . , aL | `∗, t∗; t)λ`∗(t∗)dt∗︸ ︷︷ ︸

Diffusion Effect

.

Again, to make the results concrete, consider the case of ideas that are instantly

shared across all location once they diffuse, and assume that once an idea is known

in a production location, its applicability is distributed as a unit σ-Fréchet, independent

across locations, with σ > θ. The measure of ideas at any point in time is given

by (10) and the productivity distribution is given by (11). The expenditure share

allocated to location ` is

π`(t) = πND
` (t) + πD

` (t). (15)

The first term is the share of expenditure in goods from ` produced with ideas that

are unique to that location at time t— that is, those ideas that have not yet diffused

elsewhere,

πND
` (t) = Γ(ρ)(1− δ`(t))Λ`(t)

W`(t)
−θ

P (t)−θ
.

The second term is the share of expenditure in goods from ` produced with ideas

that have diffused from a different location at time t,

πD
` (t) = Γ(ρ)

W`(t)
− θ

1−ρ∑L
`′=1W`′(t)

− θ
1−ρ

L∑
`∗=1

δ`∗(t)Λ`∗(t)

[
L∑

`′=1

(
W`′(t)

P (t)

)− θ
1−ρ
]1−ρ

,

where ρ ≡ 1− θ/σ. The elasticity of substitution for ` = `′ is

ε`,`(t) = −θπ
ND
` (t)

π`(t)
− θ

1− ρ
πD
` (t)

π`(t)
,

with θ/(1− ρ) = σ. For ` 6= `′, the elasticity is

ε`,`′(t) =
ρθ

1− ρ
πD
` (t)

π`(t)
,

with ρθ/(1 − ρ) = σ − θ. It is straightforward to see in this example that, holding

fixed real wages and trade shares, only diffusion affects the dynamics of the cross

elasticity, captured by the term πD` (t). It is also immediate to see that if this cross
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elasticity is positive, the import demand system is non-CES. Hence, a sufficient

condition for the presence of shared ideas across locations is a non-CES import

demand system.

The extreme cases that we present next are useful for intuition. With δ`(t) = 0,

which means no diffusion, expenditure is CES; only the own elasticity is non-zero

and equal to −θ. With σ → θ, which means that applicability is relatively fat-

tailed, productivity is independent, expenditure is also CES, and diffusion cannot

be distinguish from innovation: Only the scale parameters of the productivity

distribution reflect the process of innovation and diffusion of ideas, and there is

no separate information about innovation and diffusion dynamics. With instant

diffusion, δ`(t) = 1 and σ > θ, only the second term in (15) survives. While the own

elasticity is equal to −σ < 0, the cross elasticity is σ − θ > 0. It is easy to see that

this cross elasticity increases with σ: More similar applicability across locations

increases head-to-head competition, and hence, substitutability. However, in this

extreme case, diffusion does not change the elasticity.

Summing up, the substitution elasticities of trade flows at each point in time and

over time contain information about the global dynamics of knowledge. These

dynamics are both due to the presence of innovation and diffusion of ideas across

countries. It is the cross-substitution elasticity alone, however, that reflects the

presence of shared knowledge across production locations. Hence, these elasticities

are key to separately identify innovation from diffusion of ideas.

5 Conclusion

The trade literature has produced extremely rich estimates of substitution elasticities

for international trade flows (see Broda et al., 2008; Costinot and Rodrìguez-Clare,

2014; Feenstra et al., 2017; Bas et al., 2017; Adao et al., 2017, among others). In

this paper, we show that there is more content to be read from those elasticities

when trade flows are connected to technology primitives. To such end, we present

a parsimonious model of Ricardian trade that links the dynamics of knowledge to

the dynamics of the elasticities of substitution in expenditure. While innovation

makes a country technologically distinct, reducing their substitutability with other

countries, diffusion between countries generates technological similarity and increases

head-to-head competition. In the special case of an innovation-only model where

19



countries do not share ideas, productivities are independent across space, and the

import demand system is CES. As a consequence, non-CES expenditure indicates

the presence of shared ideas across countries. Our theoretical result that establishes

a mapping between max-stable Fréchet productivity distributions and the structure

of innovation and diffusion allows us to directly connect the dynamics of observable

trade flows with the dynamics of innovation and knowledge diffusion.
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A Proof of Proposition 1

Proof. Sufficiency follows from the marking theorem for Poisson processes (see Kingman, 1992).

In particular, under Assumption 2 and Assumption 3 we can take {Qi(v), t∗i (v)}i=1,2,... as a base

Poisson process and take the stochastic process {Ai`(t, v)}`=1,...,L,t∈R as a mark of the i’th point.

Then the collection {Qi(v), t∗i (v), {Ai`(t, v)}`=1,...,L,t∈R}i=1,2,... is itself a Poisson process. In particular,

let J be an integer and fix some `j ∈ {1, . . . , L} and tj ∈ R for each j = 1, . . . , J . Then, by the

marking theorem for Poisson processes,

E
∞∑
i=1

1{Qi(v) > q, t∗i (v) ≤ t, Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J}

=

∫ ∞
q

∫ ∞
−∞

P
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
θq−θ−1dqdΛ(t∗)

= q−θ
∫ ∞
−∞

P
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗).

Then, under Assumption 1, the finite dimensional distributions of productivity satisfy

P
[
Z`j (tj , v) ≤ zj ,∀j = 1, . . . , J

]
= P

[
max
i=1,2,...

Qi(v)Ai`j (tj , v) ≤ z`j ,∀j = 1, . . . , J

]
= P

[
Qi(v)Ai`j (tj , v) ≤ z`j ,∀j = 1, . . . , J, ∀i = 1, 2, . . .

]
= P

[
Qi(v) ≤ min

j=1,...,J

z`j
Ai`j (tj , v)

,∀i = 1, 2, . . .

]
= P

[
Qi(v) > min

j=1,...,J

z`j
Ai`j (tj , v)

, for no i = 1, 2, . . .

]
.
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This last expression is a void probability. Using the previous result for the mean measure,

P
[
Qi(v) > min

j=1,...,J

z`j
Ai`j (tj , v)

, for no i = 1, 2, . . .

]
= exp

[
−
∫ ∞
−∞

∫
RJ+

∫ ∞
minj=1,...,J

zj
aj

θq−θ−1dqdP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗)

]

= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(
aj
zj

)θ
dP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗)

]
.

Now, let υj ≥ 0 for each j = 1, . . . , J . The distribution of maxj=1,...,J υjZ`j (tj , v) is

P
[

max
j=1,...,J

υjZ`j (tj , v) ≤ z
]

P
[
Z`j (tj , v) ≤ z/υj ∀j = 1, . . . , J

]
= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(υjaj
z

)θ
dP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗)

]

= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(υjaj)
θ dP

[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗)z−θ

]
.

Therefore, maxj=1,...,J υjZ`j (tj , v) is distributed Fréchet and productivity is a max-stable process.

Moreover, if we take J = L, `j = j and tj = t for each j = 1, . . . , L, we have

P [Z`(t, v) ≤ z`,∀` = 1, . . . , L]

= exp

[
−
∫ ∞
−∞

∫
RL+

max
`=1,...,L

(
a`
z`

)θ
dP [Ai`(t, v) ≤ a` ∀` = 1, . . . , L | t∗i (v) = t∗] dΛ(t∗)

]

= exp

[
−
∫ t

−∞

∫
RL+

max
`=1,...,L

(
a`
z`

)θ
dP [Ai`(t, v) ≤ a` ∀` = 1, . . . , L | t∗i (v) = t∗] dΛ(t∗)

]

= exp

[
−
∫
RL+

max
`=1,...,L

(
a`
z`

)θ
dM(a1, . . . , aL; t)

]
,

where the second line uses the fact that applicability is zero at any time before an idea’s discovery

time, and the final line uses the definition ofM . Therefore, at any moment in time t, the distribution

of productivity across production locations is multivariate Fréchet with scale of T`(t) ≡
∫
aθ`dM(a1, . . . , aL; t)

and correlation function G(x1, . . . , xL; t) ≡
∫

max`=1,...,N
aθ`
T`(t)

x`dM(a1, . . . , aL; t).

It remains to show that productivity is a measurable stochastic process. From Assumption 1,

productivity satisfies

Z`(t, v) = max
i=1,2,...

Qi(v)Ai`(t, v).

Additionally, {Ai`(t, v) : Ω→ R}(`,t)∈{1,...,L}×R is measurable by Assumption 3. Since the maximum

of a countable collection of measurable functions is measurable, productivity is a measurable stochastic

process.

Necessity follows from Theorem 3.1 and Proposition 4.1 in Wang and Stoev (2010). The later

ensures that productivity is separable in probability, which, combined with the former result,
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ensures that a minimal spectral representation of productivity exists with respect to a standard

Lebesgue space. Also see Theorem 2 in Kabluchko (2009), which states that any max-stable process

has a spectral representation defined on a sufficiently rich background measure space.

Let {Z`(t, v)}`=1,...,L,t∈R be a max-stable process that is independent and identically distributed

across v ∈ [0, 1]. Denote the background probability space by (Ω,F ,P). Further assume that

productivity is measurable—for each fixed ω ∈ Ω the map (`, t) → Z`(t, v) is (Borel) measurable.

Then by Theorem 3.1 and Proposition 4.1 in Wang and Stoev (2010) and the equivalence of extremal

integral spectral representations and De Haan (1984) spectral representations (see Stoev and Taqqu,

2005), there exists a θ > 0, a standard Lesbesgue space ([0, 1],B([0, 1]), µ), measurable functions

{A`(t, s)}`=1,...,L,t∈R with
∫ 1

0
A`(t, s)

θdµ(s) < ∞, and a Poisson process {Qi(v), si(v)}i=1,2,... for

each v with intensity θq−θ−1dqdµ(s) such that Z`(t, v) = maxi=1,2,...Qi(v)A`(t, si(v)). Moreover,

the mapping (`, t, s)→ A`(t, s) can be taken to be jointly B({1, . . . , L} × R)⊗ B([0, 1])-measurable.

Since s→ A`(t, s) is measurable, we can define a stochastic process {Ai`(t, v)}`=1,...,L,t∈R for each i

and v such thatAi`(t, v) = A`(t, si(v)) for all ` and twhich is independent ofQi(v) and independent

and identically distribution across i (since {Qi(v), si(v)}i=1,2,... is Poisson with intensity θq−θ−1dqdµ(s)).

The joint measurability of (`, t, s)→ A`(t, s) then implies thatAi`(t, v) : Ω→ R is B({1, . . . , L}×R)-

measurable for each ω ∈ Ω. In other words, {Ai`(t, v)}`=1...,L,t∈R is a measurable stochastic process

for each i = 1, 2, . . . and v ∈ [0, 1].

Next, define

t∗i (v) ≡ min
`=1,...,L

inf{t ∈ R | Ai`(t, v) > 0}

which is a hitting time. Since {Ai`(t, v)}`=1...,L,t∈R is measurable and adapted to its natural filtration,

it has a progressively-measurable modification. Taking {Ai`(t, v)}`=1...,L,t∈R as this modification,

by the debut theorem, t∗i (v) is then a stopping time and is therefore a well-defined random variable

that is adapted to the natural filtration of {Ai`(t, v)}`=1...,L,t∈R. As a result, the function s →
min`=1,...,L inf{t ∈ R | A`(t, s) > 0} ≡ τ(s) is measurable. Then by the mapping theorem for

Poisson processes (see Klenke, 2013, Theorem 24.16), {Qi(v), t∗i (v)}i=1,2,... is a Poisson process with

intensity θq−θ−1dqdΛ(t) where Λ(B) ≡ µ(τ−1(B)) for each B ∈ B(R).

It remains to show that
∫ t
∞ E

[
Ai`(t, v)θ | t∗i (v) = t∗

]
dΛ(t∗) is finite. By Campbell’s theorem (see

Kingman, 1992), we have

E
∞∑
i=1

1{Qi(v) > 1}Ai`(t, v)θ = E
∞∑
i=1

1{Qi(v) > 1, t∗i (v) ≤ t}Ai`(t, v)θ

=

∫ t

∞
E
[
Ai`(t, v)θ | t∗i (v) = t∗

]
dΛ(t∗).

and we also have

E
∞∑
i=1

1{Qi(v) > 1}Ai`(t, v)θ = E
∞∑
i=1

1{Qi(v) > 1}A`(t, si(v))θ =

∫ 1

0

A`(t, s)
θdµ(s) <∞.

Together, these results imply that
∫ t
∞ E

[
Ai`(t, v)θ | t∗i (v) = t∗

]
dΛ(t∗) <∞.
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B Proof of Proposition 2

Proof. Note that

T`(t)W (t)−θG`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)

=

∫
1

{
W`(t)

a`
≤ Wl(t)

al
∀l 6= `

}(
W`(t)

a`

)−θ
dM(a1, . . . , aL; t)

=

∫
1

{
al ≤

Wl(t)

W`(t)
a` ∀l 6= `

}(
W`(t)

a`

)−θ
dM(a1, . . . , aL; t)

=

∫ ∞
0

(
W`(t)

a`

)−θ
M

(
W1(t)

W`(t)
a`, . . . ,da`, . . . ,

WL(t)

W`(t)
a`

)
=

∫ ∞
0

(
W`(t)

a`

)−θ
M`

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`.

Also,

P (t)−θ = G(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)

=

L∑
`=1

T`(t)W`(t)
−θG`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)

=

L∑
`=1

∫ ∞
0

(
W`(t)

a`

)−θ
M`

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`.

As a result we have

π`(t) =

∫∞
0

(
W`(t)
a`

)−θ
M`

(
W1(t)
W`(t)

a`, . . . , a`, . . . ,
WL(t)
W`(t)

a`

)
da`∑L

`′=1

∫∞
0

(
W`′ (t)
a`′

)−θ
M`′

(
W1(t)
W`′ (t)

a`′ , . . . , a`′ , . . . ,
WL(t)
W`′ (t)

a`′
)

da`′
.

Then, for ` = `′,

∂π`(t)

∂ ln W`(t)
P (t)

= −θ
L∑
`=1

∫ ∞
0

(
W`(t)/P (t)

a`

)−θ
M`

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`

−
∑
`′ 6=`

∫ ∞
0

(
W`(t)/P (t)

a`

)−θ
W`′(t)

W`(t)
a`M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`

= −θπ`(t)−
∑
`′ 6=`

∫ ∞
0

(
W`(t)/P (t)

a`

)−θ−1
W`′(t)

P (t)
M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`,
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and for `′ 6= `,

∂π`(t)

∂ ln W`′ (t)
P (t)

=

∫ ∞
0

(
W`(t)/P (t)

a`

)−θ
W`′(t)

W`(t)
a`M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`

=

∫ ∞
0

(
W`(t)/P (t)

a`

)−θ−1
W`′(t)

P (t)
M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`.

These semi-elasticities can be re-expressed as elasticities by dividing by π`(t).
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