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1 Introduction

What is a safe asset? What are its features? Why does it have a negative β? Why
is government debt of advanced countries like the US and Japan a safe asset? Why
does it enjoy an exorbitant privilege? How much of it can the market absorb? Is there
a debt valuation puzzle? When can governments run a permanent (primary) deficit
without ever paying back its debt, like a Ponzi scheme, and is there a limit, a “Debt
Laffer Curve”? When does one lose the safe asset status? How do we have to modify
representative agent asset pricing and the government debt valuation equation to ac-
count for safe asset features? This paper presents a theory of safe assets that sheds light
on these questions.

We define a safe asset by its key characteristic, the Good Friend Analogy. A safe asset
is like a good friend, it is around; that is, it is valuable and can be traded when one needs
it.1 We illustrate this within a setting in which citizens face uninsurable idiosyncratic
risks and save for precautionary reasons. Each citizen adjusts her portfolio consisting
of risky physical capital and the safe asset, a government bond. Idiosyncratic shocks
that cannot be diversified away (as well as aggregate shocks) make capital risky. This
makes the safe asset attractive since it can be sold after an adverse shock. From an
individual citizen’s perspective it is this ability to retrade which makes the government
bond a desirable hedging instrument. Her planned dynamic trading strategy generates
a payoff stream that is a good hedge.

Since a safe asset generates this extra service flow in the form of self-insurance, it
is attractive even at a low real interest rate, r, its cash flow return. It is instructive to
consider a new asset pricing formula which nicely separates the two benefits of the safe
asset: cash flows, possibly negative, and a service flow that results from the ability to
self-insure through retrading. The real value of a safe asset (or any tradable asset) is

pricet = Et[PVr∗∗ [cash f lows]] + Et[PVr∗∗ [service f lows]].

While the traditional asset pricing formula prices the cash flow of a buy and hold
strategy of the safe asset, the above stated pricing formula prices the cash flow of a dy-
namic (equilibrium) strategy whose cash flow is positive when the asset is sold (after

1In this paper we focus on risk and abstract from liquidity considerations by assuming that all assets
are liquid in our model. But, conceptually, liquidity is also an important aspect of this definition.
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a negative shock) and negative when additional safe assets are bought (after a positive
shock). Valuing individual dynamic trading cash flow streams and aggregating them
leads to the above pricing equation, where a different discount rate, r∗∗, arises natu-
rally.2 Interestingly, r∗∗ can be viewed as the “representative agent interest rate” in an
incomplete market setting. It is the risk-free rate that excludes the component that is
due to precautionary demand driven by the exposure to uninsurable idiosyncratic risk.

A safe asset is really like a good friend if it not only allows citizens to self-insure
against adverse idiosyncratic shocks, but also serves as a safe haven after adverse ag-
gregate shock. That is, it appreciates in recessions due to flight-to-safety capital flows.
To see why a safe asset has a non-positive β consider an economy in which idiosyn-
cratic risk rises and aggregate output declines in recessions. A drop in output reduces
payoffs and increases the marginal utility, leading to the traditional positive β in the
asset pricing equation for the cash flow term. The second term, the service flow term,
behaves very differently. As idiosyncratic risk rises in recessions, citizens prefer to shift
their portfolio away from capital towards the safe asset, resulting in a force that pushes
up the real value of safe assets. It is due to the second term capturing the discounted
stream of service flows that the safe asset has a non-positive β.

Our model has also interesting stock market asset pricing implications due to "flight-
to safety" phenomena. During recessions, idiosyncratic risk is assumed to rise. While
for outside equity, idiosyncratic risk can be diversified away, the residual claimant to
each firm is an insider who remains exposed to the idiosyncratic risk via her inside eq-
uity holdings. During recessions, these insiders demand a higher insider risk premium
which depresses payouts to outside equity holders. As a consequence, the (outside)
equity stock index depreciates relative to the safe asset. That is, outside equity has a
positive β, even when held in a diversified mutual fund.

For the safe asset the required cash flow return r is low due to its service flow and
its negative β. Any entity that issues a safe asset, be it the government or private corpo-
rations, benefits from the low required cash flow return. Since similar service flows can
be derived from all safe assets, whether issued by the government or by corporations,
traditional measures of convenience yields, like the BAA-Treasury interest rate spread
used in Krishnamurthy and Vissing-Jorgensen (2012), do not capture the full service

2While it is here applied to the safe asset, this “dynamic trading perspective” is a general valuation
approach and can be used in any incomplete markets setting to isolate the benefits from equilibrium
trades.
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flow from trading safe assets.

However, not any entity that issues a safe asset with service flows can run a Ponzi
scheme. When precautionary savings due to idiosyncratic risk depress the required
real cash flow return r below the economic growth rate g, sustainable Ponzi schemes
become feasible. One can pay off the maturing bonds with newly issued debt and issue
more to fund additional expenditures. Viewed differently, in this case one can issue
a “bubbly” safe asset.3 In our model with uninsurable idiosyncratic risk, bubbles are
possible even though individual citizens’ transversality conditions hold. Strictly speak-
ing, which entity can run a Ponzi scheme depends on which equilibrium is selected. In
other words, the selected “bubble equilibrium” determines who is subject to a no-Ponzi
constraint. Brunnermeier et al. (2021a) argue that the government’s ability to tax and
impose regulations on the private sector puts it in a unique position to defend a bubble
on its debt. According to this view, which we follow in this paper, the government en-
joys an exorbitant privilege as a safe asset issuer that sets it apart from private entities.
While the latter may also be able to issue a safe asset with service flows, they can –
unlike governments – not run a Ponzi scheme.

Note that safe assets do not need to be bubbly. Safe assets can also arise in the
absence of bubbles. However, a bubble component can make an asset “safer”, since the
value of the service flow is proportional to the market value of the (bubbly) asset – and
the service flow is highly priced, not least because it carries a negative β. Indeed, under
certain circumstances, the same asset without a bubble can have a positive β (driven
by discounted cash flows), while when the bubble is associated with the asset, its β

becomes negative. In that case, the asset is only a safe asset if the bubble is attached to
the asset. In other words, bubble and safe asset characteristics are complementary. This
leads us to a second concept, the Safe Asset Tautology that holds for bubbly safe assets:
A safe asset is safe because it is perceived to be safe. In this case, the safe asset status
can be lost, when the bubble pops.

Finally, the government can generate seigniorage revenues by “mining the bubble”
(expanding the Ponzi scheme to fund deficits). One contribution of this paper is to
document quantitatively that “bubble mining” only raises sizable government revenue
if safe public debt has a negative β. A government can generate revenue by issuing
bonds at a faster pace, create higher inflation, and thereby reduce the real return on

3A standard (“buy and hold”) asset pricing equation carries then a bubble term.
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holding the government bond. “Printing” bonds at a faster rate acts like a tax on bond
holdings or, better said, on partial self-insurance through holding and retrading the
safe asset. It is a form of “financial repression.” Increasing the tax rate increases the
“tax revenue”, but erodes the “tax base”, the value of the bonds. A “Debt Laffer Curve”
emerges. When the tax exceeds a certain level, overall tax revenue from bubble mining
declines. Our calibration quantifies the Laffer Curve and estabilishes that the negative
β is crucial to generate quantitatively significant revenue from “bubble mining”.

Literature. This paper touches upon many strands of classic and recent economic lit-
erature. It connects to the large literature on the risk-sharing benefits of money or
government debt in environments with uninsured idiosyncratic risk. The classic ref-
erence is Bewley (1980). Aiyagari and McGrattan (1998) calibrate the optimal debt level
in an Aiyagari (1994)-type model without aggregate risk. In Woodford (1990) trading
of government debt improves consumption smoothing and crowds in investment. In
Kiyotaki and Moore (2008) citizens use money as liquidity to exploit investment op-
portunity shocks. Our model environment is closest to Angeletos (2007), who studies
idiosyncratic investment risks, and Brunnermeier and Sannikov (2016a,b) who add a
‘bubbly’ safe asset in the form of government debt or money into that framework and
allow for aggregate risk. Di Tella (2020) and Merkel (2020) study similar environments
in which the safe asset is money and has a convenience yield instead of being bubbly.
In this paper, we emphasize that government debt generates a service flow from re-
trading even in the absence of bubbles and convenience yields. We provide a formal
characterization of these service flows by developing a new asset valuation approach in
incomplete markets settings, the “dynamic trading perspective”, which explicitly high-
lights the gains from trading. Government debt retains its safe asset role possibly with
a negative CAPM β even in a setting with publicly traded equity mutual fund that is
also fully liquid and free of idiosyncratic risk.

Our discussion of public debt bubbles is also related to the literature on rational bub-
bles and debt sustainability when the interest rate r is lower than the economic growth
rate g. Papers generating r < g with Overlapping Generations (OLG) include Samuel-
son (1958), Diamond (1965) with capital, Tirole (1985) with a bubble and, most recently,
Blanchard (2019). In the above cited Bewley (1980)-type models, as well as ours, inter-
est rates are depressed due to a precautionary savings motive. Bassetto and Cui (2018),
Brunnermeier et al. (2021a) and, more recently, Kaplan et al. (2023) study the fiscal the-
ory of the price level (FTPL) when r < g. Brunnermeier et al. (2021a) show how the
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government can ensure that the bubble is associated with government debt and does
not jump to other assets, e.g. crypto assets. They also point out that a bubble gives rise
to a “Debt Laffer Curve”, but consider an environment without aggregate risk. In this
paper, we quantify the Laffer curve and show that aggregate risk and the negative β are
quantitatively important. Reis (2021) studies fiscal debt capacity in a related framework
with a bubble on government debt. To avoid an opposite infinity problem in the debt
valuation equation when r < g, Reis (2021) discounts at the higher marginal product of
capital m > g. In this paper, we propose instead r∗∗-discounting, which also avoids the
opposite infinity problem but has a very simple economic interpretation. Aguiar et al.
(2023) show that bubbly government debt can lead to a Pareto improvement. Mian et
al. (2022) study debt issuance at the zero lower bound in a setting in which households
derive utility from holding government bonds. There is also an extensive literature on
rational bubbles outside of the government debt context. Survey papers include Miao
(2014) and Martin and Ventura (2018).

This paper resolves the “Public Debt Valuation Puzzle” proposed in Jiang et al.
(2019), which argues that government debt appears overvalued not least because pri-
mary surpluses, the total payments to all bond holders, are procyclical and should thus
be discounted at a high rate. In our setting, the price of debt is countercyclical since the
value of service flows rises in bad times, resulting in a negative β asset. Second, it also
resolves the “Government Debt Risk Premium Puzzle” (Jiang et al., 2020), the puzzle
that government debt appears to insure simultaneously bond holders and taxpayers
whereas in standard models, it can insure only one of the two groups. Our analy-
sis shows that sufficiently large service flows can make the bond a negative β-asset, a
good hedge for bond holders, while primary surpluses are procyclical at the same time,
thus providing insurance for taxpayers.

One strand of the safe asset literature points to high market liquidity as the key
feature of safe assets. In contrast, we focus on the risk properties of safe assets and
fully abstract from any trading costs or asymmetric information frictions. Dang et al.
(2015) emphasize the information insensitivity of safe assets. In Gorton and Pennachi
(1990), Dang et al. (2017), and Greenwood et al. (2016) intermediaries create information
insensitive assets. Trading frictions are also central in the New Monetarist literature and
arise there from decentralized exchange (see Lagos et al. (2017) for a survey). Closest
to the previously mentioned papers is Rocheteau (2011), wherein the risk-free asset is
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informationally insensitive and used first in bilateral trades.4

Several other papers are loosely related in that they are also about safe assets, but
they make different conceptual points and study distinct model environments. He et
al. (2019) model a safe asset tautology within a generalized global games setting. Ca-
ballero et al. (2017) and Caballero and Farhi (2017) stress the importance of safe asset
shortage in zero lower bound episodes. Brunnermeier et al. (2017, 2016) point out that
an asymmetric supply of safe assets across countries can lead to eruptive flight-to-safety
cross-border capital flows. Brunnermeier et al. (2021b) discuss the loss of safe asset sta-
tus in the context of an international framework for emerging market economies.

Like us, Constantinides and Duffie (1996) show how variation in idiosyncratic risk
exposures in an incomplete markets setting can resolve several asset pricing puzzles.
Unlike our paper, they abstract from asset trading and focus exclusively on the no-
bubble equilibrium, while in our theory re-trading of the safe asset is key and can gener-
ate bubbles. Krueger and Lustig (2010) provide conditions under which aggregate risk
premia are unaffected by uninsurable idiosyncratic risk in a model in which bonds are
not traded. Heaton and Lucas (1996, 2000a,b) are prominent papers quantifying incom-
plete market models that include trading costs and the importance of entrepreneurial
risk. In our analysis traded equity exhibits excess volatility and predictability as, in
recessions, idiosyncratic risk rises, which drives up the risk compensation for inside
equity and leaves fewer cash flows for outside (publicly traded) equity holders.

2 Model

2.1 Model Setup

Environment. The model is set in continuous time with an infinite horizon.

There is a continuum of households indexed by i ∈ [0, 1]. All households have
identical logarithmic preferences

Vi
0 := E

[∫ ∞

0
e−ρt log ci

tdt
]

4While not about safe assets, Vayanos and Vila (1999) represents an important early contribution that
studies asset pricing in general equilibrium with (reduced-form) trading costs.
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with discount rate ρ > 0.5

Each agent operates one firm that produces an output flow atki
tdt, where ki

t is the
capital input chosen by the firm and at is an exogenous productivity process that is
common for all agents. Capital of firm i evolves according to

dki
t

ki
t
=

(
Φ
(

ιit

)
− δ

)
dt + σ̃tdZ̃i

t + d∆k,i
t , (1)

where Φ is an increasing concave function that captures adjustment costs in capital ac-
cumulation, ιit the investment rate (in output goods) per unit of capital, δ is the depre-
ciation rate, σ̃tdZ̃i

t represents idiosyncratic Brownian shocks, and d∆k,i
t represents firm

i’s market transactions in physical capital. Brownian motions Z̃i are agent-specific and
i.i.d. across agents. The levels of idiosyncratic risk σ̃t and productivity at are exogenous
processes.

To obtain simple closed-form expressions, we choose the functional form Φ (ι) =
1
φ log

(
1 + φι

)
with adjustment cost parameter φ ≥ 0 for the investment technology.6

Each agent i can reduce idiosyncratic risk exposure by selling equity to other agents.
Outside equity claims on i’s capital ki have the same aggregate and idiosyncratic risk as
capital itself, but may pay a lower expected return, reflecting an insider premium that
i earns for managing the capital stock. Agents can hold a diversified equity portfolio
and thereby eliminate idiosyncratic risk.

The key friction in the model is that agents are unable to share idiosyncratic risk
perfectly. Specifically, we assume that agents face a skin-in-the-game constraint and
must retain at least a fraction χ̄ ∈ (0, 1] of their capital in undiversified form. As a
consequence, agents have to bear the residual idiosyncratic risk of at least χ̄σ̃tdZ̃i

t per
unit of capital in their firms.

Besides this limit on idiosyncratic risk sharing, there are no further financial fric-
tions. Agents are allowed to trade physical capital and contingent claims on aggregate
risk subject to standard no Ponzi conditions.

In addition to households, there is a government that issues nominal government
bonds, funds government spending, and imposes taxes on firms. Outstanding nominal

5In Appendix A.7, we present a generalization with Duffie and Epstein (1992) preferences (continuous
time Epstein and Zin (1989) preferences).

6This function is defined for all ι ≥ ι := −1/φ. We set Φ(ι) := −∞ for ι < ι.
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government debt has a face value of Bt and pays nominal interest it. The face value
follows a continuous process dBt = µBt Btdt with growth rate µBt . There is an exogenous
need for real spending gKtdt, where Kt :=

∫
ki

tdi is the aggregate capital stock and g is a
model parameter. The government can finance this spending by setting a proportional
tax τt (subsidy if negative) on firms’ output and by adjusting the bond issuance rate µBt
(repurchasing bonds if negative). We assume that µBt and it are exogenous processes
while taxes τt adjust to satisfy the nominal government budget constraint

itBt + PtgKt = µBt Bt + PtτtatKt, (2)

where Pt denotes the price level.

We assume that the exogenous processes at, σ̃t, µBt , and it follow a joint Markov
diffusion process that is driven by some Brownian motion Zt, which captures aggregate
risk and is independent of all idiosyncratic Brownian motions Z̃i

t.

Finally, the aggregate resource constraint is

Ct + gKt + ιtKt = atKt, (3)

where Ct :=
∫

ci
tdi is aggregate consumption and ιt =

∫
ιitk

i
t/Ktdi is the average invest-

ment rate.7

Household Problem. We formulate the household problem as a standard consumption-
portfolio-choice problem that does not make explicit reference to the capital trading
process d∆k,i

t as a choice variable. For this purpose, denote by ni
t the net worth of

household i and let θK,i
t , θE,i

t , θĒ,i
t be the fraction of net worth invested into capital,

own outside equity, and the diversified portfolio of equity, respectively. The own out-
side equity share θE,i

t is typically negative as this asset is issued by the household. The

7To ensure that this constraint can be satisfied given our assumptions on government spending and
investment, we assume that the productivity process satisfies at > g + ι at all times. Here, ι is as in
footnote 6.
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remaining fraction of net worth is invested in bonds. Net worth evolves according to

dni
t

ni
t
= − ci

t

ni
t
dt

+ drBt + θK,i
t

(
drK,i

t

(
ιit

)
− drBt

)
+ θE,i

t

(
drE,i

t − drBt
)
+ θĒ,i

t

(
dr̄E

t − drBt
)

︸ ︷︷ ︸
=:drn,i

t

. (4)

where drBt , drK,i
t (·), drE,i

t and dr̄E
t denote the returns on bonds, capital, own outside

equity and the diversified equity portfolio, respectively. These returns depend on the
evolution of market prices, which individuals take as given.8 We provide explicit ex-
pressions for them below.

The household chooses consumption ci
t, real investment ιit, and the portfolio shares

θk,i
t , θE,i

t , and θĒ,i
t to maximize utility Vi

0 subject to (4), the skin-in-the-game constraint

−θE,i
t ≤ (1− χ̄)θK,i

t , (5)

and a solvency constraint ni
t ≥ 0 that rules out Ponzi schemes.

Prices and Returns. Here we formalize how market prices determine returns in (4).
We denote by qK

t the market price of a single unit of physical capital. Recall that Pt

denotes the nominal price level, so that the real value of a single unit of bonds is 1/Pt.
It is more convenient to work with qB

t := Bt/Pt
Kt

, which is the ratio of the real value of
government debt to total capital in the economy.9

With these definitions, the return on bonds is10

drBt = itdt +
d (1/Pt)

1/Pt
= itdt +

d
(

qB
t Kt/Bt

)
qB

t Kt/Bt
=

d
(

qB
t Kt

)
qB

t Kt
−
(

µBt − it

)
︸ ︷︷ ︸

=:µ̆Bt

dt (6)

8For the capital return, individuals take the function ιi 7→ drK,i
t (ιi) as given but do internalize how

their own investment choice affects the capital return.
9This is a normalized version of the inverse price level 1/Pt. While the latter depends on the scale of

the economy and the nominal quantity of outstanding bonds in equilibrium, qB
t turns out to be stationary.

10The last equality uses dBt = µBt Btdt.
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and the return on agent i’s capital is

drK,i
t

(
ιit

)
=

(1− τt) at − ιit
qK

t
dt +

d(qK
t k̃i

t)

qK
t k̃i

t
,

where k̃i
t follows the same evolution (1) but with trades d∆k,i

t set to 0.

In addition to bonds and capital, there are outside equity claims in zero net supply.
Outside equity claims issued by household i have the same risk characteristics as the
capital return drK,i

t but may have a different expected return. A return differential may
exists because the inside equity holder i requires a compensation for bearing idiosyn-
cratic risk whereas outside equity holders can eliminate this risk by diversification.
Specifically,

drE,i
t = Et[drE,i

t ] +
(

drK,i
t −Et[drK,i

t ]
)

,

where the expected return component Et[drE,i
t ] is determined in equilibrium. In equi-

librium, all agents optimally hold a perfectly diversified equity portfolio. The return
on that portfolio is

dr̄E
t =

∫
drE,i

t di.

Equilibrium. A competitive equilibrium, given an exogenous government policy and
initial conditions, is defined in the usual way as a set of allocations and prices such
that all households maximize utility and all markets clear. Here, prices and aggregate
variables may depend only on aggregate exogenous histories, that is histories of the
aggregate exogenous shocks dZt. In contrast, individual outcomes for household i can
depend on both aggregate and individual idiosyncratic histories, that is joint histories
of the shocks dZt and dZ̃i

t.

Formally, we define equilibrium as follows. For ease of exposition, we restrict atten-
tion here to a symmetric equilibrium in which the expected return Et[drE,i

t ] of all outside
equity claims is the same and in which all agents make identical choices for scaled con-
sumption ĉi

t := ci
t/ni

t, the investment rate ιit, and portfolio weights θK,i
t , θE,i

t , θĒ,i
t .11 This

does not mean that all agents are identical because they can differ with regard to the
level of their net worth ni

t.

Definition 1. Let K0 > 0 be the initial level of capital and let at, σ̃t, µ̆Bt be exogenous processes

11The restriction to symmetric equilibria is without loss of generality. In our environment, any equilib-
rium must be symmetric because agents face identical investment opportunities and utility is isoelastic.
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adapted to the filtration generated by Z. A symmetric competitive equilibrium consists of
processes for prices

(
qB

t , qK
t , Et[drE

t ]
)

t≥0
, scaled consumption (ĉt)t≥0, investment rates (ιt)t≥0,

portfolio weights (θK
t , θE

t , θĒ
t )t≥0, taxes (τt)t≥0, and aggregate capital (Kt)t≥0, all adapted to the

filtration generated by Z, such that

1. Aggregate capital is consistent with the initial condition and satisfies12

dKt =
(
Φ (ιt)− δ

)
Ktdt

2. Taxes satisfy the government budget constraint13

τtatKt + µ̆Bt qB
t Kt = gKt

3. For each household i ∈ [0, 1], ci
t = ĉtni

t, ιit = ιt, θK,i
t = θK

t , θE,i
t = θE

t , θĒ,i
t = θĒ

t solves i’s
optimization problem (described previously) for arbitrary ni

0 under the assumption that
E[drE,j

t ] = E[drE
t ] for all j ∈ [0, 1].

4. All markets clear:

• goods market clearing: equation (3) holds;

• asset market clearing:14

θK
t =

qK
t Kt

(qK
t + qB

t )Kt
, θE

t + θĒ
t = 0.

We remark here that we have eliminated nominal quantities from this equilibrium
definition by not explicitly adding B0 > 0 to the initial conditions, by using the scaled
bond value qB

t instead of the nominal price level Pt, and by exogenously specifying
government policy in terms of the differential µ̆Bt = µBt − it. This is convenient because
Pt and Bt do not enter any decision problem directly. If one is interested in nominal
variables, one can easily recover them ex post from any given equilibrium together
with a specification for B0 and for either µBt or it.

12This equation follows immediately from the individual capital evolutions (1) and the fact that idios-
nycratic shocks and trading average out.

13This equation follows from (2) by dividing by Pt and combining µBt and it.
14These are for the capital and equity markets. The bond market clears by Walras’ law.
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We also remark that we have only defined the equilibrium in terms aggregate vari-
ables. However, for any given equilibrium and any given initial net worth distribution
(ni

0)i∈[0,1] consistent with it, i.e.
∫

ni
0di = (qB

0 + qK
0 )K0, we can recover individual vari-

ables from condition 3 in Definition 1 as this condition requires that choices are optimal
for arbitrary initial net worth.15

2.2 Model Solution

The key equilibrium quantity is the share of total wealth invested in bonds,

ϑt =
Bt/Pt

Bt/Pt + qK
t Kt

=
qB

t
qB

t + qK
t

.

Ultimately, results in this paper are driven by individual demand for safe assets, which
is directly related to ϑt in equilibrium. In this section, we first establish that all equilib-
rium quantities of interest can be written in terms of ϑt and exogenous variables. In a
second step, we characterize the evolution of ϑt.

The first step only relies on the optimal consumption and investment choices of
households and on goods market clearing. We solve the household problem in Ap-
pendix A.1 using the stochastic maximum principle. Here, we merely report the main
conclusions. The optimal consumption and investment choice are determined by the
two conditions

ci
t = ρni

t,

qK
t = 1

Φ′(ιit)
= 1 + φιit.

The first line is the familiar permanent income consumption equation for log prefer-
ences. The second line is a Tobin’s q condition for physical investment in the presence
of capital adjustment costs. The second equality in that line follows from the functional
form assumption Φ (ι) = 1

φ log
(
1 + φι

)
. Because all households face the same capital

price qK
t , they all choose the same investment rate ιit, so that we may drop the i super-

script from now on.

Aggregating the first condition across all agents i and combining the two equations

15The individual variables are, of course, dependent on histories of the idiosyncratic shocks dZ̃i
t as

well, that is these processes for agent i are adapted to the filtration generated by the pair (Z, Z̃i).
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with goods market clearing (3) and the definition of ϑt immediately implies the follow-
ing lemma.

Lemma 1. In any equilibrium, the investment rate, (scaled) value of government bond, and
price of physical capital are given by

ιt =
(1− ϑt) (at − g)− ρ

1− ϑt + φρ
, (7)

qB
t = ϑt

1 + φ (at − g)

1− ϑt + φρ
, (8)

qK
t = (1− ϑt)

1 + φ (at − g)

1− ϑt + φρ
. (9)

These equations determine the equilibrium uniquely as a function of the exogenous
process at and the (endogenous) bond wealth share ϑt. To fully characterize the equi-
librium, we thus only need to determine ϑt.16

ϑt can be thought of as a relative price between capital assets (including equity
which is a claim to capital) and government bonds. It is determined by households’
portfolio choice and asset market clearing. The portfolio choice conditions for θK,i

t , θE,i
t ,

and θĒ,i
t take the form of standard Merton-type portfolio conditions that ensure that

for the optimal portfolio, each asset’s expected excess return over
Et[drBt ]

dt is equalized
to the risk premium that the agent requires to be willing to hold the aggregate and
idiosyncratic risk associated with the asset.17 We present the formal equations in Ap-
pendix A.1.

There, we also show that by combining these portfolio choice conditions and using
asset market clearing to eliminate the individual portfolio weights θK,i

t , θE,i
t , θĒ,i

t , we can
reduce them to a single equation for the expected change in ϑt:

Proposition 1. In any equilibrium, ϑ must satisfy the equation

Et [dϑt] =
(

ρ + µ̆Bt − (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt. (10)

16Equilibrium objects from Definition 1 not covered by this lemma are ĉ, E[drK], τ, K and the portfolio
weights. However, ĉ follows from the optimal consumption rule, τ from the government budget con-
straint and K from the capital evolution given ι. We show in Appendix A.1 how E[drK] and the portfolio
weights depend on ϑ and exogenous quantities.

17In the case of capital and outside equity, there is also a Lagrange multiplier term related to the skin-
in-the-game constraint (5). In the problem considered here, the constraint is always binding, so that
households issue the maximum amount of outside equity consistent with it.
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Conversely, any [0, 1]-valued solution ϑ to this equation is associated with a competitive equi-
librium.

Equation (10) is a backward stochastic differential equation (BSDE) for ϑt. It char-
acterizes all possible stochastic processes for the bond wealth share ϑt (≈ relative price
between bonds and capital) that are consistent with household portfolio choice and
market clearing. Together with a specification for the evolution of the exogenous states
σ̃t and at and for policy µ̆Bt , equation (10) determines the equilibrium process for ϑt.
Equations (7), (8), (9) and goods market clearing (3) can then be used to back out the
remaining quantities of interest.

2.3 Uniqueness of Stationary Monetary Equilibria

In our model, equilibria as defined in Definition 1 may not be unique because equa-
tion (10) for ϑ is a fixed-point equation that can have multiple solutions. However, we
establish here that if we make suitable Markov assumptions on exogenous processes,
then there is always at most one solution to equation (10) that is both non-degenerate,
i.e. different from ϑ ≡ 0, and stationary. This solution corresponds to a unique sta-
tionary “monetary” equilibrium in which government bonds have always a positive
value. This equilibrium has a particularly appealing property: it is the only equilib-
rium consistent with any belief that, with positive probability, bonds retain a positive
value bounded away from zero in the arbitrarily distant future. In this paper, we al-
ways focus on this equilibrium with the exception of Section 5, where we briefly discuss
how alternative equilibria may be associated with a loss of safe asset status.18

We next formulate our uniqueness result. To do so, we first need to provide a precise
definition of the notion of stationarity we are requiring.

Definition 2. The exogenous processes σ̃t, at, and µ̆Bt are stationary if there exists an ergodic
Markov state process Xt on a compact domain X ⊂ Rn and continuous functions σ̃, a, µ̆B :
X→ R such that

σ̃t = σ̃(Xt), at = a(Xt), µ̆Bt = µ̆B(Xt)

18We make two further remarks with regard to this equilibrium selection. First, the selection of
the unique stationary monetary equilibrium is in complete analogy to the standard choice in models
with monetary frictions. Second, under the fiscal policy arrangements discussed in Brunnermeier et al.
(2021a), this equilibrium would emerge as the unique equilibrium in the sense of Definition 1.

14



for all t ≥ 0.19

Given stationary exogenous process, we say that a solution ϑt to BSDE (10) is stationary if
there is a continuous function ϑ : X→ [0, 1] such that ϑt = ϑ(Xt) for all t.

Proposition 2 (Uniqueness of stationary non-degenerate solutions). Suppose the exoge-
nous processes are stationary and ρ + µ̆B(X) > 0 for all X ∈ X. Then, equation (10) has at
most one stationary nondegenerate (i.e. not identically 0) solution.

We prove Proposition 2 in Appendix A.2. The key idea behind the proof is to in-
vestigate the finite-horizon version of BSDE (10) and show two key properties. First,
the mapping from terminal conditions ϑT > 0 to the (always unique) finite-horizon
solution over [0, T] represents a contraction in a suitable sense. Second, conditional
on a fixed state Xt, the finite-horizon solutions are monotonic in time t. We establish
these properties with the help of the comparison theorem for BSDEs (e.g. Pham (2009,
Theorem 6.2.2)).

In fact, these properties do not only allow us to establish uniqueness of the non-
degenerate stationary solution but also yield an additional limit result: for any given
terminal condition ϑT > 0, the solution to the finite-horizon equation converges to
the unique non-degenerate stationary solution as T → ∞, provided the latter exists.
Conceptually, this additional result is important because it implies that all nonstation-
ary solutions must converge to 0 in the distant future. Practically, the additional result
matters because it ensures that the solution procedure that we employ for the numerical
illustration in Section 4 converges to the desired solution.

2.4 Closed-Form Steady State

We provide a brief characterization of the model’s steady state.20 To do so, we as-
sume that productivity a, idiosyncratic risk σ̃, and policy µ̆B are constant and look for
a constant solution ϑ > 0 to equation (10). By Lemma 1, also qB, qK, and ι must be
constant in a steady state.

Imposing dϑt = 0 in equation (10) leads to a third-order polynomial equation which-

has three (mathematical) solutions: ϑ = 0, ϑ =
χ̄σ̃+
√

ρ+µ̆B

χ̄σ̃ , and ϑ =
χ̄σ̃−
√

ρ+µ̆B

χ̄σ̃ . Among

19Informally, an ergodic Markov process can travel from any state to any other state.
20The “steady state” is in fact a balanced growth path. In our AK-type model, there is always a growth

trend in the capital stock Kt.
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these solutions, at most the third can satisfy the additional restriction ϑ ∈ (0, 1). It sat-
isfies this restriction, and is then consistent with a monetary stationary equilibrium, if
and only if the condition

χ̄σ̃ ≥
√

ρ + µ̆B

is satisfied. Effectively, this inequality imposes a constraint on bond growth in excess
of interest payments µ̆B, a measure of dilution of existing bonds. Dilution µ̆B cannot be
too large for the private sector to remain willing to hold government bonds. The higher
is the residual idiosyncratic risk χ̄σ̃ that agents have to bear after optimal outside equity
issuance, the less restrictive is this constraint.

If this condition is satisfied, investment is

ι =

√
ρ + µ̆B (a− g)− ρχ̄σ̃√

ρ + µ̆B + φρχ̄σ̃

and the (scaled) real asset values are

qB =

(
χ̄σ̃−

√
ρ + µ̆B

) (
1 + φ (a− g)

)√
ρ + µ̆B + φρχ̄σ̃

, qK =

√
ρ + µ̆B

(
1 + φ (a− g)

)√
ρ + µ̆B + φρχ̄σ̃

.

These closed-form solutions yield straightforward conclusions regarding the impact
of parameter changes on equilibrium outcomes. We emphasize here explicitly that cap-
ital valuations and investment are strictly decreasing while bond valuation are strictly
increasing in idiosyncratic risk σ̃. This is because an increase in idiosyncratic risk leads
to a portfolio reallocation from capital assets to government bonds as can be readily
seen from equation (10). This same force also plays an important role in the flight-to-
safety dynamics that we emphasize in Section 4.

2.5 Safe Asset Definition

Individuals hold a safe asset for precautionary reasons, which they can “liquify” at
an above average return when they face an idiosyncratic and/or aggregate shock and
they attach a high marginal value to extra resources. This marginal value for individual
i is measured by that individual’s stochastic discount factor (SDF) process, which we
denote by ξ i

t. This process satisfies ξ i
0 = 1 and dξ i

t/ξ i
t = −r f

t dt− ςtdZt − ς̃i
tdZ̃i

t, with a
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negative drift term equal to the risk-free rate and aggregate and idiosyncratic prices of
risk, ςt, ς̃i

t respectively.21 The return of citizen i’s net worth, rn,i is given by equation (4).

The following definition makes the “Good Friend Analogy” of a safe asset precise.

Definition 3. An asset j is in equilibrium a safe asset for individual i at time t if the conditional
covariance between her SDF and return of the asset in excess to her net worth return, drj

t− drn,i
t ,

is positive, i.e. Covt[dξ i
t/ξ i

t, drj
t − drn,i

t ] > 0.

We make several remarks. First, the safe asset concept is an equilibrium concept.
The same asset with the same cash flows can be a safe asset in one equilibrium and not
a safe asset in another equilibrium. The returns rj

t and rn,i
t as well as the SDF ξ i

t depend
on the equilibrium the economy is in.

Second, an asset is safe for individual i relative to her own net worth ni. A safe asset
provides (on average) better payoffs in high marginal utility states than the total net
worth portfolio.22

Third, the definition is contingent on the economy’s state. An asset can be safe at a
specific point in time t but may lose its “safe-asset status” at a different time.

Fourth, the definition focuses exclusively on the risk properties of the asset. This is
sufficient because, in our model, we have assumed that all assets enjoy perfect market
liquidity (all the time). However, as we explain in the next section, safety derives from
retrading. Therefore, liquidity is also an important feature of a safe asset. Beyond our
model environment, a definition of a safe asset should also include that the asset can
be traded easily without any trading frictions, e.g. due to asymmetric information.

The following proposition shows that government bonds are indeed a safe asset in
the steady-state solution derived in Section 2.4.

Proposition 3. If σ̃t > 0, at, and µ̆Bt are constant over time, the government bond is a safe
asset for all agents at all times.

21In integral form the individual SDF is

ξ i
t = exp

(
−
∫ t

0
r f

τdτ

)
︸ ︷︷ ︸

time discounting

· exp
(
−
∫ t

0
ςtdZτ −

1
2

∫ t

0
ς2

τdτ

)
︸ ︷︷ ︸

aggregate risk

· exp
(
−
∫ t

0
ς̃τdZ̃i

τ −
1
2

∫ t

0
ς̃2

τdτ

)
︸ ︷︷ ︸

idiosyncratic risk

,

where the second and third factors are martingales.
22Alternatively, one could define an asset as (absolutely) safe by Covt[dξ i

t/ξ i
t, drj

t] ≥ 0.
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In equilibrium each citizen’s net worth return is positively correlated with her con-
sumption growth rate and hence negatively correlated with her SDF, as the incom-
plete markets frictions prevents her from hedging her idiosyncratic risk. Since the
government bond return is risk-free, Covt[dξ i

t/ξ i
t, r f − drn,i

t ] > 0 and consequently the
government bond is a safe asset. Capital is not a safe asset as Covt[dξ i

t/ξ i
t, drK

t ] ≤
Covt[dξ i

t/ξ i
t, drn,i

t ].

More generally, with stochastic idiosyncratic risk σ̃t, the real return of the govern-
ment bond is not risk-free. However, as we will see in Section 4 in the context of our
calibrated model, it depreciates in volatile times less than citizen’s net worth. Indeed it
even appreciates, and hence more than satisfies the safe asset criterion.

3 Two Perspectives on Asset Valuation Equations

The value of government debt has to satisfy a debt valuation equation that relates
the real value of debt to the present value of future primary surpluses. In this section,
we contrast the standard asset pricing approach of deriving such an equation with an
alternative approach that emphasizes and makes explicit the benefits from retrading of
the asset. Both approaches imply an identical valuation formula with complete mar-
kets, but lead to two distinct equations when markets are incomplete. These equa-
tions provide two different perspectives for asset pricing in incomplete market envi-
ronments. Here, we apply these perspectives to government debt valuation.23

The standard approach to asset valuation is based on a buy-and-hold fiction. An
asset is priced as if it was held forever, so that the value of the asset must equal the
present value of all future cash flows derived from the asset’s payouts.24 We call this
the “buy and hold perspective” of asset pricing. Applied to the total government debt
stock, the cash flows in the present value formula are precisely the primary surpluses.25

We propose an alternative approach that recognized that, in equilibrium, individ-

23For concreteness, we present the equations only for government debt in the context of our model.
But we remark that our alternative valuation approach, the “dynamic trading perspective”, is general
and can be applied in any incomplete markets setting to any asset.

24To be fully precise, the buy-and-hold fiction does assume an eventual liquidation of the asset which
results in a single terminal resale cash flow. The liquidation time is then sent to infinity, so that the
present value of this cash flow only matters if there is a bubble.

25Despite the label, this may require the agent to trade, but only directly with the issuer, the govern-
ment, in order to absorb new debt issuance, not with other agents.
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ual agents may not intend to buy and hold an asset, but plan to retrade it whenever
they face a shock. They raise cash flow by selling the asset and face a cash outflow
when buying more of the asset. The aggregate stock of the asset can also be priced by
first valuing the cash flows from agents’ optimal dynamic trading strategy in equilib-
rium and then aggregating across all agents. This approach leads to a “dynamic trading
perspective” of asset pricing. Importantly, the aggregated present value of individual
trades may be different from zero, even though trades among private agents wash out
in the aggregate. Hence, the dynamic trading perspective incorporates an additional
term that makes explicit the aggregate value of equilibrium trades. Applied to gov-
ernment bonds in our model, this term is positive because bonds allow agents to self-
insure against idiosyncratic shocks. We refer to this term as the “service flow” term
from retrading.

The distinction between the two perspectives is particularly illuminating when there
can be rational bubbles. Dynamic programming implies that a transversality condition
has to hold only from the dynamic trading perspective, for each individual agent. Op-
timality does not imply a transversality condition from the buy and hold perspective.
For that reason, a gap may appear between the value of debt and the present value of
surpluses from the latter perspective. This gap is closed by an additional bubble term.

Unfortunately, it can even happen that both the bubble term and the present value
of primary surpluses are infinite with opposite sign, yet their sum still converges as
the time horizon approaches infinity. In contrast, the terms in the dynamic trading
perspective are always well-defined and finite.

Buy and Hold Perspective. We denote by st := τtat − g the primary surplus per
unit of aggregate capital. Recall that ξ i

t is agent i’s SDF process. From the buy and
hold perspective, individual uninsurable risk does not enter the valuation equation di-
rectly, so that only the aggregate component ξ̄t of the processes ξ i

t matters, i.e. dξt/ξt =

−r f
t dt− ςtdZt.26 Absent aggregate shocks (including inflation shocks), the government

bond is a risk-free asset and the relevant discount factor is simply ξt = exp(−
∫ t

0 r f
τdτ).

26The aggregate discount factor is the projection of any individual citizen’s SDF onto a common filtra-
tion generated by the aggregate Brownian Z. Put differently, ξt := E

[
ξ i

t | Zτ : τ ≤ t
]
, takes conditional

expectations with respect to the history of aggregate shocks dZτ up to time t but without any knowledge
of idiosyncratic shocks. Equivalently, ξt =

∫
ξ i

tdi is the unweighted average of individual SDFs.
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Proposition 4 (Buy and Hold Perspective). The value of government debt at t = 0 satisfies

B0

P0
= lim

T→∞

E

[∫ T

0
ξtstKtdt

]
+ E

[
ξT
BT

PT

]. (11)

This equation consists of two terms: a discounted stream of primary surpluses plus
(the limit of) a discounted terminal value. The latter can be positive even in the limit,
giving rise to a possible bubble on government debt.27 The reason is that individual
transversality conditions do not necessarily imply E

[
ξT
BT
PT

]
→ 0 because agents do

not buy and hold a fixed fraction of the government debt stock but constantly trade
bonds. If the terminal condition does converge to zero, then we obtain the traditional
debt valuation equation that says that the value of debt must equal the present value
of primary surpluses.

The derivation of equation (11) is standard. Essentially, one multiplies the govern-
ment’s flow budget constraint by the SDF, iterates forward the resulting equation, and
then takes expectations and the limit T → ∞. We relegate the formal details to Ap-
pendix A.4.

Dynamic Trading Perspective. Let ηi
t := ni

t/Nt be agent i’s net worth share and de-
note again i’s SDF process by ξ i

t. In our model, ηi
t also represents the share of total bonds

held by i because all agents hold identical portfolios (up to scale). Pricing individual
bond portfolios and aggregating over agents i yields our main valuation equation from
the dynamic trading perspective,

B0

P0
=
∫ (

E

[∫ ∞

0
ξ i

t · ηi
tstKtdt

]
+ E

[∫ ∞

0
ξ i

t · ηi
t (1− ϑt)

2 χ̄2σ̃2
t
Bt

Pt
dt
])

di. (12)

The real value of all outstanding public debt B0/P0 is the integral of the valuations
of individual debt holdings. Each of these valuations consists of two terms, the dis-
counted value of the share of future primary surpluses, ηi

tstKt := ηi
t(τta − g)Kt, paid

out to agent i plus the discounted value of future service flows, ηi
t (1− ϑt)

2 χ̄2σ̃2
t
Bt
Pt

, that
agent i derives from trading bonds. The safe asset service flow is due to partial in-
surance. It increases in the value of public debt and the amount of idiosyncratic risk
the citizen is exposed to. The latter depends on her portfolio share on physical capital

27The bubble term on government debt is discussed in detail in Brunnermeier et al. (2021a).
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(1− ϑt) and undiversified risk χ̄σ̃t. Government bonds provide a positive service flow
because the agent sells bonds precisely when she experiences a negative idiosyncratic
shock, so that the bond portfolio generates a positive payout in times of high marginal
utility ξ i

t.

Equation (12) emphasizes that the total value is obtained by aggregating individual
portfolio valuations. Mathematically, it is more convenient to interchange the order of
integration (Fubini’s Theorem). This yield the following proposition.

Proposition 5 (Dynamic Trading Perspective). The value of government debt at t = 0
satisfies

B0

P0
= E

[ ∫ ∞

0

(∫
ξ i

tη
i
tdi
)

︸ ︷︷ ︸
=:ξ∗∗t

stKtdt

]
+ E

[ ∫ ∞

0

(∫
ξ i

tη
i
tdi
)

︸ ︷︷ ︸
=:ξ∗∗t

(1− ϑt)
2 χ̄2σ̃2

t
Bt

Pt
dt

]
. (13)

This equation discounts aggregate cash flows (surpluses and service flows) free
of idiosyncratic risk like equation (11) obtained from the buy and hold perspective.
But importantly, the “stochastic discount factor” ξ∗∗t in this equation is a net-worth-
weighted average of individual stochastic discount factors. Since a single agent’s indi-
vidual net worth weight ηi

t co-moves negatively with her SDF ξ i
t, the discount factor

is lower (discount rate is higher) than the usual unweighted average discount factor
(used in the buy and hold perspective). It turns out this weighted average SDF is not
a mere mathematical artifact from swapping integrals but has an economic interpreta-
tion. It is the correct marginal rate of intertemporal substitution of aggregate cash flows
for a pseudo-representative agent who is forced to distribute aggregate consumption to
individuals according to the equilibrium consumption shares ci

t/Ct in our model. We
discuss this interpretation in more detail below.

To derive valuation equations (12) and (13), we start by valuing agent i’s bond port-
folio at time t = 0. Denote by bi

t := (1− θK,i
t − θE,i

t − θĒ,i
t )ni

t the value of agent i’s bond
portfolio at time t and let bi

td∆b,i
t be the stochastic bond trading process, where

d∆b,i
t = µ∆,i

t dt + σ∆,i
t dZt + σ̃∆,i

t dZ̃i
t

denotes the proportional appreciation of bi
t due to trading and payouts between t and

t + dt. Under the optimal trading policy, the initial bond wealth bi
0 must equal the
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discounted value of future payouts (=outflows) from the bond portfolio,28

bi
0 = −E

[∫ ∞

0
ξ i

tb
i
t

(
µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt
]

. (14)

As all agents hold the same constant fraction of their net worth in bonds (θi
t = ϑt), the

value of the individual bond portfolio is simply the product of the agent’s net worth
share and aggregate bond wealth, bi

t = ηi
tq

B
t Kt. In Appendix A.5, we show that the

bond trading process satisfies

µ∆,i
t = −st/qB

t , σ∆,i
t = 0, σ̃∆,i

t = (1− ϑt)χ̄σ̃t. (15)

The first equation says that the proportional reduction in the value of all agents’ bond
portfolios due to trading with the government equals the surplus-debt ratio st/qB

t .
This term captures cash flows from payouts, not from retrading among private agents.
The second and third term capture such retrading in response to aggregate and id-
iosyncratic shocks, respectively. Here, agents do not trade in response to aggregate
shocks as they are all exposed symmetrically, but agents do trade in response to id-
iosyncratic shocks: they sell capital and buy bonds when they receive a positive shock
and vice versa. We also show in the appendix that the price of idiosyncratic risk sat-
isfies ς̃i

t = (1− ϑt)χ̄σ̃t, where the right-hand expression is the residual (proportional)
idiosyncratic wealth risk that agents have to bear in equilibrium.

Combining the previous equations and using qB
t Kt = Bt/Pt leads to the individual

valuation equation

ηi
0
B0

P0
= E

[∫ ∞

0
ξ i

tη
i
tstKtdt

]
+ E

[∫ ∞

0
ξ i

tη
i
t (1− ϑt)

2 χ̄2σ̃2
t
Bt

Pt
dt
]

. (16)

Finally, integrating over individuals i yields equation (12).

Comparison of the SDFs ξ̄t and ξ∗∗t The SDFs used in equations (11) and (13) are both
free of idiosyncratic risk and imply the same aggregate risk premium, but they differ
with respect to their average rate of decay, the “risk-free rate” they imply. The average
SDF ξ̄ decays at the equilibrium risk-free rate r f

t . It is thus a proper SDF in this model
that prices all assets free of idiosyncratic risk. The same is not true for the weighted

28A transversality condition always ensures that there is no additional nonvanishing terminal wealth
term. We provide a formal derivation of this equation in Appendix A.5.
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average SDF ξ∗∗t . The latter decays at a rate r f
t + ς̃tσ̃

n
t , where σ̃n

t is the idiosyncratic
net worth volatility of agents (which is identical for all agents in equilibrium). The
weighted average SDF ξ∗∗t therefore discounts safe cash flows at a higher rate than the
risk-free rate that contains a risk premium for idiosyncratic wealth risk. The reason for
this is apparent from equation (12) which inverts the order of integration: while aggre-
gate cash flows from bonds are free of idiosyncratic risk, each agent holds a stochastic
share ηi

t of the aggregate bond portfolio so that individual bond portfolios do contain
priced idiosyncratic risk.

These considerations imply that only equation (11) is a standard asset pricing for-
mula, a discounted present value formula using a SDF that prices all assets (at least
those free of idiosyncratic risk). But equation (11) can have a bubble and infinities with
opposite sign. It can be more informative to work with equation (13) instead, as this
equation makes the source of trading gains transparent. However, we need to keep
in mind that this equation uses a SDF that does not (in general) price the assets in the
economy correctly without additional service flow terms.

Relating the Dynamic Trading Perspective to a Representative Agent. The weighted-
average SDF may not be a proper SDF that prices assets in the competitive equilibrium
of our incomplete markets economy. Yet, it turns out to be the correct SDF of a hypo-
thetical representative agent who is forced to distribute aggregate consumption accord-
ing to the consumption shares that arise in our incomplete markets economy.

More precisely, consider a representative agent whose preferences are described
by a weighted welfare function W0 =

∫
λiVi

0di with some (positive) welfare weights
(λi)i∈[0,1]. If we denote by ηi

t := ci
t/Ct the consumption share of agent i, we can write

utility of this representative agent as

W0 = E

[∫ ∞

0
e−ρt

∫
λi log

(
ηi

tCt

)
didt

]
. (17)

For any fixed stochastic processes for the consumption shares ηi
t,W0 describes standard

time-separable preferences in aggregate consumption Ct with period utility function Ct 7→∫
λiu(ηi

tCt)di (here, u = log, but the following applies more generally).

Using the usual identification between an agent’s SDF process and the marginal
rate of substitution for consumption in different time periods, the SDF process Ξt of
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this hypothetical representative agent can be defined as

Ξt = e−ρt
∫

λiηi
tu
′(ηi

tCt)di∫
λiηi

0u′(ηi
0C0)di

=

∫
λiu′(ci

0)ξ
i
tη

i
tdi∫

λiu′(ci
0)η

i
0di

,

where the second equality uses the definition ξ i
t = e−ρt u′(ci

t)

u′(ci
0)

of the SDF process for
agent i.

We are interested in the special case that the ηi
t-processes are the ones that arise in

equilibrium in our incomplete markets economy. In this case, dηi
t = σ̃

η
t dZ̃i

t with a com-
mon volatility process σ̃

η
t . As we show in Appendix A.6, Ξt is then independent of

welfare weights λi, so that we can assume w.l.o.g. that λiu′(ci
0) is a constant indepen-

dent of i.29 This implies the following proposition.

Proposition 6. The representative agent’s SDF equals the weighted-average SDF,

Ξt =
∫

ξ i
tη

i
tdi = ξ∗∗t .

In Appendix A.6 we elaborate more on the connection to a representative agent.
Specifically, we note that representative agent utility (17) can also be written in the
form

W0 = w0 + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt

 (18)

with some constant w0. Equation (18) eliminates the direct dependence on i and gives
us the alternative interpretation that the representative agent forms preferences over
two “goods”, aggregate consumption and volatility. In Appendix A.6 we embed a
continuum of agents with this utility function into a Lucas (1978) tree economy with
two trees. Both trees produce bundles of consumption goods and volatility that re-
semble the aggregate and cross-sectional cash flows arising in our incomplete markets
economy from trading capital and bonds, respectively. We show that asset prices and
the consumption allocation in this hypothetical representative agent economy are the
same as in our incomplete markets economy. In particular, the valuation equation for
the “bond tree” for the representative agent resembles our valuation equation (13) from
the dynamic trading perspective.

29The independence of the welfare weights holds trivially in our model with log utility, but we show
that it holds also if u is a general CRRA utility function.
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4 Counter-cyclical Safe Asset and Negative Beta

4.1 Setup for Numerical Illustration

In this section, we illustrate the dynamics of our model with aggregate risk in the
context of a numerical example. To ensure that this example captures a quantitatively
plausible situation, in particular with regard to the implications for government debt
valuation, the example is based on a calibration. However, because the most important
takeaways from this section are qualitative, not quantitative, we defer a description
and justification of our calibration choices to Section 7.

We introduce aggregate risk as shocks to idiosyncratic risk σ̃t. We specify a Heston
(1993) model of stochastic volatility, i.e. we assume that the idiosyncratic variance σ̃2

t

follows a Cox–Ingersoll–Ross process (Cox et al., 1985) process,

dσ̃2
t = −ψ

(
σ̃2

t −
(

σ̃0
)2
)

dt− σσ̃tdZt (19)

with parameters ψ, σ, σ̃0 > 0.

We interpret periods of high idiosyncratic risk as recessions and want them to be as-
sociated with lower consumption and higher marginal utility. Rather than microfound-
ing this relationship explicitly, we simply impose an exogenous relationship at = a(σ̃t)

with a′(·) < 0 that generates the desired correlation structure.30

For government policy, summarized by debt growth net of interest payments, µ̆Bt ,31

we similarly impose a functional relationship µ̆Bt = µ̆B(σ̃t) with (µ̆B)′(·) > 0. For suf-
ficiently large (µ̆B)′, this ensures that primary surpluses st = −µ̆Bt qB

t are positive for
low idiosyncratic risk (in expansions) and negative for high idiosyncratic risk (in reces-
sions). Primary surpluses therefore correlate negatively with marginal utility and any
agent in the economy would require a positive risk premium for holding a (hypotheti-
cal) claim to primary surpluses, a feature that is empirically plausible (see, e.g., Jiang et
al. (2019) for the US).

30For models similar to ours in which output and consumption naturally react negatively to risk
shocks, see DiTella and Hall (2020) and Li and Merkel (2020).

31To be precise, the government also chooses the nominal interest rate it. However, in our flexible
price model, this policy choice merely affects the equilibrium inflation rate but not real allocations or
asset prices.
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Imposing tight functional relationships between σ̃t and the other exogenous vari-
ables at and µ̆Bt is somewhat stylized but allows us to keep the state space of our model
one-dimensional. This is helpful to illustrate global dynamics.

We also remark here that, for our numerical example, we replace logarithmic prefer-
ences of households with stochastic differential utility (Duffie and Epstein, 1992) with
relative risk aversion γ > 1, but we continue to assume a unit elasticity of intertemporal
substitution (EIS). We elaborate more on the details in Section 7. This modification does
not matter for the qualitative behavior of the model, but it allows us to generate quan-
titatively realistic aggregate risk premia. This is important to capture the full extent to
which pro-cyclical primary surpluses reduce the value of the cash flow component.

4.2 Equilibrium Dynamics of Bond and Capital Values

Figure 1 illustrates the equilibrium dynamics of the value of the government bond
stock qB (blue line) and the value of the capital stock qK (red line) per unit of capital
in the economy by plotting these valuations as a function of the state variable σ̃. The
gray shaded area depicts the stationary distribution of σ̃. qB is strictly increasing in
idiosyncratic risk whereas qK is strictly decreasing. We can interpret this observation as
flight to safety from capital to bonds in times of elevated idiosyncratic risk. We discuss
implications for the pricing of (diversified) equity from flight to safety in Section 4.5
below.

Because output comoves negatively with σ̃ by construction, the monotonicity pat-
terns of qB(σ̃) and qK(σ̃) imply that bond valuations are counter-cyclical whereas cap-
ital valuations are pro-cyclical. It is this counter-cyclical valuation that makes govern-
ment bonds a good safe asset in the presence of aggregate risk. We analyze the source
of the counter-cyclicality in the following subsection.

4.3 Analyzing the Two Bond Asset Pricing Terms Separately

We now consider the two terms in the government debt valuation equation derived
from the dynamic trading perspective, equation (13). Figure 2 plots the two present
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Figure 1: Equilibrium asset valuations qB (blue line, left scale) and qK (red line, right
scale) as a function of idiosyncratic risk σ̃. The gray shaded area in the background
depicts the (rescaled) ergodic density of the state variable σ̃.

Figure 2: Decomposition of the value of government debt as a function of idiosyncratic
risk σ̃. The blue solid line shows the present value of primary surpluses (qB,CF), the red
solid line the present value of service flows (qB,SF) and the black dashed line the total
value of government debt (qB), all normalized by the capital stock.
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values32

qB,CF(σ̃) := E

[∫ ∞

0

(∫
ξ i

tη
i
tdi
)

stKtdt | σ̃0 = σ̃, K0

]
/K0,

qB,SF(σ̃) := E

[∫ ∞

0

(∫
ξ i

tη
i
tdi
)
(1− ϑt)

2 γχ̄2σ̃2
t
Bt

Pt
dt | σ̃0 = σ̃, K0

]
/K0.

The blue solid line shows the present value of future primary surpluses (cash flows)
qB,CF as a function of the single state variable σ̃. This value is strictly decreasing in id-
iosyncratic risk and has a low – in fact negative – value. Comparing the present value
of surpluses qB,CFK in our model to the market value of government debt qBK, which
is represented by the black dashed line in Figure 2, reveals a large gap (qB − qB,CF)K,
a “debt valuation puzzle”. In addition, when compared with the present value of sur-
pluses qB,CFK, the total value of government debt qBK has also the opposite correlation
with the aggregate state. Yet, there is no puzzle from the perspective of our model:
government debt is a safe asset valued for its service flow from re-trading which is
represented by the component qB,SF(σ̃). As the red solid line in Figure 2 shows, this
value is positive, large and positively correlated with σ̃t. This additional component
dominates the overall dynamics of the value of government debt and is the reason that
qB appreciates in bad times despite the simultaneous drop in qB,CF. That qB,SF must
be positively correlated with σ̃ can also be seen from the present value equation: for
our policy specification, residual net worth risk (1− ϑt)χ̄σ̃t is increasing in σ̃t, so that
an increase in idiosyncratic risk increases the value of insurance service flows from
re-trading.33

The correlation structure apparent in Figure 2 implies that, if the two claims qB,CF

and qB,SF could be traded separately, the cash flow claim would be a high-β asset,
while the service flow claim would be a negative-β asset. The presence of this second,
negative-β component makes government debt as a whole a negative β asset. Govern-
ment debt emerges as a “good friend” also with respect to aggregate shocks.

32Relative to equation (13), here an additional factor γ appears because we no longer assume logarith-
mic preferences.

33This is not an entirely rigorous argument as it ignores changes in the discount rate. The effective
discount rate in the weighted-average SDF

∫
ξ i

tη
i
tdi can both increase or decrease with the aggregate

state σ̃t depending on whether the aggregate risk premium increases or decreases. Note however, that
the level of idiosyncratic risk does not directly matter for the effective discount rate because the risk
premium on idiosyncratic risk exactly offsets the lower risk-free rate due to a precautionary motive.
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We remark that, while the exact numbers in Figure 2 depend on our calibration, the
broad qualitative pattern described in this section is fairly robust, so long as the cali-
bration is consistent with the following two stylized facts about US primary surpluses:
(1) the average primary surplus is close to zero or even slightly negative and (2) pri-
mary surpluses are pro-cyclical. Fact (1) implies that even a risk-free claim to the cash
flows would have a non-positive value and, together with fact (2), the most likely out-
come is a negative cash flow component that has a positive β. The model can then only
generate a large positive total value of government debt if the service flow component
dominates.

4.4 The Possibility of Insuring Bond Holders and Tax Payers at the

Same Time

In our simple setting, households are both capital owners and bond holders. In this
section, we conceptually separate each household into two sub-units, a capital owner
and a government debt holder. Surprisingly, it is possible to follow a government pol-
icy that provides insurance against negative aggregate shocks for both tax payers and
bond holders at the same time. By cutting taxes (or even granting subsidizes) for cap-
ital owners in recessions, their tax burden is positively correlated with their income
providing insurance to tax payers. At the same time, the safe asset service flow rises
in recessions, which provides insurance to government bond holders. This finding in
our incomplete market setting with a safe asset is in sharp contrast to traditional asset
pricing in which either tax payers or government bond holders can be insured, but not
both, as pointed out by Jiang et al. (2020).

We remark that the government nevertheless faces a trade-off also in our setting. By
making debt issuance more counter-cyclical, tax payers become better insured whereas
insurance to bond holders is reduced. This is the case because bond holders are also ex-
posed to the cash flow component, which captures the conventional logic emphasized
by Jiang et al. (2020). However, the trade-off is considerably more favorable because
the cash flow component represents only a small fraction of the total value of debt.
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4.5 Volatile, Flight-to-Safety Prone Equity Markets

The presence of idiosyncratic risk and government debt as a safe asset has also im-
plications for equity markets. We explain in this section why the diversified equity
portfolio does not emerge as a safe asset and how flight to safety can generate quanti-
tatively large additional equity return volatility.

Why Stocks Are not Safe Assets. In our model, agents can hold a diversified stock
portfolio. Like government bonds, this stock portfolio is free of idiosyncratic risk and
thus allows agents to self-insure against idiosyncratic consumption fluctuations. How-
ever, unlike government bonds, stocks are poor aggregate risk hedges as they are ulti-
mately claims to capital, which looses in value in recessions. This implies that stocks
are positive-β assets in our model.

To understand why stock prices fall in times of high idiosyncratic risk, even though
idiosyncratic equity risk can be diversified away, note that the marginal holder of cap-
ital in our model is always an insider who has to bear the increased idiosyncratic risk.
As a consequence, when idiosyncratic risk goes up, so does the insider premium earned
by the managing households, which is achieved by a reduction in the dividend that is
paid to outside equity holders.34 This makes stock dividends more procyclical than
production cash flows, so that stocks lose value precisely when idiosyncratic risk goes
up.

When evaluating the diversified stock portfolio with regard to the key characteristic
of safe assets, the Good Friend Analogy, stocks fail to qualify as safe assets in the same
way as government debt does. Stocks have the good friend property only partially:
stocks are valuable when an agent experiences a negative idiosyncratic shock, but due
to their positive β, they are not in bad aggregate times.

Flight-to-safety Volatility. While the focus of this paper is on government bonds, our
model can also match the empirical mean and volatility of the excess return on the stock
market in excess of government bonds as we discuss in Section 7 below. The realistic
Sharpe ratio is clearly a feature of recursive preferences with a high risk aversion, but
the ability of our simple model to generate large return volatility in the presence of

34Formally, the Lagrange multiplier λi
t on the skin-in-the-game constraint (5) that governs the spread

Et[drK,i
t ]−Et[drE,i

t ] increases, compare Appendix A.1.
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realistic levels of output variation is noteworthy35 and directly related to the existence
of safe government bonds.

To gain intuition, let’s abstract from the distinction between capital and outside eq-
uity36 and consider the following equation, which aggregates the intertemporal budget
constraints of all households:

qK
t Kt + qB

t Kt = Et

[∫ ∞

t

∫
ξ i

sη
i
sdi∫

ξ i
tη

i
tdi

Csds

]
. (20)

In many macro asset pricing models, government debt does not represent positive
net wealth, qB

t = 0, and thus equation (20) implies for such models that the value of the
capital stock equals the present value of future consumption. In other words, in these
models, pricing the aggregate equity claim is equivalent to pricing the aggregate con-
sumption claim.37 In the presence of realistic consumption volatility, large volatility in
capital valuations qK

t Kt is then hard to generate (and requires substantial time variation
in the SDF

∫
ξ i

sη
i
sdi).

Our model with qB 6= 0 suggests an additional explanation for the high observed
stock market volatility. When idiosyncratic risk σ̃t rises, there is a flight to safety that
increases the value of bonds (qB

t ) and lowers the value of capital (qK
t ). Even in the

absence of changes in the present value on the right-hand side of equation (20), this
portfolio reallocation generates flight-to-safety volatility in capital valuations and thus in
the stock market.

To understand how much flight-to-safety volatility matters quantitatively, we com-
pare the excess stock return volatility in our model to the one generated by a version
of the model without government debt. In that alternative version, qB

t = 0 at all times
and thus flight-to-safety volatility disappears.38 We find that the average (annualized)
excess return volatility in the alternative model would be 2.4% as opposed to 11.7% in

35This is so because we work with preferences that feature a unit EIS. It is well-known from the long-
run risk literature that recursive preferences can also generate large return volatility, but only if the EIS is
sufficiently larger than 1. In contrast, the mechanism we describe here works even for EIS ≤ 1.

36As discussed previously, a state-dependent insider premium will ensure that equity values and cap-
ital values move in lockstep despite the fact that idiosyncratic equity risk can be diversified away.

37Because the equation results from aggregating individual intertemporal budget constraints, the SDF
used in this pricing equation is again the weighted-average SDF as in the dynamic trading perspective.

38Formally, we selection the “non-monetary” equilibrium in our model (degenerate solution ϑ ≡ 0 to
equation (10)). We keep all parameters as in our baseline model.
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our baseline model.39 We can therefore conclude that flight-to-safety volatility accounts
for more than three quarters of the overall excess return volatility in our framework.

5 Safe Asset Tautology and Loss of Safe Asset Status

In this section, we clarify the relationship between safe assets and bubbles as well
as the fragility of the safe asset status. We offer two key takeaways: First, while safe
assets and bubbles are two distinct concepts, they complement each other. If an asset is
associated with a bubble, it is more likely to be a safe asset. Second, safe-asset status is
fragile and may be lost when the bubble pops. The same asset with the same payoffs
might be a safe asset in one equilibrium, but not a different equilibrium. In this sense,
a safe asset is safe because it is perceived to be safe, a tautology. In contrast to our
standard equilibrium selection (compare Section 2.3), in this section – and in this section
only – we do not restrict attention to stationary equilibria in which government bonds
have a positive value. Then Proposition 2 does not apply and multiple equilibria may
possibly arise.

Bubbles and Safe Assets. While bubbles and safe assets are distinct concepts, there
is a complementarity between bubbles and the negative β property of safe assets:

First, low-β assets can sustain bubbles more easily that high-β assets. A bubble on
an asset is possible if, in the buy and hold perspective, the discounted terminal value
does not necessarily vanish in the limit. For example, in the case of government debt,
the terminal value may not vanish if E

[
ξ̄TBT/PT

]
does not necessarily converge to

zero as T → ∞ (compare equation (11)). In the long-run, the value of government
debt BT/PT grows on average at the same rate as the aggregate economy, so that the
discounted terminal value grows on average at the rate

g− r f − risk premium on gov. debt

where g is the average growth rate of the economy and r f is the average risk-free rate.
The (average) risk premium on government debt scales linearly with its (average) β,
at least approximately. Hence, the smaller is the β, the larger is the growth rate of the

39As the benchmark asset in the alternative model, we choose a zero net supply risk-free bond, the
most common choice in the literature.
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discounted terminal value and the easier it is to sustain a bubble on government debt.
The same argument applies of course also to other assets than government debt.

Second, a bubble component can lower an asset’s β and thereby make it safer. To
understand this point, take again government debt as an example but now consider
the dynamic trading perspective, equation (13). Suppose the situation is as depicted in
Figure 2 with a cash flow component that has a positive β and a service flow component
that has a negative β.40 The relative contribution of the two components to the overall
value of government debt determines the size and sign of the asset’s β. The service
flow component is proportional to the market value of government debt whereas the
cash flow component does not directly depend on it. A bubble component raises the
market value of the debt and thus increases the relative contribution of the service flow
component, which lowers the asset’s β.

The previous discussion implies that the safe asset status can be bubbly. An asset
whose cash flow component has a sufficiently large β may be safe in some equilibria but
not safe in others. Specifically, in an equilibrium in which the asset has a (sufficiently
large) bubble component, the service flow component dominates, it has a negative total
β and its required risk-adjusted rate of return is low, such that the asset can easily
sustain the bubble. In a different equilibrium without a bubble component, the cash
flow component dominates, the total β is positive and, as a result, the risk-adjusted
rate of return so large that the asset does not appear to be able to sustain bubbles.

Bubbly safe assets give rise to the Safe Asset Tautology: the asset is safe in a given
equilibrium because it is perceived to be safe, but there are alternative equilibria in
which the asset is not safe. In these alternative equilibria, the asset has a positive β and
is therefore not a good friend after negative aggregate shocks. When government debt
is merely a bubbly safe asset, the safe asset status can be fragile. If markets coordinate
on a different equilibrium, the bubble bursts and the government loses the safe asset
status together with the fiscal space it implies.

Bubbly versus Fundamentally Safe Government Debt. In our model environment,
a precautionary savings motive arising from uninsured idiosyncratic risk can depress
discount rates sufficiently to make bubbles possible. But importantly, it depends on
government policy how strong this precautionary savings motive is. If the government

40As we have explained previously, this is the relevant case to make sense of the empirical facts about
primary surpluses and debt from the perspective of our theory.
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makes bonds more attractive by raising higher primary surpluses (equivalently, by low-
ering µ̆Bt ), the bond wealth share ϑt increases, idiosyncratic risk sharing improves and
the precautionary motive is dampened.

A government that makes its debt very attractive can therefore raise discount rates
sufficiently to eliminate any space for rational bubbles. Under such a policy, govern-
ment debt can still be a safe asset, however. In this case, government debt is a fun-
damentally safe asset whose safe asset status does not require the continued belief of
market participants in its safety, unlike for bubbly safe assets.

The simplest way to retain a safe asset status in the absence of a bubble is for the
government to give up insurance of tax payers in recessions and make the β of the
cash-flow component negative. Alternatively, there may still be a sufficient amount of
residual idiosyncratic risk for the counter-cyclical service flow component to be sub-
stantial even though the precautionary savings motive is not large enough to sustain
bubbles. In this case, also a mildly pro-cyclical surplus process may be consistent with
safe government debt in the absence of bubbles.

Selecting the Public Debt Bubble. When the safe asset status is bubbly, a government
with access to a richer set of policy tools than considered in this paper may still be able
to select a unique equilibrium. Brunnermeier et al. (2021a) analyze how fiscal policy
and asset regulation can affect the set of possible equilibria in environments with public
debt bubbles. Their results also apply to our model:

The government can impose a number of specific policy measures that target bub-
bles on alternative assets or give an advantage to government bonds: it can eliminate
private Ponzi schemes by imposing no Ponzi conditions on private agents through in-
solvency laws, it can tax competing bubbly assets, and it can use financial repression
tools such as reserve and liquidity requirements to generate additional demand for its
own liabilities. But most importantly, if a government can credibly commit to create a
fundamentally safe asset off equilibrium by raising surpluses, it can eliminate all other
equilibria. Hence, a government with sufficient backup fiscal capacity does not need to
fear a loss of the safe asset status of its debt.
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6 Privately Issued Safe Assets and Convenience Yields

So far, we have emphasized government debt as a safe asset. In this section, we dis-
cuss safe asset issuance by private agents. We also elaborate on the difference between
service flows derived from retrading and convenience yields.41

Privately Issued Safe Assets. We consider a model extension with privately issued
safe assets. We discuss here merely the economic conclusions and relegate the formal
details to Appendix A.8.

We assume that each agent can issue nominally risk-free bonds, just like the govern-
ment. Our safe asset definition, based on the Good Friend Analogy, applies equally also
to such debt instruments issued by private citizens. For any individual asset holder,
government bonds and privately issued safe bonds are perfect substitutes. As a conse-
quence, the equilibrium interest rate ip

t that private agents have to pay on their bonds
equals the government’s, ip

t = it.

In equilibrium, agents are then indifferent as to how many bonds to issue and how
many privately issued bonds of other agents to hold. In Appendix A.8, we consider a
simple example in which the quantity of outstanding private bonds is always propor-
tional to the quantity of government bonds and all agents keep the relative allocation
to private and government bonds in their portfolios constant, so that they must trade
them in constant proportions. Just like government bonds, we can value bonds issued
by some agent j (“j-bonds”) from the dynamic trading perspective by pricing the cash
flows of the portfolios of j-bonds held by all other agents i 6= j. The resulting equa-
tion is in complete analogy to equation (13) for government bonds. In particular, the
service flow that agents derive per real unit of j-bonds outstanding is the same as for
government bonds.

Overall, the model extension in Appendix A.8 highlights that privately issued bonds
are equally suitable as safe assets for their holders. However, private bond issuance also
comes with a short position in the bond for the issuing agent. In the same spirit as be-
fore, we can value the short position by determining the present value of net payouts
that an issuer makes to all bond holders. That valuation exercise reveals that the short
position generates a negative service flow for the issuing agent. This negative service
flow results from the fact that the agent repays outstanding debt after negative idiosyn-

41For the equations presented in this section, we revert back to the logarithmic preference specification.
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cratic shocks and issues additional debt after positive idiosyncratic shocks. While the
cash flows generated from this contingent bond issuance are zero on average, they are
systematically correlated with marginal utility and thus tend to increase the overall
riskiness of the agent’s portfolio.

Once we aggregate all long and short positions of all privately issued safe bonds, the
service flows “earned” by bond holders and the service flows “paid” by bond issuers
exactly cancel out.42 Therefore, unlike government debt, private safe asset creation
does not generate net service flows for the economy as a whole.

Convenience Yields. A conclusion from the previous model extension is that ∆it :=
ip
t − it = 0, the yield spread between privately issued and government debt is zero.

Government debt is not special. In the presence of idiosyncratic risk, a precautionary
motive depresses all asset returns symmetrically. Equivalently, a service flow from
re-trading can be derived from all assets that are both free of idiosyncratic risk and
tradeable on liquid markets.

Such a service flow is conceptually different from a convenience yield. A conve-
nience yield on government debt captures the special role that government bonds play
in certain transactions. It can be measured by a positive yield spread ∆it > 0 between
government debt and safe corporate debt of equal maturity. In contrast, the service
flow from retrading we emphasize in this paper affects also safe corporate debt. It is
therefore unrelated to the spread ∆it.

To illustrate this difference further, we augment our model so that government debt
has a convenience yield. We model the source of the convenience yield by simply
putting government bond holdings in agents’ utility functions. Other mechanisms like
collateral constraints require richer environments but would lead to the same conclu-
sions. We present the formal model equations in Appendix A.9.

In the augmented model, we can once again price government debt according to
our two valuation perspectives:

Proposition 7. In the model with convenience yields, the value of government debt at t = 0

42This conclusion is generally true, not just in the specific example analyzed in Appendix A.8.
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satisfies from the buy and hold perspective:
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and from the dynamic trading perspective:
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From the latter, dynamic trading perspective, the service flows from bonds in the
utility function (captured by ∆it) and from self-insurance through retrading (captured
by (1− ϑt)

2 χ̄2σ̃2
t ) appear symmetrically. However, the buy and hold perspective re-

veals an asymmetry. The convenience yield still enters the valuation explicitly as a
service flow term. In contrast, the service flow from retrading is absent in this perspec-
tive. Instead, it is implicitly contained in the stochastic discount factor ξ̄t and results in
a lower discount rate due to precautionary savings as well as – potentially – a bubble
term.

The terms arising from the buy and hold perspective are the ones that are typically
measured in empirical asset pricing. The best an empirical researcher can do when
estimating a SDF based on aggregate asset price data is to identify ξ̄t. When looking
at yield differences between safe corporate and government bonds, the empirical re-
searcher identifies an estimate of ∆it. The importance of self-insurance service flows
can only be determined indirectly, e.g. by finding a bubble component.43

We interpret the empirical findings of Jiang et al. (2019) as evidence in support of
such a bubble component. They conclude that an empirical estimate of the present
value of surpluses and convenience yields falls short of the market value of government
debt. As their empirical analysis is conducted from the buy and hold perspective, the
gap must be explained by a bubble component.

43The presence of a bubble component in the buy and hold perspective means that even at the low dis-
count rates implied by ξ̄t, cash flows stKt and convenience yield service flows ∆itBt/Pt are insufficient
to explain the total value of government debt. The same always remains true if we discount at the higher
rates implied by ξ∗∗t , so that the self-insurance service flow must explain the gap.
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7 Calibration and Quantitative Model Fit

In this section we describe the calibration underlying the numerical illustration pre-
sented in Section 4 and argue that it leads to predictions for asset prices and macro
aggregates that are broadly realistic.

Details on the Model Setup We remind the reader that σ̃t is assumed to follows a
Heston (1993) model of stochastic volatility and that we impose functional relationships
at = a(σ̃t) and µ̆Bt = µ̆B(σ̃t) (compare Section 4, in particular equation (19)).

For the functional relationships for at and µ̆Bt , we choose parsimonious linear spec-
ifications

a(σ̃t) = a0 − αa(σ̃t − σ̃0), (21)

µ̆Bt = µ̆B,0 + αB(σ̃t − σ̃0) (22)

with parameters a0, µ̆B,0, αa, and αB. Sufficiently large coefficients αa, αB > 0 ensure
that output, consumption, and primary surpluses all fall when idiosyncratic risk rises.

In order to match certain aspects of the data better, we also make two small mod-
ifications to the model itself. First, for our model to generate a quantitatively realistic
price of aggregate risk, we replace logarithmic preferences with stochastic differential
utility with unit EIS and arbitrary relative risk aversion γ > 0: household i maximizes
Vi

0, where Vi
t is recursively defined by

Vi
t = Et

[∫ ∞

t
(1− γ)ρVi

s

(
log(ci

s)−
1

1− γ
log
(
(1− γ)Vi

s

))
ds

]
.

In the special case γ = 1, this specification collapses to our baseline specification with
logarithmic utility. Second, to separate the level of investment from the adjustment cost
parameter φ, which governs fluctuations in investment and capital prices, we consider
the slightly more general capital adjustment cost function

Φ̂(ι) = ι0 + Φ(ι− ι0)

with the additional parameter ι0. All solution formulas for the baseline model remain
valid for this more general specification if we replace at with at − ι0 and ιt with ιt − ι0.
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Table 1: Parameter Choices

parameter description value parameter description value

σ̃0 σ̃2
t stoch. steady state 0.54 g gov. expenditures 0.138

ψ σ̃2
t mean reversion 0.67 µ̆B,0 µ̆Bt stoch. steady state 0.0026

σ σ̃2
t volatility 0.4 αa at slope 0.072

χ̄ undiversifiable risk 0.3 αB µ̆Bt slope 0.12
γ risk aversion 6 φ capital adj. cost 8.1
ρ time preference 0.138 ι0 capital adj. intercept -0.022
a0 at stoch. steady state 0.625 δ depreciation rate 0.055

We present the model solution for this generalized model in Appendix A.7. There,
we also describe our numerical solution algorithm.

Calibration Strategy We calibrate our model such that, when we feed in a quanti-
tatively realistic process for idiosyncratic risk, the model generates variation in macro
aggregates and aggregate risk premia that are broadly consistent with US data. We
briefly outline our calibration strategy here. The resulting parameter choices are sum-
marized in Table 1. Additional details as well as a description of the underlying data
sources can be found in Appendix A.10.

We normalize the time period in our model to one year. Because ours is a continuous-
time model, this is merely a choice of units that does not affect any results.

With regard to the parameters σ̃0, ψ, σ of the exogenous risk process σ̃t, we tie our
hands by estimating them externally. Specifically, we choose these parameters such
that σ̃2

t closely matches, in a maximum likelihood sense, the common idiosyncratic
volatility (CIV) factor proposed by Herskovic et al. (2016). As that paper shows, CIV
is a priced risk factor that is correlated with idiosyncratic risk exposures of both firms
and households. In Appendix A.10.2, we argue that CIV is a model-consistent data
counterpart of σ̃2

t .44

For the share of undiversifiable idiosyncratic risk, χ̄, the previous literature pro-
vides some imperfect guidance. Angeletos (2007) reports that, in the aggregate, private
and public equity firms in the US are of approximately equal importance for produc-
tion, employment, and wealth and uses this as the basis to calibrate a model with id-

44We have also considered alternative measures for idiosyncratic uncertainty (Bloom et al., 2018; Has-
san et al., 2019) but ultimately chosen CIV both due to the quality and length of the available data series
and because of the theoretical link between σ̃2

t in the model and CIV.
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iosyncratic return risk similar to ours that features both private and public equity. His
calibration suggests χ̄ ≈ 0.5 in our framework. Heaton and Lucas (2000a,b) provide
evidence on the portfolio composition of the wealth of US stockholders. Broadly speak-
ing, two fifths of wealth are composed of liquid assets, and three fifths are composed
of real estate and business wealth. Depending on whether one treats real estate wealth,
which has no direct counterpart in our model, as diversifiable or non-diversifiable cap-
ital, their evidence suggests values of χ̄ between 0.2 and 0.6.45 Based on this broad
evidence, we choose an intermediate value of χ̄ = 0.3.

The calibration of the parameters σ̃0 and χ̄ jointly affects the (average) level of non-
diversifiable idiosyncratic risk faced by agents in our model. To further assess our
calibration choices of these parameters, we check how the predictions of our model for
the volatility of wealth growth compare with estimates in the data. The ergodic mean
of the total wealth growth volatility (

√
(σn)2 + (σ̃n)2) in our model is 0.13. Most of

this is due to idiosyncratic volatility: the ergodic mean of idiosyncratic wealth growth
volatility alone (σ̃n) is 0.12. While these numbers are homogeneous in our model, it
is less clear what the right comparison group is in the data. Compared to empirical
estimates for households at the top of the wealth distribution, who are arguably most
relevant for asset pricing, risk exposures in our model appear to be on the low end.
For the US, Gomez (2023, Table II) reports wealth growth standard deviations between
0.25 and 0.31 but his data only include very wealthy individuals in the Forbes 400.
Based on a richer administrative dataset from Sweden, Bach et al. (2020, Table II) report
wealth growth standard deviations for different groups in the top-10% of the wealth
distribution that range from 0.11 to 0.33 and are monotonically increasing in wealth.46

However, when assessed against the numbers reported by Bach et al. (2020) for wealth
groups in the bottom-90% (their Table II), risk exposures in our model appear to be too
high.

To discipline the comparison with the empirical estimates better, we set up in Ap-
pendix A.11 an extension of our model with two types to generate heterogeneity in
the volatility of wealth growth also in the model. We show that, under certain con-

45More recent work based on administrative data from Sweden and Norway (Bach et al., 2020;
Fagereng et al., 2020) provides corroborating evidence that private business wealth of households in
the top percentile of the wealth distribution – those most relevant for asset pricing – makes up well
above 20% of their total portfolio holdings.

46These authors also attempt to isolate the idiosyncratic component based on a factor model and find
that, in the top-10% group, the share of idiosyncratic risk ranges from one third to two thirds, again
monotonically increasing in wealth Bach et al. (2020, Table I).
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ditions, this model generates the exact same predictions as our baseline model with
homogeneous wealth growth volatility, provided the dynamics for the (cross-sectional)
wealth-weighted average of the variance of (idiosyncratic) net worth growth are identical.
Motivated by this observation, we conclude that such a wealth-weighted average of
the empirical estimates is the correct comparison statistic to our model-implied volatil-
ities.47 To compute this comparison statistic, we combine data from Bach et al. (2020) for
wealth growth volatility across the wealth distribution (in Sweden) with data reported
by Smith et al. (2023) for wealth shares estimated for the US. We provide additional
details of the procedure in Appendix A.10.4. Depending on the precise choices, we find
numbers between 0.16 and 0.19 for total wealth growth volatility and between 0.09 and
0.1 for the idiosyncratic portion. We conclude from this exercise that our calibration im-
plies broadly realistic amounts of risk exposures in total portfolios, albeit with a slightly
overstated idiosyncratic component.48

We choose the nine parameters γ, ρ, a0, g, µ̆B,0, αa, αB, φ, ι0 such that the model
generates values for a number of moments that are broadly in line with the empirical
evidence.49 These moments are the average ratios of consumption, government expen-
ditures, primary surpluses, capital, and debt to output, the average investment rate,
the volatilities of output, consumption, investment, and the surplus-output ratio, and
the equity premium and equity sharpe ratio.50 Our empirical moments are based on
a sample from 1970 to 2019 just prior to the start of the covid pandemic with two ex-
ceptions. The first is the debt-output ratio. Over the largest part of our sample period,
this ratio has exhibited a clear upward trend. For this reason, we target the average
over the last decade in the sample (0.71) instead of the average over the full sample
(0.37). The second exception is the average investment rate, E[I/K], which we do not
compute ourselves but take directly from Cooper and Haltiwanger (2006), who report
a value estimated from micro data.

As we explain in Appendix A.10.3, matching the average ratios is directly infor-

47To be consistent with the result from the two-type model, we take a wealth-weighted average of the
variances, not the standard deviations.

48Our calibration may not even overstate idiosyncratic risk if we adopt a broader interpretation that
includes idiosyncratic human capital risk, which is absent from our model, but arguably an important
source of idiosyncratic risk outside the top wealth group.

49We do not employ a formal simulated method of moments estimation but merely adjust parameters
manually to achieve a good visual fit.

50Volatilities of macro aggregates are at the quarterly frequency. Equity moments refer to annualized
quantities but are measured at a monthly frequency.
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mative for the average value of the endogenous variable ϑt and the parameters ρ, a0,
g, µ̆B,0, and ι0. Requiring the model to match the macro volatilities is standard in the
business cycle literature and also ensures that the model generates a broadly realis-
tic amount of aggregate macro risk.51 While including the surplus volatility is less
standard, this moment is important to discipline the (cyclical) variation in primary sur-
pluses, a key ingredient into the valuation of government debt.52 Finally, requiring the
model to match the equity premium and equity sharpe ratio ensures that this aggregate
macro volatility is realistically priced in capital markets.

The remaining parameter δ does not affect anything of interest for the purpose of
this paper.53 We set it to 0.055, a value slightly smaller than but broadly in line with
typical calibrations. With this choice, the average growth rate of our model economy is
2.0%, close to the empirical counterpart of 2.1% in our sample.

Model Fit. Table 2 summarizes the quantitative model fit. In addition to our target
moments, we report in Table 2 also a number of untargeted moments: the correlations of
consumption, investment, and primary surpluses with output, the standard deviation
of the debt-output ratio, and the average and standard deviation of the risk-free rate.

Section (1) of Table 2 reveals that our model achieves overall a very good fit to the
targeted moments. As we have varied only nine of our parameters to match twelve
moments, this is by no means a trivial observation. Most importantly, our model is con-
sistent with the observed large equity premium and price of risk (Sharpe ratio) while
at the same time matching the volatility and comovement of macro aggregates. This
verifies that our model is capable of generating realistic aggregate risk premia without
requiring excessive real volatility. Notably, our model achieves quantitatively plausible
aggregate risk pricing with a moderate risk aversion parameter (γ) of just 6.

However, Section (2) of Table 2, which reports untargeted moments, reveals some
quantitative shortcomings of our model with regard to the risk-free rate and the debt-
output ratio.54 In particular, the debt-output ratio is too volatile and the risk-free rate

51These moments also discipline the model parameter αa and φ.
52That moment also disciplines the parameter αB .
53This is due to the combination of the AK structure of our economy with a unit EIS. The former

implies that δ merely affects the growth rate of the economy and the latter that income and substitution
effects from permanent variations in growth rates cancel out.

54While three correlations reported also appear too high relative to the data, particularly the correlation
between output and surpluses, we do not view this as a major issue. In a model with one state variable,
all non-zero correlations are close to 1 in absolute value, such that only the sign is truly informative, not
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Table 2: Quantitative Model Fit

moment model data
symbol description

(1) targeted moments

σ(Y) output volatility 1.3% 1.3%
σ(C)/σ(Y) relative consumption volatility 0.61 0.64
σ(I)/σ(Y) relative investment volatility 3.35 3.38

σ(S/Y) surplus volatility 1.1% 1.1%
E[C/Y] average consumption-output ratio 0.58 0.56
E[G/Y] average government expenditures-output ratio 0.22 0.22
E[S/Y] average surplus-output ratio -0.0005 -0.0005
E[I/K] average investment rate 0.12 0.12

E[qKK/Y] average capital-output ratio 3.48 3.73
E[qBK/Y] average debt-output ratio 0.74 0.71

E[dr̄E − drB ] average (unlevered) equity premium 3.59% 3.40%
E[drE−drB ]
σ(drE−drB)

equity sharpe ratio 0.31 0.31

(2) untargeted moments

ρ(Y, C) correlation of output and consumption 0.98 0.92
ρ(Y, I) correlation of output and investment 0.99 0.94

ρ(Y, S/Y) correlation of output and surpluses 0.98 0.60
σ(qBK/Y) volatility of debt-output ratio 4.8% 2.0%

E[r f ] average risk-free rate 5.18% 0.64%
σ(r f ) volatility of risk-free rate 5.47% 2.25%

Notes: For x /∈ {drE − drB , r f }, σ(x) denotes the standard deviation of x and ρ(x, y) denotes the correlation of x and y, both at a
quarterly frequency. Inputs x and y are HP-filtered with smoothing parameter 1600. For x, y ∈ {Y, C, I, G}, we take logarithms
before filtering. E[x] denotes expectations over the ergodic model distribution, inputs x are not HP-filtered. x ∈ {drE − drB , r f }
refer to annualized returns measured at monthly frequency and are also not HP-filtered. Y: (aggregate) output, C: consumption, I:
investment, G: government expenditures, S: primary surplus, r f : risk-free rate; K, qK , qB, drB, dr̄E are defined as in Section 2.
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is too high on average and also too volatile.

The first two observations are, in fact, closely related. As Figure 1 reveals, a large
fraction of the price adjustments in a flight-to-safety episode are due to (deflationary)
adjustments in the value of bonds qB

t as opposed to adjustments in the capital price qK
t .

When prices are flexible, large fluctuations in qB
t due to (instantaneous) deflationary

and inflationary adjustments in response to shocks are a robust feature of this class
of models. If, instead, the relative price adjustment between the two asset was the
same but all the impact adjustment was due to movements in capital values, then the
volatility of the debt-output ratio would be reduced and, at the same time, the risk-free
rate would fall and be closer to the average return on bonds, which is approximately
correct in our model (2.63% vs. 2.40% in the data).

One way to shift all instantaneous volatility from inflationary or deflationary bond
value adjustments into capital prices is to introduce sticky prices. Li and Merkel (2020)
show, in the context of a related model, that introducing even an arbitrarily small de-
gree of price stickiness leads to sluggish movements in qB

t and “overshooting” in qK
t ,

so that all relative price volatility between the two assets is shifted into capital price
adjustments.

A bigger challenge is the volatility of the risk-free rate. It is unclear how much this
moment matters because the risk-free rate does not perform a direct allocational func-
tion in our model. Still, it is difficult to match it well without additional ingredients.
The reason is that the risk-free rate can be written as

r f
t = ρ + µn

t − ςtσ
n
t − ς̃tσ̃

n
t ,

where µn
t , σn

t , and σ̃n
t are the (common) geometric drift and (aggregate and idiosyn-

cratic) volatility loadings of net worth ni
t. The mechanism we emphasize in this paper

requires that the idiosyncratic risk premium ς̃tσ̃
n
t shoots up in recessions and, with the

exogenous process (19), also the aggregate wealth risk premium ς̃tσ
n
t increases in re-

cessions. Both dynamics appear plausible, but they require the risk-free rate to fall in
recessions unless expected net worth growth µn

t offsets the increase in risk premia. Ex-
pected net worth growth µn

t , in turn, cannot vary too much without generating counter-
factually large aggregate consumption volatility. We leave the question how to resolve
this tension for future research.

the precise numerical value.
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8 Quantifying the Bubble Mining Laffer Curve

When idiosyncratic risk is large, safe asset demand may be sufficient to sustain a
public debt bubble. This is indeed the case for our calibration. As Brunnermeier et
al. (2021a) point out, such public debt bubbles represent a fiscal resource that can be
“mined” for revenue as a substitute for taxation. However, the ability to mine a bubble
does not imply that a government can expand spending without limits. Bubble mining
affects the sustainability of bubbles and thereby creates a “debt Laffer curve”.

Here, we briefly revisit the Laffer curve logic and then use our calibrated model to
quantify the Laffer curve for the US. The main takeaway is that the negative β property
of government debt matters considerably. The (average) maximum permanent deficit
is above 2% of GDP in our dynamic model but merely 0.1% if we hold idiosyncratic
risk constant over time.

The Laffer curve logic follows from the following simple formula for primary deficits
per unit of capital55

−st = µ̆Bt qB
t .

The first factor, µ̆Bt , measures revenue raised by bond issuance that is not distributed
to bond holders in the form of interest payments. If it is positive, the claim of old
bond holders is diluted by the issuance of new bonds, i.e., a higher µ̆Bt represents a
tax on existing bond holders. The second factor, qB

t , is the tax base, the real value
of existing debt (per unit of capital). Permanent deficits are possible if this tax base
remains positive even for (permanently) negative primary surpluses. That this is a
possibility can be seen from both perspectives to debt valuation discussed in Section 3:
the value of debt remains positive despite negative surpluses if, in the buy and hold
perspective (equation (13)), a positive bubble term offsets the negative surplus term,
or, equivalently, in the dynamic trading perspective (equation (13)), the service flow
term is sufficiently large. In this case, the tax base is positive, but it nevertheless reacts
negatively to an increase in the rate of bubble mining µ̆Bt .56 This negative reaction
creates a Laffer curve.

55This equation, in turn, follows immediately from the government budget constraint.
56We can see analytically that higher µ̆B lowers the equilibrium value of qB in steady state, compare

the formulas in Section 2.4. Outside of the steady state, equation (8) tells us that there is a negative
relationship if an upward shift in µ̆Bt at all dates decreases ϑt. Equation (10) suggests that this is indeed
the case, but additional technical considerations are required to make this a fully rigorous argument.
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Figure 3: Debt Laffer curve for dynamic model and in steady state (constant σ̃t) when there is a
bubble on government debt. E[µ̆B ] is varied by varying parameter µ̆B,0 while keeping all other
parameters as in Table 1.

The blue line in Figure 3 depicts the debt Laffer curve for our calibrated model.
Specifically, the figure plots the average deficit-GDP ratio that can be sustained for
different debt growth policies of the form (22) with identical αB (identical cyclicality of
debt growth and surpluses) but varying µ̆B,0, i.e. the average level of (interest-adjusted)
debt growth varies across different policies on the x-axis. The implicit assumption
in Figure 3 is that g remains unchanged, so that larger deficits imply smaller output
taxes.57

In Figure 3, if the bubble is mined too aggressively so that the average µ̆B exceeds
7.3%, the government fails to raise additional real revenues. In particular, there is a
limit to bubble mining and the government still faces a constraint on real spending.
Our calibrated model suggests that the average primary deficit that can be sustained
by bubble mining is bounded above by 2.25% of GDP.

It turns out that the negative β property is very important for the qualitative and
quantitative shape of the Laffer curve depicted in Figure 3. If we abstract from counter-
cyclical idiosyncratic risk and consider a constant level of σ̃t = σ̃0 instead, the resulting

57If instead the increased revenues from bubble mining are used to fund additional government ex-
penditures (higher g), the slope of the Laffer curve is uniformly smaller.
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Laffer curve is as depicted by the red dashed line in Figure 3. This steady-state Laffer
curve reveals two differences compared to the dynamic model. First, the Laffer curve
is quantitatively tiny. The maximum (average) permanent deficit is merely 0.1% (and it
is reached at a much lower average value of µ̆B). Second, the steady-state Laffer curve
quickly decays to zero, so that the tax base is more quickly eroded as the government
dilutes the claims of existing bond holders at a faster rate. Instead, in the dynamic
model, agents hold on to some bonds even at very large levels of average (interest-
adjusted) debt growth rates of more than 10% despite the high inflation rates that they
imply. The reason is that the insurance against adverse aggregate events makes bonds
attractive for agents even if they pay negative rates of return on average.

How plausible and robust are these conclusions? First, the quantitative importance
of the negative β property appears to be robust. We have found that it does not hinge on
our specific calibration choices, except for the assumption that there is counter-cyclical
idiosyncratic risk and the insistence that the model generate a realistic (i.e., large) price
of aggregate risk. Second, the exact numbers such as the 2.3% maximum permanent
deficit are more sensitive to calibration choices, in particular to the target level for the
average debt-output ratio.58 As we show in Appendix A.12, a calibration that reduces
the target for the debt-output ratio by one third generates a much smaller Laffer curve
that peaks already at a permanent deficit of 0.9% of output. In contrast, the other al-
ternative calibration choices in Appendix A.12 that leave the target for the debt-output
ratio unaltered have only minor effects on the maximum sustainable deficit.59

There are now also several other recent papers that quantify the debt Laffer curve
in different model environments. Aguiar et al. (2023) and Kaplan et al. (2023) con-
tain quantitative evaluations of Aiyagari-Huggett models. Aguiar et al. (2023, Ap-
pendix D.3) plot only a portion of the Laffer curve, as their paper has a different focus.
Still, the information they provide is sufficient to conclude that the peak must be above
2% and likely between 2% and 2.5% of GDP. Kaplan et al. (2023) report estimates for
the maximum sustainable deficits of 4.6%–4.8% of GDP.60 Mian et al. (2022, Figure 7)

58Furthermore, the comparison with the steady-state Laffer curve reveals that also the calibration of
the exogenous process for σ̃t must be important for the quantitative predictions. However, in a previous
version of this paper we calibrated our model based on the alternative measures for idiosyncratic risk
mentioned in footnote 44. The resulting Laffer curve was quantitatively similar to Figure 3.

59The observation that the calibration target for the debt-output ratio is quantitatively important is
also shared by Mian et al. (2022) in the context of a different model.

60However, their calibration targets are not fully comparable. They target a steady-state debt-output
ratio of 1.1 (0.74 in our model) and a steady-state primary deficit-output ratio of 0.033 (0.0004 in our
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plot the Laffer curve across four different models, all calibrated to the same targets, and
show that they all imply a similar peak estimate of about 2%–2.5%, albeit at different
levels of total debt. In light of these complementary findings, we conclude that our
own estimates appear plausible – and possibly even slightly conservative.

9 Conclusion

In this paper we have developed a safe asset theory of government debt based on
time-varying idiosyncratic insurance service flows generated by trading government
bonds. Our model matches properties of US government debt qualitatively and quan-
titatively and can resolve the empirical puzzles emphasized by Jiang et al. (2019, 2020).
The theory also features a novel explanation for the large equity return volatility based
on flight to safety into government bonds.

Throughout this paper we have assumed that government bonds are traded on liq-
uid markets. The (bubbly) safe asset status rests on this assumption because the service
flow that citizens derive from government debt is directly tied to their ability to trade
it as they experience adverse shocks. The government through its central bank can en-
gage as market maker of last resort so that citizens can trade the asset facing only small
bid-ask spreads. This helps ensuring that government debt retains the safe asset status.
Private assets do not enjoy this privilege.

References

Aguiar, Mark A, Manuel Amador, and Cristina Arellano, “Micro risks and pareto
improving policies with low interest rates,” April 2023. NBER Working Paper 28996.

Aït-Sahalia, Yacine, “Transition Densities for Interest Rate and Other Nonlinear Diffu-
sions,” Journal of Finance, 1999, pp. 1361–1395.

Aiyagari, S. Rao, “Uninsured Idiosyncratic Risk and Aggregate Saving,” Quarterly Jour-
nal of Economics, 1994, 109 (3), 659–684.

model). Therefore, their numbers must be larger than ours by construction.

48



and Ellen R. McGrattan, “The optimum quantity of debt,” Journal of Monetary Eco-
nomics, 1998, 42 (3), 447–469.

Angeletos, George-Marios, “Uninsured Idiosyncratic Investment Risk and Aggregate
Saving,” Review of Economic Dynamics, 2007, 10 (1), 1–30.

Bach, Laurent, Laurent E Calvet, and Paolo Sodini, “Rich pickings? Risk, return, and
skill in household wealth,” American Economic Review, 2020, 110 (9), 2703–47.

Bassetto, Marco and Wei Cui, “The fiscal theory of the price level in a world of low
interest rates,” Journal of Economic Dynamics and Control, 2018, 89, 5–22.

Bewley, Truman F., “The Optimum Quantity of Money,” in John H. Kareken and Neil
Wallace, eds., Models of Monetary Economies, Federal Reserve Bank of Minneapolis,
1980, pp. 169–210.

Blanchard, Olivier, “Public debt and low interest rates,” American Economic Review,
2019, 109 (4), 1197–1229.

Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J.
Terry, “Really Uncertain Business Cycles,” Econometrica, May 2018, 86 (3), 1031–1065.

Brunnermeier, Markus K. and Yuliy Sannikov, “The I Theory of Money,” 2016. Work-
ing Paper, Princeton University.

and , “On the Optimal Inflation Rate,” American Economic Review Papers and Pro-
ceedings, 2016, 106 (5), 484–489.

, Luis Garicano, Philip Lane, Marco Pagano, Ricardo Reis, Tanos Santos, David
Thesmar, Stijn Van Nieuwerburgh, and Dimitri Vayanos, “The Sovereign-Bank Di-
abolic Loop and ESBies,” American Economic Review Papers and Proceedings, May 2016,
106 (5), 508–512.

, Sam Langfield, Marco Pagano, Ricardo Reis, Stijn Van Nieuwerburgh, and Dim-
itri Vayanos, “ESBies: Safety in the Tranches,” Economic Policy, 2017, 32 (90), 175–219.

Brunnermeier, Markus, Sebastian Merkel, and Yuliy Sannikov, Lecture Notes on
Macro, Money and Finance: A Heterogeneous-Agent Continuous Time Approach 2020.
Princeton University.

49



, , and , “The Fiscal Theory of the Price Level with a Bubble,” 2021. Working
Paper, Princeton University.

, , and , “A Safe Asset Perspective for an Integrated Policy Framework,” in
Stephen J. Davis, Edward S. Robinson, and Bernard Yeung, eds., The Asian Monetary
Policy Forum: Insights for Central Banking, 2021.

Caballero, Ricardo J and Emmanuel Farhi, “The Safety Trap,” Review of Economic Stud-
ies, 2017, 85 (1), 223–274.

Caballero, Ricardo J., Emmanuel Farhi, and Pierre-Olivier Gourinchas, “The Safe As-
sets Shortage Conundrum,” Journal of Economic Perspectives, August 2017, 31 (3), 29–
46.

Constantinides, George M. and Darrell Duffie, “Asset Pricing with Heterogeneous
Consumers,” Journal of Political Economy, 1996, 104 (2), 219–240.

Cooper, Russell W and John C Haltiwanger, “On the nature of capital adjustment
costs,” The Review of Economic Studies, 2006, 73 (3), 611–633.

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross, “A Theory of teh Term
Structure of Interest Rates,” Econometrica, 1985, 53 (2), 385–408.

Dang, Tri Vi, Gary Gorton, and Bengt Holmstrom, “The Information Sensitivity of a
Security,” 2015.

, , Bengt Holmström, and Guillermo Ordoñez, “Banks as Secret Keepers,” Ameri-
can Economic Review, April 2017, 107 (4), 1005–29.

Diamond, Peter A., “National Debt in a Neoclassical Growth Model,” American Eco-
nomic Review, 1965, 55 (5), 1126–1150.

DiTella, Sebastian and Robert Hall, “Risk Premium Shocks Can Create Inefficient Re-
cessions,” 2020. Working paper, Stanford University.

Duffie, Darrell and Larry G. Epstein, “Stochastic differential utility,” Econometrica:
Journal of the Econometric Society, 1992, pp. 353–394.

Epstein, Larry G. and Stanley E. Zin, “Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical Framework,” Economet-
rica, 1989, 57 (4), 937–969.

50



Fagereng, Andreas, Luigi Guiso, Davide Malacrino, and Luigi Pistaferri, “Hetero-
geneity and persistence in returns to wealth,” Econometrica, 2020, 88 (1), 115–170.

Feenstra, Robert C, Robert Inklaar, and Marcel P Timmer, “The next generation of the
Penn World Table,” American economic review, 2015, 105 (10), 3150–82.

Gomez, Matthieu, “Decomposing the growth of top wealth shares,” Econometrica, 2023,
91 (3), 979–1024.

Gorton, Gary and George Pennachi, “Financial Intermediaries and Liquidity Cre-
ation,” The Journal of Finance, 1990, 45 (1), 49–71.

Greenwood, Robin, Samuel Gregory Hanson, and Jeremy C. Stein, “The Federal Re-
serve’s Balance Sheet as a Financial-Stability Tool,” in “Jackson Hole Symposium,”
Vol. 1 Federal Reserve Bank of Kansas City Kansas City, KS 2016, pp. 335–397.

Hassan, Tarek A, Stephan Hollander, Laurence Van Lent, and Ahmed Tahoun, “Firm-
level political risk: Measurement and effects,” The Quarterly Journal of Economics,
2019, 134 (4), 2135–2202.

He, Zhiguo, Arvind Krishnamurthy, and Konstantin Milbradt, “A model of safe asset
determination,” American Economic Review, 2019, 109 (4), 1230–62.

Heaton, John and Deborah J. Lucas, “Evaluating the Effects of Incomplete Markets on
Risk Sharing and Asset Pricing,” Journal of Political Economy, 1996, 104 (3), 443–487.

and Deborah Lucas, “Portfolio Choice and Asset Prices: The Importance of En-
trepreneurial Risk,” The Journal of Finance, 2000, 55 (3), 1163–1198.

and , “Portfolio choice in the presence of background risk,” The Economic Journal,
2000, 110 (460), 1–26.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh, “The
common factor in idiosyncratic volatility: Quantitative asset pricing implications,”
Journal of Financial Economics, 2016, 119 (2), 249–283.

Heston, Steven L., “A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options,” The Review of Financial Studies, 1993, 6
(2), 327–343.

51



Jiang, Zhengyang, Hanno Lustig, Stijn Van Nieuwerburgh, and Mindy Z. Xiaolan,
“The US Public Debt Valuation Puzzle,” December 2019. NBER Working Paper 26583.

, , , and , “Manufacturing Risk-Free Government Debt,” 2020.

Kaplan, Greg, Georgios Nikolakoudis, and Giovanni L Violante, “Price Level and
Inflation Dynamics in Heterogeneous Agent Economies,” July 2023. NBER Working
Paper 31433.

Kiyotaki, Nobuhiro and John Moore, “Liquidity, Business Cycles, and Monetary Pol-
icy,” April 2008. mimeo.

Krishnamurthy, Arvind and Annette Vissing-Jorgensen, “The Aggregate Demand for
Treasury Debt,” Journal of Political Economy, 2012, 120 (2), 233–267.

Krueger, Dirk and Hanno Lustig, “When is market incompleteness irrelevant for the
price of aggregate risk (and when is it not)?,” Journal of Economic Theory, 2010, 145 (1),
1–41.

Lagos, Ricardo, Guillaume Rocheteau, and Randall Wright, “Liquidity: A New Mon-
etarist Perspective,” Journal of Economic Literature, 2017, 55 (2), 371–440.

Li, Ziang and Sebastian Merkel, “Flight-to-Safety in a New Keynesian Model,” 2020.
Working Paper.

Lucas, Robert E, “Asset prices in an exchange economy,” Econometrica, 1978, 46 (6),
1429–1445.

Martin, Alberto and Jaume Ventura, “The macroeconomics of rational bubbles: a
user’s guide,” Annual Review of Economics, 2018, 10, 505–539.

Merkel, Sebastian, “The Macro Implications of Narrow Banking: Financial Stability
versus Growth,” 2020. Working Paper, Princeton University.

Mian, Atif R, Ludwig Straub, and Amir Sufi, “A goldilocks theory of fiscal deficits,”
January 2022. NBER Working Paper 29707.

Miao, Jianjun, “Introduction to economic theory of bubbles,” Journal of Mathematical
Economics, 2014, 53, 130–136.

52



Pham, Huyên, Continuous-time stochastic control and optimization with financial applica-
tions, Vol. 61, Springer, 2009.

Reis, Ricardo, “The constraint on public debt when r < g but g < m,” 2021. BIS
Working Paper No 939.

Rocheteau, Guillaume, “Payments and liquidity under adverse selection,” Journal of
Monetary Economics, 2011, 58 (3), 191–205.

Samuelson, Paul A., “An Exact Consumption-Loan Model of Interest with or without
the Social Contrivance of Money,” Journal of Political Economy, 1958, 66 (6), 467–482.

Smith, Matthew, Owen Zidar, and Eric Zwick, “Top wealth in america: New estimates
under heterogeneous returns,” The Quarterly Journal of Economics, 2023, 138 (1), 515–
573.

Tella, Sebastian Di, “Risk premia and the real effects of money,” American Economic
Review, 2020, 110 (7), 1995–2040.

Tirole, Jean, “Asset Bubbles and Overlapping Generations,” Econometrica, 1985, 53 (5),
1071–1100.

Vayanos, Dimitri and Jean-Luc Vila, “Equilibrium Interest Rate and Liquidity Pre-
mium with Transaction Costs,” Economic Theory, 1999, 199 (13), 509–539.

Woodford, Michael, “Public Debt as Private Liquidity,” American Economic Review,
1990, 80 (2), 382–388.

53



A Appendix

A.1 Omitted Steps in the Derivation of the Model Solution

Rewriting the Return Processes. We first write the return processes stated in Section 2
explicitly as diffusion processes using Ito’s lemma. To do so, we first postulate that qB

t

and qK
t follow a generic Ito evolution of the form

dqB
t = µ

q,B
t qB

t dt + σ
q,B
t qB

t dZt, dqK
t = µ

q,K
t qK

t dt + σ
q,K
t qK

t dZt.

Whenever qB
t , qK

t 6= 0, the unknown (geometric) drifts µ
q,B
t , µ

q,K
t and volatilities σ

q,B
t , σ

q,K
t

are uniquely determined by the local behavior of qB
t and qK

t , respectively. In the follow-
ing, we also use the notation µϑ

t and σϑ
t for the (geometric) drift and volatility of ϑt.61

Using Ito’s lemma, the bond return can be written as62

drBt = µ̆Bt dt +
d
(

qB
t Kt

)
qB

t Kt

=
(

Φ(ιt)− δ + µ
q,B
t − µ̆Bt

)
dt + σ

q,B
t dZt,

Similarly, the return on agent i’s capital can be written as

drK,i
t

(
ιit

)
=

(1− τt) at − ιit
qK

t
+

d(qK
t k̃i

t)

qK
t k̃i

t

=

(
(1− τt) at − ιit

qK
t

+ Φ
(

ιit

)
− δ + µ

q,K
t

)
dt + σ

q,K
t dZt + σ̃tdZ̃i

t.

Using the government budget constraint (2) allows us to eliminate taxes τtat and yields

drK,i
t

(
ιit

)
=

 at − g− ιit
qK

t
+

qB
t

qK
t

µ̆Bt + Φ
(

ιit

)
− δ + µ

q,K
t

dt + σ
q,K
t dZt + σ̃tdZ̃i

t.

61This means, dϑt = µϑ
t ϑtdt + σϑ

t ϑtdZt.
62In line with our symmetric equilibrium definition and the discussion in the main text, we have

assumed here ιit = ιt for all i so that
∫

Φ(ιit)di = Φ(ιt). This assumption is also verified below from the
optimal choice conditions of households.
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Given the capital return, the return on outside equity issued by agent i can be writ-
ten as

drE,i
t = Et[drE,i

t ] + σ
q,K
t dZt + σ̃tdZ̃i

t.

Finally, the return on the equity portfolio is then

dr̄E
t =

∫
drE,i

t di = Et[dr̄E
t ] + σ

q,K
t dZt,

because idiosyncratic risk σ̃tdZ̃i
t of individual equity securities averages out in the port-

folio.

Hamiltonian of the Household Problem. We use the stochastic maximum principle
to derive optimal choice conditions for the household problem. After substituting the
return expressions stated previously into the net worth evolution (4), we see that the
Hamiltonian for the household problem is

Hi
t = e−ρt log ci

t + ξ i
t

−ci
t + ni

t

Et[drBt ]
dt + θK,i

t

(
Et

[
drK,i

t (ιit)
]

dt − Et[drBt ]
dt

)

+ θE,i
t

(
Et [drE,i

t ]
dt − Et[drBt ]

dt

)
+ θĒ,i

t

(
Et [dr̄E

t ]
dt − Et[drBt ]

dt

)
− ςi

tξ
i
tn

i
t

(
σ

q,B
t −

(
θK,i

t + θE,i
t + θĒ,i

t

) σϑ
t

1− ϑt

)
− ς̃i

tξ
i
tn

i
t

(
θK,i

t + θE,i
t

)
σ̃t,

where we have used σ
q,K
t − σ

q,B
t =

σϑ
t

1−ϑt
. Here ξ i

t denotes the costate (“Lagrange multi-
plier”) for the net worth evolution (4), and we write the loadings of ξ i

t with respect to
the Brownian motions dZt and dZ̃i

t as −ςi
tξ

i
t and −ς̃i

tξ
i
t, respectively.63

As this is a standard portfolio choice problem, we conjecture that the value func-
tion of the problem inherits the functional form of the utility function, i.e. Vt

(
ni
)

=

vt +
1
ρ log ni, where vt depends on (aggregate) investment opportunities, but not on

individual net worth ni.64 The usual relationship between the value function and the
costate, ξ i

t = e−ρtV′t (n
i
t) then implies ξ i

t = e−ρt/(ρni
t), which we can use to eliminate ξ i

t

from the Hamiltonian Hi
t.

By the stochastic maximum principle, the optimal choice (ci
t, ιit, θK,i

t , θE,i
t , θĒ,i

t ) must

63We use the same notation ξ i
t for the costate in the household problem and the SDF in Sections 2.5

and 3 because the two in fact coincide.
64The verification argument for this conjecture is entirely standard, see e.g. Brunnermeier et al. (2021a),

Appendix A.2.
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maximize the Hamiltonian subject to the skin-in-the-game constraint (5).

Optimal Consumption and Investment Choice. Taking first-order conditions with
respect to ci

t and ιit yields the two equations

ci
t = ρni

t, (23)

d
dι

Et

[
drK,i

t (ι)
]∣∣∣∣

ι=ιit

= 0.

The first equation is precisely the optimal consumption condition stated in the main
text. The second equation implies the Tobin’s q condition stated in the main text once
we take the derivative in the explicit formula for drK,i

t (ι) stated in Section 2.2. We re-
produce the Tobin’s q condition here for the convenience of the reader:65

qK
t = 1 + φιt. (24)

Derivation of Equations (7), (8), and (9). Integrating the optimal consumption condi-
tion (23) across all households i yields

Ct =
∫

ci
tdi = ρ

∫
ni

tdi = ρ(qB
t + qK

t )Kt,

where the last equality follows from the fact that aggregate net worth consists precisely
of all capital and bond wealth combined.66

We next use qB
t + qK

t = qK
t /(1− ϑt) by the definition of ϑt to replace the right-hand

side of the previous equation.
Ct =

ρ

1− ϑt
qK

t Kt.

Substituting this into goods market clearing (3), canceling Kt, and using equation (24)
to eliminate qK

t yields the equation

ρ

1− ϑt

(
1 + φιt

)
+ g+ ιt = at.

65We have already dropped the i superscript on ι because all households choose the same investment
rate as argued in the main text.

66Note that, in our formulation, taxes are effectively imposed on capital holdings such that the present
value of tax liabilities of households is implicitly capitalized in capital valuations. Also note that outside
equity claims are in zero net supply and thus do not contribute to aggregate net worth.
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This is a simple linear equation for ιt. Solving it implies equation (7) as stated in the
main text. Equation (9) can then be recovered by substituting the resulting expression
for ι back into equation (24). Finally, equation (8) follows by exploiting the relationship
qB

t = ϑt
1−ϑt

qK
t , which is a direct consequence of the definition of ϑt.

This also completes the proof of Lemma 1.

Optimal Portfolio Choice. The first-order conditions for maximizing the Hamilto-
nian with respect to the portfolio shares θK,i

t , θE,i
t , and θĒ,i

t yields three Merton portfolio
choice equations

Et

[
drK,i

t (ιit)
]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tσ̃t − λi

t (1− χ̄) , (25)

Et

[
drE,i

t

]
dt − Et[drBt ]

dt = −ςi
t

σϑ
t

1− ϑt
+ ς̃i

tσ̃t − λi
t, (26)

Et[dr̄E
t ]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

. (27)

Here, λi
t is a scaled Lagrange multiplier on the constraint (5) (skin-in-the-game con-

straint). Combining the last two equations and using
Et[dr̄E

t ]
dt =

Et

[
drE,i

t

]
dt in equilibrium,

we obtain a simple characterization of λi
t:

λi
t = ς̃i

tσ̃t.

As we will show below, ς̃i
t is always positive and so the constraint (5) must always

be binding – households issue the maximum possible amount of outside equity. In
particular,

θK,i
t + θE,i

t = θK,i
t χ̄. (28)

We now perform two substitutions in the first portfolio choice condition stated
above. First, we eliminate λi

t on the right-hand side using the previously derived
equation. Second, we plug in the expected return expressions implied by the return
equations stated in Section 2.2. The condition then becomes

at − gt − ιt

qK
t

− µϑ
t − µ̆Bt
1− ϑt

−

(
σ

q,B
t − σϑ

t

)
σϑ

t

1− ϑt
= −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tχ̄σ̃t. (29)
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Characterizing the Costate Volatility Loadings ςi
t and ς̃i

t. To determine the values of
ϑi

t and ς̃i
t in the previous equations, recall that, by definition, −ςi

tξ
i
t and −ς̃i

tξ
i
t are the

loadings of dξ i
t with respect to dZt and dZ̃i

t, respectively. We can use ξ i
t = e−ρt/(ρni

t) to
conclude that

ςi
t = σn,i

t , ς̃i
t = σ̃n,i

t ,

where σn,i
t and σ̃n,i

t are the (geometric) volatility loading of net worth ni
t for aggregate

and idiosyncratic risk, respectively. The net worth evolution (4) combined with the
return expressions stated in the beginning of this appendix furthermore implies67

σn,i
t = σ

q,B
t −

(
θK,i

t + θE,i
t + θĒ,i

t

) σϑ
t

1− ϑt
, σ̃n,i

t =
(

θK,i
t + θE,i

t

)
σ̃t.

We now eliminate the equity portfolio weights. For idiosyncratic volatility, we can
use equation (28) to eliminate θE,i

t . For aggregate volatility, we use that in equilibrium
all agents face the same portfolio conditions (28) and (29) and thus optimally choose
the same portfolio allocation θK,i

t , θE,i
t , θĒ,i

t (i.e., these quantities do not depend on i).
Market clearing in the outside equity market then implies θE,i

t = −θĒ,i
t , which allows

us to eliminate the sum θE,i
t + θĒ,i

t in the aggregate risk loading.

By combining all equations, we obtain

ςi
t = σ

q,B
t − θK,i

t
σϑ

t
1− ϑt

, ς̃i
t = θK,i

t χ̄σ̃t. (30)

Derivation of Equation (10). We start from the portfolio choice condition (29), substi-
tute in the costate voatility loadings as stated in equation (30), use that all households
choose identical portfolios together with capital market clearing θK,i

t = 1− ϑt as well as
the fact that qK

t = (1− ϑt)(qB
t + qK

t ), and rearrange:

1
1− ϑt

at − g− ιt

qB
t + qK

t
− µϑ

t − µ̆Bt
1− ϑt

= (1− ϑt)χ̄
2σ̃2

t .

67Compare also the Hamiltonian stated earlier. There, the same expressions enter because ni
t is a

controlled state variable.
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By goods market clearing, the second factor in the first term on the left equals ρ. Solving
the resulting equation for µϑ

t yields

µϑ
t = ρ + µ̆Bt − (1− ϑt)

2 χ̄2σ̃2
t .

Equation (10) follows from this equation by multiplying both sides by ϑt and using
Et[dϑt] = µϑ

t ϑt.

This also proves the first part of Proposition 1. We comment on the proof of the
second part below.

Remark on Determination of Equilibrium Quantities in Definition 1. We have claimed
in the main text after Lemma 1 that all equilibrium quantities in Definition 1 are func-
tions of ϑt and exogenous variables. We still have to justify this claim for the portfolio
weights and the expected equity return.

Regarding the portfolio weights, first note that θE
t = −θĒ

t by equity market clearing,
so that it is sufficient to determine only θE

t . This weight, in turn, can be expressed in
terms of θK

t by equation (28). Finally, capital market clearing, θK
t = 1− ϑt, expresses θK

t

in terms of ϑt.

Regarding the expected equity return, note that the portfolio choice first-order con-
ditions and the characterization of the Lagrange multiplier λi

t imply

E[drE
t ] = Et[drK

t ]− ς̃tσ̃t + λi
t(1− χ̄) = −χ̄ς̃tσ̃t

and then equation (30) together with capital market clearing yield

E[drE
t ] = −(1− ϑt)χ̄

2σ̃2
t .

The right-hand side is a function of ϑt and the exogenous variable σ̃t.

This also concludes the proof of the second part of Proposition 1, as we have con-
structed all variables in Definition 1 as functions of ϑt. By following the previous
derivation steps backwards, one verifies that then indeed households maximize util-
ity and all markets clear.
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A.2 Uniqueness of Stationary Monetary Equilibria

BSDE (10) is a fixed-point condition for the key equilibrium process ϑ. In this ap-
pendix, we show that the BSDE is well-behaved on the domain (0, 1) and represents
a contraction in a suitable sense to be made precise. The contraction property implies
that the equation has at most one nondegenerate stationary solution on this domain.

Let us first consider the finite-horizon version of the BSDE (10) for a fixed terminal
condition ϑT. In integral form, this BSDE can be written as

∀t ∈ [0, T] : ϑt = Et

[
ϑT +

∫ T

t

(
(1− ϑs)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ϑsds

]
. (31)

Standard results from BSDE theory imply that, under suitable conditions on µ̆B and
σ̃ (boundedness is sufficient), there is a unique solution to the BSDE for any bounded
terminal condition (see, e.g., Pham (2009, Theorem 6.2.2)).

The following auxiliary lemma shows that solutions to the finite-horizon BSDE sat-
isfy a type of monotonicity property with respect to the terminal condition. It also
implies that, if the terminal condition is in (0, 1], then so is the full solution.

Lemma 2. Let ϑt solve the BSDE (31) with terminal condition ϑT taking values in (0, 1]. If
ϑ′t is another solution with terminal condition ϑ′T < ϑT, then ϑ′t < ϑt for all t ∈ [0, T]. If
ρ + µ̆Bt > 0 for all t ∈ [0, T], then ϑt ∈ (0, 1) for all t < T.

Proof. First, observe that whenever ϑT ≥ ϑ′T, the comparison principle for BSDEs im-
plies that ϑt ≥ ϑ′t (see, for example, Pham (2009, Theorem 6.2.2)). Furthermore, ϑt > ϑ′t
if ϑT > ϑ′T with positive probability.

Second, let us compare the solution ϑt of BSDE (31), which we write in integrated
form as

−dϑt =
(
(1− ϑt)

2χ̄2σ̃2
t − ρ− µ̆Bt

)
ϑt︸ ︷︷ ︸

= f 1
t (ϑt)

dt− νtdZt

with the solution ϑ̄t = 1 of BSDE

−dϑ̄t = 0︸︷︷︸
= f 2

t (ϑ̄t)

dt− νtdZt
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with terminal condition ϑ̄T = 1.

Since terminal conditions satisfy ϑ̄T ≥ ϑT, and generators satisfy

0 = f 2
t (ϑ̄t) > f 1

t (ϑ̄t) = −
(

ρ + µ̆Bt

)
,

the comparison principle implies that ϑt < ϑ̄t = 1 for all t ∈ [0, T).

One could now attempt to solve the infinite-horizon BSDE (10) by starting at some
terminal guess ϑT of the finite-horizon BSDE and considering longer and longer time
horizons (T → ∞). It is, however, a priori unclear whether this procedure converges
and, if so, whether the limit is independent of the assumed terminal guess.

The following technical lemma is key in establishing that this strategy succeeds (un-
der certain conditions).

Lemma 3. Suppose µ̆Bt + ρ > 0 for all t. Then the finite-horizon BSDE (31) is a contraction
on logarithmic scale:
Consider any two distinct terminal conditions ϑT and ϑ′T with values in (0, 1). Let ϑt and ϑ′t be
the corresponding solutions. Then for all t < T, ϑt and ϑ′t have values in (0, 1) and satisfy68

log ϑt − log ϑ′t ∈
(

ess inf
(
log ϑT − log ϑ′T

)
, ess sup

(
log ϑT − log ϑ′T

))
. (32)

Proof. The statement of the lemma is equivalent to

ϑt

ϑ′t
∈
(

ess inf
ϑT

ϑ′T
, ess inf

ϑT

ϑ′T

)
.

Let us prove that
ϑt

ϑ′t
> x := ess inf

ϑT

ϑ′T

as the other bound is symmetric. Without loss of generality, let us assume that ϑT ≤ ϑ′T,
because replacing ϑT with min(ϑT, ϑ′T) only weakly lowers ϑt by Lemma 2 and makes
the bound harder to prove.

68Here ess inf and ess sup denote the essential infimum and essential supremum, respectively, and are
taken over all outcomes of the underlying probability space.
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Equation (31) implies that ϑt satisfies

ϑt = Et

exp

(∫ T

t

(
(1− ϑs)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ds

)
ϑT

 (33)

and an analogous expression holds for ϑ′t. Since ϑs ≤ ϑ′s < 1 for all s ∈ [t, T] we have
(1− ϑs)2 ≤ (1− ϑ′s)

2 and so

ϑt ≥ Et

exp

(∫ T

t

(
(1− ϑ′s)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ds

)
ϑT


≥ Et

exp

(∫ T

t

(
(1− ϑ′s)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ds

)
xϑ′T

 = xϑ′t,

Hence, ϑt/ϑ′t ≥ x. If ϑT and ϑ′T are distinct, then the inequality must be strict.

Lemma 3 has important implications for the infinite-horizon BSDE (10) if the econ-
omy is stationary (compare Definition 2).

Proposition 8. Suppose the exogenous processes are stationary and ρ + µ̆B(X) > 0 for all
X ∈ X. Then, equation (10) has at most one stationary nondegenerate (i.e. not identically 0)
solution.

If this solution exists, ϑt = ϑ∗(Xt), then

• for all X ∈ X, ϑ∗(X) > 0;

• for any function ϑ′ : X → (0, 1), the solution to the finite-horizon equation (31) with
terminal condition ϑT = ϑ′(XT) converges to ϑt = ϑ∗(Xt) as T → ∞.

If equation (10) has no stationary nondegenerate solution, then for any terminal condition ϑT =

ϑ′(XT), the solution to the finite-horizon equation converges to ϑt = 0 as T → ∞.

We note that Proposition 8 encompasses all statements in Proposition 2 stated in the
main text. Proving the former therefore also implies the latter. Before we present the
proof, we first establish another small technical lemma.

Lemma 4. Suppose that economy is stationary and let ϑt = ϑ(t, Xt) solve (31) with terminal
condition ϑT = ϑ(T, XT), with values in (0, 1]. If ϑ(t, X) > ϑ(T, X) for all X and t < T, then
ϑ(t, X) increases as t declines. If ϑ(t, X) < ϑ(T, X), then ϑ(t, X) declines as t declines.
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Proof. The two statements are symmetric, so let us prove the first one. We would like
to show that ϑ(t− s, X) > ϑ(t, X). These are solutions to (31) with time horizon T − t
and terminal conditions ϑ(T − s, X) > ϑ(T, X). By Lemma 2, ϑ(t− s, X) > ϑ(t, X).

Proof of Proposition 8. First, let us show that any stationary nondegenerate solution ϑ(X)

must be strictly positive. If ϑ(X′) = 0 for some X′ ∈ X, then ϑt = 0 when Xt = X, hence
equation (33) can hold only if ϑT = 0 almost surely for all future T. Since state process
Xt is ergodic, it follows that ϑ(X) = 0 almost surely, but then (33) implies that ϑ(X) = 0
for all X. Therefore, ϑ cannot degenerate to 0 at any single point.

Let us prove that there is at most one stationary nondegenerate solution. Suppose
ϑ1(X) and ϑ2(X) are two distinct solutions, with ϑ1(X) < ϑ2(X) for some X ∈ X.
Then x := infX∈X

ϑ1(X)
ϑ2(X)

< 1, and by the compactness of the domain X, the infimum is
attained at some point X (as ϑ1, ϑ2 are assumed to be continuous).

Now, suppose Xt = X and consider solutions ϑ and ϑ′ of equation (31) with terminal
conditions ϑT = ϑ1(XT) and ϑ′T = ϑ2(XT). Then, by uniqueness of solutions to the
BSDE (31), we have ϑt = ϑ1(X) and ϑ′t = ϑ2(X). But then

ϑt

ϑ′t
=

ϑ1(X)

ϑ2(X)
≤ inf

ϑT

ϑ′T
,

a contradiction to Lemma 3.

Now, suppose (10) has no stationary nondegenerate solution. Consider the solution
to equation (31) with terminal condition ϑT = 1. Then by Lemma 2, ϑT−s < 1 for all
s > 0, and by Lemma 4, ϑt declines for each X as the horizon T increases. Hence, ϑt

must converge to some function ϑ∗(X). By continuity ϑ∗(X) is a solution to (10), and
because there are no stationary nondegenerate solutions, the limit must be ϑ∗(X) = 0.
Now, if ϑ′t a solution with a different terminal condition ϑ′T < 1, then ϑ′t < ϑt by the
comparison principle (Lemma 2), hence ϑ′t must also converge to 0.

Finally, suppose (10) does have a stationary nondegenerate solution. Then the so-
lution ϑ from the terminal condition ϑT = 1 is likewise declining as we go backwards
in time and converges to a solution. Since ϑ stays above the stationary nondegenerate
solution ϑ∗ by Lemma 2, it must converge to ϑ∗. Likewise, the solution ϑ′ from the
terminal condition ϑ′T = εϑ̂ increases as we go backwards in time (by Lemmas 4 and
3), and converges to ϑ∗. By the comparison principle, any other solution ϑ′′t with termi-
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nal condition ϑ′′T(X) ∈ [εϑ̂(X), 1] will also be squeezed between ϑ′t and ϑt, hence will
converge to ϑ̂.

Proposition 8 implies that to solve (10), we do not need a good guess of the terminal
condition. Any nonzero guess will converge to a stationary solution and, if it exists, the
nondegenerate one.

We remark that when the standard solution is nondegenerate, then equation (10)
does have many other nonstationary solutions (i.e. the uniqueness result applies only
to the stationary solution). However, Proposition 8 implies that all nonstationary solu-
tions converge to 0 in the distant future.

A.3 Proof of Proposition 3

Note that, in general, because ξ i
t = e−ρt/(ρni

t) and drn,i
t has the same risk loadings

as dni
t/ni

t (compare equation (4)),

Covt

(
dξ i

t

ξ i
t

, drn,i
t

)
= Covt

(
d(1/ni

t)

1/ni
t

,
dni

t

ni
t

)
= −

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)

Under the assumptions of the proposition, ϑt and thus prices qK
t , qB

t do not load
on the aggregate shock dZt, σϑ

t = σ
q,B
t = σ

q,K
t = 0. In particular, σn,i

t = 0 (compare
equation (30) and recall that prices of risk and net worth loadings coincide). Thus

Covt

(
dξ i

t

ξ i
t

, drn,i
t

)
= Covt

(
d(1/ni

t)

1/ni
t

,
dni

t

ni
t

)
= −

(
σ̃n,i

t

)2
= −(1− ϑ)2χ̄2σ̃2 < 0,

where the last equation follows from equation (30) and market clearing for θK,i
t .

In contrast, σ
q,B
t = 0 implies that drBt is locally deterministic (does not load on Brow-

nian shocks), so that

Covt

(
dξ i

t

ξ i
t

, drBt

)
= 0.

Comparing the two covariances reveals that the former is always strictly smaller.
Thus the bond is a safe asset for agent i at all times t.
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A.4 Derivation of Equation (11)

We derive here equation (11), the debt valuation equation from the buy and hold
perspective. We start by using dBt = µBt Btdt to rewrite the government flow budget
constraint (2) as

− (dBt − itBtdt) = Pt (τat − g)︸ ︷︷ ︸
=st

Ktdt.

Multiplying both sides by the nominal SDF ξ i
t/Pt of agent i and using Ito’s product

rule to replace ξ i
t/PtdBt with d

(
ξ i

t/PtBt

)
−Btd(ξ i

t/Pt)69 yields

−d
(

ξ i
tBt/Pt

)
+ Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)
= ξ i

tstKtdt.

Integrating this equation from t = 0 to t = T, taking expectations, and solving for
ξ i

0B0/P0 implies

ξ i
0
B0

P0
= E

[∫ T

0
ξ i

tstKtdt

]
−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
+ E

[
ξ i

T
BT

PT

]
. (34)

Equation (34) is simply an accounting identity, an integrated version of the govern-
ment flow budget constraint (2). We now note that the individual SDF ξ i

t must price the
bond because agent i is marginal in the bond market. This implies that the associated
nominal SDF ξ i

t/Pt must decay on average at the nominal market interest rate, so that
the second term in equation (34) vanishes. In addition, we can replace the individual
SDF ξ i

t with the average SDF ξ̄t because equation (34) holds for all individuals i and
stKt and BT/PT are free of idiosyncratic risk. When taking the limit T → ∞, we obtain
equation (11).

A.5 Omitted Steps in the Derivation of Equation (13)

We present here the missing steps in the derivation of equation (13) left out in the
main text. There, we have used without proof equation (14), which expresses the value
of the bond portfolio as the present value of trading cash flows, and equation (15),
which characterizes the bond trading process. In addition, we have used that the price

69There is no quadratic covariation term because dBt is absolutely continuous.
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of idiosyncratic risk is given by

ς̃i
t = (1− ϑt)χ̄σ̃t.

This equation has already been derived in Appendix A.1 (compare equation (30) and
the market clearing equation for θK,i

t stated in the subsequent paragraph).70 We thus
only derive equations (14) and (15) here.

Derivation of equation (14). We can write the evolution of the bond portfolio as

dbi
t

bi
t
= drBt + d∆b,i

t . (35)

Absent trading and payouts, the bond portfolio grows at the (stochastic) bond return
drBt , but the actual portfolio value has to be adjusted for cash inflows bi

td∆b,i
t due to

trading and payouts. Writing

drBt = µrB
t dt + σrB

t dZt, d∆b,i
t = µ∆,i

t dt + σ∆,i
t dZt + σ̃∆,i

t dZ̃i
t

and using Ito’s product rule, we obtain for the discounted bond wealth

d(ξ i
tb

i
t)

ξ i
tb

i
t

=

(
µrB

t − r f
t − ςtσ

rB
t︸ ︷︷ ︸

=0

+µ∆,i
t − ςtσ

∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt

+
(

σrB
t + σ∆,i

t − ςt

)
dZt +

(
σ̃∆,i

t − ς̃t

)
dZ̃i

t. (36)

Here, the first part of the drift is zero by standard asset pricing logic because agent i
is marginal in the market for government bonds. Integrating over t ∈ [0, T], taking
expectations, and rearranging yields

ξ i
0bi

0 = −E0

∫ T

0
ξ i

tb
i
t

(
µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt

+ E0

[
ξ i

Tbi
T

]
.

Optimal behavior implies a transversality condition limT→∞ E
[
ξ i

Tni
T

]
= 0 on total

wealth ni
T of agent i as a necessary choice condition. Because total wealth consists of

70Note that we have defined ξ i
t in Appendix A.1 as the costate in the household’s problem whereas we

use the same notation for the individual SDF in Section 3. The two are the same (up to scaling) because
both measure the marginal utility of an additional unit of wealth at time t in a given state.
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bond wealth and capital wealth and the latter cannot become negative, a transversal-
ity condition for bond wealth bi

T immediately follows. Consequently, the second term
converges to zero as T → ∞ and we obtain equation (14) in the limit.

Derivation of equation (15). To characterize the trading process d∆b,i
t , start from (35):

d∆b,i
t =

dbi
t

bi
t
− drBt . (37)

Because all agents hold the same fraction θi
t = ϑt of their net worth in bonds, we have

bi
t = ηi

tq
B
t Kt. As ηi

t loads only on the idiosyncratic Brownian and qB
t Kt only on the

aggregate Brownian, their quadratic covariation vanishes and thus Ito’s product rule
simply implies

dbi
t

bi
t
=

d(qB
t Kt)

qB
t Kt

+
dηi

t

ηi
t

.

Furthermore, the return on bonds can be written as (compare equation (6))

drBt =
d(qB

t Kt)

qB
t Kt

− µ̆Bt dt.

Substituting the previous two equations into (37) yields

d∆b,i
t = µ̆Bt dt +

dηi
t

ηi
t
= µ̆Bt dt + σ

η,i
t dZ̃i

t,

which implies
µ∆,i

t = µ̆Bt , σ∆,i
t = 0, σ̃∆,i

t = σ
η,i
t .

The equations in formula (15) follow, if we can show that

µ̆Bt = −st/qB
t , (38)

σ
η,i
t = (1− ϑt) χ̄σ̃t. (39)

Equation (38) follows immediately from the government budget constraint (2) and the
definition of st. For the proof of equation (39), note that individual net worth ni

t and
total net worth Nt := (qK

t + qB
t )Kt have identical drifts and volatility loadings on the
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aggregate Brownian dZt, so that simply

dηi
t

ηi
t
=

d(ni
t/Nt)

ni
t/Nt

= σ̃n,i
t dZ̃i

t

because ni
t loads on the idiosyncratic Brownian dZ̃i

t, but Nt does not. Combining the
net worth evolution (4) with the equilibrium portfolio weights, we obtain

σ̃n,i
t = (1− ϑt)χ̄σ̃t (40)

which completes the proof of (39).

A.6 Representative Agent Formulation

In this Appendix we present additional details on the representative agent formu-
lation summarized in Section 3. In Part A.6.1, we outline the setup of the hypothetical
representative agent tree economy that generates the same asset prices and allocations
as our incomplete markets economy and discuss substantive economic takeaways. Ad-
ditional technical derivation details, including the omitted steps in the arguments that
lead to Proposition 6 in the main text, can be found in Part A.6.2.

A.6.1 The Representative Agent Economy

We present a Lucas (1978)-type asset pricing economy that generates the same al-
location as in the competitive equilibrium of our incomplete markets economy. In this
economy, we interpret aggregate capital and aggregate bonds as two “trees” and we
show that equation (13) is precisely the valuation equation for the “bond tree” from the
perspective of the representative agent. The dynamic trading perspective is therefore
equivalent to the perspective of a hypothetical representative agent.

As stated in the main text, we consider a representative agent whose preferences are
represented by a weighted welfare functionW0 =

∫
λiVi

0di. We denote by ηi
t := ci

t/Ct

the consumption share of agent i and assume that dηi
t = σ̃

η
t dZ̃i

t with volatility process
σ̃

η
t specified below in equation (42). As shown in the main text, utility W0 satisfies

equation (17), which expresses utility in terms of aggregate consumption Ct and con-
sumption shares ηi

t. We show below (Part A.6.2) that utility can also be represented in
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the form (this is equation (18) in the main text)

W0 = w0 + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt

 (41)

with some constant w0. This equation eliminates the direct dependence on i and gives
us the alternative interpretation that two “goods” enter the representative agent’s util-
ity function, the aggregate consumption good and a “volatility good” (which generates
disutility).71

We assume that the representative agent has access to two assets, capital Kt, which
produces a certain bundle of the aggregate consumption good and volatility σ̃

η
t , and

“derivatives” Xt, which mimic the cash flows to individuals i generated by bond trades
in our incomplete markets model and thereby reduce volatility. Capital grows at rate
gt := Φ(ιt)− δ over time and generates consumption goods at rate

(
(1− τt)at − ιt

)
Ktdt.

For the purpose of this representative agent economy, gt, τt, at, ιt are exogenous pro-
cesses. But, of course, we choose for them the stochastic processes implied by the com-
petitive equilibrium of our incomplete markets model.72 The same remark holds for
other lower-case variables qB

t , qK
t , µ̆Bt used below. The face value Xt of derivatives

evolves according to
dXt/Xt =

(
gt + µ

q,B
t

)
dt + σ

q,B
t dZt,

where µ
q,B
t , σ

q,B
t are the drift and volatility processes of qB

t implied by the competitive
equilibrium of the incomplete markets model. Derivatives generate a cash flow −µ̆Bt Xt

and reduce fluctuations in consumption shares ηi
t. Specifically, the volatility loading σ̃

η
t

satisfies the equation (
qK

t Kt + Xt

)
σ̃

η
t = qK

t Ktχ̄σ̃t, (42)

where qK
t is the capital price process from the incomplete markets economy. We can

interpret the product Xtσ̃
η
t as a measure of the aggregate gross trading cash flows from

bond trades in response to idiosyncratic shocks in the incomplete markets economy.73

71The representative agent’s objective is akin to a money in utility (MIU) model. Holding the derivative
asset introduced below reduces volatility σ̃

η
t in a similar way as holding money in a MIU model generates

utility services.
72We could also endogenize the real investment decision by letting the representative agent choose ιt.

The representative agent would choose precisely the rate ιt we are taking here as exogenous.
73qK

t ki
tχ̄σ̃t is sensitivity of an agent i’s capital wealth to shocks dZ̃i

t before portfolio rebalancing and

69



Let QK
t be the capital price that the representative agent faces, PX

t the price per unit
(face value) of derivatives, and let Nt := QK

t Kt + PX
t Xt be the representative agent’s

total net worth. The budget constraint of the representative agent is

dNt = −Ctdt + QK
t KtdrK

t + PX
t XtdrX

t (43)

with return processes

drK
t =

(
(1− τt)at − ιt

QK
t

+ µQ,K
t + gt

)
dt + σQ,K

t dZt,

drX
t =

(
µP,X

t + gt − µ̆Bt + σ
q,B
t σP,X

t

)
dt +

(
σ

q,B
t + σP,X

t

)
dZt.

The representative agent chooses Ct, σ̃
η
t , Kt, Xt to maximize utility W0 subject to the

budget constraint (43) and the risk constraint (42) taking the prices QK
t , PX

t and the re-
turn processes as given. The representative agent model is closed by time-zero supplies
of capital (K0) and derivatives (X0). We impose the additional relationship X0 = qB

0 K0,
where qB

0 is the initial value of qB
t in the incomplete markets model. While this sup-

ply restriction for X0 may appear ad hoc, it can be micro-founded in an environment
with information frictions in which idiosyncratic shocks are private information and
agents have access to hidden trade and savings.74 In such an environment, incentive
compatibility requires that any insurance transfer to an agent must be precisely offset
by a reduction in the present value of that agent’s future consumption. Otherwise, the
agent would have incentives to misreport the size of the shock and secretly trade cap-
ital. Incentive compatibility thus limits the amount of insurance that can be provided,
i.e. the quantity X of derivatives.

We show below that the competitive equilibrium of this representative agent econ-
omy features prices QK

t = qK
t and PX

t = 1 (and thus PX
t Xt = qB

t Kt), so that asset prices
are the same as in the incomplete markets economy.75 Also, as we have already stated
in the main text, the representative agent’s SDF process satisfies Ξt = ξ∗∗t (compare
Proposition 6).

qK
t ki

tσ̃
η
t is the shock sensitivity after rebalancing. The difference, qK

t ki
t

(
χ̄σ̃t − σ̃

η
t

)
measures trading cash

flows per unit of dZ̃i
t and aggregating over all agents yields Xtσ̃

η
t .

74Details on this micro-foundation can be found in Brunnermeier et al. (2020). This information envi-
ronment has also been employed by Di Tella (2020) in a closely related model.

75Also aggregate consumption Ct and the consumption shares ηi
t are as in the incomplete markets

economy. The representative agent economy therefore leads to the same allocation.
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The valuation equation for derivatives from the perspective of the representative
agent is

PX
0 X0 = E

[∫ ∞

0
Ξt ·

(
−µ̆Bt Xt

)
dt
]
+ E

[∫ ∞

0
Ξt · (1− ϑt)

2 χ̄2σ̃2
t Xtdt

]
. (44)

Here, the first term represents the discounted present value of cash flows −µ̆Bt Xt and
the second term represents the discounted volatility reduction service flows that deriva-
tives provide by lowering σ̃η in the utility function (18). As derivatives in the represen-
tative agent economy play the same role as bonds in the incomplete markets economy,
we can make the identification Xt = qB

t Kt and −µ̆Bt Xt = stKt. With these replacements
(and PX

0 = 1), equation (44) becomes equation (13), the debt valuation equation from
the dynamic trading perspective.

A.6.2 Additional Derivation Details and Proofs

Missing Step in Proof of Proposition 6: Ξ is Independent of Welfare Weights. For
CRRA utility with parameter γ, we have

Ξt = e−ρt
∫

λiηi
tu
′(ηi

tCt)di∫
λiηi

0u′(ηi
0C0)di

= e−ρt
∫

λi(ηi
0)

1−γ(ηi
t/ηi

0)
1−γdi∫

λi(ηi
0)

1−γdi
C−γ

t

C−γ
0

.

Furthermore, ηi
t/ηi

0 is given by

(ηi
t/ηi

0)
1−γ = exp

(
(1− γ)

∫ t

0
σ̃

η
τ dZ̃i

τ −
1− γ

2

∫
(σ̃

η
τ )

2dτ

)
and the distribution of this object conditional on aggregate information (i.e. informa-
tion in Z) does not depend on i. In particular, there is a random variable Xt such that

Xt = E[(ηi
t/ηi

0)
1−γ | Zτ : τ ≤ t]

for all i. Because Ξt is adapted to the filtration generated by the aggregate Brownian
motion Z,

Ξt = E[Ξt | Zτ : τ ≤ t] = e−ρt E[
∫

λi(ηi
0)

1−γ(ηi
t/ηi

0)
1−γdi | Zτ : τ ≤ t]∫

λi(ηi
0)

1−γdi
C−γ

t

C−γ
0
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= e−ρt
∫

λi(ηi
0)

1−γE[(ηi
t/ηi

0)
1−γ | Zτ : τ ≤ t]di∫

λi(ηi
0)

1−γdi
C−γ

t

C−γ
0

= e−ρt
∫

λi(ηi
0)

1−γdi∫
λi(ηi

0)
1−γdi︸ ︷︷ ︸

=1

Xt
C−γ

t

C−γ
0

.

Hence, Ξt does not depend on the choice of the weights λi.

Derivation of Utility Representation (18). By Ito’s formula,

log ηi
t = log ηi

0 −
1
2

∫ t

0

(
σ̃

η
s

)2
ds +

∫ t

0
σ̃

η
s dZ̃i

s

and thus∫ ∞

0
e−ρt

∫
λiE

[
log ηi

t

]
didt =

∫ ∞

0
e−ρt

∫
λi log ηi

0didt− 1
2

∫ ∞

0
e−ρt

∫
λi
∫ t

0

(
σ̃

η
s

)2
dsdidt

=
1
ρ

∫
λi log ηi

0di− 1
2

∫
λidi

∫ ∞

0
e−ρt

∫ t

0

(
σ̃

η
s

)2
dsdt

=
1
ρ

∫
λi log ηi

0di− 1
2ρ

∫ ∞

0
e−ρt

(
σ̃

η
t

)2
dt,

where the last line uses that
∫

λidi = 1. Substituting this into equation (17) (with
interchanged order of integration where necessary) implies

W0 =
1
ρ

∫
λi log ηi

0di + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt


With the definition w0 := 1

ρ

∫
λi log ηi

0di, this is precisely equation (18).

Competitive Equilibrium in Representative Agent Economy. As this is a representa-
tive agent economy, we can fully characterize the allocation by determining goods and
asset supplies. The problem of the representative agent only needs to be considered to
determine asset prices.

The assumed growth rate process for capital Kt is the same as in the equilibrium of
the incomplete markets model, so that Kt must follow precisely the same process as in
that equilibrium if we start from the same initial K0 (which we can assume w.l.o.g. as
this only scales the overall size of the economy). Because dXt/Xt = d(qB

t Kt)/(qB
t Kt)

and X0 = qB
0 X0 by the condition on initial supply, we then also have Xt = qB

t Kt for all
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t. Total consumption goods produced by the two “trees” in period t are

Ct =
(
(1− τt) at − ιt

)
Kt − µ̆Bt Xt

=
(

at − ιt + τtat − µ̆Bt qB
t

)
Kt

= (at − g− ιt)Kt,

where the last line follows from the government budget constraint (2) (in the incom-
plete markets model). The aggregate consumption goods supply is thus the same as
the (endogenous) aggregate consumption process in the incomplete markets economy.

We now turn to the remaining “good”, volatility reduction. Total volatility “supply”
is determined by equation (42),

σ̃
η
t =

qK
t Kt

qK
t Kt + Xt

χ̄σ̃t =
qK

t Kt

qK
t Kt + qB

t Kt
χ̄σ̃t = (1− ϑt) χ̄σ̃t.

This is also the same as the (endogenous) volatility of consumption shares ηi
t in the

incomplete markets economy. The representative agent economy therefore generates
the same allocation as the equilibrium in our incomplete markets model.

We now turn to asset prices. As this is the decision problem of a consumer with
logarithmic utility, the optimal consumption rule is Ct = ρNt, exactly as for the agents
in our incomplete markets economy.76 This fact can be derived using the stochastic
maximum principle in precisely the same way as in Appendix A.1, so that we skip
the details here. Using the definition Nt = QK

t Kt + PX
t Xt and the supplies Xt = qB

t Kt,
Ct = (qB

t + qK
t )Kt derived previously, we obtain

(qB
t + qK

t )Kt =
Ct

ρ
= QK

t Kt + PX
t Xt = (QK

t + PX
t qB

t )Kt.

Therefore, if we can show PX
t = 1, QK

t = qK
t is automatically implied. PX

t = 1, in turn,
follows from equation (44) and the remarks following it in the main text. Consequently,
we only need to derive equation (44) to complete the equilibrium characterization.

Valuation Formula (44) for “Derivatives”. We can use standard asset pricing logic.
From the perspective of the representative agent, this is an entirely standard complete

76In the utility function here, there is also a second term (σ̃η
t ). But because it is additively separated, it

does not affect the optimal consumption rule.
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markets economy with two consumption goods. The price of a single unit of an as-
set measured in time-zero consumption units must thus equal the sum of the present
discounted value of its future marginal consumption flow dividends and the present
discounted future consumption value of its marginal volatility flow dividends, both
discounted with the SDF Ξt, the marginal rate of substitution between consumption at
time t and consumption at time 0.

The consumption flow term is straightforward. One unit of derivatives at time 0
turns into Xt/X0 units of derivatives at time t and each of them produces a consump-
tion flow −µ̆Bt dt. The present discounted value of these future consumption flows is
therefore

E

[∫ ∞

0
Ξt

(
−µ̆Bt

Xt

X0

)
dt

]
.

For the volatility flow term, note that the “marginal volatility product of deriva-
tives” at time t is

∂σ̃
η
t

∂Xt
= − qK

t Kt(
qK

t Kt + Xt

)2 χ̄σ̃t = −
σ̃

η
t(

qK
t + qB

t

)
Kt

= − σ̃
η
t

Nt

and the marginal rate of substitution between time-t consumption and time-t volatility
is

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂σ̃
η
t

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂Ct

=
−σ̃

η
t /ρ

1/Ct
= −Ct

ρ
σ̃

η
t .

The consumption value of the marginal volatility reduction of Xt/X0 derivatives at
time t is therefore

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂σ̃
η
t

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂Ct

· ∂σ̃
η
t

∂Xt
· Xt

X0
=

Ct

ρNt

(
σ̃

η
t

)2 Xt

X0
=
(

σ̃
η
t

)2 Xt

X0
,

here the last equation follows from Ct = ρNt. Consequently, the discounted value of
volatility flows generates by one unit of derivatives is

E

[∫ ∞

0
Ξt

(
σ̃

η
t

)2 Xt

X0
ds
]

.
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Combining the two present values and using σ̃
η
t = (1− ϑt)χ̄σ̃t (derived previously)

yields

PX
0 = E

[∫ ∞

0
Ξt

(
−µ̆Bt

Xt

X0

)
dt

]
+ E

[∫ ∞

0
Ξt (1− ϑt)

2 χ̄2σ̃2
t

Xt

X0
ds
]

.

After multiplying both sides by X0, we obtain equation (44).

A.7 Model Solution with Stochastic Differential Utility

The model setup is identical to the one described in Section 2, except that logarith-
mic preferences are replaced with the utility recursion

Vi
t = Et

[∫ ∞

t
f (ci

s, Vi
s )ds

]
,

where the aggregator f is defined by

f (c, V) = (1− γ)ρV
(

log(c)− 1
1− γ

log
(
(1− γ)V

))

We can solve this augmented model as we have solved the baseline model in Sec-
tion 2.2 (compare also Appendix A.1). The Hamiltonian of the household problem is
precisely as stated in Appendix A.1, except that the very first term e−ρt log ci

t must be
replaced with f (ci, Vt(ni)).77

We use again a standard guess for the value function to eliminate the costate vari-
able from the Hamiltonian. The guess here is Vt(ni) = vt

(ni)1−γ

1−γ , where vt is, again, a
variable that does not depend on individual net worth. The relationship between the
value function and the costate requires ξ i

t = V′t (n
i
t) = vt(ni

t)
−γ.78 We write µv

t and σv
t

for the (geometric) drift and aggregate volatility of vt. Note that vt does not load on the
idiosyncratic Brownian because it merely depends on aggregate conditions.

The model solution procedure follows the same steps as for the baseline model.
Here, we merely highlight the differences that occur on the way.

77On a small technical note, the resulting Hamiltonian here is a “current value Hamiltonian” whereas
the one used in Appendix A.1 is a “present value Hamiltonian”. The costate must thus be discounted
differently here. Otherwise, this does not affect the solution procedure.

78It is here that the difference between “present value” and “current value” matters. For this reason,
there is no time discounting term (such as e−ρt) in this equation, unlike in Appendix A.1.
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The first difference is that the first-order condition for optimal consumption is not
immediately equation (23), but instead of the more complicated form

vt(ni
t)
−γ = ∂c f (ct, Vt) = (1− γ)ρ

Vt

ct
.

However, once the value function Vt = vt
(ni

t)
1−γ

1−γ is plugged in, the condition reduces
again to the familiar form of equation (23).

The second difference is in the characterization of the costate volatility loadings ςi
t

and ς̃i
t. Because the costate is now ξ i

t = vt(ni
t)
−γ, Ito’s lemma implies

ςi
t = γσn,i

t − σv
t , ς̃i

t = γσ̃n,i
t . (45)

The net worth volatilities σn,i
t and σ̃n,i

t take the same form as before such that we simply
need to replace the final equation (30) with the slightly more complicated form

ςi
t = γ

(
σ

q,B
t − θK,i

t
σϑ

t
1− ϑt

)
− σv

t , ς̃i
t = γθK,i

t χ̄σ̃t.

The third difference is that the modified expressions for ςi
t and ς̃i

t affect the deriva-
tion and final result of equation (10). Following the same steps as in Appendix A.1, we
obtain the slightly modified equation

Et [dϑt] =

(
ρ + µ̆Bt −

(
σv

t − (γ− 1) σ
q̄
t

)
σϑ

t − γ (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt,

where σ
q̄
t is the volatility of q̄t := qB

t + qK
t .

The fourth and final difference is that we now also have to characterize the pro-
cess vt as it affects the BSDE for ϑt through the term σv

t .79 To characterize vt, we start
from the costate equation (a necessary optimality condition by the stochastic maximum
principle), which is here given by

Et[dξ i
t] = −

(
∂V f (ci

t, Vi
t )ξ

i
t +

∂Hi
t

∂ni
t

)
dt

79There is no need to solve for vt in the baseline model because there it enters the value function
additively and thus only impacts total utility but not optimal choices.
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= −
(
(1− γ)ρ log(ci

t/ni
t)− ρ log vt − ρ + µn,i

t +
ci

t

ni
t
− ςi

tσ
n,i
t − ς̃i

tσ̃
n,i
t

)
ξ i

tdt

= −
(
(1− γ)ρ log ρ− ρ log vt + µn,i

t −
(

γσn,i
t − σv

t

)
σn,i

t − γ
(

σ̃n,i
t

)2
)

ξ i
tdt,

(46)

where the last line uses ci
t/ni

t = ρ and the price of risk formulas (45). We also know
ξ i

t = vt(ni
t)
−γ and applying Ito’s lemma to this equation yields for the drift term

Et[dξ i
t] =

(
µv

t − γµn,i
t +

γ (γ + 1)
2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
− γσv

t σn,i
t

)
ξ i

tdt (47)

Combining equations (46) and (47) and solving for µv
t yields

µv
t = γµn,i

t −
γ (γ + 1)

2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
+ γσv

t σn,i
t

−
(
(1− γ)ρ log ρ− ρ log vi

t + µn,i
t −

(
γσn,i

t − σv
t

)
σn,i

t − γ
(

σ̃n,i
t

)2
)

= ρ log vt + (γ− 1)

(
ρ log ρ + µn,i

t −
γ

2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
+ σv

t σn,i
t

)

= ρ log vt + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ− γ

2

((
σ

q̄
t

)2
+ (1− ϑ)2 χ̄2σ̃2

t

)
+ σv

t σ
q̄
t

)
,

where in the last line we use that individual net worth has the same drift and aggre-
gate volatility as aggregate net worth q̄tKt, while its idiosyncratic volatility is σ̃n,i

t , as
determined previously. The previous equation for µv

t leads to a second BSDE

Et[dvt] = µv
t vtdt

that has to be solved numerically jointly with the BSDE for ϑt stated previously.

Numerical Model Solution. We solve the model numerically using a finite difference
method. This is a standard approach employed in the literature to solve models of this
type. Here, we only briefly outline the procedure. A more comprehensive description
of the method can be found, e.g., in Brunnermeier et al. (2020), Chapter 3 (specifically
Sections 3.2.6 and 3.2.7).

For our numerical solution, we impose the functional relationships ϑt = ϑ(t, σ̃t),
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vt = v(t, σ̃t) and use the known forward equation for the state variable σ̃t to transform
the two BSDEs into partial differential equations in time t and the state σ̃t. We choose
suitable terminal guesses for the functions ϑ and v80 at a finite terminal time T and
solve the two PDEs backward in time using a finite difference method. We choose
T sufficiently large such that an increase in T no longer changes the solutions at t =

0, ϑ(0, ·) and v(0, ·), noticeably. These solution functions ϑ(0, ·) and v(0, ·) represent
our numerical approximation to the stationary (Markov) equilibrium functions σ̃ 7→
ϑ(σ̃), v(σ̃).81

A.8 Model Extension with Privately Issued Safe Assets

In this appendix, we present the formal details for the model extension with pri-
vately issued safe assets. We restrict attention to the baseline model from Section 2
with logarithmic preferences.

Setup and Model Solution. Each agent i issues nominally risk-free bonds (“i-bonds”)
of total real value Bt(i) ≥ 0 and holds a real quantity bi

t(j) ≥ 0 of j-bonds issued by
other agents j 6= i. The clearing conditions at all times t and for all varieties j are

Bt(j) =
∫

bi
t(j)di.

We denote by ip
t the nominal interest a household has to pay in equilibrium on its pri-

vately issued debt82 and by Bp
t :=

∫
Bt(j)dj the aggregate quantity of privately issued

bonds outstanding. Because privately issued debt is nominally risk-free, its return is

drb
t =

(
ip
t − it

)
dt + drBt ,

where, as before, drBt is the return on government bonds (compare equation (6)). By
no arbitrage, in equilibrium ip

t = it. Thus, the yields on privately issued bonds and
government bonds are identical.

80Specifically, we use the functions implied by the steady state equilibrium with σ̃t = σ̃0 forever.
81Note that our results in Appendix A.2 imply that this solution procedure always selects the unique

nondegenerate stationary solution the BSDE for ϑ.
82Theoretically, ip

t could depend on the issuing household j. However, as all privately issued bonds
are required to be nominally risk-free, it is obvious that they all have to pay the same nominal rate in
equilibrium.
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We can solve household i’s problem as in the baseline model. Denote by θB,i
t :=

−Bt(i)/ni
t ≤ 0 the negative of bond issuance as a share of net worth and by θb,i

t (j) :=
bi

t(j)/ni
t ≥ 0 holdings of j-bonds as a fraction of net worth. Relative to the baseline

model, the household has the additional choice variables θB,i
t and (θb,i

t (j))j∈[0,1] subject
to the nonnegativity constraints. However, the Hamiltonian of the household’s prob-
lem does not change relative to Appendix A.1: due to drb

t = drBt , choices of θB,i
t and

(θb,i
t (j))j∈[0,1] do not affect either the expected return or the risk characteristics of the

household’s portfolio, such that the additional terms in the Hamiltonian cancel out.

We can draw two immediate conclusions from the previous observation. First, be-
cause the Hamiltonian remains unaffected, the model solution steps outlined in Ap-
pendix A.1 remain valid in this extended model. Consequently, all equilibria with pri-
vate bond issuance must feature the same real allocation and the same prices of gov-
ernment bond (qB

t ) and capital (qK
t ) as in the baseline model. Second, all households are

indifferent between any choice of private bond issuance and holdings of bonds issued
by other agents as long as these holdings do not interfere with the optimal plans for
capital holdings (θK,i

t ), outside equity issuance (θE,i
t ), and diversified equity holdings

(θĒ,i
t ).

There are thus many different equilibria that all feature the same consumption allo-
cation and valuation of government bonds, equity, and capital, but differ with regard
to the quantities Bt(j) of private bonds in circulation.

A Simple Example. To illustrate how privately issued bonds can serve as safe assets
in precisely the same way as government bonds, we consider an example in which all
agents trade private and government bonds in equal proportions.83 Specifically, we
make the following choices: (a) the aggregate real value of privately issued bonds is
proportional to the value of government bonds, Bp

t ∝ qB
t Kt, (b) the total bonds issued

by each agent j is proportional to the agent’s net worth share, Bt(j) = η
j
tB

p
t , and (c) all

agents hold a portfolio of j-bonds for j 6= i and government bonds according to market
capitalization weights.

We now discuss the debt valuation equations verbally referenced in the main text.
We defer a derivation of the following equations to the end of this appendix.

83While valuation equations for individual bond types depend on what we assume about trading of
individual bonds (which is indeterminate due to indifference), none of the economic conclusions from
the example crucially depend on this choice.
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For each agent i, the value of the long position bi
t(j) in j-bonds must equal the

present value of future cash inflows from the portfolio of j-bonds, either due to pay-
ments made by agent j or due to trading of j-bonds. This insight leads to an equation
in full analogy to equations (14) and (16) for government bonds that we have derived
in the context of the dynamic trading perspective:

bi
0(j) = E

[∫ ∞

0
ξ i

txtbi
t(j)dt

]
+ E

[∫ ∞

0
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t bi
t(j)dt

]
. (48)

Here, xt denotes the expected net payouts made by agent j to all holders of j-bonds
per real unit of j-bonds outstanding. Total expected net payouts xtBt(j) made by agent
j are the private debt counterparts of primary surpluses stKt, which represent the net
payouts made by the government to public debt holders.

Equation (48) emphasizes that the valuation of j-bonds for agent i depends on a cash
flow component resulting from payouts made by agent j and a service flow component
resulting from the fact that i trades j-bonds with agents other than j. When aggregating
these equations for all i 6= j, we obtain a debt valuation equation from the dynamic
trading perspective for the aggregate long position in j-bonds:84

B0(j) = E

[∫ ∞

0
ξ∗∗t xtBt(j)dt

]
+ E

[∫ ∞

0
ξ∗∗t (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
. (49)

The key takeaway is that this equation looks precisely like equation (13) for government
bonds. In particular, the service flow component is identical.

Equation (49) emphasizes the similarity between government bonds and privately
issued bonds for their holders. However, private bond issuance also comes with a short
position in the bond for the issuer j. In the same spirit as before, we can value that short
position by determining the present value of all net payouts that j makes to holders of
j-bonds,

−B0(j) = E

[∫ ∞

0
ξ

j
t (−xt) Bt(j)dt

]
+ E

[∫ ∞

0
ξ

j
t

(
− (1− ϑt)

2 χ̄2σ̃2
t

)
Bt(j)dt

]
. (50)

This equation illustrates that issuing bonds according to the specified issuance strat-
egy effectively exposes the agent to negative service flows. Because Bt(j) = η

j
tB

p
t is

proportional to η
j
t , cash flows from debt issuance and repayments are systematically

84Relative to equation (48), the following equation also interchanges integrals and uses bi
t(j) = ηi

tBt(j).
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correlated with marginal utility in a way that increases the riskiness of j’s portfolio.

Once we integrate equations (49) and (50) over all bond types j, the integrated ser-
vice flow terms on the right-hand side become identical in absolute value but have
opposite sign. In other words, in the aggregate the positive service flows derived from
privately issued bonds by their holders exactly cancel with the negative service flows
generated for their issuers. Private safe asset creation does not generate additional net
service flows for the economy.

Derivation of Equations (48), (49), and (50). In precisely the same way as in Ap-
pendix A.5, we can derive equations in analogy to equation (14) for the portfolios of
j-bonds held by agents i and j:

bi
0(j) = −E0

∫ ∞

0
ξ i

tb
i
t(j)

(
µ∆,i

t (j)− ςtσ
∆,i
t (j)− ς̃tσ̃

∆,i,i
t (j)

) , (51)

−Bj
0 = −E0

∫ ∞

0
ξ i

t(−Bj
t)

(
µ

∆,j
t (j)− ςtσ

∆,j
t (j)− ς̃tσ̃

∆,j
t (j)

) . (52)

Here, d∆b,i(j)t and d∆B,j
t are the trading processes for j-bonds of agents i and j, respec-

tively:

d∆b,i
t (j) = µ∆,i

t (j)dt + σ∆,i
t (j)dZt + σ̃∆,i,i

t (j)dZ̃i
t + σ̃

∆,i,j
t (j)dZ̃j

t,

d∆B,j
t = µ

∆,j
t (j)dt + σ

∆,j
t (j)dZt + σ̃

∆,j
t (j)dZ̃i

t.

As in Section 3 and Appendix A.5, bi
t(j)d∆b,i(j)t represents the real value of new j-bonds

purchased by agent i at time t (net of payouts made by agent j on existing bonds).
Similarly, but with opposite sign due to the short position, −Bj

td∆B,j
t represents the real

value of new j-bonds (re-)purchased by agent j. In other words, −d∆B,j
t corresponds to

the payouts that the issuer j makes to bond holders.

To derive equations (48) and (50), we have to characterize the trading processes. In
full analogy to Appendix A.5, these processes must satisfy

d∆b,i
t (j) =

dbi
t(j)

bi
t(j)
− drb

t , (53)
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d∆B,j
t =

dBj
t

Bj
t

− drb
t . (54)

We first characterize the second process. By definition, µ
∆,j
t (j) = −xt corresponds to

the negative of the expected net payouts made by agent j to holders of j-bonds per real
unit of bonds outstanding. To determine the volatility loadings of the trading process,
we use Bj

t = η
j
tB

p
t ∝ η

j
tq

B
t Kt, so that

dBj
t

Bj
t

=
dη

j
t

η
j
t

+
d(qB

t Kt)

qB
t Kt

.

The volatility loadings of drb
t = drBt coincide with the ones of d(qB

t Kt)/(qB
t Kt), compare

equation (6). Thus,
d∆B,j

t = drift terms + σ̃
η
t dZ̃j

t.

In total, we get
µ

∆,j
t (j) = −xt, σ

∆,j
t (j) = 0, σ̃

∆,j
t (j) = σ̃

η
t .

Substituting this into equation (52) and using ς̃t = σ̃
η
t = χ̄(1 − ϑt)σ̃t implies equa-

tion (50).

The previous discussion also implies (using equation (54))

drb
t =

dBt(j)
Bt(j)

− d∆B,j
t = xtdt +

d
(

qB
t Kt

)
qB

t Kt

and substituting this into equation (53) and using bi
t(j) = ηi

tB
j
t = ηi

tη
j
tB

p
t implies

d∆b,i
t (j) =

dηi
t

ηi
t
+

dη
j
t

η
j
t

+
dBp

t

Bp
t
−

xtdt +
d
(

qB
t Kt

)
qB

t Kt


= σ̃

η
t dZ̃i

t + σ̃
η
t dZ̃j

t +
d
(

qB
t Kt

)
qB

t Kt
− xtdt−

d
(

qB
t Kt

)
qB

t Kt

= −xtdt + σ̃
η
t dZ̃i

t + σ̃
η
t dZ̃j

t.
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In other words,

µ∆,i
t (j) = −xt, σ∆,i

t (j) = 0, σ̃∆,i,i
t (j) = σ̃

∆,i,j
t (j) = σ̃

η
t .

Substituting these equations into equation (51) implies equation (48).

It is left to derive equation (49). This equation easily follows from the previously
derived equation (48) by integrating over all holders i:

B0(j) =
∫

bi
t(j)di

=
∫ (

E

[∫ ∞

0
ξ i

txtbi
t(j)dt

]
+ E

[∫ ∞

0
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t bi
t(j)dt

])
di

= E

[∫ ∞

0

∫
ξ i

txtη
i
tBt(j)didt

]
+ E

[∫ ∞

0

∫
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t ηi
tBt(j)didt

]
= E

[∫ ∞

0

∫
ξ i

tη
i
tdi · xtBt(j)dt

]
+ E

[∫ ∞

0

∫
ξ i

tη
i
tdi · (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
= E

[∫ ∞

0
ξ∗∗t xtBt(j)dt

]
+ E

[∫ ∞

0
ξ∗∗t (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
.

A.9 Model Extension with Convenience Yields

.In this appendix, we present the model extension with bonds in the utility function
to generate a convenience yield and derive the two debt valuation equations stated in
Section 6

Setup and Equilibrium Characterization. To keep equations as simple as possible,
we only consider the case of logarithmic consumption preferences and introduce sepa-
rable logarithmic bond utility as in Di Tella (2020). Each agent i maximizes

E

[∫ ∞

0
e−ρt

(
(1− υ) log ci

t + υ log bi
t

)
dt
]

,

where
bi

t = (1− θK,i
t − θE,i

t − θĒ,i
t )ni

t

are real government bond holdings of the agent as in Section 3. υ measures the utility
share derived from bond holdings. For υ = 0, the model collapses to the baseline
model. As in the main text, but unlike in Appendix A.8, we assume here that the gross
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holdings or privately issued nominal debt are zero, so that all bonds are government
bonds. So long as privately issued bonds do not provide utility, this assumption is
without loss of generality.

However, as in Appendix A.8, we use the notation ip
t to denote the (shadow) nom-

inal short rate on such privately issued bonds. As these bonds do not enter utility, the
spread ∆it := ip

t − it can be positive in this augmented model. It captures the conve-
nience yield on government bonds.

The augmented model has almost the same equilibrium solution as our baseline
model. ι, qB, and qK are given by the equations

ιt =
(1− ϑt) (at − g)− (1− υ) ρ

1− ϑt + φ (1− υ) ρ
, (55)

qB
t = ϑt

1 + φ (at − g)

1− ϑt + φ (1− υ) ρ
, (56)

qK
t = (1− ϑt)

1 + φ (at − g)

1− ϑt + φ (1− υ) ρ
(57)

as a function of the bond wealth share ϑt. The latter is determined by the dynamic
equation

Et [dϑt] =
(

ρ + µ̆Bt − ∆it − (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt, (58)

where ∆it = υρ/ϑt is the equilibrium convenience yield on government bonds. This
equation differs from equation (10) only by the presence of the convenience yield term
∆it, which raises the equilibrium level of ϑt.

We present a proof of equations (55)–(57) and (58) at the end of this appendix.

Debt Valuation Equations (Proposition 7). We next sketch the derivations of the two
debt valuation equations stated in the main text. The derivation steps are in complete
analogy to the ones presented in Section 3 for the baseline model.

The valuation from the buy and hold perspective starts again from the government
flow budget constraint (2) and follows precisely the same steps as in Section 3 up to the
derivation of equation (34) stated in the main text and restated here for convenience:

ξ i
0
B0

P0
= E

[∫ T

0
ξ i

tstKtdt

]
−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
+ E

[
ξ i

T
BT

PT

]
.
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From here on, the derivation departs slightly. Because the nominal SDF ξ i
t/Pt in this

model does not price nominal government debt but nominal private debt, it decays on
average at rate ip

t = it + ∆it, and the second term does not vanish. Instead, we obtain

−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
= E

[∫ T

0
ξ i

t∆it
Bt

Pt
dt

]
,

which is the present value of convenience yield service flows derived from government
debt between t = 0 and t = T. From here on, the derivation is again analogous to the
one in Section 3. Once we replace ξ i

t with ξ̄t and take the limit T → ∞, we arrive at the
equation stated in Section 6.

The valuation from the dynamic trading perspective proceeds precisely as in Sec-
tion 3. The only difference is that the derivation no longer results in the intermediate
equation (14) but in the slightly modified version

bi
0 = −E

[∫ ∞

0
ξ i

tb
i
t

(
−∆it + µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt
]

,

where the term −∆it is new. After replacing equation (14) with this variant and other-
wise following the steps outlined in Section 3, we obtain the valuation equation from
the dynamic trading perspective stated in Section 6.

To understand where the additional term−∆it comes from, note that also the deriva-
tion steps for equation (14) in Appendix A.5 remain unchanged except for one detail:
in that appendix, we have used in equation (36) that

µrB
t − r f

t − ςtσ
rB
t = 0

by standard asset pricing logic. That argument is valid if the SDF ξ i
t prices the gov-

ernment bond, so that the expected return µrB
t equals the risk-adjusted required return

r f
t + ςtσ

rB
t . Due to the presence of utility services from government bonds, this is not

true anymore in the augmented model. The expected return on a privately issued bond
µrB

t + ∆it still equals the required return, but the expected return on the government
bond is lower by ∆it. Consequently, we must use the modified relationship

µrB
t − r f

t − ςtσ
rB
t = −∆it
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in equation (36). This explains the additional term −∆it above.

Model Solution Details. The model solution follows the same steps as in Appendix A.1.
The difference here is that the term log ci

t in the Hamiltonian must be replaced with

(1− υ) log ci
t + υ log

(
1− θK,i

t − θE,i
t − θĒ,i

t

)
+ υ log ni

t.

We only discuss how this affects the solution without repeating all steps from Ap-
pendix A.1 explicitly.

With the same conjecture for the value function (and thus for ξ i
t) as in Appendix A.1,

the first-order condition for optimal consumption becomes

ci
t = (1− υ) ρni

t

while the first-order condition for the optimal investment choice remains unaffected.
Following the aggregation steps in Appendix A.1, we obtain again equations (7), (8),
and (9) for ιt, qB

t , and qK
t from the maintext with the difference that ρ in these equations,

which represents the consumption-wealth ratio, must be replaced with (1− υ) ρ. With
this replacement, these equations take the form equations (55), (56), and (57).

The first-order conditions for the portfolio shares θK,i
t , θE,i

t , and θĒ,i
t are the same as

in Appendix A.1 except that there is an additional term85

ρυ

1− θK,i
t − θE,i

t − θĒ,i
t

= ρυ
ni

t

bi
t
= ∆it

on the right-hand side of all three conditions that is due to the marginal utility of bond
holdings:

Et

[
drK,i

t (ιit)
]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tσ̃t − λi

t (1− χ̄) + ∆it,

Et

[
drE,i

t

]
dt − Et[drBt ]

dt = −ςi
t

σϑ
t

1− ϑt
+ ς̃i

tσ̃t − λi
t + ∆it,

Et[dr̄E
t ]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

+ ∆it.

85The last equality follows from the fact that a hypothetical zero net supply nominal bond not entering
the utility function but with otherwise identical risk profile would only have this term in the first-order
condition for its excess return.
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From here, we can follow the same steps as in Appendix A.1, which yield again equa-
tion (28), but a modified version of equation (29):

at − g− ιt

qK
t

− µϑ
t − µ̆Bt
1− ϑt

−

(
σ

q,B
t − σϑ

t

)
σϑ

t

1− ϑt
= −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tχ̄σ̃t + ∆it.

Replacing equation (29) with the previous one but following otherwise the steps in
Appendix A.1 yields for µϑ

t

µϑ
t = (1− υ)ρ + µ̆Bt − (1− ϑt)

2χ̄2σ̃2
t − (1− ϑt)∆it.

To bring this into the form (58), note that ∆it = ρυ
ni

t
bi

t
= ρυ

ϑt
in equilibrium and hence

(1− ϑt)∆it + υρ =
ρυ

ϑt
− ρυ + υρ =

υρ

ϑt
= ∆it.

The previous equation therefore simplifies to

µϑ
t = ρ + µ̆Bt − (1− ϑ)2χ̄2σ̃2

t − ∆it.

Multiplying both sides by ϑt yields equation (58).

A.10 Calibration Details

A.10.1 Data Sources and Definitions

The data series for the CIV factor (Herskovic et al., 2016) have been retrieved from
Bernard Herskovic’s website (https://bernardherskovic.com/data/). That series (col-
umn “CIV”) represents an annualized return variance measure of the common idiosyn-
cratic volatility in stock returns.

All other data used in this paper have been retrieved from the FRED database main-
tained by the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/). We
briefly describe next how we map model quantities into FRED data series.

For the macro aggregates Y, C, I, and G, we use quarterly data from 1970Q1 to
2019Q4. Output is defined as Y = C + I + G (in particular, exclusive of net exports)
while we define the three series C, I, and G as follows:
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• In line with the business cycle literature, we exclude consumption of durable
goods from our consumption measure. To compute C, we start from real personal
consumption expenditures (FRED code PCECC96) and subtract real expenditures
for durable goods. We identify the latter by multiplying total real consumption
expenditures by the ratio of nominal expenditures for durable goods (PCDG) and
nominal total consumption expenditures (PCEC).

• We define investment I as the sum of two components: (1) real gross private do-
mestic investment (GPDIC1) net of the change in private inventories (CBIC1) and
(2) real consumption expenditures for durable goods (measured as described pre-
viously). We include durables in investment as we have removed them from con-
sumption but they nevertheless represent an important part of overall private
expenditures.86

• We government spending G as real government consumption expenditures and
gross investment (GCEC1).

The ratios of primary surpluses and government debt to GDP, S/Y and qBK/Y,
respectively, are measured from nominal data. We use again quarterly data series
from 1970Q1 to 2019Q4. We define the nominal primary surplus as current receipts
(FGRECPT) minus current expenditures (FGEXPND) but add back current interest ex-
penditures (A091RC1Q027SBEA) of the federal government. We define nominal debt as
the market value of marketable treasury debt (MVMTD027MNFRBDAL). We compute
the ratios S/Y and qBK/Y by dividing both nominal primary surpluses and nominal
debt by nominal GDP (GDP).87

Data on the capital stock to compute the capital-output ratio is based on the Penn
World Tables (Feenstra et al., 2015) and only available annually. We again choose the
time period from 1970 to 2019. The capital-output ratio qKK/Y is defined as capital
stock at constant national prices (RKNANPUSA666NRUG) divided by real GDP at con-
stant national prices (RGDPNAUSA666NRUG), both for the US.

86Excluding durables altogether from our measures of economic activity does not substantially change
our computed data moments: it lowers the volatility of output somewhat but otherwise only marginally
affects results.

87Unlike for our time series of macro aggregates, we do not correct the GDP measure for components
not in the model. Doing so would have only a minor impact on the resulting numbers. Not doing so is
also consistent with how we compute the capital-output ratio below.
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For returns on bonds and equity, we use monthly data from February 1970 to De-
cember 2019.88 We first construct monthly log returns from these data sources as fol-
lows:89

• We measure the return on government debt using data on the market yield on
treasury securities at 5-year constant maturity (DGS5). We chose the 5-year ma-
turity as this approximately reflects the average duration of federal debt. We con-
vert the yield data into (holding period) returns using the well-known formula

rT
t+1 = TyT

t − (T − 1)yT−1
t+1

that relates the log holding period return rT
t+1 over the period from t to t + 1

of a bond with time to maturity of T at date t to the log yield yT
t of a T-period

bond at t and the log yT−1
t+1 of a T − 1-period bond at t + 1. To operationalize this

formula, we approximate the unknown 59-month yield yT−1
t+1 with the observed

60-month yield yT
t+1. This procedure generates a series r̂Bt of monthly log returns

for government bonds.

• As a proxy for the total equity market, we take the Wilshire 5000 index. We com-
pute monthly log returns by dividing successive end-of-month values of the to-
tal market index (Wilshire 5000 Total Market Index, FRED series WILL5000IND),
which includes dividend reinvestments, and then taking natural logarithms. As
market returns are based on leveraged equity returns, this procedure yields a se-
ries r̂E,leverage

t of leveraged monthly log returns for equity.

Based on these data series, we construct the sample estimates for E
[
dr̄E − drB

]
and

σ
(

dr̄E − drB
)

reported in Table 2 as follows. We first define for leveraged returns:

E
[
dr̄E,leverage

]
= 12 · sample mean

(
r̂E,leverage

)
+

12
2
· sample var

(
r̂E,leverage

)
,

E
[
drB
]
= 12 · sample mean

(
r̂B
)
+

12
2
· sample var

(
r̂B
)

,

σ2
(

dr̄E,leverage − drB
)
= 12 · sample var

(
r̂E,leverage − r̂B

)
.

88February 1970 is the first month at which some of the required series are available on FRED.
89To be precise, the following definitions are for nominal returns while the returns in the model are

real. However, for the purpose of computing return differentials, as we do, this distinction is irrelevant.
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However, the model counterpart dr̄E of the market equity return is closer to a delevered
equity return. The theoretical relationship between the delevered equity return dr̄E and
the leveraged return dr̄E,leverage is

dr̄E = drB +
1
`

(
dr̄E,leverage − drB

)
,

where ` ≥ 1 is financial leverage as measured by the ratio of total assets to equity. We
therefore define:

E
[
dr̄E − drB

]
=

1
`

(
E
[
dr̄E,leverage

]
−E

[
drB
])

,

σ
(

dr̄E − drB
)
=

1
`

σ
(

dr̄E,leverage − drB
)

.

We use ` = 1.5 to compute delevered equity returns.

For the real risk-free rate we also use monthly data from February 1970 to December
2019. We approximate the nominal risk-free rate by the (annualized) 3-month Treasury
Bill secondary market rate (DTB3). We convert nominal rates to real rates using realized
inflation based on the consumer price index for all urban consumers (CPIAUCSL_PC1).
We compute E[r f ] and σ(r f ) based on sample means and variance of the logged risk-
free rate series in the same way as for other financial returns (but without the factor 12
given that the returns are already annualized).

A.10.2 Calibration of the Exogenous σ̃t Process

We estimate the coefficients σ̃0, ψ, and σ of the idiosyncratic risk process (19) such
that it matches the observed CIV series. Here, we first describe the details of the esti-
mation procedure and then explain why CIV is a suitable data counterpart for idiosyn-
cratic risk σ̃2

t in the model.

Parameters Estimation. We use a maximum likelihood estimation (MLE) to deter-
mine σ̃0, ψ, and σ based on a monthly CIV sample from January 1945 to December
2019. MLE is straightforward here because the conditional density of the CIR process
σ̃2

t has a known closed-form expression (e.g. Aït-Sahalia (1999), equation (20)).

While not directly targeted by MLE, the estimated process generates first and sec-
ond ergodic moments of σ̃t, 0.5078 and 0.1701, respectively, that closely match their
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empirical counterparts (based on square roots of the CIV sample), 0.4950 and 0.1817,
respectively.

CIV as a Model-consistent Measure of σ̃2
t . We briefly outline why CIV indeed mea-

sures σ̃2
t . Herskovic et al. (2016) construct CIV as the cross-sectional mean of the id-

iosyncratic return variance of individual stocks in their sample. The idiosyncratic re-
turn variance of an individual stock, in turn, is defined as the variance of the residual
of a factor regression on the market factor.

In our model, this procedure broadly amounts to a (population) regression of the
type

drE,i
t − r f

t dt = αi
t + βi

t

(
dr̄E

t − r f
t dt
)
+ εi

t

for stocks issued by all agents i. Comparing the return expressions for drE,i
t and dr̄E

t

stated in Section 2.2, it is clear that this regression yields αi
t = 0, βi

t = 1 and εi
t = σ̃tdZ̃i

t.
The variance of each individual residual εi

t therefore exactly equals σ̃2
t , and so does the

cross-sectional mean over all residual variances. In other words, if the real-world data
was generated by the model, measured CIV at time t would exactly correspond to σ̃2

t .

A.10.3 Calibration of Remaining Model Parameters

The calibration choices for χ and δ are explained in the main text. The remaining
nine parameters, γ, ρ, a0, g, µ̆B,0, αa, αB, φ, ι0, are chosen to match twelve moments as
described in the main text. We briefly explain here (heuristically) how these moments
identify the model parameters.

First, given the estimated σ̃t process, the capital productivity process

at = a(σ̃t) = a0 − αa(σ̃t − σ̃0)

is exogenous and fully determined by the two parameters a0 and αa. While output
Yt = atKt still contains an endogenous term Kt, the capital stock is slow-moving such
that most of the variation in HP-filtered output is due to variation in at. Therefore, the
parameter αa is effectively determined by the target moment σ(Y).

Second, because g is constant, the variability of output left for private uses, Y − G,
is also determined by the parameter αa. By the aggregate resource constraint Y − G =

C + I, so that the choice of αa also constrains the variation of the sum of consumption

91



and investment. The parameter φ effectively controls how much of that variation is
absorbed by the individual components of that sum. While in principle the full details
of the model matter for the dynamics of investment opportunities, φ controls to which
extent changes in investment opportunities change actual physical investment as op-
posed to simply driving up or down capital valuations. For φ → 0, investment reacts
a lot while for φ → ∞, investment is fixed and only prices react. Therefore, the two
relative volatilities σ(C)/σ(Y) and σ(I)/σ(Y) effectively determine φ.90

Third, the ratio of primary surpluses to output is given by

St/Yt = −µ̆Bt
qB

t
at

= −
(

µ̆B,0 + αB(σ̃t − σ̃0)
) qB

t
at

.

While the dynamics of this variable depend on the endogenous price qB
t , the parameter

αB is nevertheless able to control the overall volatility of St/Yt.91 The parameter αB is
therefore determined by the moment σ(S/Y).

Fourth, the six average ratio targets in the calibration effectively determine the five
parameters ρ, a0, g, µ̆B,0, and ι0. To see this, we explain how, in the stochastic steady
state of the model, the five parameters map directly into functions of target ratios and
how this mapping can be inverted to obtain the parameters. While we do not target
the stochastic steady state but the ergodic mean when matching moments, the two are
quantitatively very close.

The identity C + I + G = Y and the level targets for C/Y and G/Y imply I/Y =

1− C/Y − G/Y. We can thus write for capital productivity a0 in the stochastic steady
state

a0 =
Y
K

=
I/K
I/Y

=
I/K

1− C/Y− G/Y
.

This determines a0 as a function of targets. Due to G = gK, we obtain immediately also

g = G/Y · a0.

Because G/Y is a target and a0 has already been determined, this equation determines

90This does not imply that we are always able to pick φ in a way that matches both relative volatilities
precisely. It just means that if model dynamics are such that they can be matched at all, then this works
only for one value of φ.

91This is not a rigorous theoretical statement but an empirical one based on observed numerical model
solutions.
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g.

Next, ρ represents the ratio of consumption to total wealth in the model, that is

ρ =
C

(qB + qK)K
=

C/Y
qBK/Y + qKK/Y

and the right-hand expression is a function of targeted ratios. Hence, the targets also
determine ρ.

By the government budget constraint, the policy variable µ̆B in the stochastic steady
state must satisfy

µ̆B,0 = − s
qB = − S/Y

qBK/Y

and, again, the right-hand expression is a function of targeted ratios.

Finally, the capital price in the stochastic steady state can be related to the capital-
output ratio by the equation qK,0 = qKK/Y · a0. Because a0 is a function of targeted
ratios, so is qK,0. It is easy to show that the investment rate is I/K = ι0 + qK,0−1

φ . This
expression only depends on qK,0 and the parameters ι0 and φ. For any given parameter
φ, ι0 is therefore determined by targets through the equation

ι0 = I/K− qK,0 − 1
φ

.

We remark that the six average ratios do not only identify the five parameters ρ,
a0, g, µ̆B,0, and ι0 (in the stochastic steady state) but also the average value ϑ0 of the
endogenous variable ϑt, namely

ϑ0 =
qB

qB + qK =
qBK/Y

qBK/Y + qKK/Y
.

This generates an implicit target that must be somehow matched by varying parameters
other than ρ, a0, g, µ̆B,0, and ι0 in order to match all six average ratios.

Fifth, because ρ, χ̄, and the dynamics of µ̆B and σ̃t are already determined by exter-
nal calibration choices or the targeted average ratios, the counterpart of equation (10)
in Appendix A.7 implies that this implicit target ϑ0 for the average value of ϑt must be
matched by a sufficient size of the risk premium terms in that equation. The only “free”
variables in these terms are σv

t and γ and the former is effectively also determined by γ
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(once ρ, χ̄, and the dynamics of σ̃t are fixed). In fact, the risk premium terms are strictly
increasing in γ given the remaining parameter choices. Therefore, the implicit target ϑ0

is only achieved for a specific value of γ. At the same time, γ affects also the average eq-
uity premium E[dr̄E− drB] and the equity sharpe ratio E[dr̄E− drB]/σ(dr̄E− drB). The
parameter γ is thus certainly identified by the set of target moments, but it is generally
not possible to match all of them.

A.10.4 Calculation of Wealth-weighted Risk Exposures Discussed in the Main Text

In this appendix we explain how we compute empirical counterparts for the wealth-
weighted total and idiosyncratic risk exposures discussed in Section 7.

Our data for risk exposures by wealth group are from Bach et al. (2020). These
authors report the standard deviation of the excess return on gross wealth (Table I,
column (2)) and net wealth (Table II, column (3)) for 16 wealth groups categorized by
their relative position in the wealth distribution. For the gross wealth data, the authors
also report the fraction that is due to idiosyncratic risk (Table I, column (3)) relative to
a factor asset pricing model. In lack of other data, we assume that the same fractions
also apply to the net wealth figures. We use these observations to compute for each
group both the total and the idiosyncratic variance of the excess return on wealth, both
for gross wealth and net wealth. As the observations are based on Swedish adminis-
trative data, our implicit assumption is that the mapping from wealth groups to these
variances is similar for the the US, where no such data are observable.

To match these variances with wealth shares for the US, we take estimates from
Smith et al. (2023) who calculate wealth shares using different methodologies for the
following five wealth groups (see their Table I): “Full population”, “Top 10%”, “Top
1%”, “Top 0.1%”, “Top 0.01%”.92 We use both their “baseline” and their “equal returns”
estimate for wealth shares.

Unfortunately, the wealth groups formed by Smith et al. (2023) are coarser than the
ones reported in Bach et al. (2020). Where the Smith et al. (2023) estimates only tell us
the combined wealth share of several groups based on the Bach et al. (2020) split, we
allocate the wealth equally across the groups formed in the latter paper.

92They also have a sixth group “Top 0.001%”. However, the Bach et al. (2020) is not sufficiently fine-
grained at the very top of the wealth distribution, so that we ignore this additional group throughout.
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Table 3 reports the square roots of the resulting wealth-weighted cross-sectional av-
erages for the variances, both for idiosyncratic and total risk exposures. For each type
of estimate, we report four values, depending on which wealth share estimate we use
and whether we take gross wealth or net wealth figures for risk exposures.

Table 3: Wealth-weighted risk exposures

wealth shares “baseline” “equal returns”
gross/net wealth gross net gross net

idiosyncratic risk 0.09 0.09 0.1 0.1
total risk 0.16 0.18 0.17 0.19

A.11 A Model with Two Types

In this appendix we present a model variant with two types of agents that have
heterogeneous access to the different asset markets in our economy and therefore het-
erogeneous idiosyncratic and possibly aggregate risk exposures. We derive theoretical
results that link the predictions of the two-type model to the predictions of the one-type
model presented in the main text.

Setup. The model is the same as the baseline model in the main text, except for the
following modification. At each time, each agent i is either an expert (“e”) or a house-
hold (“h”). Experts can manage capital directly and therefore face precisely the same
portfolio (and real investment) choice as all agents in our baseline model. Households,
in turn, are restricted to only hold financial assets (equity and bonds). All agents have
identical preferences regardless of type. We allow for both logarithmic preferences as
in Section 2 (γ = 1) and more general stochastic differential utility preferences with
risk aversion γ > 0 as considered in Section 4.

Agents receive idiosyncratic (Poisson) type switching shocks. Experts become house-
holds with arrival rate λe > 0 and households become experts with arrival rate λh >

0.93

Let ei
t be an indicator that is 1 if agent i is an expert at time t and zero otherwise. In

93Without type switching experts would eventually dominate the economy because they earn higher
expected returns on average. In the stationary distribution, the model would then reduce to the one-type
model studied in the main text.
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what follows, we define the shares

ηe
t :=

∫
ηi

te
i
tdi, ηh

t :=
∫

ηi
t(1− ei

t)di

of total wealth that is owned by experts (ηe
t ) and households (ηh

t ), respectively. One of
these variables is a sufficient summary of the cross-sectional wealth distribution for the
purposes of solving for the aggregate dynamics and asset prices in this model (the other
variable can be backed out form ηe

t + ηh
t = 1). When solving the model, we therefore

include ηe
t as an additional state variable.

Sketch of the Model Solution. The model can be solved along the same lines as our
baseline model. We briefly sketch the solution procedure here and provide more details
on the steps that are new relative to the baseline model.

First, everything that is said in Section 2.2 before Lemma 1 as well as that lemma
itself remains valid in the two-type model without any modification. As a consequence,
the dynamics of asset prices, aggregate consumption, and aggregate investment are
fully determined by the dynamics of the endogenous process ϑt and the exogenous
process at.

Second, the optimal portfolio choice conditions (25), (26), and (27) remain unchanged
for those agents i that are experts at time t. For households, instead, the first two con-
ditions do not apply, as households do not hold capital and issue outside equity. Nev-
ertheless, equation (27) remains valid also for households. Therefore, for experts the
exact same steps as in Appendix A.1 lead once again to equation (29) stated there. This
equation depends on the agent index i only through the prices of risk ςi

t and ς̃i
t. We

argue next that these prices of risk are actually not i-dependent. Specifically, because
equation (27) holds for all agents regardless of type, ςi

t = ςt is the same for all i.94

Furthermore, using ςi
t = ςt and λi

t = ς̃i
tσ̃t (compare Appendix A.1) in equation (25)

for any agent i that is an expert implies that ς̃i
t is identical for all experts. We call this

common value ς̃e
t from now on. Consequently, the combined portfolio choice condition

94This conclusion rests on the implicit assumption σϑ
t 6= 0. However, it is easy to verify ex post

that σϑ
t = 0 if and only if there is no consumption-relevant aggregate risk. But in this case, trivially

ςi
t = 0 =: ςt for all agents.
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equation (29) can be written here as

at − gt − ιt

qK
t

− µϑ
t − µ̆Bt
1− ϑt

−

(
σ

q,B
t − σϑ

t

)
σϑ

t

1− ϑt
= −ςt

σϑ
t

1− ϑt
+ ς̃e

tχ̄σ̃t. (59)

Third, the factor vt in the costate ξ i
t for agent i now becomes type-specific, ve

t if ei
t = 1

and vh
t if ei

t = 0. Hence, equations (45) for the prices of risk remain valid. However,
in the first equation, σv

t has to be interpreted as σv,e
t for experts and and as σv,h

t for
households. In this model, it makes sense to determine the aggregate net worth risk
loadings σn,i

t slightly differently to before. Specifically, ηi
t = ni

t/Nt implies that (by Ito’s
lemma) σn,i

t = σN
t + σ

η,i
t . Using Nt = qB

t /ϑtKt, we have furthermore σN
t = σ

q,B
t − σϑ

t .
We can therefore write for the price of aggregate risk

ςt = γ
(

σ
q,B
t − σϑ

t

)
+ γσ

η,e
t − σv,e

t = γ
(

σ
q,B
t − σϑ

t

)
+ γσ

η,h
t − σv,h

t .

The price of idiosyncratic risk is type-specific and given by

ς̃e
t = γ

1− ϑt

ηe
t

χ̄σ̃t, ς̃h
t = 0.

Fourth, while the steps in Appendix A.1 that lead to Proposition 1 remain exactly
the same, the ultimate dynamic equation for ϑt is different from equation (10) because
the prices of risk are different. Plugging the prices of risk for experts into the com-
bined portfolio choice equation (59) and otherwise following the same steps as in Ap-
pendix A.1 yields the equation

Et [dϑt] =

(
ρ + µ̆Bt −

(
ηe

t σv,e
t + ηh

t σv,h
t − (γ− 1) σ

q̄
t

)
σϑ

t − γ
(1− ϑt)

2 χ̄2σ̃2
t

ηe
t

)
ϑtdt, (60)

where, as in Appendix A.7, σ
q̄
t denotes the volatility of q̄t := qB

t + qK
t .

Fifth, an additional law of motion for the endogenous state variable ηe
t needs to be

determined. This is relatively straightforward for the volatility σ
η,e
t . Using the two

expressions for ςt, from experts’ and households’ perspective, and the fact that ηe
t σ

η,e
t +
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ηh
t σ

η,h
t = 0 (by construction), we obtain

σ
η,e
t =

(1− ηe
t )(σ

v,e
t − σv,h

t )

γ
.

In particular, in the special case of log utility, σv,e
t = σv,h

t = 0 and, hence, also σ
η,e
t = 0,

so that the wealth share ηe
t evolves locally deterministically.

The drift of ηe
t can be computed using some straightforward but tedious algebra

that is omitted here in the interest of space.95 The final result is

µ
η,e
t =

(
−σv,e

t + γσ
η,e
t + (γ− 1) σ

q̄
t

)
σ

η,e
t +

1− ηe
t

ηe
t

γ
χ̄2 (1− ϑt)

2

ηe
t

σ̃2
t +

λh (1− ηe
t
)
− λeηe

t
ηe

t
.

(61)

Sixth and finally, there are now two BSDEs for the value function factors Et[dve
t ] and

Et[dvh
t ]. These can be derived in precisely the same way as in Appendix A.7, except that

we have to account for type switching. The two counterparts of the costate equation,
equation (46), are entirely analogous:

Et[dξe,i
t ] = −

(
(1− γ)ρ log ρ− ρ log ve

t + µn,e,i
t −

(
γσn,e,i

t − σv,e
t

)
σn,e,i

t − γ
(

σ̃n,e,i
t

)2
)

ξe,i
t dt,

Et[dξh,i
t ] = −

(
(1− γ)ρ log ρ− ρ log vh

t + µn,h,i
t −

(
γσn,h,i

t − σv,h
t

)
σn,h,i

t

)
ξh,i

t dt.

The counterparts of equation (47) change slightly because, when applying Ito’s lemma
to ξe

t = ve
t(n

i
t)
−γ and ξh

t = vh
t (n

i
t)
−γ, additional jump terms appear:

Et[dξe,i
t ] =

(
µv,e

t − γµn,e,i
t +

γ (γ + 1)
2

((
σn,e,i

t

)2
+
(

σ̃n,e,i
t

)2
)
− γσv,e

t σn,e,i
t + λe ξh,i

t − ξe,i
t

ξe,i
t

)
ξe,i

t dt,

Et[dξh,i
t ] =

(
µv,h

t − γµn,h,i
t +

γ (γ + 1)
2

(
σn,h,i

t

)2
− γσv,h

t σn,h,i
t + λh ξe,i

t − ξh,i
t

ξh,i
t

)
ξh,i

t dt.

Combining the two sets of equations and solving for µv,e
t and µv,h

t , respectively, yields

µv,e
t = ρ log ve

t + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ + µ

η,e
t +

λeηe
t − λhηh

t
ηe

t

)
95Essentially, one applies Ito’s lemma to ηe

t = Ne
t /Nt, where Ne

t :=
∫

ni
te

i
tdi and its evolution as an Ito

process can be determined from the evolution of ni
t for all i that are experts.
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+ (γ− 1)

−γ

2

((
σ

q̄
t + σ

η,e
t

)2
+

(1− ϑ)2 χ̄2

(ηe
t )

2 σ̃2
t

)
+ σv,e

t

(
σ

q̄
t + σ

η,e
t

)+ λe vh
t − ve

t
ve

t
,

µv,h
t = ρ log vh

t + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ + µ

η,h
t +

λhηh
t − λeηe

t

ηh
t

)

+ (γ− 1)
(
−γ

2

(
σ

q̄
t + σ

η,h
t

)2
+ σv,h

t

(
σ

q̄
t + σ

η,h
t

))
+ λh ve

t − vh
t

vh
t

.

Relationship with Baseline Model. We next provide two theoretical results that high-
light relationships between the dynamics of the two-type model and the dynamics of
our baseline model with just one type. These results emphasize that the statistic of the
cross-sectional distribution of idiosyncratic risk exposures that matters most for our
model’s predictions is

∫
ηi

t(σ̃
n,i
t )2di, i.e. the wealth-weighted cross-sectional mean of

the idiosyncratic net worth variance. We conjecture that a similar conclusion would
also hold in more general n-type models. To improve the reading flow, we first sum-
marize here the results and present the proofs at the end of this appendix.

In what follows, we always make the following assumptions and use the following
notation:

Let K0 be an initial condition for the capital stock and at, µ̆Bt , σ̃1
t , σ̃2

t be exogenous processes,
such that both (at, µ̆Bt , σ̃1

t ) and (at, µ̆Bt , σ̃2
t ) are functions of some finite-dimensional Markov

process. Suppose that stationary monetary equilibria exist both for the one-type model with ex-
ogenous processes (at, µ̆Bt , σ̃1

t ) and for the two-type model with exogenous processes (at, µ̆Bt , σ̃2
t )

based on the same parameters for ρ, g, and φ (but not necessarily for other model parameters).96

For any model variable x, denote by xj
t the stochastic process for x in the equilibrium for the

j-type model (j ∈ {1, 2}).

Before establishing the main results, we remark that most interesting predictions of
the two models only depend on the stochastic processes for the exogenous variables at

and µ̆Bt and the endogenous variable ϑt in equilibrium.

Lemma 5. If ϑ1
t = ϑ2

t for all t (almost surely), then also the following equations hold for all t

96By Proposition 1 and the results in Appendix A.2, these equilibria are then also unique. These results
hold analogously also for the two-type model.
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(almost surely):97

K1
t = K2

t , qB,1
t = qB,2

t , qK,1
t = qK,2

t , ι1t = ι2t ,

C1
t = C2

t , τ1
t = τ2

t , Et[drB,1
t ] = Et[drB,2

t ], Et[drK,1
t ] = Et[drK,2

t ]

The previous lemma establishes that if two equilibria feature the same endogenous
process ϑt, then they make exactly the same predictions for a large range of variables.
We next provide sufficient conditions for ϑ1

t = ϑ2
t .

We start with the special case of log utility (γ = 1) as then several equations simplify.
First, note that for log utility ve

t = vh
t = 1, so that the decision-relevant portion of

agents’ value functions is independent of the agent type. As a consequence, we also
obtain σ

η,e
t = 0, agents find it optimal to fully share aggregate risk. Equation (60) then

simplifies to

Et [dϑt] =

(
ρ + µ̆Bt −

(1− ϑt)
2 χ̄2σ̃2

t
ηe

t

)
ϑtdt

=

(
ρ + µ̆Bt −

(
ηe

t
(
σ̃n,e

t
)2

+ ηh
t

(
σ̃n,h

t

)2
))

ϑtdt, (62)

where it has been used that σ̃n,e
t = 1−ϑt

ηt
χ̄σ̃t and σ̃n,h

t = 0. Similarly, the corresponding
equation in the baseline model with just one type is98

Et [dϑt] =
(

ρ + µ̆Bt −
(
σ̃n

t
)2
)

ϑtdt. (63)

Note that, beyond the log utility case, equations (62) (for the two-type model) and
(63) (for the one-type model) continue to hold more generally if we shut down aggre-
gate shocks (by setting the dZt-loading of the exogenous processes to zero).

In either case, log utility or no aggregate shocks, equations (62) and (63) are identical

if (and only if) the stochastic process for ηe
t
(
σ̃n,e

t
)2

+ ηh
t

(
σ̃n,h

t

)2
in the two-type model

is the same as the stochastic process for
(
σ̃n

t
)2 in the one-type model. If this is the case,

97For the last equality, note that in both models, drK,i
t does not depend on i except for the identity of

the idiosyncratic shock dZ̃i
t which plays no role for the expectation (and it only makes sense if i is an

expert in the two-type model). Therefore, the equation is written without i-superscripts
98Compare equation (10) in Proposition 1. Alternatively, simply set ηe

t = 1, ηh
t = 0 in the previous

equation – the two-type model effectively collapses to the baseline model if ηe
t is held fixed at 1.
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then the two models imply the same dynamics for ϑt and, hence, the same dynamics
for aggregates and asset prices. This reasoning leads to the following proposition.

Proposition 9. Let either γ = 1 (log utility) or assume that there are no aggregate shocks.
Suppose that the following condition hold (for all t almost surely)(

σ̃n,1
t

)2
= ηe

t

(
σ̃n,e,2

t

)2
+ ηh

t

(
σ̃n,h,2

t

)2
. (64)

Then the equilibrium dynamics for all macro aggregates and the expectations and aggregate
volatility loadings of all asset returns are identical in both equilibria.

We now turn to the general case that there are aggregate shocks and, potentially,
γ 6= 1. In this case, similar derivations as before show that equation (62) for the two-
type model takes the form

Et [dϑt] =

(
ρ + µ̆Bt −

(
ηe

t σv,e
t + ηh

t σv,h
t − (γ− 1) σ

q̄
t

)
σϑ

t − γ

(
ηe

t
(
σ̃n,e

t
)2

+ ηh
t

(
σ̃n,h

t

)2
))

ϑtdt

(65)
and equation (63) for the one-type model takesthe form

Et [dϑt] =

(
ρ + µ̆Bt −

(
σv

t − (γ− 1) σ
q̄
t

)
σϑ

t − γ
(
σ̃n

t
)2
)

ϑtdt. (66)

In this general case, condition (64) is no longer sufficient to make the two equations
identical. In addition, we would need the extra condition σv

t = ηe
t σv,e

t + ηh
t σv,h

t , which
is unlikely to be satisfied in general as an inspection of the BSDEs for vt in the one-type
model and for ve

t , vh
t in the two-type model reveals. This is because, for γ 6= 1 and

aggregate shocks, hedging demands induce different types to take on heterogeneous
aggregate risk exposures, which generates additional dynamics that are absent from the
more stylized one-type model. However, these additional dynamics disappear in the
limit case that type switching is infinitely fast as then the value functions of households
and experts align. Then, condition (64) is again sufficient for the two models to generate
identical predictions:

Proposition 10. The conclusion of Proposition 9 remains valid even for γ 6= 1 and with aggre-
gate shocks, if the equilibrium in the two-type model is understood to be the limit as λe, λh → ∞
with the ratio λh/λe ∈ (0, ∞) held constant.
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Proofs.

Proof of Lemma 5. Lemma 1 holds for both models. We observe immediately from that
lemma that if ϑt and at are the same in two equilibria, then so are qB

t , qK
t , and ιt, provided

the equilibria correspond to models with identical parameters ρ, g, and φ, as we have
assumed here. If ιt is the same across the two equilibria, then so is dKt/Kt by the law of
motion of aggregate capital (compare Definition 1 and note that an identical equation
also holds in the two-type model). This completes the proof of the first four equations.
We now discuss the remaining four equations.

For equality of aggregate consumption Ct, note that a1
t = a2

t , K1
t = K2

t , and ι1t = ι2t
imply together with goods market clearing (equation (3))

C1
t = (a1

t − g− ι1t )K
1
t = (a2

t − g− ι2t )K
2
t = C2

t .

For equality of taxes, we use similarly the government budget constraint and a1
t =

a2
t , µ̆B,1

t = µ̆B,2
t , and qB,1

t = qB,2
t :

τ1
t =

g− µ̆B,1
t qB,1

t
a1

t
=

g− µ̆B,2
t qB,2

t
a2

t
= τ2

t .

For equality of the expected return on bonds consider the equation for the return
drBt stated in the first part of Appendix A.1. This equations holds for both the one-type
and the two-type model. Observe that the drift of drBt only depends on ιt, µ

q,B
t , and µ̆Bt ,

which are identical for j = 1 and j = 2. Hence, Et[drB,1
t ] = Et[drB,2

t ].

An analogous argument holds for the last equality. Also the final expression for
drK,i

t (ιit) in Appendix A.1 holds for both models. This expression depends on at, ιt, qB
t ,

qK
t , µ

q,K
t , all of which have been shown to be identical in both equilibria.

Proof of Proposition 9. Comparing equations (62) and (63), it is apparent that if ϑ1
t = ϑ2

t

and condition (64) holds, then the right-hand sides of both equations are identical state
by state. Uniqueness of the solution (compare Appendix A.2) then implies that, indeed,
ϑ1

t = ϑ2
t is the only possibility.

From Lemma 5 we can then immediately conclude that Kt, qB
t , qK

t , ιt, Ct, τt, Et[drBt ],
and Et[drK

t ] must be identical across the two models. All macro aggregates can be
written as functions of the first six variables (and possibly the exogenous processes at
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and µ̆Bt , which are the same for both models), so that, indeed, the dynamics of all macro
aggregates must be identical in both equilibria.

In addition, if qB
t and qK

t are identical, then so are σ
q,B
t and σ

q,K
t by Ito’s lemma.

Hence, the aggregate volatility loadings on all returns drBt , drK
t , drE

t , dr̄E
t must be iden-

tical.

Because Lemma 5 already implies that the expected returns on capital and bonds
are identical across the two equilibria, it is only left to show that also Et[drE

t ] = Et[dr̄E
t ]

is the same in both equilibria. Because of equation (27), which holds in both models,
and ϑ1

t = ϑ2
t ⇒ σϑ,1

t = σϑ,2
t , the desired equality holds if and only if ς1

t = ς2
t . This is

trivially satisfied if there are no aggregate shocks so that we can from now on assume
that γ = 1. Then, ς1

t = ς2
t follows from the following considerations:

• In the one-type model, the aggregate price of risk is given by (compare Appendix A.1)

ς1
t = σn

t = σ
q̄
t .

• In the two-type model, the aggregate price of risk is given by

ς2
t = σ

q̄
t + σ

η,e
t = σ

q̄
t ,

because σ
η,e
t = 0 in the log utility case.

Proof of Proposition 10. We first establish some properties of the limit economy in the
two-type model. Let η∗ := λh/λe

1+λh/λe . By the assumptions that λh/λe ∈ (0, ∞) is held

constant, we know that η∗ ∈ (0, 1) is constant along any limit sequence. Also λe

1−η∗ =
λh

η∗

by definition of η∗.

Consider now the last term in the drift of ηt, equation (61):

λh (1− ηe
t
)
− λeηe

t
ηe

t
=

1
ηe

t

(
λh

η∗
η∗
(
1− ηe

t
)
− λe

1− η∗
(
1− η∗

)
ηe

t

)

=
λh

η∗
1
ηe

t

(
η∗ − ηe

t
)

.
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This term is positive for ηe
t < η∗ and negative for ηe

t > η∗ and as λh → ∞, it becomes
arbitrarily large in absolute value. In contrast, all other terms in equation (61) remain
bounded for ηt in a (sufficiently small) neighborhood of η∗. Hence, the last term domi-
nates in the limit and ensures that ηt = η∗ at all times.

Next, consider the equations for µv,e
t and µv,h

t for the two-type model stated above.
We only discuss the equation for µv,e

t but note that everything said here applies sym-
metrically to µv,h

t . The type switching intensities λe and λh appear in two places. First,
in the first line, there is a term

λeηe
t − λhηh

t
ηe

t
=

λh

η∗
ηe

t − η∗

ηe
t

,

which is, up to the sign, exactly the same term as the last term in the drift of ηt. Because
the drift is finite (in fact, zero) in the limit equilibrium, this term must also vanish in the
limit λh → ∞. Second, the last term in the expression for µv,e

t also depends on switching
intensities,

λe vh
t − ve

t
ve

t
,

and, in the limit λe → ∞, this term becomes arbitrarily large unless ve
t = vh

t . Because the
term is positive if vh

t > ve
t , negative if vh

t < ve
t , and this equation describes a backward

equation for ve
t , it must indeed be the case that ve

t = vh
t in the limit.

Furthermore, once we impose ve
t = vh

t =: vt and ηt = η∗, use that either of these
two equations implies σ

η,e
t = 0, and plugs these equations into the equation for either

µv,h
t or µv,e

t (in the limit as λe, λh → ∞), we obtain an equation that is identical to the
equation for µv

t in the one-type model stated at the end of Appendix A.7.

We use the previous considerations to conclude that if condition (64) is satisfied,
then v1

t = v2
t and ϑ1

t = ϑ2
t (where, v2

t is the common value for vh
t = ve

t in the two-type
model in the limit economy). First, if the condition is satisfied and these two equations
hold, then equations (65) and (66) have identical right-hand sides state by state, so
indeed the ϑ-solutions must satisfy ϑ1

t = ϑ2
t . Similarly, as just observed, then µv,1

t and
µv,2

t must be identical state by state, such that the value function solutions must satisfy
v1

t = v2
t . While this logical appears somewhat circular, the previous observations are

indeed sufficient to establish that under condition (64), there is a solution such that
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v1
t = v2

t and ϑ1
t = ϑ2

t .99 Uniqueness of the non-degenerate stationary solution then also
implies that this is the only possibility.

Having established that ϑ1
t = ϑ2

t , arguments in full analogy to the proofs of Lemma 5
and Proposition 9 show that the conclusion of Proposition 9 remains valid.

A.12 Alternative Calibration Choices and Robustness

In this appendix we report results for three alternative calibration choices and show
that our main conclusions are robust to them.

First, one concern with our calibration may be that it overstates the real effects of
variation in idiosyncratic risk σ̃t. This concern arises because we impose a perfectly
linear relationship between this variable and productivity at and choose the sensitivity
αa of productivity to variation in σ̃t to match total output volatility. However, empiri-
cally, the correlation between measures of (total factor) productivity and volatility are
not nearly as strong as imposed in our model, so that some of the empirically observed
output volatility is likely due to factors unrelated to variation in (idiosyncratic) risk.

Here, we show that this is not an issue. Theoretically, the dynamics of the endoge-
nous variable ϑt matter most for the predictions of our model (see Proposition 1), but,
at least in the log utility case, at-dynamics do not affect the determination of ϑt at all
(compare equation (10)). While the same is no longer exactly true for the preferences
we use in our calibrated model, we can verify numerically that the parameter αa is not
particularly important for any of our results. We do so by showing that lowering αa

to half its value in the baseline calibration lowers output volatility (by construction)
but otherwise has only marginal effects on model predictions. We report the parame-
ters and model moments for this alternative specification in the column “lower αa” of
Tables 4 and 5, respectively.

We remark that we still need αa > 0 to be sufficiently large such that aggregate
consumption falls in times of high idiosyncratic risk. Otherwise, our model fails to
match the correct sign of all aggregate risk premia.100

A second concern is that our calibration target for the debt-output ratio is too large,
99Simply take the solution for j = 1 as given and conjecture that processes defined by ϑ2

t := ϑ1
t , v2

t := v1
t

represent a valid solution to the equations in the two-type model. The previous logic verifies that this is
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Table 4: Alternative Parameter Specifications: Parameters

parameter baseline lower αa lower debt/GDP target matching cov(S/Y, Y)

σ̃0 0.54 0.54 0.54 0.54
ψ 0.67 0.67 0.67 0.67
σ 0.4 0.4 0.4 0.4
χ̄ 0.3 0.3 0.3 0.3
γ 6 6 5.4 5.9
ρ 0.138 0.138 0.138 0.138
a0 0.63 0.63 0.62 0.63
g 0.138 0.138 0.136 0.138

µ̆B,0 0.0026 0.0026 0.0042 0.0017
αa 0.071 0.036 0.071 0.072
αB 0.12 0.12 0.19 0.07
φ 8.1 8.1 6.2 8.6
ι0 -0.022 -0.022 -0.0877 -0.0131
δ 0.055 0.055 0.028 0.057

Table 5: Alternative Parameter Specifications: Moments

moment baseline lower αa lower debt/GDP target matching cov(S/Y, Y)

σ(Y) 1.3% 0.7% 1.3% 1.3%
σ(C)/σ(Y) 0.61 0.35 0.60 0.61
σ(I)/σ(Y) 3.35 4.44 3.32 3.37

σ(S/Y) 1.1% 1.1% 1.1% 0.6%
E[C/Y] 0.58 0.58 0.58 0.58
E[G/Y] 0.22 0.22 0.22 0.22
E[S/Y] -0.0005 -0.0005 -0.0005 -0.0005
E[I/K] 0.12 0.12 0.12 0.12

E[qKK/Y] 3.48 3.49 3.72 3.48
E[qBK/Y] 0.74 0.71 0.48 0.74

E[dr̄E − drB ] 3.59% 3.26% 2.83% 3.78%
E[drE−drB ]
σ(drE−drB)

0.31 0.28 0.29 0.29

ρ(Y, C) 0.98 0.67 0.99 0.98
ρ(Y, I) 0.99 0.97 0.99 0.99

ρ(Y, S/Y) 0.98 0.97 0.98 0.98
σ(qBK/Y) 4.8% 4.7% 2.9% 5.29%

E[r f ] 5.18% 5.41% 4.74% 5.50%
σ(r f ) 5.47% 5.97% 5.95% 5.31%

Notes: All variables are defined in precisely the same way as in Table 2 in the main text.
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not only because we take the average over the last decade (for the reason explained in
the main text) but also because we do not account for the fact that a substantial fraction
of US government debt is held abroad and that share has risen over our sample period.

We have chosen not to exclude foreign held debt in our baseline calibration be-
cause it is not at all clear that this portion should indeed be excluded. This portion
of debt is also relevant for the government budget and for pricing total debt. The im-
plicit assumption in our calibration is, however, that foreign holders of US debt have a
qualitatively and quantitatively comparable safe asset demand for this debt as domes-
tic holders (so that one should think of them as also being agents in our model). It is
unclear whether this is really the case.

For this reason, we report in Tables 4 and 5 in the column “lower debt/GDP tar-
get” an alternative calibration that reduces the target for the debt-output ratio by a
third, which is approximately the fraction of US federal debt held abroad over the last
decade. The new target is therefore 0.47 instead of 0.71 in the baseline calibration. We
follow otherwise precisely the same procedure as outlined in the maintext to choose our
parameters101 We find that this modification affects the ability of our model to match
the moments only marginally. Specifically, holding the dynamics of idiosyncratic risk
constant due to our calibration choices, we need to lower risk aversion γ to reduce safe
asset demand for bonds to match the lower debt-output ratio. This leads to a slight
reduction in the equity premium and Sharpe ratio relative to the baseline specification.
All other moments can still be matched equally well.

A third concern is that our calibration overstates the procyclicality of primary sur-
pluses and therefore underestimates the value of the cash flow component in Figure 2.
This concern arises because we target both the volatilities of output and the surplus-
output ratio, but operate within a model environment that presumes a next to perfect
correlation between the two variables while the empirical correlation is much weaker,
0.60. An alternative choice would be to ignore the empirical volatility of S/Y and in-
stead target the covariance with output as the covariance is more directly related to
pricing. This is equivalent to targeting a volatility σ(S/Y) that is lowered by the factor

indeed the case.
100If, for example, at was constant, then consumption would rise in times of high idiosyncratic risk, so

that equity and capital would command a negative aggregate risk premium and government bonds a
positive one.

101We choose δ, which does not affect anything of interest, to keep the average growth rate in the model
the same as in the baseline calibration.
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0.60/0.98, the ratio between the empirical and the model-implied correlation between
the two variables.

We provide results for this alternative calibration choice in the column “matching
cov(S/Y, Y)” of Tables 4 and 5. The resulting moments are largely identical to the ones
for the baseline specification.

Beyond the effects on model moments, we also plot the counterparts of our key
Figure 2 that decomposes the value of government debt into a cash flow and a service
flow component for the alternative calibration choices. Figure 4 depicts the results
for the two calibration choices “lower debt/GDP target” (left panel) and “matching
cov(S/Y, Y)” (right panel).102 The qualitative and quantitative takeaways remain the
same as in Section 4.3.

Figure 5 depicts the Debt Laffer Curves for the dynamic models arising from the
four alternative specifications. It shows that only lowering the target for the debt-
output ratio considerably affects the size of the sustainable permanent deficit. The ra-
tionale for reducing the target was that a substantial fraction of US debt is held abroad.
One way to interpret the difference between the orange line and the blue line in Figure 5
is therefore that the latter depicts the Laffer curve trade-off if non-domestic demand
for US debt as a safe asset continues to absorb a significant fraction of debt issuance
whereas the former depicts a Laffer curve that the US would face if US treasury debt
lost its status as a global safe asset.

Not shown in Figure 5 as the comparison Laffer curves for the steady state mod-
els arising under the alternative specifications. However, the main conclusion from
Figure 3 that the negative-β property is quantitatively important for the Laffer curve
arise here analogously. In fact, for all but one specification the steady-state Laffer curve
is almost identical with the one shown in Figure 3. The exception is the specification
“lower debt/GDP target”. In this case, there is no public debt bubble in the steady state
model such that the maximum sustainable deficit is zero. Clearly, the conclusion that
the negative-β property matters holds in this case as well.

102In the interest of space, the specification “lower αa” is omitted. It looks almost identical to Figure 2.
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Figure 4: Decomposition of the value of government debt for alternative calibration choices.
The description of Figure 2 applies analogously.

Figure 5: Debt Laffer curves for the alternative parameter specifications. The description of
Figure 3 applies analogously to all four lines (for line “dynamic model” in that figure).
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