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Worldwide natural disaster losses averaged $218 billion per year during 2016–

2020, a 60% increase in real terms over the preceding 30 years.1 This trend

is predicted to accelerate under future climate change. Efficient investment

in adaptation is essential in the face of these escalating risks. Yet takeup of

protective technologies and behaviors appears to be hindered by a constellation

of market frictions. Homeowners misperceive disaster risks and thus the value

of protective investments (Hallstrom and Smith 2005; Donovan, Champ, and

Butry 2007; Gallagher 2014; McCoy and Walsh 2018; Bakkensen and Barrage,

Forthcoming). Monitoring costs and other insurance market imperfections

mean that mitigation behaviors may not be accurately reflected in property

insurance prices (Kunreuther and Michel-Kerjan 2011; California Department

of Insurance 2018; Wagner, Forthcoming). Public disaster spending programs

may reduce private incentives for property protection (Kousky, Luttmer, and

Zeckhauser 2006; Deryugina 2017; Baylis and Boomhower 2019). And in some

settings, spatial externalities across neighboring properties lead to diverging

private and social benefits of mitigation (Shafran 2008; Costello, Quérou, and

Tomini 2017).

One widely-adopted approach to these market failures is to provide information

and subsidies to increase voluntary takeup.2 A more controversial but increas-

ingly common alternative is to mandate investments in resilience.3 Mandatory

standards ensure wider adoption. However, if the regulator misjudges the ef-

fectiveness of the required actions, the level of the hazard, or individual risk

1. Loss data are from Munich RE and are in 2020 dollars.
2. Examples in the U.S. include the Ready campaign and Ready.gov website; the Com-

munity Rating System under the National Flood Insurance Program; the StormReady, Hur-
ricane Protection Week, and National Tsunami Hazard Mitigation programs; the Firewise
USA program; and the Community Wildfire Protection Plan program.

3. Florida has construction standards for hurricane winds, and codes also exist in various
regions for winter storms and non-weather disasters such as earthquakes and tsunamis (Fed-
eral Emergency Management Agency 2020). In flood-prone areas, U.S. federal rules require
homes to be elevated and some localities have imposed even stricter requirements. Califor-
nia, Utah, Nevada, and Pennsylvania have statewide wildfire building standards while in
other states, notably Colorado, wildfire codes have been adopted at the local level (Insur-
ance Institute for Business and Home Safety 2019). Australia, New Zealand, France, and
Italy also have wildfire building codes (Intini et al. 2020).
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preferences, some individuals may be compelled to make costly investments

they would have preferred to avoid even if fully informed and fully account-

able. Implementing mandatory standards is also more politically challenging.4

Despite the important differences between these instruments, there is little em-

pirical evidence about outcomes under a mandated resilience regime compared

to a counterfactual of purely voluntary takeup.

In this paper, we consider the case of wildfire building codes in California.

California has suffered over $40 billion dollars in wildfire property damages

in the past 5 years. The state also has among the strictest wildfire building

codes in the world. We provide the first comprehensive evaluation of the effect

of these codes on own-structure survival as well as neighbor spillovers via

structure to structure fire spread. We then embed these empirical estimates

in an economic model to calculate net social benefits of wildfire building codes

as a function of local wildfire hazard and number of close neighbors.

This analysis takes advantage of a new dataset that includes property-level

data for almost all U.S. homes exposed to wildfire between 2000 and 2020. We

compiled the data by requesting post-incident damage censuses from numerous

emergency management agencies and individual county assessors. We merged

these lists of damaged homes to assessor data for the universe of (destroyed

and surviving) homes inside wildfire burn areas. The data show that even

during catastrophic wildfires, more than 50% of exposed homes survive. One

of the key advantages of the new data is the ability to observe and learn from

these surviving homes. The property-level loss information also distinguishes

the wildfire data from floods and other disasters where loss data are typically

available at the zip code or Census tract level. In addition to the new loss data,

the empirical work also leverages emerging tools in spatial analysis, including

high-resolution aerial imagery and precise “rooftop” geocoding of structure

locations.

The empirical design leverages rich variation in building code requirements

4. For example, efforts to adopt statewide wildfire building standards in Oregon and
Colorado have failed politically (Sommer 2020).
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across space and over time. The complex nature of building regulation in

California creates a patchwork of wildfire standards across localities. We also

observe fires in other states that do not have wildfire building codes. In all of

these places, we observe homes built before and after changes in California’s

codes. This identifying variation yields credible counterfactual predictions for

how homes would have performed in the absence of California’s standards. Our

preferred statistical model is a fixed effects regression that compares the like-

lihood of survival for homes of different vintages on the same residential street

during the same wildfire event. These street fixed effects allow us to compare

groups of homes that experience essentially identical wildfire exposures.

We find remarkable vintage effects for California homes subject to the state’s

wildfire standards. A 2008 or newer home is about 16 percentage points (40%)

less likely to be destroyed than a 1990 home experiencing an identical wildfire

exposure. There is strong evidence that these effects are due to state and

local building code changes - first after the deadly 1991 Oakland Firestorm,

and again with the strengthening of wildfire codes in 2008. The observed

vintage effects are highly nonlinear, appearing immediately for homes built

after building code changes. There are no similar effects in areas of California

not subject to these codes or in other states that lack wildfire codes.

We also find that code-induced mitigation benefits neighboring homes, consis-

tent with reduced structure-to-structure spread. These neighbor effects are in

keeping with anecdotal reports of home-to-home spread as a factor in urban

conflagrations (Cohen 2000; Cohen and Stratton 2008; Cohen 2010).5 Our re-

sults imply that, all else equal, code-induced mitigation by a neighbor located

less than 10 meters away (within the distance fire experts refer to as the home

ignition zone) reduces a home’s likelihood of destruction during a wildfire by

about 2.5 percentage points (6%). This benefit is even larger when homes have

multiple close neighbors.

5. We are also aware of at least one insurance company which will not sell homeowners
insurance to homes located next to a home with a wood roof in high-risk areas (Allstate
Indemnity Company 2018).
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Finally, we embed our estimates of building code benefits in an economic model

and calculate the approximate net social benefits of such a policy for a random

sample of California homes in wildfire hazard areas. Like other disaster risks,

many homeowners are only partially insured (or in the extreme, wholly unin-

sured) against the full cost of replacing a structure destroyed by wildfire (Klein

2018; California Department of Insurance 2018). This means that the bene-

fits of building codes include not only reductions in expected losses but also

additional insurance value due to reduced household exposure to uninsured

risk. Our calculations find that wildfire building codes deliver unambiguously

positive benefits in the most fire-prone areas of the state, especially where

homes are clustered closely together and thus create large risk spillovers. In

areas with more moderate wildfire risk, building standards for new homes can

also be justified given reasonable assumptions about household risk aversion,

future increases in wildfire hazard, and/or co-benefits of building codes (such

as reductions in public expenditures on wildland firefighting). On the other

hand, the costs of retrofitting existing homes to meet current wildfire build-

ing standards are substantial and our analysis suggest full retrofits are only

economic in areas with extreme wildfire hazard.

These results are broadly relevant to natural disaster management. In this

important setting, a standards-based approach achieved substantially greater

compliance with risk mitigation practices. The policy nearly halves loss risk

when structures are exposed to the hazard. Moreover, a cost-benefit calcula-

tion implies that low takeup in the absence of standards is likely driven by

market failures as opposed to a lack of cost-effectiveness. These facts can

inform policies to mitigate other risks like floods, hurricanes, tornadoes, and

heat waves, where voluntary takeup of adaptation investments also appears to

be limited.

This work also has immediate implications for wildfire policy. Our results im-

ply there are gains to be realized from strengthening building codes in other

states and countries to match California’s. This evidence is relevant to current
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proposals in Oregon, Washington, and other states.6 Meanwhile, California

is moving to expand the geographic coverage of designated wildfire hazard

zones and reduce the ability of local jurisdictions to opt out of recommended

standards.7 Separately, new California legislation from 2020 provides finan-

cial incentives for retrofits of existing homes in wildfire-prone areas.8 The

law specifically calls for support of “cost effective” retrofits, a concept for

which the evidence in this study is essential. Additionally, policymakers are

confronting pressing issues of insurance rate reform in response to mounting

wildfire losses. One key debate is the degree to which individual investments

improve structure survival and should thus be rewarded through regulated

insurance discounts (California Department of Insurance 2018). This paper’s

evidence on the effectiveness of such investments during real wildfires bears

directly on this question.

Our work builds on previous studies of natural hazard mitigation. For wild-

fires, a number of engineering and forestry studies describe the effects of con-

struction materials and vegetation management on structure resilience (Gib-

bons et al. 2012; Syphard et al. 2012; Syphard, Brennan, and Keeley 2014;

Alexandre et al. 2016; Syphard, Brennan, and Keeley 2017; Kramer et al. 2018;

Syphard and Keeley 2019). Our paper focuses on the effects of a mandatory

mitigation policy, while these previous studies measure technology effective-

ness (i.e., survival of homes whose owners did vs. did not choose to take

mitigation measures). Two studies on the related topic of hurricanes do con-

sider building codes, with conflicting results. Dehring and Halek (2013) is a

small case study of several hundred homes during Hurricane Charley in 2004.

Simmons, Czajkowski, and Done (2018) study aggregate zip-code level data

on annual insurance claims by homes built in different decades to infer bene-

fits of hurricane building codes in Florida. In contrast, our study uses highly

6. See, e.g., Profita, Cassandra. “The Labor Day Fires Burned Towns and Homes. Oregon
Has a Plan to Avoid a Repeat.” Oregon Public Broadcasting, September 7, 2021.

7. S.B. 63, 2021–2022, California. https://leginfo.legislature.ca.gov/faces/billNavClient.
xhtml?bill id=202120220SB63.

8. A.B. 38, 2019–2020, California. https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill id=201920200AB38.
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granular property- and event-level loss data for a large sample of wildfires

covering several states. Across a range of natural hazards, a parallel engi-

neering literature attempts to calculate the value of building codes through

modeling and simulation (e.g. Federal Emergency Management Agency 2020).

Finally, our work is methodologically related to a separate literature in eco-

nomics on building codes and household energy consumption (Jacobsen and

Kotchen 2013; Levinson 2016).

This study makes five contributions. First, we provide the first comprehensive

evaluation of the effects of wildfire building codes on structure survival. Be-

yond the wildfire context, this result improves our understanding of disaster

resilience under standards-based vs. voluntary policies. Second, we provide

the first empirical estimates of the spillover benefits of wildfire mitigation

investments to neighboring properties. Third, we compile a comprehensive

dataset of structure-level outcomes in wildfires across several states that, to

our knowledge, is the most complete accounting in existence. This new dataset

will enable future work on the economics of catastrophic wildfire risk. Fourth,

we approach the topic in a causal framework with an explicit empirical design,

where previous work is primarily descriptive or relies on regression adjustment.

Finally, we embed the empirical estimates in an economic model to calculate

net social benefits that account for local hazard, neighbor externalities, and

household risk aversion.

The rest of the paper proceeds as follows. Section 1 discusses structure sur-

vival in wildfires and California’s history of building code updates. Section 2

describes the data and spatial analysis. Section 3 outlines the empirical strat-

egy, and Section 4 presents the results. Section 5 develops the model of net

social benefits and Section 6 concludes.

1 Wildfire Building Codes in California and Other States

“Unlike a flash flood or an avalanche, in which a mass engulfs

objects in its path, fire spreads because the requirements for com-
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bustion are satisfied at locations along the path... A wildland fire

cannot spread to homes unless the homes and their adjacent sur-

roundings meet those combustion requirements.” Jack D. Cohen,

Journal of Forestry, 2000.

Established forestry and engineering evidence supports the importance of the

so-called home ignition zone in determining structure resilience to wildfires.

The home ignition zone includes the design of the home itself as well as an

imagined area extending 30 meters away from the structure. Fire scientists

emphasize the elimination of flammable materials inside this zone (e.g., Cohen

2000, 2010; Calkin et al. 2014). This guidance applies to both vegetation

around the home (“defensible space”) and the construction of the home itself,

especially the roof.

Among U.S. states, California has gone the furthest in mandating takeup of

wildfire resilience investments by property owners. However, the application

of these codes varies throughout the state. In areas where CAL FIRE provides

firefighting services (State Responsibility Area or SRA), the state directly de-

termines building standards. Within incorporated cities and other areas with

their own fire departments (Local Responsibility Area or LRA), local govern-

ments have historically had greater control over code requirements.

The development of the modern standards began with the Oakland Hills

Firestorm of 1991, which killed 25 people and caused $1.5 billion in property

damage. The tragedy led to a series of legislative actions during the mid-1990s

that required more fire-resistant roofing and maintenance of vegetation imme-

diately adjacent to the home. The first of these was the so-called Bates Bill

of 1992 (Assembly Bill 337). Among other changes, the Bates Bill encouraged

stronger building standards in LRA areas by requiring CAL FIRE to produce

maps of recommended Very High Fire Hazard Severity Zones (VHFHSZ). In

LRA areas, local governments could then choose whether or not to adopt these

recommended hazard maps (and thus the accompanying building standards).

This designation process unfolded over several years, with hundreds of local

governments adopting or rejecting CAL FIRE’s proposed VHFHSZ maps at
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different times. According to Troy 2007, 151 of 208 local governments (73%) ei-

ther adopted the VHFHSZ regulations or claimed to have promulgated equally

strong existing rules.9

On the heels of the Bates Bill, Assembly Bill 3819 of 1994 increased require-

ments for ignition-resistant roofs. These requirements applied in all SRA areas

and in the subset of LRA areas where local governments had adopted recom-

mended VHFHSZs. Roofing materials are rated Class A, B, C, or unrated.10

Starting in 1995, the law required Class B roofs on newly-constructed or re-

roofed homes in regulated areas. In 1997, the requirement increased to Class

A roofs in high-hazard areas (a substantial improvement in fire resistance).

Finally, Assembly Bill 423 in 1999 simplified enforcement of the new roof-

ing codes by outlawing the use of unrated roofing materials throughout the

state.

The collective effect of these mid-1990s building code reforms was to sub-

stantially increase the fire resistance of roofs on newly-constructed homes in

regulated areas after about 1997. The roofing requirements also applied to

existing homes, but only at the time of roof replacement. Any homeowner in

a regulated area who replaced more than 50% of the roof surface in a single

year was in principle obligated to comply. The defensible space provisions also

applied to existing and new homes. However, in practice, the primary point of

enforcement for these codes was at the time of new construction; enforcement

effort for existing homes was limited (see e.g., Maclay 1997).

California strengthened its wildfire codes again in 2008 with the so-called

Chapter 7A standards of the California Building Code. These requirements

apply to all homes built in 2008 or later in SRA areas and in LRA areas

where proposed VHFHSZ designations have been accepted. The codes apply

to many dimensions of new homes. Roofs must be rated class A or B, eaves

9. For a detailed qualitative study of the determinants of local VHFHSZ adoption deci-
sions, see Miller, Field, and Mach (2020).

10. These ratings are earned through laboratory testing; for example, the Class A test
involves placing a 12-inch by 12-inch burning brand on the roof material under high wind
conditions. The material must not ignite for 90 minutes.
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and exterior siding must be fire resistant, vents must covered by a fine wire

mesh to resist ember intrusion, windows and doors must resist fire for at least

20 minutes, and decks and other building appendages must be built of non-

combustible materials. Chapter 7A also includes additional requirements for

defensible space.

The damage data collected for this study also include wildfires in Arizona, Col-

orado, Oregon, and Washington. None of these had statewide wildfire building

standards at the time of the included fires (Insurance Institute for Business

and Home Safety 2019). Some local governments – particularly in Colorado –

have adopted local standards that include a diverse mix of rules about roofs,

other construction materials, and/or defensible space. Our empirical analysis

excludes a small number of fires in the comparison states that overlap areas

known to have local wildfire building standards.11

While the non-California homes in this study are not subject to mandatory

standards, they are targeted by a range of information and incentive programs

that seek to increase voluntary home hardening. Programs active in these

states include FireWise USA (National Fire Protection Association), the Com-

munity Wildfire Protection Plan program (United States Forest Service and

Department of Interior), the Fire Adapted Communities Coalition (numer-

ous public agencies and NGOs), the Ready, Set, Go! program (International

Association of Fire Chiefs), and numerous other initiatives.

2 Data and Spatial Analysis

This section describes the construction of the database of wildfire damages,

property tax assessment information, and structure locations.

11. These are the 2012 Waldo Canyon Fire, 2013 Black Forest Fire, and 2018 Mile Marker
117 Fire in El Paso County, Colorado (Quarles et al. 2013) and the 2012 High Park Fire
and 2020 Cameron Peak Fire in Larimer County, Colorado (Larimer County 2020).
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2.1 Homes and Damage Data

Damage Inspection Data

We sought to assemble as comprehensive a database as possible of administra-

tive records for homes destroyed or damaged by wildfire in the United States.

For recent wildfires in California, this information is managed by CAL FIRE.

For earlier California fires and for fires in other states, we contacted individ-

ual county assessors (who track these damages in order to update property

tax assessments) and other agencies to request historical records of structure

damages. To our knowledge, the resulting database is the most complete ac-

counting that exists of U.S. homes lost to wildfire.

California 2013–2020 : In California, the CAL FIRE Damage Inspection (DINS)

database is a census of destroyed and damaged homes following significant

wildfire incidents during 2013–2020. The data include street address and as-

sessor parcel number (APN); limited structure characteristics; and for some

fires, an additional sample of undamaged homes. The damage variable has

four levels: destroyed (> 50% damage), major (26–50%), minor (10–25%),

and affected (1%–9%). Of these, “destroyed” is the most commonly reported

damage category and the only category that appears consistently across all

fires. The lack of partially-destroyed structures is consistent with case study

observations in Cohen (2000) and subsequent research. We thus follow the

literature and focus on “destroyed” as our primary outcome.

California 2003–2013 : Data for pre-2013 wildfires in California come from

two sources. For the 2003 and 2007 San Diego fire storms, we received dam-

age assessment data from San Diego County. For other counties, CAL FIRE

staff provided us with a large collection of unformatted historical damage

assessment reports that we compiled and standardized to be usable for re-

search.

Other States : Using ICS-209 incident reports, we identified the 15 counties

in states other than California with the greatest number of structures lost

to wildfire since 2010. We then contacted county assessors in each of these
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counties to request damage data. We have successfully received structure-level

damage data from 11 of these 15 counties.

Appendix Table 6 includes the full list of wildfires in the dataset.

Property Tax Assessment Data

We merge the damage records to comprehensive assessment data for all U.S.

homes from the Zillow ZTRAX database. The ZTRAX data include informa-

tion on year built, effective year built (in the case of remodels), building square

footage, and other property characteristics. The merge from damage data to

ZTRAX uses assessor parcel numbers, and we validate the accuracy of this

merge by comparing street addresses across the two datasets. We restrict the

data to include only single family homes, which account for most properties

inside the wildfire perimeters in our sample. For each incident, we merge the

damage data to the most recent historical assessment data from the pre-fire

period. In other words, we merge to the population of single family homes that

existed immediately prior to the start of the fire. Appendix Table 6 shows the

number of single family homes inside of each wildfire perimeter and the share

destroyed.

2.2 Spatial Analysis and Dataset Construction

Identifying Structure Rooftop Locations

This study uses the physical locations of the homes in the data in two ways.

First, homes must be spatially assigned to building code jurisdictions and

to wildfire burned areas. Second, the measurement of spillovers across prop-

erties requires precise distances between neighboring structures. The street

address-based geocoding methods typically used in academic research are not

sufficiently detailed for this second purpose, which requires accurate structure

locations at a meter scale. We solved this challenge by combining several

spatial datasets to identify precise rooftop locations. First, we limit the pop-

ulation of ZTRAX homes to all homes in zip codes where at least one home

was destroyed. We then merge these ZTRAX records to parcel boundary maps
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from county assessors using assessor parcel numbers. This yields a parcel poly-

gon for each home. We then use comprehensive building footprint maps from

Microsoft to identify the largest structure overlaying each parcel.12 We call

this location the “footprint location.” Figure 1 shows an example for Redding,

California in the area of the 2018 Carr Fire. Gray lines are parcel boundaries

from the Shasta County Assessor. Blue polygons are building footprints. The

purple and yellow markers show the assigned rooftop locations for each struc-

ture. Yellow markers show homes that are reported as destroyed in the damage

data.

This rooftop geocoding method generates highly accurate locations, but it is

dependent on the availability of high-quality parcel boundary GIS data. In

areas where such data are not available (representing 13% of homes in the

final analysis dataset), we instead geocode home locations using the ESRI

StreetMap Premium geolocator, a commercially-available address-based prod-

uct. Our quality checking shows that these locations (henceforth “address-

based locations”) are generally reliable to the parcel level but not always to

the structure rooftop level. Appendix Section C describes the geocoding in

more detail.

Validating Locations and Damage Reports

We quality check the calculated property locations and the damage report data

using high-resolution aerial imagery from NearMap. The base image in Figure

1 shows an example. The detailed imagery allows us to manually confirm the

accuracy of structure locations, which closely coincide with the blue building

footprints in the figure. In addition, the NearMap imagery includes post-fire

surveys for many of the incidents in our database. Figure 1 illustrates how

destroyed properties are readily visible in these surveys, which allows us to

confirm the accuracy and completeness of the damage data. Appendix Table 4

reports accuracy rates in a random sample of homes. For damage reports, 99%

12. The Microsoft U.S. Building Footprints Database is publicly available at https:
//github.com/microsoft/USBuildingFootprints.
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of reported outcomes match the ground truth imagery. For rooftop locations,

98% of the assigned structure locations are on top of the structure rooftop in

the ground truth imagery (with 99%+ accuracy in densely developed areas).

Locations that rely on street address based geocoding tended to be accurate

to the parcel but not always to the actual structure rooftop – about 75% of

these assigned locations are on top of the structure rooftop in the ground truth

imagery.

Spatial Merge to Wildfire Perimeters and Code Jurisdictions

We restrict the dataset to homes located within final wildfire perimeters (plus

a 20-meter buffer). Depending on the state and time period, these digital

perimeter maps come from the California Forest and Range Assessment Pro-

gram (FRAP), the Monitoring Trends in Burn Severity (MTBS) dataset, or

the National Interagency Fire Center (NIFC). We merge the homes data to

spatial data on fire protection responsibility (SRA vs. LRA) and designated

fire hazard (FHSZ) that together determine building codes in a given location

in California. We use historical GIS maps provided by CAL FIRE to assign

homes to code regimes according to the codes in effect when the home was

built.13

Calculating Distances Between Neighboring Homes

We construct two measures of distance between homes. The first is the min-

imum distance between the building footprint polygons associated with the

two structures (henceforth the “wall-to-wall” distance). This measure is only

available for homes where we assign locations based on building footprints.

The second metric uses the distance between assigned point locations, which

are available for all homes in the dataset. We call this metric the “centroid to

centroid” distance because these points are meant to correspond to the center

of the roof. The wall to wall distance is our preferred measure because it more

13. For SRA/LRA boundaries, the historical map data include updates in 1990, 1996, 2003,
2005, and annually from 2010–2020. For FHSZ, the historical map data include updates in
1985, 1998, 2007, and 2008.
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accurately captures space between homes and because the footprint-geocoded

locations are more accurate than the address-based location points (Appendix

Table 4). Our main estimates of neighbor spillovers use the restricted sample

of homes for which wall to wall distances are available. For robustness, we also

show specifications that use centroid to centroid distances and the full sample

of homes.

We identify up to 15 nearest neighbors within one kilometer for each home

in the final dataset. Panel (b) of Figure 1 shows two examples. Each image

shows wall-to-wall distances (in meters) from the structure marked “0”. Ap-

pendix Table 2 summarizes the distribution of number of neighbors at various

distances.

Data Summary

The final dataset includes 55,408 single family homes exposed to 112 wildfires

in California, Arizona, Colorado, Oregon, and Washington between 2003 and

2020. Thirty-nine percent of these were destroyed. Appendix Figure 1 shows

the distribution of year built and fraction destroyed by year built for the full

dataset. Appendix Table 6 reports the number of exposed and destroyed homes

for each fire.

3 Empirical Strategy

This section describes the empirical design used to measure the effect of wildfire

building codes on structure survival. To fix ideas, Figure 2 provides an exam-

ple of the merged dataset for the 2018 Woolsey Fire in Los Angeles County.

The green and purple markers indicate locations of surviving and destroyed

single family homes inside the final fire perimeter. The street map data give

a sense of development density. The intensity of losses varies significantly

within the burned area. Near Malibu, a large share of affected homes were

lost. Further north, however, there are several areas where most homes inside

the fire perimeter escaped destruction. These differences reflect varying fire
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conditions, firefighter response times, landscape vulnerability, structure char-

acteristics, and potentially numerous other factors. This heterogeneity adds

noise to empirical analysis of structure survival. It may also introduce bias if

year built or other structure traits vary similarly within burned areas. We ad-

dress these challenges using an empirical design that compares the likelihood

of survival for homes of different vintages on the same residential street during

the same wildfire. We attribute these vintage effects to building codes by com-

paring vintage effects across jurisdictions with and without wildfire building

codes.

3.1 Treatment Groups

Throughout the rest of the paper, we consider three types of jurisdiction. The

first is SRA, where compliance with California building codes was manda-

tory. The second is LRA areas that were ever recommended by CAL FIRE

as VHFHSZ areas (henceforth, “LRA-VHFHSZ”). To be clear, this group in-

cludes all proposed VHFHSZ regardless of whether local governments accepted

the designation. There is no centralized database that records local VHFHSZ

adoption decisions, but Troy (2007) reports high rates of adoption.14 The

final treatment group is areas without wildfire building codes (henceforth,

“no-codes”). This includes LRA areas in California that were never recom-

mended for consideration as VHFHSZ, as well as fires in areas of Arizona,

Colorado, Oregon, and Washington without any state or local wildfire build-

ing codes. Appendix Table 1 reports the number of homes in each treatment

group.

14. In addition, historical news accounts show that cities that rejected the official VHFHSZ
designation often still adopted the underlying code requirements in the recommended areas.
This seems to have been an attempt to achieve the state-recommended resilience require-
ments while avoiding the VHFHSZ label due to fears about property values (Sullivan 1995;
Snyder 1995; Stewart 1995; Yost 1996; Grad 1996). One state fire official’s response: “We
didn’t care if they called it a nuclear-free zone, as long as they adopted the regulations”
(Maclay 1997).
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3.2 Own-structure survival

Event study figures

We begin the regression analysis with the following event study-style model

for home i on street s exposed to wildfire incident f . We estimate this model

separately for the SRA, LRA-VHFHSZ, and no-codes groups.

1[Destroyed]isf =
v=V∑
v=v0

βvD
v
i + γsf +Xiα + εisf (1)

The outcome variable is equal to one for destroyed homes and zero otherwise.

The V variables Dv0
i , ..., D

V
i are indicator variables equal to one if house i’s

year built falls into bin v. The main parameters of interest are the coefficients

β that correspond to these vintage bins. These give the effect of each vintage

on probability of survival when exposed to wildfire. The street fixed effects γsf

include separate indicator variables for each street name-zip code combination

within fire perimeter f . These fixed effects sweep away arbitrary patterns of

damage across streets within the fire perimeter, so that the model is identified

by average differences in survival between homes of different vintages on the

same street. We also estimate models with finer and coarser fixed effects,

including models with incident instead of street fixed effects.

The additional control variables Xi include controls for wildfire vulnerability

at the home site. These include ground slope, aspect, and vegetation type

from LANDFIRE (Rollins 2009). Some specifications also include property

characteristics (lot size, building square footage, number of bedrooms).

Difference in differences

We summarize the overall effects of the wildfire building standards using a

difference-in-differences (DiD) model that pools jurisdictions and time periods.

We divide the sample into 3 time periods: before 1998; 1998–2007; and 2008

onwards. The latter two periods correspond to the end of the mid-1990s roofing
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reforms and the introduction of the Chapter 7A requirements.

3.3 Structure to structure spread

To measure the effect of code-driven mitigation on likelihood of structure-to-

structure spread, we estimate the effect of building vintage on likelihood of

survival for neighboring homes. Our regression models are of the form,

1[Destroyed]isf =
J∑
j=1

ρjNoCodej +
J∑
j=1

φjCodej +
V∑

v=v0

βvD
v
i +γsf +Xiα+ εisf

(2)

Like Equation (1), this specification controls for own year of construction and

street-by-incident fixed effects. The additional regressors NoCodej and Codej

are the number of neighbors within various distance bins j that were built be-

fore and after wildfire building codes. Homes are considered post-code in 1998

in SRA areas and in the year the area was first recommended as a VHFHSZ

in LRA VHFHSZ areas. The coefficients ρj and φj for j = 1, ..., J give the

effect of these neighbors on own-structure survival. Our preferred specification

uses 10-meter bins of wall-to-wall distance. For robustness, we also estimate

a specification using centroid to centroid distances. With this latter measure,

we define the closest bin as 0-30 meters because 30 meters roughly corresponds

to 10 meters of wall-to-wall distance.15 We apply some additional sample ex-

clusions when estimating Equation 2: The sample is restricted to California

since we can only reliably calculate footprint locations for California homes.

We further drop condominiums and townhomes to focus on detached single

family homes.

This regression identifies the causal effect of code-induced mitigation by neigh-

boring homes if the code regime for neighboring homes is uncorrelated with

other determinants of structure- and neighborhood-level risk. This assumption

is bolstered by the street fixed effects, which focus on highly local variation.

15. The median building footprint area in the sample is 260 m2. A hypothetical circular
roof would thus have a radius of 9.1 meters and the centroid-to-centroid distance between
two such homes would be 18.2 + wall-to-wall distance.
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Intuitively, this specification compares homes on the same street during the

same wildfire whose nearest neighbors were built in different years. One might

still worry, however, that even within these narrow comparisons and even after

controlling for own age, the age of a home’s neighbors may still be correlated

with other wildfire risk factors. We address this concern by exploring estimates

for homes located slightly further away as a placebo check. Properties located

50 to 100 meters away are outside of the 30-meter home ignition zone and so

present more limited direct ignition threat, but should otherwise be subject to

the same potential omitted variables as directly adjacent homes.

4 Results and Discussion

4.1 Own-structure survival

4.1.1 Graphical Evidence

Figure 3 shows the raw mean of Destroyed for State Responsibility Area homes

according to year of construction. About 35% of exposed homes built prior to

the mid-1990s were destroyed. These destruction probabilities begin to fall for

homes built after the mid-1990s, decreasing quickly to about 20%. This sharp

improvement in resilience corresponds in time to the post-Oakland Firestorm

building reforms.

There is also some evidence in Figure 3 that homes built before about 1980

may be less likely to be destroyed than homes built just prior to the roof re-

quirements. This may reflect the fact these older homes are more likely to

have been re-roofed at least once after the mid-1990s and complied with the

requirement for ignition-resistant materials at roof replacement. This pattern

would imply a replacement cycle of about 30-40 years. Actual data on roof

service lifetimes is scarce, but this period is within the range proposed by the

National Association of Home Builders and other sources (National Associa-

tion of Home Builders 2007). To the extent that some pre-building code homes

may be re-roofed with code-compliant materials, our estimates of building code

effects are conservative.

18



Appendix Figure 2 shows that homes built before and after the building code

changes are otherwise comparable. There are no meaningful changes in site-

level predictors of fire risk, like ground slope, or in structure characteristics

such as building square footage.

Figure 4 presents the event study estimates from Equation (1). The top panel

shows homes in SRA, where WUI building codes are mandatory. The mark-

ers show estimates and 95% confidence intervals for two-year vintage bins.

The omitted bin is 1987-1988, so that these estimates can be interpreted

as percentage-point differences in likelihood of destruction relative to a 1987

home. The vintage effects are flat prior to about 1993, and then begin to

decrease clearly during the 1995–1999 period. The point estimates suggest

additional reductions in loss probability following the adoption of the Chapter

7A codes in 2008, although the small number of homes in those bins leads to

somewhat noisy vintage estimates. The overall difference in loss probability

between a 1987 home and a 2008+ home is about 15 percentage points.

The middle panel shows homes in LRA areas that CAL FIRE recommended for

Very High Fire Hazard Severity Zone designation. These areas again show flat

trends in resilience prior to the 1991 Oakland Firestorm and subsequent Bates

Bill. After the Bates Bill takes effect, the figure shows steady improvements

that persist for about 12 years. The slope of these improvements appears more

gradual than in SRA areas, which would be consistent with varied timing of

adoption of the recommended codes across hundreds of individual municipali-

ties. The post-2008 estimates are again noisy but imply further improvements

in resilience following adoption of the Chapter 7A bulding codes.

Finally, the bottom panel of Figure 4 shows vintage effects for homes in areas

not subject to California’s codes. This includes fires in areas of Arizona,

Colorado, Oregon, and Washington with no state or local wildfire building

codes. It also includes LRA areas in California that were never recommended

as Very High Fire Hazard Severity Zones. There are relatively few homes in

these groups (Appendix Table 1), so we pool them together and use wider

ten-year vintage bins to increase precision. Unlike the top two panels, there
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is little evidence of improved resilience for homes built since the mid 1990s in

areas without wildfire building codes.

4.1.2 Difference-in-Differences Estimates and Robustness Checks

The regression estimates in Table 1 summarize the effects of building code

regimes on structure resilience. We show estimates for SRA, LRA-VHFHSZ,

and no-codes areas. The various group by time period estimates can be inter-

preted as percentage point differences in likelihood of destruction relative to

the reference category, which is pre-1998 homes in no-code areas. Column (1)

shows the results with street by fire fixed effects. The near-zero coefficient on

SRA ∗ Before 1998 implies that SRA homes built before the end of the mid-

1990s building codes reforms perform similarly to homes of the same vintage in

no-code areas. In contrast, SRA homes built during 1998–2007 or 2008–2016

perform 11.2 percentage points and 15.9 percentage points better, respectively.

Differencing the pre-post differences across code areas yields a DiD estimate

of 13.1 percentage points. The same pattern exists for LRA VHFHSZ areas,

with no difference before 1998 and substantial improvements in the post-code

periods. The DiD estimate for LRA VHFHSZ areas is 12.2 percentage points.

Lastly, these improvements are smaller or absent in the no-codes comparison

group, where homes built in the latter two time periods show only minor im-

provements that are not statistically distinguishable from zero. This is further

evidence that the improvements in the code areas are due to building codes as

opposed to other time-varying factors. The regression also includes controls

for topography and vegetation. As expected, slope steepness at the home site

increases vulnerability. A home on a 10 degree slope would be six percentage

points less likely to survive than an otherwise-identical home on flat ground.

This specification also includes fixed effects for the dominant vegetation type

in the area of the home.16

The remaining columns of Table 1 explore alternative specifications. Col-

16. We assign vegetation types as the most common fuel model in a 25-meter radius around
the home.
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umn (2) adds building characteristics from the assessor data. Building square

footage, number of bedrooms, and lot size do not appear to have meaningful

effects on survival after controlling for year built and street. Home charac-

teristics data are missing for about 20% of homes, which shrinks the sample

in this third column. The final three columns show different sets of fixed ef-

fects. Column (3) includes separate fixed effects for each group of 100 adjacent

homes on each street (ordered by house number). This specification addresses

a potential concern that some streets in the sample include many hundreds

of homes. The more granular fixed effects do not materially change the esti-

mates. Column (4) groups homes on the same street and side of the street,

assuming that house numbers follow the convention of odd and even numbers

on opposite sides. This specification also does not change the results. Finally,

Column (5) omits the street fixed effects and instead uses incident fixed ef-

fects. These incident dummies absorb fire-specific severity and arbitrary time

trends in preparedness, but unlike the street fixed effects they do not adjust

for differences between exposed homes within the same wildfire incident. The

point estimates are slightly larger in SRA areas and slightly smaller in LRA

VHFHSZ areas. Notably, the R2 with incident fixed effects is smaller than

with street fixed effects (0.39 vs 0.63). This difference implies that the street

fixed effects remove variation in fire severity and other factors within incidents

that might otherwise threaten identification. Nevertheless, the estimates are

broadly stable across specifications. None of the estimated effects in Columns

(2) through (5) are statistically different from those in Column (1).

In principle, the street fixed effects design could underestimate the effect of

building codes due to the spillover benefits that we document in the next

section. If code-induced investments also benefit nearby pre-code homes, the

difference in outcomes between post-code and pre-code homes will understate

the true effect of codes on survival.17 This attenuation could be exacerbated

by street fixed effects, which by construction are focused on homes located

relatively close to each other. Such reasoning might lead one to prefer incident

17. This is a violation of the Stable Unit Treatment Value Assumption, or SUTVA (Rubin
1980).
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fixed effects. In practice, as we show in the next section, spillovers are highly

localized and are small compared to the own-resilience effects. In the spirit of

exhaustiveness, Appendix Table 3 investigates the quantitative significance of

SUTVA concerns by controlling directly for the number of pre- and post-code

near neighbors in the street fixed effects regression. Ultimately, the differ-

ences in the estimated building code effects across these approaches – street

fixed effects, incident fixed effects, and street fixed effects directly controlling

for spillovers – are small enough that the various results are not statistically

different.

4.2 Spillovers to neighboring properties

This section discusses the spillover benefits of code-induced mitigation to

neighboring homes. Figure 5 shows regression results for Equation (2). The

top panel shows effects of the presence of pre-code neighbors at various wall-to-

wall distances. One or more pre-code neighbors within 0-10 meters increases

own-structure loss probability during a wildfire by about 3 percentage points.

These effects attenuate with distance, going to zero at 30-40 meters. Notably,

this is the distance that wildfire managers consider to be the home ignition

zone - the distance within which flammable material presents a risk of struc-

ture ignition (Cohen 2000, 2010; Calkin et al. 2014). The near-zero estimates

beyond 40 meters bolster the validity of our research design. If our estimates

for the nearest neighbors were biased by omitted predictors of resilience that

co-vary within neighborhoods, one would expect that bias to also appear in

estimates for homes another few dozen meters away (Figure 1b provides a

useful illustration of these small distances).

The bottom panel shows the estimates for post-code neighbors. The confi-

dence intervals for these estimates are wider since we observe fewer post-code

homes. However, the point estimates suggest that the presence of close neigh-

bors built under WUI building codes does not increase own-structure loss prob-

ability. There is also no implied effect of further-away post-code neighbors on

own survival, offering additional placebo evidence to support the identifying
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assumptions behind this regression.

Table 2 reports regression estimates for near neighbors that allow effects to

vary with the number of neighbors. Column (1) considers neighbors at a wall-

to-wall distance of less than 10 meters. A single pre-code neighbor increases

own-structure loss risk by 2 percentage points. Two or more pre-code near

neighbors increases the effect to 3.1 percentage points. This latter category

mostly represents the effect of homes with two neighbors, given that very few

homes have more than two neighbors within 10 meters (Appendix Table 2).

The estimated effects of nearby post-code neighbors are close to zero. Column

(2) shows the same regression using a restricted sample of areas where our

measured distances between homes are likely to be particularly accurate. This

sample includes denser areas (homes with at least 10 neighbors within a 200

meter radius; see Appendix Table 4) and fires since 2013 (for older incidents,

it is more likely that parcel boundaries have changed since the fire). The esti-

mated risk posed by pre-code neighbors is slightly larger in this specification,

perhaps due to measurement error in wall-to-wall distances in the full sample.

The estimates for post-code neighbors are again zero. As another robustness

check, Columns (3) and (4) present similar results based on the centroid-to-

centroid distance measure. One pre-code neighbor within 30 meters of centroid

distance – roughly equivalent to 10 meters of wall distance – increases own loss

risk by 2.6 percentage points, and two or more increases risk by 5 percentage

points. Again, the point estimates for post-code neighbors are much smaller

and close to zero.

5 Net Social Benefits of Building Standards

The empirical results show that compared to reliance on voluntary action

alone, California’s wildfire building codes substantially reduced average struc-

ture loss risk during a wildfire. They also reduced the risk to a close neighbor’s

home. Having documented these large resilience benefits, we now embed the

results in a simple economic model in order to benchmark the approximate

net social benefits of wildfire building codes. We use our estimates to explore
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the minimum annual disaster probability at which universal mitigation invest-

ment is welfare-improving, given various values of neighborhood density and

household risk aversion. This exercise is intentionally simple and abstracts

from many theoretical and practical details that warrant investigation in fu-

ture work.18

5.1 An Empirical Model of Hazard Mitigation

N identical individuals own homes in a neighborhood with an annual probabil-

ity pF of a disaster. In the event of a disaster, each home i’s baseline probability

of destruction is pD0 . Up-front investment in a binary mitigation measure with

cost m by homeowner i reduces own loss risk during a disaster by τii and also

reduces loss risk by τji for a subset of neighbors j 6= i (for example, in our ap-

plication τji is non-zero for neighbors within some distance of home i and zero

for the remaining homes). Mitigation benefits are additive so that a home’s

destruction probability during a disaster is pDi = pD0 − Miτii −
∑

j 6=iMjτij,

where Mi ∈ {0, 1} is the homeowner’s binary mitigation decision. We cap-

ture myopia with perceived disaster probabilities p̂Fi ≤ pF . These perceived

probabilities vary across households.

Consistent with stylized facts (e.g., Klein (2018)), disaster losses are partially

insured: destruction of the home imposes insured losses LI for the insurer and

uninsured losses LU for the homeowner. We initially assume frictionless prop-

erty insurance markets that offer coverage at actuarially fair annual premia

ki = pFpDi L
I . The coexistence of uninsured risk exposure and actuarially fair

premiums reflects uninsurable losses (for example, mental and emotional dis-

tress) and/or household myopia. The exposition in this section uses a static

model with no discounting. Our actual calculations assume that households

discount future costs and benefits at a 5% annual rate.

We define two potential measures of net benefit, risk-neutral cost effective-

ness and expected utility benefit. Risk-neutral cost effectiveness is simply the

18. A more detailed theoretical treatment of private risk mitigation can be found in
Costello, Quérou, and Tomini (2017).
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difference in expected cost with and without mitigation. Expected utility ben-

efit accounts for additional benefits from reduced exposure to uninsured risk.

Appendix Section D presents a sketch of the expected utility model. Actually

calculating expected utility requires strong assumptions about households’ risk

aversion, permanent income, ability to smooth across time periods, and other

factors. We focus the derivation in this section on risk-neutral cost effective-

ness (hereafter, “cost effectiveness”). We note that cost effectiveness is a lower

bound on net benefits as long as homeowners are not risk-loving.

Total expected cost across households is,

N∑
i=1

[pF (pD0 −
N∑
j=1

Mjτij)(L
I + LU) +Mim] (3)

The social benefit of mitigation by a homeowner is the sum of private and

external benefits (reduced loss probability) minus mitigation costs,

pF (τii +
∑
j 6=i

τji)(L
I + LU)−m (4)

In contrast, a homeowner’s perceived change in private expected losses with

mitigation is,

p̂Fi τii(L
I + LU)−m (5)

The presence of internalities (p̂Fi ) and externalities (τji) means that Expression

(5) is weakly less than Expression (4). If households minimize perceived private

expected cost, the voluntary takeup rate will be,

µ =
1

N

N∑
i=1

1[p̂Fi τii(L
I + LU) ≥ m] (6)

which depends on the distribution of perceived probabilities. Assuming p̂Fi is

independently distributed, total actual expected costs under voluntary takeup

are
∑N

i=1[p
F (pD0 −

∑N
j=1 µτij)(L

I + LU) + µm].

Now consider a policy requiring mitigation by all households. Total expected
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cost is given by setting Mi = 1 for all households in Expression (3). The dif-

ference in expected cost under the mandate vs. the voluntary regime is,

(1− µ)
[
pF [

N∑
i=1

N∑
j=1

τij(L
I + LU)]−Nm

]
(7)

The Samuelson (1954)-style expression inside the outer brackets is the sum

of private and external mitigation benefits minus total mitigation costs. The

factor of (1− µ) reflects takeup by a fraction µ of the population without the

mandate. A mandate weakly reduces total expected cost if the social value of

mitigation (Expression 4) is positive and strictly increases expected cost if the

social value of mitigation is negative.

Before proceeding, it is worth noting some restrictions in this model. We

assume additive mitigation benefits. There is some support for this in the

data - for example, the approximate linearity of risk spillovers for one vs. two

near neighbors in Table 2. A more complex model could instead allow the

benefits of mitigation to vary with mitigation effort by others, so that mit-

igation becomes a strategic game between homeowners.19 We also assume

identical homes and homeowners within the neighborhood and independently

distributed perceived disaster probabilities. We explore heterogeneity in fire

risk and neighborhood density across neighborhoods (zip codes) in the empir-

ical implementation. Expanding the model to allow for greater heterogeneity

within neighborhoods would allow a more nuanced exploration of the distri-

bution of net benefits. We see these extensions as useful areas for future work,

but prefer this simple and transparent model for the purposes of benchmarking

approximate net benefits.

5.2 Implementation

We implement the model for a random sample of 100,000 homes in 424 Califor-

nia zip codes in wildfire hazard areas. Each zip code is modeled as a separate

19. Shafran (2008) develops such a model for vegetation maintenance in wildfire areas.
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neighborhood with its own fire probability and number of close neighbors af-

fected by risk spillovers.

Mitigation Benefits

The empirical results in Section 4 allow us to estimate τii and τij. The reduced

form estimates of the effect of building codes on structure survival can be seen

as intent-to-treat estimates of the effect of mitigation investment. Given a rate

of voluntary takeup for the bundle of mitigation measures in the building code,

the standard Wald estimator gives τii and τij as the ratio of the reduced form

estimates and the difference in takeup rates in the codes and no-codes areas.20

In the theoretical model, voluntary takeup µ depends on beliefs about fire

risk and might thus be expected to vary between neighborhoods. In practice,

survey data on voluntary mitigation is scarce and the available data do not

allow us to calculate neighborhood-specific voluntary takeup rates. Our base

calculation uses a voluntary takeup rate of one-third. Appendix Section E

describes how we calculate this takeup rate based on CAL FIRE inspections

of destroyed and surviving homes for a sample of recent California wildfires,

including caveats about limitations of the data (which is nevertheless the best

existing survey evidence for our purposes).

Our reduced form estimate for own survival benefit for SRA homes implies a

value of τii of 0.195 ( .13.1
1−0.33 = 0.195). For τij, our reduced form estimate of

neighbor benefits in Table 2 is 2.3 percentage points for neighbors up to 10

meters away in wall-to-wall distance (and close to zero beyond 10 meters). The

effect also appears approximately linear in number of neighbors that mitigate,

at least over the limited range of number of neighbors that we can observe in

the data. Thus, our estimate of τij is 0.034 for each neighbor within 10 meters

(−.0.023
1−0.33 = −0.034) and zero for all further-away neighbors.21

20. See e.g., Angrist and Pischke (2009) p. 127-133. This calculation assumes perfect
compliance by homes subject to codes and a homogeneous effect of mitigation on structure
survival.

21. In principle, mitigation at further-away homes also benefits home i through potential
“domino effects”: a near neighbor becomes less likely to ignite due to action by that neigh-
bor’s neighbor. Our estimates imply that these effects are small on average (on the order of
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Sampling at-risk homes

Unlike the empirical analysis of building code effects, which uses homes located

inside historical wildfire perimeters, the net benefits calculation considers a

group of homes sampled randomly from all California homes in fire hazard

areas. To construct this sample, we start from all California homes in desig-

nated wildfire severity zones (SRA or LRA) and filter out zip codes containing

fewer than 100 homes. We then randomly draw min(n, 250) homes from each

remaining zip code where n is the number of homes in the zip code. This

yields a sample of 100,230 homes subject to wildfire building codes in 424 zip

codes.

We identify each home’s annual wildfire exposure probability pF using data

from the United States Forest Service (USFS) Wildfire Risk to Communities

project. This measure captures the annual probability of moderate to severe

wildfire exposure (Scott et al. 2020).22 We also identify each home’s number

of neighbors within 30 meters of centroid to centroid distance. This roughly

corresponds to the number of neighbors within 10 meters of wall-to-wall dis-

tance (see footnote 15) and is less demanding to calculate in this new random

sample of homes.

Costs and Losses

Our main estimates of mitigation costs come from Headwaters Economics

(2018). That study uses construction estimating tools from R.S. Means to

calculate the additional cost to build a home that complies with California’s

Chapter 7A wildfire code. Overall, that study reports zero cost difference

between code-compliant and standard designs. This counter-intuitive result

arises because one aspect of code-compliant construction (exterior siding) is

substantially less expensive than standard designs. These savings offset in-

creased costs for roofing, landscaping, and other areas. Our main estimate of

0.0342).
22. We use the product of Burn Probability (the total annual wildfire probability) and

Flame Length Exceedance Probability 4 (conditional on any fire, the probability that the
fire will reach moderate or greater threat status).
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code compliance costs ignores savings from code-compliant siding on the the-

ory that owners would make this choice even without standards. This gives

a cost estimate of $15,660. We also report results using alternative cost es-

timates from the National Association of Home Builders. Their estimated

wildfire code compliance costs for newly-built California homes include a low

scenario of $7,868 and a high scenario of $29,429 (Home Innovation Research

Labs 2020).23 Finally, we show a “retrofit” scenario based on Headwaters Eco-

nomics’ estimate of $62,760 to fully replace roofing and exterior walls on an

existing home.

Our assumed losses for a home destroyed by wildfire include rebuilding costs,

belongings and contents of the home, alternative living costs while the home

is rebuilt, and costs for debris removal and hazardous waste cleanup. Rebuild-

ing, contents, and alternative living arrangements costs come from the FEMA

Hazus model (Federal Emergency Management Agency 2021). We match as

closely as possible the characteristics of the model home used to estimate code

compliance costs in Headwaters Economics (2018).24 We regionally adjust

these costs to California using geographic adjustment factors from R.S. Means

provided in the Hazus model. The resulting cost of reconstruction and con-

tents losses is $766,725. The Hazus cost for alternative living arrangements

and disruption (e.g., moving costs) for 24 months is $61,696. For debris re-

moval (which is borne by homeowners) and hazardous waste cleanup (borne

by governments), we add a total of $150,000.25

We assume that mitigation investments have a protective lifetime of 40 years.

23. These are costs to meet the International Wildland Urban Interface Code, which is
similar to the Chapter 7A code. In the low scenario, we ignore $3,839 of gross savings from
code-compliant siding as we do for Headwaters Economics (2018).

24. The model home in Headwaters Economics (2018) is a 2,500 square-foot single-story
home with 2-car garage constructed in Montana for $140 per square foot. We use Hazus
cost estimates for the same size, number of stories, and garage in the “custom” construction
class, the closest corresponding cost category.

25. For cleanup and debris removal costs, see Klein (2018); Lewis, Sukey, “Cleaning Up:
Inside the Wildfire Debris Removal Job That Cost Taxpayers $1.3 Billion.” The California
Report, July 19, 2018; and Bizjak, Tony, “State’s Effort to Clean Up After the Camp Fire
is Off to a Rocky Start”, Sacramento Bee, January 13, 2019.
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In the absence of mitigation investment, the probability of loss when exposed

to wildfire for a home with no close neighbors is 44%.26 Households discount

future costs and benefits at 5% per year.

5.3 Results of Net Benefit Calculation

Figure 6 illustrates the results of this calculation. The scatter plot shows zip

code-level averages of annual wildfire hazard and number of near neighbors.

The wildfire hazard reaches strikingly high levels: several zip codes face annual

event probabilities above 2% per year, implying a significant wildfire exposure

every 50 years on average. The color scale shows the social benefit of mitigation

investment in each zip code following Expression (4). The dashed black line

shows a threshold for positive net benefits of building standards. Homes to the

right of this line have lower expected costs with mitigation investments than

without. The threshold bends to the left as the average number of neighbors

increases due to the spillover benefits of mitigation across properties. For a

home with zero near neighbors, the break-even annual wildfire hazard is about

0.45%. The break-even annual hazard for a home with 1 near neighbor is

0.39% and for a home with 4 near neighbors it is 0.27%.

These cost effectiveness estimates are a lower bound on the net benefits of uni-

versal mitigation. One important reason for this is that many homeowners are

substantially underinsured for natural disaster losses. Mitigation investments

yield additional welfare benefits by reducing exposure to uninsured risk. Even

for properties covered by homeowners insurance, Klein (2018) reports that cov-

erage limits for wildfire-destroyed properties are often up to 50% below actual

losses. Table 3 reports break-even annual wildfire probabilities for a home with

1.2 near neighbors (the sample mean) based on the expected utility model in

Appendix Section D. Although this model requires additional strong assump-

tions, these back-of-the-envelope numbers depict how risk aversion might affect

program benefits. For example, if code compliance costs $15,660, a homeowner

26. The approximate destruction probability for SRA homes under current codes is 0.4−
.156 = .244 (Table 1). Combined with the own-structure mitigation effect, this gives the
implied loss probability in the absence of mitigation: .244 + .195 = 0.44.
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with a coefficient of relative risk aversion of 5 and an insurance policy covering

two thirds of total losses would be better off investing in mitigation wherever

the annual probability of a damaging wildfire exceeds 0.33%.27

Table 3 also reports results using other estimates of mitigation cost. The zero

net cost estimate from Headwaters Economics (2018) leads to positive benefits

for any level of hazard. The two additional estimates from Home Innovation

Research Labs (2020) bracket the main cost estimate. Finally, the estimated

retrofit cost of $62,760 results in much higher break-even hazard levels for

existing homes. This kind of full retrofit to existing homes appears to generate

positive benefits only for a handful of areas with extreme fire hazard.

Beyond risk aversion, WUI building codes likely have additional benefits that

are not included in our calculations. These include reductions in public ex-

penditures on firefighting during large wildfires (Baylis and Boomhower 2019),

reduced demand for public assistance among fire victims (Deryugina 2017),

avoided emotional and mental distress, and less need for public safety power

shutoffs that interrupt electricity service during high fire-risk periods.28 More-

over, if imperfections in property insurance markets cause premiums to system-

atically exceed expected damages, then mitigation becomes more attractive

because it reduces the risk which must be insured in the imperfect insurance

market. Scientists also agree that annual wildfire probabilities are increasing

throughout North America such that net benefits of WUI building codes will

grow in the future. On the other hand, a more detailed analysis would need to

consider possible heterogeneity in household net benefits. If some individuals

have very high perceived private costs of choosing fire resistant materials and

landscaping (perhaps due to strong aesthetic preferences), building standards

could be costly for these households.

27. Studies of the property insurance market generally report high implied levels of relative
risk aversion. Cohen and Einav (2007) and Sydnor (2010) examine deductible choices in auto
and homeowners insurance respectively and find double-digit values for the mean household
across a variety of specifications. Evidence from other markets suggests values closer to the
low single digits (e.g., Gertner 1993; Chetty 2006).

28. For a systematic review of catastrophic wildfire costs, see Feo et al. (2020).
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In summary, our empirical estimates and model calculations suggest that wild-

fire building codes yield unambiguous benefits in the most fire-prone areas

of California, especially when homes are clustered closely together such that

there are large risk spillovers. For areas with lower fire risk, the sign of net

benefits is more sensitive to modeling choices and the assumed co-benefits of

building codes. Further work on the cost-effectiveness of wildfire mitigation

measures in low- and moderate-risk areas is an important area for additional

research.

6 Conclusion

Efficient investment in adaptation is essential in the face of rapidly accelerating

disaster losses. Yet takeup of protective technologies and behaviors is thought

to be constrained by misperception of risk, insurance market failures, spatial

externalities, and other frictions. The pressing question facing researchers and

policymakers is how to best respond to these market barriers. One suite of

policies focuses on increasing voluntary takeup through information or subsi-

dies. Another option is to override individual decisions and mandate certain

investments in hazard areas. These policies may differ substantially in their

effects and their political acceptability.

This study contributes evidence on the effects and net economic benefits of a

mandatory adaptation policy. We provide the first comprehensive empirical

evaluation of California’s strict wildfire building codes. The analysis uses a

new dataset of property-level data on U.S. homes destroyed by wildfire that

was created for this study. The new data combine nationwide property charac-

teristics information with post-fire damage assessment records collected from

numerous local and state agencies. This resource has three important advan-

tages: it collects and harmonizes previously disparate damage data; it contains

a complete record of homes that survive as well as homes that are destroyed;

and unlike data for floods and other losses, it is reported at the individual prop-

erty level. Beyond this study, the new data will enable additional important

research on disaster losses.

32



The empirical analysis in this study is bolstered by our ability to observe dif-

ferences in building code regimes over time, across jurisdictions within Califor-

nia, and between California and other states. The empirical strategy isolates

the effect of building code changes using a fixed effects design that compares

outcomes for pre- and post-code homes on the same residential street. This

approach narrows the comparison to homes experiencing essentially identical

wildfire exposures.

The results show that compared to reliance on voluntary action alone, Cal-

ifornia’s wildfire building codes reduced average structure loss risk during a

wildfire by 16 percentage points, or about a 40% reduction. They also reduced

the risk to a close neighbor’s home by about 2 percentage points or 6%. These

striking results imply materially different levels of resilience in communities

with and without such codes. Moreover, the spatial externalities provide a

classic rationale for public policy intervention even if homeowners were fully

informed and rational about wildfire risk.

Having documented these large resilience benefits, we then show how the em-

pirical results can be embedded in an economic model that accounts for mitiga-

tion costs, spatial spillovers, and risk preferences. We use our results and other

values from the literature to provide a back-of-the-envelope approximation of

the minimum annual wildfire risk at which universal mitigation generates pos-

itive net benefits. In the most fire-prone areas of California, the calculation

shows large net benefits of building codes for new homes. Given the high cost

of fully retrofitting existing homes to modern standards, full retrofits do not

pass a benefit-cost test in most areas. An important task for future research

is to identify individual low-cost investments that can cost-effectively improve

the resilience of existing homes in high hazard areas.

In summary, the data show that an adaptation mandate substantially im-

proved resilience to wildfires and a cost-benefit approximation suggests that

low takeup without standards is more likely driven by market failures than

by fully-informed individual decisionmaking. These results are immediately

applicable to policy debates in the U.S., Canada, Australia, the European
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Union, and other jurisdictions that are seeking to respond to escalating wild-

fire risk. More broadly, these facts should be of interest to policymakers and

researchers confronting other hazards like floods, hurricanes, and heat waves

where voluntary takeup of self-protective investments seems to be constrained

by similar barriers. As climate change continues to increase disaster losses, this

type of research on the role of public policy and market incentives in shaping

adaptation is increasingly urgent.
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Figure 1: Building and Validating the Dataset

(a) Roof Locations and Damage Reports

(b) Distance Between Structures

Notes: Best viewed in color. (Panel a) Homes affected by the Carr Fire (2018). Markers are geocoded structure
locations. Green square markers are structures reported as destroyed in the damage inspection data; yellow circular
markers are all other homes in the data. The background image is aerial imagery before and after the Carr Fire
from NearMap. Blue building shapes and gray parcel outlines are the building footprint data and assessor parcel
boundary data used to identify structure locations (see text for details). (Panel b) Examples of calculated distances
between structure walls. Images are pre-fire aerial imagery of homes affected by the Thomas Fire (2017) and Tubbs
Fire (2017). Figure shows the wall-to-wall distance from the structure marked ‘0’ to the other homes.



Figure 2: Merged data example: Structure-level outcomes in the Woolsey Fire

Notes: Best viewed in color. Example of merged inspection, assessor, and fire perimeter
data for one fire in our dataset. Markers indicate the locations of single family homes inside
the final Woolsey Fire perimeter (shown in red). Purple homes are reported destroyed in
damage inspection data; green homes are all remaining homes in the ZTRAX assessment
data. Street map data are from Open Street Map.
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Figure 3: Share Destroyed by Year Built in Mandatory Code Areas
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Notes: This figure shows the share of homes inside wildfire perimeters that were destroyed,
according to the year that the home was built. The sample is limited to homes in State
Responsibility Area. The blue lines show ten-year averages.
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Figure 4: Estimated Vintage Effects by Building Code Jurisdiction

Tu
nn

el
 F

ire
B

at
es

 B
ill

C
la

ss
 B

/C
 R

oo
f

C
la

ss
 A

/B
 R

oo
f

C
ha

pt
er

 7
A

−0.3

−0.2

−0.1

0.0

0.1

0.2

P
(D

es
tr

oy
ed

) 
R

el
at

iv
e 

to
 1

98
7

SRA (Codes Mandatory)

Tu
nn

el
 F

ire
B

at
es

 B
ill

C
la

ss
 B

/C
 R

oo
f

C
la

ss
 A

/B
 R

oo
f

C
ha

pt
er

 7
A

−0.3

−0.2

−0.1

0.0

0.1

0.2

P
(D

es
tr

oy
ed

) 
R

el
at

iv
e 

to
 1

98
7

LRA VHFHSZ (Codes Recommended)

−0.3

−0.2

−0.1

0.0

0.1

0.2

<1
95

1
19

51
19

53
19

55
19

57
19

59
19

61
19

63
19

65
19

67
19

69
19

71
19

73
19

75
19

77
19

79
19

81
19

83
19

85
19

87
19

89
19

91
19

93
19

95
19

97
19

99
20

01
20

03
20

05
20

07
20

09
20

11
20

13
+

Effective Year Built of Home

P
(D

es
tr

oy
ed

) 
R

el
at

iv
e 

to
 1

98
7

No Mandatory or Recommended Codes

Notes: Figure plots point estimates and 95% confidence intervals from 3 separate OLS regressions of an
indicator for Destroyed on bins of effective year built. Each regression includes street by incident fixed
effects and other controls described in the text. Panel (a) shows homes in state responsibility area (SRA).
Panel (b) shows homes in local responsibility area (LRA) inside state-recommended Very High Fire Hazard
Severity Zones (VHFSZ). Panel (c) shows homes in states without wildfire building codes (AZ, CO, OR,
WA) and LRA areas in California outside of state-recommended VHFHSZ. Standard errors are clustered by
street. The histogram below each panel shows the relative number of observations in each bin.



Figure 5: The effect of neighboring homes on survival
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Notes: Figure shows coefficients and 95% confidence intervals from a single OLS regression
of “Destroyed” on the presence of pre- and post-code neighbors at various distances. The top
panel shows estimates for indicator variables for the presence of one or more neighbors built
without wildfire building codes. The bottom panel shows estimates for indicator variables for
the presence of one or more neighbors built after wildfire building codes. The regression also
includes own year built (in four year bins), street by incident fixed effects, and topographic
controls. Distance to neighboring home is wall-to-wall distance. See text for details.
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Figure 6: Lower-bound Net Benefits by Fire Hazard and Number of Neighbors
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Notes: This figure plots the annual probability of a damaging wildfire and average number of close
neighbors for a random sample of 100,230 California homes in areas subject to the Chapter 7A building
codes. Markers represent zip-code averages. Marker color indicates average net benefits in the zip
code using the cost-effectiveness measure, which is a conservative lower bound on total net benefits.
Annual wildfire hazard is from Scott et al. (2020) and represents a snapshot as of 2014. Number of
neighbors is the number of homes within a 30-meter centroid to centroid distance. Marker size is
proportional to number of homes in the zip code. The dashed line shows a threshold for zero net
reduction in expected cost. See text for discussion and alternative scenarios.
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Table 1: Regression estimates of building code effects on own survival

(1) (2) (3) (4) (5)

SRA * Before 1998 -0.022 -0.045 -0.027 -0.021 -0.029
(0.033) (0.041) (0.029) (0.037) (0.020)

SRA * 1998–2007 -0.112∗∗∗ -0.138∗∗∗ -0.117∗∗∗ -0.113∗∗∗ -0.160∗∗∗

(0.034) (0.043) (0.031) (0.039) (0.022)
SRA * 2008–2016 -0.159∗∗∗ -0.190∗∗∗ -0.164∗∗∗ -0.151∗∗∗ -0.204∗∗∗

(0.036) (0.044) (0.033) (0.041) (0.027)
LRA VHFHSZ * Before 1998 -0.031 -0.048 -0.038 -0.028 -0.005

(0.033) (0.050) (0.030) (0.037) (0.021)
LRA VHFHSZ * 1998–2007 -0.121∗∗∗ -0.142∗∗∗ -0.126∗∗∗ -0.127∗∗∗ -0.095∗∗∗

(0.034) (0.048) (0.032) (0.038) (0.025)
LRA VHFHSZ * 2008–2016 -0.159∗∗∗ -0.178∗∗∗ -0.162∗∗∗ -0.163∗∗∗ -0.130∗∗∗

(0.037) (0.050) (0.035) (0.041) (0.030)
No Codes * 1998–2007 -0.038 -0.029 -0.045∗ -0.044∗ -0.035

(0.025) (0.026) (0.026) (0.024) (0.030)
No Codes * 2008–2016 -0.006 0.035 0.012 -0.010 -0.071

(0.033) (0.040) (0.041) (0.033) (0.044)
Ground slope (degrees) 0.006∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Lot size (acres) -0.000

(0.000)
Building square feet -0.000

(0.000)
Bedrooms 0.001

(0.003)

Street FE X X
Fuel model FE X X X X X
Street X 100 homes FE X
Street X side of street FE X
Incident FE X

Observations 48,843 38,991 48,843 48,843 48,843
R2 0.62 0.63 0.63 0.66 0.39
Dep. Var. Mean 0.41 0.46 0.41 0.41 0.41

Notes: Table shows estimates and standard errors from five separate OLS regressions. The outcome
variable is an indicator for Destroyed. Street fixed effects includes separate dummies for each street-
by-incident. Incident fixed effects are dummies for each wildfire. Fuel model fixed effects are dummies
for Anderson fire behavior fuel models. Standard errors are clustered by street.
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Table 2: Neighbor Effects

Destroyed
(1) (2) (3) (4)

1 pre-code nearby homes 0.020∗∗∗ 0.023∗∗∗ 0.026∗∗∗ 0.027∗∗∗

(0.007) (0.007) (0.007) (0.007)
2+ pre-code nearby homes 0.031∗∗∗ 0.039∗∗∗ 0.050∗∗∗ 0.051∗∗∗

(0.009) (0.010) (0.009) (0.009)
1 post-code nearby home 0.001 0.002 0.010 0.001

(0.013) (0.013) (0.012) (0.013)
2+ post-code nearby homes -0.001 0.001 0.003 -0.009

(0.016) (0.018) (0.018) (0.021)
Own Year Built X X X X
Topography X X X X

Street FE X X X X

Observations 38,226 23,564 44,923 26,842
R2 0.64 0.68 0.63 0.68
Distances Walls Walls Centroids Centroids
Subsample X X
Dep. Var. Mean 0.40 0.49 0.40 0.51

Notes: Table shows estimates and standard errors from 4 separate OLS regressions.
The outcome variable is an indicator for Destroyed, and each regression also includes
dummy variables for own year built (in four year bins) and street-by-incident fixed ef-
fects. Columns (1) and (2) use wall-to-wall distances to assign neighbors, while Columns
(3) and (4) use the centroid-to-centroid distance measure. Columns (1) and (3) use the
full sample of single family homes, while columns (2) and (4) use a subsample in areas
where our distance measures are likely to be particularly accurate. See text for details.
Standard errors are clustered by street.

47



Table 3: Break-even Hazard under Risk Aversion and Alternative Costs

Insured % 100 67 33

γ = 2 γ = 5 γ = 2 γ = 5

Cost Estimate Source

New Home
$ 0 HE-Low 0 0 0 0 0

$ 4,029 NAHB-Low 0.10% 0.09% 0.08% 0.08% 0.05%
$15,660 HE 0.38% 0.36% 0.33% 0.30% 0.20%
$29,429 NAHB-High 0.71% 0.68% 0.63% 0.58% 0.41%

Retrofit
$62,760 HE 1.50% 1.46% 1.40% 1.33% 1.15%

Notes: Table shows estimated minimum annual wildfire probability for which building
standards yield positive net benefits under various assumptions about cost, share of
losses insured, and risk aversion. Probabilities are reported as percentages (e.g., 0.32%
per year). For partial insurance scenarios, γ is the coefficient of relative risk aversion.
Calculations assume 1.2 near neighbors. See text for details of these calculations.
Source code HE represents Headwaters Economics (2018) and NAHB represents Home
Innovation Research Labs (2020).
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