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1 Introduction

This paper proposes a new method for inferring the causal effects of a treatment, such as a

price or policy intervention, on choices. The essence of the empirical strategy is to exploit

stable relationships between choices and various types of hypothetical evaluations.

The motivation for our approach relates to the advantages and limitations of existing

methods involving stated preferences (for reviews see Shogren 2006; Carson 2012). Imagine

asking people, hypothetically, what they would choose under various conditions, and using

these responses to compute treatment effects. If hypothetical choices were simply noisy

measures of real choices, then this approach would offer many advantages.1 Unfortunately,

hypothetical choices are systematically biased measures of actual choices (List and Gallet

2001; Little and Berrens 2004; Murphy et al. 2005).2 Still, the fact that these biases are

systematic suggests that hypothetical choices encode relevant information, and consequently

may be good predictors of actual choices, even if they are bad predictions. Indeed, the

correlation between hypothetical and real choices is usually high.

Our approach combines the use of hypothetical responses which, though biased, can

be observed for actual and counterfactual treatment states, with observational data on

choices, which are observed for the actual treatment state. We consider hypothetical

responses that aggregate underlying motivations (such as stated preference and hypothetical

choices), as well as a variety of responses that capture more specific motivations (such as

temptation or social image), including those that may influence the direction and magnitude

of hypothetical bias. We estimate the predictive relationship between real choices and

hypothetical responses in observational data, and then use that relationship to infer the

effects of counterfactuals.

Because the method does not require treatment variation, it can recover treatment

effects for novel interventions that have yet to be implemented (e.g., a policy proposal),

or that appear in limited contexts (e.g., an innovative policy adopted by a small number

of jurisdictions). It can also recover treatment effects when treatment assignment is

random, and—under assumptions that are plausible in some applications—when treatment

assignment is correlated with factors that influence the outcome. In the latter cases, it does

not rely on external instruments or discontinuities, neither of which may be readily available

in any given application. The method also offers other advantages. Specifically, it can (1)

1For example, Krueger and Kuziemko (2013) use hypothetical choices to estimate the price elasticity of
demand for health insurance among the uninsured, for whom there is no real choice variation.

2The bias typically overstates willingness-to-pay, especially for alternatives that are viewed as more
“virtuous.”
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recover variation in treatment effects for specified subgroups of treated or untreated units

(i.e., not merely local average treatment effects or LATEs), (2) determine how treatment

effects vary with complex attributes of the treatment that are not easily reducible to a

small collection of variables (e.g., features of photos or text), and (3) improve statistical

precision. In addition to developing the method conceptually, we offer proof of concept in

two applications, one using laboratory data, the other using field data.

To be more specific, suppose we observe choices in a variety of settings, indexed by j,

with a treatment state, w ∈ {0, 1}, assigned to each. Examples include prices set for a group

of related products, or policies set for jurisdictions. The actual (aggregated) choice outcome

for setting j would be Yj(w) in treatment state w. We are interested in the average treatment

effect, τ = E(Yj(1) − Yj(0)). However, we observe each setting j only in the realized

treatment state Wj, which may be the same for all settings. Imagine collecting hypothetical

evaluations of the options available in setting j, Hj(w), for both treatment states, w = 0, 1

(where Hj(w) may include hypothetical choices and other evaluative responses). First,

we estimate a model relating outcomes in the realized treatment states, Yj(Wj), to the

corresponding hypothetical responses, Hj(Wj). Second, we use that relationship to predict

average outcomes for both treatment states. The difference yields an estimate of the

treatment effect. In effect, we use the estimated prediction equation to unwind the

systematic biases embedded in the hypothetical responses, H(1) and H(0). We develop a

simple linear estimator suitable for low-dimensional settings, as well as a machine learning

estimator suitable for high-dimensional settings based on the LASSO. We also outline results

for doubly robust and nonlinear estimators.3

As long as the predictive relationship between outcomes and hypothetical evaluations is

stable, this method should yield unbiased estimates of treatment effects. We provide proof

of concept by applying the method to real data involving two separate applications, one in

the laboratory, the other in the field. In these applications, the method recovers measures

of treatment effects that are close to ground-truth estimates, even under conditions that

render standard non-structural methods inapplicable. Given this promising performance,

we formalize econometric theory for the estimator, articulate conditions that would yield

stability, and describe the contexts where the approach is applicable.

In our first application, we use our method to estimate the demand for various snacks

as a function of prices in a laboratory setting. We ask some participants to decide whether

to purchase each snack at prices $0.25 and $0.75. Other participants evaluate each snack

3An accompanying R package is available on Github: https://github.com/michaelpollmann/hypeRest.
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hypothetically along several dimensions at the low price and the high price. We simulate a

data set with no price variation by restricting the choice data to a single price for all snacks.

We also simulate endogenous price variation by selecting observations in a manner that

introduces correlation with demand. In both of these cases, the estimates of treatment

effects based on our method are close to ground truth estimates based on actual purchase

decisions for each snack at both prices (which are observable in a laboratory setting).

In our second application, we use our method to assess the effects of matching provisions

on lending through a microfinance platform. The observational data tell us the speed at

which each borrower profile attracted funding and whether a third party offered matching

funds. We gathered hypothetical data by asking Amazon Mechanical Turk workers to

assess these profiles in both the matched and unmatched states. Estimates of treatment

effects based on our method are once again close to ground truth, which we inferred from

a controlled experiment. In contrast, a standard OLS regression of funding velocity on

treatment yields a biased estimate, and no suitable instruments are available.

In addition to documenting the accuracy of our approach in two settings, our analysis of

these applications illustrates how the method can shed useful light on the heterogeneity of

treatment effects. It also shows that our approach can yield gains in precision even in cases

where standard approaches are feasible.

To be clear, our method also has limitations. As we explain, the assumptions that

justify it are potentially problematic in applications with particular features—for example,

those for which it is difficult to depict decision problems comprehensively in a survey,

or to survey populations that sufficiently resemble the decision makers. It also requires

collecting hypothetical responses in addition to observational data on choices for a variety

of decision settings. Nonetheless, in some settings the approach may provide a reliable and

cost-effective alternative to field experiments, or it may complement field experiments by

offering a low-cost method for exploring large varieties of treatment possibilities before

committing to a particular version.

The paper is organized as follows. The next section describes our approach. Section 3

covers the laboratory application, and Section 4 covers the field application. Section 5

provides formal foundations and discusses the characteristics of appropriate (and inap-

propriate) applications. Section 6 extends the theory to applications with endogeneity.

Section 7 concludes.
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2 Method

2.1 The problem

We are interested in the effect of some treatment w ∈ {0, 1} on choices made in various

settings indexed by j.4 For each setting j, the potential outcome Yj(w) represents an

aggregation of people’s choices (a sum or average). The objective is to estimate the average

treatment effect (ATE):

τ = E
(
Yj(1)− Yj(0)

)
where the expectation is taken over a population of settings.

Each setting has a treatment status Wj ∈ {0, 1}, which is selected by someone other

than the people who choose outcomes. We are interested in the case where Wj has no

variation (either all observed settings are treated, or all are untreated), as well as in cases

where it is assigned randomly or in a manner endogenous to the potential outcomes Yj(w).

For concreteness, we preview the two applications in this paper:

Product demand. The analyst seeks to estimate price elasticities for a collection of

products (alternatively, for the same product across different markets), but observes no

variation in price. Here, settings correspond to products (alternatively, markets), the

treatment is price, and outcomes are purchase decisions by customers.

Matching of charitable contributions. The analyst seeks to estimate the potentially

heterogeneous effects of matching provisions for contributions to appeals posted on an

online platform. Here, settings correspond to appeals, the treatment is the existence of

a match, and the outcomes are donation decisions by the platform’s users. For similar

applications, see Karlan and List (2007) and Huck and Rasul (2011).

2.2 Our approach

Our approach to causal inference builds on a standard method that uses hypothetical choice

data. It corrects for the biases that afflict that method.

The standard method for using hypothetical choices. Imagine that in each setting, we

ask people similar to the decision makers of interest what they would choose, hypothetically,

under both treatment states. For example, we might ask them if they would hypothetically

4While we focus on environments with binary treatments, our method is more general.
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purchase particular goods at particular prices, or donate to different appeals with or without

matches. Using their responses, we could then construct the average hypothetical choice

Y H
j (w) for setting j under treatment w.

The most straightforward way to estimate the ATE for the settings of interest is to

compute the difference in average hypothetical choices between the treatment states:

τ̂hyp = Y H(1)− Y H(0),

where Y H(w) = 1
J

∑J
j=1 Y

H
j (w) is the sample average of the hypothetical choice under

treatment state w ∈ {0, 1} for all settings.

An advantage of this strategy is that it does not require the observed treatments, Wj, to

have any variation at all, let alone exogenous variation. In effect, it makes a counterfactual

prediction based on the respondent’s mental model of the choice process. Previous studies

have used this approach to measure, for example, product demand (see, e.g., Infosino

1986; Jamieson and Bass 1989), health insurance demand among the uninsured (Krueger

and Kuziemko 2013), and intentions to vote (Jackman 1999 and Katz and Katz 2010); for

reviews, see Shogren (2006) and Carson (2012).

The main problem with this approach is that hypothetical choices are systematically

biased (Cummings, Harrison, and Rutström 1995; List and Gallet 2001; Little and Berrens

2004; Murphy et al. 2005; Blumenschein et al. 2008). For example, people tend to overstate

purchases, and they exaggerate their proclivities to take “virtuous” actions, such as donating

to charities and purchasing healthy foods.5

Our basic approach. Our approach estimates how hypothetical evaluations relate to

real choices, and then uses that relationship to undo the biases in hypothetical choices.

We consider multiple types of hypothetical evaluations, denoted by a (row) vector Hj(w)

in setting j, which may include (but is not limited to) hypothetical choices Y H
j (w). The

simplest variant of our approach has two steps.

5When surveys are consequential, incentive problems also come into play; see Carson, Groves, and List
(2011). Biases do not appear to be substantial in all settings, however; see, for example, Abdellaoui, Barrios,
and Wakker (2007) for a within-subject comparison of choices over lotteries and stated (cardinal) preferences
over monetary payments.
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Step 1. Using data for the realized treatment states, estimate the relationship between

choices and the corresponding hypothetical evaluations (aggregated for each setting):

Yj =Hjβ +Xjγ + ϵj, (1)

where Yj = Yj(Wj) is the realized outcome, hypothetical evaluations Hj =Hj(Wj)

correspond to the realized treatment state Wj, and Xj is a collection of observable,

fixed characteristics (including the intercept).

Step 2. Use the estimated relationship to predict outcomes for both states, and take the

difference:

τ̂ =
(
H(1)−H(0)

)
β̂

whereH(w) = 1
J

∑J
j=1Hj(w) is the sample average of the predictors under treatment

state w ∈ {0, 1} for all settings.

Because our method uses hypothetical evaluations as predictors rather than as measures of

choices, we are free to use any subjective response that aids prediction. Hj can thus include

not only hypothetical choices (which are aggregates of multiple underlying motivations),

but also measures of specific motivations, such as the extent to which a given option satisfies

a desire for health, as well as measures that may predict the direction and magnitude of

hypothetical choice bias, such as whether a given option is considered socially virtuous.

Extensions involving machine learning. In applications, the number of potential pre-

dictors can be large, particularly if one seeks to include transformations such as quadratic

terms (especially for hypothetical evaluations that employ arbitrary scales) and interactions

(e.g., because social approval mediates the response to anticipated pleasure). Linear re-

gression estimators may then overfit, and machine learning estimators may perform better.

Appendix C.3 describes an approach similar to LASSO exploiting linearity and sparsity

in high-dimensional hypothetical evaluations building on approximate residual balancing

(ARB, Athey, Imbens, and Wager 2018). In Appendix C.4, we provide a doubly robust

moment condition for estimation using arbitrary machine learning methods.

Stability. For the approach to work, the relationship in equation (1) must be sufficiently

stable across settings and treatment states. We explore approaches to assessing stability

in our two empirical examples, and formalize underlying assumptions and diagnostics in
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Section 5. We also propose microfoundations for the stability assumption, which involve

two premises: first, mental states fully determine choices (and in that sense are “sufficient

statistics” for choices); second, mental states likewise fully determine (mis-) reporting of

mental states. Under the first premise, it should be possible in principle to predict choices

accurately based on mental states by recovering the stable relationship between these

variables. In effect, if the source of variation in mental states is unimportant, then we can

use mental-state variation that arises from differences between settings to infer the effects

that would arise from different treatment states. While mental states are unobservable in

practice, the second premise implies that they are also sufficient statistics for hypothetical

evaluations. And if hypothetical evaluations span the mental states, that stable relationship

is invertible. Stability of the relationship between choices and hypothetical evaluations is

therefore plausible.

Overlap and linearity. Our method is most applicable when the range of variation for the

hypothetical evaluations for the counterfactual treatment states, Hj(1−Wj), sufficiently

overlaps with the range of variation for the realized treatment states,Hj(Wj). These ranges

tend to overlap when the effect of the treatment on evaluations is not too large relative

to other sources of variation in evaluations across settings. When this spanning condition

is satisfied, our method works better in practice (as demonstrated in Section 3.2.2), and

does not require functional form assumptions (as shown in Appendix C.3). Caution is

warranted when using functional form assumptions such as linearity (as in equation (1))

to extrapolate the relationship between y and H to values h =Hj(1−Wj) substantially

outside the observed range of variation for Hj(Wj).

Methodological precursors. The literature on stated preferences and contingent valu-

ation methods (SP/CVM) includes attempts to correct hypothetical bias by “fixing” the

elicitation protocol (e.g., Cummings and Taylor 1999, Jacquemet et al. 2013, and Blamey,

Bennett, and Morrison 1999, and Loomis, Traynor, and Brown 1999). For our method,

there is no need to assume that any protocol yields an unbiased prediction. Instead, each

produces a potentially useful predictor.

Other portions of the SP/CVM literature study statistical relationships between real

and hypothetical choices (e.g., Blackburn, Harrison, and Rutström 1994, Fox et al. 1998,

List and Shogren 1998, List and Shogren 2002, and Mansfield 1998). Instead of treating

the decision problem as the unit of observation and relating choice distributions to the
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problem’s (subjective) characteristics as in our approach, these “calibration” studies treat

the individual as the unit of observation and relate hypothetical bias to socioeconomic

characteristics within a single decision setting. Because hypothetical bias is context-specific

(List and Shogren 1998, List and Shogren 2002, Ajzen, Brown, and Carvajal 2004, and

Johansson-Stenman and Svedsäter 2012), those individual-level relationships do not reliably

transfer from one setting to another.6 Calibration studies also potentially suffer from cross-

contamination between each subject’s real and hypothetical decisions. Our problem-level

focus allows us to avoid cross-contamination by eliciting real and hypothetical choices

from different subjects. Finally, calibration studies focus on one hypothetical question at a

time. Our approach leverages the information contained in responses to multiple questions

simultaneously.

Our method is also related to demand estimation approaches that augment real choices

with additional data such as the alternative a consumer would hypothetically choose if the

real choice were unavailable (Berry, Levinsohn, and Pakes 2004) or measures of relatedness

gathered from surveys (Magnolfi, McClure, and Sorensen 2022). There is also related work

in marketing (Infosino 1986; Jamieson and Bass 1989; Morwitz, Steckel, and Gupta 2007),

political science (Jackman 1999; Katz and Katz 2010), and neuroeconomics (Smith et al.

2014). See Appendix B for more discussion of these connections.

Other related methods. Appendix C.9 describes connections to linear factor models,

synthetic controls, and statistical surrogates.

2.3 Potential advantages

When our method is applicable, it offers several potential advantages.

Effects of treatments that have not been implemented. Because our method does

not require any variation in assigned treatment states, it enables the estimation of causal

effects for novel treatments that have yet to be implemented. Intuitively, if the hypothetical

evaluations in the untreated (baseline) state mostly span the range of variation under

6Blackburn, Harrison, and Rutström (1994) provide somewhat mixed evidence on portability, but their
analysis is limited to two goods. Unlike calibration studies, meta-analyses (e.g., List and Gallet 2001, Little
and Berrens 2004, and Murphy et al. 2005) attempt to account for the variation in hypothetical bias across
contexts and goods, but mainly as a function of coarse features of the goods (public versus private) and
experimental methods.
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treatment, we can infer what people would choose on average in a treated setting by

examining choices in untreated settings that evoke similar hypothetical evaluations.

Effects of endogenous treatments. The approach also provides novel routes to identifi-

cation when observed treatment is assigned endogenously. Because Step 2 uses data on

both treatment states for every setting, treatment endogeneity can only bias the estimate by

distorting the value of β obtained in Step 1. We derive β from the relationship between the

observed outcome Yj and hypotheticals in the corresponding treatment state,Hj =Hj(Wj).

If treated settings would have had higher (or lower) outcomes regardless of treatment,

the method will attempt to explain that difference in outcomes not through differences

in treatment states, as with a quasiexperimental estimator, but through differences in the

hypotheticals associated with the corresponding treatment states. But the treatment is

only one source of variation for the hypotheticals. There is also natural variation across

settings: some settings simply have higher evaluations than others, regardless of treatment.

Because this “ambient” variation helps identify the relationship between outcomes and

hypotheticals, it can dilute any endogeneity problem. Endogeneity is only a significant

problem when too much of the variation in hypotheticals comes from the treatment—that

is, when the settings are not sufficiently diverse apart from the treatment. Conversely,

when there is sufficient ambient variation in the hypotheticals, the bias from treatment

endogeneity becomes small. Our method also works well in settings where hypothetical

evaluations plausibly span most of the outcome-relevant portion of the information used

to select the treatment. We formalize these points in Section 6, where we also introduce

methods of bounding and correcting remaining biases.

Heterogeneous treatment effects. Treatment effects commonly vary across units (here,

across settings). Standard observational methods identify treatment effects only for the

specific units that are affected by an instrument or discontinuity (the Local Average Treat-

ment Effect (LATE) among compliers; Imbens and Angrist 1994). Using our methods, one

can estimate the average treatment effect (ATE) for any subgroup of settings S (defined

according to values of our conditioning variables Hj(1),Hj(0), and Xj) by calculating
1
|S|
∑

j∈S

[
Ŷj(1)− Ŷj(0)

]
. This calculation is possible because both treated and untreated

hypothetical responses are observed for all settings.

Encoding and evaluating nuanced features of treatments. Standard causal inference

methods are typically constrained to use coarse definitions of treatments and settings. For
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example, the literature on organ donation focuses on a single feature: whether people

are invited to opt in or opt out (Kessler and Roth 2012). Our approach allows one to

estimate how treatment effects vary with more nuanced features, such as the wording

and placement of an organ donation question, or the photo and text used alongside a

microfinance profile. The analyst need not encode those features manually; instead they

can simply assess hypothetical responses to treatments that differ only with respect to a

given feature, and apply the estimated prediction equation. Our methods can therefore

complement field experiments by allowing analysts to explore the treatment design space at

far lower cost by gathering hypothetical responses, and then focusing on the most promising

designs.

Precision. Compared with standard methods, our approach can improve the precision

of estimated treatment effects even when randomized treatment variation is available,

particularly when treatment groups have unbalanced sizes. Because we estimate a single

model of the outcome as a function of hypothetical evaluations using all settings (treated

and untreated), and then use hypothetical data in both treatment states to predict outcomes

for every setting, imbalance has no direct impact on the precision of our method.

3 Application: Snack Demand

We first demonstrate our approach by estimating price sensitivities for a family of goods

in a laboratory setting. Study participants make simple purchase decisions for a large

collection of familiar snack foods. The treatment states w ∈ {0, 1} correspond to prices

of $0.25 or $0.75, respectively. Yj(w) denotes aggregate demand for good j at the price

corresponding to w. The treatment effect of interest is either the average price response
1
J

∑J
j=1 [Yj(1)− Yj(0)], or the responses for individual goods.

We apply our method to datasets containing one real observation for each good (de-

mand at a single price). We extract those datasets from a larger one containing two real

observations for each good (demand at both prices), which we use to measure true price

responses (ground truth).
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3.1 Procedures and data

Each of 365 subjects was assigned to one of several groups, described below.7 Subjects

were told that their sessions consisted of two stages. The first involved a computer-based

choice or rating task lasting roughly 30 minutes. The second was a 30-minute waiting

period. Subjects were asked not to eat anything during the waiting period unless a snack

was provided (according to the rules).

In the first stage of each session, a group of subjects decided whether to purchase each of

J = 189 snacks at a given price, $0.25 or $0.75. For one subgroup, these decisions were real

and provide the basis for measuring Yj(w). For a second subgroup, they were hypothetical,

and other groups were asked to rate the same snacks according to various subjective criteria,

with price a factor in some questions. Together, these hypothetical responses provide the

basis for measuring Hj(w).

The stimuli (food items or item-price pairs) were presented in random order. Most

groups consisted of roughly 30 subjects. For a complete catalog of the groups along with

sample sizes and a screenshot for a representative question, see Appendix D.1 and Figure A1.

3.1.1 Real choices

The subjects who made real choices were informed that we would select one decision at

random and implement it during the 30-minute waiting period.8 Although the chance of

implementing any given choice was low, differences between real and hypothetical purchase

frequencies were substantial, and in the expected direction.9

In observational data we might observe such demand at a single price for each good,

7We conducted the experiment at the Stanford Economic Research Laboratory (SERL) between November
15, 2010, and October 2, 2012. Stanford University’s IRB reviewed and approved the protocol. The
participation fee ranged from $20 to $30. We adjusted the fee upward when the response rate to our subject
solicitation was low, and downward when it was high. Sessions took place in mid-afternoon, when subjects
are typically hungry.

8By construction, it follows that the demand for each snack item does not depend on the prices of the
other items. Our framework could accommodate substitution across products by specifying the price of every
good in each hypothetical question.

9Real purchase frequencies were not significantly different in a group of participants whose odds of
implementation were one in 5 decisions rather than one in 378. See Appendix D.3 for details. It is not
surprising that participants in the “real choice” group viewed their choices as real: they had as much at
stake as someone making a single purchase decision (because they knew we would definitely implement one
choice), and taking the task less seriously did not reduce the subject’s time commitment. Notably, similar
conclusions were reached by Carson, Groves, and List (2011) based on theoretical principles and experimental
evidence, and by Kang et al. (2011) based on fMRI data. Consistent with these findings, a survey paper
by Brandts and Charness (2009) found no support for the hypothesis that differences between the strategy
method and the direct response method increase with the number of contingent choices.
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possibly without variation or set endogenously. Our design allows us to observe demand at

both prices, which we use to establish ground truth. We then mimic observational data by

restricting the estimation sample to observations of demand at a single price for each good.

3.1.2 Hypothetical evaluations

Other participants provided various hypothetical evaluations, designed to span underlying

motivations as well as factors that cause hypothetical choices to diverge from real ones.

Several groups made hypothetical choices. The literature on stated preferences explores

a variety of protocols for eliciting such choices. We employed multiple protocols, each with

a separate group. The “standard” protocol mimicked the real choice protocol, except that no

choice was implemented. A second protocol employed a “cheap talk” script (as in Cummings

and Taylor 1999) that encouraged subjects to take the hypothetical choices seriously,10

a third elicited likelihoods rather than Yes/No responses (analogously to Champ et al.

1997), a fourth asked about the likely choices of same-gender peers (to eliminate image

concerns and thereby potentially obtain more honest answers, analogously to Rothschild

and Wolfers 2011a), and a fifth elicited hypothetical willingness-to-pay (WTP) rather than

Yes/No responses.

Some groups provided subjective ratings. Depending on the group, subjects reported

their anticipated degree of happiness with each potential purchase, the anticipated degree of

social approval or disapproval for each potential purchase, how much they liked each item,

evaluations of regret, measures of temptation, expected enjoyment (ignoring considerations

of diet or health), perceptions of health benefits, impact of consumption on social image,

and the perceived inclination to overstate or understate the likelihood of a purchase.

3.1.3 Patterns of real and hypothetical choices

In the real-choice (ground truth) group, on average, 28% of people elect to purchase the

average snack when the price is $0.25. When the price rises to $0.75, the average purchase

frequency declines by 7.5 percentage points (τ = −0.075, standard error 0.004). But this

response varies across snacks: its standard deviation is 6 percentage points across items.

Hypothetical choices overstate demand: when asked hypothetically, demand is nearly 7

percentage points higher (equivalently, 28% higher: 31% vs. 24%) across all item-price

pairs, and we reject the absence of bias (p ≤ 0.001). Moreover, hypothetical demand

10We thank Laura Taylor for generously reviewing and suggesting changes to the script, so that it would
conform in both substance and spirit with the procedure in Cummings and Taylor (1999).
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Figure 1: Real vs. Hypothetical Choices
Item-price pairs plotted. Separate regression lines for the $0.25 choices and the $0.75 choices are shown with
error bands. A χ2 test cannot reject the hypothesis that the lines are the same for observations involving items
sold at a price of $0.25, and for those involving items sold at a price of $0.75 (p = 0.58 assuming independent
observations). In Appendix Figure A2, we show that the curves are approximately linear and similarly overlap
when using nonparametric regression.

exceeds the real demand for 70% of item-price pairs. Additionally, hypothetical demand

is more variable, with more than twice the variance of real demand across all item-price

pairs; see Appendix D.4 for additional analysis of this difference. A possible explanation is

that, when answering hypothetical questions, people naturally exaggerate the sensitivity of

their choices to characteristics and conditions.

Although hypothetical demand is a poor prediction of real demand, it is strongly corre-

lated with real demand, and consequently may be a useful predictor. Figure 1 illustrates

this relationship, with the demand for each item shown as orange squares when priced at

$0.25, and as purple dots when priced at $0.75. The relationship between hypothetical and

real demand is systematic, and, helpfully for our purposes, stable between treatments.11

3.2 Effect of an unseen counterfactual

Our method can reveal treatment effects in applications for which there is no real-world

variation in the treatment of interest. The reliability of the estimate will depend on how well

11Visually, lowering the price (from purple dots to orange squares) appears to shift the cloud to the northeast
(higher hypothetical and real purchase frequencies) without disturbing the relationship between the variables.
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the relationship between choices and hypothetical responses (equation 1) extrapolates into

the unseen treatment state. We articulate theoretical conditions under which extrapolation

is accurate in Section 5.

Estimators based solely on observed choices are infeasible for this task. Panels (a)

and (b) of Table 1 show estimates of treatment effects, along with standard errors, for

approaches that use hypothetical evaluations. In both panels, Column (1) reports the

ground truth estimate, that increasing the price from $0.25 to $0.75 changes the proportion

of subjects buying the average snack by −0.075. We first compare this ground truth to

estimates that treat various measures of hypothetical choices discussed in the literature as

predictions; then we do the same for estimates based on the method proposed in this paper.

3.2.1 Estimators that treat hypothetical choices as predictions

Columns (2) through (6) of Table 1, panel (a), report the difference between hypothetical

choice frequencies, elicited through a specified protocol, at the two prices. These estimators

do not require data on real choices.

Treating standard hypothetical choices as predictions (i.e., estimating the effect as the

mean difference in hypothetical choices, Column (2)) yields an estimated effect of −0.159,

more than twice ground truth. This discrepancy reflects significant hypothetical bias.

For this setting, we find that some alternative hypothetical choice protocols reduce

the overall degree of hypothetical bias, but they appear to do so by introducing offsetting

biases, rather than by addressing the underlying cause of the bias. We consider hypothetical

choices elicited with the cheap talk script, as well as own and vicarious purchase likelihoods

assessed on a 5-point scale, which we transform into binary choices by counting only the

highest value (“very likely to purchase”) as a hypothetical purchase. Using other thresholds

leads to worse estimates of the treatment effect. We also show results based on a binary

transformation of the hypothetical WTP variable (labeled “WTP as choice”), which infers a

hypothetical intent to purchase item j at price pj for individual i if WTPij ≥ pj.

As shown in Columns (3)–(6), two of the four alternatives magnify the bias, and a third

yields only a modest improvement. The fourth alternative, a dichotomized vicarious choice,

produces an estimate of −0.091, which is closer to the true effect. However, had we not

known the ground truth, we would have had no basis for selecting the dichotomization

threshold used for this estimate over other thresholds, which yield less accurate estimates.

Moreover, it appears that the improvement is accidental, and does not reflect more informa-

tive responses. In particular, the final two rows of the first panel report correlations between
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Table 1: Estimating Treatment Effects without Variation in Treatment

(a) Hypothetical as Prediction

Ground Truth Hypothetical as Prediction

Diff. in Hypotheticals
(1) (2) (3) (4) (5) (6)

Estimated effect of high price -0.075 -0.159 -0.188 -0.129 -0.091 -0.266
(0.004) (0.006) (0.007) (0.006) (0.005) (0.009)

Hypotheticals:
. . . hypothetical choice X
. . . cheap talk X
. . . intensity as choice X
. . . vicarious as choice X
. . . WTP as choice X

Sample size (outcome) 189 (×2) 189 189 189 189 189

Univariate correlation with truth
. . . levels 1.00 0.75 0.69 0.64 0.64 0.60
. . . difference 1.00 0.44 0.42 0.18 0.25 0.14

(b) Hypothetical as Predictors

Ground Truth Hypothetical as Predictors

Low Dimensional
(1) (2) (3) (4) (5) (6)

Observing all snacks at high price
Estimated effect of high price -0.075 -0.082 -0.086 -0.076 -0.050 -0.078

(0.004) (0.008) (0.012) (0.012) (0.007) (0.013)

Observing all snacks at low price
Estimated effect of high price -0.075 -0.084 -0.101 -0.069 -0.048 -0.147

(0.004) (0.008) (0.009) (0.008) (0.006) (0.016)

Hypotheticals:
. . . hypothetical choice X
. . . cheap talk X
. . . intensity as choice X
. . . vicarious as choice X
. . . WTP as choice X

Sample size (outcome) 189 (×2) 189 189 189 189 189

Estimates of the effect of the high price (vs. low price) on the real purchase frequency. Analytical standard
errors are in parentheses.
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real choices and the various hypothetical measures, both in levels (at a given price) and

differences (changes between high and low prices). The overall correlation between real

demand and the standard-protocol hypothetical demand is higher than for any alternative

protocol, which casts doubt on the hypothesis that any of the alternative protocols improve

the informational content of hypothetical choices. In particular, the correlation between

vicarious choices and real outcomes is noticeably lower than for the standard protocol (0.64

versus 0.75 in levels, 0.25 versus 0.44 in differences). This result could reflect a tendency

to respond more randomly to vicarious questions, which would attenuate the difference

between the means at different prices. However, all of these hypothetical responses are

clearly correlated with real choices, and thus may make useful predictors. It seems likely

that different protocols elicit different (and potentially complementary) information.

3.2.2 Our approach

In effect, our method predicts outcomes for a given setting in an unseen treatment state by

extrapolating from observed outcomes in settings that induce similar motivations (as mea-

sured by hypothetical responses) in the prevailing treatment state. We check whether the

distribution of evaluations over settings in the prevailing treatment state overlaps with the

corresponding distribution in the unseen treatment state in Appendix D.5. For the various

hypothetical choice variables (choice, cheap talk, own choice likelihood, vicarious choice

likelihood), overlap between the distributions at the two prices is reasonably complete. It is

less complete for the dichotomized WTP choice variable, so we exclude that variable from

our multivariate specifications throughout. Further analysis of the WTP choice variable

highlights the dangers of extrapolating beyond the range of observed variation.

Treatment effect estimates. In panel (b) of Table 1, we exhibit estimators based on

univariate models that relate the outcome to each hypothetical variable individually. The

table distinguishes between two cases, depending on whether we allow the estimator to

observe real choices at the high price or at the low price. The estimates in Columns (2)–(5)

range from −0.048 to −0.101. The dichotomized WTP choice yields an accurate estimate

when all snacks are observed at the high price, but shows a larger bias when all snacks

are observed at the low price (Column (6)), which is anticipated based on the violation

of overlap we documented. Overall, using even a single hypothetical choice variable as

a predictor shows promise for estimating the effect of price changes in the absence of

observed variation in prices.
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Table 2: Estimating Treatment Effects without Variation in Treatment (multivariate)

Ground Truth Our Method: Hypotheticals as Predictors

Low Dimensional High Dimensional

(1) (2) (3) (4) (5) (6)

Observing all snacks at high price
Estimated effect of high price -0.075 -0.082 -0.075 -0.073 -0.084 -0.077

(0.004) (0.010) (0.010) (0.012) (0.005) (0.012)
[0.004] [0.009] [0.010] [0.017] [0.016] [0.024]

Observed at high price All All
Observed at low price All None

Observing all snacks at low price
Estimated effect of high price -0.075 -0.100 -0.096 -0.098 -0.094 -0.096

(0.004) (0.008) (0.008) (0.009) (0.004) (0.013)
[0.004] [0.007] [0.007] [0.015] [0.014] [0.017]

Observed at high price All None
Observed at low price All All

Controls X X X X
Hypotheticals:
. . . all hypothetical choices (excl. WTP) X X X X X
. . . detailed hypothetical eval. (excl. WTP) X X
2nd order + interactions X X

Sample size (outcome) 189 (×2) 189 189 189 189 189
Estimates of the effect of the high price (vs. low price) on the real purchase frequency. Analytical standard
errors are in parentheses; bootstrap standard errors in square brackets are based on 1,001 bootstrap samples.
Analytical standard errors for the high-dimensional specifications treat average evaluations as fixed, whereas
all other standard errors consider estimation error in the average evaluations across snacks. For results
including WTP see Appendix Table A1.
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Our method may perform even better when it employs multiple hypothetical covariates

that more comprehensively span motivations. Table 2 explores this possibility. Column (1)

reproduces the true average treatment effect. For our method, we show results based on

several specifications of the prediction model. For Column (2), we use the four hypothetical

choice variables together (omitting the dichotomized WTP variable).12 For Column (3),

we add eight conventional controls that are available in standard datasets (physical char-

acteristics, including grams per serving and seven measures of nutrients). For both of

these versions, we estimate the prediction model using OLS. We also consider three high-

dimensional specifications, for which we use ARB as described in Appendix C.3. The first of

these (Column (4)) includes the various hypothetical choice variables and eight physical

characteristics, as well as second order and interaction terms. The second specification

(Column (5)) uses more detailed information concerning the distributions of responses

to the hypothetical choice elicitations, as well as other types of hypothetical reactions

that potentially capture disaggregated motivations such as health concerns (we list the

covariates in Appendix D.2). The third specification (Column (6)) adds a complete set of

second-order and interaction terms.

The estimates are close to the true average effect when all snacks are observed at the

high price (between −0.073 and −0.084). Even with the dichotomized WTP choice variable

omitted, accuracy is somewhat lower when all snacks are observed at the low price; possibly

the failure of overlap for that variable reflects considerations that somewhat compromise

stability more generally. Nevertheless, as we show in the next section, our method does a

good job of capturing the heterogeneity of treatment effects in both cases.

3.3 Heterogeneity in treatment effects

Using our method, hypothetical evaluations may also reveal heterogeneity in treatment

effects that is difficult to quantify using standard methods. In this section, we compare the

performance of various methods for measuring heterogeneous treatment effects.

Metrics. We report four measures of the degree to which the estimated treatment effect for

each unit j, τ̂j = Ŷj(1)−Ŷj(0), captures the heterogeneity in actual effects, τj = Yj(1)−Yj(0):
12With WTP included, when all snacks are observed at the high price, estimates are similar; when all

snacks are observed at the low price, including WTP causes most estimates to be further from ground truth;
see Appendix Table A1. The reason is that, when snacks are observed at the high price, we do not need to
extrapolate as much to predict demand at the low price, as shown in Figure A3(a).
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• R2 for a regression of τj on τ̂j: This statistic measures the fraction of the variation in

true treatment effects that the estimates capture.

• Mean squared error (MSE) relative to predicting with the ATE (mean((τj−τ̂j)
2)

mean((τj−τ)2)
): This

statistic encompasses overall accuracy and precision.

• Calibration coefficient: This measure is the slope coefficient in a regression of τj on

τ̂j. The ideal coefficient is unity: in that case, the expectation of the actual treatment

effect increases unit for unit with the predicted treatment effect.

• Simulated profit: We simulate a producer who estimates heterogeneous price sensitivity

for each snack j in order to set prices w∗
j . We report the gain in average profit, relative

to setting prices at random, as a fraction of the maximum possible gain achieved by

optimal pricing, π̄(w∗)−π̄(wrandom)

π̄(woptimal)−π̄(wrandom)
, where π̄ is the average profit as a function of J

prices. For details see Appendix D.6.

Results. Results appear in Figure 2. In this section, we focus on environments where

there is no variation in treatment and ones where treatment is assigned randomly, which

we simulate by selecting half of the snacks (94 of 189) at random to serve as the treated

units. For each estimation method, we plot each metric’s median value and interquartile

range based on 10,001 simulated samples.

With conventional approaches based solely on observational data, no treatment effects

can be estimated when there is no variation in assigned treatment.

When treatment is assigned randomly, one can use the difference-in-means estimator as

a benchmark (row 1).13 Because this estimate does not vary with j, R2 and the calibration

parameter are both zero. Even so, if the available covariates have little explanatory

power, this simple estimator may perform well relative to alternatives in terms of MSE and

simulated profits by virtue of its parsimony.

With random treatment variation, conventional estimators identify heterogeneous ef-

fects by conditioning on a set of observed characteristics. For row 2, we linearly project the

actual unit-level treatment effect on all the physical characteristics. This approach would

be infeasible in applications because it would require observations of each unit in both

treatment states. It is nevertheless of interest because it benchmarks the greatest amount of

heterogeneity one might hope to capture by conditioning on the physical characteristics

13The difference-in-means estimator is τ̂j ≡ τ̂ = 1∑J
j′=1

Wj′

∑J
j′=1 Wj′Yj′ − 1∑J

j′=1
1−Wj′

∑J
j′=1(1−Wj′)Yj′ .
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linearly.14 In rows 3, 4, and 5, we also consider three conventional estimators that are

feasible in that they only use data for one treatment state per unit: separate OLS estimates,

by treatment status, of linear relationships between the outcome and all physical charac-

teristics; a similar LASSO approach that adds interactions and second-order terms; and a

causal forest (Wager and Athey 2018) with the eight physical characteristics as features.

Alternately, a standard hypothetical approach would use data solely on hypothetical

evaluations to estimate heterogeneous treatment effects (row 6). We estimate the treatment

effect for each item as the difference between hypothetical choice frequencies at the two

prices, elicited with the standard protocol. This estimate is feasible even when treatment

has no real world variation. Notably, this method yields substantially higher R2 than

conventional methods, highlighting that hypothetical evaluations contain much useful

information. However, hypothetical choice bias leads to very large mean squared error.15

Our method (rows 7-10) combines hypothetical evaluations and observations on choices,

which allows it to also describe much heterogeneity while removing the hypothetical choice

bias, thereby reducing mean squared error and further improving calibration and profit.

These rows of Figure 2 show results for the variant that employs hypothetical choices and

physical characteristics as predictors (i.e., the same variant as in Table 2 Column (3)). The

method attains similar performance regardless of whether treatment assignment has no

variation or is randomized. For row 7, effects are estimated based on a sample where

all snacks are observed at the high price. For row 8, all snacks are at the low price.

Row 9 uses randomized assignment. Row 10 demonstrates that our method achieves

similar performance when we simulate endogenous treatment assignment; we discuss it in

Section 3.5.

Our method performs substantially better across the board than the three feasible

conventional estimators that do not use hypothetical evaluations. It also easily surpasses

the infeasible benchmark with respect to all metrics other than calibration, for which that

benchmark mechanically achieves a coefficient of 1 regardless of which covariates are

included. The comparisons to the infeasible estimator imply that hypothetical evaluations

contain substantially more information about variation in treatment effects than physical

characteristics in our setting, even though unadjusted hypothetical choices do not reflect

that variation accurately. Because our method does not require an intervention, it can

14In the figure, the interquartile ranges are degenerate, except for profit, because the results do not depend
on the simulated treatment assignments.

15The other hypothetical variables mostly perform worse except with respect to mean squared error, as
shown in Appendix Figure A4.
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Figure 2: Treatment Effect Heterogeneity
Summary statistics describing how well different estimators capture heterogeneity in treatment effects.
Points indicate the median value of each statistic across 10,001 simulated samples, and whiskers indicate
the interquartile range. For the calibration coefficient, the lower boundary of the first quartile for the
random forest estimator is −0.32, but is shown in the figure as −0.1 because the axis is truncated. See
Appendix Table A2 for additional specifications.

enable analysts to recover heterogeneous treatment effects even when they lack the power

to intervene before a broader roll-out. This feature may be particularly valuable in settings

where one wishes to target the treatment at those who are likely to benefit most.

3.4 Gains in precision

Our method may also yield more precise estimates even when treatment is randomly

assigned. Most notably, the performance of standard methods deteriorates when the

fraction treated is far from half, while our method maintains good performance even if few

of the observations are treated (or none, as in Section 3.2). Also, in applications, it may be

easier to improve precision by collecting hypothetical responses, rather than by expanding

an experimental sample.

We explore these issues in an environment with random treatment assignment. Fixing

the fraction of snacks observed at the higher price, we simulate uncertainty in treatment

assignment by randomly dividing the snacks into high-price and low-price subsets of fixed

21



sizes. We generate 1,001 such random samples and report performance metrics for different

estimators as functions of the fraction of snacks observed at the high price in Figure 3.16

We consider two standard approaches, difference-in-means and ARB (with conventional

controls as well as second-order terms and interactions). We also use two variants of our

method, the univariate specification using the standard hypothetical choice and the high

dimensional specification from Column (8) of Table 2.

The standard deviations of our estimators are substantially smaller than those of the

conventional estimators, especially when the proportion treated is far from half, as shown

in the first panel of Figure 3. The standard deviation of the difference-in-means is U-

shaped in the fraction of treated observations. When half of the sample is treated, the

(median) standard error of the difference-in-means is more than twice that of the univariate

hypothetical choice estimator.17 To achieve the same standard error for the difference-

in-means as for our univariate hypothetical choice specification with 189 snacks, one

would need a randomized experiment with over 800 snacks. As the sizes of treated and

untreated subsamples become less balanced, conventional estimators dramatically lose

precision because the smaller of the treatment and control groups dominates the variance.

In contrast, the precision of our low-dimensional estimator is largely independent of the

proportion treated. The reason is that the first step of our method pools all observations,

and the second uses the hypothetical evaluations for both treatment states for every snack.

In this application, a smaller standard deviation comes at the cost of a small bias (Fig-

ure 3 second panel), but our estimators attain lower root-mean-squared error, irrespective

of the treatment’s prevalence (Figure 3 final panel). The difference-in-means is unbiased

by design, and hence its root-mean-squared error is equal to its standard deviation. The

univariate hypothetical choice method entails a slightly larger bias, but the reduction in

variance more than compensates in terms of root-mean-squared error.

3.5 Estimation under endogenous treatment assignment

Our method is also potentially suitable for settings in which treatment selection is correlated

with measured or unmeasured factors that influence the outcome. Appendix D.7 mimics

an observational dataset for markets in which firms assess the demand for each snack

item through surveys and use that information to set price. Regressions that control for

16These metrics hold fixed the snacks that are in the sample, their covariates (physical characteristics and
hypothetical evaluations), and their outcomes for each treatment state.

17For standard errors and probability of coverage of confidence intervals, see Appendix Figure A5.
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Figure 3: Performance of Estimators by Fraction Treated
The horizontal axis measures the fraction of snacks randomly assigned to the high-price treatment state. At
the boundaries of the interval, only our estimators are well-defined (see also Section 3.2), and the standard
deviation across assignment realizations is mechanically zero because there is only one possible assignment.
For additional specifications see Appendix Figures A6 and A7.

the treatment and standard covariates yield substantial endogeneity bias (yielding an

estimated treatment effect of −0.028); however, our method continues to yield estimates

close to ground truth (−0.070 to −0.081, relative to ground truth −0.075). The next section

demonstrates that it also works in a field application with endogenous assignment, and

Section 6 explores formal reasons for favorable performance under endogeneity.

4 Application: Microfinance Contributions

Next we turn to a field application. To boost fundraising, non-profit organizations often

inform potential contributors that other donors have agreed to match contributions (List

2011). How well does this strategy work? In this section, we use our method to determine

the impact of matching provisions in the context of microfinance. This application shows

that our method can accurately recover treatment effects in a field setting with endogenous

treatment selection.

We focus on a large microfinance crowdsourcing website, which displays profiles of

potential borrowers and allows website visitors to contribute to their loans. Contributors
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(a) Unmatched profile (b) Matched profile

Figure 4: Loan Profiles with Matching Indicator

are typically socially minded individuals in developed countries; borrowers are typically

developing country residents who request funds for various projects (such as business,

agricultural, home, or health expenses). The website allows sponsors to offer matching

funds based on criteria the sponsors specify. When a loan is eligible for a match, the profile

prominently displays an indicator (as shown on Figure 4). For every dollar the visitor

contributes, the sponsor also contributes a dollar.

In this setting, the unit of observation j is a loan profile, and the potential outcome

Yj(w) is fundraising velocity for the first 24 hours after the loan appears on the website. We

transformed velocity using the inverse hyperbolic sine to reduce the impact of outliers.18

The treatment Wj ∈ {0, 1} specifies whether the loan is matched by sponsors, who may be

individuals or collectives such as churches or community groups. The treatment effect of

interest is the impact of matching on fundraising velocity. Because sponsors can specify

criteria for loan selection (for example, based on the borrower’s gender, region, sector, loan

size, risk, and/or number of days until expiration), matching status may be endogenous.

Endogeneity arises from correlations between the preferences of sponsors and contributors.

We compare estimates from observational data using standard methods and our method,

against a “ground truth” estimate based on a field experiment in which we introduce

randomly assigned matches building on previous experiments in the literature (Karlan and

18We define fundraising velocity as the number of (non-matching) dollars raised per day. For loans that
fully fund in less than 24 hours, we calculate velocity based on the funding period. The inverse hyperbolic
sine resembles the natural logarithm but is defined at zero.
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List 2007; Huck and Rasul 2011).19

4.1 Data

In this section, we describe the observational data and survey data on hypothetical responses

used in our analysis, as well as the experimental data we use to establish ground truth.

4.1.1 Observational data

Through a collaboration with the website, we observe 11,668 loan profiles for borrowers

seeking $1,000 or less posted between October 14, 2019, and November 3, 2019 (we omit

a random subsample that served as the treatment group for our experiment, as described

below). We retain 9,623 profiles (82%) that were either unambiguously matched (matched

for at least 90% of the first 24 hours after their initial posting) or unmatched (matched for

no more than 3% of the first 24 hours). After dropping the remaining 18% of profiles, which

were matched for intermediate fractions of the first 24 hours, we create a binary treatment

indicator.20 According to this indicator, 623 (6.5%) of the retained profiles were matched,

so the treatment is rare. For all profiles, our data include descriptive characteristics, whether

it was matched, and how quickly it raised funds.

4.1.2 Hypothetical responses

Separately, we collected responses to hypothetical questions concerning a subset of the loan

profiles from 833 participants recruited through Amazon Mechanical Turk. We selected 200

unmatched and 100 matched loan profiles at random from the observational sample for

our exercise, oversampling matched loans. For each participant, we selected 30 of these

profiles at random, 20 drawn from the sample that was not matched on the website, and

10 from the sample that was matched. Participants initially viewed an overview page with

a large collection of “thumbnail” profiles that reflected the overall prevalence of matches

among active loans on the website. Then participants saw each of their selected 30 profiles

either in the same treatment state as on the website or edited to appear in the opposite

state (with the matching funds indicator either added or removed). We displayed 15 of the

30 selected profiles as unmatched (10 of which were actually unmatched on the website)

and 15 as matched (5 of which were actually matched on the website).
19This experiment was preregistered (AEARCTR-0004885).
20Observational methods yield similar estimates of the treatment effect when we retain all profiles and

regress the outcome on the fraction of time each profile was matched during the first 24 hours.
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Participants rated each (real or counterfactual) loan profile by predicting which quintile

of fundraising velocity it would attain, and indicating the likelihood that they or a typical

user would lend $25 to it (both 7-point Likert scales, from very unlikely to very likely).

We incentivized the first question: respondents who predicted the correct quintile for a

randomly chosen profile (among those displayed exactly as they appeared on the website)

received a bonus of $2. After participants rated all 30 profiles, we posed the following

task: “Suppose you have decided to make a total of ten $25 loans to postings among the

30 you just viewed. Which 10 would you pick?” Through this process, we generated on

average slightly more than 40 sets of evaluations for each matched or unmatched loan

profile (minimum 39, maximum 46). The survey included several features that encourage

participants to submit thoughtful responses, as detailed in Appendix E.1.

4.1.3 Ground truth experiment

We established ground truth through an experiment. Starting on October 27, 2019, we

assigned all new loan listings for borrowers seeking $1,000 or less either to a treatment

group (roughly 10%) or a control group (roughly 90%).21 We established a sponsorship

account for loans in the treatment group and used it to ensure that contributions to them

were matched for the first 24 hours after they appeared on the website. We stopped adding

loans to our sample once the funds in the sponsorship account were depleted. The resulting

treatment group includes 109 loans, and the resulting control group includes 982 loans.

Other sponsors continued to match loans during the course of our experiment. For the

treatment group, the website used matching funds from our sponsorship account only if

the loan did not meet the criteria set for any other active sponsorship account. Loans that

would be matched irrespective of our intervention are always-takers; they correspond to

matched loans in the observational sample. Loans that would not have been matched in

the absence of our intervention are compliers.22

4.2 Treatment effects

Table 3 contains estimated treatment effects for matching provisions derived through

a variety of methods. Because we ran an experiment, we can estimate a ground truth

21The treatment group includes loans with identifiers ending in zero, and the control group includes loans
with identifiers ending in any other number.

22Because we always carried out our intention to match contributions for loans in the treatment group, our
design rules out the existence of never-takers and defiers.
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Table 3: Estimated Treatment Effects from Microfinance Application

Ground Truth Observational Methods Our Method: Hypotheticals as Predictors

Experiment (IV) Diff OLS ARB Low dimensional High dimensional

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Estimated effect 1.24 2.55 3.21 3.01 0.62 0.69 1.48 1.28 1.80 1.00 1.38
of matching

(0.33) (0.33) (0.31) (0.29) (0.32) (0.31) (0.36) (0.38) (0.25) (0.18) (0.26)
[0.32] [0.34] [0.30] [0.29] [0.33] [0.30] [0.39] [0.39] [0.39] [0.31] [0.47]

Test: = ground truth 1 0.01 0.00 0.00 0.18 0.21 0.63 0.93 0.27 0.58 0.80
(p-value)

Controls X X X X X X X
Hypotheticals:
. . . avg. hypothetical eval. X X X X X X X
. . . freq. hypothetical eval. X X
. . . 2nd order X X X X
interactions X X X

Sample size 1091 300 300 300 300 300 300 300 300 300 300

Observed matched use randomized variation endogenous endogenous
Observed unmatched use randomized variation endogenous endogenous

Estimates of the effect of matching on the inverse hyperbolic sine of fundraising velocity, within the first day.
Controls include dummies for gender, region, and sector. ’Avg. hypothetical eval.’ includes the mean responses
concerning projected quintile for fundraising velocity, contribution likelihoods (respondent and typical user),
and funding allocation. ’Freq. hypothetical eval.’ includes the frequency of “at least” each potential response
to each hypothetical question (for instance, the frequency of respondents projecting the second or higher
quintile, the third or higher quintile, etc.). ’2nd order’ includes quadratic terms for the mean responses and
frequencies of each hypothetical response (if used). ’interactions’ includes all two-way interactions between
mean responses, frequencies of each hypothetical response (if used), and the controls. Analytical standard
errors in parenthesis, bootstrap standard errors in square brackets.

measure of the treatment effect (Column (1)). In the experiment, the intention to match is

random, so we use it as an instrument for the endogenous matching indicator. The standard

instrumental variables (IV) estimate of the LATE is 1.24 (s.e. 0.33), which measures the

effect on compliers (unmatched loans).

Next we attempt to recover treatment effects using only the observational data. It is

difficult to unravel the structure of the process that renders matching provisions endoge-

nous: conditioning the analysis on sponsors’ potential matching criteria is impractical and

potentially ineffective,23 and good instruments are not readily available. Because the types

of loan profiles that draw matching funds also tend to attract contributions, estimators

that do not address this endogeneity exhibit substantial bias. The simple difference in

means implies an estimated treatment effect of 2.55 (Column (2)), more than twice the

23Even in a high-dimensional model that controls for all the criteria sponsors can specify, the treatment is
likely endogenous. Sponsors may decide to match certain types of proposals based on transient factors that
may also influence contributions, such as the attractiveness of postings within particular categories at the
time of the matching decision. Conditional on time and criteria, there is no variation in treatment, which
means standard approaches are infeasible.
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Figure 5: Overlap in hypothetical evaluations for loan × treatment states that are observed
(blue) vs. unobserved (red) in the data.

ground truth. Controlling for standard covariates such as the gender and industry of the

loan profile does not reduce this bias, regardless of whether we insert each factor linearly

(Column (3)) or flexibly control for linear and interaction terms using ARB (Column (4)).

We reject equality between each of these estimates and the ground truth.

Next we turn to estimates based on hypothetical evaluations. We first check overlap.

Figure 5 shows that, for most of the evaluations of profiles in counterfactual states (red),

there are indeed loans with similar evaluations in their assigned states (blue). Consequently,

our method requires only modest extrapolation (for profiles and treatments that are highly

desirable). We make predictions in our second step for only the unmatched loans so that

our method estimates the same object as the experiment (the LATE is the average treatment

effect on the control, ATC).

Our method yields estimates ranging from 0.62 to 1.80. Table 3 exhibits a low-dimensional

specification that includes the average of each hypothetical evaluation linearly (Column (5)),

as well as ones that add standard controls (Column (6)), squared hypothetical evaluations

(Column (8)), and both (Column (9)).24 It also includes high-dimensional specifications

based on our ARB estimator that add interaction terms (Column (9)), distribution detail for

each possible hypothetical response (Column (10)), and both (Column (11)). Statistical

tests fail to reject the hypothesis that each of the estimates using our method coincides with

the ground truth. But, crucially, our method requires only a hypothetical experiment.

24Quadratic terms may be particularly useful in this context because, in contrast to the snack application,
the real and hypothetical choices are measured in different units.
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4.3 Heterogeneity: treatment effects by complier group

Even in settings where one has a randomized or natural experiment with imperfect com-

pliance, the instrumental variables estimator will recover the treatment’s effect only on

compliers (a LATE). In many applications, the analyst may be interested in treatment effects

for other groups. For example, if we were deciding whether to eliminate the website’s

matching provisions, the most pertinent consideration would be the effects of matching on

funding velocity for loans that are currently match-eligible (always-takers). Similarly, if

deciding whether to make a matching policy universal, we would like to evaluate its overall

effect (ATE).

Our method can in principle estimate average treatment effects for any specified sub-

group. We illustrate this feature in Table 4. The first row reproduces selected estimates of

the LATE (also the ATC) from Table 3, including the IV estimate, as well as two measures

obtained through our method (corresponding to the low and high dimensional specifications

in, respectively, columns (5) and (11) of Table 3). Estimates of effects on always-takers

(ATTs) appear in the second row, and estimates of overall effects (ATEs) appear in the third.

Because IV cannot reveal either of these effects, the corresponding cells do not contain

estimates. Policymakers relying on IV methods must hope that the LATE is representative of

the effects on these other populations.

Our method reveals that treatment effects appear to differ among compliance groups.

The second row shows that our estimates of the average treatment effect on the treated

(ATT) is less than half the LATE/ATC for both specifications. That our method reproduces

estimates close to ground truth for the LATE/ATC increases confidence that the estimate

of the ATT is also reliable. Loans that are matched in practice apparently do not benefit

as much from the match, presumably because they are sufficiently attractive in other

dimensions to raise funds irrespective of matching. In this case, the estimated ATEs are

close to the LATE/ATCs because the population of always-takers is relatively small (6.5% of

the total). Nevertheless, our finding has an immediate policy implication: the microfinance

platform may be able to raise more funds by inducing sponsors to match contributions to

the loans they currently are not matching.
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Table 4: Heterogeneity by Compliance Group in the Microfinance Application

Experiment Our Method Proportion

IV (1) Low Dimensional (5) High Dimensional (11) of Observational Sample

Estimated effect of matching
. . . . . . on compliers (LATE/ATC) 1.24 (se 0.32) 0.62 (se 0.33) 1.38 (se 0.47) 93.5%
. . . . . . on always-takers (ATT) cannot be estimated 0.11 (se 0.19) 0.75 (se 0.38) 6.5%
. . . average (ATE) cannot be estimated 0.59 (se 0.32) 1.34 (se 0.44) 100%

Test: equal effects — 0.03 0.27
(p-value)

The first row of estimates reproduces results from Table 3, columns (1), (5), and (11) (as indicated in the
column headings). Standard errors in parenthesis are based on the bootstrap.

5 Formal Results

Given the promising performance of our approach, we provide formal statistical foundations,

clarify underlying assumptions, and describe the characteristics of suitable applications.

5.1 Statistical assumptions and properties

This section lists statistical assumptions that are sufficient to ensure our simple linear

estimator for the ATE is consistent and asymptotically normal.

Assumption 1. Invariant mapping. The mapping between potential outcomes and hypotheti-

cal evaluations is the same in either treatment state:

E
(
Yj(0) |Hj(0) = h,Xj = x

)
= E

(
Yj(1) |Hj(1) = h,Xj = x

)
Assumption 2. Linearity. The conditional expectations of potential outcomes are linear in the

predictors: for w ∈ {0, 1},

E
(
Yj(w) |Hj(w) = h,Xj = x

)
= hβ + xγ

The simplest variant of our method requires the two preceding assumptions, which

we have stated in order of increasing restrictiveness. Relaxing them is feasible but leads

to more complex variants; see Appendix C.3. A third assumption governs how treatment

is assigned. Here, there are several options. The properties of our method are easiest to

understand when there is no variation in treatment or it is randomly assigned. Formally:

Assumption (3A). No treatment variation. In the data on real choices, there is no variation

in treatment: Wj = 0 for all settings j, or Wj = 1 for all settings j.
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Assumption (3B). Treatment is randomly assigned. In the data on real choices, treatment

is randomly assigned: For all settings j, Pr(Wj = 1) = pj = p.

In Section 6, we introduce alternative assumptions that extend the method to cases

where part of the variation in treatment assignment is endogenous.

The stated assumptions are sufficient to ensure that our linear estimator has the following

asymptotic distribution.

Proposition 1. Suppose the data (Yj,Wj,Hj(0),Hj(1),Xj)
J
j=1 are a random sample of

independent observations and standard regularity conditions hold. Under Assumptions 1,

and 2, if either Assumption 3A or 3B (or 3D introduced later) holds, the parametric estimator τ̂

is consistent for the average treatment effect τ and asymptotically normal:25

√
J
(
τ̂ − τ

)
→ N

(
0, Vτ

)
.

5.2 Characteristics of suitable applications

In this section, we explore the plausibility of Assumption 1 and identify the types of

applications that might satisfy it.

Any decision problem involves choosing from a menu of options. When someone makes

a choice, their brain maps each option to a bundle of “motivational attributes” (e.g., the

degree to which the option addresses hunger, social approval, and so forth). We can

therefore think of the individual as choosing from a “psychological menu” containing

bundles of motivational attributes (Shenhav 2024). The central premise of our approach is

that if two decision problems map to the same psychological menu, the options a person

would select in each problem map to the same item on that menu (or to one that is equally

25The formula for the variance matrix is:

Vτ = E
(
(τ − (Zj(1)−Zj(0))δ)

2
)

+ E
(
Zj(1)−Zj(0)

)
V olsE

(
Zj(1)−Zj(0)

)T
− 2E

(
Zj(1)−Zj(0)

)
E
(
ZT

j Zj

)−1

E
(
ZT

j (Yj −Zjδ)(τ − (Zj(1)−Zj(0))δ)
)
,

where, for notational convenience, we denote the full sets of regressors by Zj(w) = [Hj(w), Xj ], Zj =

Zj(Wj), and the joint vector of their coefficients by δ = [βT , γT ]T . V ols = E
(
ZT

j Zj

)−1

E
(
ZT

j Zj(y −

Zjδ)
2
)
E
(
ZT

j Zj

)−1

is the asymptotic variance matrix of the OLS estimator δ̂ = [β̂
T
, γ̂T ]T from Step 1.

The proof follows from writing the two-step estimator in the GMM framework (cf. Newey and McFadden
1994); see Appendix C.1 for details.
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preferred). In that sense, external conditions influence choices only to the extent they

change internal psychological motivations.

For the sake of precision, suppose we are concerned with the choice of y ∈ Y (such

as the amount purchased of a given item) in a variety of settings j (such as items within

a category) and treatment states w (such as price). Each such decision problem induces

a menu of motivational attribute bundles, {θj(y, w)}y∈Y (where θj(y, w) is the bundle for

option y). If there are two settings j and j′ along with treatments wj and wj′ for which

θj(y, wj) = θj′(y, wj′) for all y ∈ Y, then our premise is that a person would choose the

same value of y in either.26

If we replaced Hj(w) with variables Θj(w) that govern the relationship between y and

θj(y, w),27 Assumption 1 would simply restate our central premise that decisions depend

only on internal psychological motivations for the problem at hand.28

We think of hypothetical evaluations H as proxies for Θ. Our approach requires

those proxies to be “adequate,” so that the predictive relationship between y and H

(potentially conditioning on X) remains stable. In the rest of this section, we elaborate on

the characteristics of applications to which our method applies, and in the process clarify

the requirement that H is an “adequate” proxy for Θ.

Consideration of this motivating framework suggests that our approach is most suitable

in applications that have the following features.

Outcomes are choices of individuals. Our methods rely on respondents to evaluate

factors that predict outcomes. This procedure makes sense when the outcomes are individual

choices, but not necessarily when they result from technological or biological processes

that respondents may poorly understand. For example, if the objective were to measure

the effect of water purification on health, one could ask community members to predict

health outcomes with and without this intervention, and extrapolate based on the observed

relationship between actual health outcomes and predicted outcomes that vary for other

reasons. To understand why Assumption 1 might fail in this context, suppose the observed

variation in outcomes and evaluations is associated with a condition (other than the
26When there are only two options on the menu, Y = {0, 1}, for instance “buy” (y = 1) and “don’t buy”

(y = 0), the relevant information can alternatively be described by the difference in motivational states
θj(1, w)− θj(0, w). This simplification is akin to “normalizing the outside option.”

27For example, if y is continuous and each motivational attribute is linear in y, the first derivatives of
θj(y, w) would suffice. There is a close analogy to using price and income as sufficient statistics for all
available bundles in standard demand curve estimation.

28Technically, stochastic variation would be de minimis, and conditioning on X would be unnecessary.
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treatment) that respondents understand much better than they understand the treatment.

In that case, the relationship between health and hypothetical evaluations will not be the

same for within-sample variation and treatment variation. Our approach will then produce

biased estimates of the treatment’s effects.

Similar issues arise when the outcome results from a collection of interacting deci-

sions—in particular, when it is a feature of an equilibrium rather than a choice considered

in isolation. For example, the effect of the minimum wage on equilibrium employment

depends on interactions between the decisions of employers and prospective employees.

Asking respondents to predict an equilibrium outcome is much like asking them to predict

the outcome of a technological or biological process. However, one could use our method

to analyze partial equilibrium effects of a minimum wage on job search by prospective

employees, and, separately, on employers’ hiring practices.

Hypothetical evaluations adequately proxy for motivations. The adequacy with which

hypothetical evaluations proxy for motivations, and consequently the plausibility of As-

sumption 1, depends on a number of considerations, some of which the analyst controls.

Evaluators are similar to decision makers. Evaluators who more closely resemble the

decision makers are likely to have better information about their motivations. That con-

sideration argues for sampling respondents from the population that makes choices, with

minimal temporal separation. But doing so introduces the possibility that respondents’ real

choices distort their hypothetical evaluations (for example, through anchoring or ex post

rationalization). This possibility is less of a concern for decisions that are differentiated or

forgettable. For example, our microlending respondents probably did not make decisions,

or recall making decisions, about the particular profiles they evaluated hypothetically. In

some applications, it may be possible to mitigate the concern by eliciting hypothetical eval-

uations prior to the treatment’s implementation, or by identifying a similar but unexposed

subpopulation.

Choice scenarios are familiar or natural. Hypothetical evaluations are more likely to be

informative when descriptions of the choice scenarios bring all the relevant information to

mind. In some applications, these scenarios may be so standard that a short hypothetical

description suffices (as in our first application, which involves purchases of common snack

foods). In others, it may be possible to depict the choice scenarios naturalistically (as in

our second application, which involves online microfinance lending). Our method is less

likely to work when the study examines choices that are unfamiliar or too complex to fully
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represent when gathering hypothetical evaluations (for example, hypothetical automobile

purchase decisions cannot include test drives).

Evaluations span motivational attributes. The set of hypothetical evaluations should be

rich enough to span the factors underlying the available motivational attribute bundles.

This spanning can be attained by combining broad composites (such as hypothetical choices,

which summarize a collection of attributes) with narrowly focused evaluations (such as the

intensity of temptation an option evokes). The use of composites, broad and narrow, avoids

the need to fully catalog motivational attributes, and to pair each with a matching proxy.29

To understand the logic of the spanning requirement, imagine that the hypothetical

evaluations H are each linear functions of Θ. In that case, any linear function of H is

implicitly a linear function of Θ. Now imagine that y is also a linear function of Θ. The

purpose of the spanning condition is to ensure that, by appropriately reweighting the

elements of H (as a regression would do), we can reproduce any linear function of Θ,

including the one that describes y.

Even when hypothetical evaluations span the underlying space of motivational attributes,

the empirical relationship between Θ and H (and hence between y and H), may be

unstable, contrary to Assumption 1. One potential reason for instability is that respondents

may report H with hypothetical biases that vary across settings. We can address this source

of instability by expanding H so that it also spans the motivations that impact reporting

biases, such as the extent to which others would approve of each response.30 Second, the

relationship between H and Θ may depend on extraneous factors, such as measurement

error, which we address in the next subsection.

5.3 Diagnostic checks and extensions

We can relax the linearity assumption when overlap between the marginal distributions of

Hj(Wj) and Hj(1−Wj) is high (see Appendix D.5). Treatment effects are then identified

semiparametrically, and one can dispense with functional form assumptions entirely; see
29One does not actually need H to subsume all the information contained in Θ: a natural possibility is

that people answer hypothetical questions by envisioning typical decision conditions, rather than the specific
conditions that give rise to the observed value of y and the associated latent value of Θ. As long as the
idiosyncratic effects of these specific conditions are orthogonal to the information contained in H as well as
to the treatment W , this consideration simply adds randomness to the relationship between y and H without
overturning Assumption 1. See Appendix F for an elaboration of this possibility.

30Dependence of reporting biases on the motivational attributes of the options themselves (e.g., a tendency
to exaggerate the inclination to take a socially approved action) does not necessarily overturn the ability to
reexpress any function of Θ as a function of H, although it could (for example, in the one-dimensional case,
if the relationship between H and Θ becomes non-monotonic).
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Appendix C.2, which replaces Assumption 2 (Linearity) with a different Assumption 4

(Evaluations overlap).

As with standard methods, results that are robust across progressively richer specifi-

cations may instill greater confidence. As one adds evaluations, the risk of overfitting

grows, particularly if the specifications include transformations and interactions to provide

functional form flexibility. In that case, one may also use machine learning to select among

the potential predictors; see Appendices C.3 and C.4.

When survey samples are small and not easily expanded, sampling error inHj(0) andHj(1)

can potentially bias our estimator. One can address this concern by employing standard

corrections for measurement error. Appendix C.3.3 illustrates one such correction.

In some applications, those answering hypothetical questions may be very different from

the people whose choices determine the real outcomes. For example, in the microfinance

application, visitors to the website determine the outcome of interest, but we obtain

hypothetical evaluations by drawing a sample of respondents from Amazon Mechanical Turk,

fewer than 25% of whom report having visited the website. In Appendix C.8, we describe

and implement an extension that uses leave-one-out measures of response predictiveness to

identify responses from the respondents most skilled at predicting real choices. Relying on

those responses can in some cases improve performance.

6 Endogeneity

So far, our formal results show that the estimator recovers treatment effects if treatment

has no variation (Assumption 3A) or is assigned randomly (Assumption 3B). This section

considers how our approach performs when treatment is assigned endogenously.31

6.1 An assumption that limits endogeneity bias

In the absence of quasiexperimental variation, standard estimators infer the effect of treat-

ment from differences between treated and untreated outcomes. The simplest standard

estimator is τ̂ = 1
J

∑
j

[
Wj

p
Yj(1)− 1−Wj

1−p
Yj(0)

]
where p = 1

J

∑
j Wj. Any systematic differ-

31Our approach models the choice of outcome. An alternative would be to model the choice of treatment
by eliciting hypothetical evaluations from people resembling the treatment selectors (for example Briggs et al.
2020). This procedure may facilitate analyses of treatments affecting outcomes that are not choices. However,
it may be difficult to survey people resembling those selecting the treatment (who may be specialists such as
retail price strategists or sponsors of matches for charitable contributions).
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ences between the treated and untreated observations, other than the treatment itself,

directly confound τ̂ .

In contrast, for our method, the same considerations introduce bias less directly. As

explained in Section 2, treatment endogeneity can only bias the estimate by distorting the

value of β obtained in Step 1. Because “ambient” variation in hypothetical evaluations helps

identify the relationship between outcomes and hypotheticals, it can dilute any endogeneity

problem. When this ambient variation is sufficiently important relative to the treatment,

the bias becomes arbitrarily small. Thus, our method can identify causal effects accurately

so long as most variation in hypotheticals is not from treatment. This condition is satisfied

if treatment is rare, or when the sample is diverse in the sense that hypotheticals vary

significantly for other reasons.

To formalize this intuition, we maintain the assumptions of mapping invariance and

linearity, and focus on models that employ a single hypothetical evaluation without con-

trolling for fixed characteristics. We then consider sequences of environments, indexed by

k, such that as k grows the importance of the treatment relative to ambient variation in

hypotheticals shrinks:

Assumption (3C). Most variation not due to treatment. For w̃ = 0 or w̃ = 1: as k → ∞,

(i) vark(1{Wj=w̃}(Hj(1)−Hj(0)))

vark(Hj(w̃))
→ 0, (ii) vark(1{Wj=w̃}(ϵj(1)−ϵj(0)))

vark(Hj(w̃))
→ 0, and (iii) vark(ϵj(w̃))

vark(Hj(w̃))
<∞.

The conditions state that the “ambient” variation in hypotheticals is large relative to the

variation in outcomes from the impact of the treatment through (i) the hypotheticals and (ii)

the error terms. Condition (iii) requires that the model linking outcomes to hypotheticals

does not become arbitrarily poor in terms of fit (e.g., that the R2 in a regression of Yj(0) on

Hj(0) is bounded away from 0).

Adding this assumption yields the following result:

Proposition 2. Suppose Assumptions 1, 2, and 3C hold, 0 < vark(Hj) <∞ and |cov(Hj, Yj)| <
∞ for all fixed k, and Ek(Hj(1)−Hj(0)) is bounded. Then the asymptotic bias of τ̂ vanishes,

i.e., limk→∞ plimn→∞ τ̂k − τk = 0.32

The proposition above potentially applies whenever there is substantial natural variation

in hypotheticals across settings, relative to the variation arising from treatment, so long

as the hypotheticals are sufficiently informative about treatment effects and outcomes. As
32In the special case where τk ̸= 0 for all k, the proportional bias also vanishes even if τk → 0, i.e.

limk→∞ plimn→∞
τ̂k−τk

τk
= 0. Accordingly, one can think of this proposition as covering cases where conditions

(i) and (ii) of Assumption 3C hold either because the variation in the hypothetical responses grows or the
effect of the treatment shrinks.
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a special case, the key conditions (i) and (ii) are satisfied if treatment is rare (probability

of treatment pk := Ek(Wj) → 0 as k → ∞) or very common (pk → 1 as k → ∞), provided

potential outcomes and hypotheticals are bounded and have non-zero variance. The

proposition also suggests that one can potentially reduce endogeneity bias by collecting

choice data from more diverse settings. For example, in our snack application, one could

create more ambient variation by oversampling snacks that are unusually desirable or

undesirable according to the various subjective measures. However, there is a qualification:

the model relating outcomes to hypotheticals must continue to perform well across the

diverse settings. Combining different types of choices, such as purchases of snacks and

automobiles, would make the settings more diverse but would likely undermine the model’s

predictive performance, which could violate condition (iii).

In contrast, increasing the diversity of observational settings does not reduce endogeneity

bias for the standard estimator discussed above. Consider regressing the outcome on

covariates, separately among the treated and the control. Increasing the variance of the

covariatesXj may increase the precision with which one estimates E(Yj(1) | Wj = 1,Xj) =

Xjβ1 and E(Yj(0) | Wj = 0,Xj) = Xjβ0 individually, but there is no reason to think

it would decrease the difference between E(Yj(1) | Wj = 1,Xj) and E(Yj(1) | Xj), or

between E(Yj(0) | Wj = 0,Xj) and E(Yj(0) | Xj). Additionally, if treatment became

more rare, the main effect would be to reduce the precision with which we estimate

E(Yj(1) | Wj = 1,Xj), without necessarily reducing the bias. Furthermore, in the limit of

p = 0, the standard estimator becomes undefined.

One can assess the conditions in Assumption 3C informally by computing suggestive

diagnostics. Condition (i) requires the variance of Wj(Hj(1) − Hj(0)) (treatment times

treatment effect) to be small relative to the variance of Hj(0) (hypotheticals). In the micro-

finance application, the ratio var(Wj(Hj(1)−Hj(0))

var(Hj(0))
ranges from 0.041 to 0.074 for the regressors

constructed from hypothetical evaluations used in Column (7) of Table 3, suggesting that

treatment accounts for a small share of the variation in hypotheticals. Condition (iii) in

Assumption 3C requires that hypotheticals contribute meaningfully to the variation in

choices. In the microfinance application, a regression of Yj(0) on Hj(0) and Xj among

the untreated observation yields R2 = 0.21, which suggests that hypotheticals have decent

explanatory power.33

33One would ideally assess condition (iii) by examining the R2 of a regression of Yj(0) on Hj(0) using all
observations (treated and control). That regression is infeasible, but a similar regression using observations in
a single treatment state is feasible.
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6.2 Deriving bounds that are robust to treatment assignment

Our main theoretical results describe the properties of point estimates under Assump-

tions 1 and 2 combined with one assumption governing treatment assignment: either

Assumption 3A, 3B, 3C, or 3D (which we will introduce in the next section). However, even

without one of the latter assumptions, one can still recover useful bounds on treatment

effects that apply regardless of any endogeneity.

We begin by describing the logic of our bounding procedure informally. Let τj ≡
Yj(1)−Yj(0) be the treatment effect for observation j. How might we rule out the possibility

that a particular vector, τ̃ = (τ̃1, ..., τ̃J), equals the vector of treatment effects, i.e., τ̃j = τj,

using only linearity and mapping invariance? If a given τ̃ ∈ RJ were the true treatment

effect vector, then we could transform the observational sample into a synthetic sample

containing only treated observations: keep Yj(1) for treated observations and construct

Ỹj(1) = Yj + τ̃j for untreated observations. If τ̃j = τj then, since Yj = Yj(0), we would

have Ỹj(1) = Yj(1), which means a regression of Ỹ (1) on H(1) and X using the synthetic

sample would yield consistent estimates of the relationship between potential outcomes,

hypotheticals, and other factors. Similarly, we could transform the original sample into

a second synthetic sample with no treatment by constructing Ỹj(0) = Yj − τ̃j for treated

observations and keeping Yj(0) for untreated observations. A regression of Ỹ (0) on H(0)

and X using the second synthetic sample would likewise yield consistent estimates of the

relationship between potential outcomes, hypotheticals, and other factors. Furthermore,

under our mapping invariance assumption, these two regression equations are the same. So

if the implied regression equations do not coincide, τ̃ cannot be the true vector of treatment

effects, τ̃ ̸= τ . We obtain bounds by ruling out values of the average treatment effect

that are not decomposable into treatment effect vectors satisfying the requirement that the

regression equations are the same. The next proposition formalizes this intuition.

Proposition 3. Suppose Assumptions 1 and 2 hold in the sample.34 Then, for any user-specified

bounds (including no bounds) on potential outcomes Y , Ȳ ∈ R∪{−∞,∞} and setting-specific

treatment effects τ , τ̄ ∈ R ∪ {−∞,∞}, the average in-sample treatment effect is bounded by:

34Specifically, suppose that (Z(0)′Z(0))−1Z(0)′Y (0) = (Z(1)′Z(1))−1Z(1)′Y (1) for the observations in
the sample. This assumption is in the same spirit as assuming, for OLS, that E(XT

j (Yj −Xjβ)) = 0 and then
estimating β by imposing the sample analog 1

J

∑J
j=1X

T
j (Yj −Xjβ̂) = 0, yielding β̂ = (XTX)−1XTY for

regressor matrix X and outcome vector Y .
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τlb = min
τ̃∈RJ

1

J

J∑
j=1

τ̃j

subject to: τ̃ ∈ C(Y ,W ,Z(0),Z(1))

τub = max
τ̃∈RJ

1

J

J∑
j=1

τ̃j

subject to: τ̃ ∈ C(Y ,W ,Z(0),Z(1))

for constraints given by

C(Y ,W ,Z(0),Z(1)) = {τ̃ ∈ RJ :(Z(0)′Z(0))−1Z(0)′(Y −Wτ̃ ) = (Z(1)′Z(1))−1Z(1)′(Y + (I −W )τ̃ )

Y ≤ Yj −Wj τ̃j + (1−Wj)τ̃j ≤ Ȳ ,

τ ≤ τ̃j ≤ τ̄ , for j = 1, . . . , J}

where Z(0) and Z(1) are the matrices of regressors Zj(w) = [Hj(w), Xj] (hypotheticals

and fixed characteristics including the intercept) if all observations (i.e. having J rows) were

untreated and treated, respectively, Y = (Y1, . . . , Yj)
T , I is the J × J identity matrix, W is

the J × J diagonal matrix with (j, j) diagonal element equal to Wj, and τ̃ = (τ̃1, . . . , τ̃J)
T .

In each case, the objective function is the average treatment effect if the (unknown)

effect of the treatment on setting j is τj = τ̃j. The first constraint imposes mapping

invariance and linearity, assuming that the elements of τ̃ are the setting-specific treatment

effects: (Y −Wτ̃ ) = Y (0) and (Y + (I −W )τ̃ ) = Y (1) when τ̃ = τ . (Appendix C.6.1

derives bounds without assuming linearity.) The remaining constraints can tighten the

resulting bounds on average treatment effects if one is willing to limit the range of potential

outcomes (Y , Ȳ ) or treatment effects (τ , τ̄). The problem is a linear program (in τ̃ ), so

one can compute its solution efficiently.

In the microfinance application, without any constraints, the average treatment effect

must lie between (−∞,∞). One could impose only “natural” bounds on potential outcomes

in the spirit of Manski (1990), that funding rates must be non-negative (Y = 0) and the

largest loans are never fully funded in less than one minute (Ȳ = 14.87).35 However,

those constraints alone yield wide bounds on the average treatment effect: [−5.02, 9.85].

Adding mapping invariance and linearity (using the specification in Column (8) of Table 3)

substantially narrows these bounds to [0.37, 1.88], even without constraining treatment

effects (τ = −∞, τ̄ = ∞). Adding a constraint that matching cannot reduce funding

for any loan (τ = 0, τ̄ = ∞) shrinks the bounds further, to [0.67, 1.25].36 Altogether,

35Among observed outcomes, maxj Yj = 11.87, equivalent to the largest loans being funded in 20 minutes.
36Note that the point estimate based on the same assumptions can be outside the bounds due to sampling

uncertainty. While it is challenging to compute confidence intervals in partially identified models based on
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mapping invariance and linearity have much identifying power, even without assumptions

on treatment assignment.

6.3 Alternate assumptions for treatment assignment

Two alternative assumptions yield consistency and asymptotic normality.

Unconfoundedness Our basic estimator is consistent, following Proposition 1, under an

analog to the standard unconfoundedness assumption:

Assumption (3D). Unconfoundedness. Treatment assignment is unconfounded conditional

on hypothetical evaluations: for w ∈ {0, 1}, Wj ⊥⊥ Yj(w) |Hj(w),Xj.

For unconfoundedness to hold, the control variables would have to span the outcome-

relevant information used to select the treatment. Hypothetical evaluations may be useful

controls because they may resemble that information. For example, legislators may have

implemented a treatment partly based on public opinion polls years before the earliest

observation in the dataset, and outcome-relevant information at the time of passage may

be limited to broad attitudinal considerations that later surveys can easily capture.

An assumption related to unconfoundedness, Wj ⊥⊥ Yj(0), Yj(1) | Hj(0),Hj(1),Xj,

justifies running a standard regression of outcomes on a treatment dummy “controlling for”

Hj(0), Hj(1), and Xj. If those estimates are similar to the ones derived from our method,

the unconfoundedness assumption may be plausible. We find that the two approaches yield

similar estimates in the snack application but not the microfinance application. This finding

suggests that, for our microfinance application, unconfoundedness may not be plausible.

The accuracy of our method in that setting is likely attributable to the considerations

formalized in Propositions 2 and 3.

Sample selection model A regression of Yj(wj) on Hj(wj), and Xj for the subset of

observations with Wj = 0, or for the subset with Wj = 1, would yield consistent estimates

of the underlying relationship between outcomes and hypothetical evaluations if treatment

assignment, and hence the selection of these subsets, were random. Treatment endogeneity

potentially biases the coefficient estimates for these regressions, and hence for our method,

because it makes the selection of the w = 0 and w = 1 samples non-random. Accordingly, in

linear programs where the number of constraints grows with the sample size, we describe an approximation
in Appendix C.6.2.
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our setting, one can address treatment endogeneity through modified versions of standard

sample selection corrections.

In Appendix C.7, we model treatment assignment using an approach similar to that of

Heckman (1976). An important feature of this approach is that the hypothetical evaluation

for the unobserved treatment state serves as an internal instrument, so that identification

does not rely exclusively on the functional form. In the microfinance application, the

estimate of the ATC is relatively insensitive to the particular assumption on treatment

assignment used to obtain point identification. Using the same specification as in Column (8)

of Table 3, but correcting for sample selection, we obtain an estimate of 1.31 (bootstrap s.e.

0.46).

7 Conclusion

We have proposed estimators that infer the causal effects of treatments on choices by

combining real choices and hypothetical evaluations based on a new “mapping invariance”

assumption. We have explored the implications of this method theoretically and demon-

strated that our estimators yield promising results in both a laboratory application and

a field application. The approach is not a panacea, but adds an additional tool to the

causal inference toolbox for suitable applications. An important question is whether the

relationship between choices and basic motivations is stable, and therefore portable, over a

broad domain. If our premise—that cognitive processes reduce all external conditions to

the internal motivations that determine choice—is correct, then in principle the relationship

may be stable across a broad domain that encompasses many diverse applications, in which

case it may be possible to develop more universal mappings between hypothetical responses

and real choices.
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Figure A1: Snack Demand Application: A Typical Choice Task
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Figure A2: Real vs. Hypothetical Choices (nonparametric) in Snack Demand Application
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49



R
 s

qu
ar

ed
re

la
tiv

e 
M

S
E

ca
lib

ra
tio

n 
co

ef
fic

ie
nt

pr
of

it 
(%

 o
f m

ax
 g

ai
n)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0
1

2
3

4
5

10
15

0.
00

0.
25

0.
50

0.
75

1.
00

0
20

40
60

W
T

P
 a

s 
ch

oi
ce

V
ic

ar
io

us
 a

s 
ch

oi
ce

In
te

ns
ity

 a
s 

ch
oi

ce

C
he

ap
 ta

lk

H
yp

ot
he

tic
al

 c
ho

ic
e

Fi
gu

re
A

4:
Tr

ea
tm

en
t

Ef
fe

ct
H

et
er

og
en

ei
ty

U
si

ng
So

le
ly

H
yp

ot
he

ti
ca

ls
A

s
Pr

ed
ic

ti
on

s
in

Sn
ac

k
D

em
an

d
A

pp
lic

at
io

n
Su

m
m

ar
y

st
at

is
ti

cs
de

sc
ri

bi
ng

ho
w

w
el

ld
iff

er
en

t
st

an
da

rd
es

ti
m

at
or

s
ba

se
d

on
a

di
ff

er
en

ce
in

hy
po

th
et

ic
al

ch
oi

ce
s

ca
pt

ur
e

he
te

ro
ge

ne
it

y
in

tr
ea

tm
en

t
ef

fe
ct

s.
Ea

ch
ro

w
sh

ow
s

th
e

re
su

lt
s

fo
r

hy
po

th
et

ic
al

ch
oi

ce
s

el
ic

it
ed

w
it

h
a

di
ff

er
en

t
pr

ot
oc

ol
,a

s
de

sc
ri

be
d

in
Se

ct
io

n
3.

1.
2.

Po
in

ts
in

di
ca

te
th

e
m

ed
ia

n
va

lu
e

of
ea

ch
st

at
is

ti
c

ac
ro

ss
10

,0
01

si
m

ul
at

ed
sa

m
pl

es
,a

nd
w

hi
sk

er
s

in
di

ca
te

th
e

in
te

rq
ua

rt
ile

ra
ng

e.
Fo

r
m

ea
n

sq
ua

re
d

er
ro

r,
th

e
ve

rt
ic

al
lin

e
sh

ow
s

th
e

va
lu

e
ob

ta
in

ed
w

he
n

w
e

us
e

th
e

tr
ue

av
er

ag
e

tr
ea

tm
en

t
ef

fe
ct

w
it

ho
ut

an
y

he
te

ro
ge

ne
it

y;
in

ot
he

r
w

or
ds

,i
t

is
th

e
va

ri
an

ce
of

un
it

-le
ve

lt
re

at
m

en
t

ef
fe

ct
s.

50



Median Standard Error Coverage of 95% Interval
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Figure A5: Performance of Estimators by Fraction Treated in Snack Demand Application
Summary statistics describing properties of treatment effect estimators under random assignment. The
horizontal axis measures the fraction of snacks observed at the high price. The panels show the median
standard error (left) and coverage of nominally 95% confidence intervals (right), across samples differing in
treatment assignment.
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Figure A6: Performance of Univariate Estimators by Fraction Treated in Snack Demand
Application
Summary statistics describing properties of univariate treatment effect estimators under random assignment
with 10,001 samples varying only treatment assignment for each fraction of snacks treated. The horizontal
axis measures the fraction of snacks observed at the high price. The estimators correspond to columns (2)
through (6) in panel (b) of Table 1 in the main text. Coverage of confidence intervals refers to coverage of the
true in-sample treatment effect.
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Bias Root Mean Squared Error Median Absolute Deviation

Standard Deviation Median Standard Error Coverage of 95% Intervals
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Figure A7: Performance of Multivariate Estimators by Fraction Treated in Snack Demand
Application
Summary statistics describing properties of multivariate treatment effect estimators under random assignment
with 10,001 samples varying only treatment assignment for each fraction of snacks treated. The horizontal
axis measures the fraction of snacks observed at the high price. The estimators correspond to columns (2)
through (6) of Table 2 in the main text. Coverage of confidence intervals refers to coverage of the true
in-sample treatment effect.
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Figure A8: Endogenous Snack Pricing Simulation Setup
Potential outcomes corresponding to the high price are in red, and potential outcomes corresponding to the
low price are in blue. The curves show the lines of best fit. Snacks likely to be priced at the high price face
more demand. This assignment yields the familiar endogeneity problem where the observed demand might
be higher for high-price snacks than for low-price snack. The probability of high price is determined by our
assignment mechanism based on hypothetical WTP. The demand at the low price (red) and high price (blue)
is based on the real purchase frequencies in the incentivized experimental group.

0.4

0.6

0.8

1.0

1.2

−1 −0
.2

−0
.1

−0
.0

5
0 0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

correlation threshold for including response in sample

es
tim

at
ed

 e
ffe

ct
 o

f m
at

ch
in

g

estimate with residual balancing estimate without residual balancing

Figure A9: Estimates of the Effect of Matching by Correlation Threshold in Microfinance
Application.
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Figure A10: Estimates of the Effect of High Price by Correlation Threshold in Snack Demand
Application
The horizontal line indicates the true in-sample treatment effect.
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Table A1: Estimating Treatment Effects without Variation in Treatment in Snack Demand
Application (multivariate, including WTP variable)

Ground Truth Our Method: Hypotheticals as Predictors

Low Dimensional High Dimensional

(1) (2) (3) (4) (5) (6)

Observing all snacks at high price
Estimated effect of high price -0.075 -0.084 -0.077 -0.085 -0.083 -0.094

(0.004) (0.011) (0.011) (0.016) (0.005) (0.014)
[0.004] [0.010] [0.010] [0.021] [0.020] [0.026]

Observed at high price All All
Observed at low price All None

Observing all snacks at low price
Estimated effect of high price -0.075 -0.119 -0.116 -0.136 -0.122 -0.066

(0.004) (0.013) (0.014) (0.021) (0.006) (0.029)
[0.004] [0.013] [0.013] [0.020] [0.025] [0.028]

Observed at high price All None
Observed at low price All All

Controls X X X X
Hypotheticals:
. . . all hypothetical choices (incl. WTP) X X X X X
. . . detailed hypothetical eval. (incl. WTP) X X
2nd order + interactions X X

Sample size (outcome) 189 (×2) 189 189 189 189 189
Estimates of the effect of the high price (vs. low price) on the real purchase frequency. Analytical standard
errors are in parentheses; bootstrap standard errors in square brackets are based on 1,001 bootstrap samples.
For results excluding WTP see Table 2.
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Table A3: Snack Demand Treatment Effects: Endogenous Prices

Ground Truth Observational Hypotheticals as Predictors

Experiment OLS ARB Low Dimensional High Dimensional

(1) (2) (3) (4) (5) (6) (7) (8)

Median estimated effect -0.075 -0.028 -0.028 -0.081 -0.077 -0.075 -0.077 -0.070
of high price
Median standard error (0.004) (0.016) (0.014) (0.009) (0.008) (0.008) (0.005) (0.011)

Controls X X X X X X
Hypotheticals:
. . . all hypothetical choices (excl. WTP) X X X X X
. . . detailed hypothetical eval. (excl. WTP) X X
2nd order + interactions X X X

Sample size (outcome) 189 (×2) 189 189 189 189 189 189 189

Observed at high price All WTPj > ϵjs WTPj > ϵjs WTPj > ϵjs WTPj > ϵjs WTPj > ϵjs
Observed at low price All WTPj ≤ ϵjs WTPj ≤ ϵjs WTPj ≤ ϵjs WTPj ≤ ϵjs WTPj ≤ ϵjs

Estimates of the effect of the high price (vs. low price) on the real purchase frequency. Treatment is assigned
endogenously based on average WTP. The reported estimates and standard errors are the median values
across 10,001 simulated samples, which only differ by treatment assignment and hence observed outcome.
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B Related Literature

Our approach is related to stated preference (SP) techniques and the contingent valuation

method (CVM), which make extensive use of hypothetical choice data (for reviews see

Shogren 2006; Carson 2012). This literature seeks to predict choices for non-market goods

when choice data pertaining to closely related decisions are entirely unavailable (e.g., in

the environmental context, to value non-market goods such as pristine coastlines);37 in

contrast, we explore the use of non-choice data as an alternative or supplement to choice

data even when the latter are available (but are not ideal).38

Stepping away from SP data, portions of the neuroeconomics literature seek to predict

choices from neural and/or physiological responses. Smith et al. (2014) focus specifically

on passive non-choice neural reactions, and provide proof-of-concept that those types of

reactions predict choices.39 Separately, in the literature on subjective well-being, two papers

explore the relationships between forward-looking statements concerning happiness and/or

satisfaction and hypothetical choices (Benjamin et al. 2012; Benjamin et al. 2014), which

motivates our use of such variables to predict real choices.

Turning to other disciplines, the marketing literature has examined stated intentions as

predictors of purchases (see, e.g., Infosino 1986; Jamieson and Bass 1989). Its relationship

to our work is similar to that of the SP/CVM literature on ex post calibration techniques in

that the object, once again, is to derive individual-specific predictions for a given good, with

cross-good differences addressed through meta-analysis (e.g., Morwitz, Steckel, and Gupta

2007). Marketing scholars also routinely use SP data (derived from “choice experiments”

involving hypothetical choices over multiple alternatives) to estimate preference parameters

in the context of a single choice problem. Our analysis provides methods for potentially

improving those data inputs. There are also parallels to our work in the political science

literature, particularly concerning the prediction of voter turnout and election results, e.g.,

from surveys and polls (as in Jackman 1999, and Katz and Katz 2010). As in our approach,
37In some cases, the object is to shed light on dimensions of preferences for which real choice data are

unavailable by using real and hypothetical choice data in combination; see, e.g., Brownstone, Bunch, and
Train (2000) and Small, Winston, and Yan (2005).

38Studies that use non-choice data as an alternative and/or supplement to choice data even when the
latter are available (but are not ideal) are relatively rare. As an example, consider the problem of estimating
the price elasticity of demand for health insurance among the uninsured, who are generally poor and not
eligible for insurance through employers. One possibility is to extrapolate from the choices of potentially
non-comparable population groups, which also requires one to grapple with the endogeneity of insurance
prices, as in Gruber and Washington (2005). Alternatively, Krueger and Kuziemko (2013) attacked the
same issue using hypothetical choice data, and reached strikingly different conclusions (i.e., a much larger
elasticity).

39See also Tusche, Bode, and Haynes (2010) and Levy et al. (2011).
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the object is to predict aggregate outcomes rather than individuals’ choices, and a range

of potential predictors (in addition to hypothetical choices or intentions) are sometimes

considered. For example, Rothschild and Wolfers (2011a) find that questions concerning

likely electoral outcomes (i.e., how others will vote) are better predictors than stated

intentions.40 The problem is substantively different, however, in that surveys and polls ask

voters about real decisions that many have made, plan to make, or are in the process of

making, instead of measuring non-choice reactions to choice problems that respondents

view as hypothetical.

C Proofs and additional econometric results

C.1 Proof of Proposition 1

The data are a random sample of independent observations (Yj,Wj,Hj(0),Hj(1),Xj)
J
j=1

where Yj ∈ R, Wj ∈ {0, 1}, and Hj(1),Hj(0) ∈ RQH as well as Xj ∈ RQX are row

vectors. For ease of notation, we define row vectors Zj(w) = [Hj(w), Xj] ∈ RQ with

Q = QH + QX . Let Zj = Zj(Wj). The estimator proceeds in two steps: first, regress

outcomes Yj on hypothetical evaluations and fixed characteristics Zj. Second, take the

estimated coefficients onZj, say δ̂ = [β̂
T
, γ̂T ]T , and calculate τ̂ = 1

J

∑J
j=1(Hj(1)−Hj(0))β̂.

Write the two-step estimator in a single GMM framework with moments

g(y, z0, z1, z, τ, δ) = τ − (z1 − z0)δ

m(y, z0, z1, z, τ, δ) = z
T (y − zδ)

First, we show that the moment condition is valid. By Assumptions 1, and 2,

E(g(Yj,Zj(0),Zj(1),Zj, τ
∗, δ∗) = 0

where τ ∗ = E(Yj(1) − Yj(0)) and δ∗ ≡ [βT , γT ]T with β and γ defined in Assumption 2.

Similarly, combining the previous assumptions with an unconfoundedness assumption on

treatment assignment (Assumption 3A, 3B, or 3D), by the law of iterated expectations:

E(m(Yj,Zj(0),Zj(1),Zj, τ
∗, δ∗) = 0Q×1

40Some studies also use prediction markets (e.g., Rothschild 2009), which (in effect) elicit investors’
incentivized forecasts of electoral outcomes.
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where 0Q×1 is the Q× 1 zero matrix.

Second, we derive the expression for the asymptotic variance given in the proposition.

Let ψ = (gT ,mT )T be the vector stacking the moments.

Define

Γ = E
(∂ψ(Yj,Zj(0),Zj(1),Zj, τ

∗, δ∗)

∂(τ, δT )

)
= E

([
1 −(Zj(1)−Zj(0))

0Q×1 −Z ′
jZj

])

and

Ψ = E(ψψ′) = E

([
g2 gmT

gm mmT

])

= E

([
(τ ∗ − (Zj(1)−Zj(0))δ

∗)2 Zj(τ
∗ − (Zj(1)−Zj(0))δ

∗)(Yj −Zjδ
∗)

ZT
j (τ

∗ − (Zj(1)−Zj(0))δ
∗)(Yj −Zjδ

∗) ZT
j Zj(Yj −Zjδ

∗)2

])

Then, under standard regularity conditions, the asymptotic distribution of (τ̂ , δ̂) is

√
J

([
τ̂

δ̂

]
−

[
τ ∗

δ∗

])
→d N

(
0(1+Q)×1, Γ

−1Ψ(ΓT )−1
)

The asymptotic variance of τ̂ is given by the (1, 1) element of the variance matrix

Γ−1Ψ(Γ′)−1. By Newey and McFadden (1994, Theorem 6.1),

√
J(τ̂ − τ) →d N(0, Vτ )

where

Vτ = E(g2) + E
(∂g
∂δ

)T
V olsE

(∂g
∂δ

)
− 2E

(∂g
∂δ

)T(
E
(∂m
∂δT

)−1
)
E(gm)

with V ols = E
(
ZT

j Zj

)−1

E
(
ZT

j Zj(y −Zjδ
∗)2
)
E
(
ZT

j Zj

)−1

the Q×Q asymptotic variance

matrix of δ̂ in the first-step OLS regression. Substituting the moment functions g and m
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and their derivatives, obtain

Vτ = E
(
(τ ∗ − (Zj(1)−Zj(0))δ

∗)2
)

+ E
(
Zj(1)−Zj(0)

)
V olsE

(
Zj(1)−Zj(0)

)T
− 2E

(
Zj(1)−Zj(0)

)
E
(
ZT

j Zj

)−1

E
(
ZT

j (τ
∗ − (Zj(1)−Zj(0))δ

∗)(Yj −Zjδ
∗)
)

as given in the proposition.

C.2 Semiparametric identification

While our main estimators make assumptions about functional form, such assumptions

are not necessary to identify treatment effects. Overlap is commonly assumed for non-

parametric estimators in causal inference, but in our setting a noticeably weaker version,

which we term evaluations overlap, suffices:

Assumption 4. Evaluations overlap. For each value of the predictors, pooling treatment

states, the probability of treatment is bounded away from 0 and 1. Specifically, if Z0 and Z1 are

the supports of the distributions of predictors in the control and treatment states, respectively,

then for all z ∈ (Z0 ∪ Z1), we have for some η > 0 at least one of

Pr(Wj = 1 | Zj(0) = z) < 1− η

or

η < Pr(Wj = 1 | Zj(1) = z)

Evaluations overlap states that, for any value of the predictors z ∈ (Z0 ∪Z1), we observe

(a growing number of) settings j for which the hypothetical evaluations corresponding to

the realized treatment state coincide with z, i.e., Zj(Wj) = z, which may all be in the same

treatment state. The overlap assumption is therefore substantially weaker than for standard

treatment effects estimators, where for any value of z both the treatment and the control

assignment must be possible.. In particular, Assumption 4 can hold even when there is no

variation in treatment assignment (Assumption 3A).

With this assumption we can ensure identification:

Proposition 4. The average effect of the treatment, τ = E(Yj(1)−Yj(0)), is semiparametrically

identified under Assumptions 1; one of 3A, 3B, or 3D; and 4.
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Proof. Denote Zj(w) = [Hj(w),Xj] with Zw the support of Zj(w), for w ∈ {0, 1}. By the

law of iterated expectations, E(Yj(1)) = E(E(Yj(1) | Zj(1))). By the evaluations overlap

assumption, for any z ∈ Z1, either Pr(Wj = 1 | Zj(1) = z) > 0 or Pr(Wj = 0 | Zj(0) =

z) > 0 (or both). In the first case, E(Yj(1) | Zj(1) = z) = E(Yj(1) | Zj(1) = z,Wj = 1) =

E(Yj | Zj(1) = z,Wj = 1) is identified, where the first equality follows from any version of

the unconfoundedness assumption. In the second case, E(Yj(1) | Zj(1) = z) = E(Yj(0) |
Zj(0) = z) = E(Yj(0) | Zj(0) = z,Wj = 0) = E(Yj | Zj(0) = z,Wj = 0) is identified,

where the first equality follows from mapping invariance and the second equality from any

version of the unconfoundedness assumption. Hence, E(Yj(1)) is identified. The argument

for E(Yj(0)) is similar. Hence, τ is semiparametrically identified.

Proposition 4 says that we can estimate treatment effects without making functional

form assumptions. We therefore view parametric assumptions, such as linearity, primarily

as useful approximations: our approach is not fundamentally tied to them.

C.3 A LASSO-type estimator for high-dimensional evaluations and

non-linear relationships

We develop a machine learning estimator for cases involving linearity in high-dimensional

hypothetical evaluations.

Let Zj(w) = g(Hj(w),Xj) be the covariate vector for setting j, including predictors

Hj(w) for treatment state w ∈ {0, 1} and fixed characteristics Xj, as well as any transfor-

mations, higher order terms, and interactions. Analogously to a Taylor expansion, a linear

combination of a sufficiently large number of transformations can approximate complicated

nonlinear functions.

Although LASSO is a popular estimator for applied work, LASSO coefficient estimates

can suffer from biases due to under-selection in finite samples (for instance, Wuthrich and

Zhu 2021). We propose a high-dimensional counterpart involving a variant of approximate

residual balancing (ARB, Athey, Imbens, and Wager 2018), which removes such biases for

average predictions.

C.3.1 Description of the estimator

Computation of the estimator τ̂arb involves the following steps:
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Step 1a. Using LASSO, estimate the relationship between the realized outcome Yj and the

covariates Zj = Zj(Wj) for the realized treatment state:

δ̂lasso = argmin
δ

J∑
j=1

(
Yj −Zjδ

)2
+ λ∥δ∥1

where the tuning parameter λ is chosen through cross-validation.

Step 1b. Compute approximate balancing weights

ρt =arg min
ρ∈RN

ζ∥ρ∥22 + (1− ζ)∥Z(1)− ρTZ∥2∞

subject to:
J∑

j=1

ρj = 1; ∀j : 0 ≤ ρj ≤ J−2/3

ρc =arg min
ρ∈RN

ζ∥ρ∥22 + (1− ζ)∥Z(0)− ρTZ∥2∞

subject to:
J∑

j=1

ρj = 1; ∀j : 0 ≤ ρj ≤ J−2/3

where Z stacks the covariates Zj for all decision problems, and Z(w) = 1
J

∑J
j=1Zj(w)

for w ∈ {0, 1}. Athey, Imbens, and Wager (2018) set the tuning parameter ζ = 0.5 as

a default.

Step 2. Estimate the average treatment effect as

τ̂arb =
(
Z(1)−Z(0)

)
δ̂lasso +

J∑
j=1

(ρt
j − ρc

j)
(
Yj −Zj δ̂lasso

)

If we included only the first term in Step 2, the procedure would be analogous to replacing

OLS with LASSO in our low-dimensional procedure. The second term in Step 2 addresses the

biases associated with high-dimensional estimation and regularization by adding weighted

prediction errors from Step 1a. The particular weights ρt and ρc, computed in Step 1b, are

meant to reduce estimation errors for E
(
E(Yj(1) | Zj(1))

)
and E

(
E(Yj(0) | Zj(0))

)
in the

first term of Step 2, under the assumption of linearity.41

41Specifically, the objective functions in Step 1b have two parts. Introducing ∥ρ∥22 reduces the variance of
the estimator by penalizing deviations from equal weights. Introducing ∥Z(w)− ρTZ∥2∞ limits bias under
the assumption of linearity by penalizing the deviations from exact covariate balance between the weighted
covariates Zj used in estimation in Step 1 and the average covariates Z(w) used to predict outcomes in the
first part of Step 2; this term is the maximum (across covariates) squared deviation between these average
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C.3.2 Theoretical result

Under the preceding assumptions and regularity conditions, the following proposition

demonstrates that our estimator τ̂arb is consistent for the average treatment effect, and

asymptotically normal with straightforward-to-compute standard errors.

Proposition 5. Suppose our Assumptions 1, 2 (here linearity in high-dimensional covariates

Zj(w) rather than Hj(w) and Xj); one of 3A, 3B, 3D; and 4, as well as assumptions from

Athey, Imbens, and Wager (2018) – exact sparsity Assumption 4, regularity conditions on

the covariates Z of Assumption 7, regularity conditions on the (potentially heteroskedastic)

regression noise in Corollary 2 – hold. Suppose further that we use the estimator τ̂arb with

a hard constraint replacing the Lagrange form penalty on the imbalance in our Step 1b

(analogous to the constraint in Theorem 2 of Athey, Imbens, and Wager (2018)). Then the

estimator τ̂arb is asymptotically normal with

τ̂arb − τ√
V̂arb

→ N
(
0, 1
)

where V̂arb =
∑N

j=1(ρ
t
j − ρcj)

2(Yj −Zj δ̂lasso)
2.42

Proof. The result follows from Corollary 2 of Athey, Imbens, and Wager (2018) by noting

that our unconfoundedness Assumptions 3D, 3A, and 3B each have the same implication

as their Assumption 1 for this estimation step, our Assumptions 1, 2, and either of 3D, 3A,

or 3B, jointly imply their Assumption 2, and our overlap Assumption 4 is identical to their

Assumption 6 after rewriting our variables according to their setup. Their condition on the

limit of the odds ratio is not needed in our setting because we observe covariates Zj(0) and

Zj(1) and an outcome Yj for all decision problems irrespective of treatment assignment.

The two weights ρt and ρc separately balance for estimation of the mean of treated and the

mean of control potential outcomes, as in the “Proof of Lemma 9” in their on-line appendix

for the mean of the control, and the difference ρt − ρc takes the role of their γ in the “Proof

of Corollary 6” in their on-line appendix.

covariates.
42In contrast to the variance in Proposition 1, the variance estimator V̂arb in Proposition 5 is conditional

on hypothetical evaluations. Specifically, for a fixed sample size, the weights (ρtj − ρcj) are deterministic
(fixed) under sampling of outcomes Yj conditional on covariates Zj and treatment assignment Wj . Hence,
if one is specifically interested in comparing the estimated standard errors across our low-dimensional and
high-dimensional methods, the proper counterpart to V̂arb from Proposition 5 is the second term of V̂p from
Proposition 1.
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C.3.3 Restricting to respondents who are most skilled

When we use ARB in the setup that identifies the most informative respondents in Ap-

pendix C.8, we augment the procedure as follows. In Step 1a, rather than using a single

penalized (LASSO) regression with regressors corresponding to all thresholds, we estimate

a separate regression for each threshold. Because the number of survey responses can

be low when restricting to very skilled respondents, we correct for measurement error to

address possibly large sampling variation in the remaining responses. The approach we take

is similar to splitting the responses in half (within setting) and using the average of the first

half as an instrument for the average of the second half, but avoids arbitrary sample splitting.

Note that the objective function contains terms
(
Yj −Zjδ

)2
= Y 2

j − 2YjZjδ + δ
TZT

j Zjδ.

Classical measurement error in Zj is averaged out across observations for the second term,

but squared measurement error in ZT
j Zj causes bias. Suppose we have K independent

responses from sufficiently skilled respondents for setting j under treatment state Wj, say

Zj,k(Wj). Rather than using ( 1
K

∑K
k=1Zj,k(Wj))

T ( 1
K

∑K
k=1Zj,k(Wj)) to estimate the cor-

rectly measured ZT
j Zj, we use the average of all possible k ̸= k′ terms Zj,k(Wj)

TZj,k′(Wj),

which yield an unbiased estimate. Averaging over settings j yields an objective function

that converges to the population objective function with correctly measured regressors.

We estimate separate such “regressions” for each threshold by minimizing the consistent

estimate of the residual sum of squares using only respondents who pass the threshold. For

a given threshold r, this creates an estimated coefficient vector, say δ̂
r
. When selecting one

of the thresholds r, Step 1a resembles “subset selection” as an alternative to the LASSO

regression in the original version of ARB.

For the purpose of Step 1b, we take the vectors Zj(w) and Zj to be the collection of

average covariates, concatenating all thresholds. That is, Step 1b determines weights that

balance the average responses for each threshold. The estimator in Step 2 given the choice

of a threshold r∗, is then τ̂ r∗arb =
(
Zr∗(1)−Zr∗(0)

)
δ̂
r∗

+
∑J

j=1(ρ
t
j − ρcj)

(
Yj −Zr∗

j δ̂
r∗
)

with

Zr∗

j (w) the average evaluations of the respondents passing threshold r∗, and Zr∗(w) the

average of this variable across settings. The second term in τ̂ r∗arbensures that the estimate is

close to the true effect even if the threshold r∗ is not selected correctly in finite samples, as

long as the true model is linear in the average hypothetical evaluations under the different

thresholds.

Next, we describe a way to choose a threshold. Suppose that, in an infinite sample, we

can estimate δ = (βT ,γT )T from Assumption 2 by finding the threshold r∗ that minimizes
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mean squared error:

r∗ = argmax
r

E
(
(Yj −Zr

jδ
r)2
)

=⇒ δ = δr
∗

where Zr
j are the average evaluations for setting j based on an infinite number of respon-

dents passing threshold r, as well as the intercept and any fixed characteristics. We estimate

the squared error of using threshold r in finite samples analogous to the estimation δr

above. Specifically, noting that the sample criterion function for r∗ includes the average

of squared hypothetical evaluations, we estimate the squared evaluations for setting j as

the average of ZT
j,kZj,k′ for any two distinct respondents who evaluated setting j under the

observed assignment Wj (and are sufficiently skilled given the threshold r). In the simplest

case, with just two respondents passing the threshold for each setting, we hence estimate

mean squared error as

1

J

J∑
j=1

(Y 2
j − 2Yj

Zj,1 +Zj,2

2
δ̂
r
+ (δ̂

r
)T
ZT

j,1Zj,2 +Z
T
j,2Zj,1

2
δ̂
r
).

C.4 Doubly robust estimators

For an alternative doubly robust estimator along the lines of Chernozhukov et al. (2018)

using our Assumptions 1, and either 3D or 3D, the following moment condition satisfies the

Neyman orthogonality condition:

ψ(y, w,h1,h0,x) = µ(h1,x)−µ(h0,x)+
w

e1(h1,x)

(
y−µ(h1,x)

)
− 1− w

e0(h0,x)

(
y−µ(h0,x)

)
where µ(h,x) = E(Yj(0) | Hj(0) = h,Xj = x) = E(Yj(1) | Hj(1) = h,Xj = x) is the

relationship between outcome and hypothetical evaluations of the realized treatment state,

and ew(h,x) = Pr(Wj = w | Hj(w) = h,Xj = x) for w ∈ {0, 1} is the probability that

decision problem j is observed in state w conditional on the hypothetical evaluations of

that state and fixed characteristics. To avoid biases, µ and ew should be estimated using

cross-fitting. Under suitable conditions for the machine learning estimators of choice for

µ and ew, such a doubly robust estimator may perform well. Note, however, that our

framework does not suggest that we are well-positioned to correctly specify a propensity

score conditional on hypothetical evaluations. Although this doubly robust moment uses the

same structural Assumption 1 to estimate µ, it also requires a standard overlap assumption,
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different from the evaluations overlap assumption required for the LASSO-type estimator,

bounding conditional treatment probabilities away from 0 and 1 (e1(h1,x) > 0 for all (h1,x)

in the support of (H(1),X) and e0(h0,x) > 0 for all (h0,x) in the support of (H(0),X)).

Consequently, it cannot be used to estimate the effect of a treatment that has not been

implemented. It is an interesting question whether it is possible to construct a doubly

robust estimator of this type that retains the advantages of our parametric and LASSO-type

(residual balancing) estimators.

C.5 Proof of Proposition 2

For ease of notation, include fixed characteristics Xj (except for the intercept) in the

hypothetical evaluations Hj and Hj(w) for w ∈ {0, 1}. Let β̂ be the first step regression

slope coefficients on Hj. We show the result under Assumption 3C with w̃ = 0; the proof

for w̃ = 1 is analogous.

First, for fixed k, note that plimn→∞ β̂ = var(Hj)
−1 cov(HT

j , Yj). Because Yj = α +

Hjβ + ϵj where ϵj = ϵj(Wj) and α is the intercept, cov(HT
j , Yj) = var(Hj)β + cov(HT

j , ϵj).

Hence, plimn→∞ β̂ = β + var(Hj)
−1 cov(HT

j , ϵj). Consider an arbitrary element of the

vector var(Hj)
−1 cov(HT

j , ϵj), obtained from the inner product of the corresponding row of

var(Hj)
−1 with the vector cov(HT

j , ϵj). For vectors a and b, recall that ∥aT b∥ = ∥a∥∥b∥ cos θ
where θ is the angle between a and b. Since cos θ ≤ 1, 0 ≤ ∥aT b∥ ≤ ∥a∥∥b∥. Hence, consider

∥cov(HT
j , ϵj)∥. From the definitions ofHj and ϵj, it immediately follows thatHj =Hj(0)+

Wj(Hj(1)−Hj(0)) and ϵj = ϵj(0) +Wj(ϵj(1)− ϵj(0)). By linearity, cov(HT
j (0), ϵj(0)) = 0.

Hence, using the expression for ϵj(1)− ϵj(0) shown above:

cov(HT
j , ϵj) = cov(HT

j (0),Wj(ϵj(1)− ϵj(0)))

+ cov(Wj(H
T
j (1)−HT

j (0)), ϵj(0))

+ cov(Wj(H
T
j (1)−HT

j (0)),Wj(ϵj(1)− ϵj(0)))

By the triangle inequality, ∥cov(HT
j , ϵj)∥ is less than or equal to the sum of the norms of the

three terms. By Cauchy-Schwarz, for any element Hj(0) of Hj(0), cov(Hj(0),Wj(ϵj(1) −
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ϵj(0)))
2 ≤ var(Hj(0)) var(Wj(ϵj(1)− ϵj(0))) and similarly for the other two terms. So

|cov(Hj(0),Wj(ϵj(1)− ϵj(0)))| ≤ var(Hj(0))

√
var(Wj(ϵj(1)− ϵj(0)))

var(Hj(0))

|cov(Wj(Hj(1)−Hj(0)), ϵj(0))| ≤ var(Hj(0))

√
var(Wj(Hj(1)−Hj(0)))

var(Hj(0))

·

√
var(ϵj(0))

var(Hj(0))

|cov(Wj(Hj(1)−Hj(0)),Wj(ϵj(1)− ϵj(0)))| ≤ var(Hj(0))

√
var(Wj(Hj(1)−Hj(0)))

var(Hj(0))

·

√
var(Wj(ϵj(1)− ϵj(0)))

var(Hj(0))

Next, note that var(Hj)
−1 = 1

var(Hj)
in the univariate case. Write

var(Hj) = var(Hj(0)) + var(Wj(Hj(1)−Hj(0)))) + 2 cov(Hj(0),Wj(Hj(1)−Hj(0))).

So, using Cauchy-Schwarz to bound the covariance, var(Hj) ≥ var(Hj(0))+var(Wj(Hj(1)−
Hj(0))))− 2

√
var(Hj(0))

√
var(Wj(Hj(1)−Hj(0)))). Factor out var(Hj(0)) to get

var(Hj) ≥ var(Hj(0))
(
1 +

var(Wj(Hj(1)−Hj(0))))

var(Hj(0))
− 2

√
var(Wj(Hj(1)−Hj(0))))

var(Hj(0))

)
.

Hence we can bound the norm of cov(Hj ,ϵj)

var(Hj)
using the norm with the right-hand-side above in

place of var(Hj) in the denominator. Then var(Hj(0)) cancels. Finally, under Assumption 3C,

the ratios var(Wj(Hj(1)−Hj(0)))

var(Hj(0))
→ 0, var(Wj(ϵj(1)−ϵj(0)))

var(Hj(0))
→ 0, and

√
var(ϵj(0))

var(Hj(0))
< ∞, so each

remaining component of the numerator (after canceling var(Hj(0))) vanishes. In contrast,

the remaining denominator, 1 + var(Wj(Hj(1)−Hj(0))))

var(Hj(0))
− 2
√

var(Wj(Hj(1)−Hj(0))))

var(Hj(0))
→ 1. Hence, the

ratio vanishes such that limk→∞ plimn→∞ β̂k − βk = 0. In the multivariate case, one could

add assumptions involving products of the univariate variances and elements of var(Hj)
−1

to similarly “cancel” var(Hj(0)), but bounding var(Hj)
−1 purely in terms of ratios as in

Assumption 3C and marginal variances var(Hj(0)) may not be possible.

For the treatment effect, plimn→∞
1
J

∑J
j=1Hj(1)−Hj(0) = E(Hj(1)−Hj(0)), so the result

of the proposition follows by the continuous mapping theorem. For proportional error, given

τk ̸= 0, plimn→∞
τ̂k
τk

= plimn→∞ τ̂k
E(Hj(1)−Hj(0))β

and plimn→∞ τ̂k = E(Hj(1)−Hj(0)) plimn→∞ β̂k (by the
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continuous mapping theorem), so limk→∞ plimn→∞ β̂k = β yields limk→∞ plimn→∞
τ̂k
τk

= 1

implying the result.

C.6 Partial identification

C.6.1 Semiparametric partial identification

We state a semiparametric partial identification result here. Inspection of the proof reveals

that the bounds are sharp: For any point between the bounds, including the end points,

there exists a joint distribution of (Y (0), Y (1),W,H(0),H(1),X) that is consistent with the

distribution of the observable (Y,W,H(0),H(1),X) and yields that point as the average

treatment effect. In the main text, we give bounds, additionally assuming linearity, as the

solution to a linear programming formulation that is fast to compute even with continuous

evaluations and fixed characteristics.

Proposition 6. Suppose Assumption 1 holds and potential outcomes are bounded, Y ≤
Yj(w) ≤ Ȳ with Y , Ȳ ∈ R for w = 0, 1 and all j. Then the average treatment effect is bounded

by τlb ≤ τ ≤ τub with bounds defined as

τlb =

∫ ∫
µ̃lb(h,x)(f(H(1),X)(h,x)− f(H(0),X)(h,x)) dhdx

τub =

∫ ∫
µ̃ub(h,x)(f(H(1),X)(h,x)− f(H(0),X)(h,x)) dhdx

where

µ̃lb(h,x) =

µlb(h,x) if f(H(1),X)(h,x) > f(H(0),X)(h,x)

µub(h,x) otherwise

µ̃ub(h,x) =

µub(h,x) if f(H(1),X)(h,x) > f(H(0),X)(h,x)

µlb(h,x) otherwise

µlb(h,x) = max
w∈{0,1}

{
Pr(Wj = w |Hj(w) = h,Xj = x)E(Yj | Wj = w,Hj(w) = h,Xj = x)

+ (1− Pr(Wj = w |Hj(w) = h,Xj = x))Y
}

µub(h,x) = min
w∈{0,1}

{
Pr(Wj = w |Hj(w) = h,Xj = x)E(Yj | Wj = w,Hj(w) = h,Xj = x)

+ (1− Pr(Wj = w |Hj(w) = h,Xj = x))Ȳ
}

Proof. By the law of iterated expectations, the average treatment effect equals τ =
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E(E(Yj(1) | Hj(1),Xj)) − E(E(Yj(0) | Hj(0),Xj)). Writing the outer expectations in

integral form and using mapping invariance, we can write the treatment effect as τ =∫ ∫
µ(h,x)(f(H(1).X)(h,x) − f(H(0).X)(h,x)) dhdx, where the densities of (H(1),X) and

(H(0),X), f(H(1),X) and f(H(0),X), are identified from the data, and µ(h,x) = E(Yj(0) |
Hj(0) = h,Xj = x) = E(Yj(1) | Hj(1) = h,Xj = x). We can bound either conditional

expectation by combining the identified E(Yj(w) |Hj(w) = h,Xj = x,Wj = w) with the

bound Y ≤ E(Yj(w) |Hj(w) = h,Xj = x,Wj = 1− w) ≤ Ȳ . The identifying power of the

mapping invariance assumption is that we need only consider the intersection of the re-

sulting bounds on E(Yj(1) | Hj(1) = h,Xj = x) and E(Yj(0) | Hj(0) = h,Xj = x)

as a bound for µ(h,x), which can be noticeably tighter than the separate bounds.43

From the integral equation above, the upper bound for τ then uses the upper bound

on µ whenever f(H(1).X)(h,x) > f(H(0).X)(h,x) and the lower bound on µ whenever

f(H(1).X)(h,x) < f(H(0).X)(h,x). The lower bound for τ does the reverse. In the main text,

we operationalize this analysis for continuous evaluations and fixed characteristics by also

imposing linearity.

C.6.2 Discretization

Under mapping invariance and linearity, in the population E(Zj(0)
TZj(0))

−1E(Zj(0)
TYj(0)) =

E(Zj(1)Zj(1))
−1E(Zj(1)

TYj(1)) where Zj(w) contains hypothetical evaluations, fixed char-

acteristics, and the intercept. Note that the infeasible OLS estimator, (Z(0)TZ(0))−1Z(0)TY (0),

is numerically equivalent to (Z(0)TZ(0))−1Z(0)T Ỹ (0) where Ỹj(0) equals the observed out-

come of observation j if it is not treated, and equals the average of (unobserved) untreated

potential outcomes of observations with the same regressors Z(0) otherwise:

Ỹj(0) =

Yj(0) if Wj = 0∑J
j′=1 Wj′1{Zj(0)=Zj′ (0)}Yj′ (0)∑J

j′=1 Wj′1{Zj(0)=Zj′ (0)}
if Wj = 1

and similarly for treated potential outcomes. The average used for Ỹj(0) in the case where

Wj = 1 is unobserved and can range between Y and Ȳ . If the regressors are discrete, the

number of distinct averages of this kind is at most the number of support points of the

regressor and hence does not grow with the sample size. If the regressors are continuous, we

form discrete groups based on the covariates and, if Wj = 1, take Ỹj(0) as fixed within group.
43If the intersection is empty at (h,x), mapping invariance is rejected at this point. If Pr(Wj = 1 |Hj(1) =

h,Xj = x) = 1 or Pr(Wj = 1 | Hj(0) = h,Xj = x) = 0, then µ(h,x) is point identified (unless mapping
invariance is rejected).
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For a sufficiently large number of groups, the approximation tends to have little effect.

Hence, inference results that allow for a growing number of parameters and constraints

may offer a reasonable approximation to the continuous regressor case when the number

of groups grows (slowly) with the sample size.

In practice, we discretize the covariate space using a “regression tree” based on greedy

splits. Covariate values that fall into the same leaf are in the same group. A benefit of this

tree-based discretization is that it is non-stochastic, whereas, for instance, the k-means

algorithm typically depends on a random initial allocation. The nodes of the tree partition

to covariate space based on the value of a covariate being above or below a threshold. At

each node, we consider each covariate and each possible threshold. We choose the split

(covariate and threshold) that minimizes the total squared error. For a given split that we

consider, within each resulting leaf and across observations and covariates, we calculate the

sum of squared deviations from the within-leaf mean, and sum the result across leaves. We

avoid splits that would yield a leaf containing only a single observation. In practice, we face

a trade-off between choosing a large number of groups such that the discretized problem

better approximates the original problem, and choosing a small number of groups such that

inference procedures based on the number of groups growing only slowly with the sample

size offer a reasonable approximation.

Continuing the bounding exercise in Section 6.2 in footnote 36: when discretizing the

300 observations into 60 groups, imposing Y = 0, Ȳ = 14.87, mapping invariance, and

linearity (but not τ = 0), the bounds to the discretized problem ([0.47, 1.78]) are roughly

similar to the original problem, and a 90% confidence interval using the approach of Fang

et al. (2023) is given by [0.31, 2.72]; a 95% confidence interval is [0.20, 2.84]. Adding τ = 0,

even with 120 groups the discretized problem (bounds [1.12, 1.19]) does not resemble the

original problem.

C.7 Sample selection model

C.7.1 Description

To understand the intuition for this procedure, imagine taking only the subset of set-

tings assigned one of the two treatment states, and regressing outcomes on hypotheticals.

Correlations between the hypotheticals and the likelihood of observing a setting in that treat-

ment state potentially produce bias that is treatable through a standard sample selection

correction.
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Assumption (3E). Sample selection model. For w ∈ {0, 1},

Yj(w) =Hj(w)β +Xjγ + ϵj(w)

with E(ϵj(w) |Hj(0),Hj(1),Xj) = 0, and the treatment is selected according to

Wj = 1 {Hj(0)α0 +Hj(1)α1 +Xjαx + ηj > 0}

where (i) ϵj(0), ϵj(1), ηj ⊥⊥ Hj(0),Hj(1),Xj, (ii) E(ϵj(w)) = 0, (iii) α0 ̸= 0, α1 ̸= 0,

αx ̸= 0, and (iv) ϵj(0), ϵj(1), ηj are jointly normally distributed with the variance of ηj
normalized to 1 and the covariance between ηj and ϵj(w) defined as σϵ(w),η for w = 0, 1.

Note that the correlation of ϵj(w) and ηj is unrestricted, allowing treatment to depend on

unobservables. While we state the assumption here with normal errors, the usual extensions

to cases with nonparametric errors are possible at the cost of more challenging estimation

in small samples.

To estimate β under Assumption 3E, one follows these steps: First, use a Probit regression

of Wj onHj(0),Hj(1), andXj to calculate fitted values Ŵj =Hj(0)α̂0+Hj(1)α̂1+Xjα̂x

of the linear index. Second, generate the new regressors V̂j(0) =
(1−Wj)ϕ(Ŵj)

1−Φ(Ŵj)
and V̂j(1) =

Wjϕ(Ŵj)

Φ(Ŵj)
. Third, regress Yj on Hj, Xj, V̂j(0), and V̂j(1). Finally, use the estimated coefficient

on Hj, β̂, from the third step to calculate τ̂ssm = 1
J

∑J
j=1(Hj(1)−Hj(0))β̂. Effectively, the

hypothetical evaluation of the unobserved treatment state serves as an internal instrument

so that identification does not rely exclusively on the functional form. An additional

adjustment to the final step is necessary when estimating the ATC or ATT instead of the

ATE; see Appendix C.7.3.

Proposition 7. Suppose the data (Yj,Wj,Hj(0),Hj(1),Xj)
J
j=1 are a random sample of

independent observations and standard regularity conditions hold. Under Assumption 3E, the

parametric estimator τ̂ssm is consistent for the average treatment effect τ and is asymptotically

normal: √
J
(
τ̂ssm − τ

)
→ N

(
0, Vτ,ssm

)
with a formula for Vτ,ssm given at the end of the proof.

In the microfinance application, the estimate of the ATC is relatively insensitive to the

particular assumption on treatment assignment used to obtain point identification. As

discussed, the estimates presented in Table 3 Columns (5)–(11) are valid under Uncon-

foundedness with the correctly specified linear model. For instance, the specification of
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Column (8) yields a point estimate of 1.28 (bootstrap s.e. 0.39). Using the same specification

of hypotheticals and fixed characteristics but adapting the method to Assumption 3E, we

obtain 1.31 (0.46).

C.7.2 Proof of Proposition 7

Define the “single index” Vj =Hj(0)α0 +Hj(1)α1 +Xjαx. To find an estimable equation

involving the parameter β, we use that

E(Yj |Hj(0),Hj(1),Xj,Wj = w) =Hj(w)β+Xjγ+E(ϵj(w) |Hj(0),Hj(1),Xj,Wj = w).

Conditioning on Wj = 1 is equivalent to conditioning on the event ηj ≥ −Vj. Using the

properties of the truncated normal distribution, E(ϵj(1) | ηj ≥ −Vj) = σϵ(1),η
ϕ(Vj)

Φ(Vj)
, where the

ratio is the inverse Mills ratio. Conditioning on Wj = 0 is equivalent to conditioning on the

event ηj < −Vj, and, similarly to the ηj ≥ −Vj case, E(ϵj(0) | ηj < −Vj) = −σϵ(0),η ϕ(Vj)

1−Φ(Vj)
.

Hence,

E(Yj |Hj(0),Hj(1),Xj,Wj) =Hj(w)β +Xjγ + σϵ(1),η
Wjϕ(Vj)

Φ(Vj)
− σϵ(0),η

(1−Wj)ϕ(Vj)

1− Φ(Vj)
.

Define Ŵj =Hj(0)α̂0 +Hj(1)α̂1 +Xjα̂x with (α̂0, α̂1, α̂x) the coefficients from a probit

regression of Wj on Hj(0), Hj(1), and Xj, and let V̂j(1) =
Wjϕ(Ŵj)

Φ(Ŵj)
and V̂j(0) =

(1−Wj)ϕ(Ŵj)

1−Φ(Ŵj)
.

Then the coefficients on Hj(Wj) in a regression of Yj on Hj(Wj), Xj, V̂j(1), and V̂j(0)

consistently estimates β. For the average treatment effect, consistent estimation of β̂

combined with the consistent sample mean estimator for E(Hj(1)−Hj(0)) yields a consistent

estimator of the average effect because E(Yj(1)− Yj(0)) = E(Hj(1)−Hj(0))β as before.

For the variance, write the moment functions as

g(y, z0, z1, z, r, τ, δ,α) = τ − (z1 − z0)δ

m(y, z0, z1, z, r, τ, δ,α) = [z,
wϕ(rα)

1− Φ(rα)
,
(1− w)ϕ(rα)

Φ(rα)
]T (y − zδ − σ1

wϕ(rα)

1− Φ(rα)
− σ0

(1− w)ϕ(rα)

Φ(rα)
)

q(y, z0, z1, z, r, τ, δ,α) = r
T (w

ϕ(rα)

Φ(rα)
− (1− w)

ϕ(rα)

1− Φ(rα)
)

.

The moment function g corresponds to the final treatment effect estimation. The moment

functions m correspond to the regression of the outcome on the regressors including

terms involving the inverse Mills ratio. The moment functions q correspond to probit
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regression to estimate the coefficients of the linear index. Let ψ∗ denote the vector

of moment functions stacking g, m, and q, evaluated at y = Yj, zw = [Hj(w),Xj],

z = Wjz1 + (1 −Wj)z0, r = [Hj(0),Hj(1),Xj] and the true parameter values. Let ∇ψ∗

similarly denote the matrix of derivatives of the moment functions with respect to the

parameters, evaluated at the random variables and true parameters as before. Then the

asymptotic variance of the GMM estimator (τ̂ , δ̂, α̂) of the vector of true parameter values

is given by Vssm = E(∇ψ∗)−1E(ψ∗)E(∇ψ∗,T )−1 (Newey and McFadden 1994). The (1, 1)

element of Vssm is the asymptotic variance of the treatment effect estimator, Vτ,ssm.

C.7.3 Estimating the ATC

To estimate the average effect of the treatment on the control (ATC), E(Yj(1)−Yj(0) | Wj =

0), note that E(Yj(0) | Wj = 0) can be estimated consistently by taking the sample analog.

Hence, we focus on estimation of E(Yj(1) | Wj = 0) = E(Hj(1) | Wj = 0)β + E(ϵ(1) | Wj =

0). For E(Hj(1) | Wj = 0), the sample analog estimator is consistent. For E(ϵj(1) | Wj = 0),

however, note that in contrast to the case under unconfoundedness assumption, we cannot

use that E(ϵj(1) | Wj = 0) = E(E(ϵj(1) | Hj(1),Wj = 0) | Wj = 0) and then appeal to

unconfoundedness to argue that E(ϵj(1) | Hj(1),Wj = 0) = E(ϵj(1) | Hj(1)) and finally

the linear model assumption to get E(ϵj(1) | Hj(1)) = 0. Instead, we use the truncated

normal calculations to find

E(ϵj(1) | Wj = 0) = E(E(ϵj(1) | ηj < Vj) | Wj = 0) = −σϵ(1),ηE
(
ϕ(Vj)

Φ(Vj)
| Wj = 0

)
.

Here, σϵ(1),η is consistently estimated by the coefficient on Wjϕ(Ŵj)

Φ(Ŵj)
in the first step regression,

and we can consistently estimate E
(

ϕ(Vj)

Φ(Vj)
| Wj = 0

)
by 1∑J

j=1(1−Wj)

∑J
j=1(1−Wj)

ϕ(Ŵj)

Φ(Ŵj)
.

C.8 Using the hypothetical response from those who are most skilled

Differences between the populations making real and hypothetical evaluations may make

the hypothetical evaluations less predictive of the choices. In the microfinance application,

visitors to the website determine the outcome of interest, but we obtain hypothetical

evaluations by drawing a sample of respondents from Amazon Mechanical Turk, fewer than
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25% of whom report having visited the website.44

A potential strategy for improving upon our basic estimator is to use only the hypothetical

evaluations of respondents who are best able to predict real outcomes. This strategy

requires us to elicit a prediction of real outcomes as one of the hypothetical evaluations.

We define the latent response quality, rkj, for respondent k’s evaluations of setting j as the

correlation between k’s predictions and outcomes for other settings j′ ̸= j. For the purpose

of estimating treatment effects, one can set a quality threshold r∗ and drop all observations

with latent quality below this threshold, rkj ≤ r∗.45 Because this strategy reduces the

number of evaluations per setting, it may be appropriate to remove any bias due to classical

measurement error in hypothetical evaluations by replacing Step 1 of our method with an

estimator that corrects for measurement error using repeated measurements, similar to

instrumental variables, as detailed in Appendix C.3.3. By varying r∗, the analyst can check

whether poor quality evaluations drive the results.

We illustrate this strategy by filtering respondents based on correlations between their

“quintile projections” and actual fundraising velocities for loan profiles displayed in their

actual treatment states.46 Figure A9 shows (in orange squares) how the estimates vary with

the correlation threshold r∗ used for filtering responses. For each correlation threshold, we

estimate a model of the outcome on the quintile projection and use it to derive treatment

effects. These estimates vary substantially based on the correlation threshold, from 0.39 to

1.14, and tend toward the ground truth estimate as we limit the analysis to responses with

higher latent quality. However, this estimator raises two issues: First, which correlation

threshold should be used? Because estimates are highly correlated across thresholds, it can

be difficult to select among them. Second, when the quintile projection only enters linearly,

the functional form may be misspecified (Assumption 2 may be violated). Because the

distribution of quintile projections differs across treatment states, such misspecification can

cause differential prediction error for treated and untreated outcomes in our second step.

A second method may address both of these issues. For each threshold r, this method

uses an approach derived from ARB that balances residuals based on data for all thresholds.

With respect to the first issue, the selection of a threshold resembles the selection of

covariates by the LASSO, for which ARB yields greater robustness against finite sample

4410% state they have made one loan using the website, and a little over 3% state they have made two or
more loans.

45This leave-one-out correlation rkj avoids overfitting by omitting any direct information concerning the
predictive accuracy of k’s evaluation for the j-th setting.

46For a respondent who gave the same answer concerning every loan, the correlation is undefined. We set
it equal to −1, indicating the lowest possible response quality.
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mistakes. With respect to the second issue, ARB adds residuals that reflect divergences

between the correct functional form and the linear model, much as it potentially corrects

LASSO predictions if the LASSO incorrectly drops higher order terms in finite samples. See

Appendix C.3 for a detailed description of the algorithm. As the purple dots in Figure A9

show, the resulting estimates are much less sensitive to the choice of the threshold: all of

them are between 1.28 and 1.32, only slightly higher than ground truth (1.24).

The issue of mismatch between the populations for real choices and hypothetical

responses does not arise in our snack application because we recruited the participants who

make hypothetical choices from the same population as the participants who make real

choices. Nevertheless, for completeness, we replicate the analysis of this section for the

snack application in Appendix Figure A10.

C.9 Relation to other methods

C.9.1 Linear factor models and synthetic controls

Linear factor models can provide an alternative microfoundation for our estimators. Suppose

setting j under treatment state w induces the menu of motivational attribute bundles Θj(w).

The outcome and hypothetical evaluations are linear functions of these latent “factors”:

Yj(w) = Θj(w)ϕY + ϵY,j(w)

Hq
j (w) = Θj(w)ϕHq + ϵHq ,j(w) for r = 1, . . . , R

where Hj(w) = [H1
j (w), . . . , H

QH
j (w)] ∈ RQH , such that Hq

j (w) is the aggregate response to

the qth hypothetical question.47 Only Y and H are observed; latent variables include Θj(w)

(a row vector) and weights ϕY and ϕHq (column vectors). Factor models are also often

used to derive properties of synthetic control methods (Abadie, Diamond, and Hainmueller

2010). To see that the methods are similar, suppose j is the time period and Hq
j (w) is the

outcome for the qth “donor unit” in period j. In the synthetic control method, one regresses

the control potential outcome of the treated unit in period j, Yj(0), on contemporaneous

control potential outcomes of donor units, Hj(0), using periods where these outcomes are

observed (pre-treatment). This is analogous to Step 1 of our method using the observed

outcomes Yj(Wj), except that synthetic controls often restrict the coefficients to be positive

and to sum to 1. Synthetic control then uses the relationship to predict counterfactual

47For simplicity, we consider a model without fixed characteristics Xj; including them is straightforward.
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outcomes Ŷj(1−Wj) for the (post-treatment) periods where the control potential outcomes

are unobserved, and takes the difference Yj(1) − Ŷj(0) between observed and predicted

counterfactual, “synthetic,” outcome in post-treatment periods. Our Step 2 instead uses

the relationship to predict both unobserved outcomes and observed outcomes, taking the

average of the differences Ŷj(1)− Ŷj(0) across all observations. The difference between our

method and the synthetic control method in Step 2 arises primarily because our assumptions

allow us to model both treated and control potential outcomes (whereas the synthetic

control method only models control potential outcomes using the factor structure). This

difference also allows us to focus on different estimands, including the average treatment

effect.

C.9.2 Statistical surrogates

We assume that treatments affect the outcomes of interest only through psychological

motivations. Consequently, we treat hypothetical evaluations much like statistical surrogates

(Prentice 1989). This literature has recently received renewed interest in economics in

the context of estimating the effects of a treatment on long-term outcomes using short-

term outcomes as surrogates (Athey, Chetty, and Imbens 2020; Athey et al. forthcoming).

However, statistical surrogates are observed only for the realized treatment state, whereas

we observe hypothetical evaluations for all treatment states. This distinction leads to

different assumptions, estimators, and properties.

D Snack Demand Application

D.1 Groups

Group R (30 subjects): Subjects made real choices using the strategy method. Each item

appeared twice, once with a price of 25 cents and once with a price of 75 cents. In each

case, the subject had to decide whether to buy the item at the specified price. The subject

was told that, prior to stage 2 of the experiment, one choice problem would be selected

at random and implemented, with all equally likely. Any subject who opted to make a

purchase in the selected choice problem paid the indicated price out of the participation

fee, and was given the item as a snack during the waiting period. Any subject who opted

not to make a purchase in the selected choice problem received no snack and retained the

entire participation fee.
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Group H (2 sessions of 28 subjects each): Subjects considered the same choice problems

as in group R, but were aware that all of their decisions were hypothetical, and would not

be implemented.

Group M (35 subjects): Subjects considered the same choice problems as in group R,

but were told in advance that all but five decisions would be hypothetical. The five real

choices were interspersed among the hypothetical choices, but clearly indicated when they

were presented. For each subject, the five items were drawn at random from a larger group

of fifteen, selected for their representativeness,48 and each was offered at a price of 75 cents.

The purpose of this “mixed” group is to investigate the concern that the low probability

with which any given choice problem was implemented in group R influenced purchase

frequencies (e.g., if subjects treated the “real” choices as hypothetical).

Group HCT (28 subjects): Subjects performed that same task as in group H, but a “cheap

talk” script (as in Cummings and Taylor 1999) was added to the experimental instructions,

with the objective of inducing subjects to take the hypothetical choices more seriously, and

thereby minimize hypothetical bias.49

Group HL (28 subjects): Subjects performed the same task as in group H, but the

questions were modified to elicit the likelihood that the subject would buy the item using a

five-point scale (1=“very likely,” 3=“uncertain,” 5=“very unlikely”), rather than a yes/no

decision. The object of this group is to collect information that permits us to distinguish

between statements about which subjects are reasonably certain, and those about which

they are uncertain, analogously to Champ et al. (1997).

Group HV (28 subjects): Subjects performed the same task as in group HL, except

they were asked to indicate how they thought a typical undergraduate of their own gender

would answer. The object of these “vicarious” questions is to eliminate image concerns and

hence elicit more honest answers, analogously to Rothschild and Wolfers (2011b).

Group HWTP (28 subjects): Subjects expressed a hypothetical willingness to pay (WTP)

for all of the food items, each of which appeared only once. We employed this protocol

because much of the literature explores the accuracy of hypothetical WTPs rather than

binary choices. We used the same subjects for groups HWTP and L (below).50

48Specifically, the distribution of purchase frequencies (among Group R) for the 15 items mirrors the
distribution of purchase frequencies for all 189 items.

49We would like to thank Laura Taylor for generously reviewing and suggesting changes to the script, so
that it would conform in both substance and spirit with the procedure developed in Cummings and Taylor
(1999).

50We combined groups HWTP and L because each required subjects to make fewer responses (i.e., one
response for each item, rather than two as in group R and other hypothetical choice groups).
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Group SWB (28 subjects): For each potential outcome, subjects indicated their antici-

pated subjective well-being: “How happy would you be if you received this item (and ONLY

this item) to eat as a snack during the second part of this experiment, and a price of $X was

deducted from your show-up payment?” (with 1=“very unhappy” and 7=“very happy”).

Each item appeared twice, once with a price of 25 cents and once with a price of 75 cents.

Group N (28 subjects): Subjects indicated whether each potential outcome would elicit

social approval or disapproval: “Imagine that a subject in this experiment paid X cents to

eat the item as a snack during the second part of the experiment. Would the typical person

approve or disapprove of this purchase?” (with 1=“strong disapproval” and 7=“strong

approval”). These ratings are intended to capture social norms and image concerns.

Group L (28 subjects): Subjects provided liking ratings for each item: “How much

would you like to eat this item during the second part of the experiment?” (with 1=“not at

all” and 7=“very much”). Liking ratings are known to be correlated with choices. As noted

above, we used the same subjects for groups L and HWTP.

Group S (29-38 subjects):51 Subjects answered some or all of the following additional

questions concerning the food items (answers scaled 1-5): 1) “How much would you later

regret eating this snack?” 2) “How tempting is this item?” 3) “If you had no concerns about

diet or health, how much would you enjoy eating this item?” 4) “Is this item generally

good or generally bad for you?” 5) “Would others form a positive or negative impression

of you if they saw you eating this snack?” 6) “Are people likely to understate or overstate

their inclination to pick this snack?” The responses to these questions may be useful for

predicting choices because each question potentially measures factors related to the degree

of hypothetical bias. Questions 1 through 4 address the degree to which immediate gratifica-

tion conflicts with longer term considerations: we conjectured that hypothetical choices will

be more sensitive to long-term costs, and less sensitive to immediate gratification, than real

choices. Question 5 addresses concerns for social image: we conjectured that hypothetical

choices will be more sensitive to image concerns than real choices. Finally, question 6 may

determine whether subjects can provide subjective assessments of hypothetical bias that

51We collected 29 subject responses to questions 1, 5, and 6, and either 38 or 31 subject responses
(depending on the item) to questions 2, 3, and 4.The variation in sample sizes across items for questions 2, 3,
and 4, which occurred because of the manner in which the experiment evolved, is not ideal, but we doubt
it has a meaningful impact on our results. Initially we collected responses to questions 1, 5, and 6 from a
group of 9 subjects, and responses to questions 2, 3, and 4 from a group of 16 subjects, but concerning only
120 of the 189 items. We then collected responses to questions 1, 5, and 6 from a group of 20 subjects, and
responses to questions 2, 3, and 4 from a group of 22 subjects, concerning all 189 items. We then collected
responses to all six questions from a group of 9 subjects, but only for the 69 items for which we collected no
data from the first two groups.
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would be useful for the purpose of predicting choices, even if the sources of the bias remain

unclear.

D.2 List of detailed hypothetical evaluations

Detailed hypothetical evaluations include, first, a set of price-specific variables:

• the fraction of respondents choosing purchase in the hypothetical choice question

• the fraction of respondents choosing purchase in the hypothetical choice question

following the cheap talk script

• the average reported likelihood of purchasing (on a 5 point scale)

• the fraction of respondents stating a likelihood of at least each level (except for “very

unlikely,” which serves as the left-out baseline)

• the average vicarious choice likelihood (on a 5 point scale)

• the fraction of respondents stating a vicarious likelihood of at least each level (except

for “very unlikely”).

Second, variables that are not price-specific; for each of the six questions of Group S (see

Appendix D.1; an additional 6× 5 variables):

• the average response

• the fraction choosing at least 2, 3, 4, or 5 (ordered such that 5 is most desirable)

Finally, we include the average response for each of the questions asked of Groups SWB, N,

and L. For simulations with random treatment assignment, we also include the fraction of

respondents whose WTP exceeds the price. In total, this generates 45 or 46 base variables.

D.3 Assessing whether respondents take the “real choice” seriously

We added a “mixed” group, in which subjects were told that five of their choices would be

real (that is, one of the five would be chosen at random and implemented), and the rest

would be hypothetical. The real choices were clearly identified and interspersed among

the hypothetical ones. In that group, the implementation probability for each real choice

was 1 in 5 rather than 1 in 378. We elicited 175 real choices through this “mixed” group,
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pertaining to 15 distinct items (at a price of $0.75). We then pooled that data with 450

choices involving the same 15 items from the “real choice” group, and estimated a logistic

regression relating the purchase decision to a set of 15 product dummies as well as a “mixed

choice group” dummy. If the “real choice group” subjects viewed their choices as real, the

coefficient for the “mixed choice group” dummy should be zero; if they viewed those choices

as partially hypothetical, then the “mixed choice group” coefficient should be negative given

the documented direction of hypothetical bias. In fact, it was positive 0.11, with a standard

error of 0.21 (assuming independent observations). The difference is both statistically

insignificant and of an economically small magnitude (average marginal effect of less than 2

percentage points). The coefficient indicates that the purchase frequencies were, if anything,

slightly higher for real choices in the “mixed choice” group than in the “real choice” group,

which is inconsistent with the hypothesis that participants in the “real choice” group were

more inclined to view their choices as hypothetical than were participants in the “mixed

choice” group.

D.4 Quantifying “hypothetical noise”

To determine whether hypothetical purchase frequencies, absent sampling uncertainty, are

inherently more dispersed across items than real purchase frequencies, we perform the

following calculation. For ease of notation, consider all items at a single price.

The observed average hypothetical choice is Hj =
1
N

∑N
i=1Hij where N is the number of

subjects.

The population hypothetical purchase frequency of item j is defined as µj = E(Hij)

where the expectation is taken over subjects holding fixed item j, under random sampling

of subjects. Denote the average across items of the the population hypothetical purchase

frequencies by µ = E(µj).

We are interested in σ2
H = var(µj) across items j to measure the dispersion of population

hypothetical choice frequencies across items.

The sample variance of Hj across items j is s2H = 1
J−1

∑J
j=1

(
Hj − H̄

)2 where H̄ =
1
J

∑J
j=1Hj and J denotes the number of items in the sample. Treating both the selection of

items and the choice of subjects as random, and allowing for the possibility that the choices

of a randomly selected subject may be correlated across items, one can show that

E(s2H) = σ2
H + σ2

ω(1− ρH)
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where σ2
ω denotes the variance of the sampling error ωj = Hj − µj across items j, and ρH is

the correlation between the sampling errors of two randomly selected items.

Rearranging, we have

σ2
H = E(s2H)− σ2

ω(1− ρH)

To bound σ2
ω, note that by the law of total variance σ2

ω = var(ωj) = var(E(ωj | µj)) +

E(var(ωj | µj)). The conditional expectation in the first term is 0 because E(Hj | µj) = µj.

For the second term, note that for any given µj, N · Hj is binomial(µj,N), such that the

sampling error has variance var(ωj | µj) = µj(1−µj)/N . Then, E(µj(1−µj)/N) < µ(1−µ)/N
by Jensen’s inequality because the expression inside the expectation is concave.

Additionally, σ2
ω(1−ρH) < σ2

ω as long as ρH is positive. The correlation between sampling

errors across items is likely positive, e.g., because hungry subjects are more inclined to buy

all items. Then

σ2
H = E(s2H)− σ2

ω(1− ρH) > E(s2H)− σ2
ω > E(s2H)− E(µ(1− µ)/N)

such that s2H − H̄(1− H̄)/N is a reasonable estimate of a bound on σ2
H .

At the high price s2H = 0.016 and H̄ = 0.23, with N = 28, such that we bound σ2
H >

0.0095. At the low price s2H = 0.022 and H̄ = 0.39, with N = 28, such that we bound σ2
H >

0.013. Those lower bounds exceed, respectively, s2Y = 0.0083 > σ2
Y and s2Y = 0.0012 > σ2

Y

calculated analogously using average real choices Yj in place of hypothetical choices Hj.

Because the variances of average real choices across items, σ2
Y for high and low prices,

are likely considerably smaller than the latter figures (which include sampling error), we

conclude that σ2
H likely exceeds σ2

Y by a wide margin. Similarly, Carson, Groves, and List

(2011) found that the variance of valuations rises when choices become less consequential.

D.5 Overlap assessment

For all applications, we recommend producing overlap plots such as those shown in

Figure A3 to assess the potential stability of equation 1. The figure compares the four

hypothetical choice variables and the dichotomized WTP variable. The hypothetical choices

are predictors that may be suited to any application, while the WTP choice is mostly

applicable for studying price variation, or measuring “contingent valuation.” Part (a) of

the figure depicts the distributions of evaluations for the high price in purple and for the

low price in orange. The analyst can generate such overlap plots in any application, even

without observing ground truth.
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The upper left panel of part (a) focuses on the standard hypothetical choice variable.

The distribution of this variable with the low price overlaps the distribution with the high

price (almost) completely, and vice versa. Overlap is also reasonably complete for the

hypothetical choices based on the cheap-talk script, own choice likelihood (‘intensity’), and

vicarious choice likelihood.

In contrast, overlap for the dichotomized WTP choice variable is asymmetric, as shown

in the upper right panel. While the distribution of the WTP choice with the high price

largely overlaps the distribution at the low price, the opposite is not true. Consider the

region of this variable below 0.4: while about half of all snacks fall into this range when

priced at $0.75, there are no snacks in this range when priced at $0.25. As a result, if

we were to observe all real choices at the low price, predicting purchases at the high

price based on WTP choice would require extrapolation significantly beyond the range

of observation. Because overlap for the WTP variable is limited, we exclude it from our

multivariate specifications throughout.

Because our experiment reveals ground truth, we can further diagnose the overlap

problem with hypothetical WTP. Part (b) of the figure uses observations of actual demand

at both prices to show that the predictive relationship may be approximately linear for one

measure (standard hypothetical choice) but not for another (WTP choice, which exhibits

nonlinearity at lower values). In practice, if we observed all snacks at the low price, we

would only be able to plot the orange squares, from which we might infer the orange curves.

Because the low-price data does not span hypothetical WTP purchase frequencies below

0.4, it cannot reveal that the relationship becomes markedly non-linear over that range. We

can uncover this property in our experiment (for which we actually have real choices at

both prices) by inspecting the high-price data (the purple curve).

D.6 Price setting simulation

For the price setting simulation described in Section 3.3, we define profit as πj(w) =

(w · 0.75 + (1− w) · 0.25− c)Yj(w) for w ∈ {0, 1} for snack j and average profit as π̄(w∗) =
1
J

∑
j

[
(w∗

j − c)Yj(w
∗
j )
]
. We set marginal costs c so that it is optimal to sell half of the snacks

at the low price and half at the high price. Because the real demand response to tripling

prices is relatively small for most snacks, this procedure yields a negative value of marginal

cost (c = −1.25). For this value, 86 (out of 189) snacks are more profitable at the high

price, 91 are more profitable at the low price, and 12 are equally profitable at the two

prices. While a negative marginal cost is obviously implausible, the point of the simulation
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is simply to show how more accurate estimates of heterogeneous responses can impact

optimization. We assume the producer observes demand for snack j at a single price Wj,

predicts demand at the other price, Ŷj(1−Wj) = Yj(Wj)+ τ̂j · (1{w>Wj} − 1{w<Wj}), and sets

the price to maximize predicted profit: w∗
j = argmaxw (w · 0.75 + (1− w) · 0.25− c) · Ŷj(w).

Hence, profit depends on which price is observed, Wj, even when τ̂j does not, as is the case

for the “Infeasible: OLS” and “Diff. in Hyp. Choice” methods. For these two methods, we

show profit based on applying τ̂j to observed prices from the randomized design, mirroring

the other “Conventional Methods.”

D.7 Estimation under endogenous treatment assignment

We select a virtual price for each product based on respondents’ hypothetical willingness to

pay (WTP) for it, which is correlated with potential outcomes.52 Specifically, we set

Wjs = 1 {WTPj > ϵjs} ,

for item j in simulation s, where random shocks ϵjs are independent draws from a t-

distribution.53 We drop the observations of the real choices at the other price. This

procedure simulates an environment in which sellers use consumer surveys to assess the

attractiveness of their products when setting prices.54 Because the analyst typically would

not have access to those surveys, we do not include hypothetical WTPs in the vector Hj.

Table A3 reports estimates of treatment effects using various methods when treatment

assignment is endogenous. Column (1) repeats the ground truth estimate, that increasing

the price from $0.25 to $0.75 changes the proportion of subjects buying the average snack

by −0.075 percentage points.

The next two columns display estimates of treatment effects derived from regressions of

the outcome on the treatment that control for conventional covariates, but do not otherwise

address endogeneity. Column (2) reports an OLS regression. To allow for nonlinearities, we

52Appendix Figure A8 shows there is predictive relationship between each snack’s actual purchase frequen-
cies (potential outcomes) and the simulated probability it is observed at the high price. Alternative assignment
mechanisms yield qualitatively similar conclusions.

53We set the mean of this distribution to the median of WTP, and set the standard deviation to that of the
WTP distribution. We choose a fat-tailed distribution with 3 degrees of freedom so that even snacks with
extreme WTPs still have a reasonable (if small) chance of being observed at either price. We draw 10,001
simulations, using an odd number so that the median is well-defined.

54We gathered data on real choices and hypothetical evaluations by drawing multiple samples from the same
population. The respondents who provided the WTP data answered only one other hypothetical question.
When we drop responses to that question from the specification, the only difference is that the estimate in
Column (7) of Table A3 is -0.078 instead of -0.077.
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also use approximate residual balancing (ARB, Athey, Imbens, and Wager 2018) with the

same covariates as well as second-order terms and interactions (Column (3)).

For our method, we show results based on the same specifications of the prediction

model as in Table 2. For Column (4), we use all four hypothetical choice variables together

(but exclude WTP, which governs treatment assignment). For Column (5), we add the eight

physical characteristics. For both of these versions, we estimate the prediction model using

OLS. For Columns (6), (7), and (8), we include higher order terms as well as more detailed

hypothetical evaluations and estimate using ARB as described in Appendix C.3.

Controlling for conventional covariates in a regression of the outcome on the treatment

(Columns (2) and (3)) yields estimates in the neighborhood of −0.03. In contrast, the

multiple-covariate versions of our method yield estimates between −0.070 and −0.081. The

most accurate specifications include the four basic hypothetical choice variables with 2nd

order terms and interactions, as well as physical characteristics. Overall, estimates are

quite stable across specifications. We offer some formal explanations for this favorable

performance in Section 6.

E Microfinance Application

E.1 Validation

The design included several checks to ensure that respondents took the survey seriously.

First, we asked respondents for the world population and number of people living in poverty

(with free text answers); except for a handful of responses, all answers are reasonable.

Second, after reading the instructions, participants responded to two simple questions to

validate understanding of the study. In order to complete the study, participants had to

respond correctly. Third, after illustrating different features of loan postings, respondents

had to answer three further understanding questions about these features (multiple choice

with 3 options); 70% answered all questions correctly, and a majority of those answering

incorrectly had only one incorrect answer. After answering the understanding questions,

respondents were shown one additional screen for each incorrect answer, explaining

the correct answer and asking them to answer the remaining questions in the survey

more carefully. Fourth, responses to one question were incentivized. Fifth, in the final

demographic survey, respondents were asked to rate the following three statements along

the same Likert scale ranging from ‘Strongly Disagree’ to ‘Strongly Agree’: ‘I made each
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decision in this study carefully’, ‘I made decisions in this study randomly’, and ‘I understood

what my decisions meant.’ A careful respondent should agree with the first and last

statement but disagree with the middle; agreement or disagreement with all statements

reveals that a respondent made careless decisions. 75% of respondents agreed with the first

and last statement, and disagreed with the middle; 56% did so strongly.

F An explicit model of underlying processes

In this section, we provide an explicit model of underlying processes and clarify the nature

of our statistical assumptions within that context. It is worth emphasizing that we intend

this model only as an illustration of the types of processes for which our assumptions might

hold.

F.1 Treatments and choices

We consider applications with settings (indexed j = 1, . . . , J , representing treatment units

such as goods, geographical jurisdictions, or markets) in which a set of individuals (indexed

i) make choices, Yij, subject to the treatment assigned to that setting, Wj ∈ W. The set of

individuals may be identical across settings, overlapping between settings, or disjoint.55

The treatment assigned to setting j depends on its stable characteristics Xj and ηj,

which are respectively observable and unobservable to the econometrician, and typical

conditions ξtypij ∼ F typ
j that may vary across individuals. Thus, Wj = Wj(Xj,ηj, F

typ
j ).

Individual i’s choice in setting j depends on the treatment, stable characteristics of the

setting, Xj and ηj, and unobserved realized conditions ξij ∼ Fj that i experiences in setting

j. Thus, Yij = Y (Wj,Xj,ηj, ξij).56 We are primarily concerned with either binary choices

Yij ∈ {0, 1} or continuous choices Yij ∈ R.

Endogeneity may arise from two sources. First, unobservable factors ηj affect both

treatment and choices. Second, some components of the draws ξtypij may be unobserved,

55If we take the the set of individuals as given (i.e., condition on them) and consider randomness only from
treatment assignment and the realization of actual choices (as discussed below), identical or overlapping sets
of individuals do not necessarily introduce statistical dependence across settings.

56If the actor choosing the treatment can envision and account for variation in the potential realizations
of Fj , then in principle one should define F typ

j to account for that variation, rather than limiting it to the
distribution arising in a typical condition. To accommodate that alternative assumption, one would have to
elicit a distribution of responses for each individual rather than a typical response, which would likely prove
challenging. We therefore proceed under the assumption that the distribution of responses under typical
conditions captures the information relevant to treatment selection, and that the variability of the realized
distribution is of second-order importance with respect to selection.
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and there is a relationship between the distribution F typ
j that affects treatment and the

distribution Fj that affects choices.

The average outcome in setting j with treatment state w is

Y typ
j (w) =

∫
Y (w,Xj,ηj, ξ

typ
ij ) dF typ

j

under typical conditions, and is

Yj(w) =

∫
Y (w,Xj,ηj, ξij) dFj = Y typ

j (w) + ϵj(w)

under realized conditions, where the error term ϵj(w) reflects the difference between

distributions Fj and F typ
j . Since treatment assignment is based on choices under typical

conditions, it is natural to assume that this error is orthogonal to treatment, given the

determinants of treatment,

Wj ⊥⊥ {ϵj(w)}w∈W |
{
Y typ
j (w)

}
w∈W .

F.2 Motivations

We conceptualize choice as resulting from the psychological motivations, θij(w), that arise

for individual i in setting j under treatment state w:

Yij(w) = Y ∗(θij(w))

We assume that these motivations reflect the treatment as well as the observed and un-

observed characteristics of the individual and the setting: θij(w) = θ(w,Xj,ηj, ξij) or

θij(w) = θ(w,Xj,ηj, ξ
typ
ij ), depending on whether the motivations are formed under actual

or under typical conditions. At this level of generality, external conditions, including the

treatment, affect choices only indirectly through motivations. This exclusion restriction

should not be controversial, inasmuch as choices are governed by internal representations

of decision problems. It follows that

Y typ
j (w) =

∫
Y ∗(θij(w)) dF

typ,θ(w)
j ,

where F typ,θ(w)
j is the marginal distribution of θij(w) for setting j and treatment status w

implied by the distribution of ξtypj under typical conditions, F typ
j .
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For the sake of simplicity, we focus here on the case of binary treatments, Wj ∈ {0, 1},

and assume we can write the integral in the preceding equation as a stable linear function

of variables Dtyp,θ
j (w) describing features of the marginal distribution F

typ,θ(w)
j , such as

moments and percentiles. For now, we also assume Dtyp,θ
j (w) is perfectly observable for all

settings and treatment states.

Assume for the moment that we observe the potential outcomes Y typ
j (w) under typical

conditions in both treatment states. Suppose we regress Y typ
j (w) on the distributional

characteristics Dtyp,θ
j (w), pooling observations from all settings and treatment conditions,

and then use the estimated equations to compute fitted choices, Ŷj(0) and Ŷj(1). As long as

we select a functional specification with sufficient flexibility to accommodate the variation

in conditional expectations, the treatment effect under typical conditions, Y typ
j (1)− Y typ

j (0),

will equal the fitted treatment effect, Ŷj(1)− Ŷj(0).57

In practice, instead of Y typ
j (0) and Y typ

j (1), we observe Yj(Wj), the outcome for setting

j, under realized rather than typical conditions, and only for the treatment condition that

actually prevails. We can nevertheless employ our proposed method: that is, we can run

the same regression using the available data (i.e., regress Yj(Wj) on Dtyp,θ
j (Wj)), use it to

construct a fitted value and a prediction, Ŷj(1) and Ŷj(0), and then compute Ŷj(1)− Ŷj(0)

exactly as before. If the distributions of the covariates Dtyp,θ
j (Wj) and Dtyp,θ

j (1−Wj) have

sufficient overlap, we can proceed nonparametrically; otherwise, extrapolation requires a

correct functional form.

When we observe data only for the actual treatment states, those observations are

systematically selected. However, by assumption, the treatment depends only on the

features of the setting and typical conditions (Xj,ηj, F
typ
j ). Because these factors affect

outcomes only through θij(Wj), which we have assumed is observed, the treatment is

unconfounded. It follows that observing just one of the potential outcomes for each setting

does not cause systematic biases. Formally, the covariates Dtyp,θ
j (0) and Dtyp,θ

j (1) are

balancing scores in the sense of Rosenbaum and Rubin (1983).

The other difference between our procedure and the (infeasible) fitted treatment effect

procedure is that we use data on Yj(Wj) rather than Y typ
j (Wj). However, we will still

correctly estimate the relationship between Y typ
j (Wj) and Dtyp,θ

j (Wj) as long as the differ-

ences between (average) outcomes under realized and typical conditions, ϵj(Wj), are not

systematically related to the distributions of typical intentions Dtyp,θ
j (Wj). This assumption

is plausible if the difference reflects sampling, or if conditions modulate baseline intentions

57With multi-valued treatments, one could similarly fit the choices Yj(w) for all relevant treatment states
w ∈ W, and aggregate these predictions into a meaningful statistic such as an average derivative or elasticity.
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(and hence outcomes) in a similar way across settings. It is particularly natural for cases

involving linear relationships between choices and measured intentions: if ϵj(Wj) and

Dtyp,θ
j (Wj) were correlated, then presumably F typ

j would not reflect the most representative

conditions.

It follows that the differences between the our procedure and the fitted treatment effect

procedure are innocuous under reasonable assumptions. The requirements of the method

therefore largely boil down to whether it is possible to measure motivations sufficiently

well.

While motivations are necessarily measured imperfectly, that is not necessarily problem-

atic. Typically, we elicit motivations based on answers to hypothetical questions, Hkj(w),

from some set of individuals similar to but distinct from those who make actual choices

(indexed k). As discussed in the main text, we use a distinct sample to avoid real choices

contaminating hypothetical evaluations, or vice versa. We regress Yj(Wj) on Dtyp,H
j (Wj)

rather than Dtyp,Q
j (Wj); the procedure is otherwise the same. The validity of this ap-

proach depends on how hypothetical motivations for survey respondents relate to typical

motivations for decision makers.
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