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1 Introduction

In the Fall of 2021, US News and World Report released long-anticipated rankings of Amer-

ican middle and elementary schools, based on test scores and other measures of student

achievement. These and other school ratings, such as those provided by GreatSchools.org

and various state accountability offices, meet the demand for information on school qual-

ity from both parents and policymakers. The intense public interest in school performance

is manifest in the fact that real estate sites like Zillow and Redfin feature school ratings

prominently. School performance ratings appear to affect families’ choices of where to live

and where to enroll (Bergman and Hill, 2018; Hasan and Kumar, 2019), as well as district

decisions related to school closures, takeovers, and expansions (Rockoff and Turner, 2010;

Abdulkadiroğlu et al., 2016; Cohodes et al., 2021).

Do highly sought-after school ratings serve the public interest? Barnum and LeMee (2019)

and other journalists note the strong correlation between widely reported rankings and the

racial make-up of schools. In urban districts enrolling large numbers of non-white students,

highly-rated schools tend to enroll disproportionate shares of white and Asian students. For

example, the student body enrolled at US News’ top five New York City middle schools is

80 percent white and Asian, compared with the 35 percent white and Asian share in the

district as a whole.1 Statistics like this suggest that links between published school ratings

and racial composition may contribute to ongoing racial segregation (National Fair Housing

Alliance, 2006; Yoshinaga, 2016).

The correlation between school ratings and student race may reflect an uncomfortable

truth: Black and white students have long attended schools of differing quality, a fact

first brought to economists’ attention by Welch (1973). Improvements in the quality of

predominately-Black schools account for much of the reduction in Black-white wage gaps

seen in the 1950s through the 1970s (Card and Krueger, 1992a,b). This progress notwith-

standing, school attendance remains highly segregated, even within school districts (Monar-

rez, 2021). The higher achievement and graduation rates found at schools that enroll more

white students may reflect these schools’ greater impact on learning. Decades of argument

over access to selective enrollment high schools like the Boston Latin School and New York’s

Stuyvesant, Brooklyn Tech, and Bronx Science reflect this view (Jonas, 2021).

While the link between school rankings and schools’ racial make-up may reflect differences

in quality, this relationship may also be an artifact of selection bias. Higher-income and non-

minority students tend to have better educational outcomes for reasons other than the quality

1The list of top New York middle schools can be found at https://www.usnews.com/education/k12/
middle-schools/new-york. Demographic shares are calculated for the 2018-2019 school year using the
administrative data described below.
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of the schools they attend. School ratings that fail to adjust for this differential conflate

differences in school quality with differences in student composition; recent research suggests

such selection bias is pervasive (Angrist et al., 2017; Abdulkadiroğlu et al., 2020b). Rating

schemes that reward family background rather than educational effectiveness are likely to

direct households to low-minority rather than higher-quality schools, while penalizing schools

that improve achievement for less-advantaged groups.2

This paper investigates the relationship between widely-used public school ratings and

student racial composition, drawing broader implications for school assessment systems.

Our analysis focuses on two properties of a school rating: predictive accuracy, defined as

its (squared) correlation with a school’s causal effect on achievement, and racial imbalance,

defined by the regression of school ratings on white enrollment shares. If schools that enroll

more white students tend to be better, in the sense of having higher causal value-added, those

wishing to inform the public about school quality appear to face an unavoidable trade-off

between predicative accuracy and racial imbalance.

Our findings show that the trade-off between predictive accuracy and racial imbalance is

much smaller than the observed correlation between school ratings and racial composition

suggests. This conclusion is reached in two steps. First, we present a simple but novel char-

acterization of the potential link between predictive accuracy and racial imbalance. School

quality is not directly observed, so this trade-off formula is not immediately applicable. As

in Abdulkadiroğlu et al. (2017, 2020a), we surmount this identification challenge by using

the random variation in school attendance generated by centralized school assignment sys-

tems. Building on this framework and the instrumental variables value-added model (IV

VAM) approach from Angrist et al. (2021), we derive feasible estimators of the relationships

between causal value-added, racial composition, and conventional school ratings.

The IV VAM estimates are used to quantify the trade-off between predictive accuracy and

racial imbalance for middle school students in New York City (NYC) and Denver. Both dis-

tricts allocate seats using a centralized match that generates partially randomized variation

in school assignment, yielding the instruments needed for IV VAM. These two districts are

also central to discussions of segregation and school access. New York is important because

it’s one of America’s largest districts and because it has a long history of de facto segrega-

tion. Denver draws attention because it’s both a majority Hispanic district and a pioneer of

unified school enrollment, with one centralized match allocating seats at all publicly funded

schools (including charter schools).

School performance ratings based on achievement levels and on achievement growth are

2Compounding this concern, Hart and Figlio (2015) find that the enrollment decisions of highly educated
parents respond more to school quality ratings than do decisions of less-educated parents.
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both highly correlated with schools’ racial composition in NYC and Denver. Our analysis

substantiates the view that this correlation is largely an artifact of selection bias. Specif-

ically, IV VAM estimates reveal that causal value-added is statistically unrelated to racial

composition in both cities. The weak relationship between school value-added and racial

composition suggests, given our theoretical characterization, that adjusting school ratings to

reduce racial imbalance may come at little cost. We confirm this prediction by showing that

a conventional progress-based rating adjusted to be uncorrelated with race has predictive

accuracy no worse than (and sometimes better than) that of the corresponding unadjusted

measures. Moreover, in both NYC and Denver, this racially-balanced progress rating essen-

tially coincides with an optimal rating constructed to best predict causal value-added as a

function of conventional progress ratings, student race, and school sector.

The rest of this paper is organized as follows. Section 2 describes our school district

settings and data. Section 3 develops the IV VAM econometric framework as applied to the

trade-off between predictive accuracy and racial imbalance. Section 4 presents our findings

and Section 5 concludes with directions for further work.

2 Settings and Data

Our Denver analysis sample includes students applying for sixth-grade seats at any of the

Denver Public School (DPS) district’s middle schools between the 2012-2013 and 2018-2019

school years. Our NYC analysis sample includes sixth-grade applicants to NYC middle

schools for the 2016-2017 through 2018-2019 school years. We observe the school preferences

and priorities submitted by each applicant and the subsequent assignments generated by

each district’s centralized school assignment system. We also have data on subsequent school

enrollment, student demographics, and achievement scores.3 Denver outcomes are from the

Colorado Student Assessment Program (CSAP) and Colorado Measures of Academic Success

(CMAS) standardized tests. NYC outcomes come from New York state achievement tests.

The main dependent variable used in our analysis is the sum of a student’s scaled math

and ELA scores in sixth grade. We standardize this sum to have mean zero and standard

deviation one in each city, separately by year. Combining math and ELA scores helps to

align our outcome with ratings reported by GreatSchools.org, school districts, and states,

which also use both subjects.

Students in Denver rank up to five schools among those participating in the DPS unified

enrollment match. Priorities are assigned based on criteria like sibling status and the appli-

cant’s residential neighborhood. A deferred acceptance (DA) algorithm implemented with a

3The samples analyzed here are derived from those used in Angrist et al. (2021).
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single lottery tie-breaker assigns students to schools. NYC middle school applicants rank up

to 12 academic programs; schools may host more than one program. For the purposes of our

analysis, multiple programs are aggregated to the school level. The NYC match features a

variety of tie-breakers, with “unscreened” schools using a common random lottery number

and “screened” schools using non-random tie-breakers such as past test scores and grades.

As in the Angrist et al. (2021) study of school value-added, our empirical strategy lever-

ages the randomness embedded in each city’s school assignment mechanism. We follow

Abdulkadiroğlu et al. (2017, 2020a) in computing each applicant’s risk (i.e. probability) of

assignment to each school as a function of the applicant’s school preferences and priorities.

Assignment risk for Denver applicants is computed using the propensity score formula derived

by Abdulkadiroğlu et al. (2017). This formula is an analytical large-market approximation to

the school assignment propensity score for DA with a lottery tie-breaker.4 Assignment risk

for NYC applicants is computed as described in Abdulkadiroğlu et al. (2020a). NYC assign-

ment risk depends in part on bandwidths for screened school tie-breakers, similar to those

used in standard regression discontinuity designs.5 Score conditioning yields a stratified ran-

domized trial: conditional on assignment risk, school assignment is independent of applicant

characteristics, both observed and unobserved (this is an application of the Rosenbaum and

Rubin (1983) propensity score theorem).

Our analysis of school ratings focuses on two achievement-based measures of school qual-

ity meant to replicate widely-disseminated state ratings for Colorado and New York state.

The levels rating used here consists of the share of students scored as proficient on state as-

sessments, averaged across math and English language arts (ELA) tests. The progress rating

used here is based on year-to-year improvement in the average math and ELA achievement

percentiles of enrolled students. This mirrors the student growth percentiles reported by

many states and districts, as well as the GreatSchools.org Student Progress Rating. Our in-

terest in progress is partly motivated by previous findings that growth-type measures more

accurately predict school quality (Angrist et al., 2017, 2021). Ratings are computed sep-

arately for every school and year, and are standardized to be mean zero with a standard

deviation matching our estimate of the distribution of school value-added, detailed below.

Appendix A.1 describes the construction of these school ratings along with the procedures

used to standardize outcomes and ratings.

Appendix Table A1 describes the students and schools in the DPS and NYC samples,

separately for the full sample of enrolled DPS or NYC middle school students and for school

4The DPS score is computed using the formula score described in Abdulkadiroğlu et al. (2017).
5The NYC score is the local DA score described in Section 4.2 of Abdulkadiroğlu et al. (2020a). Band-

widths used here are computed as suggested by Calonico et al. (2019).
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match applicants with non-degenerate assignment risk. This sample of applicants, indexed

by i, have a propensity score pij strictly between zero and one for at least one school j.

As is typical of large urban districts, most DPS and NYC students are from disadvantaged

backgrounds, with over 70 percent eligible for a subsidized lunch. Roughly a quarter of

the students in each sample face some assignment risk. In both districts the demographic

characteristics, enrollment status, and baseline scores of applicants with assignment risk are

similar to those of the full sample of sixth-grade students.

Appendix Table A2 validates the natural experiment generated by centralized assignment

by comparing the characteristics of students offered seats at higher-rated and lower-rated

schools (these comparisons are based on the progress rating). Uncontrolled comparisons

show large differences in student characteristics between those offered seats at high- and

low-rated schools, but these differences vanish when we adjust for assignment risk. The fact

that risk adjustment balances observed characteristics by offer status suggests unobserved

characteristics are likely balanced as well.6

Figure 1 shows that both the levels and progress ratings are highly correlated with the

racial composition of schools. Specifically, the figure plots average school ratings computed

conditional on share white in bins of width 0.1, along with the corresponding regression line

fit to school-level data. Evidence of racial imbalance is especially strong for achievement

ratings. In NYC, a regression of levels ratings on share white yields a slope coefficient of

0.64 with a robust standard error of 0.02. The standard deviation of each rating equals

roughly 0.2, so this coefficient implies that a ten percentage-point increase in share white is

associated with a rating increase of about 0.3 standard deviations. The corresponding slope

is smaller for progress, falling to 0.20, but the relationship remains clear and statistically

precise. Evidence of racial imbalance for Denver is remarkably similar, with coefficients of

0.76 for the levels rating and 0.29 for the progress rating (both again precisely estimated).

3 Econometric Framework

The distinction between causal value-added and selection bias is cast here in terms of a

constant-effects causal model of education production. Consider a population of students,

each attending one of J schools in a district. Student i’s potential academic achievement at

6Balance checks regress student characteristics on the progress rating of the school where applicants are
offered a seat, along with a dummy indicating whether the applicant was offered a seat anywhere. Risk
controls consist of the expected progress rating and the probability of receiving any offer. The former is
computed as a score-weighted average of the school quality measure, following Borusyak and Hull (2020).
Appendix Table A3 further shows that differential attrition is unlikely a concern in this sample: follow-up
rates for key outcomes are largely unrelated to assigned school ratings, conditional on assignment risk.
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school j ∈ {1, ..., J}, denoted Yij, is given as:

Yij = βj + εi, (1)

where parameter βj ≡ E[Yij] is the contribution of attendance at school j to achievement.

We refer to βj as school j’s quality or value-added, reserving these terms for parameters

determining causal school effects. Random variable εi reflects other factors that influence a

student’s academic achievement, such as family background, motivation, and ability.

Equation (1) is a constant-effects model because εi is assumed to vary across students

but not schools. For any two schools, j and k, and any applicant, i, Yij −Yik = βj −βk gives

the causal effect of attending j rather than k. This constant-effects setup allows us to focus

the analysis on selection bias rather than treatment-effect heterogeneity.

The outcome observed for student i, denoted Yi, equals the potential outcome associated

with the school he or she attends. Let Dij be an indicator for student i’s enrollment at

school j. Then Yi can be written:

Yi =
∑
j

YijDij =
∑
j

βjDij + εi. (2)

The average outcome at school j is given by E[Yi|Dij = 1]. School attendance is not randomly

assigned, so these average outcomes may be a poor guide to causal effects. In particular, for

any j, E[Yi|Dij = 1] = βj + E[εi|Dij = 1], which differs from βj when schools are chosen

based on factors that are correlated with εi.

Schools are distinguished by the demographic composition of their student bodies as well

as by their value-added. Let Wj denote the share of students enrolled in school j designated

as white (or any other race). Specifically,Wj = E[wi | Dij = 1], where wi indicates student i’s

race. Correlation between share white and school ratings may arise because of a relationship

between Wj and βj, in which case the school rating accurately reveals a demographic gap

in school quality. Alternatively, this correlation may arise because Dij is correlated with

(wi, εi): a case of selection bias.

3.1 Racial Imbalance and Predictive Accuracy

Because βj is unobserved, educational authorities report an imperfect rating, Rj, computed

as a function of student achievement. As in earlier work on value-added (e.g., Angrist et al.

(2016, 2017)), we treat school-level characteristics (here ratings, quality, and share white)

as random variables. Our investigation of the relationship between school ratings and racial

composition considers the following two aspects of the distribution of school ratings:

6



Definition. The predictive accuracy of school rating Rj is defined as ρR =
Cov(βj ,Rj)

2

V ar(βj)V ar(Rj)
.

The racial imbalance of school rating Rj is given by IR =
Cov(Wj ,Rj)

V ar(Wj)
.

The predictive accuracy of a rating scheme is the r-squared from a regression of school quality

on ratings. Parents or policymakers seeking to identify effective schools should prefer ratings

with higher ρR. A rating scheme’s racial imbalance is the slope coefficient from a regression

of Rj on Wj. These features of a rating scheme are defined for any choice of Rj, so that Iβ

denotes the slope coefficient from a regression of βj on Wj.
7

Racially imbalanced rating schemes may favor schools with a higher share white regardless

of school quality. To ameliorate this, race-balanced ratings can be constructed as the residual

from a regression of Rj on Wj:

Rj = γ + λWj + R̃j. (3)

By construction, residual R̃j is uncorrelated with Wj, and thus has racial imbalance IR̃ = 0.

Although racial imbalance is easily eliminated, balance may come at the cost of reduced

predictive accuracy. To describe this trade-off, consider first the coefficients on ratings in

the following two regression models for school quality:

βj = µ+ φRj + νj, (4)

βj = µ̃+ φ̃Rj + τWj + ν̃j. (5)

Predictive accuracy is the r-squared for (4), and is therefore proportional to φ2, while φ̃

coincides with the coefficient from a regression of βj on the ratings residual, R̃j. As in

Angrist et al. (2021), both φ and φ̃ are forecast coefficients, quantifying the relationship

between school quality and imperfect ratings.

Suppose that schools with a higher share of white students tend to be ranked higher, as

in Figure 1. The two forecast coefficients defined above are then related as follows:

Proposition 1. Suppose IR > 0. Then, φ̃ > φ if and only if τ < 0.

Proof. By the omitted variables bias formula, φ = φ̃+ τ
Cov(Rj ,Wj)

V ar(Rj)
. So, φ̃ > φ if and only if

τ < 0 when Corr(Rj,Wj) > 0.

Proposition 1 shows that, given the gradient in Figure 1, race-adjusted ratings generate

a larger forecast coefficient whenever the coefficient on share white in the long forecast

regression (5) is negative. Negative τ corresponds to a scenario in which schools with a

7In practice the school quality distributions we study, like school ratings, are year-specific. See Appendix
A.1 for details.
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higher share white tend to have value-added below that of other schools with the same

rating. This pattern arises, for example, with a rating scheme that rewards share white in a

school system where race predicts εi but not school quality.

The effect of racial adjustment on predictive accuracy is given by the ratio of the forecast

coefficients defined by (4) and (5), along with τ and the racial imbalance in school quality:

Proposition 2. Suppose IR > 0. Then ρR̃ > ρR if and only if Iβ < −τ(φ/φ̃).

Proof. See Appendix A.2.

This result is especially sharp in a scenario where school quality is unrelated to race, so

Iβ = 0. In this case, as long as ratings are racially imbalanced (IR > 0) but still informative,

then τ < 0 and we are sure that ρR̃ > ρR.
8 More generally, Proposition 2 shows that when

τ is negative racial adjustment increases the predictive value of ratings as long as race is a

sufficiently weak predictor of school quality. In this case, Proposition 2 shows that racial

adjustment offers a free lunch: boosting predictive accuracy by eliminating racial imbalance.

An analyst solely interested in maximizing predictive accuracy might combine informa-

tion on racial make-up with ratings data, with a rating given by the fitted value from (5):

β∗
j = µ̃+ φ̃Rj + τWj. (6)

This best linear predictor of school quality may improve and cannot reduce predictive ac-

curacy relative to Rj and R̃j since the extra regressor, Wj, cannot reduce r-squared.9 The

question of whether β∗
j mitigates racial imbalance is addressed by the following result:

Proposition 3. The racial imbalance of the fitted values from regression (5) and the racial

imbalance of causal value-added coincide: Iβ∗ = Iβ.

Proof. Cov(Wj, ν̃j) = 0, so
Cov(Wj ,βj)

V ar(Wj)
=

Cov(Wj ,β
∗
j+ν̃j)

V ar(Wj)
=

Cov(Wj ,β
∗
j )

V ar(Wj)
.

This result formalizes the intuition that any racial imbalance in school quality is captured

by the coefficient on Wj in the model generating β∗
j .

In summary, Propositions 1 through 3 show that the trade-off between the predictive

power and racial imbalance of a school rating scheme depends on the two forecast coefficients

8If Iβ = 0 then τ is proportional to Cov(βj ,Wj −αRj) = −αCov(βj , Rj) where α is the slope coefficient
from a regression of Wj on Rj . When IR > 0, α > 0, so τ < 0 when φ ∝ Cov(βj , Rj) > 0.

9To see this for R̃j , write (6) as

β∗
j = µ̃+ φ̃R̂j + (φ̃R̃j + τWj).

The term in parentheses on the right-hand side is orthogonal to the balanced rating, R̃j , so the variance of

β∗
j exceeds the variance of R̃j .
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defined above, the sign of τ in equation (5), and the racial imbalance of value-added. The

challenge in applying these results is that the set of school quality parameters, βj, are

unobserved. This challenge notwithstanding, we can estimate the determinants of predictive

accuracy and racial imbalance for alternative ratings using the IV VAM empirical strategy

introduced in Angrist et al. (2021). Our application of IV VAM uses instrumental variables

to estimate the coefficients in (4) and (5), that is, φ, φ̃, and τ . IV VAM also yields a measure

of Iβ, the slope from a regression of school quality on share white, as well as an estimate of

the total variance of βj, which is used to calculate the predictive accuracy of each rating.

3.2 Identification and Estimation

The IV VAM approach starts with an augmented version of regression (5) that incorporates

additional predictors of school quality. The augmented model can be written:

βj =M ′
jψ + ξj. (7)

As detailed below, the vector Mj includes a constant, school ratings, share white, school

sector dummies, and outside estimates of value-added. Forecast regression (7) is a linear

projection, so E[Mjξj] = 0 by definition of the forecast residual ξj. Substituting this projec-

tion into the causal model (2) yields:

Yi =
∑
j

(M ′
jψ + ξj)Dij + εi

=M ′
j(i)ψ + ξj(i) + εi, (8)

where Mj(i) =
∑

j MjDij and ξj(i) =
∑

j ξjDij denote the school characteristics and forecast

residual for student i’s school, indexed by j(i). Equation (7) is a regression model, but

equation (8) need not be: selection bias makes it likely that elements of Mj(i) are correlated

with εi. IV VAM therefore uses centralized school assignment offers, denoted Zij for school

j, as instruments for the school characteristics in Mj(i).

The IV VAM estimating equation includes a vector of individual-level control variables,

Xi, including school assignment risk and other applicant characteristics. Control for the

latter isn’t necessary for identification, but enhances precision.10 Let θ denote the coefficient

from a regression of the composite residual ξj(i) + εi on Xi, with associated residual ηi. The

10Additional controls are functions of 5th grade math and ELA scores, the demographic variables listed
in Appendix Table A1, and year fixed effects interacted with lagged scores and demographic characteris-
tics. Risk controls for NYC include local linear functions of the relevant screened-school tie-breakers; see
Abdulkadiroğlu et al. (2020a) for details.
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IV VAM estimating equation can then be written

Yi =M ′
j(i)ψ +X ′

iθ + ηi, (9)

where E[Xiηi] = 0 by definition of θ.

The addition of risk controls to the covariate vector in a linear model is sufficient to ensure

offer instruments Zij are uncorrelated with unobserved applicant background and ability, εi.

Importantly, however, residual ηi in (9) depends on a school component, ξj(i), as well as

applicant heterogeneity, εi. The former reflects determinants of value-added not explained

by the included endogenous variables, and can be thought of as arising from violations of the

IV exclusion restriction that underpins identification in this context. Angrist et al. (2021)

formulates sufficient conditions for IV VAM estimates to be consistent in the face of such

violations. Intuitively, these conditions require the relationships between individual school

offers and residual school quality to average to zero over schools.

IV exclusion restrictions are made more plausible by including strong predictors of school

quality in Mj. Intuitively, adding such mediators reduces and perhaps even eliminates vari-

ation in residual school quality, ξj. In our implementation, Mj includes both the levels and

progress ratings, share white, a dummy for charter schools (in Denver), a dummy for screened

schools (in NYC), and risk-controlled value-added (RC VAM) school quality estimates. As

detailed in Angrist et al. (2021), RC VAM uses ordinary least squares (OLS) to estimate

value-added in a regression model with controls for demographic characteristics, lagged test

scores, and assignment risk. RC VAM appears to predict school quality in Denver and New

York well, supporting IV VAM exclusion restrictions.

The parameters in (9) are estimated by two-stage least squares (2SLS), separately for

each city. This yields estimates of ψ in equation (7), defined as the regression of βj on the full

vector of school characteristics,Mj. Coefficients in shorter projections of βj on subsets of the

mediators can then be generated by application of the omitted variables bias formula. For

example, the coefficients in (5) are obtained from a partition such that Mj = (M ′
1j,M

′
2j)

′,

with M1j = (1, Rj,Wj)
′ and M2j collecting the other elements of Mj and ψ = (ψ′

1, ψ
′
2)

′

partitioned conformably. We then have:

(µ̃, φ̃, τ)′ = ψ1 + E[M1jM
′
1j]

−1E[M1jM
′
2j]ψ2. (10)

This two-step approach uses 2SLS estimates of (9) as the common foundation for forecast

regressions of any shorter length. As a by-product, 2SLS estimation of (9) also generates

an estimate of the variance of βj, needed to compute predictive accuracy. (In practice, the

variance of βj is well-approximated by the variance of the estimated M ′
jψ.)
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4 Results

School quality is unrelated to share white in the sample of New York City middle schools.

This can be seen in the first column of Panel A in Table 1, which reports estimates of the

projection of βj on share white and a screened school indicator for schools in NYC. The full

set of IV VAM estimates underlying these results appears in Appendix Table A6.11 Both

of these coefficient estimates are small and neither is significantly different from zero. The

estimates reported in column 3, by contrast, show that share white and screened school

status are highly predictive of school ratings based on test score levels—a pattern consistent

with Figure 1. Together, the results in columns 1 and 3 imply that the strong relationship

between school ratings and share white in NYC reflects selection bias.12

Levels ratings are weakly related to school quality in NYC. Specifically, the estimated

forecast coefficient in column 2 of Table 1 shows that a one standard deviation improvement

in test score levels is associated with only a 0.21 standard deviation increase in causal value-

added.13 Column 4 reports estimates of φ̃ and τ in forecast equation (5), computed by

adding share white and screened-school status to ratings as predictors of school quality.

Estimated coefficients on the screened-school dummy and share white are both negative and

significantly different from zero. This conforms to the pattern discussed in the previous

section: schools that enroll more white students, as well as highly sought-after screened

schools, are of lower quality than other similarly-rated schools.

As can be seen in column 5 of Table 1, progress ratings predict NYC school quality with

a forecast coefficient of about 0.77, a marked improvement relative to the levels rating. But

progress ratings are compromised by selection bias too. Column 6 in Panel A reports an

estimated 0.22 coefficient for share white in a regression of progress on share white and a

screened-school dummy. As can be seen in column 7, when quality is predicted by progress

and share white, the progress coefficient remains high, but share white is again negatively

related to quality. Like the estimates in column 4, this pattern reflects the fact that quality

and share white are unrelated, so that disproportionately white and screened schools are, on

11The first-stage F -statistics for these estimates are close to the rule-of-thumb threshold of 10 commonly
used to diagnose weak instruments. But the 2SLS estimates in the table are close to estimates from a
just-identified IV estimator, displayed nearby, which yields considerably higher first-stage F statistics. The
just-identified estimator replaces individual school offer dummies in the instrument list with values of the
mediator at the offered school as instruments, one for each mediator.

12Appendix Tables A4 and A5 report results from models that replace share white with share white or
Asian and with the share of students eligible for a free or reduced price lunch. These variations yield results
similar to those in Table 1.

13As detailed in Appendix A.1, each rating is scaled to have the same standard deviation as estimated
for value-added, so that the forecast coefficient can be interpreted as the standard deviation gain in causal
value-added associated with a one standard deviation increase in the rating.
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average, over-rated.

Analogous results for Denver, reported in Panel B of Table 1, are qualitatively similar to

those for New York, though these smaller-district estimates are less precise. Column 1 shows

a modest positive but insignificant relationship between school quality and share white, while

Denver’s many charter schools generate a precisely estimated achievement gain of about 0.12

standard deviations. As in NYC, race predicts levels more than progress (compare columns

3 and 6 in Panel B), but both predictive relationships for ratings are strong. Also as in

NYC, multivariate school quality projections for Denver yield negative (though relatively

imprecise) estimated coefficients on share white when ratings are included as an explanatory

variable; these results are reported in columns 4 and 7 of Panel B.

Figure 2 highlights implications of the results in Table 1 by plotting alternative ratings

against share white in both NYC and Denver schools. The figure shows the estimated

conditional expectation function (CEF) for three ratings, computing in 10-point bins, along

with a regression fit to the underlying school-level data. As seen previously in Figure 1,

the relationship between the progress rating and share white for NYC schools is clearly

upward-sloping (the y-axis range in Figure 2 is half that in the first figure). Race-balanced

progress, computed as the residual from a regression of progress on share white, generates

a flat regression fit by construction. The best linear predictor of NYC school quality given

the progress rating, share white, and screened school status (the fitted value from the model

generating column 7 of Table 1) yields a CEF close to that for race-balanced ratings.

IV VAM estimates suggest ratings for Denver are less compromised by selection bias than

the corresponding estimates for New York, with larger forecast coefficients for both levels

and progress. Share white is also more strongly predictive of progress ratings in Denver than

in NYC (compare the estimates for the two cities in column 6 of Table 1). Consistent with

these estimates, the CEF for the best linear predictor of Denver school quality plotted in

Panel B of Figure 2 is weakly dependent on share white. Even so, the best linear predictor

for Denver school quality rises much less steeply in share white than does the CEF of the

raw Denver progress rating.

Table 2 summarizes this investigation with estimates of predictive accuracy (ρR) and

racial imbalance (IR) for alternative ratings. In both NYC and Denver, progress ratings are

far more accurate than levels ratings. Progress ratings are also much more weakly correlated

with share white than levels ratings. This improvement notwithstanding, progress remains

substantially correlated with race. Race-balanced ratings boost predictive accuracy of NYC

school quality, while leaving predictive accuracy for Denver schools virtually unchanged. The

best linear predictor of school quality given progress ratings and share white has predictive

accuracy only slightly better than that of race-balanced progress. This is explained by the

12



fact that the best linear predictor of school quality depends little on race, if at all.

5 Conclusions

The oft-noted correlation between school ratings and racial composition raises the concern

that such ratings promote segregation and penalize schools that serve minority students. At

the same time, demographic differences in ratings may also signal important disparities in

school quality. Our analysis uses the random assignment embedded in centralized assignment

mechanisms to disentangle the relationship between school ratings, school quality, and race.

We show that for middle schools in Denver and New York City, the fact that schools with

more white students are highly rated reflects selection bias rather than educational quality.

As a result, ratings purged of their correlation with share white predict school quality as

well or better than standard measures based on achievement levels and progress.14

Denver and NYC share important features with other large urban districts, suggesting

the patterns uncovered here may not be unique to these cities. We hope to explore the

trade-off between predictive accuracy and racial imbalance elsewhere in the near future.

Our analysis leaves open the question of how racially-balanced school ratings might affect

household decision-making. Households appear to respond to information about school per-

formance (Hastings and Weinstein, 2008; Bergman and Hill, 2018; Bergman et al., 2020;

Houston and Henig, 2021; Campos and Kearns, 2021). Credible racially-balanced quality

information may therefore increase the demand for schools with lower white enrollment. At

the same time, school choice may respond more to peer characteristics than to value-added

(Rothstein, 2006; Abdulkadiroğlu et al., 2020b). A gauge of the relative importance of ob-

jective quality measures and peer characteristics in the school choice nexus remains a high

priority for future work.

14Other efforts in this direction, inspired by similar concerns with possibly misleading racial imbal-
ance, include the GreatSchools equity rating (https://www.greatschools.org/gk/ratings-methodology/
#methodology-equity-rating).
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Figure 1. Levels, Progress, and Race

A. NYC

Levels Slope Coefficient (SE): 0.64(0.02)
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B. Denver

Levels Slope Coefficient (SE): 0.76(0.03)
Progress Slope Coefficient (SE): 0.29(0.04)-.2
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Notes: These binned scatterplots depict average levels and progress ratings conditional on the share of
students at a school that are white. Bins are defined by 0.1 increments in share white with the last bin
grouping schools with share white ≥ 0.6. The levels rating is the mean share of students deemed proficient
in math and ELA, based on sixth-grade state assessment scores. The progress rating is computed using the
student growth percentile models described in Appendix A.1. Ratings are mean-zero and scaled to have
standard deviation equal to the standard deviation of school quality across schools in the district, which
equals roughly 0.2 in both cities.
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Figure 2. Adjusted Ratings and Race

A. NYC
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B. Denver
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Notes: These binned scatterplots depict the relationship between three sorts of progress ratings and the
share of students at a school that are white. Bins are defined by 0.1 increments in share white with the last
bin grouping schools with share white ≥ 0.6. Ratings are mean-zero.
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Table 1. Projections of School Quality and School Ratings on School Characteristics

VA 
projection 
(derived)

VA 
projection 
(derived)

Rating 
projection 

(OLS)

VA 
projection 
(derived)

VA 
projection 
(derived)

Rating 
projection 

(OLS)

VA 
projection 
(derived)

Dependent variable:
School 

quality (β)
School 

quality (β)
Test score 
levels (R)

School 
quality (β)

School 
quality (β)

Test score 
progress (R)

School 
quality (β)

(1) (2) (3) (4) (5) (6) (7) 

Predictors

Test score levels 0.208 0.417
(0.057) (0.064)

Test score progress 0.773 0.809
(0.041) (0.041)

Screened school dummy -0.052 0.100 -0.094 -0.034 -0.024
(0.037) (0.014) (0.037) (0.016) (0.034)

Share white -0.034 0.683 -0.318 0.221 -0.213
(0.065) (0.024) (0.073) (0.025) (0.061)

N (school-year)

Predictors

Test score levels 0.506 1.29
(0.138) (0.239)

Test score progress 0.908 0.977
(0.096) (0.113)

Charter school dummy 0.120 0.083 0.014 0.121 0.002
(0.037) (0.010) (0.046) (0.018) (0.041)

Share white 0.179 0.792 -0.841 0.364 -0.177
(0.137) (0.028) (0.232) (0.045) (0.136)

N (school-year)

Panel A. NYC

1501
Panel B. Denver

373

Back and forth regressions (dropping zero risk dummies)

Test score levels Test score progress

Notes: Estimates in columns 1-2, 4-5, and 7 are from projections of school quality on the predictors listed at
left. These estimates are derived from the long IV VAM coefficient estimates reported in A6, computed via
the omitted-variables bias formula as described in the text. Estimates in columns 3 and 6 are from models
that predict ratings. These come from OLS regressions of school ratings on share white and a school sector
dummy. Robust standard errors are reported in parentheses.
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Table 2. Predictive Accuracy and Racial Imbalance

Predictive 
accuracy ( )

Racial 
imbalance ( )    

Predictive 
accuracy ( )

Racial 
imbalance ( )    

(1) (2) (3) (4) 

1. Test score levels 0.043 0.697 0.256 0.763
(0.025) (0.028)

2. Test score progress 0.597 0.216 0.825 0.323
(0.026) (0.045)

3. Race-balanced progress 0.632 0.000 0.835 0.000
- -

4. Best linear predictor 0.635 -0.041 0.859 0.138
(0.065) (0.136)

drop zero risk dummies

NYC Denver

Notes: This table reports predictive accuracy (ρR) and racial imbalance (IR) for alternative school ratings.
Predictive accuracy is derived IV VAM regressions of causal school quality on ratings. In rows 1-2 and 4,
racial imbalance is the bivariate OLS coefficient from a regression of ratings on share white. Test score levels
and progress are estimated as described in Appendix A.1. Best VA prediction is the fitted value obtained
from model (6). Race-balanced progress comes from the residuals of a regression of progress on share white.
Robust standard errors reported in parentheses.
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A Appendix

A.1 School Quality Measures

The measures used here are motivated by the “test score” and “progress” ratings published

by GreatSchools.org. The test score rating is a levels measure that uses student proficiency

rates as inputs. The progress rating uses state-reported estimates of student growth as

inputs. Our progress ratings are based on models underlying the “growth” rating reported

by Colorado and the student growth percentile estimates reported by New York.15

Our computation differs in a few ways from GreatSchools and state ratings because we

are interested in sixth-grade ratings for specific years and outcomes; it’s sometimes unclear

which grades and years were used to compute published ratings. Also, GreatSchools rat-

ings transform state-reported inputs into a discrete 1-10 rating; we omit this step. Like

GreatSchools ratings, our computation is year-specific.16

Our levels rating averages the share of students who are proficient in math and the share

of students who are proficient in English Language Arts (ELA), as measured by sixth-grade

achievement tests. Formally, this is Rj = (E[qmi | Dij = 1] + E[qei | Dij = 1])/2, where

qsi indicates a student who is deemed proficient in subject s (math or ELA). Students are

deemed proficient when their scores cross state-determined cutoffs.

Our progress rating is derived from estimates of student growth percentile models. Nei-

ther of these procedures involve simple difference-based measures of growth, rather they

adjust for lagged achievement. Nevertheless, the resulting measures are often called a “stu-

dent growth percentile,” or SGP (Castellano and Ho, 2013). The underlying models are

described in New York State Education Department (2020) for NYC and Colorado Depart-

ment of Education (2019) for Colorado.

For purposes of our analysis, NYC growth percentiles are computed by first estimating

the regression:

Y s
i = δs +X ′

iΓ
s + ηsi ,

for each subject s ∈ {m, e}. Here Xi is a control vector including 3rd, 4th, and 5th grade

achievement scores. Missing lagged scores are coded to zero, with indicators for missing

scores also included in Xi. From these regressions we compute the percentile rank, rsi , of the

residual ηsi in the city distribution of students. The progress rating is then the mean of the

15These ratings can be found through Colorado’s Performance Snapshot (https://www.cde.state.co.
us/code/accountability-performancesnapshot) and the “ACC EM Growth” table in New York’s Report
Card Database (https://data.nysed.gov/downloads.php).

16See https://www.greatschools.org/gk/ratings-methodology/ for more information on the
GreatSchools ratings computation.
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school average math and ELA ranks: Rj = (E[rmi | Dij = 1] + E[rei | Dij = 1])/2.

Student growth percentiles for Denver are computed using quantile regression. This

procedure begins by using quantile regression to fit conditional quantiles as a function of

the control vector, Xi, listed above. Quantile regression coefficients are computed for every

percentile from 1-99. The Denver percentile rank is the quantile value, τ , that minimizes

Y s
i −X ′

iΓ̂
s
τ , where Γ̂

s
τ is the estimated vector of quantile regression coefficients for percentile

τ . As in NYC, subject-specific results are averaged to produce a single progress rating for

each school and year.

Standardization of Outcomes and Ratings

The primary outcome for our analysis is constructed by first summing each student’s scaled

math and ELA sixth-grade test scores, then standardizing this sum to have mean zero and

standard deviation one, separately by city and year. Year-specific school value-added, βj, is

therefore measured in units of student-level test score standard deviations.

To facilitate comparisons of forecast coefficients across ratings, alternative ratings are

scaled to have the same standard deviation as causal value-added. Specifically, we estimate

the IV VAM model (9) and use the results to form an estimate σ̂β of the standard deviation

of causal value-added, as described in Angrist et al. (2021). For each year, we then multiply

each rating (deviated from its mean) by the ratio of σ̂β to its own standard deviation. This

results in a rating with zero mean and standard deviation σ̂β. The forecast coefficients in

Table 1 can therefore be interpreted as gains in standard deviations of causal value-added

associated with a one standard-deviation increase in school ratings. A rating that accurately

orders schools according to causal value-added should be expected to generate a forecast

coefficient of roughly unity. It’s worth noting, however, that the forecast coefficient may not

be exactly one even for a rating that ranks schools exactly in order of βj, since value-added

and school ratings are measured in different units, even after rescaling.

A.2 Proof of Proposition 2

Predictive accuracy for Rj and R̃j is given by ρR =
φ2V ar(Rj)

V ar(βj)
and

ρR̃ =
φ̃2V ar(R̃j)

V ar(βj)
=
φ̃2 (V ar(Rj)− λ2V ar(Wj))

V ar(βj)
,

respectively, where the latter expression uses fact that the fitted values and residuals in

regression (3) are uncorrelated. The change in r-squared after residualizing is therefore
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proportional to

(ρR̃ − ρR)V ar(βj) = φ̃2
(
V ar(Rj)− λ2V ar(Wj)

)
− φ2V ar(Rj)

= (φ̃− φ)(φ̃+ φ)V ar(Rj)− φ̃2λ2V ar(Wj)

= −τλV ar(Wj)

V ar(Rj)
(φ̃+ φ)V ar(Rj)− φ̃2λ2V ar(Wj)

= −
(
τ(φ̃+ φ) + φ̃2λ

)
λV ar(Wj), (11)

using the fact that φ̃− φ = −τλV ar(Wj)

V ar(Rj)
by the proof to Proposition 1 and the definition of

λ =
Cov(Wj ,Rj)

V ar(Wj)
. With Cov(Wj, Rj) > 0, and hence λ > 0, equation (11) shows that ρR̃ > ρR

if and only if

τ + φ̃λ < −τ φ
φ̃
. (12)

By the omitted variables bias formula τ + φ̃λ =
Cov(Wj ,βj)

V ar(Wj)
, completing the proof. □
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A.3 Appendix Figures and Tables

Table A1. Descriptive Statistics

All With risk All With risk
(1) (2) (3) (4) 

Demographics

Hispanic 0.413 0.445 0.592 0.581

Black 0.231 0.254 0.125 0.140

White 0.154 0.110 0.210 0.201

Female 0.494 0.484 0.493 0.494

Free/reduced price lunch 0.731 0.763 0.723 0.703

Special education 0.201 0.215 0.102 0.087

English language learner 0.113 0.113 0.393 0.416

Baseline scores
Math (standardized) 0.000 -0.063 0.000 0.077

ELA (standardized) 0.000 -0.055 0.000 0.070

Enrollment
Screened 0.067 0.044 0.000 0.000

Lottery 0.933 0.956 1.000 1.000

Share non-compliant 0.268 0.324 0.300 0.291

Share not offered 0.149 0.134 0.182 0.048

Students 184,760 46,099 37,089 8,100

Schools 624 594 80 75

Lotteries (schools with risk) 448 67

Descriptive Statistics

NYC Denver

Notes: This table describes the Denver and NYC student samples used to compute ratings and estimate
school quality. Column 1 show statistics for NYC middle school students enrolled in 6th grade in the 2016-
17 through 2018-19 school years. Column 3 shows descriptive statistics for Denver students enrolled in 6th
grade in the 2012-13 through 2018-19 school years. Columns 2 and 4 describe the corresponding samples of
applicants with assignment risk at at least one school. Baseline characteristics and lagged scores are from 5th
grade. Baseline scores are standardized to be mean zero and standard deviation one in the student-level test
score distribution, separately by year. Screened schools are defined as schools without any lottery programs.
The share non-compliant is defined as the proportion of students who enroll other than where offered a seat;
this includes students receiving no offers.



Table A2. Statistical Tests for Balance

Uncontrolled Controlled Uncontrolled Controlled
(1) (2) (3) (4) 

Demographics
Hispanic
Offered SGP -0.202 0.030 -0.747 -0.043

(0.008) (0.028) (0.020) (0.070)

Any offer -0.012 -0.011 -0.030 -0.009
(0.003) (0.009) (0.007) (0.029)

Black
Offered SGP -0.660 -0.004 0.040 0.059

(0.007) (0.025) (0.014) (0.048)

Any offer -0.117 0.008 -0.040 -0.031
(0.003) (0.008) (0.005) (0.022)

White
Offered SGP 0.440 -0.007 0.679 -0.065

(0.006) (0.016) (0.019) (0.061)

Any offer 0.061 0.005 0.083 0.072
(0.002) (0.005) (0.005) (0.019)

Female
Offered SGP 0.017 0.024 -0.077 0.069

(0.009) (0.029) (0.021) (0.070)

Any offer 0.020 -0.020 0.009 -0.045
(0.003) (0.009) (0.007) (0.031)

Free/reduced price lunch
Offered SGP -0.333 0.037 -0.800 0.054

(0.007) (0.023) (0.020) (0.067)

Any offer -0.077 -0.005 -0.074 -0.042
(0.003) (0.007) (0.005) (0.025)

Special education
Offered SGP -0.111 -0.010 -0.061 -0.012

(0.007) (0.023) (0.012) (0.038)

Any offer -0.039 0.007 -0.001 0.031
(0.003) (0.008) (0.004) (0.019)

English language learner
Offered SGP 0.021 0.023 -0.400 0.002

(0.005) (0.019) (0.019) (0.067)

Any offer -0.016 0.001 -0.071 -0.087
(0.002) (0.006) (0.007) (0.031)

Baseline scores
Math (standardized)
Offered SGP 1.25 -0.005 1.36 0.175

(0.016) (0.052) (0.042) (0.142)

Any offer 0.273 -0.030 0.222 -0.028
(0.006) (0.017) (0.012) (0.057)

ELA (standardized)
Offered SGP 0.939 -0.041 1.18 0.097

(0.016) (0.054) (0.041) (0.138)

Any offer 0.256 -0.009 0.190 -0.037
(0.006) (0.017) (0.013) (0.056)

N 184,760 46,099 37,089 8,100

Statistical Tests for Balance

NYC Denver

Notes: This table reports balance statistics, estimated by regressing baseline covariates on the 
estimated SGP of the offered school and an indicator for any offer. Columns 2 and 4 control for 
expected SGP, any offer risk, and running variable controls in NYC samples. Robust standard errors 
are reported in parentheses.

Notes: This table reports balance statistics, estimated by regressing baseline covariates on the estimated
student growth percentile of the offered school and an indicator for any offer. Columns 2 and 4 control for
expected student growth percentile, any offer risk, and running variable controls in the NYC sample. Robust
standard errors are reported in parentheses.
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Table A3. Tests for Differential Attrition

NYC Denver
(1) (2) 

Offered SGP 0.032 0.026
(0.019) (0.043)

Any offer 0.037 0.027
(0.006) (0.019)

N 53,098 9,234
Mean follow-up rate 0.898 0.896

Differential Attrition

Notes: This table reports differential attrition estimates. The regression 
reported in column 1 regresses an indicator for follow-up in the sample on the 
estimated conventional SGP of the offered school, controlling for expected 
SGP and running variable controls in the NYC sample. The regression in 
column 2 additionally regresses follow-up on an indicator for any offer and an 
any offer risk control. Robust standard errors are reported in parentheses.

Notes: This table reports differential attrition estimates. Estimates in column 1 are from regressions of a
follow-up indicator on the estimated student growth percentile of the offered school, controlling for expected
student growth percentile and running variable controls in the NYC sample. Robust standard errors are
reported in parentheses.
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Table A4. Projections of School Quality and School Ratings on Share White and Asian

VA 
projection 
(derived)

VA 
projection 
(derived)

Rating 
projection 

(OLS)

VA 
projection 
(derived)

VA 
projection 
(derived)

Rating 
projection 

(OLS)

VA 
projection 
(derived)

Dependent variable:
School 

quality (β)
School 

quality (β)
Test score 
levels (R)

School 
quality (β)

School 
quality (β)

Test score 
progress (R)

School 
quality (β)

(1) (2) (3) (4) (5) (6) (7) 

Predictors

Test score levels 0.198 0.643
(0.060) (0.078)

Test score progress 0.774 0.856
(0.041) (0.042)

Screened school dummy -0.050 0.097 -0.113 -0.038 -0.018
(0.037) (0.011) (0.037) (0.016) (0.034)

Share white and Asian -0.052 0.522 -0.387 0.197 -0.220
(0.047) (0.012) (0.064) (0.016) (0.047)

N (school-year)

Predictors

Test score levels 0.524 1.34
(0.137) (0.261)

Test score progress 0.906 0.968
(0.098) (0.110)

Charter school dummy 0.122 0.084 0.009 0.121 0.005
(0.036) (0.010) (0.046) (0.018) (0.039)

Share white and Asian 0.178 0.761 -0.844 0.350 -0.161
(0.127) (0.025) (0.233) (0.043) (0.123)

N (school-year)

Back and forth regressions - white and Asian (drop zero risk dummies)

Test score levels Test score progress

Panel A. NYC

1501
Panel B. Denver

373

Notes: This table reports estimates from projections of levels and progress school ratings and causal value-
added on school characteristics, including the share white and Asian. The models and derivation procedure
used to compute these estimates are as the estimates in Table 1. Standard errors are reported in parentheses.
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Table A5. Projections of School Quality and School Quality on Share Disadvantaged

VA 
projection 
(derived)

VA 
projection 
(derived)

Rating 
projection 

(OLS)

VA 
projection 
(derived)

VA 
projection 
(derived)

Rating 
projection 

(OLS)

VA 
projection 
(derived)

Dependent variable:
School 

quality (β)
School 

quality (β)
Test score 
levels (R)

School 
quality (β)

School 
quality (β)

Test score 
progress (R)

School 
quality (β)

(1) (2) (3) (4) (5) (6) (7) 

Predictors

Test score levels 0.219 0.480
(0.057) (0.069)

Test score progress 0.779 0.797
(0.041) (0.041)

Screened school dummy -0.049 0.059 -0.077 -0.041 -0.016
(0.037) (0.012) (0.037) (0.016) (0.034)

Share non-FRPL -0.022 0.636 -0.327 0.143 -0.136
(0.054) (0.017) (0.063) (0.024) (0.050)

N (school-year)

Predictors

Test score levels 0.521 1.23
(0.136) (0.255)

Test score progress 0.915 0.957
(0.095) (0.114)

Charter school dummy 0.118 0.053 0.052 0.107 0.016
(0.036) (0.010) (0.041) (0.018) (0.039)

Share non-FRPL 0.165 0.660 -0.649 0.288 -0.111
(0.113) (0.026) (0.203) (0.038) (0.111)

N (school-year)

Back and forth regressions - FRPL (drop zero risk dummies)

Test score levels Test score progress

Panel A. NYC

1501
Panel B. Denver

373

Notes: This table reports estimates from projections of levels and progress school ratings and causal value-
added on school characteristics, including the share eligible for a free or reduced-price lunch. The models
and derivation procedure used to compute these estimates are as the estimates in Table 1. Standard errors
are reported in parentheses.
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Table A6. IV VAM Long Regressions

NYC Denver NYC Denver
(1) (2) (3) (4) 

Mediators

Test score levels -0.211 0.175 -0.217 -0.038
(0.064) (0.289) (0.077) (0.466)

Test score progress -0.015 0.382 -0.042 0.313
(0.101) (0.198) (0.116) (0.232)

RC VAM 1.07 0.612 1.13 0.680
(0.111) (0.176) (0.134) (0.204)

Screened school dummy 0.002 0.014
(0.033) (0.036)

Charter school dummy -0.027 0.011
(0.043) (0.062)

Share white 0.005 -0.288 0.030 -0.061
(0.064) (0.243) (0.079) (0.375)

First-stage F 11.8 11.7 294 22.1
N 46,099 8,100 46,099 8,100

Over-identified (school 
assignment instruments)

Just-identified (offered 
mediator instruments)

Notes: This table reports IV VAM parameter estimates. These estimates are used to obtain the estimates
reported in Table 1. The set of listed mediators is treated as endogenous. Columns 1 and 2 use individual
school assignment offer dummies as instruments. Columns 3 and 4 use values of the mediator at the offered
school as instruments. Models are estimated using 2SLS. RC VAM estimates come from individual student
test scores on school enrollment dummies, baseline demographic and lagged score controls, and assignment
risk. Ratings are demeaned and scaled to have variance matching that of βj across schools in the district.
Standard errors are reported in parentheses.
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