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1 Introduction

Innovation is the source of long-run growth, and how to design policy to foster innovation has
long been a central question in economics. Innovation activities require researchers and scientists
to build on previous discoveries, often from outside their own �elds or sectors. Innovators in de-
centralized markets may not internalize the future spillovers they generate, leading to ine�cient
allocations of innovation investment. This is particularly true for more fundamental technologies
for which the social value from long-run innovation spillovers dwarfs their private value.

How should innovation resources be allocated across sectors, in the presence of an inter-sector
innovation network through which knowledge spillovers occur? For example, how many re-
sources should the economy devote to R&D in semiconductors relative to consumer electronics,
or chemistry relative to pharmaceutics? How does the optimal allocation depend on the struc-
ture of the innovation network? How should R&D allocations di�er across countries? How much
does innovation resource allocation matter for economic growth?

We answer these questions theoretically and quantitatively. The key novelty of our approach
is that we introduce a network perspective into modeling the spillover structure of innovation.
Speci�cally, we embed an innovation network into an otherwise canonical multisector, quality-
ladder endogenous growth model. A �nite amount of resources (i.e., scientists) may be deployed
across sectors to innovate and improve product quality. The innovation network is de�ned by the
structure of cross-sector knowledge spillovers, as one sector’s past innovations may subsequently
bene�t other sectors’ future innovation activities by helping scientists in those sectors generate
new ideas more productively. The state variables of the economy are sectoral knowledge stocks,
which re�ect the accumulation of past innovations in each sector. Through dynamic spillovers
across the network, the state variables form a dynamical system, in which the evolution of the
knowledge stock in each sector depends endogenously on the entire time path of resource allo-
cation across all sectors of the economy. The key decision of interest is how to e�ciently allocate
R&D resources across sectors in the network as the economy grows.

We begin by modeling a closed economy. Despite the complexity of dynamic network spillovers,
we are able to explicitly solve for the optimal path of R&D resource allocation and express the
closed-form solution as su�cient statistics in terms of consumer preferences across sectoral prod-
ucts and the structure of the innovation network. These su�cient statistics are qualitatively intu-
itive: they account for the direct and indirect network e�ects of R&D on sectoral output, discount-
ing bene�ts that occur far into the future. A key parameter for the optimal cross-sector allocation
of R&D resources is the society’s discount rate. A more patient society valuing long-term growth
(i.e., with a low discount rate) should optimally allocate more resources toward fundamental sec-
tors that are upstream in the innovation network, such as semiconductors. These are sectors that
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can generate widespread and long-lasting knowledge spillovers to many other sectors, directly or
indirectly. By contrast, an impatient, short-termist society should allocate more R&D resources
toward innovation-downstream sectors such as consumer goods. We show that the optimal R&D
allocation can be implemented by imposing simple R&D subsidies to the market equilibrium, and
we also provide closed-form solutions for the welfare impact of adopting the optimal R&D allo-
cation starting away from the balanced growth path and taking into account entire transitional
dynamics.

A key object of theoretical and quantitative importance is what we call the innovation cen-
trality of each sector. The vector of innovation centrality is the dominant eigenvector of the
innovation network and, intuitively, captures the extent to which a sector’s R&D activities con-
tribute to economic growth, taking into account the network e�ects. Formally, the innovation
centrality vector is a su�cient statistic for evaluating the growth impact of R&D allocations: the
economic growth rate along a balanced growth path is a�ne in the inner product between the
innovation centrality vector and the vector of log-R&D allocation shares. Consequently, the in-
novation centrality vector also coincides with the growth-maximizing R&D allocation along a
balanced growth path, and sectors with higher innovation centrality are therefore more funda-
mental in the innovation network. We show the optimal R&D allocation chosen by a benevolent
planner can be written as a weighted average between the innovation centrality vector and the
vector of consumer expenditure shares. The former represents the planner’s incentives to take
advantage of knowledge spillovers for future growth, and the latter represents the planner’s in-
centives to expand knowledge in ways directly bene�ting the consumer. A more patient planner
places a higher weight on the former.

Not every economy features a self-contained domestic innovation network, and many bene�t
from foreign knowledge spillovers. Intuitively, global knowledge spillovers would lead to cross-
country di�erences in the optimal cross-sector R&D allocations. To formalize this, we extend our
model to an open-economy setting with international knowledge spillovers and trade. We provide
su�cient statistics for the R&D allocations that maximize each country’s domestic welfare—what
we call unilaterally optimal allocations—along a balanced growth path. Our analysis highlights
an incentive for countries to free-ride on fundamental technologies: holding the total level of
R&D constant, an economy more reliant on foreign knowledge spillovers has less incentive to
direct resources toward fundamental or innovation-central sectors—and more toward consumer
goods—as if the planners in these economies are more impatient. This leads to cross-country
di�erences in unilaterally optimal R&D allocations. Economies with well-developed domestic in-
novation networks, such as the United States and Japan, should conduct more R&D in innovation-
central sectors; by contrast, economies that heavily rely on foreign knowledge spillovers should
direct more R&D toward consumer goods.
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A main advantage of our su�cient statistics for optimal R&D allocations is that we can easily
compute them using data on sectoral production and the innovation network. By comparing real-
world R&D resource allocations with optimal ones, we can quantitatively evaluate the importance
of R&D misallocation on both economic growth and welfare.

To leverage our theory and evaluate R&D allocations in the data, we construct a novel, global
innovation network from over 36 million patents and their citations, collected from over 40 main
patent authorities around the world and compiled by Google Patents. The data contain patent-
level information, covering innovations that took place in most economies between 1976 and
2020. We construct the innovation network based on citation shares across countries and sectors.
Innovation centrality is highly skewed across 645 international technological classes (IPCs). A
handful of IPCs—such as digital data processing, semiconductors, medical diagnoses, and digital
communications—should be allocated disproportionately large shares of R&D resources in order
to maximize growth. Countries vary widely regarding reliance on foreign spillovers: 80% of
citations from U.S. patents are toward other U.S. patents, but most other economies—including
China, South Korea, Germany, and, in early periods of the sample, Japan—are foreign-reliant with
domestic citation shares well below 50%.

As a model validation exercise, we empirically test the key mechanism behind our theory,
namely that a sector’s innovation activities bene�t from past innovation in upstream sectors
linked through the innovation network. We show the mechanism holds in both the U.S. domestic
innovation network and the global innovation network and across a variety of innovation output
metrics, including patent counts, future citations, and patent value measured by stock market
reactions upon patent approval. We show knowledge spillovers are directional: each sector’s
innovation output responds only to past upstream innovations and does not respond to past
downstream innovations. We �nd that the innovation network is only weakly correlated with
the input-output production network, such that there is substantial independent variation in both
network structures. Relative to input-output linkages, the innovation network is a signi�cantly
stronger channel through which knowledge spillovers take place.

Our main empirical application uses the model to evaluate cross-sector R&D allocations in the
real world. For each country and year, we compute the unilaterally optimal R&D allocation using
our su�cient statistics and data on both production and the innovation network. We compare
optimal R&D allocations against sectoral R&D expenditures and patent output in the data. In
economies generally perceived to be more innovative, such as the United States, Germany, and
Japan, the data indicate that sectors that should optimally receive more resources do receive more
resources. This positive relationship also holds in later sample periods for South Korea and China,
during phases of rapid growth in these economies. By contrast, for many other economies, such
as Brazil, India, Indonesia, Mexico, and Russia, real-world R&D allocations deviate signi�cantly
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from the optimal allocation throughout our sample.
What accounts for the R&D allocations in economies such as the United States, Japan, and

Germany, and why are innovation-central sectors receiving more resources in those countries?
As one potential explanation, we provide some evidence that a signi�cant share of innovation ac-
tivities in these countries take place in innovation hubs that operate and hold intellectual property
rights across a wide range of technological classes. Such hubs include IBM, Sony, and Siemens,
whose R&D activities build heavily on internal knowledge within the �rm. These innovation
hub’s self-reliance suggests they internalize some of the network e�ects and thereby allocate
R&D resources more like a planner would.

Finally, we evaluate each country’s potential growth and welfare gains when adopting its
optimal R&D allocation. We show that, around the globe, substantial welfare gains are left on the
table. Even for the United States, where real-world R&D resource allocation correlates strongly
with the theoretical optimal, there is still substantial misallocation. Through the lens of our
model, R&D misallocation accounts for about 0.68 percentage points of missing annual growth in
the United States since the 2000s. The welfare losses are even larger: once transitional dynamics
are considered, welfare losses are equivalent to about 2.5 percentage points of missing annual
economic growth.

This study relates to several strands of existing work. First, our study contributes to a long line
of research on knowledge spillovers and innovation policy (Aghion, Bloom, Blundell, Gri�th and
Howitt, 2005, Bloom, Schankerman and Van Reenen, 2013, Lucking, Bloom and Van Reenen, 2018,
Bloom, Van Reenen and Williams, 2019, Jones and Summers, forthcoming), particularly in the
context of endogenous economic growth (Jones and Williams, 1998, Acemoglu, Akcigit, Bloom
and Kerr, 2018b, Akcigit and Kerr, 2018, Atkeson and Burstein, 2019, Garcia-Macia, Hsieh and
Klenow, 2019, Bloom, Jones, Van Reenen and Webb, 2020, Akcigit, Hanley and Serrano-Velarde,
2021, Cai and Tian, 2021, Koenig, Song, Storesletten and Zilibotti, forthcoming). We contribute to
this literature by tackling a key open question: how to optimally allocate R&D resources across
sectors in the presence of an innovation network with cross-sector knowledge spillovers. There
are studies that, like ours, investigate cross-sector knowledge linkages, including Acemoglu, Ak-
cigit and Kerr (2016), Cai and Li (2019), Huang and Zenou (2020), and Yang and Zhu (2020), and,
in an open economy setting, Cai, Li and Santacreu (forthcoming); unlike ours, these studies do
not analyze optimal resource allocation and policy interventions. There is also a large literature
on cross-country knowledge di�usion (Caballero and Ja�e, 1993, Ja�e, Trajtenberg and Hender-
son, 1993, Eaton and Kortum, 1999, 2006, Coe and Helpman, 1995, Coe, Helpman and Ho�maister,
2009, Santacreu, 2015, Buera and Ober�eld, 2020); see Keller (2004) and Melitz and Redding (2021)
for surveys. Relative to this literature, which focuses on the country-level implications of foreign
spillovers, the novelty of our open-economy analysis is to show how sectoral-level foreign depen-
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dence interacts with the innovation network and shapes the unilaterally optimal R&D allocation
across sectors.

Second, we contribute to the fast-growing literature on networks in macroeconomics and
trade (Carvalho, 2010, Gabaix, 2011, Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi, 2012,
Jones, 2011, 2013, Grassi, 2017, Acemoglu, Akcigit and Kerr, 2015, Baqaee, 2018, Lim, 2018, Ober-
�eld, 2018, Liu, 2019, Baqaee and Farhi, 2019, 2020, Chaney, 2018, Taschereau-Dumouchel, 2020,
Kleinman, Liu and Redding, 2021b). Particularly related are recent papers that introduce method-
ologies for dynamic network analysis (Kleinman, Liu and Redding, 2021a, Liu and Tsyvinski, 2021)
and studies on policy interventions targeting speci�c sectors in production and strategic networks
(King, Tarbush and Teytelboym, 2019, Liu, 2019, Galeotti, Golub and Goyal, 2020). Relative to this
literature, our contribution is to embed an innovation network into a growth model and study
innovation policy.

Third, we contribute to the large literature on resource misallocation (Restuccia and Rogerson,
2008, Hsieh and Klenow, 2009, Jones, 2013, David and Venkateswaran, 2019, Hsieh, Hurst, Jones
and Klenow, 2019, Baqaee and Farhi, 2020). While such literature mostly focuses on the misallo-
cation of production resources, we instead study the misallocation of innovation resources, and
our analysis is therefore inherently dynamic in nature.

2 Optimal Innovation Policy in a Closed Economy

We study the optimal allocation of R&D resources in a multisector, quality-ladder growth model
with an innovation network. This section studies a closed economy. After setting up the model,
we �rst analyze the e�cient allocation of R&D resources across sectors (Section 2.2), before dis-
cussing potential ine�ciencies in a decentralized equilibrium and how to implement the e�cient
allocation using R&D taxes and subsidies (Section 2.3). We analyze both the long-run impact
of optimal R&D allocation on the balanced growth path (Section 2.4) and the welfare impact of
adopting the optimal R&D allocation, taking into account the transitional dynamics (Section 2.5).

2.1 Setup

Preferences and Production Technology There is a representative consumer with log �ow
utility and exponential discounting at rate ρ:

Vt =
∫∞
t
e−ρ(s−t) ln cs ds. (1)
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The instantaneous consumption aggregator ct at each time t is a Cobb-Douglas combination over
sectoral composite goods ci, i = 1, ..., K :

ct =
∏K

i=1c
βi
it ,

∑K
i=1βi = 1. (2)

We refer to βi as the consumption share of sector i.
Each sectoral composite good i is a Cobb-Douglas aggregator over a continuum of varieties

of intermediate products. Each intermediate product can be potentially supplied in a countably
in�nite number of qualities. Let qit (ν) denote the highest quality of variety ν available in sector
i. The sectoral composite good aggregator cit is given by

ln cit =
∫ 1

0
ln (qit (ν)xit (ν|q)) dν, (3)

where xit (ν|q) is the quantity of the variety ν of quality q in the production process. The sectoral
aggregator (3) implicitly imposes that only the highest quality variety will be used in production.
The intermediate varieties are produced linearly, one-for-one from production workers:

xit (ν|q) = `it (ν) for all i, t, ν, q. (4)

The Innovation Process R&D can improve product quality. Let qit denote the average quality
of the intermediate varieties used for production in sector i at time t:

ln qit ≡
∫ 1

0
ln qit (ν) dν.

We also refer to qit as sector i’s knowledge stock at time t. The collection of cross-sector knowledge
stocks {qit}Ki=1 are the state variables of the economy.

At each time t, mass si of scientists employed in sector i generate new ideas nit:

nit = sitηiχit, χit ≡
∏K

j=1q
ωij
jt ,

∑K
j=1ωij ≡ 1. (5)

ηi is the exogenous component of innovation productivity, and χit is the endogenous component.
Speci�cally, χit is a Cobb-Douglas combination of knowledge stock across all sectors. The ag-
gregator χit implies that a larger knowledge stock qj in sector j facilitates new idea generation
in sector i with elasticity ωij , thereby making scientists in sector i conduct R&D more produc-
tively. Our formulation thus captures the notion that scientists stand on the shoulders of giants
spread across all sectors of the economy. We impose the assumption that χit has constant re-
turns to scale (

∑K
j=1 ωij = 1) to ensure sustained and nonexplosive growth. Absent knowledge

spillovers, ωij = 1 if i = j and is zero otherwise.
New ideas stochastically translate into innovation, thereby improving product quality. Specif-

ically, we assume innovation of each variety ν in sector i occurs following a Poisson process with
arrival rate ln (nit/qit). Upon innovation, a new vintage of the improved variety is discovered,
with proportional quality improvement eλ, λ > 0. The new vintage thus has quality eλqit (ν).
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Even though innovation is stochastic at the variety level, the law of motion for quality is deter-
ministic at the sector level. Sector i’s knowledge stock evolves according to:

q̇it/qit = λ ln (nit/qit) . (6)

The arrival rate ln (nit/qit) decreases in existing knowledge stock qit, capturing the notion that
innovation is harder to �nd as the knowledge stock in sector i expands (Bloom et al. (2020)).

Throughout the rest of the paper, we use boldface variables to denote column vectors (low-
ercase) and matrices (uppercase). Let qt denote the column vector whose i-th entry is qit; qt
captures the state variables of the economy.

De�nition 1. (Innovation Network) The innovation network Ω ≡ [ωij] is the K ×K matrix
whose ij-th entry is ωij .

The Ω matrix is a central object of this study. Absent cross-sector knowledge spillovers,
Ω = I is the identity matrix. Elements of the Ω matrix ωij capture the degree to which sector i’s
idea generation relies on sector j’s existing knowledge; we refer to sector j as upstream to sector i
and, conversely, i as downstream to j; this terminology captures the notion that knowledge �ows
from upstream sector j to downstream sector i.

Resources We close the model with resource constraints. The economy is endowed with two
exogenous stocks of resources: production workers of mass ¯̀, and research scientists of mass s̄.
Workers are employed to produce intermediate goods as in (4). Scientists are employed to conduct
R&D and improve the quality of intermediate products. Let `it denote the total mass of workers
employed in sector i; the market clearing conditions for production workers and scientists are:

∑K
i=1`it = ¯̀, `it ≡

∫ 1

0
`it (ν) dν;

∑K
i=1si = s̄. (7)

Remarks on Model Features

Remark 1. Testable Implications of the Innovation Process. The law of motion (6) for each sector’s
knowledge stock implies that the (log-) knowledge stock at a given time can be written as the
discounted sum of (log-) past ideas:

ln qit = λ
∫∞

0
e−λs lnni,t−s ds. (8)

Taking logs of the ideas production function (5) and substituting (8) for qit, we obtain a log-linear
relationship between new ideas in sector i, the amount of R&D resources employed in the sector,
and past ideas from other sectors:

lnnit = ln ηi + ln sit + λ
∑K

j=1ωij
(∫∞

0
e−λs lnnj,t−s ds

)
. (9)

Equation (9) is empirically testable. We assume new ideas are patented. Equation (9) thus implies
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that, controlling for R&D expenditures, a sector tends to create more patents at times when its
upstream sectors had more patents in the past, and the e�ect weakens over longer time lags. In
Section 5.2 we test and show this relationship holds empirically.

Remark 2. Input-Output (I-O) Linkages. The baseline model features an innovation network Ω in
the form of cross-sector knowledge spillovers, without a production network of I-O linkages. In
the Appendix, we generalize our results to a setting that features both production and innovation
networks, and we show, with straightforward modi�cations, our characterizations extend to that
setting. Furthermore, we later empirically test equation (9) and show knowledge spillovers that
occur through the innovation network dominate the potential spillovers through I-O linkages;
for this reason, we abstract away from the production network in the baseline model.

Remark 3. Separate R&D and Production Resources. In the baseline model, we specify that R&D
and production require two distinct resource types: scientists s̄ and production workers ¯̀. This
separation implies the total endowment of R&D resources (s̄) is exogenously �xed and is thus
not a potential source of ine�ciency. We choose this speci�cation for simplicity; as we show
below, our results characterize the cross-sector allocation shares of R&D resources (sit/s̄), and
our characterization is invariant to the level of R&D resources s̄. Hence, our analysis of cross-
sector allocation shares holds even in a richer model in which a single worker type can move
between R&D and production.

Remark 4. Constant Returns. We have assumed that the knowledge aggregator χit in the ideas
production function (5) is constant returns to scale, that is, the innovation network Ω is a row-
stochastic matrix with a spectral radius of one. When this assumption is violated and if the
spectral radius of Ω is strictly below one, our characterization of the e�cient allocation and
transitional dynamics continues to hold, but the economy no longer features sustained growth
unless R&D resources grow exogenously, as in semi-endogenous growth models (Jones (1995)).

2.2 E�cient Allocation of R&D Resources

In this section we study the e�cient allocation of R&D resources in the economy. We postpone
discussing the decentralized equilibrium and ine�ciencies therein until after we characterize the
e�cient allocation.

Consider a benevolent social planner who chooses the entire time sequence of worker and
scientist allocations across sectors to maximize consumer utility. We can write the planner’s
problem as

V ({qi0}) ≡ max
{`it(ν),sit}

∫∞
0
e−ρt

∑K
i=1βi ln cit dt,

subject to the sectoral aggregator (3) for cit, production function of ideas (5), the law of motion
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for sectoral knowledge (6), and the resource constraints (7).

Lemma 1. The planner allocates production workers in proportion to the consumption share vector
β: for all t, `it (ν) = `it = βi ¯̀ for each sector i and variety ν.

We use Lemma 1 to simplify the planner’s problem into choosing how to allocate scientists
only. Recall Ω ≡ [ωij] is the matrix that encodes the innovation network, and ln qt ≡ [ln qit]

K
i=1

is the vector of log-knowledge stock at time t. Let γit ≡ sit/s̄ denote the share of scientists
allocated to sector i at time t, and let γt denote the vector [γit]

K
i=1 which sums to one. Using

equations (3) and (4) to express consumption in terms of production worker allocation and then
applying Lemma 1, we rewrite the planner’s problem in vector form as

max
{γt} s.t. γt’1=1∀t

∫∞
0
e−ρtβ′ ln qt dt (10)

s.t. d ln qt
/

dt = λ · (lnη + ln s̄+ lnγt + (Ω− I) ln qt) , (11)

where we obtain (11) by substituting the ideas production function (5) into qt’s law of motion (6).
The planner’s problem may seem intractable: the economy features an entire vector of state

variables (sectoral knowledge stocks), and the law of motion involves dynamic network spillovers
across sectors. Our formulation, however, is especially tractable: both the planner’s objective
function (10) and the law of motion (11) are log-linear in the state variables qt. Such tractability
enables us to characterize the solution—the entire time path of optimal R&D allocation—in closed
form.

Proposition 1. Starting from any vector of initial knowledge stock q0, the optimal R&D allocation
is time-invariant and follows, along the entire time path,

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

. (12)

Proposition 1 shows that the optimal cross-sector R&D allocation is time-invariant and fol-
lows γ ′ ∝ β′

(
I − Ω

1+ρ/λ

)−1

; the proportionality constant, ρ
ρ+λ

, ensures that the scientist alloca-
tion shares sum to one (

∑
i γi = 1). To understand the intuition for the result, note that another

way to write the optimal allocation vector of R&D resources γ ′ is:

γ ′ ∝ β′
∞∑

m=0

(
Ω

1 + ρ/λ

)m
= β′

(
I +

Ω

1 + ρ/λ
+

(
Ω

1 + ρ/λ

)2

+ · · ·
)
.

That is, the Leontief inverse
(
I − Ω

1+ρ/λ

)−1

in (12) can be written as a power series of Ω
1+ρ/λ

.
The �rst term in the in�nite summation, β′I = β′, captures the direct impact of each sector’s
knowledge stock on consumer welfare, through new product varieties created directly by new
knowledge. This term coincides with the allocation of production workers. Subsequent terms in
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the power series capture the indirect e�ect of knowledge creation on consumer welfare, through
future innovations. Innovations in sector j bene�t sector i by raising the endogenous e�ciency
of subsequent R&D in sector i, captured by the innovation aggregator χit in equation (5) with
elasticity ωij , which is the ij-th entry of the innovation network matrix Ω. Improved innovation
e�ciency in sector i further generates additional knock-on e�ects, as new knowledge in sector
i facilitates future innovations in all sectors that bene�t from sector i’s knowledge stock; the
higher-powered terms in the in�nite summation capture these indirect e�ects.

Because the network spillovers a�ect innovative e�ciency in the future, the importance of
network e�ects in the optimal R&D allocation is modulated by the discount rate ρ relative to
the innovation step size λ: the former (ρ) captures discounting of the future, and the latter (λ)
captures how quickly those future bene�ts materialize. When ρ/λ is high, the planner discounts
the future bene�ts heavily, and the network e�ects play a smaller role. In the limit as ρ/λ→∞,
the planner becomes myopic, and the optimal R&D allocation coincides with the allocation of
workers. Conversely, a more patient (low ρ/λ) planner allocates more R&D resources to sectors
that bene�t more sectors in the future, directly or indirectly. Proposition 1 implies that a patient
planner directs R&D into basic science; an impatient planner directs R&D into consumer goods
that are more downstream in the innovation network, such as textiles and food products.

In section B.1 of the Online Appendix, we provide an example with three sectors, and we
analytically express the optimal allocation based on the network structure and parameters ρ/λ.

2.3 Decentralized Equilibrium

In an innovation network, knowledge creation bene�ts subsequent R&D in other sectors and all
future periods. In a decentralized economy, R&D decisions are made by �rms in pursuit of pro�ts;
to the extent that the knowledge spillovers are not fully monetized, decentralized markets may
allocate R&D resources sub-optimally.

To demonstrate potential ine�ciency as clearly as possible, in this section we construct a
decentralized equilibrium with a stark market structure in which each intermediate good is pro-
duced by an atomistic monopolist that produces only that variety, and potential entrants conduct
R&D only in pursuit of product market pro�ts, disregarding any bene�cial spillovers their R&D
activities may provide for other �rms. In Section B.4 of the Online Appendix, we extend this
analysis to incorporate granular, multisector �rms that are innovation hubs. We show innova-
tion hubs may partially internalize knowledge spillovers, resulting in R&D allocations somewhere
in between the optimal and those chosen by atomistic �rms. Innovation hubs play an important
role in real-world R&D allocations, as we show empirically in Section 6.
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Market Structure with Atomistic, Single-Sector Firms Every vintage of each intermedi-
ate variety can be produced by a distinct atomistic monopolist. Di�erent vintages of the same
intermediate variety are perfect substitutes. Because the most recent vintage’s quality is eλ pro-
portionally higher than the next-best vintage, the monopolist who holds production rights to the
highest-quality vintage conducts limit pricing under Bertrand competition and charges a markup
eλ over the marginal cost of production. No vintages with dominated quality are produced in
equilibrium.

In each sector, innovation is carried out by a continuum of potential entrants, who hire sci-
entists to conduct R&D and generate new ideas according to (5). Ideas lead to quality improve-
ments of a random variety within sector i at Poisson rate ln (nit/qit). All ideas are patented, but
only quality improvements bring pro�ts: once a variety improves, the innovating �rm obtains
a patented production right and becomes the producing monopolist of that variety. We assume
patents expire at rate δ. For simplicity, we assume that once a patent expires, a new, random �rm
becomes the monopolistic producer of that variety, until the variety is improved upon. This sim-
pli�cation ensures that �rms charge the same markup across all varieties, allowing us to abstract
away from production ine�ciencies due to markup dispersions and focus instead on cross-sector
knowledge spillover as the only source of ine�ciency. Also for simplicity, we assume that poten-
tial entrants conduct R&D only for unpatented varieties. Because all entrants in a sector choose
to hire the same measure of scientists and there is no sector-level innovation uncertainty, the law
of motion for sectoral knowledge stock coincides with (6).

The representative consumer receives all workers’ and scientists’ income and �rm pro�ts.
Given the initial state variables {qi0}Ki=1, a decentralized equilibrium is the sequence of prices,
quantities, and knowledge stocks such that production �rms set prices to maximize pro�ts, the
consumer chooses bundles of goods to consume to maximize utility, and potential entrants hire
scientists for R&D to maximize expected pro�ts.

We now solve for the decentralized equilibrium. We normalize the consumer price index to
one for all times t. The consumer at each time t spends a constant fraction βi of its income on
sectoral composite good i, with

pitcit = βict for all i, t. (13)

The sectoral composite aggregator (3) further implies that the total revenue of each variety ν is
also equal to βict, and, using the fact that each monopolist sets a markup eλ, we derive the pro�ts
in each sector i as

πit (ν) =
(
1− e−λ

)
βict for all i, t, ν. (14)

Because all varieties have identical markups, the worker allocation is identical across varieties,
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and the total workers in each sector i is also proportional to the consumption shares βi:

`it (ν) = `it = βi ¯̀ for all i, t, ν. (15)

Entrants conduct R&D to obtain patented production rights, with present discounted value

vit ≡
∫∞

0
e−(rs+δ−gs)(s−t)πis ds,

where rs is the interest rate at time s and gs is the growth rate of aggregate consumption cs. Note
we have suppressed the index for variety since all varieties have the same pro�ts and thus the
same value within each sector. Because sectoral pro�ts are always proportional to the consump-
tion shares at all times, we have

vit/vjt = βi/βj for all i, j, t. (16)

Entrants hire scientists to conduct research, and the marginal value from an additional sci-
entist (vit × ∂ ln (nit/qit)

/
∂sit) must be equalized across sectors. Substitute nit using the ideas

production function (5) and vit/vjt using equation (16), we obtain that scientist allocation must
also follow the consumption share, that is, sit/s̄ = βi for all t.

Proposition 2. In the decentralized equilibrium, the allocations of R&D and production resources
both follow the consumption shares at all times, that is, `it (ν) = `it = βi ¯̀and sit = βis̄.

Intuitively, βi is proportional to each sector’s revenue, and since markups are constant, βi is
also proportional to the production inputs as well as pro�ts in each sector. Pro�ts in turn pin
down the cross-sector allocation of R&D resources (scientists).

Policy Implementation of the Optimal R&D Allocation The di�erences between the so-
cially optimal and the decentralized R&D allocations originate from the fact that the decentral-
ized R&D allocation is driven by pro�ts, as �rms do not fully internalize subsequent knowledge
spillovers from their own innovative activities. Given a broad set of tax instruments, the plan-
ner may have many equivalent ways to implement the optimal R&D allocation. The most direct
implementation is through R&D subsidies and taxes. Intuitively, the planner should tax R&D
activities in sectors with high βi (which encodes market incentives) relative to γi (which encodes
social incentives) and subsidize R&D activities in sectors with low βi relative to γi. Formally,
suppose the planner has access to R&D tax instruments such that �rms pay (1 + τi) times the
wage rate of each scientist in sector i. Suppose the planner has access to lump-sum taxes on the
consumer in order to balance its budget.

Proposition 3. The planner can decentralize the optimal allocation by setting R&D taxes to be
1 + τi ∝ βi

γi
, with the appropriate lump-sum tax levied on the consumer to balance the budget.
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2.4 Economic Growth Along the Balanced Growth Path

In this section we characterize how R&D allocations a�ect the economic growth rate along a
balanced growth path (BGP), that is, a steady-state equilibrium in which the knowledge stock in
every sector grows at the same constant rate.

De�nition 2. The vector of sectoral innovation centrality, a ≡ [ai]
K
i=1, is the dominant left-

eigenvector of Ω with an associated eigenvalue of one, satisfying a′ = a′Ω and
∑K

i=1 ai = 1.

The innovation centrality vector a exists and is unique by the Perron-Frobenius theorem. Our
next Proposition shows that a is a key determinant of the BGP growth rate.

Let b denote a generic vector of allocation shares with nonnegative entries and
∑
bi = 1.

Proposition 4. Consider a BGP in which R&D allocation shares follow the vector b (si = s̄bi). Then
the aggregate consumption and the stock of knowledge in every sector grow at the same rate g (b):

g (b) = const + λ · a′ ln b, (17)

where the exogenous constant on the right-hand side is equal to λ · (ln s̄+ a′ lnη). The vector of
knowledge stock qt satis�es the �xed point equation

ln qt = λ · [ln s̄− g (b) + lnη + ln b] + Ω ln qt. (18)

The �rst part of Proposition 4 analytically expresses the growth rate of knowledge stock
along a BGP as a function of the R&D allocation, b. The endogenous component of the growth
rate is innovation step size λ times the inner product between the innovation centrality a and
the vector of log-R&D allocation shares, ln b. The exogenous component on the right-hand side
of (17) shows that the growth rate is higher when there are more scientists s̄, when scientists
are more productive at generating new ideas (higher η), and when the step-size λ of quality
improvements is larger. The second part of Proposition 4 characterizes the knowledge stock along
a BGP. Equation (18) expresses ln qt as a �xed point, rather than in levels, because the knowledge
stock grows at a constant rate along a BGP and the levels are therefore not time-invariant.1

Corollary 1. (i) The di�erence in growth rate between the BGP where R&D allocation follows b and
the BGP where R&D allocation follows b̃ is g

(
b̃
)
− g (b) = λ · a′

(
ln b̃− ln b

)
.

(ii) The R&D allocation that maximizes the BGP growth rate coincides with the innovation cen-
trality a, as it is the solution to the following problem: a = arg maxb a

′ ln b, s.t. b ≥ 0,1′b = 1.

This corollary highlights that the innovation centrality serves as a su�cient statistic for
growth evaluation of policy counterfactuals and that innovation centrality coincides with the

1Note that if ln qt is a solution to equation (18), 2× ln qt is also a solution.
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R&D allocation vector that leads to the highest BGP growth rate. Intuitively, innovation central-
ity captures the extent to which a sector’s R&D activities contribute to economic growth, taking
into account the network e�ects. Sectors with higher innovation centrality are more fundamental
in the innovation network.

Qualitatively, the corollary also demonstrates that the social planner does not necessarily
choose R&D allocations to maximize the economy’s growth rate. Unlike the socially optimal
allocation γ, which depends on the discount rate relative to step-size of innovation ρ/λ, the
growth-maximizing allocation is equal to the innovation centrality and is independent of these
parameters. Intuitively, the social planner maximizes the welfare of the consumer, who may
prefer to have better-quality products in the near future from consumption-intensive sectors (e.g.,
consumer goods such as textiles and food products), and knowledge in these sectors may not
generate much knowledge spillovers for future innovations.

One can rewrite the optimal R&D allocation vector γ ′ = ρ
ρ+λ
β′
(
I − Ω

1+ρ/λ

)−1

as the solution
to the following �xed point equation, which usefully shows how γ ′ varies with ρ/λ:

γ ′ (I −Ω) +
ρ

λ
(γ ′ − β′) = 0′. (19)

The two terms on the left-hand side represent the innovation centrality a and consumer pref-
erences β as two determinants of the e�cient R&D allocation vector γ. When the �rst term is
equal to the zero vector (γ ′ (I − Ω) = 0′), it must be the case that γ coincides with the innova-
tion centrality a. When the second term is the zero vector ( ρ

λ
(γ ′ − β′) = 0′), it must be the case

that γ = β. Under the optimal R&D allocation, the sum of the two terms must be equal to the
zero vector, and ρ/λ modulates the relative importance of these two terms. When ρ/λ is close to
zero—a patient social planner—the �rst term dominates (limρ/λ→0 γ = a). When ρ/λ is large—an
impatient planner—consumer preferences dominate, and the e�cient R&D allocation is closer to
the decentralized R&D allocation (limρ/λ→∞ γ = β).

Corollary 2. As the planner becomes in�nitely patient (ρ/λ → 0), the optimal R&D allocation
converges to the innovation centrality, and the economic growth rate is maximized: limρ/λ→0 γ = a.
As the planner becomes in�nitely impatient (ρ/λ → ∞), the optimal R&D allocation converges to
the decentralized allocation vector: limρ/λ→∞ γ = β.

2.5 Transitional Dynamics and Welfare Impact of Optimal R&D

We now analytically characterize the transitional dynamics under the optimal R&D allocation,
starting from arbitrary levels of the initial state variables qt. We undertake a spectral analysis
and show that the eigenvalues and eigenvectors of the innovation network Ω determine the rate
of convergence toward the BGP. We provide the closed-form solution for the welfare impact of
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adopting the optimal R&D allocation starting from arbitrary levels of the initial knowledge stock.
Along any BGP, each sector’s knowledge stock grows at the same rate, and the relative knowl-

edge stock between any two sectors is constant. Let ln q̄t ≡ a′ ln qt denote the a-weighted av-
erage log-knowledge stock at time t, and let q̃t ≡ [ln qjt − ln q̄t]

K
j=1 encode the log knowledge

stock across sectors relative to the average ln q̄t. We refer to q̃t as the vector of relative knowledge
stock at time t. Let q̃∗ denote relative knowledge stock along the optimal BGP. We now provide
results for how q̃t converges to q̃∗ along the transition under the optimal R&D allocation.

Proposition 5. Starting from an arbitrary initial relative knowledge stock q̃0, the law of motion for
the relative knowledge stock q̃t under the optimal R&D allocation is

q̃t − q̃∗ = e−λ(I−Ω)t (q̃0 − q̃∗) ,

where q̃∗ =
(
(I −Ω + 1a′)−1 − 1a′

)
[lnη + lnγ] and e−(I−Ω)t ≡∑∞k=0

(−(I−Ω)t)k

k!
.

Proposition 5 provides the closed-form solution for the evolution of knowledge stock q̃t under
the optimal R&D allocation, starting from an arbitrary initial knowledge stock q̃0.

Spectral Analysis and the Welfare Impact of the Optimal R&D Allocation Recent devel-
opments in the literature on network dynamics (Liu and Tsyvinski, 2021, Kleinman et al., 2021a)
indicate spectral analysis can be used to analyze the speed of convergence toward BGP, an ap-
proach applicable to the closed-form transitional dynamics in Proposition 5. Intuitively, the rate
at which the economy converges to the BGP depends on the initial relative knowledge stock q̃0.
The economy should converge quickly if its underdeveloped sectors are downstream in the in-
novation network; conversely, the economy may converge slowly if the upstream and central
sectors—whose knowledge bene�ts many others—are underdeveloped. Spectral analysis formal-
izes these intuitions and can be taken to data quantitatively.

We contribute to this literature with a new result: we show spectral analysis can be used to
provide closed-form solutions for the welfare impact of adopting the optimal R&D allocation,
starting from arbitrary levels of initial knowledge stock.

Speci�cally, consider an eigendecomposition of the innovation network, Ω = UΨV , where
Ψ is a diagonal matrix of eigenvalues arranged in decreasing order by absolute value. For each
eigenvalue ψk, the k-th column of U (denoted as uk) is the corresponding right-eigenvector of
Ω, and the k-th row of V (denoted as v′k) is the corresponding left-eigenvector.

ψkuk = Ωuk, ψkv
′
k = v′kΩ.

Without loss of generality, we normalize the 1-norm of these eigenvectors to one.
To see why spectral analysis reveals convergence rates, note that if the initial relative knowl-

edge stock coincides with a right-eigenvector in terms of deviation from the BGP (i.e., q̃0− q̃∗ =
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uk), then the economy converges at a constant rate λ (1− ψk) governed by the corresponding
eigenvalue:

q̃t − q̃∗
∣∣∣
q̃0−q̃∗=uk

= e−λ(1−ψk)t (q̃0 − q̃∗) , half-life =
ln 2

λ (1− ψk)
.

The smaller the eigenvalue, the faster the convergence rate. Studying the sectoral loadings of
each right-eigenvector uk (i.e., the value on each coordinate) therefore enables one to quantita-
tively examine which underdeveloped sectors lead to slow convergence. Moreover, any initial
deviation from BGP can generically be written as a linear combination of the right-eigenvectors
by projecting (q̃0 − q̃∗) onto the eigenbasis; hence, spectral analysis fully reveals the dynamical
system’s convergence properties.

Our next result leverages spectral analysis to derive the welfare impact of R&D allocations.
For completeness, we also provide closed-form solution for the impact on the economic growth
rate along the entire transition.

Proposition 6. Given any initial knowledge stock at time 0, consider two time-invariant R&D al-
location plans b and b̃ while holding production worker allocation constant at arbitrary levels.

(i) The di�erence in consumer welfare between the two R&D plans is

V (b)− V
(
b̃
)
≡

∫ ∞

0

e−ρt
(

ln ct (b)− ln ct

(
b̃
))

dt

= β′
K∑

k=1

ukv
′
k

1

ρ (ρ+ λ (1− ψk))
× λ

(
ln b− ln b̃

)
. (20)

(ii) The di�erence in the path of consumption growth rates between the two R&D plans is

g (t; b)− g (t; b′) = β′e−λ(I−Ω)t × λ
(

ln b− ln b̃
)

= β′
K∑

k=1

ukv
′
ke
−λ(1−ψk)t × λ

(
ln b− ln b̃

)
. (21)

The �rst part of Proposition 6 is a closed-form formula for the welfare di�erence between
two time-invariant R&D allocation plans, starting from any initial knowledge stock and taking
into account transitional dynamics. The formula can be used for quantitative analysis to cal-
culate, for instance, the welfare impact of replacing the real-world R&D allocation (b̃) with the
optimal (setting b = γ). The second part of the proposition provides the di�erence in the path of
consumption growth rates between two R&D allocation plans.

Intuitively, the summations in (20) and (21) enumerate the welfare and growth impact of R&D
allocations along each of the K eigencomponents. All components k ≥ 2 represent temporary
e�ects along the transition, with each component having a constant rate of decay for its dynamic
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e�ects. A faster decay—lower eigenvalue ψk—implies the growth e�ect dissipates more rapidly,
and the welfare e�ect along this component k is smaller.

The dominant eigencomponent k = 1 has the largest eigenvalue ψ1 = 1, with u1 being the
constant vector that sums to one (thus β′u1 = 1), and v′1 = a′ is the innovation centrality. This
component represents the long-run impact due to di�erential BGP growth rates. To see this,
note that the k = 1 component on the right-hand side of (21) simpli�es to λa′

(
ln b− ln b̃

)
,

the BGP growth di�erential under the two R&D plans (Corollary 1). The k = 1 component
in (20) simpli�es to λρ−2a′

(
ln b− ln b̃

)
, which is precisely the welfare impact of di�erential

consumption growth rates under log-utility and exponential discounting.2

2.6 Extensions

As noted above, we consider a number of extensions in the Online Appendix. In Section B.2, we
allow a single worker type to be mobile between production and R&D, and we show the optimal
share of R&D allocated to each sector continues to be characterized by Proposition 1. In Section
B.3, we incorporate a production network to the model and show the term β′ in the formula for
the optimal R&D allocation should be replaced by sectoral value-added as a share of GDP, and
otherwise our characterization continues to hold. In Section B.4, we formulate a decentralized
equilibrium with granular, multi-sector �rms that are innovation hubs. We show innovation hubs
partially internalize knowledge spillovers, resulting in R&D allocations somewhere in between
the optimal ones and those chosen by atomistic �rms.

3 International Knowledge Spillovers and Policy

This section studies innovation policy in a setting with international knowledge spillovers and
trade. We analyze the problem of a country’s planner choosing R&D allocations to maximize
welfare for its citizens, taking the sequence of foreign knowledge stocks as given. We derive
unilaterally optimal innovation policy in terms of su�cient statistics that can be measured from
data on production, trade, and cross-country patent citations.

The open-economy version of the model highlights a key externality across countries: the in-
centive to free-ride on fundamental technologies. Even when sector j creates knowledge spillovers
to other sectors, each country-speci�c planner may not have su�cient incentives to direct R&D
resources into sector j and may instead choose to free ride on other countries’ R&D e�orts. This
incentive to free ride is stronger if a country’s domestic R&D productivity depends signi�cantly

2Speci�cally, consider utility function V (g; c0) =
∫∞
0
e−ρt ln ct dt when ct = egtc0, in which case the impact of

changing growth rate g on welfare is V (g2; c0)− V (g1; c0) = (g2 − g1) /ρ2.
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on foreign knowledge stock in sector j. Reliance on foreign knowledge is a key determinant
of the unilaterally optimal R&D allocation, and self-reliant economies should optimally direct
resources toward more innovation-upstream or central sectors.

3.1 Setup

Consider a collectionM of countries. We exposit the model from the perspective of a generic
countrym ∈M, which we refer to as domestic. Countrym is endowed with s̄m units of scientists
and ¯̀

m units of production workers.
Country m is an open economy in two ways. First, it may bene�t from foreign knowledge

spillovers. We generalize the closed-economy ideas production function (5) and posit that scien-
tists in country m may bene�t from foreign knowledge

{
qfmjt

}
across sectors j at time t:

nmit = ηmismitχmit, where χmit =
∏K

j=1

(
qmjt + qfmjt

)ωij
. (22)

When qfmjt = 0 for all j, the open-economy ideas production function (22) coincides with the
closed-economy counterpart (5) in Section 2. All agents in country m, including the social plan-
ner, treat the time path of

{
qfmjt

}
as given when making decisions, although

{
qfmjt

}
may arise

endogenously as an equilibrium outcome. This is a �exible, reduced-form formulation and nests
many realistic cases. For instance, qfmjt may represent the following aggregator

qfmjt =
∫
n∈M,n6=mφmnjtqnjt dn, (23)

where qnjt is the knowledge stock in sector j of country n, and φmnjt ≤ 1 captures the fraction
of knowledge from country n, sector j that is available for idea generation in country m at time
t. Variation in φmnjt may arise from cultural and political ties between countries m and n, intel-
lectual property protections in country n, and the adaptability of sector j’s technology. In any
case, we posit that agents in country m treat

{
qfmjt

}
as given when making decisions, and we

provide su�cient statistics for qfmjt without needing to specify the functional form it represents.
Second, country m may also be open to trade. The representative consumer values foreign

varieties in all sectors. The �nal consumption aggregator is

cmt =
∏K

i=1

(
c
σ−1
σ

mit +
(
cfmit

)σ−1
σ

)βi σ
σ−1

, σ > 1,

where cmit continues to be the aggregator of domestic varieties in sector i (c.f. equation 3), and
cfmit is the bundle of foreign varieties imported into country m for consumption. We assume
domestic and foreign bundles are gross substitutes (σ > 1), as is standard in the trade literature.

Country m can export domestic sectoral bundles and import foreign bundles. We provide a
reduced-form formulation of the trade block in the main text, treating both the supply of foreign
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goods and the foreign demand for domestic goods as exogenous. Speci�cally, let pmt ≡ [pmit]
K
i=1

and dmt ≡ [dmit]
K
i=1 respectively denote the price vector of m’s sectoral composite goods and

the export quantity of these goods; let pfmt ≡
[
pfmit

]K
i=1

and cfmt ≡
[
cfmit

]K
i=1

be vectors that
respectively capture m’s import prices and quantities of foreign bundles. We assume the import
prices of foreign goods are reduced-form functions of country m’s imports and exports: pfmt ≡
pfm

(
cfmt,dmt;θt

)
, where θt is the vector that parametrizes international demand and supply at

time t. We refer to θt as “international trade conditions.” For simplicity, we assume balanced
trade at every t:

p′mt · dmt = pfm

(
cfmt,dmt;θt

)′
· cfmt, (24)

where “·” represents the inner product. This reduced-form formulation of the trade block is quite
general, as the import price functions pfm

(
cfmt,dmt;θt

)
can incorporate general equilibrium

forces and rich geography with importer-exporter-industry speci�c trade costs embedded in the
vector of parameters θt. Because θt enters the pricing function freely, it is without loss of gener-
ality to normalize pfm (·) to be homogeneous of degree zero: when cfmt,dmt, and θt all double, the
vector of import prices stays constant. This normalization simpli�es our exposition and is meant
to capture the notion that import prices stay invariant when foreign technology (θt), domestic
imports (cfmt), and exports (dmt) all change proportionally.

In the Appendix, we microfound the price functions in several ways, including a small monop-
olistic economy setup similar to Gali and Monacelli (2005), as well as a full-�edged multicountry,
multisector general equilibrium model with a constant trade elasticity, similar to Costinot, Don-
aldson and Komunjer (2012). This reduced-form formulation also nests trade autarky as a special
case when the import prices go to in�nity (pfmi → ∞) for any trade quantities. The main rea-
son we adopt this reduced-form formulation of the trade block is for expositional brevity—we
do not have anything conceptually new to say about international trade, and in the data, as we
discuss later, di�erent treatments of the trade block do not generate quantitatively meaningful
di�erences in how each country should allocate R&D resources.

We study country m’s planner problem of allocating R&D resources to maximize domestic
welfare, while taking the time path of foreign knowledge

{
qfmjt

}
and trade conditions {θt} as

given and decentralizing both production worker allocation and international trade. By decen-
tralizing production and trade decisions, we are able to focus solely on innovation policies while
abstracting away from trade policies, which are well-studied in the literature, and industrial poli-
cies in open economies, which are the topic of an emerging literature (see, e.g., Chen, Liu and
Song (2021)).

De�nition 3. (Instantaneous Equilibrium.) At any time t, given the state variables qmt, qfmt
and the import price function pfm (·;θt), an instantaneous equilibrium in country m is the col-
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lection of prices—wages wmt of workers, prices of intermediate varieties {pmit (ν)} and sectoral
composite goods

{
pmit, p

f
mit

}
—and quantities—worker allocation {`mit (ν)}, production output

of intermediate varieties {xmit (ν)} and sectoral bundles consumed {cmit}, exported {dmit}, and
imported

{
cfmit

}
—such that the representative consumer chooses domestic and foreign bundles

to maximize �ow utility given income, the monopolistic producer of every variety sets markup
to maximize pro�ts, production workers are fully employed, trade is balanced, and the supply of
composite goods is equal to the sum of domestic and foreign demand:

cmit + dmit = ymit, ln ymit ≡
∫ 1

0
ln (qmit (ν)xmit (ν)) dν for all i.

Let c∗m
(
qmt, q

f
mt,θt

)
denote the aggregate consumption in the instantaneous equilibrium at

time t as a function of state variables qmt, qfmt, and parameters θt of the import price function.
The planner’s problem is to allocate R&D to maximize consumer welfare:

V
(
qm0,

{
qfmt,θt

}∞
t=0

)
≡ max
{sit} s.t.

∑
i sit=s̄

∫∞
0
e−ρt ln c∗m

(
qmt, q

f
mt,θt

)
dt,

subject to the open-economy ideas production function (22) and the law of motion for domestic
knowledge (6), while taking the time path of foreign knowledge and trade conditions as given.

Our next result characterizes the unilaterally optimal R&D allocation of country m along an
international balanced growth path (IBGP), a steady-state equilibrium in which domestic and
foreign knowledge, exports, and imports in every sector, as well as aggregate consumption, all
grow at the same rate, with time-invariant relative prices of imports and exports. We express the
optimal R&D allocation in terms of su�cient statistics. Let xmt denote the K × 1 vector whose
i-th entry is xmit ≡ qmit

qmit+q
f
mit

, the domestic share of useful knowledge in sector i that bene�ts
idea generation within country m. Let Θmt ≡ 1x′mt ◦Ω denote the K ×K matrix whose ij-th
entry is the elasticity of innovation e�ciency in sector i with respect to the domestic knowledge
stock in sector j: [Θmt]ij ≡ ∂ lnχmit

∂ ln qmit
= ωijxmjt, where 1 is the K × 1 vector of one’s and ◦

denotes the Hadamard product. Finally, let φmt denote the K × 1 vector whose i-th entry is the
elasticity of domestic aggregate consumption with respect to the knowledge stock in sector i:
φmit ≡

d ln c∗m(qmt,qfmt,p
f
mt)

d ln qmit
. Along the IBGP, xmt, Θmt, and φmt are all time-invariant; thus, we

drop the time subscript in the proposition.

Proposition 7. Along an international balanced growth path (IBGP) where qmt, q
f
mt, and θt all

grow at the same rate, the unilaterally optimal R&D allocation in country m follows smi/s̄m = γmi,
where

γ ′m ∝ φ′m
(
I − Θm

1 + ρ/λ

)−1

, (25)

and where the proportionality constant is chosen so that
∑

i γmi = 1.

Intuitively, φmi captures the extent to which domestic consumers directly bene�t from knowl-
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edge expansion in sector i. As is well known, in quality-ladder growth models, changes in sectoral
knowledge qit have the same aggregate implication as changes in sector i’s productivity. Hence,
the vector φm can be interpreted as the elasticity of domestic consumption with respect to a sec-
toral productivity shock, taking into account such shock’s e�ect on both domestic production
and, through international trade, on the relative prices of imports.

The ij-th entry of the Leontief inverse
(
I − Θm

1+ρ/λ

)−1

captures the in�nite rounds of how
indirect network spillovers of additional domestic knowledge from sector j impact subsequent
domestic innovation in sector i. The incentive to free-ride on fundamental technologies manifests
through the fact that Θm 6= Ω. That is, when deliberating how much R&D to allocate to sector
j, country m’s planner does not internalize the full e�ect (ωij) new knowledge in sector j will
have on future R&D e�ciency in each sector i, since its own R&D will only partially a�ect the
knowledge stock in sector j that is useful for subsequent innovation in sector i.

Both φm and Θm are endogenous equilibrium objects. Under trade autarky, φm is the con-
sumption share vector β′ and is proportional to sectoral value-added, as in our closed-economy
model characterized by Proposition 1. With cross-country trade in goods, φm also incorpo-
rates terms-of-trade considerations and is co-determined by international comparative advan-
tage. Similarly, Θm is determined by the distribution of innovation e�ciency across countries
and sectors, the total R&D resources in each country, equilibrium R&D intensity, and the ease
with which country m bene�ts from foreign knowledge. Relation (25) therefore describes an
endogenous relationship that holds along the BGP for a country m that adopts the unilaterally
optimal R&D allocation.

Each country’s unilaterally optimal R&D allocation can be measured in the data: the object
Θm can be measured from the innovation network Ω and country m’s reliance on domestic
knowledge xmi, and, given a microfoundation for the import price function pt (·;θt)—such as
the small monopolistic economy setting in Gali and Monacelli (2005)—φm can be measured from
data on production and trade. As we will show, a good empirical approximation of φmi is simply
the value-added in sector i as a share of GDP in country m, because changes in sectoral knowl-
edge stock have little real-world e�ects on the terms of trade. Most cross-country di�erences in
unilaterally optimal R&D allocations originate from variations in R&D’s degree of self-reliance
(xmt).

Cross-Country Implications The incentive to free-ride on fundamental technologies high-
lighted in (25) implies that countries with more self-contained innovation networks (often large
economies at the knowledge frontier across many sectors) should allocate R&D in more fun-
damental sectors, that is, those with higher innovation centrality, that tend to generate knowl-
edge spillovers to other sectors. Conversely, countries that are more reliant on foreign knowl-
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edge spillovers have incentives to direct R&D toward sectors that account for greater domestic
value-added. In other words, using our intuition from the close-economy Proposition 1, it is as
if economies with self-contained innovation networks have patient planners while economies
reliant on foreign knowledge have impatient planners.

To see this, let us compare a country m in which 90% of useful knowledge for idea creation
is domestic across all sectors (xmj = 0.9 for all j), with another country n in which only 10%
of useful knowledge is domestic (xnj = 0.1 for all j). The Leontief inverse in (25) simpli�es to(
I − 0.9× Ω

1+ρ/λ

)−1

for country m and to
(
I − 0.1× Ω

1+ρ/λ

)−1

for country n. Greater reliance
on domestic knowledge (higher xm) is therefore isomorphic to a lower discount rate ρ; that is,
when a country’s future innovations build more heavily on its own knowledge stock, the planner
allocates R&D resources as if it were more patient. Even though in the real world foreign re-
liance could be sector-speci�c—xmj’s are not necessarily constant across sectors j—the intuition
continues to hold: economies with self-contained innovation networks—such the United States
and Japan, in which idea generation relies more on domestic rather than on foreign knowledge—
should optimally allocate more R&D resources into sectors that create more network externali-
ties; by contrast, countries reliant on foreign knowledge spillovers should optimally allocate R&D
resources more myopically, focusing disproportionately on short-term bene�ts.

It is worth emphasizing again that Proposition 7 characterizes the unilaterally optimal R&D
allocation from the perspective of self-serving planners and does not characterize the Pareto-
optimal allocation from a global perspective. The Pareto-optimal allocation depends on a broader
set of model primitives, such as the cross-country distribution of innovation e�ciency, which our
formulation does not specify. We have decided to exclude this analysis from the current study.

4 Data

This section describes the data for our empirical analyses. One part of our analysis deals with
the United States as a closed economy, and the other part is a cross-country analysis based on
the global economy. Both parts need sectoral data on production, consumption, and innovation;
we also need patent citation data across sectors and countries to construct the corresponding
U.S. and global innovation networks. For the cross-country analysis, we also require data on
international trade. We now brie�y describe how we construct and harmonize these data; we
provide more details in Section D of the Online Appendix.
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4.1 Patents Data, Citations, and Sectoral Innovation

U.S. Patents U.S. patent data are obtained from the United States Patent and Trademark O�ce
(USPTO). Their database provides detailed patent-level records on nearly seven million patents
granted by the USPTO between 1976 and 2020. The data include, for each patent, the application
and grant years, the technology classi�cations based on the International Patent Classi�cation
(IPC) system, and the geographic locations of the patent assignee and patent inventors (the former
holds legal ownership rights to the patent while the latter may not). Central to our network
analysis, we observe each patent’s citations of prior patents as well as the citations it receives
from subsequent patents up to the year 2020.

Global Patents To capture global innovation, we use Google Patents’ global patent data, which
contain information on more than 36 million patents from over 40 main patent authorities around
the world, including those from the United States, the European Union, Japan, and China, among
others, during the period 1976–2020. For each patent, Google Patents provides similar informa-
tion similar to the USPTO data described above.

We construct the global innovation network from global patent citations. To our knowledge,
we are the �rst team to use this data to construct the global innovation network. The main
challenge while working with these data is multi-�ling: to protect intellectual properties, it is
common practice for innovators to �le the same innovation with multiple patent authorities in
di�erent countries. For our analysis, we trace each innovation’s original location using available
geographic information for the patent assignees and inventors, and we unwind multi-�lings so
that we count each innovation only once even if it was �led with multiple authorities. Our un-
winding procedure uses information such as the patent family ID assigned by Google Patents,
self-reported multi-�ling status, and the unique identi�er for patents �led under the Patent Co-
operation Treaty, which is an international law treaty aimed at protecting innovations across
countries. In Section D of the Online Appendix, we provide details of these tracing and unwind-
ing procedures.

Measuring Sectoral Innovation We build a few measures to capture innovation output at
sector-year levels for U.S.-based analysis and country-sector-year levels for our global studies.
We measure raw patent counts—the number of patents produced in the (country)-sector-year—
and with quality adjustments using total citations received by each patent. For U.S. patents, we
also measure patents’ monetary value based on the algorithm of Kogan, Papanikolaou, Seru and
Sto�man (2017) that calculates the value using stock market reactions upon patent approval. To
capture innovation’s timing, we use the year a patent was �led rather than granted, to abstract
from bureaucratic delays that are orthogonal to innovative activities.
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4.2 Sectoral Data on Production, Consumption, Trade, and R&D

In our cross-country analysis, for each country and sector, we use the World Input-Output Database
(WIOD, Timmer, Dietzenbacher, Los, Stehrer and de Vries (2015)) to obtain data on value-added,
employment, revenue, intermediate inputs, value used for consumption, imports, and exports.
The data cover the years 2000–2014 and 43 major economies, which altogether represent more
than 85% of global GDP. WIOD’s sectoral categorization follows the two-digit International Stan-
dard Classi�cation (ISIC) revision 4, with a total of 56 sectors covering the entire production
spectrum, including primary, manufacturing, and service sectors. We obtain each country’s
sector-level R&D expense data from the Analytical Business Enterprise Research and Develop-
ment (ANBERD) database, which is available for more than 30 countries in the WIOD data from
1987 onward.

For the United States, we obtain sectoral production, consumption, and import-export data
from the national accounts of the Bureau of Labor Statistics (BLS), comprising 181 sectors from
1990 to 2019. We obtain sectoral R&D expenditures based on public �rms in COMPUSTAT.

4.3 Concordances

Both U.S. and international patents are classi�ed according to the IPC system, which is based
on the concept of technology class and is distinct from the classi�cations in our sectoral data.
We build concordance between these two data types by leveraging publicly traded �rms’ sectoral
classi�cations and innovation output across IPCs. For the United States, we concord patents’ IPC
classi�cation with BLS sectors. We �rst map IPCs into the North American Industry Classi�cation
System (NAICS) codes using the bridge �les provided by NBER, Kogan et al. (2017), and Ma (2020,
2021) to cover our entire sample period. We then map NAICS codes to the BLS sectors using the
crosswalk �le provided by the BLS. For the global analysis, we provide a novel mapping from IPCs
to the 56 ISIC sectors in WIOD using global �rms from the Worldscope and Datastream databases
accessed through the Wharton Research Data Services (WRDS). The data cover more than 109,000
global �rms located in 160 countries, and we use fuzzy matching based on �rm-level observables
to link these �rms’ sectoral codes to their patent output across IPCs. We provide details of these
matching procedures in Section D of our Online Appendix.

5 Innovation Network and Knowledge Spillovers

In this section, we �rst construct the innovation network Ω and then empirically validate of
our theory’s key law of motion (9), that there are knowledge spillovers through the innovation
network.
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5.1 Innovation Network

Constructing the Innovation Network We construct the innovation network from patent
citations. Let Citesijt denote the total number of times that patents in sector i cite patents in
sector j, among all patents �led in year t in our global sample. We de�ne ωijt as the share of total
citations made by patents in sector i to sector j in year t:

ωijt ≡
Citesijt∑K
k=1Citesikt

. (26)

The object ωijt measures the extent to which upstream sector j’s prior knowledge bene�ts inno-
vation in sector i. The matrix Ωt, whose ij-th entry is ωijt, captures the network of knowledge
�ows and is what we refer to as the innovation network.

There are several degrees of freedom when constructing the innovation network: we can con-
struct a country-speci�c network using patents from each country; we can also include patents
from a time window broader than one year. Empirically, the innovation network is highly per-
sistent over time and also highly correlated across countries. Table A.2 of the Online Appendix
shows that the serial correlation of the entries in Ωt is near-perfect when a decade apart and
remains above 0.8 even when three decades apart. Table A.3 of the Online Appendix shows that
the innovation network constructed by pooling patents from all countries is almost perfectly cor-
related with the U.S.-speci�c network (correlation 0.97) and highly correlated (correlation≈0.8)
with the country-speci�c innovation networks from Japan, China, Germany, Canada, the United
Kingdom, and France. Such high correlations mean that decisions about country and time speci-
�cities of the innovation network do not a�ect our results; hence, for expositional simplicity, we
adopt the time-speci�c, location-invariant measure in (26) as our baseline notion of the innova-
tion network.

The Innovation Network is Weakly Correlated with Input-Output Networks The inno-
vation network Ω encodes cross-sector linkages via knowledge spillovers. Another prominent
type of cross-sector linkage occurs through input-output relations, as sectors purchase intermedi-
ate inputs from one another during production. Table 1 shows that the innovation and production
networks are very distinct; the two network relations indeed capture di�erent connections across
sectors. Speci�cally, for each of the top ten countries ranked by total patent output, we compute
the industry-by-industry, input-output expenditure share matrix, which is a row stochastic matrix
(as is Ω) commonly used to represent input-output relationships. Table 1 presents the correlation
between entries in Ω and those in the input-output matrix. The correlation is weak (<0.35) in all
economies.
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Table 1. Correlations Between the Innovation Network and Country-Level Production
Networks

The Innovation Network is Weakly Correlated with Input-Output Networks The inno-
vation network Ω encodes cross-sector linkages via knowledge spillovers. Another prominent
type of cross-sector linkages is through the input-output relations, as economic sectors purchase
intermediate inputs from one another during the production process. Table 2 shows that the inno-
vation network is very distinct from the production network; the two types of network relations
indeed capture di�erent structures of connections across sectors. Speci�cally, for each of the top-
10 countries ranked by total patent output, we compute the industry-by-industry, input-output
expenditure share matrix, which is a row stochastic matrix (as is Ω) commonly used to represent
input-output relationships. Table 2 shows the correlation between entries in Ω and those in the
input-output matrix. The correlation is weak (<0.35) in all economies.

Table 2. Correlation between the innovation network and country-level production networks

USA JPN CHN KOR DEU CAN GBR FRA RUS SWE
0.32 0.31 0.35 0.24 0.28 0.25 0.28 0.32 0.15 0.11

Innovation Centrality Across Sectors We now describe some properties of the innovation
network. We �rst compute the innovation centrality a, which is the dominant left-eigenvector of
the innovation network Ω (c.f. De�nition 2). Recall that a is also the allocation of R&D resources
that maximizes the growth rate of a closed economy (c.f. Corollary 1) and is an important deter-
minant of the optimal R&D allocation in a closed economy (c.f. equation 20). The left panel of
Figure 1 plots log(αi) across 645 IPC sectors, where sector on ordered the X-axis in descending
αi. The �gure shows there is signi�cant skewness in the innovation centrality across sectors. To
maximize economic growth, the highest innovation centrality sector should be allocated about
�ve times as many R&D resources as the second sector ranked by ai, about 12 times as the 10th
sector, and about 100 times as the 100th sector. The right panel of Figure 1 lists the identity of the
top-10 IPC sectors; these include several technological classes on digital data processing, semi-
conductors, telecommunication, and technologies surrounding healthcare and pharmaceuticals,
among others.

Cross-Country Linkages in the Innovation Network The innovation network Ω is con-
structed based on patent citations across sectors; yet, many patent citations are across countries.
To the extent that the innovation network captures knowledge spillovers (as we show below), how
much do countries bene�t from foreign knowledge? To answer this, for each country m, sector
i and year t, we compute the share of all citations made by mit that are towards patents cre-
ated domestically in country m. Figure 2 shows the distribution of the domestic citation shares
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Notes. This table presents the correlations between the innovation network matrix and the country-level input-
output expenditure share matrix for the top ten countries ranked by total patent counts during our full sample
period.

Innovation Centrality Across Sectors We now describe some properties of the innovation
network. We �rst compute the innovation centrality a′, which is the dominant left eigenvector
of the innovation network Ω. Recall that a is also the R&D allocation vector that maximizes the
growth rate of a closed economy (Corollary 1) and is an important determinant of the optimal
R&D allocation in a closed economy (equation 19). The left panel of Figure 1 plots log(ai) across
645 IPC sectors, where sectors are ordered along the x-axis in descending ai. The �gure shows
innovation centrality is signi�cantly skewed across sectors. To maximize economic growth, the
highest innovation centrality sector should be allocated about �ve times as many R&D resources
as the second sector ranked by ai, about 12 times as many as the tenth sector, and about 100 times
as many as the one-hundredth sector. The right panel of Figure 1 identi�es the top ten IPC sectors;
these include several technological classes related to digital data processing, semiconductors,
telecommunications, and healthcare and pharmaceuticals technologies, among others.
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as the 100th sector. The right panel of Figure 1 lists the identity of the top-10 IPC sectors; these
include several technological classes on digital data processing, semiconductors, telecommunica-
tion, and technologies surrounding healthcare and pharmaceuticals, among others.
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Innovation Centrality Across Sectors We now describe some properties of the innovation
network. We �rst compute the innovation centrality α, which is the dominant left-eigenvector
of the innovation network Ω (c.f. De�nition 2). Recall that α is also the allocation of R&D re-
sources that maximizes the growth rate of a closed economy (c.f. Corollary 1) and is an important
determinant of the optimal R&D allocation in a closed economy (c.f. equation 22). The left panel
of Figure 1 plots log(αi) across 645 IPC sectors, where sector on ordered the X-axis in descending
αi. The �gure shows there is signi�cant skewness in the innovation centrality across sectors. To
maximize economic growth, the highest innovation centrality sector should be allocated about
�ve times as many R&D resources as the second sector ranked by αi, about 12 times as the 10th
sector, and about 100 times as the 100th sector. The right panel of Figure 1 lists the identity of the
top-10 IPC sectors; these include several technological classes on digital data processing, semi-
conductors, telecommunication, and technologies surrounding healthcare and pharmaceuticals,
among others.

1 electrical digital data processing

2 semiconductor devices; electric solid state devices

3 diagnosis; surgery; identi�cation (analyzing biological material)

4 transmission of digital information; telegraphic communication

5 data processing systems or methods, spec. adapted for administrative,

commercial, �nancial, managerial, supervisory, forecasting purposes

6 devices or methods specially adapted for bringing pharmaceutical

products into particular physical or administratering forms

7 pictorial communication, e.g. television

8 investigating or analyzing materials by determining their chemical or

physical properties

9 containers for storage or transport of articles or materials

10 earth or rock drilling (mining, quarrying); obtaining oil, gas, water,

soluble or meltable materials

Visualizing the Innovation Network Figure 2 visualizes the innovation network by plotting
the matrix Ω as a heatmap. Each row and each column is an IPC sector, where the color in the
i-th row and j-th column correspond to ωij using the colormap listed to the right of the �gure.
Sectors are sorted in terms of decreasing innovation centrality. A key feature is that IPC sectors
follow a “hierarchical” structure7: the innovation network is highly asymmetric, and there is a
pecking order among sectors. Innovation-central sectors account for a disproportionate share of
citations from all other sectors (columns are dense on the left but become progressively sparser to

7Liu (2019) formally de�nes the hierarchical structure by declining partial-column sums in the network matrix;
the paper shows that production networks often exhibit the hierarchical structure as well.
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Notes. This �gure presents the centrality of di�erent technology classes categorized using IPCs. Panel (a) plots log(ai), and the sectors are ranked
in descending order based on ai. Panel (b) lists the top-10 IPCs by their innovation centrality.

Cross-Country Linkages in the Innovation Network The innovation network Ω is con-
structed based on patent citations across sectors; yet, many patent citations are across countries.
To the extent that the innovation network captures knowledge spillovers, how much do coun-
tries bene�t from foreign knowledge? To answer this, for each countrym, sector i and year t, we
compute the share of all citations made by mit that are towards patents created domestically in
country m. Figure 2 shows the distribution of the domestic citation shares across all sectors for
the 9 economies with the highest patent counts in our sample, for years t ∈ {1990, 2000, 2010}.
The U.S. relies relatively little on foreign knowledge: consistently across these three decades,
about 80% of citations made by U.S. patents are towards other U.S. patents, and, across industries,
these domestic citation shares are quite narrowly distributed around the mean. On the other
hand, citations towards foreign patents account for the vast majority of citations made by all
other economies except Japan, suggesting that these economies bene�t signi�cantly from for-
eign knowledge, most notably from the U.S. For Japan, the self-citation shares average to 50% in
1990 and increase over time, reaching close to 90% in 2010. A similar decline in foreign knowl-
edge dependence over time is also observed in China and South Korea, the other two fast-growing
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of the innovation network Ω. Recall that a is also the R&D allocation vector that maximizes the
growth rate of a closed economy (Corollary 1) and is an important determinant of the optimal
R&D allocation in a closed economy (equation 19). The left panel of Figure 1 plots log(ai) across
645 IPC sectors, where sectors are ordered on the x-axis in descending ai. The �gure shows
there is signi�cant skewness in the innovation centrality across sectors. To maximize economic
growth, the highest innovation centrality sector should be allocated about �ve times as many
R&D resources as the second sector ranked by ai, about 12 times as the tenth sector, and about
100 times as the one-hundredth sector. The right panel of Figure 1 lists the identity of the top ten
IPC sectors; these include several technological classes on digital data processing, semiconduc-
tors, telecommunication, and technologies surrounding healthcare and pharmaceuticals, among
others.

1 electrical digital data processing

2 semiconductor devices; electric solid state devices

3 diagnosis; surgery; identi�cation (analyzing biological material)

4 transmission of digital information; telegraphic communication

5 data processing systems or methods, spec. adapted for administrative,

commercial, �nancial, managerial, supervisory, forecasting purposes

6 devices or methods specially adapted for bringing pharmaceutical

products into particular physical or administratering forms

7 pictorial communication (e.g., television)

8 investigating or analyzing materials by determining their chemical or

physical properties

9 containers for storage or transport of articles or materials

10 earth or rock drilling (mining, quarrying); obtaining oil, gas, water,

soluble or meltable materials

Cross-Country Linkages in the Innovation Network The innovation network Ω is con-
structed based on patent citations across sectors; yet, many patent citations are across countries.
To the extent that the innovation network captures knowledge spillovers, how much do coun-
tries bene�t from foreign knowledge? To answer this, for each countrym, sector i, and year t, we
compute the share of all citations made bymit that are to patents created domestically in country
m. Figure 2 shows the distribution of the domestic citation shares across all sectors for the nine
economies with the highest patent counts in our sample, for years t ∈ {1990, 2000, 2010}. The
United States relies relatively little on foreign knowledge: consistently across these three decades,
about 80% of citations made by U.S. patents are to other U.S. patents, and, across industries, these
domestic citation shares are quite narrowly distributed around the mean. On the other hand, ci-
tations to foreign patents account for the vast majority of citations made by all other economies
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Notes. This �gure presents the centrality of di�erent technology classes categorized using IPCs. Panel (a) plots log(ai), and the sectors are ranked
in descending order based on ai. Panel (b) lists the top-10 IPCs by their innovation centrality.

the right), yet these innovation-central sectors do not signi�cantly cite noncentral sectors (rows
are sparse on the top but become progressively denser to the bottom). Liu (2019) shows that the
sectoral pecking order can be interpreted as upstreamness in hierarchical networks.3

Figure 3, Panel (b) visualizes the global innovation network by plotting each country-sector
as a node, with size drawn in proportion to the total patent counts in our sample. An arrow

3Liu (2019) formally de�nes the hierarchical structure as having nonincreasing partial column sums in the net-
work matrix; the paper shows that production networks often exhibit the hierarchical structure as well.
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of the innovation network Ω. Recall that a is also the R&D allocation vector that maximizes the
growth rate of a closed economy (Corollary 1) and is an important determinant of the optimal
R&D allocation in a closed economy (equation 19). The left panel of Figure 1 plots log(ai) across
645 IPC sectors, where sectors are ordered on the x-axis in descending ai. The �gure shows
there is signi�cant skewness in the innovation centrality across sectors. To maximize economic
growth, the highest innovation centrality sector should be allocated about �ve times as many
R&D resources as the second sector ranked by ai, about 12 times as the tenth sector, and about
100 times as the one-hundredth sector. The right panel of Figure 1 lists the identity of the top ten
IPC sectors; these include several technological classes on digital data processing, semiconduc-
tors, telecommunication, and technologies surrounding healthcare and pharmaceuticals, among
others.

1 electrical digital data processing

2 semiconductor devices; electric solid state devices

3 diagnosis; surgery; identi�cation (analyzing biological material)

4 transmission of digital information; telegraphic communication

5 data processing systems or methods, spec. adapted for administrative,

commercial, �nancial, managerial, supervisory, forecasting purposes

6 devices or methods specially adapted for bringing pharmaceutical

products into particular physical or administratering forms

7 pictorial communication (e.g., television)

8 investigating or analyzing materials by determining their chemical or

physical properties

9 containers for storage or transport of articles or materials

10 earth or rock drilling (mining, quarrying); obtaining oil, gas, water,

soluble or meltable materials

Cross-Country Linkages in the Innovation Network The innovation network Ω is con-
structed based on patent citations across sectors; yet, many patent citations are across countries.
To the extent that the innovation network captures knowledge spillovers, how much do coun-
tries bene�t from foreign knowledge? To answer this, for each countrym, sector i, and year t, we
compute the share of all citations made bymit that are to patents created domestically in country
m. Figure 2 shows the distribution of the domestic citation shares across all sectors for the nine
economies with the highest patent counts in our sample, for years t ∈ {1990, 2000, 2010}. The
United States relies relatively little on foreign knowledge: consistently across these three decades,
about 80% of citations made by U.S. patents are to other U.S. patents, and, across industries, these
domestic citation shares are quite narrowly distributed around the mean. On the other hand, ci-
tations to foreign patents account for the vast majority of citations made by all other economies
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Notes. This �gure presents the innovation centrality of di�erent technology classes categorized using IPCs. Panel
(a) plots log(ai), and the sectors are ranked in descending order based on ai. Panel (b) lists the top ten IPCs by their
innovation centrality.

of the �gure. Sectors are sorted by decreasing innovation centrality. A key feature is that IPC
sectors follow a “hierarchical” structure: the innovation network is highly asymmetric, and there
is a “pecking order” across sectors. Innovation-central sectors account for a disproportionate
share of citations from all other sectors (columns are dense on the left but become progressively
sparser to the right), yet these innovation-central sectors do not signi�cantly cite noncentral
sectors (rows are sparse on the top but become progressively denser towards the bottom). Liu
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Notes. This �gure presents the innovation centrality of di�erent technology classes categorized using IPCs. Panel
(a) plots log(ai), and the sectors are ranked in descending order based on ai. Panel (b) lists the top ten IPCs by their
innovation centrality.
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Cross-Country Linkages in the Innovation Network The innovation network Ω is con-
structed using patent citations across sectors, yet many patents are cited across countries. To the
extent that the innovation network captures knowledge spillovers, how much do countries bene-
�t from foreign knowledge? To answer this, for each countrym, sector i, and year t, we compute
the share of all citations mit made to patents created domestically in country m. Figure 2 shows
the distribution of the domestic citation shares across all sectors for the nine economies with the
highest patent counts in our sample, for years t ∈ {1990, 2000, 2010}. The United States relies
relatively sparingly on foreign knowledge: consistently across these three decades, about 80% of
citations made by U.S. patents are to other U.S. patents, and, across industries, these domestic
citation shares are quite narrowly distributed around the mean. In contrast, citations to foreign
patents account for the vast majority of citations made by all other economies except Japan, sug-
gesting that these economies bene�t signi�cantly from foreign knowledge, most notably from
the United States. The Japanese self-citation shares averaged to 50% in 1990 and increased over
time, reaching close to 90% in 2010. A similar decline in foreign knowledge dependence over time
is also observed for China and South Korea, the two other fast-growing Asian economies shown
in Figure 2.

Figure 2. Cross-Sector Distribution of Domestic Citation Shares by Country
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Notes. This �gure presents the cross-sector distribution of domestic citation shares for each country, showing the
distribution using 1990, 2000, and 2010 data. Sector de�nitions follow WIOD categorizations. Domestic citation
share is de�ned as the number of citations made to domestic patents as a share of total citations made by new
patents invented in each country-sector.
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Figure 3. Visualizing the Innovation Network

(a) IPC-to-IPC (645×645) network Ω (b) The global innovation network across country-sectors

Notes. The left panel visualizes the IPC-to-IPC networkΩ as a heatmap, with darker colors representing larger matrix
entries; sectors are ordered according to their innovation centrality. The right panel visualizes the global innovation
network. Each node is a country-sector, with size drawn in proportion to patent output. Arrows represent knowledge
�ows, with width drawn in proportion to citation shares.

Visualizing the Innovation Network Figure 3, Panel (a) visualizes the innovation network
by plotting the matrix Ω as a heatmap. Each row and each column is an IPC sector, where the
color in the i-th row and j-th column correspond to ωij using the colormap listed to the right
of the �gure. Sectors are sorted by decreasing innovation centrality. A key feature is that IPC
sectors follow a “hierarchical” structure: the innovation network is highly asymmetric, and there
is a “pecking order” across sectors. Innovation-central sectors account for a disproportionate
share of citations from all other sectors (columns are dense on the left but become progressively
sparser to the right), yet these innovation-central sectors do not signi�cantly cite noncentral
sectors (rows are sparse on the top but become progressively denser towards the bottom).

Figure 3, Panel (b) visualizes the global innovation network by plotting each country-sector
as a node, with size drawn in proportion to the total patent counts in our sample. An arrow
from country m sector j to country n sector i indicates knowledge �ow from mj to ni, with
arrow width drawn in proportion to the share of ni’s citations that are to mj. For visual clarity,
only the largest countries and sectors are shown. Several patterns emerge from this �gure. First,
Japan and the United States produce the most patents in our sample. Second, the United States
receives signi�cantly more foreign citations than any other economy in our sample; it is a major
knowledge exporter and only a minor knowledge importer, corroborating Figure 2.
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5.2 Knowledge Spillovers Through the Innovation Network

5.2.1 Evidence Based on the United States

As a validation exercise, we now test the key mechanism behind our theory, namely that knowl-
edge spillovers occur through the innovation network. We �rst test the mechanism using U.S.
patents, treating the United States as a closed economy. Speci�cally, our law of motion (6) implies
that the (log-)knowledge stock in each sector is a discounted sum of (log-)patents as in (8), and
the ideas production function (5) further implies a log-linear relationship (equation 9, reproduced
below) between sector i’s new patents, sectoral R&D, and past patents from other sectors:

lnnit = ln ηi + ln sit + λ
K∑

j=1

ωij

(∫ ∞

0

e−λs lnnj,t−s ds

)

︸ ︷︷ ︸
≡lnχit, the knowledge stock that bene�ts

idea generation in sector i at time t

. (9)

Equation (9) is empirically testable. It implies that, after controlling for sectoral R&D expendi-
tures, past patents lnnj,t−s in sector j predict new patent output in sector i through the innovation
network ωij , and the e�ect decays over longer time lags with rate λ. Equation (9) also implies
that the e�ect of knowledge spillovers is not only weighted but also directed: the knowledge �ow
from sector j to sector i operates through ωij and not ωji.

We test the discrete-time analogue of (9) by constructing the knowledge aggregator χit from
past patents. Speci�cally, for each sector i, we enumerate over all sectors j from which knowledge
�ows to i, aggregating j’s log patent counts lnnj,t−τ in the past ten years (1 ≤ τ ≤ 10), weighted
by ωij,t−τ , the strength of the knowledge connection from j to i in the corresponding year:

KnowledgeUpit ≡
∑

j 6=i
∑10

τ=1ωij,t−τ lnnjt−τ . (27)

KnowledgeUpit captures the stock of past knowledge “upstream” of sector i, meaning it is the stock
of knowledge (lnχit) that can bene�t sector i’s subsequent idea generation. We then perform the
following regression:

lnnit = β1 × KnowledgeUpit + β2 × lnR&Di,t−1 + ξi + ξt + controlsit + εit, (28)

where nit is the number of patents �led in sector i year t and R&Di,t−1 is the R&D expendi-
ture, with a one-year lag to re�ect the delayed nature of patent �ling (our results are robust to
controlling for concurrent R&D expenditures). We control for sector �xed e�ects ξi, to purge
time-invariant sectoral factors that a�ect patent output, as well as for year �xed e�ects ξt, to
purge time-varying shocks common across all sectors.

We discuss two details before showing the results. First, when constructing the upstream
knowledge aggregator (27) for each sector i, we exclude the lagged patent output from sector i
itself; doing so ensures that the coe�cient β1 in regression (28) is not driven by serially correlated
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shocks to sectoral patent output. Second, theoretically the knowledge aggregator in (9) features
exponential decay of past patents’ e�ects, yet our empirical construction (27) features a discrete
cuto� window for τ ≤ 10 years. We make this choice to be agnostic about the parameter λ; later
we also nonparametrically estimate the e�ect at di�erent time lags.

Table 2. Directed Nature of Knowledge Flow

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeUpit 0.678*** 0.705*** 0.939*** 0.883*** 0.914*** 1.054*** 1.083*** 1.088*** 1.126***
(0.188) (0.214) (0.236) (0.195) (0.205) (0.328) (0.325) (0.335) (0.412)

ln(R&D)i,t−1 0.233*** 0.232*** 0.177** 0.228** 0.228** 0.198* 0.263*** 0.263*** 0.137
(0.072) (0.071) (0.071) (0.091) (0.090) (0.107) (0.104) (0.104) (0.092)

KnowledgeDownit -0.058 -0.067 -0.011
(0.188) (0.107) (0.143)

KnowledgeUp,IOit 0.301 0.282 0.160
(0.187) (0.244) (0.244)

No. of Sectors 95 95 95
No. of Obs 1,900 1,900 1,900
Fixed E�ects Sector, Year Sector, Year Sector, Year
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Notes. This table tests the relation between innovation in a focal sector and past innovation in sectors connected
through the innovation network, using the U.S. data over BLS sectors. We restrict the sample to sectors that have at
least 100 patents over the full sample period. To measure innovation production (Y ), we use the number of patents,
the number of future citations per patent through the end of our sample, and the commercial value estimated using
stock market reactions upon patent approval (Kogan et al., 2017). The key variable of interest, KnowledgeUpit , is
the knowledge from upstream, de�ned in (27). Lagged sectoral R&D expenses and sector and year �xed e�ects are
included as controls. Columns (2), (5), and (8) include downstream knowledge as a control. Columns (3), (6), and
(9) include knowledge accumulated from upstream sectors in the production network as a control. Standard errors
in parentheses are clustered at the sector level. ∗, ∗∗, and ∗∗∗ indicate signi�cance at the 10%, 5%, and 1% levels,
respectively.

Table 2, column (1) presents the results of regression (28). Sectoral R&D expenditure sig-
ni�cantly predicts the number of new patents �led in a given year, with an elasticity of 0.233.
The knowledge stock upstream of each sector—KnowledgeUpit , or lnχit—also signi�cantly pre-
dicts patent output, with an elasticity of 0.62. Columns (4) and (7) show that both variables also
predict patent quality: sectors with greater R&D and greater upstream knowledge stock tend
to produce patents with more future citation counts and greater commercial value, as measured
using the stock market reaction upon patent approval (Kogan et al. (2017)).

These regressions paint a picture consistent with our proposed mechanism, that past knowl-
edge in sectors upstream of i bene�ts the subsequent patent production in the focal sector i. An
alternative story relates to common shocks: a group of sectors that is connected to each other
via citation linkages may face similar demand, supply, and investment opportunities, leading to
co-movements of innovation activities. Such common shocks would lead to a positive coe�cient
β1 in regression (28) even without cross-sector knowledge spillovers. This is a classic version
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of the “re�ection problem” documented in Manski (1993) and, more relevant to our setting, in
Bloom et al. (2013).

To address the “common shock” concern, we construct the aggregator of knowledge stock for
sectors downstream of i:

KnowledgeDownit ≡∑k 6=i
∑10

τ=1ωki,t−τ lnnkt−τ .

That is, KnowledgeDownit aggregates the (log-)patent output in all sectors k 6= i, weighted by the
extent to which patents in sector k cite those in sector i. It is therefore a measure of the knowledge
stock downstream of sector i. Because knowledge �ow is directional, our theory implies the
following asymmetry: while the upstream aggregator KnowledgeUpit should positively predict
subsequent patent output in sector i, the downstream aggregator KnowledgeDownit should not. Yet
any common shocks hitting this network should generate symmetric correlations in innovation
output for focal sector i and both its upstream and downstream sectors.

Columns (2), (5), and (8) of Table 2 add KnowledgeDownit as a control variable to our baseline
regressions. We make two observations. First, adding KnowledgeDownit as a control does not
meaningfully a�ect the economic or statistical signi�cance of our two baseline variables. This
suggests our baseline regressions are not simply picking up correlated shocks to local technology
clusters. Second, the coe�cient on KnowledgeDownit is precisely zero, con�rming our key model
mechanism and that knowledge �ow along the innovation network is directional in nature—it
goes only from upstream to downstream, and not the other way around.

Another related concern is that common shocks operate not through technological linkages
but through input-output (IO) linkages. To address this, we construct the aggregator KnowledgeUp,IOit

similarly to KnowledgeUpit , but patents from other sectors are weighted not by the innovation net-
work, as in (27), but instead by sector i’s expenditure share on inputs from sector j. Columns (3),
(6), and (9) of Table 2 show the regression results when including KnowledgeUp,IOit as a control
variable. Knowledge from sectors that are innovation-upstream of sector i remains an econom-
ically and statistically signi�cant predictor of subsequent innovation in sector i, measured by
patent counts, citations per patent, and patent value. By contrast, KnowledgeUp,IOit is not a sig-
ni�cant predictor of sector i’s innovation in these speci�cations. We �nd that the coe�cient
on KnowledgeUp,IOit is signi�cant when we omit the main variable KnowledgeUpit from the re-
gressions (not reported in Table 2), but the e�ects seem to be dwarfed by the spillover e�ects
through the innovation network. These results, along with the fact that the innovation network
is only weakly correlated with the IO network (see Table 1), imply that the innovation network
provides valuable incremental information that is particularly powerful for understanding knowl-
edge spillovers across industries.

Finally, we revisit the dynamic prediction of our key law of motion (9), that upstream knowl-
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edge from the more distant past has less e�ect on patent output. To explore this, we perform
our baseline regression (28) using lagged versions of the upstream knowledge aggregator on the
right-hand side. We plot the coe�cients and con�dence intervals in Figure (4), where the one-
year lag corresponds to the baseline estimates in columns (1), (4), and (7) in Table 2. The �gure
shows an obsolescence-like pattern (Ma, 2021) in which the e�ect of past upstream knowledge
on subsequent innovation weakens over time, precisely as our theory predicts. The half-life of
these e�ects is about four years. Because our theory features an exponential decay of rate λ, the
half-life of four years translates into λ = −

(
ln 1

2

)
/4 ≈ 0.173.

Figure 4. Dynamic Responses of Innovation Output to Upstream Knowledge

not simply re-interating what is already known about industry linkages such as the I-O link. The
innovation network provides valuable incremental information that are particularly powerful in
understanding innovation relations among industries.

We also explored the dynamic responses of focal sectoral innovation on past knowledge ac-
cumulated through the innovation network. The analysis uses the same framework as in Eq. (??),
and change the timing of the key outcomes variable log(Pit) to log(Pit+⌧ ) where ⌧ = 1, 2, ..., 10.
We plot the coe�cients for all innovation outcome variables in Figure4. The impact of network-
accumulated knowledge gradually weakens aver the ten-year horizon. This is intuitive given that
technologies become obsolete over time, losing its value for future innovation (Ma, 2021).

Figure 4. Dynamic Responses of Innovation Output to Upstream Knowledge

Notes. This �gure presents the dynamic responses of sectoral innovation to upstream innovation knowledge trans-
mitted through the innovation network.
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Notes. This �gure presents the dynamic responses of the focal sector’s innovations to past innovations from upstream
sectors in the innovation network. The coe�cients are from regressions of focal sector’s innovations at times t+ 1
through t+10 on upstream knowledge measured at time-t. We control for log R&D with time-1 lag as well as sector
and year �xed e�ects.

5.2.2 Evidence Based on the Global Innovation Network

We now test international knowledge spillovers in our global sample. We construct an analogous
measure of upstream knowledge stock: for each focal countrym, sector i in year t, we enumerate
over all countries c and sectors j in our sample, aggregating the (log-)patent output in cj over the
past ten years, weighted by the share of mi’s citations that are to cj in the corresponding year:

KnowledgeUpmit ≡
∑

cj 6=mi
∑10

τ=1

Citesmi→cj,t−τ∑N
c′=1

∑K
k=1Citesmi→c′k,,t−τ

lnnaj,t−τ . (29)

We then adapt our closed-economy test of knowledge spillovers to perform on the global
innovation network. In this case, the unit of observation is at the country-industry-year level:

lnnmit = β1 × KnowledgeUpmit + β2 × lnR&Dmi,t−1 + ξmi + ξmt + ξit + controlsmit + εict. (30)

We include a saturated set of �xed e�ects. The country-industry �xed e�ect ξmi accounts for any
time-invariant unobserved heterogeneity in patent output (e.g., IT industries in the United States
and France have di�erent patent productivity); the country-year �xed e�ects ξmt control for time-
varying country-level shocks (e.g., patent productivity; business cycles) that are common across
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industries; and the industry-year �xed e�ects ξit account for time-varying global shocks to patent
output that are common within industries and across countries.

Table 3 shows the results: knowledge stock upstream of each country-industry signi�cantly
predicts subsequent patent output (column 1) and average citations per patent (column 5) even
in the global setting. The coe�cients are lower than those estimated for the United States, sug-
gesting that knowledge spillovers are stronger across sectors within the United States than they
are across countries. The data for sectoral R&D across countries, which are from ANBERD, have
regrettably spotty coverages: they only cover 16 of the 56 WIOD sectors in earlier years, and the
data exist for only 30 out of 43 countries. Hence, regressions where we control for sectoral R&D
(columns 2 and 6) have substantially smaller sample sizes. Nevertheless, we �nd the coe�cient on
the upstream knowledge aggregator to be stable and quantitatively unchanged with the control.

To rule out common shocks to technological and input-output clusters, we again—similar
to our closed-economy tests—construct and control for aggregators KnowledgeDownmit to capture
knowledge from downstream and KnowledgeUp,IOmit to capture potential knowledge spillovers
through the input-output network. Columns (3), (4), (7), and (8) show that the coe�cients on these
controls are insigni�cant, and our coe�cients on KnowledgeUpmit do not materially change when
adding these controls. Overall, these results validate our mechanism of knowledge spillovers
through the international innovation network.

6 Application: R&D Resource Allocations in the Data

In this section we use our model to evaluate cross-sector allocations of innovation resources in the
data. We compute the unilaterally optimal allocation of R&D resources across sectors for each
country and year in our sample. We show that optimal allocations do predict sectoral patent
output for countries and time periods generally perceived to be more innovative, such as the
United States, Germany, and, more recently, Japan and South Korea, but the relationship does
not hold for many other economies such as India, Mexico, and Russia. As we demonstrate, what
distinguishes the �rst group of countries is that a small number of multisector innovation hubs
account for the vast majority of those countries’ patent output. These innovation hubs have
signi�cant internal knowledge stock across many sectors, and because they partially internalize
the cross-sector knowledge spillovers, they allocate resources more like a planner would. Finally,
we conduct policy counterfactuals and show that replacing the real-world R&D allocations with
the unilaterally optimal ones can generate substantial welfare improvement for countries around
the globe.
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Table 3. Evidence of the Global Innovation Network for Knowledge Spillovers

for sectoral R&D have a substantially lower sample size. Nevertheless, we �nd the coe�cient on
the upstream knowledge aggregator to be stable and quantitatively unchanged with the control
(columns 2 and 6).

To rule out common shocks to technological and input-output clusters, we again—similar
to our closed-economy tests—construct and control for aggregators KnowledgeDownmit to capture
knowledge from downstream and KnowledgeUp,IOmit to capture potential knowledge spillovers
through the input-output network. Columns (3), (4), (7) and (8) show that the coe�cients on these
controls are insigni�cant, and our coe�cients on KnowledgeUpmit do not materially change when
adding these controls. Overall, these results validate the mechanism of knowledge spillovers
through the international innovation network.

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeUpmit 0.084*** 0.058** 0.055** 0.057** 0.113*** 0.098*** 0.098*** 0.097***
(0.019) (0.024) (0.023) (0.028) (0.022) (0.031) (0.031) (0.033)

ln (R&D)i,t−1 0.000 0.000 0.002 -0.010* -0.009* -0.008
(0.004) (0.004) (0.005) (0.005) (0.005) (0.06)

KnowledgeDownmit 0.008 0.001
(0.009) (0.012)

KnowledgeUp,IOmit 0.008 -0.003
(0.042) (0.060)

R2 0.949 0.964 0.964 0.969 0.921 0.943 0.943 0.948
No. of Obs 19,027 12,693 12,693 9,897 19,027 12,693 12,693 9,897
No. of Country×Sectors 998 895 895 875 998 895 895 875
Fixed E�ects Country×Sector, Country×Year, Sector×Year

6 Application: Allocation of R&D Resources in the Data

In this section we use our model to understand and evaluate the cross-sector allocation of inno-
vation resources in the data. We compute the unilaterally optimal allocation of R&D resources
across sectors for each country and year in our sample. We show the optimal allocations do
predict sectoral patent output for countries and time periods generally perceived to be more in-
novative, such as the United States, Germany, and more recently Japan and South Korea, but the
relationship does not hold for many other economies such as India, Mexico, and Russia. We show
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Notes. This table tests the relation between innovation in a focal sector and past innovation in connected sectors
through the innovation network, in an international setting. We restrict the sample to country-sectors that have at
least 10 patents over the full sample period. To measure innovation production (Y ), we use the number of patents
and total number of citations. The key variable of interest, KnowledgeUpit , is the knowledge from upstream, de�ned
in (29). Fixed e�ects at the country-sector, country-year, and sector-year levels are included as controls. Columns
(3) and (7) include downstream knowledge as a control. Columns (4) and (8) include knowledge accumulated from
upstream sectors in the production network as a control. Standard errors in parenthesis are clustered at the country-
sector level. ∗, ∗∗, and ∗∗∗ indicate signi�cance at the 10%, 5%, and 1% levels respectively.

6.1 Optimal R&D Allocations and Reliance on Foreign Knowledge

For each country m and year t, we calculate the unilaterally optimal cross-sector allocation of
R&D resources γm using Proposition 7:

γ ′mt ∝ φ
′

mt

(
I − Θmt

1 + ρ/λ

)−1

, (31)

where the proportionality constant is chosen to ensure the vector γmt sums to one. Recall that
Θmt ≡ 1x′mt◦Ωt is the matrix obtained by multiplying each column j of the innovation network
Ωt with xmjt ≡ qmjt

qmjt+q
f
mjt

, the share of domestic knowledge in sector j used for subsequent idea
generation in other sectors. Empirically, we measure xmjt as the share of citations to sector j that
are from domestic patents. As Figure 2 shows, xmjt averages to above 80% across sectors for the
United States but is signi�cantly lower for all other countries except Japan in recent years.

We compute the object φmt, which is the vector encoding the elasticity of domestic aggre-
gate consumption to sectoral productivity shocks, using import pricing function pmt (·;θt) mi-
crofounded from a trade model in which country m is a small open economy with intermedi-
ate varieties produced monopolistically, similar to the trade block of Gali and Monacelli (2005).
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This microfoundation provides the mapping from data on country m’s employment shares, im-
ports, and sectoral imports and exports to φmt. The microfoundation details appear in our On-
line Appendix; here we simply note that, empirically, φmt correlates extremely highly with the
consumption share vector βmt (correlations average to 0.95) and the employment share vector
(correlations average to 0.88) of each country and year. Intuitively, in a closed economy, φmt
coincides with the consumption share and employment share vectors, and in open economies,
φmt deviates from these other vectors due to terms-of-trade considerations: because of imperfect
substitutability between domestic and foreign bundles, improving the domestic knowledge stock
in a sector a�ects domestic demand for imports and hence their prices. In practice, the e�ect of
terms-of-trade changes on domestic consumption is very small; in fact, the results we present
below are largely unchanged even if we simply replace φmt with the consumption share vector
βmt when calculating the unilaterally optimal R&D allocation using (31).

To implement formula (31), we need to specify the discount rate relative to the step size of
innovation, ρ/λ. As a baseline, we choose the discount rate to be ρ = 2%, and we use the
step size λ = 0.173 as implied by the half-life in Figure 4, which is consistent with calibrations
of λ in a number of recent studies based on quality-ladder models.3 Qualitatively, our cross-
country analysis is not sensitive to these parameter values. As discussed previously and evident
in formula (31), an increase in ρ/λ has the same implication for the optimal R&D allocation as
an increase in a country’s reliance on foreign knowledge (i.e., a uniform decrease in the domestic
citation shares xmit across all sectors). As shown in Figure 2, empirical cross-country variation
in domestic citation shares is an order of magnitude larger than the variation in (1 + ρ/λ)−1

within reasonable ranges of the discount rate and step size. For instance, as the discount rate
quadruples from ρ = 2% to 8%, (1 + ρ/λ)−1 experiences a decline from 0.90 to 0.63; however, the
average domestic citation shares vary across countries by as much as 400 percent in proportion,
for instance when comparing the United Kingdom (20% domestic citations) to the United States
(>80% domestic citations). Hence, the qualitative cross-country di�erences in unilaterally optimal
R&D allocations are not sensitive to our calibration of ρ/λ. For our quantitative exercises, we
report alternative values of ρ/λ in the Online Appendix as sensitivity checks.

To illustrate how foreign reliance can a�ect optimal R&D allocations, Figure 5 plots the share
of R&D resources to be optimally allocated across sectors in the United States in the year 2010,
for varying levels of (1 + ρ/λ)−1, noting again that a decline in (1 + ρ/λ)−1 is isomorphic to a
uniform decline in domestic citation shares. The x-axis represents WIOD sectors, and the level
of optimal R&D resources γit is shown on the y-axis. The darkest curve re�ects our baseline
calibration where (1 + ρ/λ)−1 = 0.9, with sectors sorted in descending order by γit. The other

3Acemoglu, Akcigit, Bloom and Kerr (2018a) set λ = 0.13; Aghion, Bergeaud, Boppart, Klenow and Li (2021) set
λ = ln (1.249) = 0.22; Liu, Mian and Su� (forthcoming) set λ = ln (1.21) = 0.19.
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Figure 5. Optimal R&D Allocations for Varying Levels of Discounting/Foreign Reliance
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Notes. This �gure shows the optimal R&D allocation γ across WIOD sectors for varying levels of ρ/λ. Sectors are
sorted by γ when (1 + ρ/λ)

−1
= 0.9, our baseline calibration. Values of γ in the baseline calibration are shown in
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−1.

curves with progressively lighter colors represent economies with higher ρ/λ—or, equivalently,
that rely more on foreign knowledge.

Two patterns emerge. First, for the United States, WIOD sectors that obtain the most R&D
resources under the optimal allocation are related to computers, electronics, optical apparatus,
and information services; these few sectors should account for over a third of total U.S. R&D
resources. These are also sectors with the highest innovation centrality. In fact, the correla-
tion between the optimal R&D allocation γ and the innovation centrality a is well above 0.9 in
most years. This is because the United States is a large economy with a self-contained innova-
tion network; hence, its planner should internalize most of the knowledge spillovers, so that the
optimal allocation (γ) is not too di�erent from the growth-maximizing ones (a), and consumer
preferences and international trade conditions (both are encoded in φUS) play a relatively small
role in determining γ. Second, as ρ increases—equivalently, as countries become more reliant
on foreign knowledge and have lower domestic citation shares—sectors that are important in the
consumption bundle, such as real estate and retail trade, require progressively more resources in
the optimal R&D allocation. Note that we show these patterns using the WIOD sectors for visual
clarity; they also hold for the 645 IPC technological classes, but are more visually cluttered.

Qualitatively, these results suggest that, from each country’s self-serving perspective, economies
with self-reliant innovation networks, such as the United States and Japan, should optimally allo-
cate more resources to innovation-central sectors; by contrast, economies that depend on foreign
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knowledge spillovers should optimally allocate more resources to sectors that are more important
in domestic production, either due to domestic consumer demand or exports.

Table 4 shows the empirical correlation in optimal R&D allocations between country pairs,
with the lower triangular panel showing the Pearson correlation and the upper triangular panel
showing the Spearman rank correlation, which is equal to the Pearson correlation of the rank
values. Unlike the strong correlation in the country-speci�c innovation networks (see Table A.3 of
the Online Appendix), unilaterally optimal R&D allocations di�er signi�cantly across countries.
This variation is primarily driven by cross-country heterogeneity in domestic citation shares
(xmt), though heterogeneity in production structures (φmt) plays a role as well.

Table 4. Unilaterally Optimal R&D Allocations Di�er Signi�cantly Across Countries

Correlation of γi across countries (for the year 2015)
Countries US Japan China Korea Germany Taiwan Canada UK France Russia
US 0.83 0.46 0.67 0.78 0.54 0.57 0.55 0.62 0.50
Japan 0.94 0.58 0.67 0.67 0.62 0.43 0.37 0.54 0.55
China 0.37 0.44 0.71 0.45 0.65 0.37 0.33 0.45 0.71
Korea 0.54 0.55 0.69 0.71 0.81 0.61 0.59 0.71 0.74
Germany 0.48 0.40 0.28 0.64 0.65 0.72 0.79 0.84 0.60
Taiwan 0.76 0.77 0.57 0.74 0.60 0.53 0.59 0.72 0.73
Canada 0.32 0.19 0.24 0.51 0.78 0.55 0.84 0.79 0.64
UK 0.20 0.10 0.19 0.49 0.81 0.48 0.84 0.86 0.61
France 0.26 0.19 0.34 0.62 0.84 0.55 0.87 0.92 0.68
Russia 0.12 0.11 0.67 0.56 0.45 0.46 0.55 0.58 0.66

Correlations of γm across countries (for the year 2010)
Countries US Japan China Korea Germany Canada UK France Russia Sweden
US 0.80 0.51 0.65 0.71 0.58 0.50 0.53 0.53 0.51
Japan 0.93 0.64 0.66 0.63 0.45 0.30 0.41 0.57 0.43
China 0.49 0.58 0.73 0.48 0.46 0.30 0.40 0.75 0.43
Korea 0.60 0.64 0.74 0.71 0.58 0.56 0.62 0.70 0.63
Germany 0.45 0.39 0.29 0.62 0.69 0.78 0.84 0.62 0.82
Canada 0.34 0.21 0.24 0.47 0.75 0.83 0.74 0.71 0.81
UK 0.22 0.11 0.09 0.42 0.83 0.84 0.89 0.55 0.82
France 0.23 0.14 0.20 0.50 0.87 0.82 0.93 0.63 0.84
Russia 0.21 0.18 0.59 0.54 0.57 0.65 0.55 0.67 0.64
Sweden 0.39 0.30 0.21 0.50 0.85 0.80 0.88 0.87 0.51

Correlation of γi across speci�cations
(entire sample)
γ γexUS γJP

γ 0.999 0.975

γexUS 0.997 0.986

γJP 0.996 0.999

Correlation of γi across speci�cations
(for the United States)

γ γexUS γJP

γ 0.970 0.933

γexUS 0.954 0.945

γJP 0.929 0.964

Correlation of γi across speci�cations
(for the United States in year 2015)

γ γexUS γJP

γ 0.990 0.975

γexUS 0.980 0.986

γJP 0.959 0.985

3

Notes. This table shows the pair-wise correlations of optimal R&D allocations across countries. The lower triangular
panel shows the Pearson correlation coe�cients; the upper triangular panel shows Spearman’s rank correlation.

6.2 Innovation Allocations in the Data

We now use optimal R&D allocations γmt to assess innovation activities around the globe. Ideally,
for each country m and year t, we would like to observe sectoral R&D expenditures, which, ac-
cording to our theory, should align with γmt if resources are allocated optimally. By contrast, any
misalignment between γmt and R&D expenditures indicates resource misallocation for country
m in year t.

We start with analysis based on the United States over BLS sectors. The left panel of Figure 6
shows the scatter plot of sectoral R&D expenditure (as a share of total R&D) against the optimal
R&D expenditure share γUS for the year 2010. The linear �t (solid line) is visually indistinguish-
able from the 45-degree line (dashed) and has a slope of 1.02. The �gure thus demonstrates that
that on average, sectors that should have received more R&D resources do indeed receive more
R&D resources. In the right panel of Figure 6, we change the y-axis to sectoral patent output (as
a share of total patent output); again, sectoral patent output aligns very well with γUS , with a
signi�cantly positive slope of 1.26.
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One important concern about how we interpret the striking pattern in Figure 6 is whether we
are picking up something mechanical and circular. In particular, it may be possible that sectors re-
ceiving more resources simply end up with more patents and citations; because the United States
is a large economy, these sectors could appear to be more important in the global innovation
network Ω, leading our theory to suggest that these sectors should be allocated more resources.

To rule out this possibility, we construct an alternative innovation network that is indepen-
dent from sectoral R&D in the United States. Speci�cally, we construct a network based only
on Japanese patent citations to non-U.S. patents. Although this alternative innovation network
Ω̂JP is independent of U.S. R&D expenditures, we nevertheless �nd Ω̂JP to be nearly perfectly
correlated with Ω, and all our �ndings continue to hold. This robustness test suggests that the
innovation centrality a—which correlates strongly with the optimal R&D allocation γUS of the
United States—is indeed picking up sectoral importance in the innovation network and is inde-
pendent of sectoral R&D expenditures.

Figure 6. U.S. Sectoral R&D and Patent Output Align Well With γUS in 2010
0

.0
5

.1
se

ct
or

al
 s

ha
re

 o
f p

at
en

t o
ut

pu
t

0 .02 .04 .06 .08 .1
optimal sectoral share of R&D resources

line of fit
45-degree line

0
.0

2
.0

4
.0

6
.0

8
.1

se
ct

or
al

 s
ha

re
 o

f R
&D

 re
so

ur
ce

s 
in

 th
e 

da
ta

0 .02 .04 .06 .08 .1
optimal share of R&D resources in each sector

line of fit
45-degree line

Notes. This �gure shows scatter plots of the real-world R&D expenditure shares (left panel) and patent output (right
panel) against the optimal R&D allocation shares, for the U.S. in 2010. The solid line is the linear �t; the dashed line
is the 45-degree line.

To be clear, the on-average alignment between real-world and optimal R&D allocations, as in
Figure 6, does not imply the United States is allocating R&D optimally: there is substantial resid-
ual variation in R&D allocations as they disperse around the 45-degree line. The vertical distance
between each observation and the 45-degree line measures the amount of R&D resources that
need to be reallocated to achieve the optimal allocation. We quantitatively assess the importance
of such dispersion in Section 6.3.

We now analyze the correlation between optimal and real-world innovation allocations across
countries and time in our global sample. As discussed previously, the data on sectoral R&D spend-
ings are regrettably spotty and cover only a subset of our sample; the coverage is especially poor
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for less-developed economies and in early years of the sample. Hence, we examine both R&D
expenditures and sectoral patent outputs, using the latter as an imperfect proxy for R&D expen-
ditures in order to cover more countries and time periods. For the subset of data that include both
R&D expenditure and patent output, the two variables have a correlation of 0.66.

Table (5) shows the results. Columns (1)–(3) use (log-) R&D expenditures for each country-
sector-year as the outcome variable, with a di�erent set of �xed e�ects across columns. Columns
(4)–(6) use (log-) patent counts as the outcome variable, and columns (7)–(9) use (log-) total fu-
ture citation counts, from the �ling year through the end of our sample. We use saturated �xed
e�ects to control for unobserved heterogeneity, including sector-year �xed e�ects, which con-
trol for time-varying sectoral shocks (e.g., to innovation productivity) common across countries;
country-year �xed e�ects, which control for time-varying, country-level shocks common across
sectors; and country-sector �xed e�ects, which control for time-invariant unobserved hetero-
geneity that varies across countries and sectors. The coe�cients on the main dependent variable
γmit are signi�cant at the 5% level across all speci�cations except for column (3), which uses R&D
as the outcome variable with a limited sample size; nevertheless, this coe�cient has a p-value of
0.058 and is therefore still marginally signi�cant. These results suggest that, on average and from
the perspectives of self-serving social planners in our global sample, sectors that should obtain
greater innovation inputs do receive more R&D resources and have greater innovation output.

Table 5. Across Countries, Sectors that Should Optimally Have Greater Innovation Inputs Do
Generate Greater Innovation Output

ln (R&D expendituremit) ln (#Patentsmit) ln (citationsmit)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

γmit 22.47∗∗∗ 23.75∗∗∗ 6.935∗ 10.41∗∗∗ 10.41∗∗∗ 14.41∗∗ 10.82∗∗ 10.82∗∗ 13.56∗∗
(3.237) (3.068) (3.432) (3.047) (3.046) (3.666) (3.306) (3.305) (3.767)

Fixed E�ects
Country Yes Yes Yes
Year Yes Yes Yes
IPC Yes Yes Yes Yes Yes Yes
Country×Year Yes Yes Yes Yes Yes Yes
IPC×Year Yes Yes Yes
Country×IPC Yes Yes Yes

R2 0.863 0.896 0.969 0.613 0.677 0.910 0.606 0.665 0.884
No. of Obs 26041 26033 25891 141900 141900 141900 141900 141900 141900
No. of Countries 34 34 34 42 42 42 42 42 42

40

Notes. This table presents the relation between the unilaterally optimal innovation allocations and measures of
sectoral innovation, including (log-) R&D expenditure, patent output, and total future citation counts through the
end of our sample. The regressions pool all countries, sectors, and years in our sample. Standard errors in parentheses
are clustered at the country level. ∗, ∗∗, and ∗∗∗ indicate signi�cance at the 10%, 5%, and 1% levels respectively.

There is substantial cross-country heterogeneity in R&D resource allocations. Figure 7 shows
scatter plots of sectoral patent output against unilaterally optimal R&D allocations, for ten se-
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lected countries in the year 2010. Sectoral patent output—as a proxy for R&D inputs—correlate
strongly with optimal R&D allocations for the �ve countries shown in the top row (the United
States,4 Japan, China, South Korea, and Germany). On the other hand, there does not seem to be
a positive relationship between patent output and unilaterally optimal R&D allocations for those
�ve economies at the bottom (Russia, India, Brazil, Mexico, and Indonesia). As we have noted
above, a positive line-of-�t does not imply optimal resource allocation, but on average, observa-
tions are vertically closer to the 45-degree line in the top row than in the bottom, suggesting that,
in the latter group of countries, more resources need to be reallocated in order to achieve opti-
mal R&D allocations. Note that we use patent output to proxy R&D inputs in this �gure because
patent output is available for more countries, particularly the �ve less-developed economies in
the bottom row; Figure A.1 in the Online Appendix uses sectoral R&D expenditure as the y-axis
shows similar �ndings for the set of economies in the top row.

Figure 7. Patent Output Aligns Well With γm for Some Countries But Poorly for Others in 2010
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Notes. This �gure shows scatter plots of sectoral patent output (as a fraction of total patent output in each country)
against the optimal sectoral share of R&D allocation for ten selected countries and the year 2010. The solid line is the
linear �t; the dashed line is the 45-degree line. For visual clarity, outliers—sectors that account for >12% of national
patent output—are not shown in the scatter plots, but all sectors are used when constructing the linear �t.

In Figure 8, we further demonstrate over-time heterogeneity in R&D allocations within each
country. Speci�cally, for each country m and year t, we perform a bivariate regression of (log-
) patent count in each sector i on γmit, and we show the slope coe�cient and the con�dence
interval for ten selected countries over our entire sample period. The slope coe�cients for the
United States and Germany are consistently positive throughout our sample period. The slope

4We include the United States in Figure 7, which is based on WIOD sectors, as a comparison to Figure 6, which
is based on BLS sectors.
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coe�cients for India, Mexico, and Russia are consistently indistinguishable from zero. Most in-
terestingly, for the three Asian economies, the slope coe�cients were zero at the beginning of
our sample and only became positive during these economies’ rapid growth periods.

Taking stock, our test suggests that during time periods generally perceived to be more in-
novative countries do seem to allocate R&D resources in ways that correlate with unilaterally
optimal allocations, while other economies perceived to be less innovative—perhaps due to poor
institutions and lack of incentives—seem to misallocate R&D resources.

Figure 8. Alignment Between Patent Output and Optimal Allocations,
Across Countries and Over Time
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Notes. For each country and year, we perform a bilateral regression of (log-) sectoral patent output on the optimal
R&D allocation shares. This �gure shows the time-series of the regression coe�cients with con�dence intervals for
ten selected countries in our sample.

Innovation Hubs Even in innovative economies such as the United States, Germany, and
modern Japan and South Korea, most R&D activities occur in the private sector. How do these
economies decentralize the cross-sector allocation of R&D resources? We argue this could be
through multisector innovation hubs: the IBMs, Siemens, Sonys, and Samsungs of the world.
These �rms operate and hold intellectual property rights across a wide range of technological
classes, and their R&D activities build heavily on past knowledge created internally within each
�rm. The self-reliance on within-�rm knowledge spillovers implies that these �rms internalize
some of the network e�ects, so that they allocate R&D resources not purely driven by myopic
pro�ts but instead in ways closer to the planner’s solutions. In Section B.4 of the Online Ap-
pendix, we formalize this intuition by extending our closed-economy model to include granular,
multi-sector innovation hubs. Here we provide descriptive evidence about the presence of inno-
vation hubs.
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To demonstrate that the majority of innovations in the most innovative economies take place
in a small collection of �rms, Figure 9 shows the minimum fraction of �rms in each country that
is needed to account for 50% of patent output in the year 2010. In economies such as Japan, the
United States, and South Korea, a tiny fraction of �rms (0.3%, 0.9%, and 1.2% respectively, or 64,
315, and 290 �rms) account for half of the entire country’s total innovation output; these �rms
are the innovation hubs.

Figure 9. Fraction of Innovating Firms that Can Account for 50% of Each Country’s Patent
Output in the Year 2010
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Notes. This �gure shows the minimum fraction of innovating �rms that can account for 50% of patent output for
each country in the year 2010.

Figure 10 demonstrates the self-reliant nature of these innovation hubs’ R&D activities. Specif-
ically, each time a patent cites a sector, we ask whether the patent assignee holds other patents in
that cited sector. We aggregate this information at the �rm level into a measure of what we call
internal knowledge coverage ratio, that is, the fraction of each �rm’s citations that are to sectors
in which the �rm holds intellectual property rights. The measure indicates how much the �rm
relies on internal knowledge when conducting innovations; a �rm with patents in every sector
has an internal knowledge coverage ratio of 100%.

In Figure 10, we show the distribution of patents with the corresponding �rm’s internal
knowledge coverage ratio for each country in the year 2010. Speci�cally, for each country, a
point (x, y) on the curve should be read as “at least x% of patents are produced by �rms with an
internal knowledge coverage ratio of over y%.” If a single �rm accounts for the entire patent out-
put in the economy—thus all citations are internal—the �gure would show a �at line at y = 100%,
and if every �rm holds only a single patent—thus all citations must be external—the �gure would
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show a �at line at y = 0%. For every real-world economy, the curve declines from y = 100% on
the left (x = 0) to y = 0 on the right (x = 100%); a faster decline in the y-value implies the econ-
omy’s innovations rely less on each innovator’s internal knowledge. The �gure shows a slow
decline for the �ve countries in the top row and a fast decline for those the bottom, indicating a
signi�cant degree of knowledge self-reliance at the �rm-level for the United States, Japan, China,
South Korea, and Germany, highlighting the importance of innovation hubs in these economies.

Figure 10. The Cumulative Distribution of Patents by the Innovator’s Internal Knowledge
Coverage Ratio
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Notes. This �gure shows the distribution of patents with the corresponding �rm’s internal knowledge coverage ratio
for ten selected countries in 2010. The knowledge coverage ratio of a �rm is de�ned as the fraction of its patent
citations that are to sectors in which the �rm holds patents. For each country, a point (x, y) on the curve should be
read as “at least x% of patents are produced by �rms with internal knowledge coverage ratio of over y%.”

6.3 Growth and Welfare Gains from Adopting Optimal Allocations

Even though our analysis in Section 6.2 suggests that in innovative economies like the United
States, sectors that should have more R&D resources under unilaterally optimal allocations do
tend to get more resources, this does not mean these countries optimally allocate resources.
That is, while Figure 7 shows that sectoral R&D allocations correlate positively with γmt for
the economies in the top row, there is still substantial residual variation in R&D allocations as
they disperse around the 45-degree line. Our theory suggests that by allocating R&D exactly
along the 45-degree line, these economies would experience positive welfare gains.

We now use our model to evaluate the growth and welfare gains for countries switching from
observed to optimal R&D allocations. First, we model the United States as a closed economy. We
apply Proposition 4 and its corollary to evaluate the BGP growth di�erentials between optimal
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and real-world R&D allocations, and we apply Proposition 6 to evaluate the potential welfare
gains, taking into account the transitional dynamics under optimal allocation. Second, we provide
an open-economy version of Proposition 6 and evaluate the potential welfare gains across the
globe.

For the United States, the dashed line in Figure 11 shows the time series of the potential
gain in the BGP economic growth rate when optimal R&D allocations replace the observed ones,
applying Corollary 1. R&D misallocation has been stable since the 2000s, accounting for about
0.68 percentage points of missing annual growth on average.

We apply Proposition 6 to derive the potential gain in welfare when replacing the real-world
R&D allocations with the optimal ones, taking into account the transitional dynamics. For ease
of interpretation, we express welfare gains in growth-equivalent terms.

De�nition 4. Consider two consumption paths {ct}t≥0 and {ĉt}t≥0. The growth-equivalent wel-
fare gain of replacing {ct}with {ĉt} is the level of g such that the consumer is indi�erent between
the consumption path {ctegt}t≥0 and {ĉt}t≥0.

The growth-equivalent welfare gain expresses the consumer value change from switching to a
di�erent consumption path in terms of a constant growth factor that, once applied to the original
consumption path, makes the consumer indi�erent between switching and not. Deriving the
growth-equivalent welfare gain of counterfactual R&D allocations is straightforward: Proposition
6 provides the formula for the welfare change under two R&D allocations; to convert to growth-
equivalent terms, we simply multiply the welfare change by ρ2. This is because under log-utility
and exponential discounting, the welfare di�erence between {ct} and {ctegt} is precisely g/ρ2:

∫ ∞

0

e−ρt ln
(
cte

gt
)

dt−
∫ ∞

0

e−ρt ln ct dt =

∫ ∞

0

e−ρtgt dt = g/ρ2.

The solid line in Figure 11 shows the time series of the growth-equivalent welfare gains when
replacing the real-world R&D allocations with the unilaterally optimal ones. While the solid line
tracks the dashed line very well—periods when optimal R&D allocations lead to greater gains in
BGP growth rates also see greater welfare gains—the growth-equivalent welfare gains are always
higher than the BGP growth rate gains throughout our sample period. Transitional dynamics
explain this. While the long run welfare e�ects of adopting optimal R&D allocations are captured
by the di�erences in the BGP growth rate, Figure 11 shows there are additional, short run welfare
gains, which correspond to the even larger but temporary boost in growth along the transition
path, as the cross-sector distribution of knowledge stocks converges to the BGP levels. Overall,
R&D reallocation can bring very substantial welfare gains to the United States, equivalent to
gaining about 2.5 percentage points in perpetual economic growth.

We now turn to open-economy analysis based on our global sample. Because of our reduced-
form formulation of international knowledge spillovers and trade, analysis of how country-level
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Figure 11. Growth and Welfare Gains from Adopting Optimal R&D Allocations in the United
States
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Notes. This �gure shows the time series of growth gains (dashed line) and welfare gains (solid line) from adopting
optimal R&D allocations in the United States. The growth gains are calculated as the di�erence in the implied BGP
growth rate between the real-world R&D allocations and the optimal ones, and the welfare gains are calculated in
growth-equivalent terms (De�nition 4), taking into account the transitional dynamics.

R&D allocations a�ect global BGP is beyond the scope of this paper. Nevertheless, we provide an
open-economy version of Proposition 6.

Proposition 8. Consider an open economy m with arbitrary initial knowledge stock qm0 at time
0. Consider two time-invariant R&D allocation plans b and b̃ while holding the innovation network
Θm, the sequence of trade conditions {θt} and production worker allocation constant. The di�erence
in consumer welfare between the two R&D plans is

V (b)− V
(
b̃
)
≡

∫ ∞

0

e−ρt
(

ln ct (b)− ln ct

(
b̃
))

dt

= φ′m

K∑

k=1

uΘ
k v

Θ′
k

1

ρ (ρ+ λ (1− ψΘ
k ))
× λ

(
ln b− ln b̃

)
, (32)

where uΘ
k , vΘ′

k , and ψΘ
k are respectively the k-th right eigenvector, the k-th left eigenvector, and the

corresponding eigenvalue of Θm.

Proposition 8 provides the formula for welfare changes in small open economies under dif-
ferent R&D allocations. We implement the formula using our global sample. Figure 12 shows
the 2000–2015 time series for selected countries’ growth-equivalent welfare gains, with the U.S.
result on the top left as a comparison. Two features stand out. First, R&D misallocation leaves
substantial welfare gains on the table: as much as 6 percentage points in growth-equivalent terms
for Mexico, and close to 4 percentage points for some of the other economies. Second, despite
the better alignment between actual and optimal R&D allocations for countries in the top row,
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the misallocation welfare losses are not necessarily smaller in these economies than those in the
bottom row. That is because, on average, the economies in the bottom row rely more on foreign
knowledge, and foreign reliance limits the scope of welfare gain from domestic R&D policies. In
terms of the formula in (32), greater foreign reliance translates into lower eigenvalues ψΘ

k across
the entire spectrum k = 1, · · · , K . Intuitively, an important channel through which domestic
R&D policies can improve welfare is domestic knowledge spillovers that facilitate subsequent
idea production, and this channel only operates if domestic knowledge is used for subsequent
idea production.

Figure 12. Country-Level Welfare Gains from Adopting the Unilaterally Optimal R&D
Allocations
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Notes. This �gure shows welfare gains from adopting unilaterally optimal R&D allocations for ten selected countries
between 2000 and 2015. Welfare gains on the y-axis are expressed in growth-equivalent terms (De�nition 4).

7 Conclusion

We study the optimal allocation of R&D resources in an endogenous growth model with an inno-
vation network. We provide closed-form solutions for the optimal dynamic path of R&D resource
allocations, and we show that planners valuing long-term growth (i.e., with low discount rates)
should allocate more R&D toward key sectors that are upstream in the innovation network. We
show innovation centrality, i.e., the dominant eigenvector of the innovation network, is a su�-
cient statistic for evaluating the growth impact of R&D allocations. In an open-economy setting,
we derive the unilaterally optimal R&D allocations as a function of each country’s dependence
on foreign knowledge spillovers, and we demonstrate the incentive for countries to free-ride on
fundamental technologies: an economy more reliant on foreign knowledge spillovers has less
incentive to direct resources toward fundamental sectors, leading to cross-country di�erences in

46



unilaterally optimal R&D allocations.
The main advantage of our su�cient statistics for optimal R&D allocations is that we can

easily compute them using data on sectoral production and innovation network. By comparing
the real-world R&D allocations with the optimal ones, we are able to quantitatively evaluate the
importance of R&D misallocations on economic growth and welfare.

To leverage our theory and evaluate R&D allocations in the data, we build the global innova-
tion network based on over 30 million global patents and establish its empirical importance for
knowledge spillovers. We use our su�cient statistics to evaluate R&D allocations across coun-
tries and time. We �nd that in economies generally perceived as innovative, such as the United
States, Germany, and Japan, cross-sector R&D allocations and patent production correlate with
our su�cient statistics, but the relationship does not hold for many other economies. Adopting
optimal R&D allocations can generate substantial welfare improvements across the globe; for the
United States, R&D misallocation accounts for about 0.68 percentage points of missing annual
growth since the 2000s.
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