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ABSTRACT

We propose a demand estimation method that allows for a large number of zero sale 
observations, rich unobserved heterogeneity, and endogenous prices. We do so by modeling small 
market sizes through Poisson arrivals. Each of these arriving consumers solves a standard discrete 
choice problem. We present a Bayesian IV estimation approach that addresses sampling error in 
product shares and scales well to rich data environments. The data requirements are traditional 
market-level data as well as a measure of market sizes or consumer arrivals. After presenting 
simulation studies, we demonstrate the method in an empirical application of air travel demand.
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1. INTRODUCTION

Demand estimation techniques are often used in applied work where researchers have
access to aggregate data. Although existing methods perform well in large markets when
observed market shares can be assumed to be the same as their model equivalents, dig-
itization has enabled the collection and analysis of high frequency disaggregated sales
data. Often, many or most observations in these micro data contain no purchases. Sit-
uations with zero transactions are problematic for existing methods because these ap-
proaches require observed market shares to be strictly positive in order to be estimable.
This practical estimation challenge raises the concern that these standard demand mod-
els are conceptually inappropriate for high-frequency, detailed micro data sets.

In this paper, we propose an approach to modeling and estimating discrete choice
demand suitable for data environments with sparse sales. Our model combines Poisson
arrivals and discrete choice demand models that accommodate random coefficients,
flexible latent product characteristics, and endogenous prices. Although alternative re-
cent methodological advances propose solutions to the zeros problem by considering
inference under large market sizes, in many cases the number of consumers will never
grow in a way that reduces sampling error in product shares. This occurs because pur-
chases opportunities tend to grow too slowly relative to the number of products offered.
In contrast, our approach explicitly models small market sizes, which allows for low
purchase rates and a significant amount of zero-sale observations. The data require-
ments are conventional market-level data as well as a measure of observed market sizes,
such as information on consumer arrival intensity. These data are becoming increas-
ingly available in economics and marketing and not need pertain only to e-commerce.
For example, arrival intensity may involve foot-traffic statistics or a proxy for market
sizes, such as the number of consumers who purchased a particular good, e.g., milk
in the grocery context. We present simulation studies to compare to alternative ap-
proaches to handling sparse sales. We show that our approach performs well in situa-
tions where alternative methods produce biased demand estimates, including misspec-
ifying the supply-side. Finally, we extend our methodology to discrete random coeffi-
cients and apply it to the study of airline markets, where the daily demand for flights
is low—product-level zeros sales exceed 85%. We compare demand estimates across
estimation approaches and use our model to explore the underlying forces that cause
cyclical demand for air travel.

In Section 2, we consider the workhorse demand model of Berry et al. (1995), hence-
forth BLP (1995), which is often used to flexibly estimate substitution patterns across dif-
ferentiated products. In the BLP (1995) approach, empirical product shares are matched
to their model counterparts via a market share inversion that requires all sales quanti-
ties (and thus, empirical shares) to be strictly positive. In estimation, this inversion is not
possible in the presence of zero-sale observations, as it requires taking the log of empir-
ical shares equal to zero. Dropping the zeros is known to create a selection bias in the
demand estimates (Berry et al., 2004). Although aggregation of the data may be possible,
this may smooth over the heterogeneity of interest—in our empirical application, we
find that aggregation also yields implausible estimates of demand. In our model, mar-
ket sizes are modeled through Poisson distributions. Under our modeling assumptions,
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demand is also distributed Poisson. This allows us to rationalize zero sale observations
and account for the sampling distribution of sales driven by small market sizes. Relative
to other proposed solutions to the zeros problem, including Quan and Williams (2018),
Li (2019), Adam et al. (2020), Dubé et al. (2021), Lima (2021), and Gandhi et al. (2023),
we explicitly leverage market-size variation as a source of zero sales. An alternative ap-
proach would be to fix the market size and model the multinomial distribution of sales,
similar to Conlon and Mortimer (2013).

Our approach combines methodologies that allow for sampling error in product
shares, price endogeneity, and rich unobserved heterogeneity into a single framework.
Market participation is modeled according to flexible Poisson distributions. That is, con-
sumers consider all products or do not participate in the market at all. This contrasts
with individual-level models of limited information, where consumers search across
subsets of products (e.g., Amano et al., 2022, Abaluck et al., 2022). Our approach re-
lates to Burda et al. (2012), who consider Poisson demand with rich individual-level het-
erogeneity, and Vulcano et al. (2012), who suggest using choice set variation in Poisson
demand estimation. However, both of these works abstract from endogenous variables.1

Similarly, a growing literature in empirical industrial organization (e.g., Buchholz, 2021,
Williams, 2022) and operations (e.g., Newman et al., 2014, Jain et al., 2015, Abdallah and
Vulcano, 2021, Wang, 2021) consider Poisson demand. Relative to these works, we allow
for prices to have a flexible correlation structure with latent demand characteristics, i.e.,
prices are endogenous to unobserved product qualities.

We develop a Bayesian instrumental variables estimator for the model in Section 3.
We build on the methods proposed by Jiang et al. (2009) by adding an explicit model
of market size that accommodates unobserved product shares (Poisson demand), dis-
crete or continuous random coefficients, and a flexible treatment of addressing price
endogeneity. By augmenting the data with unobserved shares, we can use the market
share inversion of BLP (1995) even though there may exist zero-sale observations and
sampling error in product shares. We present two approaches to handling price endo-
geneity that use limited information pricing equations. The first treatment considers a
non-parametric relationship between price and the demand unobservables by apply-
ing a Dirichlet process prior. We also present a semi-nonparametric treatment using a
mixture normal model in the appendix.

In Section 4, we demonstrate that our estimator can recover accurate and precise pa-
rameter values relative to existing methods in several simulation studies. Our estimator
provides coverage even if market sizes are very small—for example, when arrival rates
are five individuals per market. In this setting, we show that common zero-share solu-
tions introduce considerable bias to the demand estimates and overstate the dispersion
of preferences within and across markets. In addition, we show that our estimator can
be robust to some forms of misspecification, including misspecifying the dispersion of
consumer arrivals and restricting the flexibility in our treatment of price endogeneity.
Lastly, we conduct a set of simulation studies that better represents retail scanner data,
where consumers face choice sets with dozens of products.

1See also Chen and Kuo (2001) and Lee et al. (2017) for related work that involves random effects without
endogenous characteristics.
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Finally, we provide an adaptation of our estimator to mass point random coefficients
(Kamakura and Russell, 1989, Berry et al., 2006) and consider an empirical application
to the airline industry in Section 5. Our empirical setting emphasizes the data require-
ments for estimation. We use data provided by a large international airline based in the
United States. Our sample contains sales quantities, prices, as well as a measure of con-
sumer arrivals. More precisely, we use search query counts at granular levels to inform
market sizes in estimation.

The demand for air travel is difficult to estimate because sales are sparse. We find
that 85% of observations are zero-sale observations. Moreover, typically just a few con-
sumers arrive per day. Using our method, we estimate mean product elasticities to be
-1.2. However, we estimate demand to be far more inelastic by using existing demand
approaches. Existing approaches yield price elasticities between -0.13 and 0, with sub-
stantial masses of estimates very close to zero. This occurs because imputing (small)
shares when sales are zero causes price variation to have no impact on shares due to at-
tenuation bias. Similarly, dropping zeros leads to price elasticity estimates very close to
zero, since observations with positive shares feature higher willingness to pay. We find
that low arrival rates prevent any product from having consistently well-measured mar-
ket shares, which causes the estimator of Gandhi et al. (2023) to yield biased demand
estimates as well.

With our model estimated, we explore preference heterogeneity across markets and
decompose the driving forces of cyclicality in demand for air travel. Our analysis shows
that periods of low demand feature both low market participation and consumers with
lower willingness to pay. We estimate substantial variation in preferences across travel
itineraries: passengers are willing to pay $96 more for the most popular week for travel
over the least popular week on an identical route. Preferences across departure times
reflect observed price differences. However, this variation is inflated significantly using
existing approaches, suggesting consumers are willing to pay thousands of dollars to
switch flights. Finally, we discuss why demand cyclicality would be amplified, absent
the use of dynamic pricing and frequent capacity adjustments.

2. MODEL OF CONSUMER DEMAND

We model aggregate demand using the widely applied random coefficients logit demand
model. Consumers, indexed by i, arrive in market t and make a discrete choice, choosing
among market-specific products (j ∈ Jt) and an outside option (j = 0). Markets t may
be defined across time or other dimensions, such as space. The data may comprise a
panel. In the baseline model, consumers are drawn from a continuum of types. We also
consider mass-point random coefficients in Section 5.

2.1 Utility Specification

We assume that indirect utilities are linear in product characteristics and are given by

ui,j,t =

{
Xj,tβi + ξj,t + εi,j,t, j ∈ Jt
εi,0,t, j = 0

,
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where X are product characteristics, including price, ξ are unobserved (to the econo-
metrician) product characteristics that are potentially correlated with price, and ε are
independent and identically distributed error terms. We assume these errors are dis-
tributed type-1 extreme value. The random coefficients are assumed to be distributed
jointly normal across consumers and are independent of characteristics. That is,

βi = β̄ + Γbi,

where βi ∼N (0, I) is a multivariate, standard normal distribution, and Γ is the Cholesky
decomposition of a positive definite matrix. This allows for a general variance pattern
between demand parameters and the random coefficients. Some of the parameters may
be linear, meaning that there are no associated random coefficients with these charac-
teristics.

All consumers solve a straightforward utility maximization problem; consumer i
chooses product j if, and only if,

ui,j,t ≥ ui,j′,t, ∀j′ ∈ J ∪ {0}.

The distributional assumption on the idiosyncratic error term leads to analytical expres-
sions for the individual choice probabilities of consumers. In particular, the probability
that consumer i purchases product j is equal to

si,j,t =
exp

(
Xj,tβi + ξj,t

)
1 +

∑
k∈Jt

exp
(
Xk,tβi + ξk,t

) .
Integrating over all consumers, we obtain product market shares, which are equal to

sj,t =

∫
i
si,j,tdF (bi).

2.2 Distribution on Market Sizes

We model the distribution on market sizes using Poisson distributions, i.e.,

At ∼ Poisson
(
λt

)
,

such that λt := exp (WtΛ) and Wt is a full-rank matrix. Note that we assume arrivals are
measured specific to t rather than specific to j, t. That is, all arriving consumers have full
information about all products upon arrival. The matrix W could contain, for example,
time, location, or other market-specific covariates, depending on the application.

Our model of market participation is a highly stylized representation of consumer
search. Consumers either search among all products or they do not participate in the
market. This is because we do not leverage individual-level data, see e.g., Kim et al.
(2010), Honka (2014), and Armona et al. (2021). Our model uses aggregate, market-level
data.
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Two assumptions allow us to construct analytic expressions for demand: (1) the re-
alizations of arrivals are conditionally independent of preferences (A ⊥ ξ, p|X,W ), and
(2) consumers solve the above utility maximization problems. With these assumptions,
conditional on prices, product characteristics, and observed determinants of market
size, demand for each product j is distributed according to a conditionally independent
Poisson distribution, i.e.,

qj,t ∼ Poisson
(
λt · sj,t

)
.

Importantly, the demand for product j is independent of the demand for product j′,
conditional on Wt, Xt and pt2, which still allows correlation in the observed exogenous
determinants of utility and the arrival rates. For example, this may accommodate higher
arrival rates on average in markets with higher average demand (e.g., in the case of sea-
sonal demand). X and W could contain the same variables in some applications.

3. DEMAND ESTIMATION

We propose a Bayesian estimator (Poisson RC) that can be used to recover a rich set of
demand parameters. Our approach differs from frequentist estimators that use market-
level data in two key ways. First, we directly accommodate small market sizes by provid-
ing an alternative to the empirical share inversion step of Berry (1994) and BLP (1995).
Our estimator uses data augmentation to directly sample from the distribution of un-
observed demand shocks, thus only requiring an inversion of model shares. Second, our
estimator scales well to many markets and rich demand covariates, including many fixed
effects.

Without small market sizes and sampling error, our method closely follows Jiang
et al. (2009).3 Unlike in settings with large market sizes, with low arrival rates and sparse
sales, we are forced to treat market shares as unobserved. That is, we cannot simply av-
erage observed sales and equate them to market shares because zero market shares can
be due to zero consumer arrivals or arriving consumers choosing not to purchase. Ob-
served sales in the data are qj,t, which are not only a function of the product shares, but
also the number of people that arrive in each time period. This is important because in
periods with low arrivals, the probability of qj,t = 0 is quite high, but sj,t is never equal
to zero. Thus, when we observe few arrivals, we must account for the sampling variation
to be expected in sales quantities.

Note that if we did not have endogenous product characteristics, our estimator
would closely resemble existing Poisson-logit Maximum Likelihood Estimators (e.g.,
Burda et al., 2012, Vulcano et al., 2012). These approaches could, in the absence of price
endogeneity, accommodate zero sales observations and provide flexible arrival patterns.
However, in the presence of endogenous product attributes, such estimators will fail to
produce unbiased estimates of key parameters, including the price coefficient(s).

2This result follows from the properties of splitting Poisson processes (Gallager, 1996).
3In addition, we extend their approach to mass-point random coefficients and make the pricing equation

estimation more flexible using a Dirichlet Process prior and mixture of normal distributions.
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3.1 Accounting for Price Endogeneity

To account for price endogeneity, we model pricing through a limited information pric-
ing equation with observed exogenous components and an unobserved component. Us-
ing a set of instruments Zj,t, we specify

pj,t = Z′j,tη+ υj,t,

where υ is unobservable to the econometrician. We allow the aggregate demand shocks
ξ to be correlated with prices through υ and follow standard Bayesian frameworks for si-
multaneity with discrete choice models (Rossi and Allenby, 1993, Jiang et al., 2009, Rossi
et al., 2012).

We provide additional flexibility by estimating the joint distribution prices and the
demand shocks ξ non-parametrically using a Dirichlet process prior, instead of assum-
ing it to be a single joint normal distribution, e.g., in Rossi et al. (2012). The Dirichlet
process provides the researcher with more control over the generality of the distribu-
tion when data are sparse. We show that these estimators, while misspecified to many
equilibrium pricing models, allow for a sufficiently general approximation of equilib-
rium behavior between unobserved components of demand and price while still al-
lowing for likelihood-based estimation. For example, they preclude that pj depends on
ξk or, conditional on the contents of Z , characteristics and cost shocks for other prod-
ucts. A more general likelihood-based approach, which does not allow for zero shares,
is considered in Grieco et al. (2023). Alternatively, the econometrician can fully specify
a supply-side model and explicitly model price endogeneity, while still remaining non-
parametric with respect to the demand unobservables. We comment on this in more
detail below.

3.2 The Dirichlet process prior for (ξ, υ)

We use a Dirichlet process prior to allow for an arbitrary number of distributions to be
mixed together to approximate the joint distribution of (ξ, υ). Appendix B provides de-
tails for the more restrictive, though computationally cheaper, finite mixture of normal
distributions that can be used to semi-nonparametrically model the joint distribution of
ξ and υ. Here we state properties of the Dirichlet process prior and detail the algorithm
used to implement the method within our MCMC algorithm.

The Dirichlet process can be viewed as a distribution over distributions. Each resid-
ual pair (ξ, υ) is drawn from some distribution, and the Dirichlet process clusters these
distributions together. There are two components to the process: α̃, the tightness pa-
rameter, and G0, a prior distribution for each residual pair. Drawing from the process
yields a distribution for the residuals (ξ, υ), and we condition on the drawn distribution
for each step of the chain in the rest of estimation. Each residual pair has its own dis-
tribution, indexed by parameters θn. Many residual pairs will have the same θn and be
drawn from the same distribution at each step of the chain.

The prior distribution G0 describes the distribution of a new cluster. It must be dif-
fuse enough to cover the data, but not so diffuse that the likelihood of drawing from it
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even at likely parameter values is too low. As with any non-parametric estimator, care
must be taken to choose priors such that we can approximate the residuals well. We
choose a normal distribution for G0 so that

G0 ∼N (µ,Σ).

We are interested in the conditional distribution of θ. We follow the Blackwell-
MacQueen Pólya Urn representation (Blackwell et al., 1973) where

θn|θ−n ∼

α̃G0 +
∑
j 6=n

1θj

α̃+N − 1
,

which is a mixture distribution between G0 and 1θj , a point-mass located at θj . Given
other draws from the Dirichlet process, a new draw has a positive probability of draw-
ing the same parameters as previous draws, and α̃

α̃+N−1 probability of a new draw from
the distribution G0. By drawing the classifiers from a Dirichlet process, there is always
a possibility of introducing a new normal distribution for each data point, but this is
disciplined by the choice of the prior distribution, which has a tendency to cluster ob-
servations together. We choose the tightness parameter α̃ to be constant and base it on
the data.4

The Dirichlet process produces a prior that is very similar to what one might select
for a finite mixture of normal model, but with two substantial differences. The number
of mixtures is changing with every step of the chain, and there is a positive probability
of adding another mixture component. The prior probability of adding another mixture
to the model is governed by the hyper-parameter α̃. In practice, this means that for K
existing clusters, the prior probability of the nth data point being drawn from the existing
clusters is Nk

α̃+N−1 , where Nk is the number of data points currently in cluster K . The

prior probability of a new cluster is α̃
α̃+N−1 .

Conditional on θn, the residuals are distributed bivariate normal, a key fact that we
leverage in the rest of estimation to construct several conditional likelihoods. Because
of the tendency of the Dirichlet process to cluster distributions together, we index these
clusters by κj,t, which is sufficient for θn. All residual pairs with the same κn share the
same distribution. Let each cluster be indexed by k, observations in the kth cluster are
distributed normally with a shared mean and variance. Observations in the kth cluster
are distributed as(

υj,t
ξj,t

) ∣∣κ= k ∼N (µk,Σk), s.t. Σk =

(
σ2k,11 ρk
ρk σ2k,22

)
.

3.3 Estimation Procedure

We sample the implied posterior distributions using the hybrid Gibbs sampler outlined
below. We split estimation into several distinct parts: consumer arrivals, product shares,

4Rossi (2014) provides a more in-depth look at the choice of hyper-parameters, including treatments
where α̃ is random, determined by data, and a further parameterization of a, ν, v. We omit these for sim-
plicity.
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preference parameters, and the price endogeneity parameters. Arrival parameters allow
us to rationalize zero sale observations; share draws allow us to recover the preference
parameters and unobserved product qualities; the price endogeneity parameters allow
for price to be correlated with the unobserved components of demand. A more detailed
treatment of the estimation procedure can be found in Appendix A.

Algorithm 1 Hybrid Gibbs Sampler: Non-parametric estimation of pricing errors

1: for c= 1 to C do
2: Update arrivals λ (Gibbs)
3: Update shares s(·) (Metropolis-Hastings)
4: Update linear parameters β (Gibbs)
5: Update nonlinear parameters Γ (Metropolis-Hastings)
6: Update pricing equation η (Gibbs)
7: Update basis classifier κ (Gibbs)
8: Update mixture component parameters Σk, µk (Gibbs)
9: end for

The arrival parameters are informed by both arrival data and purchase data. Pur-
chase data is distributed Poisson with rate λ · s. Purchases provide a noisy signal of ar-
rivals, along with the exogenous arrival data that informs the distribution. As we pa-
rameterize arrivals such that arrival rates are a function of some data, we impose a Log-
Gamma prior on λ for a conjugate prior. We sample from λ using a Gibbs step.

Observed market sizes are not large enough to treat the observed market shares, q/A,
as equal to the model counterparts. Thus, true product shares are unobserved. Our ap-
proach to this measurement error issue is to treat the small market size as the source of
the error and observed product shares as samples from their true unobserved distribu-
tion.

To sample from this distribution of shares, we augment the data with unobserved
values. We condition on the distribution of ξ, based on the current draw of the basis
classifier κ and mixture component mean and variance µκ and Σκ. That is, we leverage
the distribution of ξ to construct a distribution of shares. To evaluate whether a drawn
value for a share is likely, we invert the distribution of shares to compute the likelihood
of the value of ξ implied by the draw of s, conditional on demand parameters. We use a
Metropolis-Hasting step to sample from the posterior distribution of s.

Given the draws of shares, the utility parameters that are common across all con-
sumers are sampled using a straightforward Bayesian-IV regression. We recover the
mean utility using the contraction mapping used in BLP (1995) and sample β using a
Gibbs step. For the nonlinear parameters, the sampling step is not as straightforward.
We follow Rossi et al. (2012) and draw a candidate value of Γ from a set of Cholesky de-
compositions of positive-definite variance matrices. We then sample from the posterior
using a Metropolis-Hastings step in a similar manner to shares. Given the joint distri-
bution between υ and ξ, we can perform another Bayesian IV regression to update the
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pricing equation coefficients, η, in a similar manner as sampling β. We draw from η us-
ing a standard Gibbs draw from an IV regression.

In principle, this model could be estimated via maximum likelihood. However, this
would require an EM algorithm step to recover all products shares for any parameter
vector (replacing our data augmentation step and enabling us to recover ξ), which would
be more computationally costly than the Bayesian approach. In addition, we would still
impose a pricing equation, but using MCMC enables us to non-parametrically estimate
the distribution of (ξ, υ), as opposed to estimating a finite mixture of normal distribu-
tions which may be computationally costly within a MLE framework.

3.3.1 Scaling One of the benefits of utilizing Bayesian methods is that our model scales
to a large parameter spaces. We have found that our estimation methodology scales
well to rich arrival process specifications, many product characteristics, and rich levels
of unobserved heterogeneity. We demonstrate this in our empirical application, which
involves hundreds of preference and arrival parameters. In general, increasing the di-
mensionality of the parameter space with many fixed effects or other linear parame-
ters is computationally cheaper than adding heterogeneity-specific parameters such as
a richer specification of random coefficients.

Scaling to environments with large J is computationally more difficult because share
inversions and chain sampling take longer as the choice set grows. Additionally, as the
choice set grows, the average product share declines mechanically. With lower average
shares, our estimator requires more data as each observation becomes less informative
when simulating shares. We provide additional details on the computational burden in
Section 4.

3.4 Identification

We discuss two main identification challenges and their solutions: separating prefer-
ences from arrivals and identifying product shares.

3.4.1 Using Arrivals Information to Separate Demand Uncertainty from Preferences
The difficulty in estimating a model with small market sizes is separably identifying
shocks to arrivals from shocks to preferences. For example, if a smaller number of con-
sumers than is typical arrive to the market in a period with high prices, a researcher
investigating demand based on sales quantity alone may incorrectly infer that demand
is quite elastic (few people bought). However, conditioning on the fact that few con-
sumers considered purchasing may lead to the opposite conclusion—the fact that few
consumers arrived suggests observing few sales may happen with high probability, even
if consumers are not price sensitive.

Identification of the arrival process is straightforward as we have presented it. With
arrivals being observed, and under the assumption of conditionally independent con-
sumer arrivals (A⊥ ξ, p|X,W ), the arrival rates are identified from observed variation in
arrival data. The model allows for controlling for a rich set of observables via Wt, which
can contain features that are also included in Xt. Common features can be included
because estimation requires both arrivals and quantities data. Moreover, by assuming
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arrivals are Poisson, our method can account for unobserved arrivals under the addi-
tional restriction that unobserved arrivals (consumers) have the same preferences as
observed consumers. For example, if a researcher knows that she observes 20% of arriv-
ing consumers, then estimated arrival rates can be scaled up using a scaling factor equal
to five.

3.4.2 Identification of Share Parameters With data on consumer arrivals, we directly
observe variation in the market size and are able to condition on it to pin down the pref-
erence parameters. The variation that is used to identify the preference parameters is the
same variation commonly cited in the literature on estimating demand for differentiated
products using market-level data (Berry et al., 1995, Berry and Haile, 2014, 2016). The
parameters governing preferences for the exogenous characteristics are identified from
the variation of products offered across markets, and the price coefficients are identified
from exogenous variation introduced by instruments.

4. SIMULATION STUDIES

We study the performance of our estimator on sparse sales data through Monte Carlo ex-
periments. We compare our estimation approach to the performance of available zero-
share fixes.

4.1 Data Generating Process

We consider several sets of Monte Carlos where we vary the arrival process, the number
of demand covariates, and the number of products in the choice set. We refer to “moder-
ate arrivals” when the Poisson arrival rate is 25. “Small arrivals” occurs when the arrival
rate is 5. “Small choice set” means a choice set with 25 products. “Moderate choice set”
means a choice set of 45. We map the number of product covariates to the size of the
choice set. In addition to these data generating process decisions, we specify parameter
values that provide market outcomes that approximate real-world markets. For exam-
ple, weekly grocery scanner data has many zero-sales observations at the product level,
even among top-selling products. Our simulations have a low ratio of arrival to assort-
ment size so that empirical market shares (q/A) have a large sampling error relative to
the demand function. Our specifications create a substantial number of zeros, between
39% and 82%, depending on the simulation.5,6

5Though arrivals are generated from a single distribution (i.e. λt = 5 or λt = 25, andWt=1 across markets
in the DGP, we treat markets as belonging to panel groups and estimate group-specific pooled λ parameters.
This is analogous to how one might estimate market size at a weekly level in many applications. In our
setting, it allows us to show the robustness of preference estimates to limited observations of the arrival
process.

6For comparison, Dubé et al. (2021) test their model on data with 42% zero shares, and Gandhi et al.
(2023) test their estimator on synthetic data with 52% zero shares. Their bounds estimator is also tested on
data with 96% zero observations.



12

For each Monte Carlo specification, we simulate 100 markets. We define the utility
specification to contain random coefficients on three product attributes, given by

ui,j,t =Xj,tβi + ξj,t + εi,j ,

βi = β̄ + Γbi,

Xj,t = [pj,t,X
1
j , . . . ,X

J−1
j ].

In our simulations, we draw each vector of exogenous, binary product attributes
X1:J−1
j ∼ i.i.d. Multinomial(1, 1J ), that is, a random multinomial vector with one pos-

itive entry. These are drawn i.i.d. across products, so multiple products in the same
market could have the same X1:J−1. The demand shock ξ is drawn from a normal dis-
tribution. Marginal cost shifters (cjt), which we will use as instruments, are of dimen-
sion two and drawn from i.i.d. Uniform[0,1] distributions. Preference parameters are
β̄ = [α,β1, . . . βJ−1], with α=−2 and β̄1:J−1 drawn i.i.d Uniform[0,1]. We only simulate
random coefficients for price preferences with a variance equal to 0.2.

Prices are set by maximizing a firm’s multi-product profit given the demand function
and marginal costs.7 That is,

pt = argmax
p1,t,...pJ,t

∑
j

(pj,t − cj,t) · qj,t(p),

where qj,t(p) = λt · sj,t(pt;Xt, ξ,α,Γ, β). The resulting correlation between the cost
shifters and prices ranges from 0.24 to 0.39. Note that our pricing equation is misspec-
ified to the pricing process, as it does not allow prices to depend on other products’
characteristics, cost shifters, or demand shocks.

4.2 Monte Carlo Estimates

We contrast our estimation method (Poisson RC) with Berry et al. (1995) and Gandhi
et al. (2023) for the moderate (λt = 25) and small (λt = 5) arrivals data generating pro-
cess. To implement these alternative approaches, we need to provide the estimators with
a measure of empirical shares. We either treat market sizes as observed or we calibrate
them to M = 80. The latter specification provides insights on what happens without ac-
cess to arrivals data. Next, we either estimate on disaggregated data or aggregate over
every 10 adjacent observations (averaging product attributes, with the interpretation
of aggregating over 10 adjacent markets). Given the choice of aggregation and market
size, we calculate empirical market shares. In the aggregation case, we average covari-
ates across observations and sum both sales and arrivals. This aggregation is equivalent
to typical time-aggregation within a panel or across related units (e.g. retail chain-level
market share across a metro area). Finally, for BLP (1995), we must handle zero empiri-
cal market shares. We use two ad-hoc solutions to zero empirical shares: either dropping
these observations or adjusting them up from the zero bound. In the adjustment case,

7The marginal cost shifters have coefficients [1.0,2.0] in the marginal cost equation.
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we replace the empirical shares with their Laplace share equivalent, sAjt =
Mtsjt+1
Mt+Jt+1 , ef-

fectively adding one to all quantities and correspondingly increasing the market size. A
summary of our estimation approach for an example data generating process, including
aggregation method, treatment of market size, zero-share adjustments, and estimation
procedures used in our Monte Carlos appears in Table 1.

TABLE 1. Example Monte Carlo Setup for One Data Generating Process

Data Generating
Process

Treatment of
Market Size

Aggregation
Treatment of
Zeros

Estimation
Approach

λt = 25, J = 25 Observed No Include Poisson RC

λt = 25, J = 25 Observed No Drop BLP (1995)

λt = 25, J = 25 Observed No Adjust BLP (1995)

λt = 25, J = 25 Observed Yes Drop BLP (1995)

λt = 25, J = 25 Observed Yes Adjust BLP (1995)

λt = 25, J = 25 Calibrated, M=80 No Drop BLP (1995)

λt = 25, J = 25 Calibrated, M=80 No Adjust BLP (1995)

λt = 25, J = 25 Calibrated, M=80 Yes Drop BLP (1995)

λt = 25, J = 25 Calibrated, M=80 Yes Adjust BLP (1995)

λt = 25, J = 25 Observed No Include GLS (2023)

λt = 25, J = 25 Calibrated, M=80 No Include GLS (2023)

λt = 25, J = 25 Observed Yes Include GLS (2023)

λt = 25, J = 25 Calibrated, M=80 Yes Include GLS (2023)

Note: Data Generating Process refers to the size of the arrival process and the number of products. Product shares are
generated in an identical manner for different estimators with the same market size. Aggregation and treatment of zeros only
occur for BLP (1995) estimation approach. Aggregation treats 10 adjacent observations as the same unit and sums their arrivals
and demand and averages covariates and prices.

Monte Carlo results using a moderate arrival rate of 25 (λt = 25) and small choice set
(J = 25) appear in Table 2. Table 3 shows the results for the low arrival rate of 5 (λt = 5)
with small choice sets. Each row in the tables corresponds to an estimator, treatment of
market sizes (calibrated or realized arrivals), level of aggregation, and treatment of zero
empirical shares (dropping zeros or using Laplace shares). We report the median abso-
lute deviation (MAD), mean absolute error (MAE), bias (mean of estimated parameter
− true parameter across simulations), (in parentheses) the 2.5th and 97.5th percentile
of the bias, and the mean squared error (MSE) across simulations. We report these mea-
sures for mean price preferences (α) and the random coefficient on price (Γ). We report
some summary results on exogenous product characteristics parameters β in Figure 1.
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FIGURE 1. Estimation Bias in Product Characteristics
(a) Small Arrivals
Small Choice Set
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(b) Medium Arrivals
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(c) Medium Arrivals
Moderate Choice Set
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Note: Reported in each figure is the distribution of parameter bias for the first exogenous characteristic (β1) across simu-
lations for different estimators. We report only results the first element of β̄ since each element of both X and β̄ is generated
i.i.d—results are interchangeable across the exogenous product attributes. The blue lines report the distribution of mean pa-
rameter bias across simulations using Poisson-RC. The orange dashed lines report the distribution of mean parameter bias
across simulations and estimation adjustments for BLP (1995). That is, it reports the bias distribution across all BLP (1995)
adjustments (aggregation and disaggregation, dropping zeros or adjusting zeros) and across simulations.

We find that our Bayesian estimator of the Poisson random coefficient model per-
forms well. For the mean price sensitivity parameter α, under the moderate arrivals data
generating process, our estimator’s point estimates remain close to the truth, and vari-
ance of the estimates are minimal. Under the small arrivals data generating process, we
see an increase in the bias but our estimator still performs well given the large fraction of
observed zero purchases. For the random coefficient on price, our estimator performs
better than the alternative estimators but we still observe the estimates attenuating
somewhat toward zero. This is driven by in part by the strength of the instruments—the
correlation between the instruments and price vary from 0.2-0.4, or in line with moder-
ate strength instrument results in Conlon and Gortmaker (2020).

Additionally, for smaller choice sets (panels (a) and (b) of Figure 1), we find that our
estimator produces unbiased estimates of the coefficients on product characteristics.
Estimates on these parameters are noisier than estimates of the effect of price, but we
outperform alternative methods in terms of bias. In particular, BLP (1995) ad-hoc es-
timation approaches produce persistently biased estimates of the exogenous product
characteristics.

We find that the two common solutions to zero sales observations fail to capture
the true parameters. Dropping zero sales observations attenuates the price coefficients
(rows with zeros set to “Drop” in Table 2 and Table 3). This is more severe in the case with
the smaller market size. Although the drop-zero estimates sometimes perform better
in estimating the price coefficient than the adjusted zeros methods, this approach fails
to capture other parameters accurately, including both the mean and variance of the
random coefficient. Across various BLP (1995) specifications, we find that the median
absolute deviation for the random coefficient variance is −0.20, which in part is due to
constraining the parameter value to be positive in estimation. Removing this constraint
leads to a much more dramatic bias due to unconstrained estimation which results in
large negative values.

Adjusting product shares when they are equal to zero results in bias (rows with zeros
set to “Adjust” in Table 2 and Table 3), but this adjustment biases results on average less
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than dropping the zero share observations. Adjusting zero shares yields parameter es-
timates which consistently bias both the mean and variance in the random coefficient
on price. The distribution of product shares when sales are zero is centered below the
distribution of shares when sales are positive. Dropping the zero shares creates selection
since zero shares reflect higher prices or lower demand shocks (Berry et al., 2004). Fig-
ure 2a plots the distribution of the difference between true shares and adjusted shares.
Dropping zeros results in a distribution of empirical shares that are lower than the truth.
Adjusting zero shares with a small value also understates the true share. Consequently,
price sensitivity estimates are attenuated since imputing a tiny share is inaccurate when
the zeroes occur due to few consumers arriving. Figure 2b shows the conditional dis-
tribution of product shares when sales are zero. Imputing an arbitrary small value per-
forms poorly because imputed shares are on the large end of common imputed defini-
tions of zero shares, but they are lower than true shares when quantity sold is zero. As
a result, observations with small true shares (e.g. when price is higher than usual) will
be imputed to have even smaller shares. This leads estimates to understate the price
sensitivity of consumers.

FIGURE 2. True Shares Compared to Share Adjustments
(a) True vs Empirical Shares
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Note: (a) Distributions of the difference between the "true" model shares that generated the data from the various zero-
share adjustments. Adjusted shares refers to taking any observations where the empirical shares would equal zero and replace

it with an arbitrary small number ε, which is set by sAt =
Mtst+1
Mt+Jt+1 . Drop refers to dropping all observations where the

empirical shares are equal to zero. (b) The density of the log of the model shares when quantity sold is zero. Plotted in the
dashed grey line is the average ε

An alternative solution to minimize the frequency of zero shares is to aggregate the
data. We find that applying share adjustments after aggregation results in fewer adjusted
shares, but it does not improve the performance of such estimators (rows with aggregate
equal to Yes in Table 2 and Table 3). Instead, aggregating the data removes variation in
prices, shares, and the instruments, which results in additional bias in some parame-
ters. This approach results in smaller shares on average compared to the disaggregated
results.

We find that, in general, using observed market size realizations improves the results
of BLP (1995) where zero shares are dropped, however, our main results hold: the BLP
(1995) estimator with zero adjustments performs poorly when market sizes are small.
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Our Poisson RC estimation method uses an unknown number of mixture of normal
distributions to approximate any joint distribution of (ξ, υ). We find that our approach is
able to recover this joint distribution well.8 In implementing the Dirichlet process (DP)
prior on the correlation between prices and ξ, our approach requires minimal ex ante
specification—all components have the same prior mean and variance. In addition, the
method requires a single prior parameter governing the variability of DP components.

Our Monte Carlo results show that the Poisson RC model can accurately measure
consumer preferences and heterogeneity under very small market sizes. Our method
accounts for the sampling error to be expected in sales. Alternative solutions to the ze-
ros problem conduct inference only under large market sizes. For example, we find that
the approach of Gandhi et al. (2023) produces significant bias in the price coefficient
and noisier estimates than the Poisson RC model in these small market settings. We hy-
pothesize that this is due to the lack of “safe products” used in estimation. Safe products
are products in which empirical shares are observed with minimal measurement error
in sample (the identities of these products need not be known). In our simulations, zero
empirical shares are largely driven by a small market size which causes all empirical
shares to be noisy measures of true shares. Note that Gandhi et al. (2023) also suggest a
partial identification strategy. This approach does not require the presence of safe prod-
ucts. Additionally, the partial identification approach of Dubé et al. (2021) could be fea-
sible if point estimates are not required.

We also note that our approach is not as general as typical moment-based estima-
tors, e.g., BLP (1995), which only assume E[ξZ] = 0. Our pricing equation does not cor-
respond directly to typical models of differentiated products competition, where prices
may depend on demand shocks of all products. This is because the pricing equation
we leverage does not match directly the supply model generating the data in our Monte
Carlos. Petrin and Train (2010) provide a detailed discussion of the limitations of this
approach. At the same time, our approach does satisfy exclusion and relevance for our
instruments. Moreover, specifying a full supply model that would be more efficient than
our approach (e.g., Yang et al., 2003). Nonetheless, as we have shown, our flexible pricing
equation is able to accurately recover demand fundamentals.

In the case in which market sizes are larger, our method still performs well. We report
results in a setting with fewer than 1% zero sales observations in Appendix C. Existing
approaches perform well in such settings, and these moment-based estimators may be
considerably faster than our approach if zero shares are not a significant problem in the
data.

8In the case that the researcher is certain about the number of components to use to approximate this
distribution, we provide an extension to that allows for semi-nonparametric estimation of the distribution
of residuals in Appendix B.
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4.2.1 Estimator Performance in Larger Choice Sets Many empirical applications fea-
ture larger choice sets. We test our estimator in settings where J = 45. The rest of the
data generating process remains unchanged. Increasing the number of products does
slow estimation—in nearly doubling the number of products, estimation takes 3-4 times
longer. This is driven primarily because of greater computational burden at each step of
the chain (e.g., more share inversions). We expect that using our approach in settings
with hundreds of products may be infeasible unless using highly optimized code.

The results of our estimator and competing methods are presented in Table 4. Qual-
itatively, estimates using our Poisson RC method are similar to those in smaller choice
sets. In this setting, however, our estimator results in some small bias in the estimation
of the coefficients on exogenous characteristics (Figure 1, panel c). As in our previous
simulations, implementing ad-hoc fixes for BLP (1995) do not allow us to recover sen-
sible estimates and typically return price parameters which understate price sensitivity
significantly. Similarly, we find that the estimator of Gandhi et al. (2023) results in signif-
icant bias due to the lack of “safe products.”

4.2.2 Results with Misspecified Models We also test our estimator to two forms of mis-
specification. Results are shown in Table 5. We simulate a misspecified arrival process
(overdispersed with twice the variance of our λt = 25 setup) and a less flexible form of
correlation between the pricing error and the demand shock (estimating the correlation
structure between all pairs of ξ and υ using a single normal distribution). We find that
our estimator performs nearly identically in the case of overdispersion. We also find that
using a less flexible form of price endogeneity also provides nearly identical estimates on
average, however, the tails of the (bias) distribution are more dispersed. We have found
that when the conditional expectation of ξ given υ is approximately linear, or when the
correlation summarizes the dependence well, a normal approximation performs well. In
cases where there is strong dependence but low correlation, such as ξ being a symmet-
ric function of υ, this simpler specification may be restrictive and lead to biased demand
estimates. Symmetry may be unrealistic because it implies that demand shocks are as-
sociated with both low and high prices.

TABLE 5. Monte Carlo Results for Misspecified Distributions

A∼NegBinom(25,0.5) Misspecified Residual

α 0.11 0.07
(-0.06, 0.25) (-0.06, 0.22)

Γ11 -0.16 -0.04
(-0.18, 0.06) (-0.18, 0.11)

Note: Reported in the table are the median, the 2.5 percentile, and the 97.5 percentile of the difference between the point
estimate and the true parameter across 100 simulations. The first column simulates data in the same manner as our main
Monte Carlo experiments, but using only a different arrival process. This process has an identical mean but has twice the
variance of the baseline Poisson. The second column presents results when the model is estimated assuming that the joint
distribution between ξ and ν is normal and not a mixture, despite being generated from a mixture of normal distributions.
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5. EMPIRICAL APPLICATION TO THE AIRLINE INDUSTRY

We use our approach to estimate the demand for air travel with data from a large inter-
national air carrier based in the United States.9 Our primary aim is to show how to adapt
our method to a relevant empirical setting. We also show how our method can flexibly
estimate preferences over time and compare these estimates to existing approaches.

5.1 Data

We use data from the air carrier’s booking system to construct the quantity of tickets
sold and the price paid for every flight, each day before departure. For this analysis, we
concentrate on nonstop bookings. In addition to prices and quantities, we also extract
basic product characteristics, such as the departure time for each flight and the date of
departure.

TABLE 6. Summary Statistics for the Sample

Variable Mean Std. Dev. Median 5th pctile 95th pctile

One-Way Fare (p) 173.9 129.7 138.5 68.5 369.0
Num. Fare Changes 9.3 4.2 9.0 3.0 17.0
Purchase Rate (Q) 0.2 0.7 0.0 0.0 1.0
Ending Load Factor (%) 82.2 21.4 90.0 36.0 102.0
Size Choice Set (J) 2.5 1.6 2.0 1.0 6.0
Arrival Rate (A) 1.9 4.8 0.0 0.0 9.0
Zero-Sale Obs. 88.8 8.3 90.9 71.1 98.3

Note: Summary statistics for the 407 markets included in the sample. The sample contains 298,817 unique flight departures
and 35,542,018 observations.

The key additional market-level data for estimation is a measure of market sizes.
We calculate consumer arrivals using the number of consumers who initiate search
requests on the air carrier’s website using consumer clickstream data. In our setting,
consumers arrive at the air carrier’s website and their activity within a browsing ses-
sion is tracked. We then aggregate search activity to the level of origin-destination-
search date-departure date. Note that we measure search just on one website, but con-
sumers may shop via online travel agencies, such as Expedia. We cannot directly mea-
sure searches made from other sites. However, because we observe all bookings, we ac-
count for searches made via the unobserved sites through scaling factors. Each scaling
factor is based on the fraction of sales directly through the airline and the average num-
ber of passengers per booking. If we know observed arrivals account for 50% of total
bookings, assuming consumers who shop elsewhere have the same distribution of pref-
erences, we can scale up estimated arrival rates by two.10

We present a basic summary analysis of the 207 markets in the sample in Table 6.
The sample size is 35 million. We find that the average number of nonstop bookings per

9The airline has elected to remain anonymous.
10In-depth summary analysis of the data and how unobserved searches are accounted for can be found

in Hortaçsu et al. (2023).
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flight-day before departure is low (0.2). Choice sets are small, with around 2.5 flights of-
fered per market. Measured arrivals are also small—around two consumers search for a
given market-departure date-day before departure. Finally, we find that 89% of observa-
tions do not contain any sales.

In Figure 3, we plot the 30-day moving average of bookings, fares, fraction of sold out
flights, total capacity for all routes in our sample from August 2018 to August 2019. Also
included in the graph is a measure of opportunity cost, which has the interpretation of
the marginal cost in this setting. We will use this measure as an instrument for demand.
The figure shows that all these variables are positively correlated. For example, all curves
peak around the winter holiday season as well as during summer. During peak periods,
demand is high. At the same time, on the supply-side, prices, opportunity costs, flight
capacity, and the percentage of flights that sell-out are also high.

FIGURE 3. Demand, Prices, Opportunity Costs, and Capacity for Markets in Data
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Note: 30-day moving average of sales, fares, opportunity costs, probability of flights selling out, and total capacity by de-
parture date. Values are normalized by the respective value for the first departure date in our data, 08-01-2018.

5.2 Empirical Specification

We define a market (m) as an origin, destination, and departure date tuple and let the
time index (t) denote days until the departure date. That is, we index markets by m,t.
We extend the estimator to allow for discrete support random coefficients. Following
Berry et al. (2006), we assume consumers are one of two discrete types, corresponding
to leisure (L) travelers and business (B) travelers. An individual consumer is denoted
as i and her consumer type is denoted by ` ∈ {B,L}. The probability that an arriving
consumer is a business traveler is equal to γt and varies by days until the departure
date. These types need not correspond to the consumer’s purpose for travel; they merely
are commonly used names for discrete consumer types. The less-price-sensitive type is
typically referred to as business. We assume the indirect utilities are linear in product
characteristics and given by

ui,j,t,m =

{
Xj,t,mβ − pj,t,mα`(i) + ξj,t,m + εi,j,t,m, j ∈ J(t,m)

εi,0,t,m, j = 0
.
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As before, we assume that observed product characteristics Xj,t,m are uncorrelated
with the unobserved product characteristic ξj,m,t. These exogenous characteristics in-
clude departure time, week, and day of week fixed effects. We include week fixed effects
in the utilities to flexibly capture seasonal variation in the value of travel. The consumer
types differ in their preferences on price, α`(i), and we assume that ξj,m,t is correlated
with price. Given our assumption on εi,j,t,m, the probability that consumer i wants to
purchase product j is equal to

sij,t,m =
exp

(
Xj,t,mβ − pj,t,mα`(i) + ξj,t,m

)
1 +

∑
k∈J(t,m)

exp
(
Xk,t,mβ − pk,t,mα`(i) + ξk,t,m

) .
Since consumers are one of two discrete types, we define sLj,t,m as the conditional choice
probability for leisure type consumers (and sBj,t,m for business types). Integrating over
consumer types, we have

sj,t,m = γts
B
j,t,m + (1− γt)sLj,t,m.

In this mass-point random coefficient model, we parameterize the change in the
composition of consumers as follows. We assume γt is equal to

γt =
exp

(
f(t)

)
1 + exp

(
f(t)

) .
where f(t) is an orthogonal polynomial basis of degree 5 with respect to days from de-
parture. This parametric assumption allows for a flexible, non-monotonic relationship
between the composition of consumer types and time while producing values bounded
between 0 and 1. Depending on the application, this function can be adjusted accord-
ingly.

In addition to allowing for discrete random coefficients, we also adjust the likelihood
to account for the possibility of binding capacity constraints (sell-out events). In partic-
ular, when capacity is binding, we observe a right-censored estimate of the true number
of individuals that wished to purchase. That is, for a given capacity Cj,t,m,

qj,t,m = min
{
q̃j,t,m , Cj,t,m

}
,

q̃j,t,m ∼ Poisson(λt,m · sj,t,m).

Note that when the capacity constraint is observed to bind, the likelihood contribution
is instead 1− Fq(qj,t,m|·), where Fq is the cumulative distribution function of the above
Poisson.11

We parameterize arrival rates by a set of multiplicative fixed effects across markets
m and time t. That is, λm,t = exp(Wtλt +Wmλm), where Wt is a dummy matrix with a

11We do not model choice variation within anm,t because arrival/booking rates are low. See Conlon and
Mortimer (2013) for a method that accounts for choice set variation within a market.
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column for each day from departure andWm is a dummy matrix with a column for each
departure market m (an origin, destination, departure date tuple). This parameteriza-
tion approach allows us to capture general increases in market size towards departure
across all seasonal markets. In addition, we then have two sources of seasonal varia-
tion in participation and preferences built directly into the model, which will enable
us to distinguish seasonal market participation from seasonal preferences. We identify
seasonal market participation variation directly from variation in arrivals, which allows
us to include the same sets of fixed effects for departure markets in both preferences
and arrivals. Given these arrivals, we can identify seasonal preferences from variation in
quantities.

Finally, we instrument for price to address endogeneity. We use the opportunity cost
of capacity for a given flight, advance purchase discount indicators, and the number
of inbound or outbound bookings from a route’s hub airport as our instruments12. We
leverage the expiry of advance purchase discounts since these changes alter prices in
a pre-determined fashion, regardless of realizations of demand shocks. The opportu-
nity cost of capacity directly influences price-setting, as residual variation (after our use
of fixed effects) is driven by bookings on onward itineraries. The total number of in-
bound or outbound bookings to a route’s hub airport captures the change in opportunity
cost for flights that are driven by demand shocks in other markets. For example, con-
sider a flight from A→ B, where B is a hub which serves many markets. We construct
all onward traffic from B onward to other destinations C or D. We assume that unob-
served, systematic demand shocks are independent across routes, so shocks to demand
for travel from B → C and B → D are unrelated to unobserved shocks to demand for
the focal route A→ B. Pricing decisions across routes are related via capacity: if a pos-
itive shock to demand out of hub B is realized, the opportunity cost to provide service
from A→ B → C or A→ B → D rises. This increase in opportunity cost for connect-
ing tickets also raises the opportunity cost of capacity on the A→ B leg, which raises
the price on A→ B. Our instruments are strong: the correlation between price and the
opportunity cost of capacity is 0.72, and the correlation between price and the onward
connecting traffic measure is 0.31. Pseudo first stage regressions (presented in Table 7)
with our selected specification have a R2 of 0.83.13 We report results on the first stage in
7 and compare our results to alternative sets of instruments below.

For this application, we specify a time-varying block structure on the pricing equa-
tion, and (ξ, υ) have a block-varying joint normal distribution. That is, within a days-
from-departure block, (ξt, υt) are distributed jointly normal, and this distribution may

12Opportunity costs during a specific period t depend on past pricing decisions. We include a set of fixed
effects in both the exogenous characteristics and in the instrument set which capture persistent differences
in demand across departure dates. Conditional on these fixed effects, we assume that demand shocks are
independent over time. For a route with origin O and destination D, where D is a hub, the total number
of outbound bookings from the route’s hub airport is defined as the

∑
D′ QD,D′ , where QD,D′ is the the

total number of bookings in period t, across all flights, for all routes where the origin is the original route’s
destination. If the route’s origin is the hub, we calculate the total number of inward bound bookings, which
would be;

∑
O′ QO′,O . Where QO′,O is the total bookings from all routes where the original route’s origin

is the destination.
13We denote these pseudo first stage regressions as we present frequentist OLS estimates of the first stage

model we adapt in our estimator.
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TABLE 7. Pseudo-First Stage Regressions

(1) (2) (3) (4) (5)

Onward Connecting Traffic 0.597 0.591 0.377 0.369
(0.010) (0.011) (0.006) (0.006)

Opportunity Cost 11.069 11.308 11.383
(0.059) (0.056) (0.057)

Opportunity Cost2 7.288 6.506 6.483
(0.073) (0.072) (0.073)

Opportunity Cost3 -4.287 -3.747 -3.732
(0.053) (0.053) (0.053)

Opportunity Cost4 1.545 1.408 1.399
(0.063) (0.062) (0.063)

Opportunity Cost5 0.162 0.122 0.140
(0.073) (0.073) (0.073)

APD FEs N Y N N Y
DoW FEs Y Y Y Y Y
Week FEs Y Y Y Y Y
Departure Time FEs Y Y Y Y Y

AdjustedR2 0.300 0.302 0.798 0.825 0.829
F-Stat 389.003 369.252 3358.269 3958.341 3851.889

Note: Pseudo-first stage results for our instruments. Columns 1 and 2 exclude polynomial terms of the opportunity cost
measured by the airline’s algorithm. Column 3 excludes the onward connecting traffic term, and both columns 3 and 4 exclude
fixed effects for advance purchase discounts. Column 5 includes the full specification used for estimation. Fixed effect indica-
tors denote inclusion of advance purchase discount, day of week, week of year, and departure time fixed effects, respectively.

vary across blocks. Though such a specification may appear more restrictive than the

Dirichlet process prior, this specification allows us to tailor our specifications to our

empirical context where the pricing equation clearly changes over time due to advance

purchase discounts.14

5.3 Estimation Procedure

We modify our estimator to accommodate discrete unobserved consumer heterogene-

ity. We consider a two-type model, though this can be extended to more than two points

of discrete support. Conditional on sampled parameters and the different likelihood

function, many of our estimation steps remain unchanged. The modified algorithm

used for estimation is given below. Adjusted steps relative to the continuous random

coefficients case are highlighted with NEW.

14Our misspecified specifications in Section 4 provide an example where a restrictive distribution of this

type performs relatively well compared to the fully flexible estimator.
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Algorithm 2 Hybrid Gibbs Sampler - Discrete RC

1: for c= 1 to C do
2: (NEW) Update arrivals λ (Metropolis-Hastings)
3: Update shares s(·) (Metropolis-Hastings)
4: (NEW) Update price coefficients α (Metropolis-Hastings)
5: (NEW) Update consumer distribution γ (Metropolis-Hastings)
6: Update linear parameters β (Gibbs)
7: Update pricing equation η (Gibbs)
8: Update basis classifier κ (Gibbs)
9: Update mixture component parameters Σk, µk (Gibbs)

10: end for

5.3.1 Updating arrivals λ Because we allow for censored demand (due to finite capac-
ities of seats), purchase data are no longer distributed Poisson λ ·s. As a result, we do not
have a conjugate prior distribution for these censored quantities. Instead, we draw from
a censored posterior distribution using a Metropolis-Hastings step.

5.3.2 Updating price coefficients, αL, αB In the two-type discrete random coefficient
model of Berry et al. (2006), the price coefficients αL, αB only affect utility linearly if
we condition on consumer type. We cannot directly use the techniques developed in
Jiang et al. (2009). We propose an alternative approach that samples from the posterior
distribution with a Metropolis-Hastings step. To sample from this distribution, we need
to construct the likelihood.

The conditional likelihood of the price coefficients α= (αL, αB) is be constructed in
an analogous manner to sampling shares s(·) (see Section A.1.2). For any given potential
values of price sensitivities, conditional on other parameters and shares, we can invert
the demand system to recover a unique demand shock ξ and its implied likelihood. This
likelihood is the basis of the likelihood for a particular α value. Conditional on shares, η,
Σ, µ, and κ, we compute the distribution of ξ and determine the likelihood of a particular
draw of α. The likelihood is given by

∏
m

∏
t

J(t,m)∏
j=1

φ

f−1(sj,t,m)− ρkυ

σ2k,11√
σ2k,22 −

ρ2k
σ2k,11


 · ∣∣Jξt,m→st,m∣∣−1,

where φ(·) is the standard Normal density function.
Due to the lack of availability of conjugate priors, we can use any prior distribution

on the price coefficients. We impose a log-normal prior on α such that

log(α)∼N (α0,Σα).

To avoid a label-switching problem, we also impose that αL > αB . This ensures that
there is a single stationary distribution being sampled. This constraint can be viewed as
an additional prior placed upon the distribution of α.
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5.3.3 Updating probabilities on consumer types, γ In order to update the parameters
on the probability distribution of consumer types γt, we assume that the consumer dis-
tribution shifts over days from departure, t. In other settings, this dimension could be
adapted to allow preferences to vary over geographic space or alternative observed co-
variates.

In the two-type setting, we allow for the probability of business (“high”) type to
change over t. enforcing a smooth function. This is achieved by using a polynomial ba-
sis. We construct a sieve estimator for γ, which allows us to sample over the distribution
of sieve coefficients (here, ψ) rather than sampling directly from the distribution of γ.15

The polynomial approximation maintains a simple candidate distribution when sam-
pling ψ. To ensure we sample values of γ in (0,1), the polynomial basis is transformed
by the logistic function.16 That is,

γt = Logit(Go(t)′ψ),

where Go(t) is a vector of orthogonal polynomials evaluated for each market t.
The likelihood computation is similar to the price-coefficient likelihood, as α and γ

both are inputs into the inversion that we use to compute the likelihood of ξ. We omit
a detailed discussion of the likelihood of γ for this reason. The likelihood of ψ given the
shares drawn is equal to

∏
m

∏
t

J(t,m)∏
j=1

φ

f−1(sj,t,m)− ρkυ

σ2k,11√
σ2k,22 −

ρ2k
σ2k,11


 · ∣∣Jξt,m→st,m∣∣−1.

We sample particular values of ψ, and their implied γ, using a Metropolis-Hastings
Step.17

5.4 Empirical Results

We provide detailed demand results for an origin-destination pair in the sample and
compare our results to existing methods of estimating demand. We select an average
market in terms of zero sale observations: 85% of observations involve zero sales versus
the sample average of 88%. Most departure markets for this route have 1 or 2 daily flights,
and this air carrier is the only firm to operate non-stop flights on the route.

15This is computationally simpler, and it has an identical implied posterior distribution.
16The role of the logistic functional form enforces that all γ values lie in the interval (0,1), but does not

restrict the possible shapes of γ over t. This does not impose restrictions beyond smoothness of γ over t—
in our application, over time. Alternative link functions are feasible, since the method samples directly ψ
rather than the implied γ values.

17We impose a flat prior on ψ, though alternative priors may be imposed since this step does not re-
quire conjugacy. The candidate is drawn using a normal distribution centered around the previous ac-
cepted value using the above likelihood. We note that since this uses a Metropolis-Hastings step, care must
be taken in tuning the candidate distribution for efficient estimation.
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FIGURE 4. Demand Estimates
(a) Model vs. Data Search
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(b) Model vs. Empirical Sales
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(c) Pr(Business) over Time
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(d) Demand Elasticities over Time
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Note: The horizontal axis of all plots denotes the negative time index, e.g. zero corresponds to the last day before departure.
(a) Normalized model fit of searches with data searches. (b) Model fit of product sales with empirical sales. (c) Fitted values of
γt over time, along with the probability a consumer is business conditional on purchase. (d) Mean product elasticities over
time, along with the least and most elastic flights.

Measures of in-sample fit of estimation results are shown graphically in Figure 4.
Panel (a) shows the average market size (Poisson distribution means) across the book-
ing horizon. Most consumers arrive very close to departure. Our estimates fit searches
(scaled for unobserved searches) and sales quantities well. Note that the average mar-
ket size is about 5 searches per day, which is in line with our Monte Carlo exercises. The
composition of consumers changes considerably over the booking horizon, as shown
in Figure 4(c). Well in advance of departure, passengers are entirely composed of price-
sensitive, leisure passengers. Close to departures, arriving passengers are almost entirely
less price-sensitive, business travelers. The changing composition of customers yields
smaller (closer to zero) price elasticities as the departure date approaches, holding price
constant. However, the average price rises precipitously close to departure, which yields
marginally higher elasticities close to departure (panel d). Note that our estimates sug-
gest demand elasticities may be less than one close to the departure date (see Hortaçsu
et al. (2023) for evidence on pricing on the inelastic side of demand).

In Figure 5, we graphically show our estimates of preferences over product charac-
teristics, scaled by the price coefficient for leisure travelers. This origin-destination pair
features lower demands for earlier days of the week. Preferences for flight time are less
differentiated, with 9am and 6pm being the least preferred travel times. Noisy and small
estimates suggest that relative time of day preference is not a large source of variation
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in demand within market. These estimates report the ratio of preference β to price sen-
sitivity α, so a confidence interval overlapping with zero is not a direct measure of sig-
nificance. However, for time of day and day of week, many preference parameters have
credibility intervals containing zero. In our implementation, we impose the same prior
distribution of all preference fixed effects, which serves to partially regularize these es-
timates. Additional regularization is possible without disrupting the speed of this step,
i.e., preserving the Gibbs step, by imposing a hierarchical model (with a first-stage prior
over the prior distributions) for these preferences (Rossi et al., 2012). Leisure types are
four times more price sensitive than business type passengers.

FIGURE 5. Relative Willingness to Pay for Flight Attributes
(a) Day of Week
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(c) Week of Year
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Note: (a) Kernel Density Estimates of a leisure consumer’s willingness to pay to change flight day of week from Wednesday.
(b) Leisure consumer’s willingness to pay to change time of flight from 3 pm. (c) Leisure consumer’s willingness to pay relative
to a flight departing in the 43rd week of year (end of October).

Willingness to pay for travel displays considerable seasonality in this market. Fig-
ure 5(c) shows variation in the valuation of travel by week of year. The most popular week
is valued $96 more than the least popular week for travel, for the same route. However,
estimates of these preferences are relatively noisy. Only 18% of the week of year prefer-
ences have 95% credibility intervals that exclude 0. Arrival rates also vary seasonally and
towards the departure date. 69% of departure-date arrival fixed effects are significant,
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and 85% of day-from-departure arrival fixed effects are significantly different than the
day of departure.

Our demand estimates are robust to the set of instruments used in estimation. For
example, while using only onward connecting traffic to instrument for price reduces the
fit of the first-stage, we obtain similar demand results. We estimate average own-price
elasticities of -1.11 (s.d. 0.33) without using the opportunity cost of capacity, whereas
our baseline specification yields an average elasticity of -1.21 (s.d. 0.30). Adding advance
purchase indicators to the set of instruments hardly changes the results. Using solely
opportunity costs yields an average elasticity of -1.25 (s.d. 0.09).

We contrast our estimates with typical zero share fixes and assumptions about mar-
ket size. Table 8 summarizes price elasticity estimates for a model based on Berry et al.
(2006) and compares these results to our estimator. We vary how zero sales are handled
(either dropped or imputed with a small market share) and how the market size is con-
structed (using observed arrivals or fixing the total market size), similar to our Monte
Carlos. We find that dropping zero shares yields extremely inelastic estimates, and this
is worse when we use calibrated arrivals. Since 85% of the flight observations consist
of zero sales, imputing these values with a small value replaces most of the observed
shares with identical values. The lack of variation in empirical shares drives the estima-
tor to boundary solutions where the entire market is composed of perfectly price inelas-
tic consumers. While the strategy of dropping observations where sales are equal to zero
provides non-zero estimates of own-price elasticities, they remain unreasonably inelas-
tic. If we took these estimates at face value, they would suggest that airlines are grossly
underpricing (because demand is estimated to be inelastic). In contrast, our estimator
produces elasticities which suggests airlines are not underpricing on average. Moreover,
if we assume marginal costs only capture the opportunity costs of selling, then our esti-
mates suggest that scarcity is important (so that demand is not unit elastic).

One alternative to our daily measurement of demand would aggregate sales over
time to reduce the zero-sales frequency. In this empirical context, such aggregation
would smooth over price changes. We find that estimating weekly demand also pro-
duces extremely inelastic demand. Across all nine models estimated, only the Poisson
RC model produces demand estimates where own-price elasticities do not bunch at
zero. The other models yield unrealistic measures of willingness to pay, e.g., consumers
are willing to pay up to $3000 dollars to move from a Monday flight to a Wednesday
flight. Our model suggests the variance in preferences across days of the week is more
similar to observed price differences—about $20.

In addition to providing sensible elasticity estimates, our approach allows us to de-
compose the sources of cyclicality in demand for air travel. Are consumers willing to
pay more to travel in popular departure markets? Are these markets larger? We find that
market participation (λD) and preferences (shares at average prices) are positively cor-
related (correlation coefficient of 0.16). That is, more consumers arrive and more con-
sumers purchase after arriving for popular departure dates. Given this correlation in
preferences and arrivals, we decompose which of these sources of variation drives the
variability in demand over the year.
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TABLE 8. Own-Price Elasticities Across Models with Zero Share Adjustments

Zeros Market Size Aggregation Mean Std. Dev. Median 5th 95th

Drop Calibrated Disaggregated -0.002 0.001 -0.001 -0.004 -0.001
Drop Calibrated Aggregated 0.000 0.000 0.000 0.000 0.000
Drop Observed Disaggregated -0.083 0.026 -0.083 -0.131 -0.038
Drop Observed Aggregated 0.000 0.000 0.000 0.000 0.000

Adjusted Calibrated Disaggregated 0.000 0.000 0.000 0.000 0.000
Adjusted Calibrated Aggregated 0.000 0.000 0.000 0.000 0.000
Adjusted Observed Disaggregated -0.035 0.016 -0.031 -0.062 -0.018
Adjusted Observed Aggregated -0.016 0.008 -0.014 -0.028 -0.006

Poisson Random Coefficients -1.215 0.433 -1.162 -2.007 -0.555

Note: The table presents summary statistics for the realized own-price elasticities from estimating the model as in Berry
et al. (2006), ignoring the arrival process and employing zero share adjustments to the empirical shares. The first set of adjust-
ments involve the handling of empirical share observations; "Drop" indicates an adjustment where the zero observations are

dropped and "Adjusted" denotes replacing empirical shares with their Laplace share equivalent sAjt =
Mtsjt+1

Mt+Jt+1 . The second

set of adjustments involve selecting the market size in order to calculate the empirical market shares. The first method is to use
the search data series as the values for the arrival process, the second is to calibrate the market size to be 40 for all observations,
and the last method involves uses the total number of observed arrivals aggregated across different days from departure. The
final row summarizes posterior mean of price elasticities for our estimator.

We compute the change in expected demand driven by preferences by moving from
the 5th to the 95th percentile in shares along days from departure or along departure
dates, holding prices and arrivals constant. We conduct a similar exercise for arrivals,
where we hold prices, unobserved quality, and preferences fixed. Our decomposition
suggests on average sales variability explained by changes in preferences is 25% more
than the variation explained by arrivals. Preference variability is highest close to the de-
parture date. Decomposing this variation across departure dates, we find that changes
to preferences account for two times more variability in expected demand across the
selling period within departure dates than changes in arrivals. That is, two-thirds of the
variation in demand over time is due to changes in willingness to pay. Therefore, pref-
erence changes are more important than market size changes in explaining cyclical de-
mand for air travel.

These results contrast with grocery markets (Chevalier et al., 2003), where periods
of peak demand have lower prices. Our findings complement the work of Einav (2007)
in the movie industry where two compounding forces drive cyclicality. In movies, peak
demand corresponds to periods where consumers have higher willingness to pay and
firms release movies with higher quality. In our setting, we find that both the intensity of
demand and willingness to pay move in the same direction over the calendar year. How-
ever, our data also show that on the supply side, both capacities and prices also respond
upward in periods of peak demand (see Figure 3). Absent these supply-side responses,
this suggests that cyclicality would be even higher, as in the movie industry case.

6. CONCLUSION

We propose a method to estimate product-level demand with small market sizes. Our
approach allows for many zero sale observations, endogenous prices, and rich unob-
served consumer heterogeneity. We derive a Bayesian IV estimator to recover random
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coefficients logit demand parameters with Poisson arrivals. We show through simulation
studies that this method can outperform typical zero-sales adjustments and provide un-
biased estimates, even in very small markets or under a misspecified pricing function.

Our approach can be applied to many settings where granular demand estimates
are necessary in order to evaluate counterfactuals or address firms’ decision making.
The key data requirements in our approach are traditional market-level outcomes and
one additional data column—measures of consumer arrival intensity. These data are be-
coming increasingly available to researchers, with relevant applications in e-commerce,
retailing, and transportation, among others.
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APPENDIX A: ESTIMATION ROUTINE USING DIRICHLET PROCESS PRIOR

A.1 Markov Chain Monte Carlo Details

A.1.1 Sampling Arrival Parameters To update the parameters describing the arrival
rate of consumers, we use arrival and quantity data. We define the likelihood to be the
joint probability of observing At and qj,t, conditional on sj,t. Arrivals are distributed
Poisson. Conditional on shares, we split the arrival process (with rate λt) by the shares
to obtain the distribution of quantities sold. Each purchase is drawn from a Poisson dis-
tribution with rate λt · sj,t.

Because data on arrivals may be sparse—perhaps only a single data point per
market—we suggest parameterizing the arrival rate with a series of fixed effects when-
ever possible,

λt := exp (WtΛ) ,

where W is a full rank matrix (composed of 0 and 1s if using fixed effects). Other specifi-
cations are possible.

Arrivals are distributed Poisson,

At ∼ Poisson(λt).

Note that purchase quantities also depend on arrivals. Using the properties of the Pois-
son distribution, we have

qj,t ∼ Poisson(λtsj,t).

We note that a conjugate prior choice for Λw is log-Gamma distribution such that each
element exp(Λ)∼ Γ(k, ζ). Therefore, the posterior distribution of exp(Λw), for a partition
W defined by the matrix Wt, is given by

exp(Λw)∼ Γ


∑
t∈W

At +
∑
j

qj,t

+ k,
ζ

1 + ζ

(∑
t∈W

(2− s0,t)

)
 .

A.1.2 Sampling Shares and Utility Parameters

Updating shares. The Dirichlet process allows for complex distributions of (ξ, υ) to be
approximated by a series of normal distributions through a component classifier κ. Con-
ditional on this classifier, each pair of residuals (ξ, υ) are distributed bivariate normal.
We apply the standard treatment of simultaneity by conditioning on the variance struc-
ture of the normal and the respective residuals. The following sections condition upon κ
and derive the sampler for a multivariate normal joint distribution of the demand shock
and pricing residual. In the final sections we discuss sampling the classifier and the com-
ponent means and variances.

Conditional on β,Γ, κ,µ,Σ, and υ, the shares are an invertible function of ξ. The con-
ditional distribution of ξ is also normal, which implies a distribution of shares. We com-
pute the likelihood of any particular set of share draws by inverting the demand system
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for these shares. We derive a distribution of shares via a standard change of variables
theorem.

Since ξ is assumed to be correlated with price, we follow the Bayesian framework
for simultaneity with discrete choice models (Rossi and Allenby, 1993, Jiang et al., 2009,
Rossi et al., 2012). Using a set of exogenous and relevant instruments Zt,d, we assign

ξj,t = f−1
(
sj,t |β,Γ,Xt

)
υj,t = pj,t −Z′j,tη

 |κ= k ∼N iid(µk,Σk) such that Σk =

(
σ2k,11 ρk
ρk σ2k,22

)
.

For notational parsimony, we omit the conditioning statement, but note that each func-
tion is implicitly conditioned on the other demand parameters. We refer to the share
equation as sj,t,d = f(ξj,t,d). Since f is invertible, the density of sj,t,d is given by

fsj,t(x) = fξj,t
(
f−1(x)

)
·
∣∣∣Jξj,t→sj,t∣∣∣−1.

With this notation, Jξj,t→sj,t represents the Jacobian matrix of model shares with

respect to ξ and
∣∣∣Jξj,t→sj,t∣∣∣−1 denotes the inverse of the determinant of the Jacobian.

Since υ and ξ are assumed to be jointly normal, knowing υ provides information
about the magnitude of the demand shock. This joint normality does not factor into the
Jacobian of the shares distribution, because neither sj,t or ξj,t are in the pricing equation
and it is assumed it to be a linear system. However, we must use the correct conditional
distribution for ξ. Conditioning on both η and Σ is enough to pin down the the correla-
tion structure between ξ and υ, and to “observe” υ as well. Drawing on the structure of
the bivariate normal distribution, we have

ξ|υ,κ= k ∼N

(
µk,2 +

ρkυ

σ2k,11
, σ2k,22 −

ρ2k
σ2k,11

)
,

where (
ξ

υ

)
|κ= k ∼N (µk,Σk), Σk =

(
σ2k,11 ρk
ρk σ2k,22

)
.

One interpretation of this treatment of simultaneity is that price gives information
about the realized demand shock ξ, so the conditional distribution of ξ is higher or lower
depending on the unobserved component υ that influences price.

The conditional distribution of shares is then given by

J(t)∏
j=1

φ

f−1(sj,t)−

ρkυ

σ2k,11√
σ2k,22 −

ρ2k
σ2k,11


 · ∣∣Jξt→st∣∣−1,

where φ(·) is the standard normal density function.
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Shares directly shape the distribution of sales. The distribution of purchases is a split
Poisson process given by

qj,t ∼ Poisson(λtsj,t).

Since the Poisson draw is only dependent on the demand parameters through the
shares, qj,t is conditionally independent of ξ. Thus the likelihood of a particular market’s
shares is given by the product of the density of ξ and the mass function of qj,t, given by

`(s.,t) =

J(t)∏
j=1

φ

f−1(sj,t)−

ρkυ

σ2k,11√
σ2k,22 −

ρ2k
σ2k,11

 λtsj,t)
qj,t exp(−λtsj,t)
qj,t!

 · ∣∣Jξt→st∣∣−1.

The posterior likelihood is constructed by taking the product of the each market’s in-
version multiplied by the likelihood contribution of each product’s quantity sold. There
is no conjugate prior distribution, so we sample from the posterior using a Metropolis-
Hastings step.

Our candidate distribution for share draws is a transformation of a normal distribu-
tion added to ξ. This allows for easy tuning of the candidate distribution via the variance
of the normal. However, as a complication, the candidate distribution is not reversible.
That is q(a|b) 6= q(b|a). As a result, we reweight the Metropolis-Hastings step according
to the implied p.d.f. to make the chain reversible.

Updating distribution of consumer types, Γ We use a random coefficients demand
specification, where demand parameters can be grouped into nonlinear and linear pa-
rameters. We order these demand parameters such that the first L parameters are dis-
tributed normally, and the remaining K −L are constant across consumers. That is,

ui,j,t = xj,tβi + ξj,t + εi

and

βi =

(
β̄1:L + ΓUi
β̄L+1:K

)
,

where Ui ∼N (0, IL), and Γ is the Cholesky decomposition of a variance matrix. This al-
lows for a flexible covariance between the demand parameters with random coefficients,
while maintaining linearity in K parameters. We use the Cholesky decomposition for
computational simplicity.

We sample from the posterior distribution of nonlinear demand parameters Γ with
a Metropolis-Hastings step. The distribution of ξ remains unchanged, and we evaluate
a candidate Γ in a similar manner as to drawing shares, but without incorporating the
likelihood of purchases.

The likelihood of a particular Γ is constructed from the implied distribution of the
demand shock ξ from inverting the demand system. The likelihood of the shares, given
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Γ, is given by

sj,t|υj,t, κj,t,Γ∼N

(
µκj,t,2 + ρκj,t

σ2κj,t,11
υ,σ2κj,t,22 −

ρ2κj,t
σκj,t,11

υj,t

)
J−1ξ→s.

We use a short-hand distribution here of a distribution times the Jacobian to mean that
the p.d.f. of ξ.,t (evaluated at a set of shares s.,t) is the p.d.f. of a normal distribution with
those parameters multiplied by the determinant of the Jacobian.

However, a candidate Γ cannot be drawn in a trivial manner, as we must sample from
the set of Cholesky decompositions of positive-definite (variance) matrices. We employ
the parameterization suggested by Jiang et al. (2009), which lets

Γij =


exp(rij), for i= j

rij , for i < j

0 otherwise .

This enforces a strictly positive diagonal upper-triangular matrix for any candidate draw
r.

We have given the likelihood of the demand residual, to complete the posterior like-
lihood of Γ, we must also define a prior distribution over Γ. Following Jiang et al. (2009),
we impose normal priors over each r. Jiang et al. (2009) explore the implications of this
prior specification: rij ∼N (0,ψ2

ij).
The posterior distribution of Γ is given by

J(t)∏
j=1

φ
f
−1(sj,t)− µκj,t,2 −

ρ

σ211
υj,t

σκj,t,2|1


 |Jξj,t→sj,t |−1 ×∏

i≤j

1

ψij
φ(rij).

For alternative utility specifications, the same procedure can be used. Note that only a
few non-linear parameters may be estimated in a single step, as a Metropolis-Hastings
step searching in a high dimension traverses the stationary distribution slowly.

Updating type-invariant parameters, β̄. To sample from the linear demand parame-
ters, we define δj,t such that

δj,t = xj,tβ̄ + ξj,t.

Since ξj,t has a normal distribution and we impose a normal prior on β̄, we have a stan-
dard Bayesian linear regression after we account for the influence of the pricing residual,
and the different variances in each element of ξj,t. We accomplish this by normalizing
each component of equation (A.1.2) by subtracting the expected value of ξj,t and diving
both sides by the standard deviation. We then perform a Bayesian linear regression on
this collection of normalized equations, as these rescaled errors have unit variance. Let

σk,2|1 =

√
σ2k,22 −

ρ2
k

σ2
k,11

be the variance of ξ conditional on υ and Σ.
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δj,t − µκj,t,2 −
ρκj,t

σ2κj,t,11
υ

σκj,t,2|1
=

1

σκj,t,2|1
xj,tβ̄ +Uβj,t,

where Uβ ∼N (0,1).
We follow the typical conjugate prior distribution for a linear regression—β̄ ∼

N (β̄0, V0). The posterior distribution is then a shrinkage estimator of OLS.
Let

X̂j,t =
xj,t

σκj,t,2|1
,

and

δ̂ =

δj,t − µκj,t,2 −
ρκj,t

σ2κj,t,11
υ

σκj,t,2|1
.

Then the posterior distribution of β̄ is β̄ ∼N (βN , VN ), where

βN = (X̂ ′X̂ + V0
−1)
−1 (

V0
−1β0 + X̂ ′δ̂

)
,

and

VN = (V0
−1 + X̂ ′X̂)

−1
.

A.1.3 Sampling Price-Endogeneity Parameters

Updating pricing equation, η. The pricing equation is given by

pj,t = Zj,tη+ υj,t.

Conditional on shares, Γ, and β̄, ξ is known, so we use the conditional distribution
of υ given ξ to perform another Bayesian linear regression in the same manner as β̄.
We impose a Normal prior, subtract the expected value and divide by the conditional
variance.

Define σκj,t,1|2 =

√
σ2κj,t,11 −

ρ2
κj,t

σ2
κj,t,22

. Then

pj,t − µκj,t,1 −
ρκj,t
σκj,t,22

ξj,t

σκj,t,1|2
=

1

σκj,t,1|2
xj,tη̄+Uηj,t.

After this normalization, Uηj,t is a standard normal error term. We draw from η using
a standard Gibbs-Sampler draw from a linear regression with unit variance, which is the
same process as used for β̄.
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Updating Component Classifier Using the properties of the Dirichlet process, the prior
probability of each cluster is weighted by the likelihood of each data point being sam-
pled from the cluster. The posterior distribution of θ is

θn|θ−n, υj,t, ξj,tα̃∼

q0G0 +
∑
i6=n

qi1θi

q0 +
∑
i6=n

qi
,

where

qi =
1

α̃+N − 1
Pr((υj,t, ξj,t)|θi) for i 6= 0,

and

q0 =
α̃

α̃+N − 1

∫
Pr((υj,t, ξj,t)|θi)G0(dθi).

This is a mixture distribution with weights q0 for a new cluster, and πiqi for existing
clusters, where πi is the sum of data points in cluster i divided by the total data points.
While qi presents a similar form as a finite mixture model, q0 is difficult to calculate.
Because we assume G0 ∼N , q0 is the prior predictive distribution, i.e. the likelihood of
a data point over the distribution of possible normal distributions θi might take on.18 As
shown in Murphy (2007), this quantity is distributed multivariate t. Applying our priors,
the form is given by:

∫
Pr(x|θi)G0(dθi)∼ tν−1(0,

1

νv
I(aµ + 1)

aµ(ν − 1)
).

We can evaluate the p.d.f. of θ at each of the residuals to determine the posterior proba-
bility of adding a new cluster.

It is important to draw a connection between θn and κ, the component classifier.
There are at most n unique values of θn, and usually far fewer due to the clustering
nature of the Dirichlet process. κ is then drawn from a categorical distribution, with
weights q0 for a new cluster, and Nkqk for each cluster k. The number of unique values
of θn is constantly changing, so the size of κ must be adjusted whenever θ changes in
every estimation step.

If a new cluster is drawn from the categorical distribution, we must know what dis-
tribution to sample. The prior distribution of a new cluster is G0, but since the residual

18We impose standard conjugate priors for computational ease, so

µ|Σ∼N (0, aµ
−1Σ), and Σ ∼ IW (ν, νvI),

where prior parameters ν determines the tightness of the Inverse-Wishart distribution, and aµ determines
the scale of variance of means. We allow prior parameter v to determine the location via

mode(Σ) =
ν

ν + 2
vI.
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pair belongs to the cluster, we sample from its posterior distribution. This is the same
process as sampling means and variance for a finite mixture basis that contains only a
single point—a multivariate Bayesian linear regression. We draw from its posterior dis-
tribution in the standard way. Let Yk = (υk, ξk), which is the residual pair for the new
cluster, the posterior distribution of component variance and mean are:

Σk ∼ IW (ν + 1, V + S)

µk|Σk ∼N (µ̃,
1

1 + aµ
Σk),

with

S =
(
Yk − ιµ̄′k

)′ (
Yk − ιµ̄′k

)
,+aµ (µ̃k − µ̄)′ (µ̃k − µ̄) ,

µ̃= (1 + aµ)−1(ȳk + aµµ̄),

and

ȳk = Y ′kι,

where ι is a corresponding length vector of all ones.
To combine all of the above steps, we present the following algorithm for updating

the component classifier κ.

Algorithm 3 Drawing Component clusters under a DP prior

1: for n= 1 to N do
2: Compute probability of new cluster, q0, for residual pair n
3: for k = 1 to K do
4: Compute Bayes Factor qk.
5: end for
6: Draw classifier κn ∼Multinomial(q)
7: if q == 0 then
8: Draw cluster mean, µK+1 and variance, ΣK+1

9: Update K =K + 1

10: end if
11: Check if a cluster has been orphaned. Adjust K
12: end for

Updating the Component Distributions, ΣK and µk. Conditional on κj,t, each pair of
residuals is known to come from a particular component of the mixture normal. If we
only consider the residual pairs drawn from a particular component k, then it is as if all
of the residuals are drawn from the same distribution, and the standard Inverse-Wishart
parameterization can be used to draw the variance parameters. We follow that proce-
dure here for each component, with an extra step to allow for each component to have
a different mean parameter as well.
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Since there is no intercept in the demand parameters, there is an extra degree of free-
dom in this problem that we use to sample as a mean for each component bivariate nor-
mal distribution. We sample from this mean using a multivariate regression with only a
constant, since each component distribution is normal. Some care must be made since
the residuals are not independent, so we use a Bayesian multivariate regression to cor-
rectly sample from their joint distribution. To utilize the standard Bayesian machinery
for such a regression, we impose standard (normal) priors to exploit conjugate priors.
For any component k, the variance Σk has an Inverse Wishart prior IW (ν,V ) and the
mean µk|Σk has a normal prior distributionN (µ̄, a−1µ Σk). Define the vector Yk = (υ, ξk),
which is only the collection of residual pairs such that κj,t = k. We can write

Yk = ιµ′ +U,

where

U ∼N (0,Σk).

The posterior covariance and conditional mean of the components are then

Σk ∼ IW (ν + nk, V + S)

and

µk|Σk ∼N (µ̃,
1

nk + aµ
Σk),

where we define

S =
(
Yk − ιµ̄′k

)′ (
Yk − ιµ̄′k

)
+ aµ (µ̃k − µ̄)′ (µ̃k − µ̄) ,

µ̃= (nk + aµ)−1(nkȳk + aµµ̄),

and

ȳk =
1

nk
Y ′kι.

The vector ι is a corresponding length vector of all ones, and nk is the number of obser-
vations in cluster k. This is repeated for each component k.
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APPENDIX B: EXTENSION: FINITE MIXTURE COMPONENTS

For computational speed or researcher preference, one may wish to put some restric-
tions on the joint distribution of the demand shock and the pricing error. We provide
an extension from our more flexible model presented in the body of the paper to allow
for a finite number of mixture components. That is, we treat the number of component
distributions as fixed, and thus don’t need to evaluate whether to add or remove com-
ponents at each step of the sampler. After updating the unconditional mixture weights
for each component, we only need to update the component distribution probabilities
for each observation (ξj,t, υj,t) for the fixed set of components. To do so, we take the cur-
rent candidate draw of π as a prior and evaluate the likelihood that this observation of
(ξj,t, υj,t) is drawn from that component distribution given the current candidate mean
and variance. Rather than clustering means and variance, we augment the data with a
classifier for each observation using π̂, the posterior probabilities. Conditional upon the
classifier, the residuals are distributed bivariate normal. We then update posterior clus-
ter mean and variances based on the classified observations with a standard Gibbs step.

Algorithm 4 Hybrid Gibbs Sampler: Finite Mixture

1: for c= 1 to C do
2: Update arrivals λ (Gibbs)
3: Update shares s(·) (Metropolis-Hastings)
4: Update linear parameters β (Gibbs)
5: Update nonlinear parameters Γ (Metropolis-Hastings)
6: Update pricing equation η (Gibbs)
7: (NEW) Update unconditional mixture weights π (Gibbs)
8: (NEW) Update component classifier κ (Gibbs)
9: Update mixture component parameters Σk, µk (Gibbs)

10: end for

B.1 Details of Sampling Price-Endogeneity Parameters

Updating Mixing Probabilities We assume a Dirichlet prior on the mixture probabili-
ties, π ∼Dirichlet(ᾱ). Conditional on the classifier κ, we have information about which
data points fall into which classifier, and the posterior distribution of π is given by

π ∼Dirichlet(α̃)

α̃k = nk + ᾱk.

This gives the unconditional probability that a data point is drawn from classifier k.

Updating Component Classifier This step now skips the need to (a) evaluate new com-
ponent probabilities and (b) check for orphaned components. Rather than using a clas-
sifier κ that is sufficient for all unique values of θn, we augment the data with the classi-
fier at each step of the chain. Each residual can be treated as drawn from a single, unob-
served normal distribution, simplifying the computation required when evaluating its
distribution.
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The classification of each data point can be thought of as a multinomial draw
with π as the prior probability of each classification. The remaining information can
be gathered from the likelihood of each component. We exploit the conjugacy na-
ture of the multinomial distribution and the Dirichlet distribution, so that κj,t|π ∼
Mulitnomial(π̄j,t) and

π̄j,t,k =
πkφk((υj,t, ξj,t)
K∑
i=1

πiφi(υj,t, ξj,t)

,

where φk(x) is the likelihood of the kth component evaluated at x.
This step is computationally expensive, as the number of computations isO(N×K).

It requires evaluating the likelihood of each residual at every distribution, this must be
evaluated with every draw, as ξ, υ and the mean and variance of each component change
each draw. Through careful application of the prior ω, and priors on the mean and vari-
ance of the components, complex distributions can be approximated with relatively few
mixtures, which can reduce the computational burden of this procedure.

Updating the Component Distributions, ΣK and µk. This step proceeds identically to
the Dirichlet Process case.

APPENDIX C: ADDITIONAL MONTE CARLO RESULTS
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