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ABSTRACT

We propose a demand estimation method that allows for a large number of zero sale 
observations, rich unobserved heterogeneity, and endogenous prices. We do so by modeling small 
market sizes through Poisson arrivals. Each of these arriving consumers solves a standard discrete 
choice problem. We present a Bayesian IV estimation approach that addresses sampling error in 
product shares and scales well to rich data environments. The data requirements are traditional 
market-level data as well as a measure of market sizes or consumer arrivals. After presenting 
simulation studies, we demonstrate the method in an empirical application of air travel demand.
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1 Introduction

Digitization has brought about unparalleled opportunities to gather, store, and process mi-

cro data. While these data allow study of research questions that were not answerable

with more aggregated data, these micro data sets create new challenges in analysis. For

example, when studying infrequently measured aggregate sales data, researchers would

seldom encounter data periods devoid of transactions. However, with frequently measured

disaggregated data, many or most observations may contain no purchases. A particularly

relevant example is e-commerce, where consumers commonly choose among a relatively

large set of products, or where few consumers consider purchasing any product for a given

market definition. Situations with zero transactions are problematic for workhorse demand

models because these models require observed market shares to be strictly positive in order

to be estimable. This practical estimation challenge raises the concern that these standard

demand models are conceptually inappropriate for high-frequency, detailed micro data sets.

In this paper, we propose an approach to modeling and estimating discrete choice de-

mand suitable for data environments with sparse sales. Our model combines Poisson ar-

rivals and discrete choice demand models that accommodate random coefficients, flexible

latent product characteristics, and endogenous prices. Although alternative recent method-

ological advances propose solutions to the zeros problem by considering inference under

large market sizes, in many cases the number of consumers will never grow in a way that

reduces sampling error in product shares. This occurs because purchases opportunities tend

to grow too slowly relative to the number of products offered. In contrast, our approach

explicitly models small market sizes, which allows for low purchase rates and a significant

amount of zero-sale observations. The data requirements are conventional market-level

data as well as a measure of observed market sizes, such as information on consumer ar-

rival intensity. These data are becoming increasingly available in economics and market-

ing and not need pertain only to e-commerce. For example, arrival intensity may involve

foot-traffic statistics or a proxy for market sizes, such as the number of consumers who pur-

chased a particular good, e.g., milk in the grocery context. We present simulation studies
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to compare to alternative approaches to handling sparse sales. We show that our approach

performs well in situations where alternative methods produce biased demand estimates.

Finally, we extend our methodology to discrete random coefficients and apply it to the

study of airline markets, where the daily demand for flights is low—product-level zeros

sales exceed 85%. We compare demand estimates across estimation approaches and use

our model to explore the underlying forces that cause cyclical demand for air travel.

In Section 2, we consider the workhorse demand model of Berry, Levinsohn, and Pakes

(1995), henceforth BLP (1995), which is often used to flexibly estimate substitution pat-

terns across differentiated products. In the BLP (1995) approach, empirical product shares

are matched to their model counterparts via a market share inversion that requires all sales

quantities (and thus, empirical shares) to be strictly positive. In estimation, this inversion

is not possible in the presence of zero-sale observations, as it requires taking the log of

empirical shares equal to zero. Dropping the zeros is known to create a selection bias

in the demand estimates (Berry, Linton, and Pakes, 2004). Although aggregation of the

data may be possible, this may smooth over the heterogeneity of interest—in our empiri-

cal application, we find that aggregation also yields implausible estimates of demand. In

our model, market sizes are modeled through Poisson distributions. Under our modeling

assumptions, demand is also distributed Poisson. This allows us to rationalize zero sale ob-

servations and account for the sampling distribution of sales driven by small market sizes.

Relative to other proposed solutions to the zeros problem, including Quan and Williams

(2018), Dubé, Hortaçsu, and Joo (2021), Lima (2021), Adam, He, and Zheng (2020), Li

(2019), and Gandhi, Lu, and Shi (2023), we explicitly leverage market-size variation as a

source of zero sales. An alternative approach would be to fix the market size and model the

multinomial distribution of sales, similar to Conlon and Mortimer (2013).

Our approach combines methodologies that allow for sampling error in product shares,

price endogeneity, and rich unobserved heterogeneity into a single framework. Market par-

ticipation is modeled according to flexible Poisson distributions. That is, consumers con-

sider all products or do not participate in the market at all. This contrasts with individual-
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level models of limited information, where consumers search across subsets of products

(e.g., Amano, Rhodes, and Seiler, 2022; Abaluck, Compiani, and Zhang, 2022). Our

approach relates to Burda, Harding, and Hausman (2012), who consider Poisson demand

with rich individual-level heterogeneity, and Vulcano, Van Ryzin, and Ratliff (2012), who

suggest using choice set variation in Poisson demand estimation. However, both of these

works abstract from endogenous variables.1 Similarly, a growing literature in empirical in-

dustrial organization (e.g., Buchholz, 2021; Williams, 2022) and operations (e.g., Newman,

Ferguson, Garrow, and Jacobs, 2014; Jain, Rudi, and Wang, 2015; Abdallah and Vulcano,

2021; Wang, 2021) consider Poisson demand. Relative to these works, we allow for prices

to have a flexible correlation structure with latent demand characteristics, i.e., prices are

endogenous to unobserved product qualities.

We develop a Bayesian instrumental variables estimator for the model in Section 3.

We build on the methods proposed by Jiang, Manchanda, and Rossi (2009) by adding an

explicit model of market size that accommodates unobserved product shares (Poisson de-

mand), discrete or continuous random coefficients, and a flexible treatment of addressing

price endogeneity. By augmenting the data with unobserved shares, we can use the market

share inversion of BLP (1995) even though there may exist zero-sale observations and sam-

pling error in product shares. We present two approaches to handling price endogeneity that

use limited information pricing equations. The first treatment considers a non-parametric

relationship between price and the demand unobservables by applying a Dirichlet process

prior. We also present a semi-nonparametric treatment using a mixture normal model in

the appendix.

In Section 4, we demonstrate that our estimator can recover accurate and precise pa-

rameter values relative to existing methods in several simulation studies. Our estimator

provides coverage even if market sizes are very small—for example, when arrival rates

are five individuals per market. In this setting, we show that common zero-share solutions

introduce considerable bias to the demand estimates and overstate the dispersion of pref-

1See also Chen and Kuo (2001) and Lee, Green, and Ryan (2017) for related work that involves random
effects without endogenous characteristics.
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erences within and across markets. In addition, we show that our estimator can be robust

to some forms of misspecification, including misspecifying the dispersion of consumer

arrivals and restricting the flexibility in our treatment of price endogeneity. Lastly, we con-

duct a set of simulation studies that better represents retail scanner data, where consumers

face choice sets with dozens of products.

Finally, we provide an adaptation of our estimator to mass point random coefficients

(Kamakura and Russell, 1989; Berry, Carnall, and Spiller, 2006) and consider an empirical

application to the airline industry in Section 5. Our empirical setting emphasizes the data

requirements for estimation. We use data provided by a large international airline based

in the United States. Our sample contains sales quantities, prices, as well as a measure of

consumer arrivals. More precisely, we use search query counts at granular levels to inform

market sizes in estimation.

The demand for air travel is difficult to estimate because sales are sparse. We find that

85% of observations are zero-sale observations. Moreover, typically just a few consumers

arrive per day. Using our method, we estimate mean product elasticities to be -1.2. How-

ever, we estimate demand to be far more inelastic by using existing demand approaches.

Existing approaches yield price elasticities between -0.13 and 0, with substantial masses of

estimates very close to zero. This occurs because imputing (small) shares when sales are

zero causes price variation to have no impact on shares due to attenuation bias. Similarly,

dropping zeros leads to price elasticity estimates very close to zero, since observations with

positive shares feature higher willingness to pay. We find that low arrival rates prevent any

product from having consistently well-measured market shares, which causes the estimator

of Gandhi, Lu, and Shi (2023) to yield biased demand estimates as well.

With our model estimated, we explore preference heterogeneity across markets and de-

compose the driving forces of cyclicality in demand for air travel. Our analysis shows

that periods of low demand feature both low market participation and consumers with

lower willingness to pay. We estimate substantial variation in preferences across travel

itineraries: passengers are willing to pay $96 more for the most popular week for travel
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over the least popular week on an identical route. Preferences across departure times reflect

observed price differences. However, this variation is inflated significantly using existing

approaches, suggesting consumers are willing to pay thousands of dollars to switch flights.

Finally, we discuss why demand cyclicality would be amplified, absent the use of dynamic

pricing and frequent capacity adjustments.

2 Model of Consumer Demand

We model aggregate demand using the widely applied random coefficients logit demand

model. Consumers, indexed by i , arrive in market t and make a discrete choice, choosing

among market-specific products ( j ∈ Jt ) and an outside option ( j = 0). Markets t may be

defined across time or other dimensions, such as space. The data may comprise a panel.

In the baseline model, consumers are drawn from a continuum of types. We also consider

mass-point random coefficients in Section 5.

2.1 Utility Specification

We assume that indirect utilities are linear in product characteristics and are given by

ui , j ,t =







X j ,tβi +ξ j ,t + εi , j ,t , j ∈ Jt

εi ,0,t , j = 0
,

where X are product characteristics, including price, ξ are unobserved (to the econometri-

cian) product characteristics that are potentially correlated with price, and ε are indepen-

dent and identically distributed error terms. We assume these errors are distributed type-1

extreme value. The random coefficients are assumed to be distributed jointly normal across

consumers and are independent of characteristics. That is,

βi = β̄ + Γbi ,
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where βi ∼ N (0, I ) is a multivariate, standard normal distribution, and Γ is the Cholesky

decomposition of a positive definite matrix. This allows for a general variance pattern

between demand parameters and the random coefficients. Some of the parameters may be

linear, meaning that there are no associated random coefficients with these characteristics.

All consumers solve a straightforward utility maximization problem; consumer i chooses

product j if, and only if,

ui , j ,t ≥ ui , j ′,t , ∀ j ′ ∈ J ∪{0}.

The distributional assumption on the idiosyncratic error term leads to analytical expressions

for the individual choice probabilities of consumers. In particular, the probability that

consumer i purchases product j is equal to

si , j ,t =
exp

�

X j ,tβi +ξ j ,t

�

1+
∑

k∈Jt
exp

�

Xk ,tβi +ξk ,t

� .

Integrating over all consumers, we obtain product market shares, which are equal to

s j ,t =

∫

i

si , j ,t d F (bi ).

2.2 Distribution on Market Sizes

We model the distribution on market sizes using Poisson distributions, i.e.,

At ∼ Poisson
�

λt

�

, (1)

such that λt := exp (Wtλ) and Wt is a full-rank matrix. Note that we assume arrivals are

measured specific to t rather than specific to j , t . That is, all arriving consumers have full

information about all products upon arrival. The matrix W could contain, for example,

time, location, or other market-specific covariates, depending on the application.

Our model of market participation is a highly stylized representation of consumer

search. Consumers either search among all products or they do not participate in the market.
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This is because we do not leverage individual-level data, see e.g., Honka (2014), Armona,

Lewis, and Zervas (2021), and Kim, Albuquerque, and Bronnenberg (2010). Our model

uses aggregate, market-level data.

Two assumptions allow us to construct analytic expressions for demand: (1) the re-

alizations of arrivals are conditionally independent of preferences (A ⊥ ξ, p |X , W ), and

(2) consumers solve the above utility maximization problems. With these assumptions,

conditional on prices, product characteristics, and observed determinants of market size,

demand for each product j is distributed according to a conditionally independent Poisson

distribution, i.e.,

q j ,t ∼ Poisson
�

λt · s j ,t

�

. (2)

Importantly, the demand for product j is independent of the demand for product j ′, con-

ditional on Wt , X t and pt
2, which still allows correlation in the observed exogenous deter-

minants of utility and the arrival rates. For example, this may accommodate higher arrival

rates on average in markets with higher average demand (e.g., in the case of seasonal de-

mand). X and W could contain the same variables in some applications.

3 Demand Estimation

We propose a Bayesian estimator (Poisson RC) that can be used to recover a rich set of

demand parameters. Our approach differs from frequentist estimators that use market-level

data in two key ways. First, we directly accommodate small market sizes by providing

an alternative to the empirical share inversion step of Berry (1994) and BLP (1995). Our

estimator uses data augmentation to directly sample from the distribution of unobserved

demand shocks, thus only requiring an inversion of model shares. Second, our estimator

scales well to many markets and rich demand covariates, including many fixed effects.

Without small market sizes and sampling error, our method closely follows Jiang, Man-

2This result follows from the properties of splitting Poisson processes (Gallager, 1996)
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chanda, and Rossi (2009).3 Unlike in settings with large market sizes, with low arrival rates

and sparse sales, we are forced to treat market shares as unobserved. That is, we cannot

simply average observed sales and equate them to market shares because zero market shares

can be due to zero consumer arrivals or arriving consumers choosing not to purchase. Ob-

served sales in the data are q j ,t , which are not only a function of the product shares, but

also the number of people that arrive in each time period. This is important because in

periods with low arrivals, the probability of q j ,t = 0 is quite high, but s j ,t is never equal to

zero. Thus, when we observe few arrivals, we must account for the sampling variation to

be expected in sales quantities.

Note that if we did not have endogenous product characteristics, our estimator would

closely resemble existing Poisson-logit Maximum Likelihood Estimators (e.g., Burda, Hard-

ing, and Hausman, 2012; Vulcano, Van Ryzin, and Ratliff, 2012). These approaches could,

in the absence of price endogeneity, accommodate zero sales observations and provide

flexible arrival patterns. However, in the presence of endogenous product attributes, such

estimators will fail to produce unbiased estimates of key parameters, including the price

coefficient(s).

3.1 Accounting for Price Endogeneity

To account for price endogeneity, we model pricing through a limited information pricing

equation with observed exogenous components and an unobserved component. Using a set

of instruments Z j ,t , we specify

pj ,t = Z ′j ,tη+υ j ,t , (3)

where υ is unobservable to the econometrician. We allow the aggregate demand shocks

ξ to be correlated with prices through υ and follow standard Bayesian frameworks for

simultaneity with discrete choice models (Rossi and Allenby, 1993; Jiang, Manchanda,

and Rossi, 2009; Rossi, Allenby, and McCulloch, 2012).

3In addition, we extend their approach to mass-point random coefficients and make the pricing equation
estimation more flexible using a Dirichlet Process prior and mixture of normal distributions.
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We provide additional flexibility by estimating the joint distribution prices and the de-

mand shocks ξ non-parametrically using a Dirichlet process prior, instead of assuming it

to be a single joint normal distribution, e.g., in Rossi, Allenby, and McCulloch (2012). The

Dirichlet process provides the researcher with more control over the generality of the distri-

bution when data are sparse. We show that these estimators allow for a sufficiently general

approximation of equilibrium behavior between unobserved components of demand and

price while still allowing for likelihood-based estimation. Alternatively, the econometri-

cian can fully specify a supply-side model and explicitly model price endogeneity, while

still remaining non-parametric with respect to the demand unobservables. We comment on

this in more detail below.

3.2 The Dirichlet process prior for (ξ,υ)

We use a Dirichlet process prior to allow for an arbitrary number of distributions to be

mixed together to approximate the joint distribution of (ξ,υ). Appendix B provides details

for the more restrictive, though computationally cheaper, finite mixture of normal distri-

butions that can be used to semi-nonparametrically model the joint distribution of ξ and

υ. Here we state properties of the Dirichlet process prior and detail the algorithm used to

implement the method within our MCMC algorithm.

The Dirichlet process can be viewed as a distribution over distributions. Each residual

pair (ξ,υ) is drawn from some distribution, and the Dirichlet process clusters these dis-

tributions together. There are two components to the process: α̃, the tightness parameter,

and G0, a prior distribution for each residual pair. Drawing from the process yields a dis-

tribution for the residuals (ξ,υ), and we condition on the drawn distribution for each step

of the chain in the rest of estimation. Each residual pair has its own distribution, indexed

by parameters θn . Many residual pairs will have the same θn and be drawn from the same

distribution at each step of the chain.

The prior distribution G0 describes the distribution of a new cluster. It must be diffuse

enough to cover the data, but not so diffuse that the likelihood of drawing from it even
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at likely parameter values is too low. As with any non-parametric estimator, care must

be taken to choose priors such that we can approximate the residuals well. We choose a

normal distribution for G0 so that

G0 ∼N (µ,Σ).

We are interested in the conditional distribution of θ . We follow the Blackwell-MacQueen

Pólya Urn representation (Blackwell, MacQueen, et al., 1973) where

θn |θ−n ∼
α̃G0+

∑

j 6=n 1θ j

α̃+N −1
,

which is a mixture distribution between G0 and 1θ j
, a point-mass located at θ j . Given other

draws from the Dirichlet process, a new draw has a positive probability of drawing the same

parameters as previous draws, and α̃
α̃+N−1 probability of a new draw from the distribution

G0. By drawing the classifiers from a Dirichlet process, there is always a possibility of

introducing a new normal distribution for each data point, but this is disciplined by the

choice of the prior distribution, which has a tendency to cluster observations together. We

choose the tightness parameter α̃ to be constant and base it on the data.4

The Dirichlet process produces a prior that is very similar to what one might select

for a finite mixture of normal model, but with two substantial differences. The number

of mixtures is changing with every step of the chain, and there is a positive probability of

adding another mixture component. The prior probability of adding another mixture to the

model is governed by the hyper-parameter α̃. In practice, this means that for K existing

clusters, the prior probability of the n t h data point being drawn from the existing clusters is
Nk

α̃+N−1 , where Nk is the number of data points currently in cluster K . The prior probability

of a new cluster is α̃
α̃+N−1 .

Conditional on θn , the residuals are distributed bivariate normal, a key fact that we

4Rossi (2014) provides a more in-depth look at the choice of hyper-parameters, including treatments
where α̃ is random, determined by data, and a further parameterization of a ,ν, v . We omit these for simplicity.
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leverage in the rest of estimation to construct several conditional likelihoods. Because

of the tendency of the Dirichlet process to cluster distributions together, we index these

clusters by κ j ,t , which is sufficient for θn . All residual pairs with the same κn share the

same distribution. Let each cluster be indexed by k , observations in the k t h cluster are

distributed normally with a shared mean and variance. Observations in the k t h cluster are

distributed as





υ j ,t

ξ j ,t





�

�κ= k ∼N (µk ,Σk ), s.t. Σk =





σ2
k ,11 ρk

ρk σ2
k ,22



 .

3.3 Estimation Procedure

We sample the implied posterior distributions using the hybrid Gibbs sampler outlined

below. We split estimation into several distinct parts: consumer arrivals, product shares,

preference parameters, and the price endogeneity parameters. Arrival parameters allow us

to rationalize zero sale observations; share draws allow us to recover the preference param-

eters and unobserved product qualities; the price endogeneity parameters allow for price to

be correlated with the unobserved components of demand. A more detailed treatment of

the estimation procedure can be found in Appendix A.

Algorithm 1 Hybrid Gibbs Sampler: Non-parametric estimation of pricing errors
1: for c = 1 to C do
2: Update arrivals λ (Gibbs)
3: Update shares s (·) (Metropolis-Hastings)
4: Update linear parameters β (Gibbs)
5: Update nonlinear parameters Γ (Metropolis-Hastings)
6: Update pricing equation η (Gibbs)
7: Update basis classifier κ (Gibbs)
8: Update mixture component parameters Σk , µk (Gibbs)
9: end for

The arrival parameters are informed by both arrival data and purchase data. Purchase

data is distributed Poisson with rate λ·s . Purchases provide a noisy signal of arrivals, along
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with the exogenous arrival data that informs the distribution. As we parameterize arrivals

such that arrival rates are a function of some data, we impose a Log-Gamma prior on λ for

a conjugate prior. We sample from λ using a Gibbs step.

Observed market sizes are not large enough to treat the observed market shares, q/A, as

equal to the model counterparts. Thus, true product shares are unobserved. Our approach

to this measurement error issue is to treat the small market size as the source of the error

and observed product shares as samples from their true unobserved distribution.

To sample from this distribution of shares, we augment the data with unobserved values.

We condition on the distribution of ξ, based on the current draw of the basis classifier κ

and mixture component mean and variance µκ and Σκ. That is, we leverage the distribution

of ξ to construct a distribution of shares. To evaluate whether a drawn value for a share

is likely, we invert the distribution of shares to compute the likelihood of the value of ξ

implied by the draw of s , conditional on demand parameters. We use a Metropolis-Hasting

step to sample from the posterior distribution of s .

Given the draws of shares, the utility parameters that are common across all consumers

are sampled using a straightforward Bayesian-IV regression. We recover the mean utility

using the contraction mapping used in BLP (1995) and sample β using a Gibbs step. For

the nonlinear parameters, the sampling step is not as straightforward. We follow Rossi,

Allenby, and McCulloch (2012) and draw a candidate value of Γ from a set of Cholesky

decompositions of positive-definite variance matrices. We then sample from the posterior

using a Metropolis-Hastings step in a similar manner to shares. Given the joint distribution

between υ and ξ, we can perform another Bayesian IV regression to update the pricing

equation coefficients, η, in a similar manner as sampling β . We draw from η using a

standard Gibbs draw from an IV regression.

3.3.1 Scaling

One of the benefits of utilizing Bayesian methods is that our model scales to a large pa-

rameter spaces. We have found that our estimation methodology scales well to rich arrival
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process specifications, many product characteristics, and rich levels of unobserved hetero-

geneity. We demonstrate this in our empirical application, which involves hundreds of

parameters. In general, increasing the dimensionality of the parameter space along these

lines is computationally cheaper than adding heterogeneity-specific parameters such as a

richer specification of random coefficients.

Scaling to environments with large J is computationally more difficult because share

inversions and chain sampling take longer as the choice set grows. Additionally, as the

choice set grows, the average product share declines mechanically. With lower average

shares, our estimator requires more data as each observation becomes less informative when

simulating shares. We provide additional details on the computational burden in Section 4.

3.4 Identification

We discuss two main identification challenges and their solutions: separating preferences

from arrivals and identifying product shares.

3.4.1 Using Arrivals Information to Separate Demand Uncertainty from Preferences

The difficulty in estimating a model with small market sizes is separably identifying shocks

to arrivals from shocks to preferences. For example, if a smaller number of consumers than

is typical arrive to the market in a period with high prices, a researcher investigating demand

based on sales quantity alone may incorrectly infer that demand is quite elastic (few people

bought). However, conditioning on the fact that few consumers considered purchasing may

lead to the opposite conclusion—the fact that few consumers arrived suggests observing

few sales may happen with high probability, even if consumers are not price sensitive.

Identification of the arrival process is straightforward as we have presented it. With

arrivals being observed, and under the assumption of conditionally independent consumer

arrivals (A ⊥ ξ, p |X , W ), the arrival rates are identified from observed variation in arrival

data. Our distributional assumption—Poisson—is a robust approach to estimating the con-
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ditional mean of consumer arrivals.5 As noted above, we require some additional restric-

tions to identify λ since arrivals are measured at the t level. It is impossible to estimate

each arrival rate (t -specific) using fixed effects in our setting.6

3.4.2 Identification of Share Parameters

With data on consumer arrivals, we directly observe variation in the market size and are

able to condition on it to pin down the preference parameters. The variation that is used to

identify the preference parameters is the same variation commonly cited in the literature on

estimating demand for differentiated products using market-level data (Berry, Levinsohn,

and Pakes, 1995; Berry and Haile, 2014, 2016). The parameters governing preferences for

the exogenous characteristics are identified from the variation of products offered across

markets, and the price coefficients are identified from exogenous variation introduced by

instruments.

4 Simulation Studies

We study the performance of our estimator on sparse sales data through Monte Carlo ex-

periments. We compare our estimation approach to the performance of available zero-share

fixes.

4.1 Data Generating Process

We consider several sets of Monte Carlos where we vary the arrival process, the number

of demand covariates, and the number of products in the choice set. We refer to “moderate

5The Lévy–Itô decomposition suggests any Lévy process can be decomposed into a Brownian motion and
the sum of independent Poisson processes.

6It may be the case that a researcher cannot perfectly measure arrival intensity. This is also true in
our empirical application where we do not observe all arrivals. However, as we show, we can account for
unobserved arrivals relatively easily using properties of the Poisson distribution. For example, if a researcher
is confident that she observes 20% of arriving consumers, then estimated arrival rates can be scaled up using
a scaling factor equal to five.
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arrivals” when the Poisson arrival rate is 25. “Small arrivals” occurs when the arrival rate

is 5. “Small choice set” means a choice set with 25 products. “Moderate choice set” means

a choice set of 45. We map the number of product covariates to the size of the choice

set. In addition to these data generating process decisions, we specify parameter values

that provide market outcomes that approximate real-world markets. For example, weekly

grocery scanner data has many zero-sales observations at the product level, even among

top-selling products. Our simulations have a low ratio of arrival to assortment size so that

empirical market shares (q/A) have a large sampling error relative to the demand function.

Our specifications create a substantial number of zeros, between 39% and 82%, depending

on the simulation.7,8

For each Monte Carlo specification, we simulate 100 markets. We define the utility

specification to contain random coefficients on three product attributes, given by

ui , j ,t = X j ,tβi +ξ j ,t + εi , j ,

βi = β̄ + Γbi ,

X j ,t = [pj ,t , X 1
j , . . . , X J−1

j ].

In our simulations, we draw each vector of exogenous, binary product attributes X 1:J−1
j ∼

i .i .d . Multinomial(1, 1
J ), that is, a random multinomial vector with one positive entry.

These are drawn i.i.d. across products, so multiple products in the same market could have

the same X 1:J−1. The demand shock ξ is drawn from a normal distribution. Marginal cost

shifters (c j t ), which we will use as instruments, are of dimension two and drawn from

i .i .d . Uniform[0, 1] distributions. Preference parameters are β̄ = [α,β 1, . . .β J−1], with

α = −2 and β̄ 1:J−1 drawn i .i .d Uniform[0, 1]. We only simulate random coefficients for

7Though arrivals are generated from a single distribution (i.e. λt = 5 or λt = 25, and Wt =1 across markets
in the DGP, we treat markets as belonging to panel groups and estimate group-specific pooled λ parameters.
This is analogous to how one might estimate market size at a weekly level in many applications. In our setting,
it allows us to show the robustness of preference estimates to limited observations of the arrival process.

8For comparison, Dubé, Hortaçsu, and Joo (2021) test their model on data with 42% zero shares, and
Gandhi, Lu, and Shi (2023) test their estimator on synthetic data with 52% zero shares. Their bounds estima-
tor is also tested on data with 96% zero observations.
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price preferences with a variance equal to 0.2.

Prices are set by maximizing a firm’s multi-product profit given the demand function

and marginal costs.9 That is,

pt = argmax
p1,t ,...pJ ,t

∑

j

(pj ,t − c j ,t ) ·q j ,t (p ), (4)

where q j ,t (p ) =λt ·s j ,t (pt ; X t ,ξ,α,Γ ,β ). The resulting correlation between the cost shifters

and prices ranges from 0.24 to 0.39.

4.2 Monte Carlo Estimates

We contrast our estimation method (Poisson RC) with Berry, Levinsohn, and Pakes (1995)

and Gandhi, Lu, and Shi (2023) for the moderate (λt = 25) and small (λt = 5) arrivals

data generating process. To implement these alternative approaches, we need to provide

the estimators with a measure of empirical shares. We either treat market sizes as observed

or we calibrate them to M = 80. The latter specification provides insights on what happens

without access to arrivals data. Next, we either estimate on disaggregated data or aggregate

over every 10 adjacent observations (averaging product attributes, with the interpretation

of aggregating over 10 adjacent markets). Given the choice of aggregation and market

size, we calculate empirical market shares. In the aggregation case, we average covari-

ates across observations and sum both sales and arrivals. This aggregation is equivalent

to typical time-aggregation within a panel or across related units (e.g. retail chain-level

market share across a metro area). Finally, for BLP (1995), we must handle zero empiri-

cal market shares. We use two ad-hoc solutions to zero empirical shares: either dropping

these observations or adjusting them up from the zero bound. In the adjustment case, we

replace the empirical shares with their Laplace share equivalent, s A
j t =

Mt s j t+1
Mt+Jt+1 , effectively

adding one to all quantities and correspondingly increasing the market size. A summary

of our estimation approach for an example data generating process, including aggregation

9The marginal cost shifters have coefficients [1.0, 2.0] in the marginal cost equation.
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method, treatment of market size, zero-share adjustments, and estimation procedures used

in our Monte Carlos appears in Table 1.

Table 1: Example Monte Carlo Setup for One Data Generating Process

Data Generating
Process

Treatment of
Market Size Aggregation

Treatment of
Zeros

Estimation
Approach

λt = 25, J = 25 Observed No Include Poisson RC
λt = 25, J = 25 Observed No Drop BLP (1995)
λt = 25, J = 25 Observed No Adjust BLP (1995)
λt = 25, J = 25 Observed Yes Drop BLP (1995)
λt = 25, J = 25 Observed Yes Adjust BLP (1995)
λt = 25, J = 25 Calibrated, M=80 No Drop BLP (1995)
λt = 25, J = 25 Calibrated, M=80 No Adjust BLP (1995)
λt = 25, J = 25 Calibrated, M=80 Yes Drop BLP (1995)
λt = 25, J = 25 Calibrated, M=80 Yes Adjust BLP (1995)
λt = 25, J = 25 Observed No Include GLS (2023)
λt = 25, J = 25 Calibrated, M=80 No Include GLS (2023)
λt = 25, J = 25 Observed Yes Include GLS (2023)
λt = 25, J = 25 Calibrated, M=80 Yes Include GLS (2023)

Note: Data Generating Process refers to the size of the arrival process and the number of products. Product shares are generated in
an identical manner for different estimators with the same market size. Aggregation and treatment of zeros only occur for BLP (1995)
estimation approach. Aggregation treats 10 adjacent observations as the same unit and sums their arrivals and demand and averages
covariates and prices.

Monte Carlo results using a moderate arrival rate of 25 (λt = 25) and small choice set

(J = 25) appear in Table 2. Table 3 shows the results for the low arrival rate of 5 (λt = 5)

with small choice sets. Each row in the tables corresponds to an estimator, treatment of

market sizes (calibrated or realized arrivals), level of aggregation, and treatment of zero

empirical shares (dropping zeros or using Laplace shares). We report the median absolute

bias, median relative bias (estimated parameter − true parameter), mean relative bias, and

(in parentheses) the 2.5th and 97.5th percentile of the bias across the simulations. We

report these measures for mean price preferences (α) and the random coefficient on price

(Γ ). We report some summary results on exogenous product characteristics parameters β

in Figure 1.
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Figure 1: Estimation Bias in Product Characteristics

(a) Small Arrivals
Small Choice Set
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(c) Medium Arrivals
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Note: Reported in each figure is the distribution of parameter bias for the first exogenous characteristic (β1) across simulations for
different estimators. We report only results the first element of β̄ since each element of both X and β̄ is generated i .i .d —results are
interchangeable across the exogenous product attributes. The blue lines report the distribution of mean parameter bias across simulations
using Poisson-RC. The orange dashed lines report the distribution of mean parameter bias across simulations and estimation adjustments
for BLP (1995). That is, it reports the bias distribution across all BLP (1995) adjustments (aggregation and disaggregation, dropping
zeros or adjusting zeros) and across simulations.

We find that our Bayesian estimator of the Poisson random coefficient model performs

well. For the mean price sensitivity parameter α, under the moderate arrivals data gener-

ating process, our estimator’s point estimates remain close to the truth. Under the small

arrivals data generating process, we see an increase in the bias but our estimator still per-

forms well given the large fraction of observed zero purchases. For the random coefficient

on price, our estimator performs better than the alternative estimators but we still observe

the estimates attenuating somewhat toward zero. This is driven by in part by the strength

of the instruments—the correlation between the instruments and price vary from 0.2-0.4,

or in line with moderate strength instrument results in Conlon and Gortmaker (2020).

Additionally, for smaller choice sets (panels (a) and (b) of Figure 1), we find that our

estimator produces unbiased estimates of the coefficients on product characteristics. Es-

timates on these parameters are noisier than estimates of the effect of price, but we out-

perform alternative methods in terms of average bias. In particular, BLP (1995) ad-hoc

estimation approaches produce persistently biased estimates of the exogenous product char-

acteristics.

We find that the two common solutions to zero sales observations fail to capture the true

parameters. Dropping zero sales observations attenuates the price coefficients (rows with

20



zeros set to “Drop” in Table 2 and Table 3). This is more severe in the case with the smaller

market size. Although the drop-zero estimates sometimes perform better in estimating

the price coefficient than the adjusted zeros methods, this approach fails to capture other

parameters accurately, including both the mean and variance of the random coefficient.

Across various BLP (1995) specifications, we find that the median relative bias for the

random coefficient variance is −0.20, which in part is due to constraining the parameter

value to be positive in estimation. Removing this constraint leads to a much more dramatic

bias due to unconstrained estimation which results in large negative values.

Adjusting product shares when they are equal to zero results in bias (rows with zeros

set to “Adjust” in Table 2 and Table 3), but this adjustment biases results on average less

than dropping the zero share observations. Adjusting zero shares yields parameter esti-

mates which consistently bias both the mean and variance in the random coefficient on

price. The distribution of product shares when sales are zero is centered below the distri-

bution of shares when sales are positive. Dropping the zero shares creates selection since

zero shares reflect higher prices or lower demand shocks (Berry, Linton, and Pakes, 2004).

Figure 2a plots the distribution of the difference between true shares and adjusted shares.

Dropping zeros results in a distribution of empirical shares that are lower than the truth.

Adjusting zero shares with a small value also understates the true share. Consequently,

price sensitivity estimates are attenuated since imputing a tiny share is inaccurate when the

zeroes occur due to few consumers arriving. Figure 2b shows the conditional distribution

of product shares when sales are zero. Imputing an arbitrary small value performs poorly

because imputed shares are on the large end of common imputed definitions of zero shares,

but they are lower than true shares when quantity sold is zero. As a result, observations

with small true shares (e.g. when price is higher than usual) will be imputed to have even

smaller shares. This leads estimates to understate the price sensitivity of consumers.

An alternative solution to minimize the frequency of zero shares is to aggregate the

data. We find that applying share adjustments after aggregation results in fewer adjusted

shares, but it does not improve the performance of such estimators (rows with aggregate
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Figure 2: True Shares Compared to Share Adjustments
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Note: (a) Distributions of the difference between the "true" model shares that generated the data from the various zero-share adjustments.
Adjusted shares refers to taking any observations where the empirical shares would equal zero and replace it with an arbitrary small
number ε, which is set by s A

t =
Mt st +1

Mt +Jt +1 . Drop refers to dropping all observations where the empirical shares are equal to zero. (b) The
density of the log of the model shares when quantity sold is zero. Plotted in the dashed grey line is the average ε

equal to Yes in Table 2 and Table 3). Instead, aggregating the data removes variation in

prices, shares, and the instruments, which results in additional bias in some parameters.

This approach results in smaller shares on average compared to the disaggregated results.

We find that, in general, using observed market size realizations improves the results

of BLP (1995) where zero shares are dropped, however, our main results hold: the BLP

(1995) estimator with zero adjustments performs poorly when market sizes are small.

Our Poisson RC estimation method uses an unknown number of mixture of normal dis-

tributions to approximate any joint distribution of (ξ,υ). We find that our approach is able

to recover this joint distribution well.10 In implementing the Dirichlet process (DP) prior on

the correlation between prices and ξ, our approach requires minimal ex ante specification—

all components have the same prior mean and variance. In addition, the method requires a

single prior parameter governing the variability of DP components.

Our Monte Carlo results show that the Poisson RC model can accurately measure con-

sumer preferences and heterogeneity under very small market sizes. Our method accounts

for the sampling error to be expected in sales. Alternative solutions to the zeros problem

10In the case that the researcher is certain about the number of components to use to approximate this
distribution, we provide an extension to that allows for semi-nonparametric estimation of the distribution of
residuals in Appendix B.

22



conduct inference only under large market sizes. For example, we find that the approach

of Gandhi, Lu, and Shi (2023) produces significant bias in the price coefficient and noisier

estimates than the Poisson RC model in these small market settings. We hypothesize that

this is due to the lack of “safe products” used in estimation. Safe products are products in

which empirical shares are observed with minimal measurement error in sample (the iden-

tities of these products need not be known). In our simulations, zero empirical shares are

largely driven by a small market size which causes all empirical shares to be noisy measures

of true shares. Note that Gandhi, Lu, and Shi (2023) also suggest a partial identification

strategy. This approach does not require the presence of safe products. Additionally, the

partial identification approach of Dubé, Hortaçsu, and Joo (2021) could be feasible if point

estimates are not required.

We also note that our approach is not as general as typical moment-based estimators,

e.g., BLP (1995), which only assume E [ξZ ] = 0. Our pricing equation does not correspond

directly to typical models of differentiated products competition, where prices may depend

on demand shocks of all products. This is because the pricing equation we leverage does

not match directly the supply model generating the data in our Monte Carlos. Petrin and

Train (2010) provide a detailed discussion of the limitations of this approach. At the same

time, our approach does satisfy exclusion and relevance for our instruments. Moreover,

specifying a full supply model that would be more efficient than our approach (e.g., Yang,

Chen, and Allenby, 2003). Nonetheless, as we have shown, our flexible pricing equation is

able to accurately recover demand fundamentals.

4.2.1 Estimator Performance in Larger Choice Sets

Many empirical applications feature larger choice sets. We test our estimator in settings

where J = 45. The rest of the data generating process remains unchanged. Increasing

the number of products does slow estimation—in nearly doubling the number of products,

estimation takes 3-4 times longer. This is driven primarily because of greater computa-

tional burden at each step of the chain (e.g., more share inversions). We expect that using
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our approach in settings with hundreds of products may be infeasible unless using highly

optimized code.

The results of our estimator and competing methods are presented in Table 4. Qualita-

tively, estimates using our Poisson RC method are similar to those in smaller choice sets.

In this setting, however, our estimator results in some small bias in the estimation of the co-

efficients on exogenous characteristics (Figure 1, panel c). As in our previous simulations,

implementing ad-hoc fixes for BLP (1995) do not allow us to recover sensible estimates

and typically return price parameters which understate price sensitivity significantly. Sim-

ilarly, we find that the estimator of Gandhi, Lu, and Shi (2023) results in significant bias

due to the lack of “safe products.”
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4.2.2 Results with Misspecified Models

Table 5: Monte Carlo Results for Misspecified Distributions

A ∼NegBinom(25, 0.5) Misspecified Residual

α 0.11 0.07
(-0.06, 0.25) (-0.06, 0.22)

Γ11 -0.16 -0.04
(-0.18, 0.06) (-0.18, 0.11)

Note: Reported in the table are the median, the 2.5 percentile, and the 97.5 percentile of the difference between the point estimate and
the true parameter across 100 simulations. The first column simulates data in the same manner as our main Monte Carlo experiments,
but using only a different arrival process. This process has an identical mean but has twice the variance of the baseline Poisson. The
second column presents results when the model is estimated assuming that the joint distribution between ξ and ν is normal and not a
mixture, despite being generated from a mixture of normal distributions.

We also test our estimator to two forms of misspecification. Results are shown in Ta-

ble 5. We simulate a misspecified arrival process (overdispersed with twice the variance

of our λt = 25 setup) and a less flexible form of correlation between the pricing error and

the demand shock (estimating the correlation structure between all pairs of ξ and υ using

a single normal distribution). We find that our estimator performs nearly identically in the

case of overdispersion. We also find that using a less flexible form of price endogeneity

also provides nearly identical estimates on average, however, the tails of the (bias) dis-

tribution are more dispersed. We have found that when the conditional expectation of ξ

given υ is approximately linear, or when the correlation summarizes the dependence well,

a normal approximation performs well. In cases where there is strong dependence but low

correlation, such as ξ being a symmetric function of υ, this simpler specification may be

restrictive and lead to biased demand estimates. Symmetry may be unrealistic because it

implies that demand shocks are associated with both low and high prices.

26



5 Empirical Application to the Airline Industry

We use our approach to estimate the demand for air travel with data from a large interna-

tional air carrier based in the United States.11 Our primary aim is to show how to adapt our

method to a relevant empirical setting. We also show how our method can flexibly estimate

preferences over time and compare these estimates to existing approaches.

5.1 Data

We use data from the air carrier’s booking system to construct the quantity of tickets sold

and the price paid for every flight, each day before departure. For this analysis, we con-

centrate on nonstop bookings. In addition to prices and quantities, we also extract basic

product characteristics, such as the departure time for each flight and the date of departure.

The key additional market-level data for estimation is a measure of market sizes. We

calculate consumer arrivals using the number of consumers who initiate search requests

on the air carrier’s website using consumer clickstream data. In our setting, consumers

arrive at the air carrier’s website and their activity within a browsing session is tracked.

We then aggregate search activity to the level of origin-destination-search date-departure

date. Note that we measure search just on one website, but consumers may shop via online

travel agencies, such as Expedia. We cannot directly measure searches made from other

sites. However, because we observe all bookings, we account for searches made via the

unobserved sites through scaling factors. Each scaling factor is based on the fraction of

sales directly through the airline and the average number of passengers per booking. If we

know observed arrivals account for 50% of total bookings, assuming consumers who shop

elsewhere have the same distribution of preferences, we can scale up estimated arrival rates

by two.12

In Figure 3, we plot the 30-day moving average of bookings, fares, fraction of sold out

11The airline has elected to remain anonymous.
12In-depth summary analysis of the data and how unobserved searches are accounted for can be found in

Hortaçsu, Natan, Parsley, Schwieg, and Williams (2023).

27



Figure 3: Demand, Prices, Opportunity Costs, and Capacity for Markets in Data

2018-09 2018-11 2019-01 2019-03 2019-05 2019-07 2019-09
Departure Date

60
70
80
90

100
110
120
130

N
or

m
al

iz
ed

 V
al

ue

Average Fare
Total Sales
Opportunity Costs
Sell Outs
Total Capacity

Note: 30-day moving average of sales, fares, opportunity costs, probability of flights selling out, and total capacity by departure date.
Values are normalized by the respective value for the first departure date in our data, 08-01-2018.

flights, total capacity for all routes in our sample from August 2018 to August 2019. Also

included in the graph is a measure of opportunity cost, which has the interpretation of the

marginal cost in this setting. We will use this measure as an instrument for demand. The

figure shows that all these variables are positively correlated. For example, all curves peak

around the winter holiday season as well as during summer. During peak periods, demand

is high. At the same time, on the supply-side, prices, opportunity costs, flight capacity, and

the percentage of flights that sell-out are also high.

5.2 Empirical Specification

We define a market (m) as an origin, destination, and departure date tuple and let the time

index (t ) denote days until the departure date. That is, we index markets by m , t . We ex-

tend the estimator to allow for discrete support random coefficients. Following Berry, Car-

nall, and Spiller (2006), we assume consumers are one of two discrete types, corresponding

to leisure (L) travelers and business (B ) travelers. An individual consumer is denoted as i

and her consumer type is denoted by ` ∈ {B , L}. The probability that an arriving consumer

is a business traveler is equal to γt and varies by days until the departure date. These types

need not correspond to the consumer’s purpose for travel; they merely are commonly used
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names for discrete consumer types. The less-price-sensitive type is typically referred to as

business. We assume the indirect utilities are linear in product characteristics and given by

ui , j ,t ,m =







X j ,t ,mβ −pj ,t ,mα`(i )+ξ j ,t ,m + εi , j ,t ,m , j ∈ J (t , m )

εi ,0,t ,m , j = 0
.

As before, we assume that observed product characteristics X j ,t ,m are uncorrelated with

the unobserved product characteristic ξ j ,m ,t . These exogenous characteristics include de-

parture time, week, and day of week fixed effects. We include week fixed effects in the

utilities to flexibly capture seasonal variation in the value of travel. The consumer types

differ in their preferences on price, α`(i ), and we assume that ξ j ,m ,t is correlated with price.

Given our assumption on εi , j ,t ,m , the probability that consumer i wants to purchase product

j is equal to

s i
j ,t ,m =

exp
�

X j ,t ,mβ −pj ,t ,mα`(i )+ξ j ,t ,m

�

1+
∑

k∈J (t ,m ) exp
�

Xk ,t ,mβ −pk ,t ,mα`(i )+ξk ,t ,m

� .

Since consumers are one of two discrete types, we define s L
j ,t ,m as the conditional choice

probability for leisure type consumers (and s B
j ,t ,m for business types). Integrating over

consumer types, we have

s j ,t ,m = γt s B
j ,t ,m + (1−γt )s

L
j ,t ,m .

In this mass-point random coefficient model, we parameterize the change in the com-

position of consumers as follows. We assume γt is equal to

γt =
exp

�

f (t )
�

1+exp
�

f (t )
� .

where f (t ) is an orthogonal polynomial basis of degree 5 with respect to days from depar-

ture. This parametric assumption allows for a flexible, non-monotonic relationship between
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the composition of consumer types and time while producing values bounded between 0

and 1. Depending on the application, this function can be adjusted accordingly.

In addition to allowing for discrete random coefficients, we also adjust the likelihood

to account for the possibility of binding capacity constraints (sell-out events). In particu-

lar, when capacity is binding, we observe a right-censored estimate of the true number of

individuals that wished to purchase. That is, for a given capacity C j ,t ,m ,

q j ,t ,m =min
¦

q̃ j ,t ,m , C j ,t ,m

©

,

q̃ j ,t ,m ∼ Poisson(λt ,m · s j ,t ,m ).

Note that when the capacity constraint is observed to bind, the likelihood contribution

is instead 1 − Fq (q j ,t ,m |·), where Fq is the cumulative distribution function of the above

Poisson.13

We parameterize arrival rates by a set of multiplicative fixed effects across markets m

and time t . That is, λm ,t = exp(Wtλt +Wmλm ), where Wt is a dummy matrix with a

column for each day from departure and Wm is a dummy matrix with a column for each

departure market m (an origin, destination, departure date tuple). This parameterization

approach allows us to capture general increases in market size towards departure across all

seasonal markets. In addition, we then have two sources of seasonal variation in partic-

ipation and preferences built directly into the model, which will enable us to distinguish

seasonal market participation from seasonal preferences.

Finally, we instrument for price to address endogeneity. We use the opportunity cost

of capacity for a given flight, advance purchase discount indicators, and the number of

inbound or outbound bookings from a route’s hub airport as our instruments14. We lever-

13We do not model choice variation within an m , t because arrival/booking rates are low. See Conlon and
Mortimer (2013) for a method that accounts for choice set variation within a market.

14Opportunity costs during a specific period t depend on past pricing decisions. We include a set of fixed
effects in both the exogenous characteristics and in the instrument set which capture persistent differences
in demand across departure dates. Conditional on these fixed effects, we assume that demand shocks are
independent over time. For a route with origin O and destination D , where D is a hub, the total number
of outbound bookings from the route’s hub airport is defined as the

∑

D ′QD ,D ′ , where QD ,D ′ is the the total
number of bookings in period t , across all flights, for all routes where the origin is the original route’s
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age the expiry of advance purchase discounts since these changes alter prices in a pre-

determined fashion, regardless of realizations of demand shocks. The opportunity cost

of capacity directly influences price-setting, as residual variation (after our use of fixed

effects) is driven by bookings on onward itineraries. The total number of inbound or out-

bound bookings to a route’s hub airport captures the change in opportunity cost for flights

that are driven by demand shocks in other markets. For example, consider a flight from

A→ B , where B is a hub which serves many markets. We construct all onward traffic from

B onward to other destinations C or D . We assume that unobserved, systematic demand

shocks are independent across routes, so shocks to demand for travel from B → C and

B → D are unrelated to unobserved shocks to demand for the focal route A→ B . Pricing

decisions across routes are related via capacity: if a positive shock to demand out of hub

B is realized, the opportunity cost to provide service from A → B → C or A → B → D

rises. This increase in opportunity cost for connecting tickets also raises the opportunity

cost of capacity on the A → B leg, which raises the price on A → B . Our instruments

are strong: the correlation between price and the opportunity cost of capacity is 0.72, and

the correlation between price and the onward connecting traffic measure is 0.31. Pseudo

first stage regressions (presented in Table 6) with our selected specification have a R 2 of

0.83.15 We report results on the first stage in 6 and compare our results to alternative sets

of instruments below.

For this application, we specify a time-varying block structure on the pricing equation,

and (ξ,υ) have a block-varying joint normal distribution. That is, within a days-from-

departure block, (ξt ,υt ) are distributed jointly normal, and this distribution may vary across

blocks. Though such a specification may appear more restrictive than the Dirichlet process

prior, this specification allows us to tailor our specifications to our empirical context where

the pricing equation clearly changes over time due to advance purchase discounts.16

destination. If the route’s origin is the hub, we calculate the total number of inward bound bookings, which
would be;

∑

O ′QO ′,O . Where QO ′,O is the total bookings from all routes where the original route’s origin is
the destination.

15We denote these pseudo first stage regressions as we present frequentist OLS estimates of the first stage
model we adapt in our estimator.

16Our misspecified specifications in Section 4 provide an example where a restrictive distribution of this
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Table 6: Pseudo-First Stage Regressions

(1) (2) (3) (4) (5)

Onward Connecting Traffic 0.597 0.591 0.377 0.369
(0.010) (0.011) (0.006) (0.006)

Opportunity Cost 11.069 11.308 11.383
(0.059) (0.056) (0.057)

Opportunity Cost2 7.288 6.506 6.483
(0.073) (0.072) (0.073)

Opportunity Cost3 -4.287 -3.747 -3.732
(0.053) (0.053) (0.053)

Opportunity Cost4 1.545 1.408 1.399
(0.063) (0.062) (0.063)

Opportunity Cost5 0.162 0.122 0.140
(0.073) (0.073) (0.073)

APD FEs N Y N N Y
DoW FEs Y Y Y Y Y
Week FEs Y Y Y Y Y
Departure Time FEs Y Y Y Y Y

Adjusted R 2 0.300 0.302 0.798 0.825 0.829
F-Stat 389.003 369.252 3358.269 3958.341 3851.889

Pseudo-first stage results for our instruments. Columns 1 and 2 exclude polynomial terms of the opportunity cost measured by the
airline’s algorithm. Column 3 excludes the onward connecting traffic term, and both columns 3 and 4 exclude fixed effects for advance
purchase discounts. Column 5 includes the full specification used for estimation. Fixed effect indicators denote inclusion of advance
purchase discount, day of week, week of year, and departure time fixed effects, respectively.

5.3 Estimation Procedure

We modify our estimator to accommodate discrete unobserved consumer heterogeneity. We

consider a two-type model, though this can be extended to more than two points of discrete

support. Conditional on sampled parameters and the different likelihood function, many

of our estimation steps remain unchanged. The modified algorithm used for estimation

is given below. Adjusted steps relative to the continuous random coefficients case are

highlighted with NEW.

type performs relatively well compared to the fully flexible estimator.
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Algorithm 2 Hybrid Gibbs Sampler - Discrete RC
1: for c = 1 to C do
2: Update arrivals λ (Gibbs)
3: Update shares s (·) (Metropolis-Hastings)
4: (NEW) Update price coefficients α (Metropolis-Hastings)
5: (NEW) Update consumer distribution γ (Metropolis-Hastings)
6: Update linear parameters β (Gibbs)
7: Update pricing equation η (Gibbs)
8: Update basis classifier κ (Gibbs)
9: Update mixture component parameters Σk , µk (Gibbs)

10: end for

5.3.1 Updating price coefficients, αL ,αB

In the two-type discrete random coefficient model of Berry, Carnall, and Spiller (2006),

the price coefficients αL ,αB only affect utility linearly if we condition on consumer type.

We cannot directly use the techniques developed in Jiang, Manchanda, and Rossi (2009).

We propose an alternative approach that samples from the posterior distribution with a

Metropolis-Hastings step. To sample from this distribution, we need to construct the like-

lihood.

The conditional likelihood of the price coefficients α = (αL ,αB ) is be constructed in

an analogous manner to sampling shares s (·) (see Section A.1.2). For any given potential

values of price sensitivities, conditional on other parameters and shares, we can invert

the demand system to recover a unique demand shock ξ and its implied likelihood. This

likelihood is the basis of the likelihood for a particular α value. Conditional on shares, η,

Σ, µ, and κ, we compute the distribution of ξ and determine the likelihood of a particular

draw of α. The likelihood is given by
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where φ(·) is the standard Normal density function.

Due to the lack of availability of conjugate priors, we can use any prior distribution on

the price coefficients. We impose a log-normal prior on α such that

log(α)∼N (α0,Σα).

To avoid a label-switching problem, we also impose that αL > αB . This ensures that there

is a single stationary distribution being sampled. This constraint can be viewed as an addi-

tional prior placed upon the distribution of α.

5.3.2 Updating probabilities on consumer types, γ

In order to update the parameters on the probability distribution of consumer types γt , we

assume that the consumer distribution shifts over days from departure, t . In other settings,

this dimension could be adapted to allow preferences to vary over geographic space or

alternative observed covariates.

In the two-type setting, we allow for the probability of business (“high”) type to change

over t . enforcing a smooth function. This is achieved by using a polynomial basis. We

construct a sieve estimator for γ, which allows us to sample over the distribution of sieve

coefficients (here, ψ) rather than sampling directly from the distribution of γ.17 The poly-

nomial approximation maintains a simple candidate distribution when sampling ψ. To

ensure we sample values of γ in (0, 1), the polynomial basis is transformed by the logistic

function.18 That is,

γt =Logit(Go (t )
′ψ),

where Go (t ) is a vector of orthogonal polynomials evaluated for each market t .

The likelihood computation is similar to the price-coefficient likelihood, as α and γ

17This is computationally simpler, and it has an identical implied posterior distribution.
18The role of the logistic functional form enforces that all γ values lie in the interval (0, 1), but does not

restrict the possible shapes of γ over t . This does not impose restrictions beyond smoothness of γ over t —in
our application, over time. Alternative link functions are feasible, since the method samples directlyψ rather
than the implied γ values.
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both are inputs into the inversion that we use to compute the likelihood of ξ. We omit a

detailed discussion of the likelihood of γ for this reason. The likelihood of ψ given the

shares drawn is equal to
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We sample particular values ofψ, and their implied γ, using a Metropolis-Hastings Step.19

5.4 Empirical Results

We provide detailed demand results for an origin-destination pair in the sample and com-

pare our results to existing methods of estimating demand. We select an average market in

terms of zero sale observations: 85% of observations involve zero sales versus the sample

average of 88%. Most departure markets for this route have 1 or 2 daily flights, and this air

carrier is the only firm to operate non-stop flights on the route.

Measures of in-sample fit of estimation results are shown graphically in Figure 4. Panel

(a) shows the average market size (Poisson distribution means) across the booking hori-

zon. Most consumers arrive very close to departure. Our estimates fit searches (scaled for

unobserved searches) and sales quantities well. Note that the average market size is about

5 searches per day, which is in line with our Monte Carlo exercises. The composition of

consumers changes considerably over the booking horizon, as shown in Figure 4(c). Well

in advance of departure, passengers are entirely composed of price-sensitive, leisure pas-

sengers. Close to departures, arriving passengers are almost entirely less price-sensitive,

business travelers. The changing composition of customers yields smaller (closer to zero)

price elasticities as the departure date approaches, holding price constant. However, the

19We impose a flat prior on ψ, though alternative priors may be imposed since this step does not require
conjugacy. The candidate is drawn using a normal distribution centered around the previous accepted value
using the above likelihood. We note that since this uses a Metropolis-Hastings step, care must be taken in
tuning the candidate distribution for efficient estimation.
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Figure 4: Demand Estimates

(a) Model vs. Data Search
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(c) Pr(Business) over Time
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(d) Demand Elasticities over Time
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Note: The horizontal axis of all plots denotes the negative time index, e.g. zero corresponds to the last day before departure. (a)
Normalized model fit of searches with data searches. (b) Model fit of product sales with empirical sales. (c) Fitted values of γt over
time, along with the probability a consumer is business conditional on purchase. (d) Mean product elasticities over time, along with the
least and most elastic flights.

average price rises precipitously close to departure, which yields marginally higher elastic-

ities close to departure (panel d). Note that our estimates suggest demand elasticities may

be less than one close to the departure date (see Hortaçsu, Natan, Parsley, Schwieg, and

Williams (2023) for evidence on pricing on the inelastic side of demand).

In Figure 5, we graphically show our estimates of preferences over product charac-

teristics, scaled by the price coefficient for leisure travelers. This origin-destination pair

features lower demands for earlier days of the week. Preferences for flight time are less

differentiated, with 9am and 6pm being the least preferred travel times. Noisy and small

estimates suggest that relative time of day preference is not a large source of variation in
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demand within market.20 Leisure types are four times more price sensitive than business

type passengers.

Figure 5: Relative Willingness to Pay for Flight Attributes
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(c) Week of Year
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(a) Kernel Density Estimates of a leisure consumer’s willingness to pay to change flight day of week from Wednesday. (b) Leisure
consumer’s willingness to pay to change time of flight from 3 pm. (c) Leisure consumer’s willingness to pay relative to a flight departing
in the 43rd week of year (end of October).

Willingness to pay for travel displays considerable seasonality in this market. Fig-

ure 5(c) shows variation in the valuation of travel by week of year. The most popular week

is valued $96 more than the least popular week for travel, for the same route. However,

estimates of these preferences are relatively noisy. Only 18% of the week of year prefer-

ences have 95% credibility intervals that exclude 0. Arrival rates also vary seasonally and

20These estimates report the ratio of preference β to price sensitivity α, so a confidence interval overlapping
with zero is not a direct measure of significance. However, for time of day and day of week, many preference
parameters have credibility intervals containing zero.
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towards the departure date. 69% of departure-date arrival fixed effects are significant, and

85% of day-from-departure arrival fixed effects are significantly different than the day of

departure.

Our demand estimates are robust to the set of instruments used in estimation. For exam-

ple, while using only onward connecting traffic to instrument for price reduces the fit of the

first-stage, we obtain similar demand results. We estimate average own-price elasticities

of -1.11 (s.d. 0.33) without using the opportunity cost of capacity, whereas our baseline

specification yields an average elasticity of -1.21 (s.d. 0.30). Adding advance purchase

indicators to the set of instruments hardly changes the results. Using solely opportunity

costs yields an average elasticity of -1.25 (s.d. 0.09).

We contrast our estimates with typical zero share fixes and assumptions about market

size. Table 7 summarizes price elasticity estimates for a model based on Berry, Carnall,

and Spiller (2006) and compares these results to our estimator. We vary how zero sales are

handled (either dropped or imputed with a small market share) and how the market size is

constructed (using observed arrivals or fixing the total market size), similar to our Monte

Carlos. We find that dropping zero shares yields extremely inelastic estimates, and this is

worse when we use calibrated arrivals. Since 85% of the flight observations consist of zero

sales, imputing these values with a small value replaces most of the observed shares with

identical values. The lack of variation in empirical shares drives the estimator to bound-

ary solutions where the entire market is composed of perfectly price inelastic consumers.

While the strategy of dropping observations where sales are equal to zero provides non-zero

estimates of own-price elasticities, they remain unreasonably inelastic.

One alternative to our daily measurement of demand would aggregate sales over time to

reduce the zero-sales frequency. In this empirical context, such aggregation would smooth

over price changes. We find that estimating weekly demand also produces extremely in-

elastic demand. Across all nine models estimated, only the Poisson RC model produces

demand estimates where own-price elasticities do not bunch at zero. The other models

yield unrealistic measures of willingness to pay, e.g., consumers are willing to pay up
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Table 7: Own-Price Elasticities Across Models with Zero Share Adjustments

Zeros Market Size Aggregation Mean Std. Dev. Median 5th 95th

Drop Calibrated Disaggregated -0.002 0.001 -0.001 -0.004 -0.001
Drop Calibrated Aggregated 0.000 0.000 0.000 0.000 0.000
Drop Observed Disaggregated -0.083 0.026 -0.083 -0.131 -0.038
Drop Observed Aggregated 0.000 0.000 0.000 0.000 0.000

Adjusted Calibrated Disaggregated 0.000 0.000 0.000 0.000 0.000
Adjusted Calibrated Aggregated 0.000 0.000 0.000 0.000 0.000
Adjusted Observed Disaggregated -0.035 0.016 -0.031 -0.062 -0.018
Adjusted Observed Aggregated -0.016 0.008 -0.014 -0.028 -0.006

Poisson Random Coefficients -1.215 0.433 -1.162 -2.007 -0.555

The table presents summary statistics for the realized own-price elasticities from estimating the model as in Berry, Carnall, and Spiller
(2006), ignoring the arrival process and employing zero share adjustments to the empirical shares. The first set of adjustments involve
the handling of empirical share observations; "Drop" indicates an adjustment where the zero observations are dropped and "Adjusted"
denotes replacing empirical shares with their Laplace share equivalent s A

j t =
Mt s j t +1
Mt +Jt +1 . The second set of adjustments involve selecting

the market size in order to calculate the empirical market shares. The first method is to use the search data series as the values for the
arrival process, the second is to calibrate the market size to be 40 for all observations, and the last method involves uses the total number
of observed arrivals aggregated across different days from departure. The final row summarizes posterior mean of price elasticities for
our estimator.

to $3000 dollars to move from a Monday flight to a Wednesday flight. Our model sug-

gests the variance in preferences across days of the week is more similar to observed price

differences—about $20.

In addition to providing sensible elasticity estimates, our approach allows us to decom-

pose the sources of cyclicality in demand for air travel. Are consumers willing to pay more

to travel in popular departure markets? Are these markets larger? We find that market

participation (λD ) and preferences (shares at average prices) are positively correlated (cor-

relation coefficient of 0.16). That is, more consumers arrive and more consumers purchase

after arriving for popular departure dates. Given this correlation in preferences and arrivals,

we decompose which of these sources of variation drives the variability in demand over the

year.

We compute the change in expected demand driven by preferences by moving from the

5th to the 95th percentile in shares along days from departure or along departure dates,

holding prices and arrivals constant. We conduct a similar exercise for arrivals, where
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we hold prices, unobserved quality, and preferences fixed. Our decomposition suggests

on average sales variability explained by changes in preferences is 25% more than the

variation explained by arrivals. Preference variability is highest close to the departure date.

Decomposing this variation across departure dates, we find that changes to preferences

account for two times more variability in expected demand across the selling period within

departure dates than changes in arrivals. That is, two-thirds of the variation in demand

over time is due to changes in willingness to pay. Therefore, preference changes are more

important than market size changes in explaining cyclical demand for air travel.

These results contrast with grocery markets (Chevalier, Kashyap, and Rossi, 2003),

where periods of peak demand have lower prices. Our findings complement the work of

Einav (2007) in the movie industry where two compounding forces drive cyclicality. In

movies, peak demand corresponds to periods where consumers have higher willingness

to pay and firms release movies with higher quality. In our setting, we find that both the

intensity of demand and willingness to pay move in the same direction over the calendar

year. However, our data also show that on the supply side, both capacities and prices

also respond upward in periods of peak demand (see Figure 3). Absent these supply-side

responses, this suggests that cyclicality would be even higher, as in the movie industry

case.

6 Conclusion

We propose a method to estimate product-level demand with small market sizes. Our ap-

proach allows for many zero sale observations, endogenous prices, and rich unobserved

consumer heterogeneity. We derive a Bayesian IV estimator to recover random coefficients

logit demand parameters with Poisson arrivals. We show through simulation studies that

this method can outperform typical zero-sales adjustments and provide unbiased estimates,

even in very small markets or under a misspecified pricing function.

Our approach can be applied to many settings where granular demand estimates are
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necessary in order to evaluate counterfactuals or address firms’ decision making. The key

data requirements in our approach are traditional market-level outcomes and one addi-

tional data column—measures of consumer arrival intensity. These data are becoming

increasingly available to researchers, with relevant applications in e-commerce, retailing,

and transportation, among others.
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A Estimation Routine using Dirichlet Process Prior

A.1 Markov Chain Monte Carlo Details

A.1.1 Sampling Arrival Parameters

To update the parameters describing the arrival rate of consumers, we use arrival and quan-

tity data. We define the likelihood to be the joint probability of observing At and q j ,t ,

conditional on s j ,t . Arrivals are distributed Poisson. Conditional on shares, we split the ar-

rival process (with rate λt ) by the shares to obtain the distribution of quantities sold. Each

purchase is drawn from a Poisson distribution with rate λt · s j ,t .

Because data on arrivals may be sparse—perhaps only a single data point per market—

we suggest parameterizing the arrival rate with a series of fixed effects whenever possible,

λt := exp (Wtλ) , (A1)

where W is a full rank matrix (composed of 0 and 1s if using fixed effects). Other specifi-

cations are possible.

Arrivals are distributed Poisson,

At ∼ Poisson(λt ). (A2)

Note that purchase quantities also depend on arrivals. Using the properties of the Poisson

distribution, we have

q j ,t ∼ Poisson(λt s j ,t ). (A3)

We note that a conjugate prior choice for λt is log-Gamma distribution such that each

element exp(λq )∼ Γ (k ,ζ). Therefore, the posterior distribution of exp(λq ) is then given by

exp(λq )∼ Γ
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A.1.2 Sampling Shares and Utility Parameters

Updating shares. The Dirichlet process allows for complex distributions of (ξ,υ) to be

approximated by a series of normal distributions through a component classifier κ. Con-

ditional on this classifier, each pair of residuals (ξ,υ) are distributed bivariate normal. We

apply the standard treatment of simultaneity by conditioning on the variance structure of the

normal and the respective residuals. The following sections condition upon κ and derive

the sampler for a multivariate normal joint distribution of the demand shock and pricing

residual. In the final sections we discuss sampling the classifier and the component means

and variances.

Conditional on β ,Γ ,κ,µ,Σ, and υ, the shares are an invertible function of ξ. The condi-

tional distribution of ξ is also normal, which implies a distribution of shares. We compute

the likelihood of any particular set of share draws by inverting the demand system for these

shares. We derive a distribution of shares via a standard change of variables theorem.

Since ξ is assumed to be correlated with price, we follow the Bayesian framework for

simultaneity with discrete choice models (Rossi and Allenby, 1993; Jiang, Manchanda, and

Rossi, 2009; Rossi, Allenby, and McCulloch, 2012). Using a set of exogenous and relevant

instruments Zt ,d , we assign

ξ j ,t = f −1
�

s j ,t |β ,Γ , X t

�

υ j ,t = pj ,t −Z ′j ,tη







|κ= k ∼N iid(µk ,Σk ) such that Σk =





σ2
k ,11 ρk

ρk σ2
k ,22



 .

(A5)

For notational parsimony, we omit the conditioning statement, but note that each function

is implicitly conditioned on the other demand parameters. We refer to the share equation

as s j ,t ,d = f (ξ j ,t ,d ). Since f is invertible, the density of s j ,t ,d is given by

fs j ,t
(x ) = fξ j ,t

�

f −1(x )
�

·
�

�Jξ j ,t→s j ,t

�

�

−1
. (A6)

With this notation,Jξ j ,t→s j ,t
represents the Jacobian matrix of model shares with respect

to ξ and
�

�Jξ j ,t→s j ,t

�

�

−1
denotes the inverse of the determinant of the Jacobian.
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Since υ and ξ are assumed to be jointly normal, knowing υ provides information about

the magnitude of the demand shock. This joint normality does not factor into the Jacobian

of the shares distribution, because neither s j ,t or ξ j ,t are in the pricing equation and it is

assumed it to be a linear system. However, we must use the correct conditional distribution

for ξ. Conditioning on both η and Σ is enough to pin down the the correlation structure

between ξ and υ, and to “observe” υ as well. Drawing on the structure of the bivariate

normal distribution, we have

ξ|υ,κ= k ∼N
�

µk ,2+
ρkυ

σ2
k ,11

,σ2
k ,22−

ρ2
k

σ2
k ,11

�

, (A7)

where
�

ξ

υ
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|κ= k ∼N (µk ,Σk ), Σk =
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ρk σ2
k ,22
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One interpretation of this treatment of simultaneity is that price gives information about

the realized demand shock ξ, so the conditional distribution of ξ is higher or lower depend-

ing on the unobserved component υ that influences price.

The conditional distribution of shares is then given by

J (t )
∏

j=1






φ







f −1(s j ,t )−
ρkυ

σ2
k ,11

s

σ2
k ,22−

ρ2
k

σ2
k ,11












·
�

�Jξt→st

�

�

−1
, (A9)

where φ(·) is the standard normal density function.

Shares directly shape the distribution of sales. The distribution of purchases is a split

Poisson process given by

q j ,t ∼ Poisson(λt s j ,t ). (A10)

Since the Poisson draw is only dependent on the demand parameters through the shares,

q j ,t is conditionally independent of ξ. Thus the likelihood of a particular market’s shares

is given by the product of the density of ξ and the mass function of q j ,t , given by
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`(s.,t ) =
J (t )
∏

j=1






φ







f −1(s j ,t )−
ρkυ

σ2
k ,11

s

σ2
k ,22−

ρ2
k

σ2
k ,11







λt s j ,t )q j ,t exp(−λt s j ,t )

q j ,t !






·
�

�Jξt→st

�

�

−1
. (A11)

The posterior likelihood is constructed by taking the product of the each market’s inver-

sion multiplied by the likelihood contribution of each product’s quantity sold. There is no

conjugate prior distribution, so we sample from the posterior using a Metropolis-Hastings

step.

Our candidate distribution for share draws is a transformation of a normal distribution

added to ξ. This allows for easy tuning of the candidate distribution via the variance of the

normal. However, as a complication, the candidate distribution is not reversible. That is

q (a |b ) 6= q (b |a ). As a result, we reweight the Metropolis-Hastings step according to the

implied p.d.f. to make the chain reversible.

Updating distribution of consumer types, Γ We use a random coefficients demand spec-

ification, where demand parameters can be grouped into nonlinear and linear parameters.

We order these demand parameters such that the first L parameters are distributed normally,

and the remaining K − L are constant across consumers. That is,

ui , j ,t = x j ,tβi +ξ j ,t +εi

and

βi =





β̄1:L + ΓUi

β̄L+1:K



 ,

(A12)

where Ui ∼ N (0, IL ), and Γ is the Cholesky decomposition of a variance matrix. This al-

lows for a flexible covariance between the demand parameters with random coefficients,

while maintaining linearity in K parameters. We use the Cholesky decomposition for com-

putational simplicity.
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We sample from the posterior distribution of nonlinear demand parameters Γ with a

Metropolis-Hastings step. The distribution of ξ remains unchanged, and we evaluate a

candidate Γ in a similar manner as to drawing shares, but without incorporating the likeli-

hood of purchases.

The likelihood of a particular Γ is constructed from the implied distribution of the de-

mand shock ξ from inverting the demand system. The likelihood of the shares, given Γ , is

given by

s j ,t |υ j ,t ,κ j ,t ,Γ ∼N

�

µκ j ,t ,2+ρκ j ,t

σ2
κ j ,t ,11

υ,σ2
κ j ,t ,22−

ρ2
κ j ,t

σκ j ,t ,11
υ j ,t

�

J −1
ξ→s . (A13)

We use a short-hand distribution here of a distribution times the Jacobian to mean that the

p.d.f. of ξ.,t (evaluated at a set of shares s.,t ) is the p.d.f. of a normal distribution with those

parameters multiplied by the determinant of the Jacobian.

However, a candidate Γ cannot be drawn in a trivial manner, as we must sample from

the set of Cholesky decompositions of positive-definite (variance) matrices. We employ the

parameterization suggested by Jiang, Manchanda, and Rossi (2009), which lets

Γi j =























exp(ri j ), for i = j

ri j , for i < j

0 otherwise .

(A14)

This enforces a strictly positive diagonal upper-triangular matrix for any candidate draw r .

We have given the likelihood of the demand residual, to complete the posterior likeli-

hood of Γ , we must also define a prior distribution over Γ . Following Jiang, Manchanda,

and Rossi (2009), we impose normal priors over each r . Jiang, Manchanda, and Rossi

(2009) explore the implications of this prior specification: ri j ∼N (0,ψ2
i j ).
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The posterior distribution of Γ is given by

J (t )
∏

j=1

�

φ

�

f −1(s j ,t )−µκ j ,t ,2−
ρ

σ2
11
υ j ,t

σκ j ,t ,2|1

��

|Jξ j ,t→s j ,t
|−1×

∏

i≤ j

1

ψi j
φ(ri j ). (A15)

For alternative utility specifications, the same procedure can be used. Note that only a

few non-linear parameters may be estimated in a single step, as a Metropolis-Hastings step

searching in a high dimension traverses the stationary distribution slowly.

Updating type-invariant parameters, β̄ . To sample from the linear demand parameters,

we define δ j ,t such that

δ j ,t = x j ,t β̄ +ξ j ,t . (A16)

Since ξ j ,t has a normal distribution and we impose a normal prior on β̄ , we have a standard

Bayesian linear regression after we account for the influence of the pricing residual, and

the different variances in each element of ξ j ,t . We accomplish this by normalizing each

component of equation (A16) by subtracting the expected value of ξ j ,t and diving both

sides by the standard deviation. We then perform a Bayesian linear regression on this

collection of normalized equations, as these rescaled errors have unit variance. Let σk ,2|1 =
s

σ2
k ,22−

ρ2
k

σ2
k ,11

be the variance of ξ conditional on υ and Σ.

δ j ,t −µκ j ,t ,2−
ρκ j ,t

σ2
κ j ,t ,11

υ

σκ j ,t ,2|1
=

1

σκ j ,t ,2|1
x j ,t β̄ +U β

j ,t , (A17)

where U β ∼N (0, 1).

We follow the typical conjugate prior distribution for a linear regression—β̄ ∼N (β̄0, V0).

The posterior distribution is then a shrinkage estimator of OLS.
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Let
X̂ j ,t =

x j ,t

σκ j ,t ,2|1
,

and

δ̂=
δ j ,t −µκ j ,t ,2−

ρκ j ,t

σ2
κ j ,t ,11

υ

σκ j ,t ,2|1
.

(A18)

Then the posterior distribution of β̄ is β̄ ∼N (βN , VN ), where

βN = (X̂
′X̂ +V0

−1)
−1 �

V0
−1β0+ X̂ ′δ̂

�

,

and

VN = (V0
−1+ X̂ ′X̂ )

−1
.

(A19)

A.1.3 Sampling Price-Endogeneity Parameters

Updating pricing equation, η. The pricing equation is given by

pj ,t = Z j ,tη+υ j ,t . (A20)

Conditional on shares, Γ , and β̄ , ξ is known, so we use the conditional distribution of υ

given ξ to perform another Bayesian linear regression in the same manner as β̄ . We impose

a Normal prior, subtract the expected value and divide by the conditional variance.

Define σκ j ,t ,1|2 =

√

√

σ2
κ j ,t ,11−

ρ2
κ j ,t

σ2
κ j ,t ,22

. Then

pj ,t −µκ j ,t ,1−
ρκ j ,t

σκ j ,t ,22
ξ j ,t

σκ j ,t ,1|2
=

1

σκ j ,t ,1|2
x j ,t η̄+U η

j ,t . (A21)

After this normalization, U η
j ,t is a standard normal error term. We draw from η using

a standard Gibbs-Sampler draw from a linear regression with unit variance, which is the

same process as used for β̄ .

50



Updating Component Classifier Using the properties of the Dirichlet process, the prior

probability of each cluster is weighted by the likelihood of each data point being sampled

from the cluster. The posterior distribution of θ is

θn |θ−n ,υ j ,t ,ξ j ,t α̃∼
q0G0+

∑

i 6=n qi 1θi

q0+
∑

i 6=n qi
,

where

qi =
1

α̃+N −1
Pr((υ j ,t ,ξ j ,t )|θi ) for i 6= 0,

and

q0 =
α̃

α̃+N −1

∫

Pr((υ j ,t ,ξ j ,t )|θi )G0(dθi ).

(A22)

This is a mixture distribution with weights q0 for a new cluster, and πi qi for existing

clusters, where πi is the sum of data points in cluster i divided by the total data points.

While qi presents a similar form as a finite mixture model, q0 is difficult to calculate.

Because we assume G0 ∼ N , q0 is the prior predictive distribution, i.e. the likelihood of

a data point over the distribution of possible normal distributions θi might take on.21 As

shown in Murphy (2007), this quantity is distributed multivariate t. Applying our priors,

the form is given by:

∫

Pr(x |θi )G0(dθi )∼ tν−1(0,
1
νv I (aµ+1)

aµ(ν−1)
). (A23)

We can evaluate the p.d.f. of θ at each of the residuals to determine the posterior probability

of adding a new cluster.

21We impose standard conjugate priors for computational ease, so

µ|Σ∼N (0, aµ
−1Σ), and Σ ∼ I W (ν,νv I ),

where prior parameters ν determines the tightness of the Inverse-Wishart distribution, and aµ determines the
scale of variance of means. We allow prior parameter v to determine the location via

mode(Σ) =
ν

ν+2
v I .
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It is important to draw a connection between θn and κ, the component classifier. There

are at most n unique values of θn , and usually far fewer due to the clustering nature of the

Dirichlet process. κ is then drawn from a categorical distribution, with weights q0 for a

new cluster, and Nk qk for each cluster k . The number of unique values of θn is constantly

changing, so the size of κ must be adjusted whenever θ changes in every estimation step.

If a new cluster is drawn from the categorical distribution, we must know what distri-

bution to sample. The prior distribution of a new cluster is G0, but since the residual pair

belongs to the cluster, we sample from its posterior distribution. This is the same process as

sampling means and variance for a finite mixture basis that contains only a single point—a

multivariate Bayesian linear regression. We draw from its posterior distribution in the stan-

dard way. Let Yk = (υk ,ξk ), which is the residual pair for the new cluster, the posterior

distribution of component variance and mean are:

Σk ∼ I W (ν+1, V +S )

µk |Σk ∼N (µ̃,
1

1+aµ
Σk ),

(A24)

with
S =

�

Yk − ιµ̄′k
�′ �

Yk − ιµ̄′k
�

,+aµ
�

µ̃k − µ̄
�′ �
µ̃k − µ̄

�

,

µ̃= (1+aµ)
−1( ȳk +aµµ̄),

and

ȳk = Y ′k ι,

(A25)

where ι is a corresponding length vector of all ones.

To combine all of the above steps, we present the following algorithm for updating the

component classifier κ.
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Algorithm 3 Drawing Component clusters under a DP prior
1: for n = 1 to N do
2: Compute probability of new cluster, q0, for residual pair n

3: for k = 1 to K do
4: Compute Bayes Factor qk .
5: end for
6: Draw classifier κn ∼Multinomial(q )
7: if q == 0 then
8: Draw cluster mean, µK +1 and variance, ΣK +1

9: Update K = K +1

10: end if
11: Check if a cluster has been orphaned. Adjust K

12: end for

Updating the Component Distributions, ΣK and µk . Conditional on κ j ,t , each pair of

residuals is known to come from a particular component of the mixture normal. If we

only consider the residual pairs drawn from a particular component k , then it is as if all

of the residuals are drawn from the same distribution, and the standard Inverse-Wishart

parameterization can be used to draw the variance parameters. We follow that procedure

here for each component, with an extra step to allow for each component to have a different

mean parameter as well.

Since there is no intercept in the demand parameters, there is an extra degree of freedom

in this problem that we use to sample as a mean for each component bivariate normal dis-

tribution. We sample from this mean using a multivariate regression with only a constant,

since each component distribution is normal. Some care must be made since the residuals

are not independent, so we use a Bayesian multivariate regression to correctly sample from

their joint distribution. To utilize the standard Bayesian machinery for such a regression,

we impose standard (normal) priors to exploit conjugate priors. For any component k , the

variance Σk has an Inverse Wishart prior I W (ν, V ) and the mean µk |Σk has a normal prior

distribution N (µ̄, a−1
µ Σk ). Define the vector Yk = (υ,ξk ), which is only the collection of
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residual pairs such that κ j ,t = k . We can write

Yk = ιµ
′+U ,

where

U ∼N (0,Σk ).

(A26)

The posterior covariance and conditional mean of the components are then

Σk ∼ I W (ν+nk , V +S )

and

µk |Σk ∼N (µ̃,
1

nk +aµ
Σk ),

(A27)

where we define

S =
�

Yk − ιµ̄′k
�′ �

Yk − ιµ̄′k
�

+aµ
�

µ̃k − µ̄
�′ �
µ̃k − µ̄

�

,

µ̃= (nk +aµ)
−1(nk ȳk +aµµ̄),

and

ȳk =
1

nk
Y ′k ι.

(A28)

The vector ι is a corresponding length vector of all ones, and nk is the number of observa-

tions in cluster k . This is repeated for each component k .
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B Extension: Finite Mixture Components

For computational speed or researcher preference, one may wish to put some restrictions

on the joint distribution of the demand shock and the pricing error. We provide an exten-

sion from our more flexible model presented in the body of the paper to allow for a finite

number of mixture components. That is, we treat the number of component distributions

as fixed, and thus don’t need to evaluate whether to add or remove components at each

step of the sampler. After updating the unconditional mixture weights for each compo-

nent, we only need to update the component distribution probabilities for each observation

(ξ j ,t ,υ j ,t ) for the fixed set of components. To do so, we take the current candidate draw

of π as a prior and evaluate the likelihood that this observation of (ξ j ,t ,υ j ,t ) is drawn from

that component distribution given the current candidate mean and variance. Rather than

clustering means and variance, we augment the data with a classifier for each observation

using π̂, the posterior probabilities. Conditional upon the classifier, the residuals are dis-

tributed bivariate normal. We then update posterior cluster mean and variances based on

the classified observations with a standard Gibbs step.

Algorithm 4 Hybrid Gibbs Sampler: Finite Mixture
1: for c = 1 to C do
2: Update arrivals λ (Gibbs)
3: Update shares s (·) (Metropolis-Hastings)
4: Update linear parameters β (Gibbs)
5: Update nonlinear parameters Γ (Metropolis-Hastings)
6: Update pricing equation η (Gibbs)
7: (NEW) Update unconditional mixture weights π (Gibbs)
8: (NEW) Update component classifier κ (Gibbs)
9: Update mixture component parameters Σk , µk (Gibbs)

10: end for
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B.1 Details of Sampling Price-Endogeneity Parameters

Updating Mixing Probabilities We assume a Dirichlet prior on the mixture probabili-

ties, π ∼ Dirichlet(ᾱ). Conditional on the classifier κ, we have information about which

data points fall into which classifier, and the posterior distribution of π is given by

π∼Dirichlet(α̃)

α̃k = nk + ᾱk .
(A29)

This gives the unconditional probability that a data point is drawn from classifier k .

Updating Component Classifier This step now skips the need to (a) evaluate new com-

ponent probabilities and (b) check for orphaned components. Rather than using a classifier

κ that is sufficient for all unique values of θn , we augment the data with the classifier at

each step of the chain. Each residual can be treated as drawn from a single, unobserved

normal distribution, simplifying the computation required when evaluating its distribution.

The classification of each data point can be thought of as a multinomial draw with π

as the prior probability of each classification. The remaining information can be gathered

from the likelihood of each component. We exploit the conjugacy nature of the multinomial

distribution and the Dirichlet distribution, so that κ j ,t |π∼Mulitnomial(π̄ j ,t ) and

π̄ j ,t ,k =
πkφk ((υ j ,t ,ξ j ,t )

∑K
i=1πiφi (υ j ,t ,ξ j ,t )

, (A30)

where φk (x ) is the likelihood of the k t h component evaluated at x .

This step is computationally expensive, as the number of computations is O (N ×K ). It

requires evaluating the likelihood of each residual at every distribution, this must be eval-

uated with every draw, as ξ,υ and the mean and variance of each component change each

draw. Through careful application of the prior ω, and priors on the mean and variance of

the components, complex distributions can be approximated with relatively few mixtures,

which can reduce the computational burden of this procedure.
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Updating the Component Distributions, ΣK and µk . This step proceeds identically to

the Dirichlet Process case.
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