
NBER WORKING PAPER SERIES

LEARNING ABOUT THE LONG RUN

Leland Farmer
Emi Nakamura
Jón Steinsson

Working Paper 29495
http://www.nber.org/papers/w29495

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2021

We thank Abhi Gupta and Ethan McClure for excellent research assistance. We thank Assaf Ben-
Shoham, Daniel Benjamin, John Campbell, Gary Chamberlain, Anna Cieslak, Nicolas Chopin, 
Gopi Gaswami, Michael Johannes, David Laibson, Omiros Papaspiliopoulos and seminar 
participants at various institutions for valuable comments and discussions. We thank the Alfred P. 
Sloan Foundation, the Smith Richardson Foundation, and the Bankard Fund for Political 
Economy at the University of Virginia for financial support. The views expressed herein are those 
of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2021 by Leland Farmer, Emi Nakamura, and Jón Steinsson. All rights reserved. Short sections 
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that 
full credit, including © notice, is given to the source.



Learning About the Long Run
Leland Farmer, Emi Nakamura, and Jón Steinsson
NBER Working Paper No. 29495
November 2021
JEL No. E37,E47,G12

ABSTRACT

Forecasts of professional forecasters are anomalous: they are biased, forecast errors are 
autocorrelated, and forecast revisions predict forecast errors. Sticky or noisy information models 
seem like unlikely explanations for these anomalies: professional forecasters pay attention 
constantly and have precise knowledge of the data in question. We propose that these anomalies 
arise because professional forecasters don’t know the model that generates the data. We show that 
Bayesian agents learning about hard-to-learn features of the data generating process (low 
frequency behavior) can generate all the prominent aggregate anomalies emphasized in the 
literature. We show this for two applications: professional forecasts of nominal interest rates for 
the sample period 1980-2019 and CBO forecasts of GDP growth for the sample period 1976- 
2019. Our learning model for interest rates also provides an explanation for deviations from the 
expectations hypothesis of the term structure that does not rely on time-variation in risk premia.

Leland Farmer
Department of Economics
College and Graduate School of Arts & Science
University of Virginia
PO Box 400182
Charlottesville, VA 22904-418
farmer.leland@gmail.com

Emi Nakamura
Department of Economics
University of California, Berkeley
685 Evans Hall
Berkeley, CA 94720
and NBER
enakamura@berkeley.edu

Jón Steinsson
Department of Economics
University of California, Berkeley
671 Evans Hall
Berkeley, CA 94720
and NBER
jsteinsson@berkeley.edu



1 Introduction

For almost half a century, the assumption that people form rational expectations has dominated

economic modelling in macroeconomics and finance. During this time, a substantial empirical

literature has formulated and evaluated tests of rational expectations. One finding from this liter-

ature has been that even professional forecasters consistently fail such tests. Professional forecasts

seem to suffer from a long list of “anomalies.” For example, they are biased, forecast errors are

autocorrelated, and forecast revisions predict future forecast errors.

A related literature has tested the expectations hypothesis of the term structure. If the ex-

pectations hypothesis holds, yields on long-term bonds are the bond market’s forecast of future

short rates (modulo a constant risk premium). Empirical tests of the expectations hypothesis fail

spectacularly (e.g., Campbell and Shiller, 1991). One reaction to this finding is that risk premia in

the bond market are time varying (Wachter, 2006; Bansal and Shaliastovich, 2013). An alternative

view is that the this finding reflects forecasting anomalies among bond traders (Froot, 1989).1

The traditional reaction to forecasting anomalies in macroeconomics is that they imply that

professional forecasters are irrational, i.e., that forecasters are not making efficient use of the infor-

mation available to them (Mincer and Zarnowitz, 1969; Friedman, 1980; Nordhaus, 1987; Maddala,

1991; Croushore, 1998; Schuh, 2001). Recent behavioral work develops this perspective (e.g. Bor-

dalo et al., 2020). An alternative reaction is that these anomalies result from information frictions

(Mankiw et al., 2003; Coibion and Gorodnichenko, 2012, 2015). The most prominent models of

information frictions in macroeconomics are sticky information models (Mankiw and Reis, 2002)

and noisy information models (Sims, 2003; Woodford, 2003). These models seem eminently plau-

sible for households and firms. Arguably, they are less well suited to explain the behavior of

professional forecasters (and bond traders). Professional forecasters read the news every day and

have no trouble observing the relevant data precisely (i.e., without noise).

In this paper, we consider another explanation. Standard tests of rational expectations impose

the very strong assumption that agents know the model that generates the variables that are being

forecast (parameter values and all). In reality, nobody knows the correct model of the world.

Since professional forecasters don’t know the correct model of the world, they use incoming data

to learn about how the world works. But such learning can fundamentally change the dynamics

of even perfectly rational Bayesian forecasts. This idea has been recognized by researchers at least

1See also Bekaert, Hodrick, and Marshall (2001), Piazzesi, Salomao, and Schneider (2015), Cieslak (2018), Xu (2019),
and Nagel and Xu (2021).
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since Friedman (1979).2

Realistic learning models are difficult to solve. As a consequence, early work on learning used

relatively simple models. But in such models, Bayesian learning occurs quickly, suggesting that

rational learning can’t explain forecasting anomalies that persist over multiple decades. Structural

breaks have sometimes been invoked as a reason why learning might persist over long periods of

time. But such arguments have only been made informally.

Bayesian learning can, however, be extremely slow in richer, more realistic models (Johannes,

Lochstoer, and Mou, 2016). Consider, for example, models with multiple unobserved components

some stationary and other containing a unit root. A key property of such models is that the long-

run trajectory of a variable may move quite independently from the short-run dynamics of that

variable (if the short-run dynamics are dominated by the stationary components). This means that

the quarter-to-quarter dynamics of the variable may be quite uninformative about its longer-run

properties. Since information about low-frequency properties accumulates slowly, learning about

the long run can be extremely slow. In such models, several different parameter combinations

may yield similar fit for the high-frequency behavior of the series but may have very different

implications about the low-frequency behavior of the series. We show that in such cases it can

take many decades to learn the true parameters.3

We develop two applications of these ideas, one for forecasting nominal interest rates and

another for forecasting real GDP growth. In each case, we endow Bayesian forecasters with an un-

observed components model and initial beliefs about the parameters of this model. Each period,

these agents use real-time U.S. data to update their beliefs about the parameters and states of the

model. They then forecast the variable in question and we assess whether the resulting forecasts

are “anomalous.”

Our main result is that we are able to match all the main forecasting anomalies emphasized in

the prior literature for both interest rates and real GDP when forecasters are endowed with “rea-

sonable” initial beliefs. In addition, we construct long-term yield data from our model-generated

forecasts of nominal interest rates assuming that the expectations hypothesis holds. We then run a

battery of standard tests of the expectations hypothesis on these data. The model-generates yield

data fail the tests of the expectations hypothesis in exactly the same way as do real-world bond

2Other important papers that emphasize this idea include Lewis (1989b,a), Barsky and De Long (1993), Timmer-
mann (1993), Lewellen and Shanken (2002), Brav and Heaton (2002), Cogley and Sargent (2005), Collin-Dufresne, Jo-
hannes, and Lochstoer (2016), Johannes, Lochstoer, and Mou (2016), and Guo and Wachter (2019).

3Collin-Dufresne, Johannes, and Lochstoer (2016) and Kozlowski, Veldkamp, and Venkateswaran (2020) develop
models with rare events in which Bayesian learning is slow.
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yields. Notably, our sample period is roughly 40 years and we endow our Bayesian agents with

data back to the early post-WWII period. Even though they learn for quite a few decades, agents’

forecasts continue to display anomalies.4

Despite being quite simple, some of the parameters of our unobserved components models

are very difficult to learn, even over multiple decades. As we discuss above, it is hard to tell

apart stochastic processes with similar implications for short-run dynamics even if they have very

different implications for long-run dynamics. As a consequence, Bayesian learning can be very

slow. Yet, the long-run dynamics are essential for predictions several years into the future. It is for

this same reason that unit root tests have low power in “short sample” (short often being many

decades).

Since learning is slow, agents’ initial beliefs matter for a long time. If our ability to match fore-

cast anomalies with “rational learning” relied on unreasonable initial beliefs (e.g., very tight initial

beliefs at implausible parameter values), it would not be very interesting. We show, however, that

we can match the anomalous features of the forecast data for “reasonable” initial beliefs. In par-

ticular, the initial beliefs we endow agents with are quite dispersed. They also accord well with

historical experience prior to our sample period. For example, our agents place small weight in

1951 on the possibility that the nominal interest rate has a large random walk component. This is

consistent with the fact that (outside of war) the U.S. had been on a gold (or silver) standard al-

most continuously from its founding until that point in time and interest rates had therefore been

quite stable at low frequencies. The large and persistent rise and fall in nominal interest rates that

occurred subsequently was far outside of what had been experienced up to that point in history.

A potential concern with our results is that perhaps we are able to match the forecast anomalies

we emphasize because we endow agents with a misspecified model. To address this concern and

understand better what features of agents’ initial beliefs drive our results, we conduce a Monte

Carlo simulation of our model for nominal interest rates. In this case, we know the true data

generating process and thus know that the agents in our model are not learning using a misspec-

ified model. We show that when initial beliefs are centered on parameters that imply too little

persistence in interest rates relative to the truth, our model generates the kinds of anomalies we

find in the data.5 In contrast, if initial beliefs are centered on parameters that imply too much

4For interest rates, we focus on the mean forecast from the Survey of Professional Forecasters. An important related
literature characterizes and seeks to explain the behavior of individual forecasts relative to the mean, as well as the
behavior of forecast dispersion (see, e.g., Andrade et al., 2016; Angeletos, Huo, and Sastry, 2020; Bordalo et al., 2020;
Cao et al., 2021; Crump et al., 2021; Singleton, 2021; and references therein)

5This result is similar in spirit to results in Gourinchas and Tornell (2004) about exchange rates.
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persistence, our model generates anomalies in the opposite direction (negatively autocorrelated

forecast errors and over-reaction rather than under-reaction in Coibion and Gorodnichenko (2015)

regressions. etc.). If initial beliefs happen to be exactly centered on the true values in our Monte

Carlo, no anomalies arise.

In the Monte Carlo simulations, we know what the truth is. When it comes to the real world,

there is no way of knowing what the truth is without learning, and learning about the long run

is extremely slow. In our Monte Carlo simulation, a decade is a “blink in the eye” in terms of

learning about key parameters of in our model. Even after agents have been learning for 70 years,

they are still very far from the truth and are inching towards the truth extremely slowly. These re-

sults illustrate how, rational expectations tests can be very misleading even when run over “long”

periods of time.

Whether anomalies arise from Bayesian learning about parameters depends crucially on the

nature of the data. If the fluctuations in the variables of interest are homoscedastic and not very

persistent, agents will learn model parameters relatively quickly and none of the issues described

above will arise. In contrast, models in which learning has been shown to be important include

long-run risk models and models with disasters (Croce, Lettau, and Ludvigson, 2015; Collin-

Dufresne, Johannes, and Lochstoer, 2016; Kozlowski, Veldkamp, and Venkateswaran, 2020; Bidder

and Dew-Becker, 2016). Giacoletti, Laursen, and Singleton (2018) also study a learning model, but

consider a case where some model parameters are assumed to be known, leading to a substantially

simplified learning rule. We focus on the challenges arising from the agents’ lack of knowledge of

the model parameters which makes the learning problem much harder and learning much slower.

Our work also relates to a rich literature on boundedly rational learning in macroeconomics (e.g.,

Evans and Honkapohja, 2001; Sargent, 2001; Eusepi and Preston, 2011, 2018). Ben-David, Graham,

and Harvey (2013) provide evidence for Bayesian learning among firm CFOs.

The paper proceeds as follows. Section 2 describes our data. Section 3 reviews forecasting

anomalies for interest rates and real GDP data. Section 4 presents our model and results for nom-

inal interest interest rates. Section 5 presents our model and results for real GDP growth. Section

6 presents Monte Carlo simulation exercises aimed to shed light on why our results turn out the

way they do. Section 7 concludes.
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Figure 1: SPF Forecasts of the 3-Month T-Bill Rate
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents the SPF
forecasts made in a particular quarter about the then present quarter (first circle) and following four quarters
(subsequent four circles).

2 Data

The paper discusses two applications, one to interest rate forecasting and the other to real GDP

forecasting. We describe the data we use for these two applications in turn.

2.1 Interest Rate Data and Forecasts

The forecast data we use for the 3-month Treasury Bill (T-Bill) rate come from the Survey of Pro-

fessional Forecasters (SPF) conducted by the Federal Reserve Bank of Philadelphia. Our sample

period for these forecasts is 1981Q3 to 2019Q4. The SPF is a quarterly survey sent out to a rotating

panel of forecasters. We use the mean forecast across forecasters. Figure 1 plots these forecasts.

The survey is sent out near the end of the first month of each quarter. The forecast therefore

roughly coincides with the BEA’s advance report of the national income and product accounts.

Survey response deadlines are in the second to third week of the second month of the same quarter.

Survey respondents are asked to provide nowcasts and one to four quarter ahead forecasts of the

quarterly average 3-month T-Bill secondary market rate. The timing of these forecasts is as follows:

the nowcast pertains to the quarterly average rate at the end of the quarter when the survey is
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received, and the subsequent forecasts pertain to quarterly averages for each of the following four

quarters.
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Figure 2: The 3-Month T-Bill Rate

The data we use on the 3-month T-Bill secondary market rate is from the Board of Governors of

the Federal Reserve System . Our sample period for this series is 1951Q2 to 2019Q4. Figure 2 plots

the series. To be consistent with the forecast data, we use quarterly averages of the daily interest

rate. We also use daily estimates of the zero-coupon yield curve from Liu and Wu (2020). Liu and

Wu estimate the zero-coupon yield curve for bonds of maturity 1 month to 30 years (360 months)

dating back to June 1961. We convert these data to quarterly data by computing the average yield

in a quarter. Our sample period for these zero coupon bond yields is 1961Q3 to 2019Q4.

2.2 Real GDP Growth Data and Forecasts

The real GDP growth forecasts we analyze are from the Congressional Budget Office (CBO). Our

sample period for these forecasts is 1976 to 2019. The CBO releases its annual economic outlook

at the beginning of each year, where it provides projections for current and future real economic

growth. Since 1996, the CBO has made projections out to a horizon of 11 years. Before that, they

made projections out to a horizon of 6 years. The CBO forecasts the annual average level of real

output over each calendar year. Growth rates are then computed as percentage changes in these

6
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Figure 3: CBO Forecasts of Real GDP Growth
Note: The black solid line is the 2021Q1 vintage of real GDP growth from 1976 to 2019. The broken black line
is the initial release of GDP growth at each point in time. Each short gray line with seven circles represents the
initial release of real GDP for the previous year (first circle) and the CBO forecasts made in a particular year
about GDP growth in the following six years (subsequent six circles).

average levels across years. Up to and including their 1992 report, the CBO forecast real Gross

National Product (GNP). Since then, they have forecast real Gross Domestic Product (GDP). For

expositional simplicity, we refer to these as real GDP forecasts throughout the paper.

The data we use on actual real GDP growth is from the Philadelphia Federal Reserve Bank’s

Real-Time Data Set. This source publishes monthly vintages of real-time real output back to

November of 1965. Most vintages contain data back to 1947Q1. However, a few vintages are

missing data before 1959Q3, which limits our sample period as we discuss in greater detail in

section 5.

3 Forecasting Anomalies

As we discuss in the introduction, the forecasts of professional forecasters exhibit a number of

“anomalies”—i.e., patterns that previous researchers have argued suggest deviations from fore-

cast rationality. Here we document a number of such anomalies for professional forecasts of the

3-month nominal T-bill rate and real GDP growth. We also document deviations from the expec-
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tations hypothesis of the term structure—which may be interpreted as forecast anomalies on the

part of the bond market. The facts we document in this section will be key empirical targets we

seek to match with our models later in the paper.

The null hypotheses we consider below constitute tests of forecast rationality given two as-

sumptions: 1) that forecasters aim to minimize the mean squared error of their forecasts, implying

that optimal forecasts are equivalent to conditional expectations (Ftyt+h = Etyt+h), and 2) that

forecasters know the true model of the world. For the 3-month T-bill, we focus on forecast hori-

zons of one to four quarters. For real GDP growth, however, we focus on forecast horizons of one

to four years. These different forecasting horizons reflect differences in the horizons at which the

forecast anomalies are most striking for the 3-month T-bill vs. real GDP growth.

Bias

A straightforward prediction of full-information rational expectations models is that forecasts

should be unbiased at all horizons. Let yt be the variable to be forecast, and let Ftyt+h de-

note the h-period ahead forecast of yt given time t information. Define the forecast error as

et+h|t ≡ yt+h − Ftyt+h. The forecasting bias can then be estimated using the following regres-

sion:

et+h|t = α+ ut+h, (1)

with α = 0 indicating that forecasts are unbiased at a given horizon h.

Panel A of Table 1 displays our estimates of α for the 3-month T-bill rate and real output

growth. Our estimates indicate that professional forecasts of the T-bill rate display negative bias—

the truth being lower than the forecast on average—at all horizons and the magnitude of this bias

increases with the horizon. At the 4-quarter forecast horizon, SPF forecasters overestimate the true

T-bill rate by an average of 0.7 percentage points. These biases are statistically significant at the

1% level at all horizons. In contrast, there is little evidence of statistically significant bias in CBO

forecasts of GDP growth at the horizons we study.

Autocorrelated Forecast Errors

Another prediction of full-information rational expectations models is that forecast errors should

be serially uncorrelated. To assess this prediction, we consider the following regression of h-period

ahead forecast errors on their own past value h periods earlier (i.e., we consider the correlation of

8



Table 1: Forecast Anomalies

Forecast Horizon

1 2 3 4 5

Panel A: Bias

T-Bill
-0.18*** -0.34*** -0.52*** -0.70***

–
(0.06) (0.11) (0.16) (0.20)

GDP Growth
0.27 -0.27 -0.54 -0.62 -0.52

(0.21) (0.34) (0.44) (0.47) (0.44)

Panel B: Autocorrelation

T-Bill
0.30* 0.27** 0.24** 0.13

–
(0.16) (0.11) (0.11) (0.12)

GDP Growth
0.22 0.16 0.11 0.08 0.08

(0.16) (0.17) (0.14) (0.18) (0.11)

Panel C: Mincer-Zarnowitz

T-Bill
0.97 0.94* 0.90** 0.86**

–
(0.02) (0.04) (0.05) (0.06)

GDP Growth
0.94 0.60 0.03*** -0.42*** -0.43***

(0.12) (0.31) (0.31) (0.22) (0.36)

Panel D: Coibion-Gorodnichenko

T-Bill
0.23* 0.34** 0.62***

– –
(0.13) (0.15) (0.18)

GDP Growth
0.08 0.00 0.50 -1.63*** -1.46***

(0.11) (0.23) (0.52) (0.41) (0.45)

Note: The forecast horizons for the T-Bill are quarters, while the forecast horizons for the GDP growth are years.
Stars represent significance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation,
β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values are computed using Newey-West
standard errors with lag length selected as L = d0.75× T 1/3e. * p < 0.1, ** p < 0.05, *** p < 0.01.

contiguous, non-overlapping h-period forecasts):

et+h|t = α+ βet|t−h + ut+h. (2)

In a full-information setting, forecast rationality implies that α = 0 and β = 0, i.e., there should

be no bias and forecast errors should not be predictable by known information (the time t forecast

error).

Panel B of Table 1 reports our estimates of β from equation (2). SPF forecasts of the T-bill

display substantial positive autocorrelation. The 1-quarter forecast has an autocorrelation of 0.30.

This falls to 0.24 at three quarters. These estimates are statistically significantly different from

zero, especially at horizons two and three. CBO forecasts of GDP growth also display positive
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autocorrelation. But in this case the autocorrelation is smaller and not statistically significantly

different from zero.

Mincer-Zarnowitz Regressions

A classic test of forecast rationality proposed by Mincer and Zarnowitz (1969) investigates the

intuitive prediction that the truth should on average move one-for-one with a rational forecast:

when the forecast rises by 1%, on average, the realized value should also rise by 1%. This predic-

tion can be analyzed using the regression

yt+h = α+ βFtyt+h + ut+h. (3)

In a full-information setting, forecast rationality implies that α = 0 and β = 1, i.e., there should be

no bias and realized values should move one-for-one with forecasts.

Panel C of Table 1 reports our estimates of β from (3). In this case, it is the GDP growth forecasts

that display substantial deviations from the null of forecast rationality. While the estimate of β for

the 1-year ahead forecast is close to one, it falls sharply at longer horizons. For the 3-year ahead

forecast, we estimate a β close to zero. In other words, actual GDP growth is no more likely to

be high when it was forecast to be high three years earlier than when it was forecast to be low

three years earlier. For the 4-year and 5-year ahead forecast, we estimate negative values (high

forecasted growth predicts low growth on average). These three estimates are strongly statistically

significantly different from one. In contrast, our estimate of β for the T-bill forecasts are close to

one. They are somewhat below one and the difference is statistically significant. But the difference

is much less stark than in the case of GDP forecasts.

Coibion-Gorodnichenko Test

Another property of rational forecasts under full information is that they should not underreact or

overreact to new information. Coibion and Gorodnichenko (2012) propose the following regres-

sion to assess this:

et+h|t = α+ β(Ftyt+h − Ft−1yt+h) + ut+h.

Forecast rationality in a full-information setting implies that α = 0 and β = 0. Ftyt+h−Ft−1yt+h is

known at time t and forecast errors should not be predictable by known information. If β > 0, the
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forecasts are said to suffer from “underreaction.” In this case, an increase in the forecast predicts a

situation where the new forecast is still too low on average, i.e., didn’t increase enough. If β < 0,

the forecasts are said to suffer from “overreaction.”

Panel D of Table 1 reports our estimates of β from (3). In this case, we see opposite anomalies

for the two applications we consider. For the T-bill forecasts, we see evidence of underreaction:

we estimate positive values for β rising from 0.22 at the 1-quarter horizon to 0.64 at the 3-quarter

horizon. For GDP growth forecasts, however, we estimate neither over- nor underreaction at short

horizons. At the 4-year and 5-year horizons, however, we estimate negative values of β indicating

overreaction.

Failures of the Expectations Hypothesis

The expectations hypothesis of the term structure implies that the yield on an n-period bond

should equal the average expected values of yields on 1-period bonds over the lifetime of the n-

period bond, up to a constant risk premium. This should hold regardless of the process followed

by the short rate. Following Campbell and Shiller (1991) and others, we can test this implication

with the following regression:

1

n

n−1∑
i=0

y
(1)
t+i − y

(1)
t = α+ β(y

(n)
t − y(1)t ) + ut, (4)

where y(n)t denotes the yield of a n-period bond at time t. The expectations hypothesis implies

that when the yield spread between short-term and long-term bonds (y
(n)
t − y(1)t ) is high, short-

term bond yields will rise in the future (the dependent variable will be large). Specifically, the

expectations hypothesis implies that β = 1. Early papers estimating equation (4) include Fama

(1984) and Fama and Bliss (1987).

The first row in Table 2 presents our estimates of β in equation (4) for bonds of maturity 2 to

40 quarters. Consistent with a large earlier literature, we find that the null hypothesis of β = 1

is resoundingly rejected at short horizons with β being estimated to be smaller than one. As the

horizon grows, our estimate of β rises closer to one, but remains below one for all horizons we

consider.

Another implication of the expectations hypothesis of the term structure is that at times when

the yield spread is unusually high the yield on long bonds will rise. One intuition for this is that

returns must be equalized (modulo a constant) for short-term and long-term bonds. If the yield

11



Table 2: Failures of the Expectations Hypothesis

Long Horizon n

2 3 4 8 12 20 40

Future Short Rates
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.22) (0.22) (0.21) (0.25) (0.27) (0.23) (0.22)

Change in Long Rate
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.43) (0.54) (0.57) (0.61) (0.65) (0.67) (0.86)

Note: The sample period is from 1961Q3 to 2019Q4. The top row reports estimates of β from regression (4).
The bottom row reports estimates of β from regression (5). In both cases, the horizon n is listed at the top
of the table. Stars represent significance relative to the hypothesis that β = 1. P-values are computed using
Newey-West standard errors with lag length selected as L = d0.75×T 1/3e. * p < 0.1, ** p < 0.05, *** p < 0.01.

spread is high, then the long-bond yield needs to rise to reduce the return on the long bond so that

it can be equal to that of the short bond. Another intuition is that the high yield spread implies

that the short yield will rise over the life of the long bond. As time passes, the relatively low

current short rate will then drop out of the sum of future short rates that determines the long yield

(according to the expectations hypothesis). As this happens, the sum increases and so the long

yield should increase.

We can test this implication of the expectations hypothesis with the following regression:

y
(n−1)
t+1 − y(n)t = α+ β

(
1

n− 1

)
(y

(n)
t − y(1)t ) + ut. (5)

It is straightforward to show that the expectations hypothesis implies β = 1. Early papers estimat-

ing equation (5) include Shiller (1979), Shiller, Campbell, and Schoenholtz (1983), and Campbell

and Shiller (1991).

The second row of Table 2 presents our estimates of β in equation (5). Consistent with earlier

research, we find large deviations from the null implied by the expectations hypothesis. Rather

than being equal to one, we estimate values for β around negative one at short horizons and even

larger negative values at longer horizons. This means that when the yield spread is large the long

rate has tended to fall rather than rise as the expectation hypothesis implies that it should. The

conventional interpretation of this result is that it implies large predictable excess returns on the

long bond when the yield spread is high. Our results later in the paper question whether these

excess returns were truly predictable.

The previous literature has identified a number of potential econometric issues associated with
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these tests of the expectations hypothesis. One issue is that, in regression (5), the long-term yield

appears in the dependent variable with a negative sign and in the regressor with a positive sign.

As a consequence, measurement error in the long yield will bias the estimated coefficient down-

ward and may even result in a negative estimate. Campbell and Shiller (1991) use instrumental

variables techniques to assess whether measurement error is the cause of the negative estimates

but find that the negative coefficients are quite robust. A second issue is small sample bias. This

issue was emphasized for regressions (4) and (5) by Bekaert, Hodrick, and Marshall (1997). We

conduct Monte Carlo analysis in section 6 based on our model from section 4. This analysis does

find evidence of some small sample biases. But the quantitative magnitude of these biases is

small.

4 Learning about Nominal Interest Rates

Traditional tests of forecast rationality evaluate the joint hypothesis that agents form conditional

expectations rationally, and that they know the true model that generates the data. Our goal is

to assess whether we can explain the forecast anomalies documented in section 3 by relaxing the

assumption that forecasters know the true model, while maintaining the assumption that agents

form expectations rationally given their beliefs about the model that generates the data. To this

end, we consider agents who update their beliefs about how the world works using Bayesian

learning and then form real-time Bayesian forecasts.

Our first application is to learning about the 3-month T-bill rate (short rate). We begin by

presenting the model we assume the agents use to learn about and forecast the short rate. We then

describe the details of how they learn and forecast. Finally, we compare the resulting forecasts

with the SPF forecasts and longer-term yields.
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4.1 An Unobserved Components Model for the Nominal Short Rate

Following Kozicki and Tinsley (2001), we propose a “shifting end-point” model for the short rate.6

Specifically, the model we assume agents use to learn about and forecast the short rate is:

yt = µt + xt (6)

µt = µt−1 +
√
γσηt, ηt ∼ N(0, 1), (7)

xt = ρxt−1 +
√

1− γσωt, ωt ∼ N(0, 1), (8)

Here, the short rate yt is modelled as the sum of two unobserved components: a permanent ran-

dom walk component µt and a transitory AR(1) component xt. The transitory component xt is

assumed have mean 0 and persistence ρ. Shocks to µt and xt are independent, normally dis-

tributed. The total variance of these two innovations to yt conditional on time t− 1 information is

σ2. The share of the variance of these innovations that is attributable to shocks to the permanent

component µt is assumed to be γ, with the complementary share 1−γ attributable to the transitory

component xt. We refer to this model as an unobserved components model (UC).

To gain some intuition about the implications of the model, consider the h-period forecast of

the short rate assuming the unobserved components at time t and parameters of the model are

known:

Etyt+h = µt + ρhxt (9)

This shows that µt corresponds to the long run forecast of the short rate (as h → ∞), while xt

captures short run deviations of the short rate from this long run forecast. The expectations hy-

pothesis implies that the yield on an n-period zero coupon bond is

y
(n)
t = c(n) +

1

n

n−1∑
h=0

Etyt+h = c(n) + µt +
1

n

n−1∑
h=0

ρhxt (10)

where c(n) denotes the constant risk premium on n-period bonds. This expression shows that µt

represents a level factor for the term structure of bond yields, while the slope and curvature of the

term structure is governed by xt.

6See also van Dijk et al. (2014), Cieslak and Povala (2015), Bauer and Rudebusch (2020), Bianchi, Lettau, and Lud-
vigson (2020), and Crump et al. (2021).
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4.2 Bayesian Learning and Forecasting about the Nominal Short Rate

We assume that agents do not know the value of the unobserved components (states) µt and xt.

We, furthermore, assume that they do not know the value of the parameters ρ, γ, and σ. We endow

them with initial beliefs about these unknown states and parameters and data on the short rate.

We assume that they use Bayes Law to update their beliefs about the states and parameters over

time and then in each period construct a forecast of future short rates based on their then current

beliefs. More specifically, we start the agents off with initial beliefs in 1951Q2. The agents then

use data on the short rate from 1951Q2 onward to update their beliefs. Starting in 1961Q3 they

perform “online” forecasting of the short rate. In other words, each quarter they forecast the short

rate based their beliefs at that point in time.

The world did not begin in 1951Q2. So, why do we not use data going further back in time?

The reason for this is that the monetary policy regime in the U.S. was fundamentally different

before 1951Q2. In March 1951, the U.S. Treasury and the Federal Reserve reached an agreement –

commonly referred to as the Treasury-Fed Accord – to separate government debt management and

monetary policy (Romero, 2013). From 1942 until the Accord, the Federal Reserve had abdicated

its monetary independence by committing to fix the short rate at a low value to aid the financing

of WWII and manage the massive government debt left after WWII. Before 1942, the U.S. had

for the most part been on a gold (or silver) standard. Rather than model these fundamentally

different monetary regimes explicitly, we start our analysis at the time of the Treasury-Fed Accord

and simply endow agents with initial beliefs at that date (which presumably reflect information

gleamed from the prior history).

We use a Gibbs Sampling algorithm (augmented with random walk Metropolis-Hastings steps

when needed) to sample from the posterior distribution of the model parameters and the latent

states at each time period t. We describe this algorithm in more detail in Appendix A. Armed with

an estimate of agent’s belief distribution for the unknown parameters and states in a time period

t, we use our unobserved components model to forecast the future evolution of the short rate. We

describe the algorithm we use to do this in Appendix B. We do this for each quarter starting in

1961Q3, which is the first quarter for which we have zero-coupon yield curve data.

We assume that agents make their forecasts on the final day of each quarter. This implies that

they have access to the average level of the interest rate in that quarter and their “nowcast” is the

true realized interest rate for the quarter. This is an approximation: in reality, the SPF forecasters
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only have information up to the second to third week of the second month of the quarter as we

discuss above.

The short rate was constrained by the zero lower bound (ZLB) towards the end of our sample

period. We define the period when the target federal funds rate was at or below 25 basis points

as the ZLB period. This corresponds to 2009Q1 to 2015Q4 in our sample period. We view this

as a period when the desired short rate is censored (but for simplicity follows the same process

as before). Our approximation to Bayesian learning for this period is to assume that agents do

not update their beliefs about the parameters (ρ, γ, and σ) but that they continue to filter the

hidden states (µt and xt) using the parameter estimates from 2008Q4. Full learning then resumes

in 2016Q1. This short-cut allows us to avoid substantial additional complications which we believe

are unlikely to materially affect our results.

4.3 Initial Beliefs about the Nominal Short Rate

A basic premise of our analysis is that Bayesian learning is slow in certain settings. This implies

that initial beliefs will matter. If learning is fast, beliefs converge quickly to the truth and initial

beliefs quickly cease to matter. If learning is slow, beliefs will not converge quickly to the truth

and initial beliefs will continue to influence later beliefs non-trivially for a long time – as long as

it takes for beliefs to converge to the truth.

In our setting, learning about the parameters ρ, γ, and σ is slow, while learning about the states

µt and xt is reasonably fast. Our choice of initial beliefs about µt and xt, therefore, does not matter

for our results as long as they are reasonable. We assume that initial beliefs about µt in 1951Q2

are N(y1951Q12, 1) and initial beliefs about xt in 1951Q2 are N(0, 1). These initial conditions are

assumed to have a correlation of -1 due to the form of the observation equation (6).

For ρ, γ, and σ we specify initial beliefs in 1951Q2 of the following form:

ρ ∼ N(µρ, σ
2
ρ), γ ∼ B(αγ , βγ), σ2 ∼ IG(ασ2 , βσ2),

whereB denotes a beta distribution and IG denotes an inverse-gamma distribution. As we discuss

above, these initial beliefs encode professional forecaster’s understanding of how the world works

as of 1951Q2, based on prior history. What precisely forecasters believed in 1951 is not known to

us. Our approach is to search over the space of initial beliefs specified above to see if we can

find an initial belief which can rationalize the forecast anomalies we document in section 3. If
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we can find a belief (or perhaps more than one different beliefs) that can rationalize the forecast

anomalies reasonably well, then we ask whether any of these beliefs can be viewed as a reasonable

initial beliefs for professional forecasters to have in 1951Q2. If so, we conclude that the forecast

anomalies we have documented can be explained by Bayesian learning and Bayesian forecasting

and are therefore not necessarily evidence of forecaster irrationality.

To keep our analysis manageable, we fix the initial beliefs for σ by setting ασ2 = 1.25 and

βσ2 = 0.5625. This belief distribution is plotted in the bottom panel of Figure 4.7 This leaves four

parameters: µρ, σ2ρ, αγ , βγ . We search over the space of these parameters to find beliefs that match

the forecast anomalies as well as possible. Specifically, for each point in this space, we construct

forecasts as described above and estimate the forecasting regressions discussed in section 3. We

then minimize an unweighted average of the difference between the regression coefficients from

the regressions based on model-generated forecasts and the regression coefficients we estimated

in section 3 based on real-world data. Appendix C provides more detail.

The top two panels of Figure 4 plot the initial belief distributions for ρ and γ that minimize

the objective function discussed above. The belief distribution for ρ is concentrated on moder-

ately large values. It is centered at 0.60 and has a standard deviation of 0.12. With a ρ = 0.60 the

half-life of innovations to xt is roughly four months. The belief distribution for γ is concentrated

on relatively small values. It has a mode of 0.07 and a standard deviation of 0.06. This implies

that forecasters believed in 1951Q2 that most of the variation in the short rate was due to transi-

tory fluctuations of moderate persistence (i.e., an xt with a ρ around 0.60) rather than permanent

fluctuations (µt).

Are the initial belief distributions plotted in Figure 4 reasonable? We argue they are for two

reasons. First, these belief distributions are quite dispersed. If we could only match the forecast

anomaly results with extremely concentrated initial belief distributions, we would conclude that

our model could not rationalize the forecast anomalies. This is not the case. The initial belief

distributions we estimate put substantial mass on a wide range of parameter combinations, a

sufficiently wide range that we think they constitute plausible beliefs forecasters might have had

in 1951Q2.

Second, the belief that γ was relatively small is arguably consistent with the history of interest

rates prior to 1951Q2. Outside of war, the United States had been on a gold standard (or silver

7This belief distribution has a mode of 0.25. The standard deviation of the distribution is undefined for values of
ασ2 ≤ 2. Our choice of ασ2 = 1.25 is thus a very dispersed initial belief.
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Figure 4: Marginal Intial Beliefs Distributions: T-bill Rate Model
Note: Each panel plots the initial beliefs held in 1951Q2 by agents in our T-bill rate model for each of the three
model parameters: ρ, γ, and σ2 respectively.

standard) almost continuously from its founding (and England had been on a gold or bimetallic

standard for hundreds of years before that). Over this long time span, interest rates had been

quite stable at low frequencies with most variation being rather transient (due to seasonal cycles

and financial crises). Given this history, it seems reasonable that forecasters’ beliefs were heavily

skewed towards believing that most fluctuations in interest rates would be relatively transient.

The long upward march of interest rates in the 1960s, 70s, and early 80s and subsequent downward

march of interest rates since then was completely without parallel in history. It seems unlikely

that forecasters in 1951Q2 would put much weight on such an unprecedented sequence of events

occurring.

4.4 Model’s Fit to the Data

Figure 5 offers a visual depiction of the fit of the model’s forecasts to the data. The top panel

plots SPF forecasts of the short rate (the same data as is plotted in Figure 1). The bottom panel

plots the forecasts generated by our model with the initial beliefs discussed above. Our model

captures the fact that SPF forecasters tend to predict that the short rate will “mean revert” slowly

towards a “normal” value, i.e., something close to its average value over the past business cycle.

More specifically, when rates are falling, SPF forecasters tend not to expect further decreases but
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Figure 5: Forecasted T-bill Rate: Data vs. Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.

instead expect gradual increases; when rates are increasing, they tend to underestimate the speed

of further increases.

The visual fit of the model-implied forecasts to the data is particularly strong in the first 25

years of our sample period. Consider, for example the easing cycles of 1984-1986, 1988-1994, and

2001-2004. In each of these episodes, our model matches the data extremely well. The same is true

during the tightening cycles of 1986-1988, 1994-1995, and 1998-2000. Since 2004, there are periods

when our model’s fit to the data is somewhat worse. Interestingly, these tend to be episodes

when the Federal Reserve has successfully used forward guidance to inform market participants

about its policy intentions. One example of this is the period 2004-2007. Over this period, the

SPF forecasters correctly anticipate the speed of Fed tightening, while our model delivers smaller

expected increases. This is the period when the Fed used the term “measured pace” to signal to

the market that they would increase interest rates by 0.25% at each FOMC meeting for quite some

time. A second example is the period from 2012-2015, when the Fed explicitly stated that they

would keep the short rate at 0.25% for several years. Our model does not incorporate this forward

guidance and therefore fails to capture its effect on SPF forecasts.

Table 3 presents results for the forecast anomaly regressions we analyze in section 3 for our
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Table 3: T-Bill Rate Forecast Anomalies: Model vs. Data

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.06) (0.11) (0.16) (0.20)

UC Model
-0.15** -0.27** -0.39** -0.50**
(0.06) (0.12) (0.17) (0.21)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24** 0.13
(0.15) (0.11) (0.11) (0.12)

UC Model
0.36** 0.39*** 0.35*** 0.23**
(0.16) (0.12) (0.11) (0.11)

Panel C: Mincer-Zarnowitz

SPF
0.97 0.94* 0.90** 0.86**

(0.02) (0.04) (0.05) (0.06)

UC Model
0.96* 0.93** 0.88** 0.83***
(0.02) (0.03) (0.05) (0.06)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34** 0.62***

–
(0.13) (0.15) (0.18)

UC Model
0.38** 0.55* 0.88***

–
(0.17) (0.32) (0.34)

Note: The forecast horizons are quarters. Stars represent significance relative to the following hypotheses:
α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko.
P-values are computed using Newey-West standard errors with lag length selected as L = d0.75 × T 1/3e. *
p < 0.1, ** p < 0.05, *** p < 0.01.

model-generated data (rows labelled “UC model”) and compares these with analogous results for

the real-world data (rows labelled “SPF”). Our model’s ability to match the forecast anomalies

seen in the real-world data is remarkable. For all four types of regressions and at all horizons, our

model matches the magnitude and statistical significance of the real-world estimates quite closely.

Specifically, our model generates a negative bias that increases in size with the horizon, as in the

data; our model generate autocorrelation in forecast errors of about 0.35 at horizons one through

three and much less at horizon four, as in the data; our model yields Mincer-Zarnowitz coeffi-

cients slightly below one and decreasing with horizon, as in the data; and our model generates

underreaction that grows with horizon, as in the data.

Table 4 presents results for the expectations hypothesis regressions we discuss in section 3
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Table 4: Failures of the Expectations Hypothesis: Model vs. Data

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.22) (0.22) (0.21) (0.25) (0.27) (0.23) (0.22)

UC Model
-0.19*** 0.01** 0.14* 0.58 0.83 0.94 0.95
(0.43) (0.45) (0.46) (0.51) (0.47) (0.36) (0.34)

Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.43) (0.54) (0.57) (0.61) (0.65) (0.67) (0.86)

UC Model
-1.08*** -1.11*** -1.14*** -1.28*** -1.42*** -1.72*** -2.36**
(0.72) (0.73) (0.74) (0.80) (0.87) (1.00) (1.56)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression (4).
The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at the top
of the table. Stars represent significance relative to the hypothesis that β = 1. P-values are computed using
Newey-West standard errors with lag length selected as L = d0.75×T 1/3e. * p < 0.1, ** p < 0.05, *** p < 0.01.

based on model-generated data and compares these results with those based on real-world data.

Again, our model’s ability to match the results based on real-world data is impressive. For the

future-short-rate regressions in Panel A, we estimate β coefficients close to zero at short horizons,

as in the data. The estimates then rise for longer-term bonds as they do for the data. For the

change-in-long-rate regressions in Panel B, we estimate β coefficients that are negative at all hori-

zons and increasingly so as the horizon increases. Quantitatively, our estimates are close to -1 at

short horizons and rise to -2 at long horizons. This is all quite consistent with the the pattern of

the real-world estimates.

Table 4 shows that our model provides an explanation for why the long rate has tended to fall

when the yield spread is large rather then rise as full-information rational expectations models

imply it should. In our model, this occurs because learning about the interest rate regime has

tended to yield larger movements in the long rate than the forces captured by full-information

rational expectations models. In particular, when the yield spread is large, agents in our model

tend to revise downward their estimate of the long-run level of the short rate (µt) by enough to

offset the forces pushing the long rate up.
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Figure 6: Parameter Estimates: T-bill Rate Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.

4.5 Parameter and State Estimates

Figure 6 plots the evolution of the mean of the posterior distributions of ρ, γ, and σ along with

90% credible intervals between 1961Q3 and 2019Q4. The mean estimate of ρ is around 0.75 early

in the sample. It then gradually rises over time and is around 0.9 towards the end of the sample.

The mean estimate of γ is initially low at 0.1. It rises to around 0.2 in the early 1980s and gradually

declines until very late in the sample when it rises sharply. The mean estimate of σ is around 0.4

early in the sample. It rises sharply during the Volcker disinflation and gradually decreases after

the early 1980s.

Figure 7 plots the mean estimates of the states µt and xt over the course of the sample. The

solid black line is the mean of the “real-time” filtering distribution, i.e., the belief distribution

about µt and xt conditional on data up to time t, while the solid gray line is the mean of the “ex-

post” smoothing distributions, i.e., the belief distribution about µt and xt conditional on data up to

2019Q4. The broken black lines plot 90% credible intervals for the real-time filtering distribution.

It is interesting to compare the real-time filtering distribution and the ex-post smoothing dis-
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Figure 7: State Estimates: T-bill Rate Model
Note: Each panel corresponds to one of the two UC hidden state variables: µt and xt respectively. The black solid line
is the posterior mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of
the posterior real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing
distributions for the corresponding parameter.

tribution. For µt, the real-time filtering distribution is consistently below the ex-post smoothing

distribution from the beginning of our sample until the early 1980s and then consistently above

from the early 1980s until very late in our sample. This reflects the fact that in real time the agents

in our model underestimate the persistence of the run-up of interest rates in the 1960s and 70s,

and again underestimate the persistence of the fall in interest rates after the early 1980s. Ex post,

agents revise their view of history and conclude that both the run-up and fall in interest rates was

more persistent than they believed at the time. This helps explain the persistent downward drift

of long rates in the 1980s at a time when the yield spread was high. A full information rational

expectations model would predict that long rates should rise during this period. But persistent

learning about how to interpret the rise and fall of interest rates more than counteracted this.

5 Learning about the Real GDP Growth

Our second application is to learning about real GDP growth. As in section 4, we begin by present-

ing the model we assume agents use to learn about and forecast GDP growth. We then describe

the details of how they learn and forecast. Finally, we compare the resulting forecasts with the
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CBO forecasts we discussed in section 3.

5.1 An Unobserved Components Model for GDP

The model we assume agents use to learn about and forecast real GDP is:

yt = zt + xt (11)

∆zt = µ+
√
γσut, ut ∼ N(0, 1), (12)

xt = ρ1xt−1 + ρ2xt−2 +
√

1− γσvt, vt ∼ N(0, 1), (13)

where yt denotes quarterly log real GDP. This model posits that real GDP is the sum of two compo-

nents: a difference stationary component zt and a trend-stationary component xt. The difference

stationary component zt is assumed to follow a random walk with drift µ. The trend-stationary

component xt is assumed to follow a mean zero AR(2) process with autoregressive coefficients ρ1

and ρ2. The conditional standard deviation of yt is denoted σ. The share of innovations to yt that

hit the difference-stationary component zt is γ, with the complementary share 1 − γ hitting the

trend-stationary component xt. The parameter γ therefore governs “how big” the random walk

component of GDP is (Cochrane, 1988). We refer to this model as an unobserved components (UC)

model.

5.2 Bayesian Learning and Forecasting about GDP

As in the interest rate application discussed in section 4, we assume that agents in the model

do not know the value of the unobserved components (states) zt and xt or parameters µ, ρ1, ρ2,

σ, and γ. We start the agents off with an initial belief distribution about these unknown states

and parameters in 1959Q3. The agents then observe (real-time) data on GDP and update their

beliefs about the states and parameters using Bayes Law. Starting in 1976Q1 they perform annual

“online” forecasting of GDP. This corresponds to the first period for which CBO forecasts are

available.

The reason we start the agents off with an initial belief distribution in 1959Q3 is that we do

not have a complete set of real-time GDP vintages that go further back than this date. The initial

beliefs in 1959Q3 thus embody all knowledge agents in the model have been able to glean from

earlier data about the statistical process that GDP follows. We discuss the choice of these initial

beliefs in more detail in section 5.3 below.
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We assume that agents have access to the first release of Q4 GDP for the prior year (the BLS’s

“advance release” for that quarter) when they forecast. This is meant to approximate the informa-

tion set the CBO has access to when it forecasts GDP each year. The CBO’s forecasts (contained

in its Economic Outlook report) are typically released in January or February of each year. While

this is usually before the advance release of Q4 GDP for the previous year, much of the underlying

data that is used to construct the advance release has been made public at this point. This implies

that the Q4 advance release can be predicted fairly accurately at this point. We therefore think

that endowing our model agents with the Q4 advance release is the best way to approximate the

information set of the CBO at the time it constructs its annual GDP forecast.

The parameters of the model and latent state estimates are updated every 4 quarters to line up

with the timing of when the CBO constructs forecasts. We describe the algorithm we use to update

agent’s beliefs in Appendix D. Armed with estimates of agent’s beliefs, we use our unobserved

components model to construct forecasts of GDP growth. We describe the algorithm we use to do

this in Appendix E.

5.3 Initial Beliefs about GDP

As in the interest rate application in section 4, learning about the parameters in our model for GDP

is slow. This implies that agent’s initial beliefs about these parameters will matter. In contrast,

learning about the states zt and xt is reasonably fast implying that initial beliefs about these states

is less consequential. We assume that agents’ initial beliefs about zt and xt in 1959Q3 are zt ∼

N(y1959Q3, 0.012) and xt ∼ N(0, 0.012).

We specify initial beliefs for the parameters in 1959Q3 of the following form

ρ1 + ρ2 ∼ N(µρ, σ
2
ρ)I(ρ1, ρ2), ρ2 ∼ N(µρ2 , σ

2
ρ2)I(ρ1, ρ2),

γ ∼ B(αγ , βγ), µ ∼ N(µµ, σ
2
µ), σ ∼ IG(ασ, βσ).

where I(ρ1, ρ2) is an indicator function which is 1 if the xt process is stationary and 0 otherwise.

For more detail, see Appendix D.

We fix µµ = 0.01 and σµ = 0.01, corresponding to a prior for average annual long run growth

of 4%. We fix ασ = 7.0625 and βσ = 0.0014 corresponding to a prior mean for σ2 of 0.0152

and standard deviation of 0.01. That leaves 6 parameters to estimate to fit the forecast anomalies

presented in section 2, which we denote θ = (µρ, σρ, µρ2 , σρ2 , αγ , βγ)′. We do this in a similar
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Figure 8: Marginal Initial Beliefs Distributions: Real GDP Growth Model
Note: Each panel plots the initial beliefs held in 1959Q3 by agents in our model for the following five parameter
combinations: ρ1 + ρ2, ρ2, γ, µ, and σ2.

fashion to what we do in the interest rate application in section 4. Appendix F provides details.8

The resulting initial beliefs are plotted in Figure 8. We view these as reasonable initial beliefs in

that they are quite dispersed. For example, the initial belief distribution on ρ1+ρ2 puts substantial

weight on values between 0.7 and 1. This range spans cases were the transitory component xt has

a modest half-life of less than a year and cases where it is very persistent. Likewise, the initial

beliefs for γ is centered close to 0.5 and has high variance. The initial belief for ρ2 embeds a belief

that the transitory component of GDP is hump-shaped. But again, this distribution has substantial

variance.

5.4 Model’s Fit to the Data

Figure 9 offers a visual depiction of the fit of the forecasts that our model generates to the data.

The top panel plots CBO forecasts of real GDP growth (the same data as is plotted in Figure 3).

8We place some bounds on the values of parameters that can be chosen in this estimation. Namely, we restrict
the standard deviation of the initial beliefs on ρ1 + ρ2, ρ2, and γ to be greater than or equal to 0.05. For the initial
belief distribution for γ, we additionally put an upper bound on the standard deviation of 0.15 and restrict the mode
of the distribution to be less than 0.6. The latter restriction imposes that agents believe at least 40% of the variation in
output comes from trend-stationary fluctuations. These restrictions are useful to avoid estimating what we consider
unreasonably dogmatic initial beliefs and capture the belief that a significant fraction of output fluctuations are trend-
stationary.
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Figure 9: Forecast Whisker Plots: Real Economic Output Growth
Note: The black solid line is the most recent vintage of GDP growth estimates. The dashed black line is the initial release
of GDP growth for each period. Each short gray line with seven circles represents forecasts made in a particular year
about that year (first circle) and following six years (subsequent six circles). In the top panel, these forecasts are CBO
forecasts. In the bottom panel, these forecasts are mean forecasts generated from the UC model estimated in real-time.

The bottom panel plots the forecasts generated by our model with the initial beliefs discussed

above. The model is able to match the broad characteristics of CBO forecast errors. For example,

the model matches the large forecast errors the CBO made in the early 2010s when it forecast that

the economy would grow unusually fast after the Great Recession but growth turned out to be

more modest. Also, the model generates persistent forecast errors in the late 1990s when growth

was high for several years but the CBO persistently forecast lower growth.

Table 5 presents results for the forecast anomaly regressions we analyze in section 3 for our

model-generated data (rows labelled “UC model”) and compares these with analogous results

for the real-world data (rows labelled “CBO”). Our model is able to match the anomalies in the

CBO forecasts quite well. The most spectacular anomaly in the case of the CBO forecasts is for

the Mincer-Zarnowitz regressions in Panel C. These start off close to one at the one-year horizon

but fall to zero at the three-year horizon and to roughly -0.4 at the four and five-year horizons.

Our model is able to match this pattern quite well. The model also yields positively autocorre-

lated forecast errors, overreaction at long horizons in the Coibion-Gorodnichenko regression, and

negative bias. For almost all of the anomaly statistics, the model estimate is not statistically signif-

icantly different from the data estimate. However, the point estimates from the model are not in
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Table 5: Real GDP Forecast Anomalies: Model vs. Data

Forecast Horizon

1 2 3 4 5

Panel A: Bias

CBO
0.27 -0.27 -0.54 -0.62 -0.52

(0.21) (0.34) (0.44) (0.47) (0.44)

UC Model
-0.65** -1.65*** -1.36*** -0.85** -0.66*
(0.27) (0.40) (0.38) (0.38) (0.39)

Panel B: Autocorrelation

CBO
0.22 0.16 0.11 0.08 0.08

(0.16) (0.17) (0.14) (0.18) (0.11)

UC Model
0.39** 0.31* 0.23** 0.06 -0.05
(0.17) (0.16) (0.11) (0.12) (0.07)

Panel C: Mincer-Zarnowitz

CBO
0.94 0.60 0.03*** -0.42*** -0.43***

(0.12) (0.31) (0.31) (0.22) (0.36)

UC Model
0.84 0.35*** 0.34** -0.38*** -0.98***

(0.14) (0.20) (0.33) (0.26) (0.63)

Panel D: Coibion-Gorodnichenko

CBO
0.08 -0.00 0.50 -1.63*** -1.46***

(0.11) (0.23) (0.52) (0.41) (0.45)

UC Model
0.06 -0.76 -0.11 -0.78 -1.22**

(0.10) (0.56) (0.29) (0.56) (0.50)

Note: The forecast horizons are years. Stars represent significance relative to the following hypotheses: α = 0
for bias, β = 0 for autocorrelation, β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values
are computed using Newey-West standard errors with lag length selected as L = d0.75 × T 1/3e. * p < 0.1, **
p < 0.05, *** p < 0.01.

all cases as closely aligned with the data as in the interest rate application discussed in section 4.

For example, the model yields a larger negative bias than the data, especially at horizons two and

three.

5.5 Parameter Estimates

Figure 10 plots the evolution of the mean of the posterior distributions of the five parameters of

our model for GDP along with 90% credible intervals over the period 1976 and 2019. Perhaps the

most striking feature of Figure 10 is how little beliefs about the parameters change over time. We

do see that σ trends downward by a modest amount, likely reflecting the Great Moderation. Also,

ρ2 trends modestly upward. But ρ1, γ, and µ change very little. This lack of change presumably
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Figure 10: Parameter Estimates: Real Economic Output Growth
Note: Each panel plots the evolution of beliefs about one of the five UC model parameters: ρ1, ρ2, γ, µ, and
σ. The black solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior
distribution for the parameter in question. Recall that we only update beliefs about these parameters every
fourth quarter.

reflects a combination of two things. First, it may be that some of the parameters are close to

their true values. Second, for those parameters that are further away from their true values, little

information can be gleaned from the data about their true values resulting in posterior beliefs

being little changed even over a 40 year period. This is perhaps not surprising given how difficult

it is to distinguish between difference-stationary time series and persistent but trend-stationary

time series.

6 Why Does it Work?

To understand better why it is that our Bayesian learning model can match the forecast anomalies

that we document in section 3, we now simulate data from the model we use in section 4 and assess

how learning occurs in this model. Relative to the analysis earlier in the paper, in this section, we

know the true data generating process. We can therefore assess how long it takes agents to learn

the truth and how initial beliefs that differ in various ways from the truth affect results from the

forecasting regressions we consider in section 3.
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Figure 11: Truth and Initial Beliefs for Three Simulations
Note: The figure plots the truth (gray vertical line) and initial belief distribution (black line) for ρ (left column),
γ (middle column), and σ (right column) for the three cases we consider. The first row of figures is the Unbi-
ased Initial Beliefs case, the middle row is the Downward-Biased Initial Beliefs case, and the bottom row is the
Upward-Biased Initial Beliefs case.

Recall that the model we use for the short rate in section 4 is:

yt = µt + xt (14)

µt = µt−1 +
√
γηt, ηt ∼ N(0, 1), (15)

xt = ρxt−1 +
√

1− γσωt, ωt ∼ N(0, 1). (16)

We present results for three cases which we refer to as a case of unbiased initial beliefs,

downward-biased initial beliefs, and upward-biased initial beliefs. Figure 11 plots the true param-

eter values (gray vertical lines) and initial belief distributions (black lines) for these three cases. A

more detailed description follows:

– Unbiased Initial Beliefs: In this case, we set the true parameters to values ρ = 0.95, γ = 0.3,

and σ = 0.5. These values are close to the mean of the belief distribution we estimate from

the real-world data in the second half of our sample. We assume that agents in the model
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have an initial belief distribution with the property that the mode of the belief distribution

for each parameter is equal to the truth:

ρ ∼ N(0.95, 0.01), γ ∼ B(9.052, 19.788), σ2 ∼ IG(1.25, 0.5625).

– Downward-Biased Initial Beliefs: In this case, we again set the true parameters to values

ρ = 0.95, γ = 0.3, and σ = 0.5. We however assume that agents in the model have an initial

belief distribution with the property that the modes of the belief distributions for ρ and γ are

smaller than the truth:

ρ ∼ N(0.4, 0.01), γ ∼ B(2.34, 26.5), σ2 ∼ IG(1.25, 0.5625).

• Upward-Biased Initial Beliefs: In this case, we set the true parameters to values ρ = 0.1,

γ = 0.01, and σ = 0.5. We then assume that agents in the model have an initial belief

distribution with the property that the modes of the belief distributions for ρ and γ are larger

than the truth:

ρ ∼ N(0.95, 0.01), γ ∼ B(9.052, 19.788), σ2 ∼ IG(1.25, 0.5625).

The reason why we choose different true values for this case is that the true value of ρ used

in the other two cases is sufficiently large that it is difficult to illustrate the effects of beliefs

that are upward biased relative to this truth.

For each of these three sets of assumptions, we simulate 500 samples of the same length as

the short rate data we use in section 4, i.e., 275 periods corresponding to the sample period from

1951Q2 to 2019Q4. For each of these simulated data series, we then perform the same exercise as

we did in section 4. Given their initial beliefs, the agents in the model learn about the parameters

of the model using the short rate series and Bayes Law. They then construct Bayesian forecasts.

The length of the sample period for the Bayesian forecasts is the same as for the real-world data.

We then run the same forecast rationality and expectations hypothesis tests on the resulting data

as we did on the real-world data in section 4.

Tables 6 and 7 present the results from this analysis. Table 6 presents results on autocorrela-

tion of forecast errors, the Mincer-Zarnowitz test, and Coibion-Gorodnichenko tests of over- and
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Table 6: Forecast Anomalies in Simulated Data

Forecast Horizon

1 2 3 4

Panel A: Autocorrelation

Unbiased Initial Beliefs
0.01 0.00 -0.00 -0.01

(0.08) (0.09) (0.11) (0.13)
1.00 1.00 0.99 0.84

Downward-Biased Initial Beliefs
0.16 0.19 0.19 0.18

(0.09) (0.10) (0.12) (0.14)
0.93 0.78 0.61 0.33

Upward-Biased Initial Beliefs
-0.34 -0.32 -0.28 -0.26
(0.06) (0.07) (0.08) (0.08)
1.00 1.00 1.00 1.00

Panel B: Mincer-Zarnowitz

Unbiased Initial Beliefs
0.96 0.92 0.88 0.83

(0.03) (0.05) (0.08) (0.11)
0.58 0.62 0.57 0.53

Downward-Biased Initial Beliefs
0.98 0.95 0.90 0.85

(0.03) (0.05) (0.08) (0.11)
0.27 0.40 0.45 0.47

Upward-Biased Initial Beliefs
0.37 0.33 0.34 0.35

(0.17) (0.22) (0.25) (0.27)
1.00 1.00 1.00 0.99

Panel C: Coibion-Gorodnichenko

Unbiased Initial Beliefs
0.01 0.01 0.01

–(0.09) (0.12) (0.15)
0.99 0.99 1.00

Downward-Biased Initial Beliefs
0.18 0.32 0.41

–(0.11) (0.19) (0.25)
0.66 0.55 0.79

Upward-Biased Initial Beliefs
-0.52 -0.55 -0.53

–(0.10) (0.13) (0.17)
1.00 1.00 1.00

Note: The top number for each case is the mean estimate across simulations. The middle number for
each case (in parentheses) is the standard deviation across simulations. The bottom number for each
case is the fraction of simulations that give a smaller estimate than the real-world data.

underreaction, while Table 7 presents results on the two tests of the expectations hypothesis we

consider in section 3. In each case, we report three statistics. The first is the mean estimated co-

efficient across the 500 simulations; the second statistic is the standard deviation of the estimated

effects across simulations (in parentheses); and the third statistic is the fraction of simulations that

give a smaller estimate than the estimate based on real-world data.

The main finding from this analysis is that the downward-biased initial beliefs simulation
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Table 7: Failures of the Expectations Hypothesis in Simulated Data

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Unbiased Initial Beliefs
0.95 1.01 1.05 1.19 1.31 1.51 2.06

(0.64) (0.63) (0.66) (0.72) (0.76) (0.82) (1.03)
0.07 0.07 0.08 0.12 0.16 0.16 0.08

Downward-Biased Initial Beliefs
0.17 0.20 0.23 0.33 0.42 0.57 0.97

(0.19) (0.21) (0.22) (0.29) (0.33) (0.40) (0.56)
0.17 0.30 0.38 0.57 0.65 0.66 0.29

Upward-Biased Initial Beliefs
2.46 2.14 1.97 1.71 1.64 1.59 1.50

(0.21) (0.16) (0.14) (0.09) (0.07) (0.06) (0.05)
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: Change in Long Rate

Unbiased Initial Beliefs
0.90 0.93 0.95 1.01 1.08 1.20 2.08

(1.27) (1.32) (1.36) (1.50) (1.63) (1.92) (3.00)
0.07 0.08 0.07 0.06 0.05 0.03 0.03

Downward-Biased Initial Beliefs
-0.66 -0.69 -0.74 -1.03 -1.39 -2.04 -3.62
(0.38) (0.40) (0.42) (0.52) (0.64) (0.91) (1.84)
0.17 0.28 0.24 0.32 0.34 0.51 0.66

Upward-Biased Initial Beliefs
3.91 4.13 4.38 5.59 6.90 9.56 13.77

(0.42) (0.42) (0.42) (0.51) (0.62) (0.86) (1.62)
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The top number for each case is the mean estimate across simulations. The middle number for each case (in paren-
theses) is the standard deviation across simulations. The bottom number for each case is the fraction of simulations that
give a smaller estimate than the real-world data.

roughly matches all of the anomalies we document in real-world data. This simulation yields

positively autocorrelated forecast errors, underreaction in the Coibion-Gorodnichenko regression,

values below one in the furture-short-rate regression, and negative values for the change-in-long-

rate regressions. In virtually all cases, the downward-biased initial beliefs simulation is quantita-

tively consistent with our real-world estimates of the anomalies in the sense that the real-world

estimate is well within the 95% central probability mass of the distribution of estimates from the

simulation.

In sharp contrast, the upward-biased initial belief simulation yields anomalies with the op-

posite sign from what we see in the real-world data. This simulation yields negatively autocor-

related forecast errors, overreaction in the Coibion-Gorodnichanko regression, and values above

one in both the future-short-rate regression and the change-in-long-rate regression. In addition

to this, the upward-biased initial beliefs simulation also yields a very different pattern from the
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Figure 12: Parameter Learning with Downward-Biased Initial Beliefs
Note: The figure plots the evolution of beliefs about ρ (left panel) and γ (right panel) over time when agents
start off with downward-biased initial beliefs. The solid gray line is the truth. The solid black line is the
evolution over time of the the mean point estimate across simulation. Recall that the point estimate in a
particular simulation is the mean of the belief distribution of the parameter in question in that simulation. The
broken black lines plot the evolution of the 90% and 10% quantiles of the distribution of point estimates across
simulations.

real-world data for the Mincer-Zarnowitz regression, while the downward-biased initial beliefs

simulation matches the real-world data for this regression as well.

Finally, the unbiased initial beliefs simulation yields results that are in most cases consistent

with full-information rational expectations on average. It yields virtually no autocorrelation of

forecast errors and a coefficient very close to zero in the Coibion-Gorodnichenko regressions (i.e.,

neither underreaction nor overreaction). For the expectations hypothesis regressions, it yields

coefficients that are on average slightly larger than one at longer horizons. But the value one is

not far from the middle of the distribution of coefficients across simulations.

From these results, we conclude that beliefs in society about interest rates in 1951 that under-

estimated the extent to which fluctuations in interest rates would be persistent relative to what

turned out to be the case provide an explanation for the forecast anomalies and failures of the

expectations hypothesis that we discuss in section 3. As we discuss earlier in the paper, such be-

liefs seem reasonable given the prior history of interest rate movements. Outside of war, the U.S.

had been on a gold or silver standard and a run-up and run-down of interest rates such as was

experiences from the 1960s to the 2000s had never before happened.

It is instructive to consider the speed of learning about the key parameters ρ and γ in the sim-
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Figure 13: Learning about Persistence with Different Priors on γ
Note: The figure plots the evolution of beliefs about ρ for the downward-biased case (solid black line) and for
a case that is the same as the downward-biased case except that γ is set (very close) to zero agents have very
tight initial beliefs around the true value of γ (dashed black line). The solid gray line is the truth.

ulations with downward-biased initial beliefs. Figure 12 plots the evolution of beliefs about these

parameters over time in the simulations. The gray line denotes the true value of the parameters.

The solid black line plots the evolution of the mean point estimate of the parameters across sim-

ulations from 1961Q3 to 2019Q4. In 1961, the point estimates of both ρ and γ are substantially

below the truth. Over time, both estimates rise, but this happens very slowly and both continue to

be substantially below the truth at the end of the sample – when agents have been learning about

these parameters for almost 70 years.

Figure 12 shows that it takes substantially longer than 70 years for the agents in our model to

learn the true values of the parameters ρ and γ. One reason for this is that increases in ρ and γ both

increase the persistence of fluctuations in the short rate. When agents revise upward their beliefs

about the persistence of the short rate, they face the problem of whether the higher persistence is

due to a more persistent xt process (i.e., a higher ρ) or to a more volatile µt process (i.e., higher γ).

Figure 13 compares the speed of learning about ρ in the downward-biased case with a case that is

the same as the downward-biased case except that γ is set (very close) to zero and agents have a

very tight initial belief distribution around the true value of γ – i.e., we turn off variation in µt and

learning about γ. In this case, learning about ρ is much quicker.
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Figure 13 shows that having two unobserved persistent components slows down learning.9

But even when variation in µt and learning about γ has been shut down, learning about ρ still

takes quite a few decades. This illustrates that learning about the persistence of highly persistent

time series processes is quite slow. Unit root tests have low power for similar reasons.

7 Conclusion

In this paper, we provide a new interpretation of well-known forecast anomalies of professional

forecasters. We stress that tests of forecast rationality are joint tests of rationality and the notion

that forecasters know the true model of the world. We relax the assumption that forecasters know

the true model of the world and show that the anomalies can be explained via Bayesian learning

of unobserved components models. Since the anomalies in question persist for decades, it is im-

portant that learning is slow in our setting. We show that learning is indeed extremely slow in the

type of unobserved components model we consider. This implies that forecasters with reasonable

initial beliefs that turn out not be centered on the truth result in forecast anomalies of the kind we

observe in the data that persist for decades. We also perform a simulation exercise in which we

know the true value of the parameters. We show in this exercise that reasonable initial belief errors

can result in extremely persistent forecast anomalies as in the real world setting. Importantly, in

this simulation exercise, we know that agents are using a correctly-specified model to learn and

yet learning is extremely slow. At a big picture level, the argument we are making is that forecast

anomalies arise for essentially the same reason that it is hard for econometricians to distinguish

certain classes of models / parameters even with decades of data, e.g., it is hard to reject a unit

root in many settings.

9Johannes, Lochstoer, and Mou (2016) develop similar results in a different setting.
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A Bayesian Updating about Parameters and States for Interest Rates

In this appendix, we describe in more detail the Gibbs Sampling algorithm we use to sample

from the joint posterior of the model parameters and latent states in the UC model for the short

rate. Define the vector of the parameters and latent states of the model through date t as θ ≡

(ρ, γ, σ,µ1:t,x1:t)
′. Let p(θ) denote the joint prior over the parameter vector θ. Let L(y1:t|θ) denote

the likelihood function of the data through time t, given a set of parameters θ. Our goal is to

sample from the posterior of the parameters given the data, p(θ|y1:t), where we know

p(θ|y1:t) ∝ L(y1:t|θ)p(θ)

We assume functional forms for the initial beliefs as follows

ρ ∼ N(µρ, σ
2
ρ)

γ ∼ B(αγ , βγ)

σ2 ∼ IG(ασ2 , βσ2)

The initial beliefs for the states are given by

µ1951Q2 ∼ N(y1951Q2, 1)

x1951Q2 ∼ N(0, 1)

where y1952Q2 denotes the 3-month Treasury bill rate in 1952Q2.

We start with an initial guess of the parameters θ(0) =
(
ρ(0), γ(0), σ(0),µ

(0)
1:t ,x

(0)
1:t

)′
. Given a

draw of the parameters θ(b), we draw θ(b+1) as follows:

1. Draw ρ(b+1)|γ(b), σ(b),µ(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about ρ can be up-

dated from the autoregression

x
(b)
t = ρx

(b)
t−1 +

√
1− γ(b)σ(b)ωt
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Define

σ̃2ρ ≡

σ−2ρ +

∑t
s=2

(
x
(b)
s−1

)2
(
1− γ(b)

) (
σ(b)

)2

−1

µ̃ρ ≡ σ̃2ρ

[
µρ
σ2ρ

+

∑t
s=2 x

(b)
s−1x

(b)
s(

1− γ(b)
) (
σ(b)

)2
]

The posterior of ρ is N(µ̃ρ, σ̃
2
ρ) and thus we draw ρ(b+1) ∼ N(µ̃ρ, σ̃

2
ρ).

2. Draw γ(b+1)|ρ(b+1), σ(b),µ
(b)
1:t ,x

(b)
1:t ,y1:t. There is no closed form expression for the posterior

of γ. We therefore draw it using a random walk Metropolis-Hastings step. Specifically, we

draw a proposal γ̃(b+1) ∼ N(γ(b), σ2γ,prop) where σ2γ,prop is a proposal variance chosen such

that this step has between a 25 and 40% acceptance rate over the burn-in period. We then set

γ(b+1) = γ̃(b+1) with probability αb+1, where

αb+1 ≡
L
(
y1:t|ρ(b+1), γ̃(b+1), σ(b),µ

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ̃(b+1)

)
L
(
y1:t|ρ(b+1), γ(b), σ(b),µ

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ(b)
)

Otherwise we set γ(b+1) = γ(b).

3. Draw σ(b+1)|ρ(b+1), γ(b+1),µ
(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about σ can be

updated from the two equations

µ
(b)
t = µ

(b)
t−1 +

√
γ(b+1)σηt

x
(b)
t = ρ(b+1)x

(b)
t−1 +

√
1− γ(b+1)σωt

Since ηt and ωt are independent, these regression equations can be treated as two indepen-

dent sources of information. Define

α̃σ2 ≡ ασ2 + (t− 1)

β̃σ2 ≡ βσ2 +

∑t
s=2

(
µ
(b)
s − µ(b)s−1

)2
2γ(b+1)

+

∑t
s=2

(
x
(b)
s − ρ(b+1)x

(b)
s−1

)2
2
(
1− γ(b+1)

)
The posterior of σ2 is IG(α̃σ2 , β̃σ2) and thus we draw

(
σ(b)

)2 ∼ IG(α̃σ2 , β̃σ2).
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4. Draw µ
(b+1)
1:t ,x

(b+1)
1:t |ρ(b+1), γ(b+1), σ(b+1),y1:t. This can be done using the standard Kalman

filter and simulation smoother.

This algorithm is repeated to produce B draws from the posterior distribution of the parame-

ters and states at each time t.

B Bayesian Forecasting of Interest Rates

The algorithm described in Appendix A yields B samples of the posterior of the states and pa-

rameters of our UC model at each point in time t. We index these samples by b as follows{
ρ(b), γ(b), σ(b),µ

(b)
1:t ,x

(b)
1:t

}B
b=1

. We then use the following algorithm to produce a real-time fore-

cast distribution for the yield curve at time t:

1. For each b = 1, . . . , B

(a) Simulate a path of shocks
{
η
(b)
t+h, ω

(b)
t+h

}H
h=1

from the standard Normal distribution.

(b) Starting from h = 1, construct a simulated path of the states overH subsequent periods

using equations (7)-(8):

µ
(b)
t+h = µ

(b)
t+h−1|t +

√
γ(b)σ(b)η

(b)
t+h

x
(b)
t+h = ρ(b)x

(b)
t+h−1|t +

√
1− γ(b)σ(b)ω(b)

t+h

(c) Use the simulated states to construct the forecast distribution of the short rate{
y
(b)
t+h|t

}H
h=1

where

y
(b)
t+h|t = µ

(b)
t+h|t + x

(b)
t+h|t

2. The forecast of yt+h given time t information is computed as

Ftyt+h =
1

B

B∑
b=1

y
(b)
t+h|t

The implied yield of a bonds of maturity n is given by

y
(n)
t = c(n) +

1

n

n−1∑
h=0

Ftyt+h
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We estimate the constant c(n) as the average level of the corresponding n-period bond yield in the

data since it is not identified from the expectations hypothesis alone. Note that this estimate of the

constant does not affect the results of the expectations hypothesis regression tests we run since it

only affects the level of the n-period yield.

At the end of the estimation we are left with a sequence of model-implied 1 to H-quarter

ahead forecasts {Ftyt+h}Hh=1 and model-implied yields
{
y
(h)
t

}H
h=1

for every quarter t from 1961Q3

to 2019Q4.

C Search over Initial Beliefs for Nominal Short Rate

Let θ = (αρ, βρ, αγ , βγ)′. Let α = {αh}Hh=1 and β = {βh}Hh=1 denote vectors of estimated coef-

ficients from the forecasting anomaly regressions for different horizons up through a maximum

horizon ofH using the SPF and yield curve data. Let α̂ = {α̂h}Hh=1 and β̂ =
{
β̂h

}H
h=1

denote those

same quantities estimated on the model implied forecasts and yields for a particular value of θ.

Define the moment function as

m̂(θ) =



αbias − α̂bias

αar − α̂ar

βar − β̂ar

αmz − α̂mz

βmz − β̂mz

αcg − α̂cg

βcg − β̂cg

βsr − β̂sr

βlr − β̂lr



(17)

The parameters are then estimated via the simulated method of moments (SMM) with an iden-

tity weighting matrix

θ̂ = argmaxθ ‖m̂(θ)‖2 = argmaxθm̂(θ)′m̂(θ)

Every evaluation of the moment function m̂(θ) requires us to sample from the posterior of

the UC model sequentially. Since this step is very computationally costly, we only re-estimate the

model every 4 quarters rather than every quarter, and use a burn-in sample of 20,000 draws and

keep the subsequent 20,000 draws rather than 50,000 for each of those quantities in our empiri-
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cal specification. The global minimum is found using MATLAB’s “particleswarm” optimization

routine.

D Bayesian Updating about Parameters and States for GDP

Here we describe the initial beliefs and sampling algorithm for our GDP application. We assume

that the initial belief of the CBO about the mean of the difference stationary component µ is Nor-

mal,

µ ∼ N(µµ, σ
2
µ).

We assume that the CBO has independent Normal initial beliefs about the sum of the autoregres-

sive parameters ρ1 + ρ2 and for the second autoregressive parameter ρ2. We truncate these initial

belief distributions in such a way as to put zero weight on parameter combinations that result in

the xt component being non-stationary. We can write these initial belief distributions as

ρ1 + ρ2 ∼ N(µρ, σ
2
ρ)I(ρ1, ρ2),

ρ2 ∼ N(µρ2 , σ
2
ρ2)I(ρ1, ρ2).

where I(ρ1, ρ2) is an indicator variable which is 1 for (ρ1, ρ2) combinations that result xt being

stationary and 0 otherwise.

This implies a joint initial belief distribution for ρ1, ρ2 the moments of which are

µρ1 = µρ − µρ2 ,

σ2ρ = σ2ρ1 + σ2ρ2 + 2σρ1,ρ2 ,

σρ,ρ2 = σρ1,ρ2 + σ2ρ2 = 0,

σρ1,ρ2 = −σ2ρ2 ,

σ2ρ1 = σ2ρ + σ2ρ2 .

In other words,  ρ1

ρ2

 ∼ N

 µρ − µρ2

µρ2

 ,
 σ2ρ + σ2ρ2 −σ2ρ2
−σ2ρ2 σ2ρ2


 I(ρ1, ρ2).
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We assume that the CBOs initial belief distribution about the the variance share γ of shocks to

the trend component is a Beta distribution,

γ ∼ B(αγ , βγ).

We assume that the CBOs initial belief distribution about the conditional variance σ2 is an Inverse

Gamma distribution,

σ2 ∼ IG(ασ2 , βσ2).

Lastly, we assume that agents’ initial beliefs about zt and xt in 1959Q3 are zt ∼ N(y1959Q3, 0.012)

and xt ∼ N(0, 0.012).

We start with an initial guess of the unknown parameters

θ(0) =
(
µ(0), ρ

(0)
1 , ρ

(0)
2 , γ(0), σ(0), z

(0)
1:t ,x

(0)
1:t

)′
.

Given a draw of the parameters θ(b), we draw θ(b+1) as follows:

1. Draw µ(b+1)|ρ(b)1 , ρ
(b)
2 , γ(b), σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about µ can

be updated from the equation for zt:

∆z
(b)
t = µ+

√
γ(b)σ(b)ut.

Define

σ̃2µ ≡

[
σ−2µ +

t− 1

γ(b)
(
σ(b)

)2
]−1

,

µ̃µ ≡ σ̃2µ

[
µµ
σ2µ

+

∑t
s=2 ∆z

(b)
s−1

γ(b)
(
σ(b)

)2
]
.

The posterior of µ is N(µ̃µ, σ̃
2
µ) and thus we draw µ(b+1) ∼ N(µ̃µ, σ̃

2
µ).

2. Draw ρ
(b+1)
1 , ρ

(b+1)
2 |µ(b+1), γ(b), σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about

ρ1, ρ2 can be updated from the equation for xt:

x
(b)
t = ρ1x

(b)
t−1 + ρ2x

(b)
t−2 +

√
(1− γ(b))σ(b)vt.
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Define

Σ̃ρ ≡

[
Σ−1ρ +

∑t
s=3[x

(b)
s−1, x

(b)
s−2]

′[x
(b)
s−1, x

(b)
s−2]

(1− γ(b))
(
σ(b)

)2
]−1

,

µ̃ρ ≡ Σ̃ρ

[
Σ−1ρ µρ +

∑t
s=3[x

(b)
s−1, x

(b)
s−2]

′x
(b)
s

(1− γ(b))
(
σ(b)

)2
]
.

The posterior of (ρ1, ρ2)
′ is N(µ̃ρ, Σ̃ρ) and thus we draw (ρ

(b+1)
1 , ρ

(b+1)
2 )′ ∼ N(µ̃ρ, Σ̃ρ).

3. Draw γ(b+1)|µ(b+1), ρ
(b+1)
1 , ρ

(b+1)
2 , σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. There is no closed form expression for

the posterior of γ. We therefore draw it using a random walk Metropolis-Hastings step.

Specifically, we draw a proposal γ̃(b+1) ∼ N(γ(b), σ2γ,prop) where σ2γ,prop is a proposal variance

chosen such that this step has between a 25 and 40% acceptance rate over the burn-in period.

We then set γ(b+1) = γ̃(b+1) with probability αb+1, where

αb+1 ≡
L
(
y1:t|µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ̃(b+1), σ(b), z

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ̃(b+1)

)
L
(
y1:t|µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ̃(b+1), σ(b), z

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ(b)
) .

Otherwise we set γ(b+1) = γ(b).

4. Draw σ(b+1)|µ(b+1), ρ
(b+1)
1 , ρ

(b+1)
2 , γ(b+1), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs

about σ can be updated from the two equations

∆z
(b)
t = µ(b+1) +

√
γ(b+1)σut.

x
(b)
t = ρ

(b+1)
1 x

(b)
t−1 + ρ

(b+1)
2 x

(b)
t−2 +

√
1− γ(b+1)σvt.

Since ut and vt are independent, these regression equations can be treated as two indepen-

dent sources of information. Define

α̃σ2 ≡ ασ2 + (2t− 3)/2,

β̃σ2 ≡ βσ2 +

∑t
s=2

(
∆z

(b)
s − µ(b+1)

)2
2γ(b+1)

+

∑t
s=3

(
x
(b)
s − ρ(b+1)

1 x
(b)
s−1 − ρ

(b+1)
2 x

(b)
s−2

)2
2
(
1− γ(b+1)

) .

The posterior of σ2 is IG(α̃σ2 , β̃σ2) and thus we draw
(
σ(b)

)2 ∼ IG(α̃σ2 , β̃σ2).

5. Draw z
(b+1)
1:t ,x

(b+1)
1:t |µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ(b+1), σ(b+1),y1:t. This can be done using the stan-
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dard Kalman filter and simulation smoother.

E Bayesian Forecasting of GDP

The algorithm described in Appendix D yields B samples of the posterior of the states and pa-

rameters of our UC model for GDP at each point in time t. We index these samples by b as follows{
ρ
(b)
1 , ρ

(b)
2 , γ(b), µ(b), σ(b), z

(b)
t|t , x

(b)
t|t , x

(b)
t−1|t

}B
b=1

. We then use the following algorithm to produce a

real-time forecast distribution for the GDP at time t:

1. For each b = 1, . . . , B

(a) Simulate a path of shocks
{
u
(b)
t+h, v

(b)
t+h

}H
h=1

from the standard Normal distribution.

(b) Starting from h = 1, construct a simulated path of the states overH subsequent periods

using equations

z
(b)
t+h|t = µ(b) +

√
γ(b)σ(b)u

(b)
t+h,

x
(b)
t+h|t = ρ

(b)
1 x

(b)
t+h−1|t + ρ

(b)
2 x

(b)
t+h−2|t +

√
1− γ(b)σ(b)v(b)t+h.

(c) Use the simulated states to construct
{
y
(b)
t+h|t

}H
h=1

where

y
(b)
t+h|t = z

(b)
t+h|t + x

(b)
t+h|t.

2. The forecast of yt+h given time t information is computed as

Ftyt+h =
1

B

B∑
b=1

y
(b)
t+h|t.

At the end of the estimation we are left with a sequence of model-implied 1 to H-quarter ahead

forecasts {Ftyt+h}Hh=1 for every year t from 1976Q4 to 2019Q4.

We must perform a few additional steps to transform our forecasts to ones that are comparable

to those produced by the CBO. The CBO publishes forecasts of growth in the average annual level

of real output. We define the average annual level of real output over the year preceding quarter

t as

Ȳt ≡
1

4

t∑
s=t−3

exp(ys).

44



As an example, in the CBO’s economic outlook published in 1990, its 1-year ahead forecast of GDP

growth is

100×
(
Ȳ1990Q4

Ȳ1989Q4
− 1

)
.

Thus to convert the model’s forecasts of quarterly log real GDP to average annual h-year ahead

level forecasts, we apply the following transformation to the simulated forecast distribution

FtȲt+h ≡
1

B

B∑
b=1

[
1

4

t+4h∑
s=t+4h−3

exp
(
Fty

(b)
s|t

)]
.

The associated forecasts of growth in average annual levels between year t + h − 1 and t + h for

h = 1, . . . ,H are

100×
(

FtȲt+h
FtȲt+h−1

− 1

)
.

F Search over Initial Beliefs for GDP Growth

We denote θ = (µρ, σρ, µρ2 , σρ2 , αγ , βγ)′. Let α = {αh}Hh=1 and β = {βh}Hh=1 denote vectors of

estimated coefficients from the forecasting anomaly regressions for different horizons up through

a maximum horizon of H using the CBO data. Let α̂ = {α̂h}Hh=1 and β̂ =
{
β̂h

}H
h=1

denote those

same quantities estimated on the model implied forecasts and yields. Additionally, denote the t−

statistics associated with these coefficients as {tα, tβ} = {tα,h, tβ,h}Hh=1 for the data and
{
tα̂, tβ̂

}
={

tα̂,h, tβ̂,h

}H
h=1

for the model. Define the moment function as

m̂(θ) =



αbias − α̂bias

tα,bias − tα̂,bias

βar − β̂ar

tβ,ar − tβ̂,ar
βmz − β̂mz

tβ,mz − tβ̂,mz
βcg − β̂cg

tβ,cg − tβ̂,cg



(18)
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The parameters are then estimated via SMM with the following objective function

θ̂ = argmaxθm̂(θ)′W m̂(θ)

where the elements of the objective function associated with the Mincer-Zarnowitz and Coibion-

Gorodnichenko coefficients are given 3 times the weight of all other elements inW . We also place

bounds on the estimated parameters as described in footnote 8 in the main text. The estimated

initial belief distributions are plotted in Figure 8.

Every evaluation of the moment function m̂(θ) requires us to sample from the posterior of

the UC model sequentially. Since this step is very computationally costly, we only re-estimate the

model every 4 quarters rather than every quarter, and use a burn-in sample of 15,000 draws and

keep the subsequent 15,000 draws rather than 50,000 for each of those quantities in our empiri-

cal specification. The global minimum is found using MATLAB’s “particleswarm” optimization

routine.
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