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I. Introduction. 

Investing according to environmental, social, and governance (ESG) 1
 criteria has gained considerable 

momentum in recent years, influencing enormous flows of capital (GSIA, 2018; New York Times, 2020; 

Blackrock, 2020; 2021). In response to the rise of ESG-related preferences among market participants, 

numerous products (indices, mutual funds) track aspects of the “E”, “S”, and “G” of ESG performance. 

This paper argues that most prior metrics focusing on the “E” of ESG have mismeasured firm 

performance in two ways. First, most indices focus on physical emissions instead of the monetary 

damage of emissions (MSCI, 2019; NUVEEN, 2020; Sustainalytics, 2021). The emphasis on mass likely 

arises from the perceived difficulty of calculating damages. This paper demonstrates how to connect 

emissions to monetary cost and how to incorporate these external costs into firm value. The second 

shortcoming is that many major products track only firms’ carbon intensity (MSCI, 2019; NUVEEN, 2021). 

This narrow perspective, in part, stems from the aforementioned tendency to focus on the mass of 

emissions. In the United States (U.S.) economy, CO2 emissions totaled about 5 billion tons in 2019. In 

contrast, combined emissions of the criteria air pollutants governed by the U.S. Clean Air Act amounted 

to under 100 million tons in the same year (USEPA, 2021: https://www.epa.gov/air-emissions-

inventories/air-pollutant-emissions-trends-data). Thus, from the perspective of total emissions, it would 

seem that tracking CO2 sufficiently captures firms’ environmental performance.  

So, why not just measure carbon intensity in tonnage? First, despite the dominance of CO2 emissions, 

recent research indicates that air pollution damages significantly exceed those from CO2 (Muller, 

Mendelsohn, and Nordhaus, 2011; Muller, 2019; Mohn et al., 2020). Specifically, Mohan et al., (2020) 

report that, globally, damages from fine particulate matter (one local air pollutant) range between two 

                                                            
1 One of the earliest references to the acronym ESG in reference to financial investment criteria is found in a 2004 
joint publication of the United Nations and the Swiss Federal Department of Foreign Affairs: 
https://d306pr3pise04h.cloudfront.net/docs/issues_doc%2FFinancial_markets%2Fwho_cares_who_wins.pdf . 

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://d306pr3pise04h.cloudfront.net/docs/issues_doc%2FFinancial_markets%2Fwho_cares_who_wins.pdf
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and three-times greater than the damages from CO2 between 1998 and 20182. Only reporting carbon 

intensity clearly misses important determinants of firms’ environmental performance. Therefore, an ESG 

index defined over multiple pollutants will better align capital allocations with actual firm “E” 

performance than indices defined strictly in terms of carbon intensity. 

Second, in most economies around the world, except for the European Union, CO2 emissions are 

unregulated. In contrast, binding regulations exist for air pollution in many developed countries. An ESG 

index reporting only carbon intensity misses a range of risks specifically tied to impacts from other 

pollutants. These risks may stem from lost profits due to costly compliance measures or from 

reputational risks associated with publicly announced violations. The key point is that extant policy risk 

manifests primarily for pollutants other than CO2, and, therefore, outside the scope of many existing 

ESG metrics.  

Third, monetization of pollution damage enables a reconceptualization of firm value that is needed to 

correct inefficiencies in financial markets. Metrics such as book value, operating free cash flow, or 

market capitalization reflect conventional notions of value that hinge on the goods and services firms 

produce and the assets they own. Participants in financial markets rely on these (and other) metrics to 

form expectations over firm performance, which drive the allocation of capital. Importantly, absent 

Pigouvian taxes, these market-based measures do not reflect external costs or benefits stemming from 

firms’ production processes or the subsequent use of their products. While an extensive literature 

characterizes the nature of environmental market failure in the markets for goods and services (NRC, 

2010; Muller, Mendelsohn, and Nordhaus, 2011; Tschofen et al., 2019), this paper contends that 

financial markets also fail to reflect these determinants of firm value and, as a result, inefficiently 

                                                            
2 This disparity in damage stems from large differences in the marginal damages from air pollution and CO2 
emissions. For example, the damage per ton of carbon dioxide (CO2) was recently estimated to be in the 
neighborhood of $50/ton. An emission of soot in the U.S. induces damages in excess of $100,000/ton (FWG, 2016; 
Muller and Mendelsohn, 2009; Gilmore et al., 2018). 
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allocate capital in pollution-intensive industries. A monetary ESG index defined over multiple pollutants 

will help to mitigate these inefficiencies. 

Unifying these three points is the argument that, in order to allocate capital efficiently, financial markets 

require good information regarding firm value and risks. An environmental performance index based on 

monetized damages from multiple pollution emissions informs markets in two ways. First, the deduction 

of damages adjusts commonly relied on metrics of firm value according to the costs emissions impose 

on society. This provides investors with a more socially comprehensive assessment of firms’ worth. 

Second, a multipollutant index captures a broad range of risks beyond those associated with carbon. 

Neither function is possible without monetization. Both enhance the information available to market 

participants focused on ESG investing.  

Empirically, this paper uses empirical modeling techniques to compute the monetary damages from five 

local air pollutants and three primary greenhouse gases (GHGs) produced by firms in the utility sector in 

the U.S. economy. The focus lies on the utility sector because of a relatively high degree of pollution 

intensity, excellent information on plant ownership, and pollution emissions. Further, as the U.S. 

economy increasingly turns to electrification as a means to decarbonize, the environmental 

performance of this sector will be a crucial determinant of macro-scale environmental outcomes. It is of 

broad social importance to allocate ESG-managed capital efficiently in this sector. 

Damages are estimated for the years 2014 and 2017 because these years correspond to the most recent 

nationally comprehensive facility-level emission inventories. The calculation of damages relies on the 

following steps. A text matching algorithm attributes plants to firms and their corporate parents. Next, 

emissions of eight distinct pollutants from approximately 10,000 facilities are monetized using peer-

reviewed integrated assessment models (Muller, Mendelsohn, and Nordhaus, 2011; Muller, 2014; 

Tschofen, Azevedo, Muller, 2019; FWG, 2016). These models produce location specific pollution damage 
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estimates. The paper proposes a new index of environmental performance, derived from these damage 

estimates, which benchmarks each firm’s contribution to industry-wide damage and market 

capitalization. Finally, the analysis explores the association between this index and conventional 

measures of firms’ financial performance including current period and forward share prices, returns, P/E 

ratios, earnings per share (EPS), and volatility. 

The pollutants covered in this paper include fine particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen 

oxides (NOx), ammonia (NH3), volatile organic compounds (VOCs), methane (CH4), nitrous oxide (N2O), 

and carbon dioxide (CO2). At a national scale, the magnitude of damage from these pollutants are large 

relative to standard macroeconomic indicators such as GDP and VA (USEPA, 1999; 2011; Muller, 

Mendelsohn, and Nordhaus, 2011; Muller, 2014; Tschofen, Azevedo, Muller, 2019; Mohan et al., 2020). 

As such, at the firm level, these elements of “E” performance have the capacity to dramatically affect 

investors’ perceptions of firm value and, hence, the allocation of capital. 

This analysis contributes to a large and growing literature on ESG investing. Several recent papers 

explore the motivation for investors’ interest in ESG managed assets (Reidl and Smeets, 2017; 

Hartzmark and Sussman, 2019; Barber, Morse, and Yasuda, 2020; Krueger, Sautner, and Starks, 2020). 

Shive and Forster (2019) examine whether corporate governance structures affect environmental 

performance. Other papers evaluate the performance of ESG funds, broadly defined, relative to 

benchmark indices (Auer and Schuhmaker, 2015; Friede, Busch, and Bassen, 2015; Halbritter and 

Dorfleitner, 2015; Verheyden et al., 2016; Winegarden, 2019). The present paper differs from this extant 

literature in its focus on how measurement of environmental performance is executed, rather than an 

assessment of investors’ beliefs or of the financial performance of existing ESG products.  

The key empirical results reported herein are the following. This paper proposes a new index of 

environmental performance. This index, denoted (Γ), is computed as the ratio of each firm’s 
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contribution to total utility sector damage to each firm’s contribution to total utility market 

capitalization. Alternatively, (Γ) is a relative measure of how much each firm causes in damage to how 

much each firm contributes to industry value. This metric reveals considerable variation in the 

environmental performance of firms in the utility sector. In 2014, the best performing firm exhibited a 

(Γ)  score of under 0.10, implying that its contribution to industry damage comprised 1/10th of its 

contribution to industry market capitalization. On the other end of the spectrum, the dirtiest firm had a 

(Γ) score of over 5.  

From 2014 to 2017 there was appreciable reordering of the (Γ) scores across firms as the use of 

pollution removal technologies, fuel sources, and asset (power plant) ownership changed.  This within-

firm variation in (Γ) is significantly associated with several measures of firms’ financial performance. 

Firms that became dirtier exhibited substantial share price reductions. Current returns were higher for 

firms that grew more pollution intensive, as investors required greater compensation for risks due to 

holding equity in such enterprises. Future EPS surprises were larger for dirtier firms because analysts 

systematically underestimated future EPS. The empirical analyses also reveal that an important 

determinant of EPS surprises is the degree to which pollution damage produced by each firm was 

concentrated at relatively few facilities. A Herfindahl Index for firms’ damage is positively associated 

with EPS surprises, and negatively associated with the noisiness of analysts’ EPS estimates. How 

damages are distributed across firms’ plants affects the ease with which analysts and other market 

participants can ascertain environmental performance. The empirical results suggest that this 

information transmission mechanism is especially relevant to financial outcomes for CO2.  

Importantly, the new index suggests systematically larger effects of environmental performance on 

financial outcomes than a measure comprised only of carbon intensity. Current period prices and 

returns are between two and three times more responsive to changes in the multipollutant (Γ) score 

than to changes in carbon intensity. EPS surprises are between two and five times more sensitive to 
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changes in (Γ) than to changes in carbon intensity. These results suggest that the multipollutant (Γ) 

score may provide asset managers, investors, and other market participants with new insights, relative 

to the standard reliance on carbon intensity, regarding the relationship between environmental 

performance and financial outcomes. Such insights may inform new capital allocation strategies. From 

the perspective of ESG disclosure requirements, an index based on the multipollutant measure 

proposed in this paper is more likely to affect capital allocation decisions than disclosure of carbon 

intensity. If a goal of standardized ESG disclosure is to affect behavior, (Γ) is clearly superior to previous 

metrics. 

The remainder of the paper is structured as follows. Section II. describes the data sources and empirical 

methods used in the study. Section III. reports results and IV. concludes. 

II. Data Sources and Methods. 

a. Estimation of Pollution Damage. 

This analysis computes the monetary damages from local air pollution and GHGs. To estimate the 

damages from local air pollution, the paper focuses on premature mortality due to exposure to fine 

particulate matter (PM2.5) concentrations3. Prior research indicates that this damage endpoint comprises 

as much as 90% of the total damages from air pollution in the U.S. economy (USEPA, 1999; 2011; Muller, 

Mendelsohn, and Nordhaus, 2011). Concomitantly accounting for illnesses may result in double counting 

of damages. GHG damages are computed using recent estimates of the Social Cost of Carbon (SCC), 

which is the present value of the damages from an emission of one ton of carbon dioxide equivalents 

(CO2eq), (FWG, 2016). Total GHG damages are the product of emissions and the SCC. 

                                                            
3 Ambient PM2.5 is comprised of multiple subspecies. These result from emissions of the local air pollutants listed 
below. 
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Emissions data for the local air pollutants are obtained from the USEPA’s National Emissions Inventories 

(NEI), which are published in three-year intervals (USEPA, 2017; 2020). These data are reported in U.S. 

short tons per year, by facility and pollution species. Local air pollutants covered include sulfur dioxide 

(SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), ammonia (NH3) and primary PM2.5. For 

the 2017 NEI (USEPA, 2020b), the principal greenhouse gases are also reported. These include carbon 

dioxide (CO2), methane (CH4), and nitrous oxide (N2O). For 2014, CO2eq are reported, by facility, in the 

EGRID database (EPA, 2020b). 

Armed with emissions, expressed in U.S. short tons per year, the next step is to convert tonnage to 

monetary damage. For the local air pollutants, this study relies on the AP3 integrated assessment model, 

which is an updated version of the AP2 and APEEP models (Muller and Mendelsohn, 2009; Muller, 

Mendelsohn, and Nordhaus, 2011; NAS NRC, 2010; Muller 2014; Clay et al., 2019; Tschofen, Azevedo, 

Muller, 2019). AP3 and its predecessors link emissions to monetary damages in five modules: emissions, 

air quality modeling, exposures, concentration-response, and valuation. Beginning with emissions, in a 

given data year, say 2017, the AP3 model attributes all emissions reported in the 2017 NEI to source 

type and physical location. These emissions include all discharges in the U.S. economy, not just those 

from utilities. So, encompassed in this database are pollution releases from utilities, transportation, 

households, manufacturers and every other anthropogenic and biogenic source type listed in the NEI. 

AP3 allocates the emissions to the county that the NEI reports the discharges occurred in. Further, AP3 

differentiates between emissions that occur at the ground-level, such as from cars and trucks, versus 

those that are released from a smokestack, such as from power plants.  

With emissions appropriately documented and allocated in the model, AP3 then employs an air quality 

model to track the dispersion and chemical transformation of emissions. The result of this step is an 

estimate of the annual average ambient concentrations of PM2.5 in every county in the coterminous U.S. 

Crucial to this step are county-resolved weather data which influence the fate and transport of 
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emissions. Also, a chemistry module in AP3 links emissions of SO2, VOC, NH3, and NOx to the formation 

of secondary PM2.5, as described in Sergi et al., (2020). The accuracy of the predicted concentrations 

produced by AP3 and its earlier version has been verified (Jaramillo and Muller, 2016; Minnesota Dept. 

of Commerce, 2016; Sergi et al., 2020). 

The next step in modeling premature mortality from PM2.5 exposure is to document county populations. 

These data are provided by the U.S. Census Bureau, by data year in five year age groups. In addition, the 

Centers for Disease Control and Prevention provide county mortality rate data, also differentiated by 

age (CDC Wonder, 2020). To estimate the fraction of mortality risk due to exposure to PM2.5, AP3 

employs concentration-response functions from the peer-reviewed epidemiological literature (Krewski 

et al., 2009; Lepeule et al., 2012). These functions are widely used in federal policy analyses and the 

academic literature (USEPA, 1999; 2011; Muller, Mendelsohn, and Nordhaus, 2011; Tschofen, Azevedo, 

and Muller, 2019). Equation (1) demonstrates the calculation of number of deaths for age group (a), in 

county (i), in year (y) due to exposure to PM2.5, or Ma,i,y. 

𝑀𝑀𝑎𝑎,𝑖𝑖,𝑦𝑦 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎,𝑖𝑖,𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎,𝑖𝑖,𝑦𝑦 �1 − 1

𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑃𝑃𝑃𝑃2.5,𝑖𝑖,𝑦𝑦
�      (1) 

where:  Popa,I,t = population count of age group (a), in county (i), year (y). 
Ratea,I,t = mortality rate of age group (a), in county (i), year (y). 
𝛽𝛽 = statistically estimated parameter from epidemiological study. 

 

Deaths are the product of the attributable risk from pollution exposure (the parenthetical term), times 

baseline risk, times the size of the exposed population.  

The final module in AP3 converts premature deaths to monetary units using the Value of a Statistical Life 

(VSL) approach that is widely employed in federal policy analyses and academic research (USEPA, 1999; 

2011; 2013; Muller, Mendelsohn, and Nordhaus, 2011; Tschofen, Azevedo, and Muller, 2019). The VSL is 

the marginal rate of substitution between income and mortality risk and it is the benchmark empirical 
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measure of the monetary value of small changes in mortality risk (Cropper, Hammit, Robinson, 2011). 

Empirical estimates of the VSL primarily stem from two methodological approaches: hedonic wage 

studies which estimate the wage premium workers require to assume additional mortality risk, and 

contingent valuation studies that ask people directly about their valuation of risk on surveys. The VSL 

used herein is the average of studies from both literatures (USEPA, 1999; 2011). Though prior research 

has varied the VSL based on age of the exposed population (Muller, Mendelsohn, and Nordhaus, 2011), 

this analysis applies a uniform VSL irrespective of the age of the exposed population, as is done in most 

policy analyses and applied research (USEPA, 1999; 2011). The VSL does vary with income. Thus, for 

each year of this analysis, changes in the reported median income level affect the VSL through an 

elasticity reported in the literature (Kleckner and Neumann, 1999). 

The monetary damage from PM2.5 exposure in county (i) during year (y) is the sum across age groups of 

the product of the count of premature deaths and the VSL: 

  𝐷𝐷𝑎𝑎,𝑖𝑖,𝑦𝑦 = ∑ �𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦 × 𝑀𝑀𝑎𝑎,𝑖𝑖,𝑦𝑦�𝐴𝐴
𝑎𝑎=1        (2) 

AP3 is used to estimate the marginal damage of emissions of SO2, NOx, NH3, VOC, and primary PM2.5, by 

facility (Muller and Mendelsohn, 2009; Muller, Mendelsohn, Nordhaus, 2011). To accomplish this, AP3 is 

run through with all emissions reported in the NEI to compute total baseline damage. Then, one ton of 

one emitted pollutant (p) is added to baseline emissions at one source (s) and AP3 is run again. The 

difference in damage is strictly attributable to the change in emission. This is the damage per ton for 

pollutant (p) at source (s). To compute total or gross external damage (GED) for source (s) and pollutant 

(p), the marginal damages are treated as emissions “prices” and the total damage from a source, 

industry, or sector’s emissions are the product of emission tonnage and marginal damages as shown in 

(3). 

𝐺𝐺𝐺𝐺𝐷𝐷𝑦𝑦,𝑠𝑠,𝑒𝑒 = �𝐺𝐺𝑦𝑦,𝑠𝑠,𝑒𝑒 × 𝑀𝑀𝐷𝐷𝑦𝑦,𝑠𝑠,𝑒𝑒�       (3) 
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Adding up damages across pollutants (p) yields the total GED produced by a given source in year (y). 

Adding up damages across sources yields total GED attributable to a firm. 

Computing the GED in this way finds its conceptual roots in the national income and product accounts 

(NIPA) in that the gross value of production from industries as reported in the NIPA is computed as the 

market price of its goods times the volume of goods produced.  This approach is used in the 

environmental accounting literature (Abraham and Mackie, 2006; Nordhaus, 2006; Muller, Mendelsohn, 

and Nordhaus, 2011; Muller, 2014).  

b. Financial Modeling. 

While the estimation of pollution damage relies on facility level emissions information, financial 

modeling occurs at the firm level. As such, linking facilities to firms is an essential step in the present 

study. Two critical variables in the emissions database enable this exercise. Most facilities are listed in 

the emissions data by name. This facility name often includes references to the firm owner. Second, 

most facilities also have an operator, owner, or company name listed in the data. Using both sources of 

information, a text string matching algorithm links facility or owner names to firm names in the Standard 

and Poor’s 500 and the Wiltshire 5000. Embedded in this algorithm are numerous crosswalks between 

parent companies and subsidiaries, the latter of which are often listed either directly in the facility or 

operator name information in the emissions datasets.  

For those plants that are linked to a publicly traded firm, the GED for each firm is compared to reported 

market capitalization by year (Siblis, 2020). The motivation for doing so is to provide a scale-adjusted 

measure of pollution damage. This analysis offers a new summary statistic of firms’ pollution damage 

intensity. This statistic, the gamma (Γ), is the ratio of each firm’s contribution to total industry GED, to 

total industry market cap, as shown in (4), where (f) denotes firm and Capf,y denotes market 

capitalization in year (y) for firm (f). 
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Γ𝑓𝑓,𝑦𝑦 =

𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝑦𝑦
∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1

        (4) 

This statistic expresses the relative share of damage to the relative share of value, for each of the N 

firms in the industry and it is defined on the [0,∞) interval. In what follows below, the firm-Γ𝑓𝑓,𝑡𝑡 is 

reported in three ways: for GHGs, Γ𝑓𝑓,𝑡𝑡
𝐺𝐺 , for local air pollutants, Γ𝑓𝑓,𝑡𝑡

𝐴𝐴 , and for both combined, Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 . 

This analysis next explores how firms’ environmental performance affects standard measures of firms’ 

financial performance. The financial performance measures include prices, trailing price-to-earnings 

ratios (P/E), returns, volatility in prices and returns, earnings per share (EPS), and Sharpe Ratios4. Prices, 

returns, volatility, P/E ratios, and Sharpe Ratios are resolved at the daily level. Refinitiv® reports EPS 

quarterly (IBES, 2021).  

Expression (5) displays the specification used with prices (Pf,y,m) as the outcome variable, where (m) 

denotes month-of-year, (d) denotes day of month. Auto-regressive distributed lag (ADL) models are 

employed. 

(𝑃𝑃)𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑 = 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 + �𝜃𝜃3,𝑙𝑙𝑃𝑃𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑−𝑙𝑙

12

𝑙𝑙=1

+ �𝜃𝜃4,𝑙𝑙X𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑−𝑙𝑙

12

𝑙𝑙=0

+ 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + ⋯ 

+𝜆𝜆𝑤𝑤 + 𝛽𝛽𝑎𝑎 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑  (5) 

Included in the specification are month-of-year, day-of-week, day-of-month, year, and firm fixed effects 

 (𝜔𝜔𝑚𝑚, 𝜆𝜆𝑤𝑤,𝛽𝛽𝑎𝑎 , 𝜏𝜏𝑦𝑦, 𝜇𝜇𝑓𝑓), and the index X, which includes net generation5, annual dividends and market 

capitalization, sentiment (Baker and Wurgler, 2006), returns, and volatility in prices and returns. The 

models include up to 10-day (two trading weeks) lagged values of the dependent variable, returns, and 

                                                            
4 The financial data is provided by Refinitiv® including the IBES earnings data. 
5 Net generation is included as an annual total of the amount of electricity each firm produced in year (y). 
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the volatility measures. Due to the relative infrequency with which dividends and market capitalization 

are reported, these covariates enter (5) annually. (5) is also fitted with returns (Rf,t), both measures of 

volatility, P/E ratios, and Sharpe Ratios as the outcome variable. The covariate of interest, Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 , is 

calculated on an annual basis, by firm. Expression (5) is fit distinctly for each measure of environmental 

performance (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  , Γ𝑓𝑓,𝑦𝑦

𝐺𝐺  , Γ𝑓𝑓,𝑦𝑦
𝐴𝐴  ) and for each financial outcome variable. A fourth specification includes 

 Γ𝑓𝑓,𝑦𝑦
𝐺𝐺  and Γ𝑓𝑓,𝑦𝑦

𝐴𝐴  together in the model. 

The analysis of EPS and environmental performance includes actual EPS, estimated EPS, and the EPS 

surprises. Expression (6) features EPS surprises as the dependent variable. (Distinct models are fit with 

actual and estimated EPS as the dependent variables.) 

𝐺𝐺𝑃𝑃𝑉𝑉𝑓𝑓,𝑦𝑦,𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 = 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 + 𝜃𝜃3EPS𝑓𝑓,𝑦𝑦−1,𝑚𝑚
𝑎𝑎𝑎𝑎𝑡𝑡𝑠𝑠𝑎𝑎𝑙𝑙 + 𝜃𝜃4EPS𝑓𝑓,𝑦𝑦−1,𝑚𝑚

𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 + 𝜃𝜃4EPS𝑓𝑓,𝑦𝑦−1,𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 + ∑ 𝜃𝜃5,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 +

𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚         (6) 

Included in (6) are one-year lagged values of actual EPS, forecast EPS, and the EPS surprise. Because of 

the infrequency with which the EPS are reported, only year, month-of-year, and firm fixed effects are 

included. 

The coefficients for the Γ𝑓𝑓,𝑦𝑦 statistics are reported in the following results section as these are of primary 

interest. The full model results are relegated to an online appendix. 

In models (5) and (6), the  Γ𝑓𝑓,𝑦𝑦 statistics are included contemporaneously, by year, with the dependent 

variables. Each of the above models is also fit with one-year ahead values of the dependent variables. 

The models retain the ADL specification, with the only difference being that the Γ𝑓𝑓,𝑦𝑦 statistics are lagged 

by one year relative to the dependent variables.  

In addition to the analyses discussed above, the full sample of 43 firms is subset according to whether 

firms are listed on the Standard and Poor’s 500 (S&P). The motivation for this subsampling exercise is 
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found in prior work arguing that investors are particularly attuned to firms on the S&P (Yang, Muller, 

Liang, 2021).  

One concern with the above specifications is whether extant air pollution regulations pertinent to 

utilities influence firm performance through environmental performance. In order to test for such a 

relationship, the models that feature prices, returns, and P/E ratios include the count of facilities in 

locations (counties) that are out of attainment with air pollution standards. The results of these 

specifications are reported in the appendix. The motivation for this approach is that plants in such 

locations are subject to especially strict controls on emissions6. 

i. Unit Root Tests 

The daily firm data on prices, returns, volatility, and Sharpe Ratios are tested for the presence of unit 

roots. The Augmented Dickey-Fuller Test is used. The test assumes the following form, where, as an 

example, daily prices are the subject of the test. 

 (∆𝑃𝑃)𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑 = 𝛼𝛼1 + 𝛼𝛼2𝑃𝑃𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑−1 + 𝛼𝛼2∆𝑃𝑃𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑−1 + 𝛼𝛼3𝑅𝑅 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑  (7) 

The hypothesis testing centers on the 𝛼𝛼2 term. The time series data for each firm is tested individually. 

Table A.1 in the appendix reports the results. Specifically, the table reports the number of firms (out of 

43 total firms) for which the null hypothesis of the presence of a unit root is rejected at the 𝛼𝛼 < 0.01 

level of significance. 

One goal of this paper is to compare how different measures of firms’ environmental performance 

influence financial performance. In light of this, the empirical exploration of the associations between 

                                                            
6 Specifically, Title I of the Clean Air Act stipulates limits on ambient concentrations of several air pollutants. 
Counties that exceed these limits are classified as “non-attainment” areas. States or municipalities then submit 
detailed plans to reach attainment status, which typically involved costly abatement. 
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firms’ financial performance and the  Γ𝑓𝑓,𝑦𝑦 statistics is repeated with two gross tonnage of GHGs and local 

air pollutants, and the  Γ𝑓𝑓,𝑦𝑦 statistics defined in terms of tonnage rather than the GED as shown in (8). 

Γ𝑓𝑓,𝑦𝑦 =

𝐺𝐺𝐻𝐻𝐺𝐺𝑓𝑓,𝑦𝑦
∑ 𝐺𝐺𝐻𝐻𝐺𝐺𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1

         (8) 

Finally, Refinitiv ® provides numerous measures of environmental performance. The analysis compares 

the sensitivity of financial performance to these alternative measures in the appendix, retaining the 

same basic ADL specification used above. 

III. Results. 

a. Firm Environmental Performance. 

Table 1 reports the growth in market capitalization, GED, and an adjusted measure of market 

capitalization that is net of GED. The GED are decomposed according to LAP and GHG. Table 1 reveals 

that the firms included in this analysis experienced a median annualized growth rate in market 

capitalization of just over 6 percent (in real terms). Against this trend in market capitalization growth, 

combined GED fell by about 20 percent, annually. This reduction was primarily due to declining LAP 

damages. Between 2014 and 2017, LAP GED dropped at a 27 percent annual rate. GHG GED were 

statistically flat. This simple decomposition of pollution damage indicates that indices which only track 

GHGs in the utility sector will seriously mischaracterize environmental performance. Subsequent 

sections of the paper will demonstrate that this has important implications for the relationship between 

financial outcomes and these measures of environmental performance.  

How do firms reduce damage? Firms have several options to reduce pollution damage. They can install 

pollution control technology such as flue gas desulfurization units and selective catalytic reducers to 

control SO2, and NOx, respectively. Companies may elect to switch fuels, from say coal to natural gas, to 
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reduce SO2 and CO2. Both of these approaches maintain output (net generation of kwh) while reducing 

pollution intensity. Alternatively, firms may close facilities. Of course, this reduces pollution, but it may 

concomitantly decrease output if other facilities are not acquired or constructed. 

The decreasing GED deducted from rising market capitalization results in high annual rates of growth in 

adjusted, or net, market capitalization; while market cap grew at 6.5 percent, market cap less GED grew 

by 16 percent, annually. When only the LAP GED are deducted, growth in net market capitalization is 14 

percent. And, if only GHG GED are subtracted, growth in adjusted market capitalization is about 8 

percent, or about 1.5 percent more rapid than annually growth in conventionally reported market 

capitalization. This phenomenon of rising within-market measures of growth coupled with falling 

pollution leading to more rapid pollution-adjusted growth was first documented at the economy-wide 

and sectoral level (Muller, 2013; 2014). The present paper is the first to examine this at the enterprise 

level. 

While table 1 summarizes firm market capitalization and GED growth rates, table 2 presents the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) 

scores, total GED, and GED per share outstanding for firms listed on the Standard and Poor’s 500 in the 

utility sector. Three themes emerge from this table. First, within year, there is considerable variation in 

the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores, from 0.06 to 5.81 in 2014. Second, there is considerable re-ordering of the firms’ (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) 

scores between 2014 and 2017. Third, the companies’ total GED and their GED per share provide an 

insightful means for investors and asset managers to relate pollution intensity to intuitive measures of 

firm value. 

In 2014, the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores ranged between 0.06 and 5.81. Recall that a (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) score of 0.06 means that 

American Water Works’ combined air pollution and GHG damage share (relative to the industry total) 

was less than one tenth of its market capitalization share. At the other end of the spectrum, NRG’s 

damage share was almost six times larger than its market capitalization share. Firms like CMS Energy 



17 
 

and Edison International exhibited (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores around 1. These firms had relatively equal damage and 

market capitalization shares. In 2017, the range in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores was even larger. 

The difference in GED per outstanding share also shows the difference in pollution intensity between 

firms. In 2014, American Water Works produced GED equivalent to just under $1 per share. NRG 

generated GED of nearly $60 per share. Figure 1 demonstrates the implication of these differences in 

pollution intensity for net share prices. The top left panel shows American Water Works. The black line 

traces monthly averaged share prices. The red line nets out GED per share7. At $1 per share, the 

deduction makes very little difference between the observed share price and that which nets out GED. 

While American Water Works was the cleanest firm in 2014, it dropped to the fifth cleanest in 2017. The 

company’s total GED and GED per share fell slightly over this period. Its ranking fell because other firms 

became even cleaner.  

The top right panel repeats the same exercise for XCEL Energy. For this firm, the GED per share 

amounted to between one-third and one-fifth of observed prices. What is interesting about XCEL is that 

the spread between actual and net prices remains roughly constant. Table 2 indicates that the GED per 

share held at about $8 per share from 2014 to 2017. And, total GED was essentially flat at $4 billion. This 

constant level of GED, in the context of an industry with GED that fell at an annual rate of 17 percent, 

results in a  Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  score that increased from 0.82 to 1.30. XCEL didn’t keep pace with its industry peers. 

The bottom left panel of figure 1 focuses on Edison International. This firm exhibited GED per share of 

about $17, which amounted to nearly one-third of its share price in 2014. In contrast to XCEL, Edison 

International’s GED per share fell precipitously to just under $8. This reduction is evident in figure 1. The 

spread between Edison International’s market share price and the GED-adjusted price narrowed 

appreciably. It’s Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  score also dropped from 0.96 to 0.78, and the total GED decreased by about one-

                                                            
7 Since the empirical calculation of GED occurs in 2014 and 2017, the GED is interpolated for 2015 and 2016. 
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half. Finally, the bottom right panel plots the market and adjusted share prices for NRG, the firm with 

the most pollution intensive Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  score in both 2014 and 2017. First, the horizontal line at zero indicates 

that deducting the nearly $60 in GED per share from NRG’s observed share price in 2014 results in a 

negative valuation. This also implies negative market capitalization for NRG. One might ask whether 

such a magnitude for the GED is plausible. Using 2002 data8, prior research demonstrated that the fleet 

of coal-fired power plants produced greater GED than its collective value-added (Muller, Mendelsohn, 

and Nordhaus, 2011). So, there is precedent for this degree of pollution intensity for utilities in the 

literature. Despite remaining as the most pollution intensive firm, NRG cleaned up considerably. Its GED 

per share dropped from about $60 in 2014 to $25 in 2017. Total GED produced by the company fell from 

$19 billion to $8 billion in 2017. Yet, its Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  grew from 5.8 in 2014 to 8.3 in 2017. The firm became even 

more of an outlier in terms of its contribution to industry damage, relative to market capitalization.  

The rationale for the comparison between firms’ market share price and the GED-adjusted share price is 

the following. An investor holding a share of a firm has an ownership stake in the firm, which conveys a 

claim to earnings, the value of liquidated assets and the like. The GED per share thus represents 

investors’ ownership of the monetary damage caused by pollution emitted during firms’ production 

processes. Absent regulation, such as a Pigouvian tax that charges firms for the damages caused by their 

emissions, the GED is not realized by investors in a pecuniary sense. Because, in the U.S. at least, 

pollution policy does not feature Pigouvian taxation (or the polluter pays principle more broadly), the 

GED per share may serve an important informational role to investors and asset managers, especially 

when this metric is directly compared to market share prices. 

 

                                                            
8 In 2002, the electric power industry was characterized by much higher levels of pollution intensity and gross 
emissions than in 2014 (Holland et al., 2019). 
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b. Firm Financial Performance. 

Tables 3 and 4 report the empirical results from the ADL regression models. Table 3 examines current 

period outcomes, table 4 focuses on financial outcomes the year after the (Γ𝑓𝑓,𝑦𝑦) scores are calculated. 

Each financial outcome measure (the dependent variable from each regression) is shown in the row 

headings, and each environmental performance measure is shown in the column headings. In both 

tables, column (1) features (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ), whereas columns (3) and (4) include (Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ) and (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ), respectively. 

Column (2) includes (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and (Γ𝑓𝑓,𝑦𝑦

𝐺𝐺 ) as separate covariates together in the same model. Tables 3 and 4 

report only the fitted coefficients on the (Γ𝑓𝑓,𝑦𝑦) measures. The full regression results are shown in the 

online appendix. 

  i. Prices. 

Table 3 provides clear evidence that current period share prices fall as firms became more pollution 

intensive. This holds for each specification. Because the daily price series are non-stationary, as 

indicated by the results of the Dickey-Fuller test in table A.1, the price series is first-differenced. The 

interpretation of the coefficient on (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is: a one unit increase in (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) corresponds to a $0.0148 

percent decrease in daily price changes (p < 0.01). The average daily price change is $0.029. So, the 

estimated effect of a one-unit worsening in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is quite large: about 50 percent of daily price changes. 

However, a one-unit change in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is a very large increase in pollution intensity; the 95th percentile of 

changes in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) from 2014 to 2017 is 1.4. The average change in (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) was about 0.045. The coefficient 

on (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) suggests that an average firm incurred a statistically significant price reduction of 2.3 percent 

due to changes in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Recall that these models include firm fixed effects9. It is within firm changes in 

                                                            
9 Table A.2 in the appendix reports how the coefficient on (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) changes as a function of controlling for different 
combinations of firm and time fixed effects. 
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pollution intensity from 2014 to 2017 that drive the associated price responses. Within firm variation in 

(Γ𝑓𝑓,𝑦𝑦) reflects repositioning of firms within the utility sector according to their relative pollution intensity 

of output. So, as firms re-shuffle between 2014 and 2017 according to the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) measure, share prices 

respond inversely to firms’ pollution intensity.  

In a theme evident across multiple financial outcomes, the price changes due to pollution intensity is 

significantly larger when damages from air pollution and GHGs are combined in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) measure. 

Column (2) shows that the price effects of (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and (Γ𝑓𝑓,𝑡𝑡

𝐺𝐺 ), when these metrics are included together in 

the same model, are about one-third to one-half the magnitude of (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). In columns (3) and (4), LAP 

intensity and GHG intensity are included in separate models as stand-alone measures of environmental 

performance. The marginal effect of both measures is about one-half the magnitude of (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Hence, 

columns (3) and (4) suggest pollution intensity measures that focus on either just air pollution or just 

GHGs will substantially underestimate the price response to changes in pollution intensity, relative to 

(Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Summarizing, table 3 provides robust evidence that current period prices respond inversely to 

firms’ relative pollution intensity and that the combined, multi-pollutant measure exerts the largest 

effect. Table 4 indicates that the negative association between the firms’ (Γ𝑓𝑓,𝑦𝑦) scores and share prices 

does not persist one year after the firms’ (Γ𝑓𝑓,𝑦𝑦) scores are calculated. The marginal effect of firms’ (Γ𝑓𝑓,𝑦𝑦) 

scores is about the same size as in table 3, but the coefficients are not precisely estimated.  

ii. Returns and Risk. 

Table 3 provides evidence that investors require greater returns for firms that became dirtier relative to 

their peers. A one-unit increase in pollution intensity for the combined (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score is associated with a 5 

percent increase in weekly returns (p < 0.01). Given that the average change in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is just 0.045, the 

estimated coefficient implies an increase in weekly returns of 0.23 percent for an average firm. On an 
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annual basis, this amounts to roughly a 12 percent premium10.  Bolton and Kacperczyk (2019) report a 2 

to 3 percent annual premium on returns for firms with higher total CO2 emissions11.  To compare with 

this result, column (4) indicates that the coefficient for carbon intensity is 0.0295. The average change in 

(Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) is 0.029. Annualizing the carbon return premium using the coefficient in column (4), for an average 

firm, yields an estimated premium of 4.5 percent, which is larger than, but comparable to that reported 

by Bolton and Kacperczyk (2019). Table 4 indicates that the returns one year following the 

environmental performance measures are also positively associated with the (Γ𝑓𝑓,𝑦𝑦) scores. The effect 

sizes tend to be larger, however, the statistical significance is weaker than for current returns. In accord 

with the results for share prices, the combined measure of pollution intensity exerts an effect on returns 

that is about two-times greater than the (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) or the (Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ) scores. 

Table 3 includes two measures of risk: volatility in prices and volatility in returns. Price volatility is not 

significantly related to the environmental performance measures. In contrast, volatility in returns is 

positively associated with pollution intensity for all of the (Γ𝑓𝑓,𝑦𝑦) scores. The coefficient for (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is 0.025 

(p < 0.05). The mean volatility for firms in this sample is 1.51: a one unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is associated 

with a 1.7 percent increase in (weekly) volatility. Reiterating the pattern observed in prices and returns, 

the coefficient associated with (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ), the combined measure of pollution intensity, is between 1.5 and 2 

times larger than the coefficients for the air pollution and GHG intensity metrics. Table 4 provides 

suggestive evidence that volatility in returns falls for more pollution intensive firms, one year following 

when the (Γ𝑓𝑓,𝑦𝑦) scores are calculated. This effect is only significant for the (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) metrics. 

The bottom row of table 3 focuses on Sharpe Ratios, defined as the ratio of returns to volatility in 

returns. Sharpe Ratios are interpreted as a measure of risk-adjusted returns. Beginning with the 

                                                            
10 The annualized premium is: (1+0.0023)52- 1 = 0.12.7. 
11 Similarly, Hsu, Li, and Tsou (2020) find higher returns for firms that are higher emitters of toxic air pollutants (not 
those covered herein). 
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combined measure of pollution intensity (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ), table 3 indicates that a one unit worsening of (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) 

corresponds to a 25 percent reduction in risk-adjusted returns. Again, referencing the firm average 

change in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) of 0.045, a typical firm incurred a small (1.1 percent) decrease in risk-adjusted returns. 

The effect of pollution intensity on the Sharpe Ratios appears to be driven by local air pollution. The 

coefficients for the (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) metric in columns (2) and (3) are about -0.07 (p < 0.01). The (Γ𝑓𝑓,𝑦𝑦

𝐺𝐺 ) score is not 

significant at conventional levels. Table 4 indicates that the Sharpe Ratios one year after the (Γ𝑓𝑓,𝑦𝑦) scores 

are calculated are not associated with these measures of environmental performance. 

iii. Earnings and P/E Ratios. 

Table 3 shows that, despite the significant decline in prices associated with each measure of 

environmental performance, the trailing P/E ratios are positively associated with the (Γ𝑓𝑓,𝑦𝑦) scores12. This 

association is largely driven by carbon intensity. In columns (2) and (4) the (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) score exhibits a positive 

and significant (p < 0.05) effect on the P/E ratios, which enter the regression models in natural log form. 

As such, the estimated coefficients for the (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) scores suggest a 15 percent increase in the P/E ratios 

for each one-unit change in (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ). The air pollution damage metrics are not significantly associated with 

the P/E ratios. Repeating an earlier theme, the combined pollution damage measure (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) displays a 

larger partial effect on the P/E ratios (0.266; p < 0.10) than either the (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) or the (Γ𝑓𝑓,𝑦𝑦

𝐺𝐺 ) scores. 

The positive effect of pollution intensity on P/E ratios, despite the negative association between the 

(Γ𝑓𝑓,𝑦𝑦) scores and prices, implies that analysts’ EPS estimates (which comprise the denominator of the P/E 

ratios) must also fall with the (Γ𝑓𝑓,𝑦𝑦) scores. To test this, analysts’ EPS estimates are regressed on each 

(Γ𝑓𝑓,𝑦𝑦) score. The bottom panel of table 5 reports that current period EPS estimates are negatively 

                                                            
12 Recall that the trailing P/E ratio features observed prices in 2014 and 2017, relative to analysts’ estimated EPS 
for the preceding 12 month period. 
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associated with the (Γ𝑓𝑓,𝑦𝑦) scores. A one unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is associated with a $0.15 decrease in 

estimated EPS (p < 0.01). The average estimated EPS is $2.80. The coefficient implies a six percent 

reduction in EPS for a one-unit change in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Recall that a one-unit increase in (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) induced a $0.015 

reduction in price changes. So, the $0.15 reduction in EPS estimates outweighs the price effect. Thus, 

the P/E ratios rise for firms that became more pollution intensive.  

In addition to the combined score, both of the (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) scores are significantly, negatively associated with 

the EPS estimates (p < 0.05). This is not surprising given that many current ESG indices focus exclusively 

on carbon intensity. The coefficients for the air pollution scores are also negative, but imprecisely 

estimated.  

In addition to the EPS estimates, the bottom panel of table 5 also reports EPS actuals, and EPS surprises, 

defined as the difference between the two. While EPS actuals are not systematically associated with the 

(Γ𝑓𝑓,𝑦𝑦) scores, EPS surprises appear to be. Both columns (2) and (4) indicate that carbon intensity (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) 

drives larger EPS surprises. The coefficients suggest that a one-unit increase in the (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) is associated 

with a 2 percent increase in EPS surprises (p < 0.05).  EPS surprises are reported by Refinitiv® as the 

difference between actual and the mean estimated EPS across analysts. Hence, these empirical results 

suggest that analysts underestimate EPS to a greater extent for firms that became relatively more 

carbon pollution-intensive from 2014 to 2017.  

The top panel of table 5 reports the effect of pollution intensity on future EPS actuals, estimates, and 

surprises. There are two key results from this analysis of future EPS. First, each of the measures of 

pollution intensity is significantly associated with all of the EPS measures. Second, EPS surprises are 

robustly, positively associated with pollution intensity. For example, a one-unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) induces 

a $0.31 increase in actual EPS (p < 0.01) and just a $0.15 increase in estimated EPS (p < 0.01). 

Accordingly, EPS surprises are 15 percent larger for firms that incur a one-unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Across 
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the (Γ𝑓𝑓,𝑦𝑦) metrics, the partial effect on actual EPS is roughly double that of the estimated EPS. This 

difference results in the large positive association between EPS surprises and the (Γ𝑓𝑓,𝑦𝑦) scores. This 

means that analysts’ errors in estimating EPS stem not from projecting decreases in EPS for dirtier firms. 

Rather the errors are due to underestimating the degree to which actual EPS increase as a function of 

pollution intensity. And, repeating a pattern evident in the analysis of prices, returns, and volatility, the 

combined, multi-pollutant metric (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) exhibits a larger effect on actual EPS, the estimated EPS, and the 

EPS surprise than the other measures.  

The systematic EPS errors for dirtier firms suggest that a careful portfolio manager could exploit the 

findings reported herein to achieve a period of overperformance relative to a strategy based on the 

reported EPS estimates. Suppose a manager employs the mean EPS estimates to determine their capital 

allocations within the utility sector. This tack would down-weight dirtier firms in the portfolio as 

expected earnings are lower than for cleaner firms. Because the EPS forecasts are biased down for 

pollution intensive firms, a manager informed by the results in table 5 could capitalize on this bias to 

generate superior returns relative to a strategy strictly adherent to the mean EPS forecast. Further, a 

manager focusing on the multipollutant index would stand to roughly double the returns to this 

approach relative to a strategy based solely on carbon intensity.  

Table A.3 explores how the distribution of damages, across facilities owned by the same firm, affects the 

future EPS surprises. A motivation for exploring the intra-firm distribution of damage is the following. 

Emissions (and damages) that emanate from fewer plants makes ascertaining firm’s environmental 

performance easier. This would matter for regulators as well as other market participants (including 

analysts) using real time surveillance or otherwise trying to glean environmental performance by 

observational means. To measure the firm-level concentration of damages, a Herfindahl Index is 

computed as shown in (9):  
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H𝑓𝑓,𝑦𝑦 = ∑ � 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝐶𝐶,𝑦𝑦

∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝐶𝐶,𝑦𝑦
𝑃𝑃
𝐶𝐶=1

�
2

𝑃𝑃
𝑒𝑒=1         (9) 

where p = facility. 

This index characterizes the degree to which firms’ damages are concentrated in relatively few facilities, 

akin to how a typical application of the Herfindahl Index conveys the concentration of market shares 

across firms within an industry. One would expect the Herfindahl Index in (9) to increase the EPS 

surprise, because analysts would more readily assess environmental performance, thereby enhancing 

their tendency to underestimate EPS for pollution intensive firms. 

Table A.3 reports the resulting from running the same regressions as reported in table 5 (with EPS 

surprises as the dependent variable) with the Herfindahl Index added as an independent variable. Table 

A.3 confirms the hypothesis above, especially for CO2. A 1 percent increase in the Herfindahl Index for 

CO2 exerts a 7 percent increase in the EPS surprise (p < 0.01). Also, the coefficient for (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) increases 

from 4.5 in table 5 to 9.3 in table A.3 upon inclusion of the Herfindahl Index. In column (3), which also 

includes (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and the Herfindahl Index for air pollution, the Herfindahl Index for CO2 retains its 

significance. The magnitude of its effect on the EPS surprise attenuates only slightly, relative to column 

(1). These results indicate that analysts’ EPS are less accurate for companies whose CO2 damages 

emanate from relatively few sources. As argued above, one explanation for this result is that the 

information about emissions and damages required for analysts to judge environmental performance is 

less costly to acquire for firms with higher Herfindahl scores. Adding a Herfindahl index for air pollution 

does not significantly affect EPS surprises. 

Table A.4 explores the standard deviation across analysts’ EPS estimates, by firm. The bottom panel 

focuses on the standard deviations for current period estimates. There is suggestive evidence that 

dispersion in analysts’ estimates is higher for firms that become more carbon-intensive. However, the 
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coefficient of variation does not systematically vary with the (Γ𝑓𝑓,𝑦𝑦) scores. This implies that the standard 

deviations vary in proportion to the mean EPS estimates. The top panel of table A.3 examines the 

dispersion of year ahead EPS estimates. In the year ahead context there is more consistent evidence 

that analysts’ estimates become noisier as firms grow more pollution intensive. A one unit increase in 

the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score is associated with a $0.01 increase in the standard deviation of analysts’ estimates (p < 

0.10). The effect is also evident in the (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) scores. While pollution intensity increases the standard 

deviation of EPS estimates, it reduces the coefficient of variation. A one unit increase in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score 

is associated with a $0.01 decrease in the coefficient of variation in analysts’ estimates (p < 0.01). Table 

5 shows why this is the case. The (mean) EPS estimates increase by $0.15 (p < 0.01) for each unit 

increase in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score. Because this effect is so much larger than that for the standard deviation 

($0.01 p < 0.10), the coefficient of variation falls. So, not only do analysts overreact to firms’ pollution 

intensity, but, collectively, there appears to be less disagreement in the estimates, according to the 

coefficient of variation.  Analysts coalesce around biased EPS estimates. 

Table A.5 reports the results from regressing measures of dispersion in analysts’ EPS estimates on the 

Herfindahl Indices. The key finding is that the coefficient of variation in the EPS estimates falls as firms 

have higher CO2 Herfindahl scores, as observed in columns (1) and (5). Information regarding firms’ CO2 

environmental performance is easier to obtain for firms with higher Herfindahl scores. If the information 

is easier to access, it is more likely that a plurality of analysts share the same, or similar, information. 

This facilitates greater agreement among analysts, and, in turn, less dispersion in their EPS estimates. 

The Herfindahl indices for air pollution do not affect the dispersion in EPS estimates. 

Tables A.3 and A.5 suggest that, at the margin, increasingly concentrated damages among facilities 

owned by the same firm induces greater EPS surprises and less noisy EPS estimates for more carbon-
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intensive firms than for firms that grew more air pollution intensive. Why would this effect manifest for 

more carbon-intensive firms?  

One explanation hinges on a version of Keynes’ beauty contest. Analysts expect investors and other 

market participants to react to news about carbon intensive firms because the current offering of 

environmental performance metrics in the market emphasize carbon intensity, not air pollution (MSCI, 

2019; NUVEEN, 2021; Sustainalytics; 2021). Higher Herfindahl Index scores make it easier for both those 

developing the environmental performance metrics and market participants to ascertain CO2 

performance.  So, analysts may believe that highly concentrated, carbon-intensive firms bear additional 

reputation risk in light of the fact that environmental performance metrics guiding ESG allocations 

emphasize carbon and that the transmission of information regarding their performance is facilitated by 

the concentrated nature of damages for these firms. 

A second explanation for the importance of the Herfindahl Index is that market participants might 

consider future regulatory risk for concentrated, carbon-intensive firms. Efforts to manage 

environmental pollution often focus on the largest sources first. As governments increasingly focus on 

limiting GHG emissions from the utilities sector, regulatory constraints may bind first for companies with 

large plants. These are the firms with higher Herfindahl scores. Of course, increased costs of compliance 

with environmental policy would adversely affect profits, and EPS.  

The absence of an effect of the Herfindahl Index for air pollution damage reflects the information 

channel outlined above. Information regarding air pollution emissions has been gathered by federal 

regulators and made available to the public for decades. Some of the local air pollutants covered in the 

(Γ𝑓𝑓,𝑡𝑡
𝐴𝐴 ) measure have been regulated since the 1970s. Since air pollution emissions have been extensively 

monitored for many years, the degree of concentration in damages does not appreciably affect the EPS 

surprises because information regarding environmental performance in this dimension is already 
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accessible to market participants. Further, since extant ESG metrics largely ignore local air pollution, the 

degree of concentration in air pollution damage is likely irrelevant to market participants and index 

developers. 

iv. The Standard and Poor’s 500. 

Table 6 reports the results of regressing measures of current financial performance on two subsamples 

of firms: those listed on the S&P 500 and the rest. The central insight from this exercise is that financial 

outcomes for firms on the S&P tend to be more sensitive to the (Γ𝑓𝑓,𝑡𝑡) scores than the firms not on the 

S&P. For the combined (Γ𝑓𝑓,𝑡𝑡) score, prices, returns, volatility in returns, and the Sharpe Ratios are 

significantly affected by (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) for firms on the S&P. These outcomes are not significantly associated with 

(Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) for firms not on the S&P. P/E ratios, in contrast, are significantly associated with (Γ𝑓𝑓,𝑡𝑡

𝑇𝑇 ) across both 

subsamples of firms. One argument for the strong association between environmental performance and 

financial outcomes for firms on the S&P is the degree of exposure to various stakeholders for these 

firms. That is, the S&P is a widely employed gauge of financial markets. Because of this, market 

participants are more likely to follow environmental performance (and other dimensions of 

performance) for this subset of firms, relative to other publicly traded enterprises. Though this analysis 

cannot precisely test this mechanism, prior authors have made similar claims (Yang, Muller, Liang, 

2021). 

v. Air Pollution Regulations. 

Table A.6 in the appendix explores the role of extant air pollution regulations on prices, returns, and P/E 

ratios. The count of facilities, by firm, that are located in non-attainment areas (denoted NA Count in 

table A.6) enters in levels and it is interacted with the (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) score. The top panel employs current 

financial outcomes. The parameter estimates from tables 3 and 4 are reported alongside the 

specification including the non-attainment measure. There are two results in table A.6 emphasized here. 
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First, for current returns, including the controls for non-attainment reduces the coefficient on (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) by 

about 40 percent. The smaller coefficient on (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) suggests that investors command a smaller premium 

on returns for firms that grow dirtier without owning any plants in non-attainment counties. This implies 

that about 60 percent of the premium reported in table 3 is not due to extant regulatory risk for air 

pollution. And, while the count of facilities in non-attainment areas entering in levels is not significant, 

the interaction term with (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) is -0.0034 (p < 0.01).  

The other notable result in table A.6 pertains to future P/E ratios. Recall from table 5 that, without the 

non-attainment covariates, future P/E ratios fell by about 20 percent for a one-unit increase in (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ). 

Now, for firms without any plants in non-attainment areas, the negative effect on P/E ratios is much 

larger, about 30 percent (p < 0.05). The detailed analysis of EPS estimates revealed that (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) positively 

influences analysts future EPS estimates, which, all else equal, reduces the P/E ratio. Thus, comparing 

tables 5 and A.6 suggests that analysts may be more optimistic about EPS for firms that grow dirtier, but 

that do not own plants in non-attainment areas.  

Why would analysts’ EPS estimates manifest in this way? Consider that firms may become dirtier 

relative to their peers by using dirtier fuels which tend to be cheaper than cleaner burning fuels. 

Alternatively, if some firms elected to invest in costly abatement technology, those that do not would 

become more pollution intensive according to the (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) metric. In either case, dirtier firms may expect 

to lower costs and earn higher profits. The drawback to becoming dirtier, of course, is reputation and 

regulatory risk. Risk due to environmental policy is limited for firms without plants in nonattainment 

areas. Therefore, one reason analysts are more optimistic about EPS for dirty firms without plants in 

non-attainment areas might be the absence of regulatory risk, coupled with the apparent benefits of 

becoming more pollution intensive. Had reputation risk dominated the formulation of EPS estimates, 
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one would not expect to see the larger effect on P/E ratios due to (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) for firms without plants in non-

attainment areas. 

c. Comparing Alternative Measures of Environmental Performance. 

Table A.7 in the appendix compares environmental performance scores and metrics published by 

Refinitiv® to those developed in this paper, and the associations of each with prices, returns, and EPS 

surprises. The top panel of table A.7 focuses on current period outcomes, the bottom panel reports 

results for future period financial outcomes. Summarizing the top panel, seven out of nine coefficients 

corresponding to the (Γ𝑓𝑓,𝑡𝑡) scores are significantly associated with financial outcomes. Just four out of 

twelve coefficients for the Refinitiv® measures are significant determinants of financial outcomes. In the 

bottom panel of table A.7, again, seven out of nine coefficients corresponding to the (Γ𝑓𝑓,𝑡𝑡) scores are 

significantly associated with financial outcomes. Only three out of twelve environmental performance 

measures from Refinitiv® significantly affect future financial outcomes. From this comparison, the 

conclusion is clear that the (Γ𝑓𝑓,𝑡𝑡) scores are systematically stronger determinants of financial outcomes 

than the Refinitiv® measures for the firms and time periods covered in this study. 

Table A.8 in the appendix reports how current period financial outcomes vary with the (Γ𝑓𝑓,𝑡𝑡) scores 

defined in terms of emissions, rather than damages. The key insight in this table is that GHG emissions 

dominate LAP emissions because of the large difference in emissions tonnage. Therefore, multi-

pollutant environmental performance scores expressed in terms of emissions mimic CO2. This 

underscores the importance of monetizing multi-pollutant indices. Table A.9 in the appendix regresses 

current period financial outcomes on raw tonnage. Here the results reveal very little evidence of any 

significant relationship between tonnage and financial outcomes. 
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IV. Conclusions. 

This analysis offers a new approach to the measurement of firms’ environmental performance. In 

contrast to existing metrics, which often focus exclusively on CO2 emissions, the present paper 

computes the monetary damage from eight pollutants and devises a summary statistic that relates 

relative pollution damage to relative firm value. Monetization is essential to the measurement of firms’ 

environmental performance for two reasons. First, monetization enables aggregation of multiple 

pollutants by converting emissions into a common metric – money. Simply adding up tons doesn’t work 

because CO2 emissions are so abundant relative to other pollution species. Second, monetization 

facilitates adjustments to firm value reflecting the external (monetary) cost from emissions. This direct 

reconfiguration of firm value is not possible with emissions measured in tons. 

The paper estimates this new statistic in the context of the U.S. utility industry from 2014 to 2017. This 

is both a data rich and pollution intensive setting. The environmental performance in this sector will be a 

crucial determinant of macro-scale environmental outcomes. As such, it is of broad social importance to 

allocate ESG-managed capital efficiently in the utility sector. 

While market capitalization among these firms grew, pollution damages fell sharply. Importantly, LAP 

damages constitute the bulk of these declines, with GHG emissions and damages essentially flat from 

2014 to 2017 (Holland et al., 2020). Hence, only focusing on CO2 would fundamentally mischaracterize 

environmental performance in this sector. Within utility firms traded on the S&P 500, there is significant 

variation in environmental performance. Consolidated Edison’s combined air pollution and GHG damage 

share (relative to the industry total) was one tenth of its market capitalization share. At the other end of 

the spectrum, NRG’s combined air pollution and GHG damage share was over five-times larger than its 

market capitalization share.  
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The analysis explores the relationship between this new performance measure and a host of financial 

outcomes. These include current and future prices, P/E ratios, returns, earnings, and volatility. Key 

results include the following. Current prices fall and returns rise when firms’ pollution damage intensity 

increases. Analysts tend to systematically underestimate future EPS for firms that grew more pollution 

intensive between 2014 and 2017. The analysis shows that the intrafirm distribution of damage matters 

for financial outcomes. The EPS surprises are larger for firms with CO2 damages produced by relatively 

few sources. Further, EPS estimates are less noisy (across analysts producing estimates for the same 

firm) for firms with more concentrated CO2 damages. Information regarding firms’ CO2 environmental 

performance is easier to obtain for firms whose damage emanates from fewer, larger plants. And, if the 

information is easier to access, it is more likely that analysts share the same information about 

emissions and environmental performance. This facilitates greater agreement among analysts, and, in 

turn, less dispersion in their EPS estimates. 

A primary goal of the paper is a comparison of the new performance measure to existing metrics, those 

based only on GHGs, and only on emissions. These comparisons reveal three important insights. First, 

the (Γ) scores developed here are consistently stronger determinants of key financial outcomes than 

those offered by Refinitiv ® a leading financial data provider. Second, pollution intensity measured by 

adding up tons is dominated by GHGs. This stems from the fact that the volume of GHG emissions is 

orders of magnitude larger than local air pollution. Yet, in the U.S. utility sector, the monetary damages 

from LAPs are on par with GHGs (Holland et al., 2020). Adding up tons ignores the vast difference in the 

value of LAP tons and GHG tons at the margin. If a goal of ESG indices is to align the behavior of financial 

market participants with more socially beneficial environmental outcomes, monetization is essential. 

Third, the financial outcomes modeled in this paper are considerably more responsive to the monetized 

multipollutant (Γ) scores than to indices based on GHGs, either monetized or calculated from emissions 

mass. Recall that prices and returns are about twice as sensitive to the combined (Γ) score. EPS surprises 
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are between three and five times more responsive. There are two important implications of this. One, 

financial market participants who rely on the multipollutant (Γ) scores could exploit this heightened 

sensitivity to bolster returns on ESG-oriented capital allocation strategies. Why? Because if the majority 

of ESG-oriented portfolio managers focus only on carbon intensity, they will underestimate the 

systematic EPS forecast errors by as much as a factor of five.  And two, standardized ESG disclosure 

requirements would benefit from the multipollutant (Γ) scores because it is a more effective driver of 

essential financial market outcomes (prices, returns, EPS) than an index relying on tonnage or focusing 

strictly on GHGs. This position is predicated on the idea that standardized ESG disclosure is intended to 

affect both firm behavior and that of financial market participants in a manner that nudges outcomes in 

financial markets and in the real economy toward a more socially beneficial allocation of resources.  

This paper suggests new research in a number of areas. While the U.S. utility sector is a natural starting 

point, it reflects a small segment of the investible market. In the U.S., the data exist to apply this new 

measure of environmental performance to other sectors. Likely candidates include industrials, consumer 

staples, and the energy sectors. Subsequent analyses focusing on these segments of the economy will 

determine whether the relationships between pollution intensity and financial outcomes reported here 

manifest in other sectors. This will matter to asset managers, investors, and analysts as diversified ESG 

strategies must include firms outside of the utility sector. Additionally, estimation of the (Γ) scores in 

other sectors facilities firm rankings beyond the “best in class” scores presented herein. Further, explicit 

consideration of portfolios and investment strategies, only hinted at herein, is enabled by the present 

analysis. And, finally, future work might consider whether the new measure of environmental 

performance varies across private and public firms, as prior research indicates ownership matters for 

environmental outcomes. 
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Tables and Figures. 

Table 1: Growth in Market Capitalization and Pollution Damages. 

 No 
Pollution 

GHGs + 
LAP 

 
LAP 

 
GHG 

Market Cap 
 

0.065A 

(0.051,0.112) 
 

   

GED 
 

 -0.203 
(-0.268,-0.140) 

-0.270 
(-0.377,-0.199) 

-0.069 
(-0.156,0.004) 
 

Market Cap – 
GED 

 0.165 
(0.103,0.187) 

0.142 
(0.080,0.174) 

0.087 
(0.063,0.131) 
 

A = median annualized growth rate between 2014 and 2017. 0.065 = 6.5% annualized growth. 
B = 95% confidence interval for estimated median. 
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Table 2: Environmental Performance of the Utility Firms Listed on the Standard and Poor’s 500. 

2014 2017 
Firm 
 (𝚪𝚪)A 

GED/ 
ShareB GEDC 

Firm 
 (𝚪𝚪) 

GED/ 
Share GED 

American Water Works 0.06 0.99 0.18 Eversource Energy 0.00 0.03 0.01 
Consolidated Edison 0.09 1.56 0.46 Sempra Energy 0.02 0.37 0.09 
PG&E Corp 0.10 1.58 0.70 Exelon 0.05 0.27 0.25 
Pub. Service Ent. Group 0.13 1.58 0.80 PG&E Corp 0.07 0.48 0.24 
Eversource Energy 0.16 2.40 0.76 Consolidated Edison 0.07 0.77 0.23 
NextEra Energy 0.19 1.51 2.57 American Water Works 0.08 0.86 0.15 
Exelon 0.30 3.31 2.85 Pub. Service Ent. Group 0.15 0.92 0.47 
Dominion Resources 0.39 8.77 5.08 NextEra Energy 0.27 1.32 2.47 
Sempra Energy 0.56 17.62 4.39 CenterPoint Energy 0.31 1.17 0.51 
Pinnacle West Capital 0.58 10.42 1.15 Pinnacle West Capital 0.50 5.65 0.63 
NiSource 0.64 7.81 2.45 Dominion Resources 0.51 5.49 3.39 
CenterPoint Energy 0.75 5.56 2.40 CMS Energy Corp 0.66 4.12 1.15 
Xcel Energy 0.82 8.27 4.11 WEC Energy Group 0.66 5.58 1.77 
WEC Energy Group 0.85 12.14 2.79 Edison International 0.78 7.75 2.56 
Edison International 0.96 17.27 5.68 NiSource 0.89 3.09 1.00 
CMS Energy 1.09 10.45 2.84 PPL 0.96 4.73 3.23 
Southern Co 1.17 16.73 14.67 Southern Co 1.17 8.16 7.69 
DTE Energy 1.26 30.87 5.40 Xcel Energy 1.30 8.07 4.11 
Entergy 1.34 32.60 5.82 Duke Energy 1.57 17.84 12.33 
Duke Energy 1.36 31.90 22.52 DTE Energy 1.87 26.67 4.77 
PPL 1.37 14.15 9.39 Entergy 2.15 22.57 4.04 
Evergy 2.09 24.40 3.11 AEP 2.19 20.67 10.17 
Ameren 2.12 26.96 6.59 Evergy 2.64 18.55 2.64 
AES 2.73 11.70 8.75 Ameren 2.66 20.16 4.91 
FirstEnergy 2.88 31.34 13.13 FirstEnergy 2.83 12.14 5.17 
AEP 3.24 54.75 26.66 AES 3.01 4.45 2.94 
NRG Energy 5.81 58.50 18.90 NRG Energy 8.30 25.12 7.94 

A = the ratio of each firm’s contribution to total industry GED, relative to the firm’s contribution to total 
industry market cap. 
B = GED (nominal dollars) per outstanding share. 
C = GED (nominal billions of dollars). 
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Table 3: Firm Current Financial Performance and Pollution Damage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2)  
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.0148***B -0.00677*** -0.00538*   -0.00864*** -0.00785**  

 (0.00449)C    (0.00230)    (0.00296)    (0.00263)    (0.00295)    
Returns  0.0505***  0.0266***  0.0198**   0.0335***  0.0295*** 

 (0.0173)    (0.00974)    (0.00833)    (0.0119)    (0.0103)    
Forward P/ED   0.266*    0.0428      0.155**   0.0404      0.155**  
 (0.138)    (0.0609)    (0.0737)    (0.0752)    (0.0721)    
VolatilityE -0.000215    -0.000383    0.000205    -0.000311    0.0000658    
(Prices) (0.000344)    (0.000275)    (0.000256)    (0.000224)    (0.000242)    
VolatilityF  0.0251**   0.0115**   0.0114**   0.0153**   0.0155**  
(Returns) (0.00997)    (0.00500)    (0.00518)    (0.00670)    (0.00624)    
Sharpe -0.0801*   -0.0707*** 0.00757    -0.0681*** -0.0183    
Ratios (0.0398)    (0.0227)    (0.0314)    (0.0166)    (0.0327)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 3 is a fitted OLS parameter estimate from distinct regression model of the form in  
(5). The full results for each of the regression models supporting table 3 are reported in the online 
appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = weekly standard deviation in price. 
F = weekly standard deviation in returns. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices and volatility are first-differenced, P/E ratios enter in natural log form. The other dependent 
variables enter in levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table 4: Firm Forward Financial Performance and Pollution Damage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2) 
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.0156B    -0.00518    -0.0130    -0.00938    -0.0146*   

 (0.0119)C    (0.00613)    (0.00804)    (0.00769)    (0.00761)    
Returns  0.0775*    0.0316     0.0443*    0.0459*    0.0543**  

 (0.0391)    (0.0192)    (0.0234)    (0.0267)    (0.0246)    
Forward P/ED  -0.205*   -0.0811     -0.130**  -0.0592     -0.119*   
 (0.110)    (0.0515)    (0.0607)    (0.0616)    (0.0651)    
VolatilityE 0.000371    0.000552*   -0.000486    0.000443    -0.000187    
(Prices) (0.000709)    (0.000283)    (0.000605)    (0.000303)    (0.000587)    
VolatilityF -0.0159    -0.0150**  0.000518    -0.0149**  -0.00418    
(Returns) (0.0121)    (0.00724)    (0.00717)    (0.00690)    (0.00928)    
Sharpe 0.000563    -0.00336    0.00128    -0.00295    0.000215    
Ratios (0.0345)    (0.0157)    (0.0236)    (0.0141)    (0.0219)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 4 is a fitted OLS parameter estimate from distinct regression model of the form in  
(5). The full results for each of the regression models supporting table 4 are reported in the online 
appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = weekly standard deviation in price. 
F = weekly standard deviation in returns. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices and volatility are first-differenced, P/E ratios enter in natural log form. The other dependent 
variables enter in levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table 5: Decomposition of Earnings per Share Error. 
      

Forward 
Earnings 

(1) 
GHG & LAPA 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

ActualD   0.309***B   0.161***   0.103**    0.178***   0.133*    
(0.0642)C    (0.0379)    (0.0476)    (0.0478)    (0.0658)    

Estimate   0.151***  0.0922***  0.0608*     0.102***  0.0778**   
(0.0493)    (0.0248)    (0.0350)    (0.0275)    (0.0371)    

SurpriseE   14.58***   9.201***   2.823*     9.657***   4.517**   
(2.581)    (1.642)    (1.491)    (1.771)    (2.019)    

Current 
Earnings 

(1) 
GHG & LAP 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

Actual -0.0122     0.0226    -0.0383     0.0232    -0.0386     
(0.0634)    (0.0457)    (0.0339)    (0.0426)    (0.0336)    

Estimate  -0.154**  -0.0300     -0.106**  -0.0283     -0.106**   
(0.0738)    (0.0428)    (0.0429)    (0.0460)    (0.0428)    

Surprise   0.751     -1.164      2.151**   -1.198      2.167**   
(1.630)    (1.119)    (0.994)    (1.237)    (1.035)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 5 is a fitted OLS parameter estimate from distinct regression model of the form in  
(6).  
C = Robust standard errors in parenthesis. 
D = Actual and estimated EPS reported in nominal USD. 
E = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression model. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table 6: Current Firm Financial Performance and Membership in the S&P 500. 
  

GHGs & LAPA LAP GHGs LAP GHGs  
S&P Not  

S&P 
S&P Not  

S&P 
S&P Not S&P S&P Not  

S&P 
S&P Not  

S&P 
Prices -0.02***B -0.00557*   -0.0137**  -0.0043*** -0.00116    -0.014**  -0.015*** -0.00146    -0.009**  -0.0086*    

(0.00554)C    (0.00278)    (0.00517)    (0.00128)    (0.00390)    (0.00510)    (0.00439)    (0.00125)    (0.00357)    (0.00413)    
Returns  0.078*** 0.00702     0.049*** 0.00431    0.00939    -0.0009     0.054*** 0.00450     0.037*** -0.00605     

(0.0160)    (0.0104)    (0.0127)    (0.00744)    (0.0128)    (0.0258)    (0.00794)    (0.00507)    (0.0129)    (0.0195)    
ForwardD   0.297      6.933***  0.0219      16.16***   0.178**    3.68*** -0.00641     -22.40***   0.176**    2.14*** 
P/E (0.203)    (0.317)    (0.0680)    (3.506)    (0.0836)    (0.311)    (0.0684)    (1.025)    (0.0790)    (0.0977)    
VolatilityE -0.000318    0.000608    -0.0006**  0.000574**  0.000458*   0.00294*   -0.000304    -0.00004    0.000126    0.00226    
Prices (0.000484)    (0.000520)    (0.000245)    (0.000226)    (0.000265)    (0.00143)    (0.000244)    (0.000327)    (0.000295)    (0.00139)    
VolatilityF  0.041*** 0.00308     0.0126**  -0.00146     0.017*** -0.0195     0.023*** 0.00259     0.024*** -0.0177    
Returns (0.00663)    (0.0134)    (0.00595)    (0.00767)    (0.00502)    (0.0206)    (0.00559)    (0.00628)    (0.00385)    (0.0150)    
Sharpe  -0.116***  0.0173    -0.0279     0.0302    -0.0483*     0.133    -0.0577**  0.00241    -0.064***  0.0973    
Ratios (0.0343)    (0.0789)    (0.0302)    (0.0447)    (0.0276)    (0.178)    (0.0231)    (0.0440)    (0.0173)    (0.150)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 6 is a fitted OLS parameter estimate from distinct regression model of the form in (5).  
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = weekly standard deviation in price. 
F = weekly standard deviation in returns. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages separately in the same regression model. Column 
(3) and (4) feature each in separate regression models. 
Prices and volatility are first-differenced, P/E ratios enter in natural log form. The other dependent variables enter in levels. 
* p<0.10  ** p<0.05  *** p<0.01
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Figures. 

Figure 1: Comparison of Firms’ Share Prices and Pollution-Adjusted Share Prices. 
 

 
Black line: Monthly average share price reported by Refinitiv®. 
Red line: Monthly average share price – GED per outstanding share. 
All values in nominal USD. 
 

  

0
25

50
75

10
0

Am
er

. W
at

er
 W

or
ks

 S
ha

re
 P

ric
e 

($
)

1/1/14 1/1/15 1/1/16 1/1/17 1/1/18
Date

0
25

50
75

10
0

XC
EL

 E
ne

rg
y 

Sh
ar

e 
Pr

ic
e 

($
)

1/1/14 1/1/15 1/1/16 1/1/17 1/1/18
Date

0
25

50
75

10
0

Ed
. I

nt
l. 

Sh
ar

e 
Pr

ic
e 

($
)

1/1/14 1/1/15 1/1/16 1/1/17 1/1/18
Date

-5
0

-2
5

0
25

50
75

10
0

N
R

G
 S

ha
re

 P
ric

e 
($

)

1/1/14 1/1/15 1/1/16 1/1/17 1/1/18
Date



44 
 

Appendix: 
 
Table A.1: Unit Root Tests. 

Year 2014 2015 2017 2018 
Time 
Series 
Variable 

Raw  
Data 

First 
Differences 

Raw  
Data 

First 
Differences 

Raw  
Data 

First 
Differences 

Raw  
Data 

First 
Differences 

Prices 
 

2A 43 0 43 1 43 5 43 

Returns 
 

43 43 43 43 43 43 43 43 

Volatility 
Prices 

0 43 0 43 0 43 0 43 

Volatility 
Returns 

1 43 1 43 1 43 0 43 

Sharpe 
Ratios 

43 43 43 43 43 43 43 43 

 

A = Number of firms for which the null hypothesis of a unit root is rejected at 0.01 level of significance 
using the Augmented Dickey-Fuller test with MacKinnon p-values. There are 43 firms in the sample. 
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Table A.2: Fixed Effects Specifications, Current Period Prices, and Firm Environmental Performance. 
 

     (1)        (2)        (3)        (4)        (5)        (6)    
GHGs & LAPA -0.00431B    -0.0134*** -0.0149*** -0.0149*** -0.0148*** -0.0148*** 

 (0.00315)C    (0.00410)    (0.00450)    (0.00456)    (0.00449)    (0.00449)    
Constant  0.0205**   0.0351*    0.0747***   0.166    -0.0512    -0.0915    

 (0.0102)    (0.0175)    (0.0214)    (0.255)    (0.250)    (0.248)    
adj. R2   0.644      0.644      0.644      0.646      0.656      0.657    
N   18785      18785      18785      18785      18785      18785    
Firm FE N Y Y Y Y Y 
Year FE N N Y Y Y Y 
Month of  
Year FE N N N Y Y Y 
Day of 
Month FE N N N N Y Y 
Day of Week FE N N N N N Y 

A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.2 is a fitted OLS parameter estimate from distinct regression model of the form 
in (5).  
C = Robust standard errors in parenthesis. 
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Table A.3: Earnings Surprise and Firms’ Herfindahl Indices. 
 
  

    (1)        (2)        (3)    
GHGs   9.255***A              6.688***  

(2.336)B               (1.844)    
ln(Herfindahl CO2)   6.772***              5.286***  

(2.187)               (1.861)    
LAP              9.674***   8.830***  

           (1.769)    (1.380)    
ln(Herfindahl LAP)              0.250     -0.238     

           (2.409)    (3.512)    
Constant   37.85**    19.53      22.07**   

(18.47)    (13.93)    (10.32)    
Adj. R2   0.936      0.963      0.977    
N     212        213        205    

A = each entry is a fitted OLS parameter estimate from a regression of the form in (6) with EPS Surprise 
as the dependent variable.  
B = Robust standard errors in parenthesis. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.4: Dispersion of Analysts’ EPS Estimates. 
      

Forward 
Earnings 

(1) 
GHG & LAPA 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

CoefficientD -0.00881**B  -0.00743*** -0.00121    -0.00766*** -0.00269    
of Variation (0.00417)C    (0.00246)    (0.00290)    (0.00229)    (0.00303)    
StandardE  0.0144*   0.00984**  0.00143     0.0101**  0.00340    
Deviation (0.00744)    (0.00415)    (0.00671)    (0.00392)    (0.00652)    
Current 
Earnings 

(1) 
GHG & LAP 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

Coefficient  0.0157    -0.00243     0.0140    -0.00187     0.0140*   
of Variation (0.0156)    (0.0109)    (0.00838)    (0.0130)    (0.00824)    
Standard  0.0221*   0.00478     0.0157*   0.00541     0.0158*   
Deviation (0.0126)    (0.00732)    (0.00789)    (0.00990)    (0.00805)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.4 is a fitted OLS parameter estimate from distinct regression model of the form 
in  (6). The coefficients for the Coefficient of Variation are expressed as a fraction of EPS, those for 
Standard Deviation are in nominal USD. 
C = Robust standard errors in parenthesis. 
D = standard deviation of analysts’ EPS estimate/mean EPS estimate 
E = standard deviation of analysts’ EPS estimate 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression model. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.5: Dispersion of Analysts’ EPS Estimates and Firms’ Herfindahl Indices. 
  

CV 
EPS 

Estimate 
(1) 

SD 
EPS 

Estimate 
(2) 

CV 
EPS 

Estimate 
(3) 

SD 
EPS 

Estimate 
(4) 

CV 
EPS 

Estimate 
(5) 

SD 
EPS 

Estimate 
(6) 

GHGs -0.00998**  -0.0000989                          -0.00736    -0.00363     
(0.00427)    (0.00978)                          (0.00455)    (0.0107)    

ln(Herfindahl CO2) -0.0271*** -0.0136                          -0.0251**  -0.0164     
(0.00942)    (0.0282)                          (0.0105)    (0.0261)    

LAP                       -0.00786***  0.0105*** -0.00739***  0.0109**   
                      (0.00270)    (0.00387)    (0.00189)    (0.00459)    

ln(Herfindahl LAP)                       -0.00579     0.0202    -0.0173     0.0200     
                      (0.0122)    (0.0266)    (0.0132)    (0.0600)    

Constant  -0.0360    -0.0436    -0.0189    -0.0599    -0.0226    -0.0550     
(0.0309)    (0.0879)    (0.0291)    (0.0570)    (0.0304)    (0.0857)    

adj. R-sq   0.775      0.373      0.771      0.397      0.785      0.379    
N     253        253        251        251        243        243    

 
A = each entry is a fitted OLS parameter estimate from a regression of the form in (6) with EPS Surprise 
as the dependent variable.  
B = Robust standard errors in parenthesis. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.6: NAAQS Non-Attainment and Firm Financial Performance 
 

 Current  
Prices 

Current 
Returns 

Current 
P/E 

GHG & LAPA -0.0148***B -0.00952*    0.0505***  0.0285*     0.266*     0.243    
 (0.00449)C    (0.00512)    (0.0173)    (0.0143)    (0.138)    (0.151)    
NA CountD            0.000580               0.00120               -0.00671    
            (0.000773)               (0.00178)               (0.00773)    
(GHG &             0.000386               -0.0034***            0.00520    
LAP) x NA  (0.000436)               (0.000893)               (0.00762)    
 Forward 

Prices 
Forward  
Returns 

Forward  
P/E 

GHG & LAP -0.0156    -0.000434     0.0775*    0.0275     -0.205*    -0.317**  
  (0.00993)    (0.0391)    (0.0280)    (0.110)    (0.118)    
NA Count  -0.000465               -0.00102               -0.0242*** 
  (0.000896)               (0.00257)               (0.00823)    
(GHG &   0.00212***            -0.0057***             0.0230*** 
LAP) x NA  (0.000507)               (0.00136)               (0.00802)    

A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.6 is a fitted OLS parameter estimate from distinct regression model of the form 
in (5).  
C = Robust standard errors in parenthesis. 
D = Number of plants in counties that are out of attainment with any National Ambient Air Quality 
Standard established by the Clean Air Act. 
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Table A.7: Comparison Between Refinitiv® Performance Measures and Firm Gamma Scores. 

 
 

Current 

LAP & GHG Refinitiv 
Env. 

ScoreA 

LAP Refinitiv 
NOX TotalB 

Refinitiv 
SO2 TotalC 

GHG Refinitiv 
CO2 ScoreD 

Prices -0.0148***E -0.000231    -0.00864*** -0.00000107*** 8.71e-08    -0.00785**   -0.469     
(0.00449)F    (0.000289)    (0.00263)    (0.000000348)    (8.09e-08)    (0.00295)    (0.673)    

Returns  0.0505*** 0.000334     0.0335*** 0.00000255*   -0.000000336     0.0295***   2.432*    
(0.0173)    (0.000699)    (0.0119)    (0.00000129)    (0.000000222)    (0.0103)    (1.135)    

EPS   0.751    -0.0636     -1.198    0.0000202    -0.0000155      2.167**   -0.117*** 
Surprise (1.630)    (0.0677)    (1.237)    (0.0000382)    (0.00000965)    (1.035)    (0.00140)            

 
 

Forward 

LAP & GHG Refinitiv 
Env. 

Score 

LAP Refinitiv 
NOX Total 

Refinitiv 
SO2 Total 

GHG Refinitiv 
CO2 Score 

Prices -0.0156    -0.000356    -0.00938    -0.000000831    0.000000269    -0.0146*    -2.101**   
(0.0119)    (0.000547)    (0.00769)    (0.000000798)    (0.000000270)    (0.00761)    (0.675)    

Returns  0.0775*   0.000272     0.0459*   0.00000335    -0.000000943     0.0543**    2.403     
(0.0391)    (0.00169)    (0.0267)    (0.00000263)    (0.000000713)    (0.0246)    (1.403)    

EPS   14.58***   0.224*     9.657*** 0.000194    0.0000324*     4.517**    0.804    
Surprise (2.581)    (0.129)    (1.771)    (0.000178)    (0.0000157)    (2.019)        (.)    

 

A = Refinitiv environmental performance score. 
B = Refinitiv NOx emissions by firm, reported. 
C = Refinitiv SO2 emissions by firm, reported. 
D = Refinitiv CO2 emissions by firm, reported. 
E = each entry in table A.7 is a fitted OLS parameter estimate from distinct regression model of the form in (5).  
F = Robust standard errors in parenthesis.
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Table A.8: Current Period Firm Financial Performance and Emission Tonnage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2)  
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.00786**B  -0.00473    -0.00733**  -0.00661    -0.00784**  

 (0.00296)C    (0.00535)    (0.00289)    (0.00551)    (0.00295)    
Returns  0.0296***  0.0115     0.0283***  0.0188     0.0295*** 

 (0.0103)    (0.00999)    (0.0100)    (0.0129)    (0.00999)    
Trailing P/ED   0.153**   0.0424      0.150**   0.0573      0.153**  
 (0.0721)    (0.0651)    (0.0701)    (0.0831)    (0.0719)    
VolatilityE 0.0000657    -0.000765*   0.000149    -0.000727*   0.0000658    
(Prices) (0.000242)    (0.000406)    (0.000244)    (0.000362)    (0.000242)    
VolatilityF  0.0155**  -0.00534     0.0161**  -0.00120     0.0155**  
(Returns) (0.00624)    (0.00488)    (0.00626)    (0.00544)    (0.00622)    
Sharpe -0.0183    0.000634    -0.0183    -0.00407    -0.0183    
Ratios (0.0326)    (0.0400)    (0.0332)    (0.0381)    (0.0325)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.8 is a fitted OLS parameter estimate from distinct regression model of the form 
in  (5).  
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = weekly standard deviation in price. 
F = weekly standard deviation in returns. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices and volatility are first-differenced, P/E ratios enter in natural log form. The other dependent 
variables enter in levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.9: Current Period Firm Financial Performance and Emission Tonnage. 
 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2)  
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -1.57e-10B    0.000000116    -1.54e-10    0.000000118    -1.57e-10    

 (1.55e-10)C    (7.86e-08)    (1.58e-10)    (8.63e-08)    (1.55e-10)    
Returns 5.13e-10    -0.000000390**  5.04e-10    -0.000000396*   5.14e-10    

 (4.57e-10)    (0.000000189)    (4.37e-10)    (0.000000218)    (0.000000189)    
Trailing P/ED 3.64e-09    -0.000000518    3.77e-09    -0.000000262    3.65e-09    
 (2.45e-09)    (0.00000131)    (2.38e-09)    (0.00000121)    (2.45e-09)    
VolatilityE 7.16e-12    6.96e-09    7.33e-12    6.89e-09    7.15e-12    
(Prices) (1.24e-11)    (8.47e-09)    (1.18e-11)    (8.45e-09)    (1.24e-11)    
VolatilityF 4.14e-10*   -0.000000140    4.11e-10*   -0.000000143    4.14e-10*   
(Returns) (2.39e-10)    (0.000000103)    (2.30e-10)    (0.000000106)    (2.39e-10)    
Sharpe 6.01e-11    0.00000105*   8.56e-11    0.00000105*   5.74e-11    
Ratios (1.34e-09)    (0.000000528)    (1.23e-09)    (0.000000527)    (1.34e-09)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.9 is a fitted OLS parameter estimate from distinct regression model of the form 
in (5).  
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = weekly standard deviation in price. 
F = weekly standard deviation in returns. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices and volatility are first-differenced, P/E ratios enter in natural log form. The other dependent 
variables enter in levels. 
* p<0.10  ** p<0.05  *** p<0.01 
 
 


