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pollutants, yet the marginal damages from other pollutants are larger than CO₂. In the U.S. utility 
sector from 2014 to 2017, indices which only track CO₂ mischaracterize firms’ environmental 
performance and underestimate its effect on financial outcomes relative to the multipollutant 
index. Dirtier firms exhibit lower share prices and higher forward returns. The effect is twice as 
large for the multipollutant index compared to CO₂. Analysts’ earnings forecasts for dirtier firms 
systematically undershoot actuals. Earnings errors are between three and five times more 
sensitive to the multipollutant index than to CO₂. The multipollutant index may suggest new 
management strategies to financial market participants relative to those based on carbon intensity. 
ESG disclosure standards based on the new index are more likely to affect financial outcomes, 
capital allocation decisions, and firm behavior than disclosure of carbon intensity.
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I. Introduction. 

This paper develops a monetary index of firm environmental performance. The analysis then tests 

whether this index can predict several key financial outcomes among publicly traded firms in the United 

States (U.S.) utility sector. Investors and asset managers may find this new approach useful in guiding 

their capital allocation decisions. Financial and securities regulators might benefit from using this index 

to standardize environmental, social, and governance (ESG) 1
 disclosure requirements, which is a 

recently stated goal of the Securities and Exchange Commission2. 

Investing according to ESG criteria has gained considerable momentum in recent years (New York Times, 

2020; Blackrock, 2020; 2021). Enormous stocks of capital are now managed according to ESG criteria 

(GSIA, 2018). In response to this demand for ESG investments, numerous products (indices, mutual 

funds) track aspects of the “E”, “S”, and “G” of ESG criteria. This paper argues that most prior metrics 

focusing on the “E” of ESG have mismeasured firm performance. The crux of the misconception of 

environmental performance stems from a focus on physical emissions rather than the monetary damage 

of emissions (MSCI, 2019; NUVEEN, 2020; Sustainalytics, 2021). That is, rather than calculate the impacts 

from discharges of pollution, many existing indices of environmental performance simply tabulate 

tonnage of pollution discharges.  If the goal of ESG indices is to align the behavior of financial market 

participants with more socially beneficial environmental outcomes, relying on monetary damage is 

essential. 

                                                            
1 One of the earliest references to the acronym ESG in reference to financial investment criteria is found in a 2004 
joint publication of the United Nations and the Swiss Federal Department of Foreign Affairs: 
https://d306pr3pise04h.cloudfront.net/docs/issues_doc%2FFinancial_markets%2Fwho_cares_who_wins.pdf . 
2 In 2020, the Securities and Exchange Commission (SEC) argued for a move toward standardized Environmental 
Social and Governance (ESG) disclosures. “It’s time for the SEC to lead a discussion—to bring all interested parties 
to the table and begin to work through how to get investors the standardized, consistent, reliable, and comparable 
ESG disclosures they need to protect their investments and allocate capital toward a sustainable economy.” 
https://www.sec.gov/news/public-statement/lee-regulation-s-k-2020-08-26  

https://d306pr3pise04h.cloudfront.net/docs/issues_doc%2FFinancial_markets%2Fwho_cares_who_wins.pdf
https://www.sec.gov/news/public-statement/lee-regulation-s-k-2020-08-26
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A related shortcoming is that many major products track only firms’ carbon intensity (MSCI, 2019; 

NUVEEN, 2021). This narrow perspective, in part, stems from the reliance on measuring the mass of 

emissions. At the margin, damages from different pollution types vary. For example, the damage per ton 

of carbon dioxide (CO2) was recently estimated to be in the neighborhood of $50/ton. An emission of 

soot in the U.S. induces damages in excess of $100,000/ton (FWG, 2016; Muller and Mendelsohn, 2009; 

Gilmore et al., 2018). Clearly, adding up tons of different pollution species overlooks vast differences in 

“value”. Therefore, aggregating tonnage of multiple pollutants into a single ESG index is meaningless. A 

serious attempt to more comprehensively assess firm environmental performance by including several 

pollution species simply must have a common unit of account through which various emissions can be 

weighed. The argument here is akin to assessing the value of a firm that produces a range of goods, or 

sells its goods in a variety of markets. An accurate estimate of value depends on its cash flows, which 

reflect the realized market price of each good or service. Applying this approach to measuring 

environmental performance suggests that each emission should be weighted according to the monetary 

damage caused. Monetization facilitates aggregation of the impacts from pollution emissions across 

pollutants, source locations, and across time.  

This approach to tabulating damage finds its conceptual basis in the environmental accounting literature 

(Abraham and Mackie, 2006; Nordhaus, 2006; Muller, Mendelsohn, and Nordhaus, 2011; Muller, 2014). 

Total damages, computed as the product of marginal damages and emissions, are deducted from 

macroeconomic aggregates such as Gross Domestic Product (GDP) and Value Added (VA) to align the 

National Income and Product Accounts (NIPAs) with a measure of economic welfare (Nordhaus and 

Tobin, 1973). Subtraction of monetary damage from the NIPAs also informs assessments of economy-

wide sustainability (Hartwick, 1977). Positive growth rates, accounting for environmental pollution 

damage and consumption of natural resources, are required for sustainable development. This 

argument has a direct analog to firm performance. 
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Building on this macroeconomic foundation, the present paper argues that monetization of pollution 

damage enables a reconceptualization of firm value that informs assessments of sustainability. Metrics 

such as book value, operating free cash flow, or market capitalization capture conventional notions of 

value that hinge on the goods and services firms produce and the assets they own. Investors and other 

participants in financial markets rely on these (and other) metrics to form expectations over firm 

performance. Such expectations are, of course, a central determinant of asset prices. Importantly, 

absent Pigouvian taxes, these market-based measures do not reflect external costs or benefits 

stemming from firms’ production processes or the subsequent use of their products. Monetization of 

damages from firms’ emissions, and the deduction of such damages from conventional measures of 

value, provides investors with a more socially comprehensive assessment of firms’ worth. This facilitates 

the alignment of investors’ evaluation of firms’ performance (and expectations regarding future 

performance) with a broader measure of firm-level sustainability. And, direct inclusion of pollution 

damages into a measure of firm value cannot occur without monetization.  

Empirically, this paper uses rigorous quantitative modeling techniques to compute the monetary 

damages from five local air pollutants and three primary greenhouse gases (GHGs) produced by firms in 

the utility sector in the U.S. economy. The focus lies on the utility sector because of excellent 

information on plant ownership and pollution emissions. Damages are estimated for the years 2014 and 

2017 because these years correspond to the most recent nationally comprehensive emission 

inventories. The calculation of damages relies on the following steps. A text matching algorithm 

attributes plants to firms and their corporate parents. Next, emissions of eight distinct pollutants from 

approximately 10,000 facilities are monetized using peer-reviewed integrated assessment models 

(Muller, Mendelsohn, and Nordhaus, 2011; Muller, 2014; Tschofen, Azevedo, Muller, 2019; FWG, 2016). 

These models produce location specific pollution damage estimates. The paper proposes a new index of 

environmental performance, derived from these damage estimates, which benchmarks each firm’s 
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contribution to industry-wide damage and market capitalization. Finally, the analysis explores the 

association between this index and conventional measures of firms’ financial performance including 

current period and forward share prices, P/E ratios, earnings per share (EPS), returns, volatility, systemic 

risk, and idiosyncratic risk. 

The pollutants covered in this paper include fine particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen 

oxides (NOx), ammonia (NH3), volatile organic compounds (VOCs), methane (CH4), nitrous oxide (N2O), 

and carbon dioxide (CO2). At a national scale, the magnitude of damage from these pollutants are large 

relative to standard macroeconomic indicators such as GDP and VA (USEPA, 1999; 2011; Muller, 

Mendelsohn, and Nordhaus, 2011; Muller, 2014; Tschofen, Azevedo, Muller, 2019; Mohan et al., 2020). 

As such, at the firm level, these elements of “E” performance have the capacity to dramatically affect 

investors’ perceptions of firm value and, hence, the allocation of capital. 

This analysis contributes to a large and growing literature on ESG investing. Several recent papers 

explore the motivation for investors’ interest in ESG managed assets (Reidl and Smeets, 2017; 

Hartzmark and Sussman, 2019; Barber, Morse, and Yasuda, 2020; Krueger, Sautner, and Starks, 2020). 

Shive and Forster (2019) examine whether corporate governance structures affect environmental 

performance. Other papers evaluate the performance of ESG funds, broadly defined, relative to 

benchmark indices (Auer and Schuhmaker, 2015; Friede, Busch, and Bassen, 2015; Halbritter and 

Dorfleitner, 2015; Verheyden et al., 2016; Winegarden, 2019). The present paper differs from this extant 

literature in its focus on how measurement of environmental performance is executed, rather than an 

assessment of investors’ beliefs or of the financial performance of existing ESG products.  

The key empirical results reported herein are the following. This paper proposes a new index of 

environmental performance. This index, denoted (Γ), is computed as the ratio of each firm’s 

contribution to total utility sector damage to each firm’s contribution to total utility market 
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capitalization. Alternatively, (Γ) is the relative magnitude of how much each firm causes in damage to 

how much each firm contributes to industry value. This metric reveals considerable variation in the 

environmental performance of firms in the utility sector. In 2014, the best performing firm exhibited a 

(Γ)  score of under 0.10, implying that its contribution to industry damage comprised 1/10th of its 

contribution to industry market capitalization. On the other end of the spectrum, the dirtiest firm had a 

(Γ) score of over 5.  

From 2014 to 2017 there was appreciable reordering of the (Γ) scores across firms as the use of 

pollution removal technologies, fuel sources, and asset (power plant) ownership changed.  This within-

firm variation in (Γ) is significantly associated with several measures of firms’ financial performance. 

Firms that became dirtier exhibited substantial share price reductions. Specifically, firms that exhibited 

especially large increases in pollution intensity between 2014 and 2017 incurred price reductions of 

about 11 percent. In addition, forward returns were higher for firms that grew more pollution intensive. 

Future EPS surprises were larger for dirtier firms because analysts systematically underestimated future 

EPS. The empirical analyses also reveal that an important determinant of EPS surprises is the degree to 

which pollution damage produced by each firm was concentrated at relatively few facilities. A 

Herfindahl Index for firms’ damage is positively associated with EPS surprises, and negatively associated 

with the noisiness of analysts’ EPS estimates. How damages are distributed across firms’ plants affects 

the ease with which analysts and other market participants can ascertain environmental performance. 

The empirical results suggest that this information transmission mechanism is especially relevant to 

financial outcomes for CO2.  

Importantly, the new index suggests systematically larger effects of environmental performance on 

financial outcomes than a measure comprised only of carbon intensity. Current period prices and 

forward returns are two times more responsive to changes in the multipollutant (Γ) than to changes in 

carbon intensity. EPS surprises are between three and five times more sensitive to changes in (Γ) than 
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to changes in carbon intensity. These results suggest that the multipollutant (Γ) may provide asset 

managers, investors, and other market participants with new insights, relative to the standard reliance 

on carbon intensity, regarding the relationship between environmental performance and financial 

outcomes. Such insights may inform new capital allocation strategies. From the perspective of ESG 

disclosure requirements, an index based on the multipollutant measure proposed in this paper is more 

likely to affect capital allocation decisions than disclosure of carbon intensity. If a goal of standardized 

ESG disclosure is to affect behavior, (Γ) is clearly superior to previous metrics. 

The remainder of the paper is structured as follows. Section II. describes the data sources and empirical 

methods used in the study. Section III. reports results and IV. concludes. 

II. Data Sources and Methods. 

a. Estimation of Pollution Damage. 

This analysis computes the monetary damages from local air pollution and GHGs. To estimate the 

damages from local air pollution, the paper focuses on premature mortality due to exposure to fine 

particulate matter concentrations. Prior research indicates that this damage endpoint comprises as 

much as 90% of the total damages from air pollution in the U.S. economy (USEPA, 1999; 2011; Muller, 

Mendelsohn, and Nordhaus, 2011). Also, concomitantly accounting for illnesses may result in double 

counting of damages. GHG damages are computed using recent peer-reviewed estimates of the Social 

Cost of Carbon (SCC), which is the present value of the damages from an emission of one ton of carbon 

dioxide equivalents (CO2eq), (FWG, 2016). Total GHG damages are the product of emissions and the SCC. 

Emissions data for the local air pollutants are obtained from the USEPA’s National Emissions Inventories 

(NEI), which are published in three-year intervals (USEPA, 2017; 2020). These data are reported in U.S. 

short tons per year, by facility and pollution species. Local air pollutants covered include sulfur dioxide 

(SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), ammonia (NH3) and primary fine 
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particulate matter (PM2.5). For the 2017 NEI (USEPA, 2020b), the principal greenhouse gases are also 

reported. These include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). For 2014, CO2eq 

are reported, by facility, in the EGRID database (EPA, 2020b). 

Armed with emissions, expressed in U.S. short tons per year, the next step is to convert tonnage to 

monetary damage. For the local air pollutants, this study relies on the AP3 integrated assessment model, 

which is an updated version of the AP2 and APEEP models (Muller and Mendelsohn, 2009; Muller, 

Mendelsohn, and Nordhaus, 2011; NAS NRC, 2010; Muller 2014; Clay et al., 2019; Tschofen, Azevedo, 

Muller, 2019). AP3 and its predecessors link emissions to monetary damages in five modules: emissions, 

air quality modeling, exposures, concentration-response, and valuation. Beginning with emissions, in a 

given data year, say 2017, the AP3 model attributes all emissions reported in the 2017 NEI to source 

type and physical location. These emissions include all discharges in the U.S. economy, not just those 

from utilities. So, encompassed in this database are pollution releases from utilities, transportation, 

households, manufacturers and every other anthropogenic and biogenic source type listed in the NEI. 

AP3 allocates the emissions to the county that the NEI reports the discharges occurred in. Further, AP3 

differentiates between emissions that occur at the ground-level, such as from cars and trucks, versus 

those that are released from a tall smokestack, such as from power plants.  

With emissions appropriately documented and allocated in the model, AP3 then employs an air quality 

model to track the dispersion and chemical transformation of emissions. The result of this step is an 

estimate of the annual average ambient concentrations in every county in the coterminous U.S. Crucial 

to this step are county-resolved weather data which influence the fate and transport of emissions. Also, 

a chemistry module in AP3 links emissions of SO2, VOC, NH3, and NOx to the formation of secondary 

PM2.5, as described in Sergi et al., (2020). The accuracy of the predicted concentrations produced by AP3 

and its earlier version has been verified (Jaramillo and Muller, 2016; Minnesota Dept. of Commerce, 

2016; Sergi et al., 2020). 
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The next step in modeling premature mortality from PM2.5 exposure is to document county populations. 

These data are provided by the U.S. Census Bureau, by data year in five year age groups. In addition, the 

Centers for Disease Control and Prevention provide county mortality rate data, also differentiated by 

age (CDC Wonder, 2020). To estimate the fraction of mortality risk due to exposure to PM2.5, AP3 

employs concentration-response functions from the peer-reviewed epidemiological literature (Krewski 

et al., 2009; Lepeule et al., 2012). These functions are widely used in federal policy analyses and the 

academic literature (USEPA, 1999; 2011; Muller, Mendelsohn, and Nordhaus, 2011; Tschofen, Azevedo, 

and Muller, 2019). Equation (1) demonstrates the calculation of number of deaths for age group (a), in 

county (i), in year (y) due to exposure to PM2.5, or Ma,i,y. 

 

𝑀𝑀𝑎𝑎,𝑖𝑖,𝑦𝑦 = 𝑃𝑃𝑃𝑃𝑝𝑝𝑎𝑎,𝑖𝑖,𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎,𝑖𝑖,𝑦𝑦 �1 − 1

𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑃𝑃𝑃𝑃2.5,𝑖𝑖,𝑦𝑦
�      (1) 

where:  Popa,I,t = population count of age group (a), in county (i), year (y). 
Ratea,I,t = mortality rate of age group (a), in county (i), year (y). 
𝛽𝛽 = statistically estimated parameter from epidemiological study. 

 

Deaths are the product of the attributable risk from pollution exposure (the parenthetical term), times 

baseline risk, times the size of the exposed population.  

The final module in AP3 converts premature deaths to monetary units using the Value of a Statistical Life 

(VSL) approach that is widely employed in federal policy analyses and academic research (USEPA, 1999; 

2011; 2013; Muller, Mendelsohn, and Nordhaus, 2011; Tschofen, Azevedo, and Muller, 2019). The VSL is 

the marginal rate of substitution between income and mortality risk and it is the benchmark empirical 

measure of the monetary value of small changes in mortality risk (Cropper, Hammit, Robinson, 2011). 

Empirical estimates of the VSL primarily stem from two methodological approaches: hedonic wage 

studies which estimate the wage premium workers require to assume additional mortality risk, and 
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contingent valuation studies that ask people directly about their valuation of risk on surveys. The VSL 

used herein is the average of studies from both literatures (USEPA, 1999; 2011). Though prior research 

has varied the VSL based on age of the exposed population (Muller, Mendelsohn, and Nordhaus, 2011), 

this analysis applies a uniform VSL irrespective of the age of the exposed population, as is done in most 

policy analyses and applied research (USEPA, 1999; 2011). The VSL does vary with income. Thus, for 

each year of this analysis, changes in the reported median income level affect the VSL through an 

elasticity reported in the literature (Kleckner and Neumann, 1999). 

The monetary damage from PM2.5 exposure in county (i) during year (y) is the sum across age groups of 

the product of the count of premature deaths and the VSL: 

  𝐷𝐷𝑎𝑎,𝑖𝑖,𝑦𝑦 = ∑ �𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦 × 𝑀𝑀𝑎𝑎,𝑖𝑖,𝑦𝑦�𝐴𝐴
𝑎𝑎=1        (2) 

In prior applications, AP3 was used to estimate the marginal damage of emissions of SO2, NOx, NH3, VOC, 

and primary PM2.5, by source (Muller and Mendelsohn, 2009; Muller, Mendelsohn, Nordhaus, 2011). To 

accomplish this, AP3 is run through with all emissions reported in the NEI to compute total baseline 

damage. Then, one ton of one pollutant (p) is added to baseline emissions at one source (s) and AP3 is 

run again. The difference in damage is strictly attributable to the change in emission. This is the damage 

per ton for pollutant (p) at source (s). To compute total or gross external damage (GED) for source (s) 

and pollutant (p), the marginal damages are treated as emissions “prices” and the total damage from a 

source, industry, or sector’s emissions are the product of emission tonnage and marginal damages as 

shown in (3). 

𝐺𝐺𝐺𝐺𝐷𝐷𝑦𝑦,𝑠𝑠,𝑒𝑒 = �𝐺𝐺𝑦𝑦,𝑠𝑠,𝑒𝑒 × 𝑀𝑀𝐷𝐷𝑦𝑦,𝑠𝑠,𝑒𝑒�       (3) 

Adding up damages across pollutants (p) yields the total GED produced by a given source in year (y).  
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Computing the GED in this way finds its conceptual roots in the national income and product accounts 

(NIPA) and the environmental accounting literature (Abraham and Mackie, 2006; Nordhaus, 2006). That 

is, the gross value of production from industries as reported in the NIPA is computed as the market price 

of its goods times the volume of goods produced.  

b. Financial Modeling. 

While the estimation of pollution damage relies on facility level emissions information, financial 

modeling hinges on firm level information. As such, linking facilities to firms is an essential step in the 

present study. Two critical variables in the emissions data enable this exercise. Most facilities are listed 

in the emissions data by name. This facility name often includes references to the firm owner. Second, 

most facilities also have an operator, owner, or company name. Using both sources of information, a 

text string matching algorithm links facility or owner names to firm names in the Standard and Poor’s 

500 and the Wiltshire 5000. Embedded in this algorithm are numerous crosswalks between parent 

companies and subsidiaries, the latter of which are often listed either directly in the facility or operator 

name information in the emissions datasets.  

For those plants that are linked to a publicly traded firm, the GED for each firm is compared to reported 

market capitalization by year (Siblis, 2020). The motivation for doing so is to provide a scale-adjusted 

measure of pollution damage. In addition to simply reporting the ratio of GED to market cap, by firm, in 

a given year, this analysis offers a new summary statistic of firms’ pollution damage intensity. This 

statistic, the gamma (Γ), is the ratio of each firm’s contribution to total industry GED, to total industry 

market cap, as shown in (4), where (f) denotes firm and Capf,t denotes market capitalization in year (y) 

for firm (f). 

Γ𝑓𝑓,𝑦𝑦 =

𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝑦𝑦
∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1

        (4) 
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This statistic expresses the relative share of damage to the relative share of value, for each of the N 

firms in the industry and it is defined on the [0,∞) interval. In what follows below, the firm-Γ𝑓𝑓,𝑡𝑡 is 

reported in three ways: for GHGs, Γ𝑓𝑓,𝑡𝑡
𝐺𝐺 , for local air pollutants, Γ𝑓𝑓,𝑡𝑡

𝐴𝐴 , and for both combined, Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 . 

This analysis next explores how firms’ environmental performance affects standard measures of firms’ 

financial performance. Broadly, financial performance measures include prices, price-to-earnings ratios 

(P/E), returns, and three measures of risk3. Because of the infrequent emissions reporting data, high 

frequency analyses are not possible. Thus, daily prices and returns are averaged to the firm-month level. 

Refinitiv® reports EPS quarterly as are the 12-month forward P/E ratios (IBES, 2021). As shown in (5) 

below, auto-regressive distributed lag (ADL) models are employed. 

Expression (5) displays the specification used with prices (Pf,y,m) as the outcome variable, where (m) 

denotes month-of-year.  

(𝑃𝑃)𝑓𝑓,𝑦𝑦,𝑚𝑚 = 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 + ∑ 𝜃𝜃3,𝑙𝑙𝑃𝑃𝑓𝑓,𝑙𝑙

12
𝑙𝑙=1 + ∑ 𝜃𝜃4,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚  (5) 

Included in the specification are month, year, and firm fixed effects  (𝜔𝜔𝑚𝑚, 𝜏𝜏𝑦𝑦, 𝜇𝜇𝑓𝑓), the index X, which 

includes net generation4, dividends, market capitalization, sentiment (Baker and Wurgler, 2006), 

returns, and volatility, measured as the monthly standard deviation in returns. The models include up to 

12-month lagged values of the dependent variable, returns, and volatility. Due to the relative 

infrequency with which dividends and market capitalization are reported, these covariates enter (5) 

annually. (5) is also fitted with returns (Rf,t) and volatility (Pf,t) as the outcome variable. The covariate of 

interest, Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 , is calculated on an annual basis, by firm. Expression (5) is fit distinctly for each measure of 

                                                            
3 The financial data is provided by Refinitiv® including the IBES earnings data. 
4 Net generation is included as an annual total of the amount of electricity each firm produced in year (y). 
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environmental performance (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  , Γ𝑓𝑓,𝑦𝑦

𝐺𝐺  , Γ𝑓𝑓,𝑦𝑦
𝐴𝐴  ) and for each financial outcome variable. A fourth 

specification includes  Γ𝑓𝑓,𝑦𝑦
𝐺𝐺  and Γ𝑓𝑓,𝑦𝑦

𝐴𝐴  together in the model. 

For P/E ratios, the specification departs from that in (5) because of the infrequency with which EPS are 

reported.  

�𝑃𝑃
𝐸𝐸
�
𝑓𝑓,𝑦𝑦,𝑚𝑚

= 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 + ∑ 𝜃𝜃3,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚    (6) 

In (6), prices, returns, sentiment, and volatility enter as in (5), concurrently and with up to 12-month 

lagged values. Net generation, dividends, and market capitalization enter annually.  

The analysis of EPS and environmental performance includes actual EPS, estimated EPS, and the EPS 

surprises, the latter of which is shown as the dependent variable in (7). (Distinct models are fit with 

actual and estimated EPS as the dependent variables.) 

𝐺𝐺𝑃𝑃𝑉𝑉𝑓𝑓,𝑦𝑦,𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 = 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 + 𝜃𝜃3EPS𝑓𝑓,𝑦𝑦−1,𝑚𝑚
𝑎𝑎𝑎𝑎𝑡𝑡𝑠𝑠𝑎𝑎𝑙𝑙 + 𝜃𝜃4EPS𝑓𝑓,𝑦𝑦−1,𝑚𝑚

𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 + 𝜃𝜃4EPS𝑓𝑓,𝑦𝑦−1,𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 + ∑ 𝜃𝜃5,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 +

𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚         (7) 

Included in (7) are one-year lagged values of actual EPS, forecast EPS, and the EPS surprise. In (7), prices, 

returns, sentiment, and volatility enter as in (5) and (6), as do net generation, dividends, and market 

capitalization. 

The analysis next explores the association between environmental performance and risk. Three 

dimensions, or representations, of risk are considered: the monthly standard deviation in returns, the 

beta from the Capital Asset Pricing Model (CAPM), and the standard deviation of the residual from the 

CAPM regression, as a proxy for idiosyncratic risk.  

To begin, the monthly standard deviation in returns (𝜎𝜎𝑓𝑓,𝑦𝑦,𝑚𝑚) is regressed on firms’ environmental 

performance. 
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𝜎𝜎𝑓𝑓,𝑦𝑦,𝑚𝑚 = 𝜃𝜃5 + 𝜃𝜃6Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 + ∑ 𝜃𝜃7,𝑙𝑙𝜎𝜎𝑓𝑓,𝑙𝑙

12
𝑙𝑙=1 + ∑ 𝜃𝜃8,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚  (8) 

As above, a separate specification of (8) is fit to each measure of environmental performance (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  

, Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 , Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ) and a fourth that includes Γ𝑓𝑓,𝑦𝑦
𝐺𝐺  and Γ𝑓𝑓,𝑦𝑦

𝐴𝐴  together. The components in (Xf,l) are as above, and 

the model includes firm, year, and month fixed effects. 

For each publicly traded firm matched to plants in the emissions data, the CAPM regression equation is 

fit in order to estimate firm specific beta and alpha values, as shown in (9). 

𝑅𝑅𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑 − 𝑅𝑅�𝑦𝑦,𝑚𝑚,𝑑𝑑 = 𝛼𝛼𝑓𝑓,𝑦𝑦 + 𝛽𝛽𝑓𝑓,𝑦𝑦�𝑅𝑅𝑦𝑦,𝑚𝑚,𝑑𝑑
𝑆𝑆𝑃𝑃 − 𝑅𝑅�𝑦𝑦,𝑚𝑚,𝑑𝑑� + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑     (9) 

Empirically, this procedure relies on daily returns for each utility firm (𝑅𝑅𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑑𝑑), as well as the daily 

returns on the Standard and Poor’s 500, denoted �𝑅𝑅𝑦𝑦,𝑚𝑚,𝑑𝑑
𝑆𝑆𝑃𝑃 �, in (9), as well as U.S. 10 year treasury yields 

to proxy for the risk free rate �𝑅𝑅�𝑦𝑦,𝑚𝑚,𝑑𝑑�.  

The fitted annual values of  𝛽𝛽𝑓𝑓,𝑡𝑡 are then regressed on measures of firms’ environmental performance as 

shown in (10), including one-year lagged estimates of �̂�𝛽𝑓𝑓,𝑦𝑦 . 

�̂�𝛽𝑓𝑓,𝑦𝑦 = 𝜃𝜃9 + 𝜃𝜃10Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 + 𝜃𝜃11X𝑓𝑓,𝑦𝑦 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜀𝜀𝑓𝑓,𝑦𝑦      (10) 

In (10), (Xf,y) includes net generation, dividends, and market capitalization, and the firm and year fixed 

effects are specified as above. In total, four specifications are fit, with Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ,  Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ,  Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 , and Γ𝑓𝑓,𝑦𝑦

𝐴𝐴  and Γ𝑓𝑓,𝑦𝑦
𝐺𝐺  

together.  

While �̂�𝛽𝑓𝑓,𝑡𝑡 measures systematic risk exposure, the monthly standard deviation of the residual from the 

CAPM regression (10), denoted (𝜎𝜎𝑓𝑓,𝑦𝑦,𝑚𝑚
𝜀𝜀 ) captures firm-specific, or idiosyncratic risk. This metric is then 

regressed on the Γ𝑓𝑓,𝑦𝑦 statistics in the same manner as total risk, inclusive of net generation, and month, 

year, and firm fixed effects. 
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𝜎𝜎𝑓𝑓,𝑦𝑦,𝑚𝑚
𝜀𝜀 = 𝜃𝜃13 + 𝜃𝜃14Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 + ∑ 𝜃𝜃15,𝑙𝑙𝜎𝜎𝑓𝑓,𝑙𝑙
𝜀𝜀12

𝑙𝑙=1 + ∑ 𝜃𝜃16,𝑙𝑙X𝑓𝑓,𝑙𝑙
12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚 (11) 

This model also assumes an ADL specification with up to 12-month lagged values of prices, returns, 

volatility, sentiment, and the dependent variable along with current measures of net generation, 

dividends, and market capitalization. 

The coefficients for the Γ𝑓𝑓,𝑦𝑦 statistics are reported in the following results section as these are of primary 

interest. The full model results are relegated to the appendix. The fitted �̂�𝛽𝑓𝑓,𝑡𝑡 estimates from the CAPM 

regressions are also presented in the appendix. 

In models (5) through (11), the  Γ𝑓𝑓,𝑦𝑦 statistics are included contemporaneously, by year, with the 

dependent variables. Each of the above models is also fit with one-year ahead values of the dependent 

variables. The models retain the ADL specification, with the only difference being that the Γ𝑓𝑓,𝑦𝑦 statistics 

are lagged by one year relative to the dependent variables. An example is shown in (12) with prices as 

the dependent variable. 

𝑃𝑃𝑓𝑓,𝑦𝑦,𝑚𝑚 = 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦−1
𝑇𝑇 + ∑ 𝜃𝜃3,𝑙𝑙𝑃𝑃𝑓𝑓,𝑙𝑙

12
𝑙𝑙=1 + ∑ 𝜃𝜃4,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚  (12) 

For the models that feature prices as the dependent variable, (12) is extended to include observations of 

the dependent variables up to two years forward from the year in which the Γ𝑓𝑓,𝑦𝑦 statistics are estimated. 

To obtain a more granular perspective on how environmental performance affects forward prices, these 

models include interaction terms between the Γ𝑓𝑓,𝑦𝑦 statistics and month-forward fixed effects (𝛾𝛾𝑎𝑎) as 

shown in (13). In this setting, there are 24 forward months of EPS forecast errors, returns, and volatility 

outcomes and 24 interaction terms. 

𝑃𝑃𝑓𝑓,𝑦𝑦,𝑚𝑚,𝑎𝑎 = 𝜃𝜃1 + 𝜃𝜃2Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 + ∑ 𝜃𝜃3,𝑙𝑙𝑃𝑃𝑓𝑓,𝑙𝑙

12
𝑙𝑙=1 + ∑ 𝜃𝜃4,𝑙𝑙X𝑓𝑓,𝑙𝑙

12
𝑙𝑙=0 + ∑ 𝜃𝜃5,𝑎𝑎(Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 × 𝛾𝛾𝑎𝑎)24
𝑎𝑎=1 + 𝜇𝜇𝑓𝑓 + 𝜏𝜏𝑦𝑦 + 𝜔𝜔𝑚𝑚 + 𝜀𝜀𝑓𝑓,𝑦𝑦,𝑚𝑚  

             

(13) 
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In (13), the subscript (a) denotes month forward relative to Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 . The components of (X𝑓𝑓,𝑙𝑙) are the same 

as in (5), and the model includes year, month-of-year, and firm fixed effects. 

One goal of this paper is to compare different measures of firms’ environmental performance. In light of 

this, the empirical exploration of the associations between firms’ financial performance and the  Γ𝑓𝑓,𝑦𝑦 

statistics is repeated with two additional measures of environmental performance: gross tonnage of 

GHGs and local air pollutants, and the  Γ𝑓𝑓,𝑦𝑦 statistics defined in terms of tonnage rather than the GED as 

shown in (14). 

Γ𝑓𝑓,𝑦𝑦 =

𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝑦𝑦
∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓,𝑦𝑦
𝑁𝑁
𝑓𝑓=1

         (14) 

These alternative metrics are substituted in for the damage Γ𝑓𝑓,𝑦𝑦 statistics in (5) through (13) above.  

III. Results. 

a. Firm Environmental Performance. 

Table 1 reports the growth in market capitalization, GED, and an adjusted measure of market 

capitalization that is net of GED. The GED are decomposed according to LAP and GHG. Table 1 reveals 

that the firms included in this analysis experienced a median annualized growth rate in market 

capitalization of just over 6 percent (in real terms). Against this trend in market capitalization growth, 

combined GED fell by about 20 percent, annually. This reduction was primarily due to declining LAP 

damages. Between 2014 and 2017, LAP GED dropped at a 27 percent annual rate. GHG GED were 

statistically flat. Indices which only track GHGs in the utility sector will seriously mischaracterize 

environmental performance. The decline in LAP damages dominates that from GHGs. Subsequent 

sections of this analysis will demonstrate that this has important implications for the relationship 

between financial outcomes and these measures of environmental performance.  
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Firms face several ways to reduce pollution damage. They can install pollution control technology such 

as flue gas desulfurization units and selective catalytic reducers to control SO2, and NOx, respectively. 

Companies may elect to switch fuels, from say coal to natural gas, to reduce SO2 and CO2. Both of these 

approaches maintain output (net generation of kwh) while reducing pollution intensity. Alternatively, 

firms may close facilities. Of course, this reduces pollution but it may concomitantly decrease output if 

other facilities are not acquired or constructed. 

The decreasing GED deducted from rising market capitalization results in high annual rates of growth in 

adjusted, or net, market capitalization. Deducting total GED increases apparent growth up to 16 percent, 

annually. When only the LAP GED are deducted, growth in net market capitalization is 14 percent. And, 

if only GHG GED are subtracted, growth in adjusted market capitalization is about 8 percent, or about 

1.5 percent more rapid than annually growth in conventionally reported market capitalization. This 

phenomenon of rising within-market measures of growth coupled with falling pollution leading to more 

rapid pollution-adjusted growth was first documented at the economy-wide and sectoral level (Muller, 

2013; 2014). The present paper is the first to examine this at the enterprise level. 

While table 1 summarizes firm market capitalization and GED growth rates, table 2 presents the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) 

scores, total GED, and GED per share outstanding for firms listed on the Standard and Poor’s 500 in the 

utility sector. Three themes emerge from this table. First, within year, there is considerable variation in 

the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores, from 0.06 to 5.81 in 2014. Second, there is considerable re-ordering of the firms’ (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) 

scores between 2014 and 2017. Third, the companies’ total GED and their GED per share provide an 

insightful means for investors and asset managers to relate pollution intensity to intuitive measures of 

firm value. 

In 2014, the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores ranged between 0.06 and 5.81. Recall that a (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) score of 0.06 means that 

American Water Works’ combined air pollution and GHG damage share (relative to the industry total) 
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was less than one tenth of its market capitalization share. At the other end of the spectrum, NRG’s 

damage share was almost six times larger than its market capitalization share. Firms like CMS Energy 

and Edison International exhibited (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores around 1. These firms had relatively equal damage and 

market capitalization shares. In 2017, the range in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores was even larger. 

The difference in GED per outstanding share also shows the difference in pollution intensity between 

firms. In 2014, American Water Works produced GED equivalent to just under $1 per share. NRG 

generated GED of nearly $60 per share. Figure 1 demonstrates the implication of these differences in 

pollution intensity for net share prices. The top left panel shows American Water Works. The black line 

traces monthly averaged share prices. The red line nets out GED per share5. At $1 per share, the 

deduction makes very little difference between the observed share price and that which nets out GED. 

While American Water Works was the cleanest firm in 2014, it dropped to the fifth cleanest in 2017. The 

company’s total GED and GED per share fell slightly over this period. Its ranking fell because other firms 

became even cleaner.  

The top right panel repeats the same exercise for XCEL Energy. For this firm, the GED per share 

amounted to between one-third and one-fifth of observed prices. What is interesting about XCEL is that 

the spread between actual and net prices remains roughly constant. Table 2 indicates that the GED per 

share held at about $8 per share from 2014 to 2017. And, total GED was essentially flat at $4 billion. This 

constant level of GED, in the context of an industry with GED that fell at an annual rate of 17 percent, 

results in a  Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  score that increased from 0.82 to 1.30. XCEL didn’t keep pace with its industry peers. 

The bottom left panel of figure 1 focuses on Edison International. This firm exhibited GED per share of 

about $17, which amounted to nearly one-third of its share price in 2014. In contrast to XCEL, Edison 

International’s GED per share fell precipitously to just under $8. This reduction is evident in figure 1. The 

                                                            
5 Since the empirical calculation of GED occurs in 2014 and 2017, the GED is interpolated for 2015 and 2016. 
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spread between Edison International’s market share price and the GED-adjusted price narrowed 

appreciably. It’s Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  score also dropped from 0.96 to 0.78, and the total GED decreased by about one-

half. Finally, the bottom right panel plots the market and adjusted share prices for NRG, the firm with 

the most pollution intensive Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  score in both 2014 and 2017. First, the horizontal line at zero indicates 

that deducting the nearly $60 in GED per share from NRG’s observed share price in 2014 results in a 

negative valuation. This also implies negative market capitalization for NRG. One might ask whether 

such a magnitude for the GED is plausible. Using 2002 data6, prior research demonstrated that the fleet 

of coal-fired power plants produced greater GED than its collective value-added (Muller, Mendelsohn, 

and Nordhaus, 2011). So, there is precedent for this degree of pollution intensity for utilities in the 

literature. Despite remaining as the most pollution intensive firm, NRG cleaned up considerably. Its GED 

per share dropped from about $60 in 2014 to $25 in 2017. Total GED produced by the company fell from 

$19 billion to $8 billion in 2017. Yet, its Γ𝑓𝑓,𝑦𝑦
𝑇𝑇  grew from 5.8 in 2014 to 8.3 in 2017. The firm became even 

more of an outlier in terms of its contribution to industry damage, relative to market capitalization.  

The rationale for the comparison between firms’ market share price and the GED-adjusted share price is 

the following. An investor holding a share of a firm has an ownership stake in the firm, which conveys a 

claim to earnings, the value of liquidated assets and the like. The GED per share thus represents 

investors’ ownership of the monetary damage caused by pollution emitted during firms’ production 

processes. Absent regulation, such as a Pigouvian tax that charges firms for the damages caused by their 

emissions, the GED is not realized by investors in a pecuniary sense. Because, in the U.S. at least, 

pollution policy does not feature Pigouvian taxation (or the polluter pays principle more broadly), the 

                                                            
6 In 2002, the electric power industry was characterized by much higher levels of pollution intensity and gross 
emissions than in 2014 (Holland et al., 2019). 
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GED per share may serve an important informational role to investors and asset managers, especially 

when this metric is directly compared to market share prices. 

b. Firm Financial Performance. 

Tables 3 and 4 reports the empirical results from the ADL regression models of the form shown in (5) 

through (12). Table 3 examines current period outcomes, table 4 focuses on year ahead outcomes. Each 

financial outcome measure (the dependent variable from each regression) is shown in the row headings, 

and each environmental performance measure is shown in the column headings. In both tables, column 

(1) features (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ), whereas columns (3) and (4) include (Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ) and (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ), respectively. Column (2) includes 

(Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and (Γ𝑓𝑓,𝑦𝑦

𝐺𝐺 ) as separate covariates together in the same model. Tables 3 and 4 report only the fitted 

coefficients on the (Γ𝑓𝑓,𝑦𝑦) measures. The full regression results are shown in the appendix. 

  i. Prices. 

Table 3 provides clear evidence that current period share prices fall as firms became more pollution 

intensive. A one unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) corresponds to a 9 percent decrease in prices (p < 0.01). These 

models include firm fixed effects. It is within firm changes in pollution intensity from 2014 to 2017 that 

drive the associated price responses. Within firm variation in (Γ𝑓𝑓,𝑦𝑦) reflects repositioning of firms within 

the utility sector according to their relative pollution intensity of output. So, as firms re-shuffle between 

2014 and 2017 according to the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) measure, share prices respond inversely to firms’ pollution 

intensity. There are about 40 firms in the sample. The four firms that exhibited the largest increase in 

(Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) from 2014 to 2017 incurred an increase of about 1.3. (These four firms represent those above the 

90th percentile in changes to the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score from 2014 to 2017.) So these firms incurred an 11 percent 

reduction (1.3 x -0.086) in prices due to their increased (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score. Conversely, the four firms that saw 
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the largest improvement in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ), those below the 10th percentile in (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) score changes, exhibit a 

reduction of 0.77, which implies a price increase of 7 percent.  

In a theme evident across multiple financial outcomes, the price change relative to pollution intensity is 

significantly larger when damages from air pollution and GHGs are combined in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) measure. 

When air pollution intensity and GHG intensity are measured separately but included together in the 

regression model, both measures are negatively, significantly associated with share prices. However, 

column (2) shows that the price effects of (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and (Γ𝑓𝑓,𝑡𝑡

𝐺𝐺 ) are about one-half the magnitude of (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). In 

column (3), when (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) is included without GHGs, the marginal effect of (Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ) is about 6 percent, (p < 

0.01). And, in column (4), with only GHG intensity, the marginal effect of (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) is also negative (5 

percent) and significant (p < 0.05). Hence, columns (3) and (4) suggest pollution intensity measures that 

focus on either just air pollution or just GHGs will underestimate the price response by about 40 

percent, relative to (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Indices that only track carbon intensity suggest a significantly smaller price 

response to changes in environmental performance than (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Summarizing, table 3 provides robust 

evidence that current period prices respond inversely to firms’ relative pollution intensity and that the 

combined, multi-pollutant measure exerts the largest effect.  

Table 4 indicates that the negative association between the firms’ (Γ𝑓𝑓,𝑦𝑦) scores and share prices persists 

one year forward of when the the firms’ (Γ𝑓𝑓,𝑦𝑦) scores are calculated. The marginal effect of firms’ (Γ𝑓𝑓,𝑦𝑦) 

scores is smaller, about three-fourths the magnitude of the effect on current period prices, and is only 

significant for (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and  (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ).  And, as in table 3, the largest effect on forward prices is observed for the 

combined, multi-pollutant measure (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). 

The regression models in tables 3 and 4 force any association between the (Γ𝑓𝑓,𝑦𝑦) scores and prices to 

manifest through a single coefficient. The model in (13) relaxes this restriction by interacting the (Γ𝑓𝑓,𝑦𝑦) 
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scores with the number of months between observed future prices and the (Γ𝑓𝑓,𝑦𝑦) scores. Figure 2 

reports the coefficients for these interaction terms, by month forward, up to two years after the data 

used to compute firms’ (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores are available. The lower horizontal line is equal to the coefficient 

from column (1) of table 4: -0.063 (p < 0.05). Initially, prices respond negatively to (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). This negative 

reaction in the first month following (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is indistinguishable from -0.063. However, by two months 

after the data for the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores are reported, the coefficients are statistically zero. By eight months 

forward, the coefficients are positive and significantly different from zero. These subsequent positive 

coefficients suggest that market participants respond to new information about pollution intensive firms 

as the year following (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) progresses. Section ii below provides evidence that EPS announcements may 

induce this price response. The right-hand panel extends the analysis a full two years after the data for 

the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores are reported. Prices rise within the first year, but then cease to respond to the (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) 

scores during the second year. 

  ii. Earnings and P/E Ratios. 

Table 3 shows that, despite the significant decline in prices associated with each measure of 

environmental performance, the forward P/E ratios do not systematically vary with the (Γ𝑓𝑓,𝑦𝑦) scores7. 

This implies that analysts’ EPS estimates (which comprise the denominator of the P/E ratios) must also 

fall with the (Γ𝑓𝑓,𝑦𝑦) scores. To test this, analysts’ EPS estimates are regressed on each (Γ𝑓𝑓,𝑦𝑦) score. The 

bottom panel of table 5 reports that current period EPS estimates, reflecting expectations over the 

following 12 months, are negatively associated with the (Γ𝑓𝑓,𝑦𝑦) scores. A one unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is 

associated with a $0.21 decrease in estimated EPS (p < 0.01). The average estimated EPS is $2.69. So the 

coefficient implies an eight percent reaction to a one unit change in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Thus, EPS estimates decline in 

                                                            
7 Recall that the forward P/E ratio features observed prices in 2014 and 2017, relative to analysts’ estimated EPS 
that are published in 2014 and 2017 for the following 12 month period. 
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proportion to prices. This explains why the current period P/E ratios do not systematically respond to 

(Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ). Both of the (Γ𝑓𝑓,𝑦𝑦

𝐺𝐺 ) scores are significantly, negatively associated with the EPS estimates (p < 0.01). 

This is not surprising given that many current ESG indices focus exclusively on carbon intensity. The 

coefficients for the air pollution scores are also negative, but imprecisely estimated. The bottom panel 

of table 5 also indicates that actual EPS decline with the (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) scores and that EPS surprises are 

therefore not associated with the (Γ𝑓𝑓,𝑦𝑦).  

Table 4 shows that future EPS surprises are sensitive to environmental performance8. A one unit 

increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) is associated with a 14% increase in the EPS surprise (p < 0.01). Table 4 further reports 

that each of the (Γ𝑓𝑓,𝑦𝑦) measures is positively and significantly associated with the EPS surprises. As 

observed for prices, the marginal effect of the combined, multipollutant (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score is much larger than 

the effects of either the air pollution or GHG score. Specifically, (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) exerts a positive effect on the EPS 

surprise that is nearly twice as large as air pollution intensity and three to seven-times larger than the 

effect of GHG intensity.  

EPS surprises are reported by Refinitiv® as the difference between actual and the mean estimated EPS 

across analysts. Hence, these empirical results suggest that analysts underestimate future EPS to a 

greater extent for firms that became relatively more pollution-intensive from 2014 to 2017. Analysts are 

overly pessimistic with respect to the future EPS of pollution intensive firms9.  

                                                            
8 The future EPS estimates are made by analysts in 2015 and 2018, one year after the environmental performance 
measures are tabulated. 
9 In light of analysts’ apparent systematic errors, a natural question is whether analysts are acting rationally. Table 
A.1 in the appendix tests whether analysts’ forecasts are rational using the regression-based approach in Keane 
and Runkle (1998). Two measures of realized EPS are used, the actual EPS and reported EPS are regressed on 
contemporaneous forecast EPS. Keane and Runkle (1998) claim that analysts are rational if the intercept from this 
model is zero and the coefficient on estimated EPS is equal to unity. The top panel employs actual EPS. In all four 
specifications, a Wald test of the null hypothesis that the coefficient on estimated EPS is equal to unity is rejected 
at conventional levels. In all columns, the intercept is significantly different from zero. This evidence suggests 
analysts’ forecasts are not rational. In contrast, the bottom panel of table A.1 regresses reported EPS on the 
estimated. Here, the null hypothesis that the coefficient on estimated EPS is equal to unity cannot be rejected at 
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To explore analysts’ behavior in greater depth, the top panel of table 5 decomposes forward EPS 

surprises into actuals and estimates, and it also reports the EPS surprises. The central insight is that 

actual EPS (reported in the year after the (Γ𝑓𝑓,𝑦𝑦) scores are estimated) increase more for firms that 

become relatively dirtier than do the estimated EPS. For example, a one-unit increase in (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) induces a 

$0.31 increase in actual EPS (p < 0.01) and just a $0.15 increase in estimated EPS (p < 0.01). Across the 

(Γ𝑓𝑓,𝑦𝑦) metrics, the partial effect on actual EPS is roughly double that of the estimated EPS. This difference 

results in the large positive association between EPS surprises and the (Γ𝑓𝑓,𝑦𝑦) scores. Summarizing the top 

panel of table 5, analysts’ errors in estimating EPS stem not from projecting decreases in EPS for dirtier 

firms. Rather the errors are due to underestimating the degree to which actual EPS increase as a 

function of pollution intensity. 

Repeating a pattern evident in the analysis of current period outcomes, the combined, multi-pollutant 

metric (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) exhibits a larger effect on actual EPS, the estimated EPS, and the EPS surprise than the 

other measures. For the actual EPS, (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) exerts an effect roughly two to three times larger than either 

(Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) or (Γ𝑓𝑓,𝑦𝑦

𝐺𝐺 ). For estimated EPS, the difference in effect size is on the order of 50 percent to a factor of 

two.  

Finally, the forward EPS results inform inferences about the future pricing patterns evident in figure 2. 

(Recall that after an initial sharp decline, future prices rebound and react positively to increased 

pollution intensity between eight and twelve months after the (Γ𝑓𝑓,𝑦𝑦) scores.) Market participants could 

be responding to the actual EPS for firms that become dirtier, which table 5 shows outpace estimated 

                                                            
conventional levels. Further, except for the OLS specification in column (1), the intercept is not significantly 
different from zero. This provides strong evidence that analysts’ forecasts are rational. This decidedly mixed 
evidence implies that irrationality in analysts’ forecasts cannot be ruled out as an explanation for persistently 
underestimating the EPS for more pollution intensive firms. 
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EPS. This news (actual EPS in excess of estimated EPS) would drive share prices higher as investors 

update their expectations about such firms’ future earnings.  

The systematic EPS errors for dirtier firms suggest that a careful portfolio manager could exploit the 

findings reported herein to achieve a period of overperformance relative to a strategy based on the 

reported EPS estimates. Suppose a manager employs the mean EPS estimates to determine their capital 

allocations within the utility sector. This tack would down-weight dirtier firms in the portfolio as 

expected earnings are lower than for cleaner firms. Because the EPS forecasts are biased down for 

pollution intensive firms, a manager informed by the results in table 5 could capitalize on this bias to 

generate superior returns relative to a strategy strictly adherent to the mean EPS forecast. Further, a 

manager focusing on the multipollutant index would stand to roughly double the returns to this 

approach relative to a strategy based solely on carbon intensity.  

Table 6 takes an additional look at the EPS data by exploring the standard deviation across analysts’ 

estimates, by firm. The bottom panel focuses on the standard deviations for current period estimates. 

There is suggestive evidence that dispersion in analysts’ estimates is higher for firms that become more 

carbon-intensive. However, the coefficient of variation does not systematically vary with the (Γ𝑓𝑓,𝑦𝑦) 

scores. This implies that the standard deviations vary in proportion to the mean EPS estimates. The top 

panel of table 6 examines the dispersion of year ahead EPS estimates. In the year ahead context there is 

more consistent evidence that analysts’ estimates become more noisy as firms grow more pollution 

intensive. A one unit increase in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score is associated with a $0.01 increase in the standard 

deviation of analysts’ estimates (p < 0.10). The effect is concentrated in the (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) scores. There is also 

evidence of an association between pollution intensity and the coefficient of variation. A one unit 

increase in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score is associated with a $0.01 decrease in the coefficient of variation in analysts’ 

estimates (p < 0.01). Note that while the standard deviation increases with pollution intensity, the 
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coefficient of variation falls. Table 5 shows why this is the case; year ahead EPS estimates increase by 

$0.15 (p < 0.01) for each unit increase in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score. Because this effect is so much larger than that 

for the standard deviation ($0.01 p < 0.10) the coefficient of variation falls. So, not only do analysts 

overreact to firms’ pollution intensity, but, collectively, there appears to be less disagreement in the 

estimates.  Analysts coalesce around biased EPS estimates. 

Tables 4 and 5 indicate that analysts’ estimates are sensitive to firms’ overall pollution intensity. Table 

A.3 takes a more granular approach. It explores how the distribution of damages, across facilities owned 

by the same firm, affects the forward EPS surprises. A motivation for exploring the intra-firm distribution 

of damage is the following. Concentrated damage would make ascertaining firm’s environmental 

performance easier because damages then come from fewer plants. This would matter for regulators as 

well as other market participants (including analysts) using real time surveillance or otherwise trying to 

glean environmental performance by observational means. Empirically, a Herfindahl Index is computed 

as shown in (15):  

H𝑓𝑓,𝑦𝑦 = ∑ � 𝐺𝐺𝐸𝐸𝐺𝐺𝑓𝑓,𝐶𝐶,𝑦𝑦

∑ 𝐺𝐺𝐸𝐸𝐺𝐺𝑓𝑓,𝐶𝐶,𝑦𝑦
𝑃𝑃
𝐶𝐶=1

�
2

𝑃𝑃
𝑒𝑒=1         (15) 

where p = facility. 

This index characterizes the degree to which firms’ damages are concentrated in relatively few facilities, 

akin to how a typical application of the Herfindahl Index conveys the concentration of market shares 

across firms within an industry. Based on the information transmission argument above, one would 

expect the Herfindahl Index in (15) to increase the EPS surprise, because analysts would more readily 

assess environmental performance, thereby enhancing their tendency to underestimate EPS for 

pollution intensive firms. 
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Table A.3 reports the resulting from running the same regressions as reported in table 5 (with EPS 

surprises as the dependent variable) with the distinction that the Herfindahl Index is added as an 

independent variable. Table A.3 confirms the hypothesis above, especially for CO2. A 1 percent increase 

in the Herfindahl Index for CO2 exerts a 7 percent increase in the EPS surprise (p < 0.01). Also, the 

coefficient for (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ) increases from 4.4 in table 5 to 9.3 in table A.3 upon inclusion of the Herfindahl 

Index. This coefficient is statistically indistinguishable from the 9.63 corresponding to (Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) in table 4. 

Thus, controlling for how concentrated damages are across facilities owned by the same firm renders 

the partial effect of GHG intensity equivalent to air pollution intensity. In column (3), which also includes 

(Γ𝑓𝑓,𝑦𝑦
𝐴𝐴 ) and the Herfindahl Index for air pollution, the Herfindahl Index for CO2 retains its significance. The 

magnitude of its effect on the EPS surprise attenuates only slightly, relative to column (1). These results 

indicate that analysts’ EPS are less accurate for that companies whose CO2 damages emanate from 

relatively few sources. As argued above, one explanation for this result is that the information on 

emissions and damages required for analysts to judge environmental performance is less costly to 

acquire for firms with higher Herfindahl scores.  

Table A.4 reports the results from regressing measures of dispersion in analysts’ EPS estimates on the 

Herfindahl Indices. The key finding is that the noise in the EPS estimates falls as firms have higher CO2 

Herfindahl scores. Columns (1), (2), (5), and (6) indicate that both the standard deviations and 

coefficients of variation are lower for firms that have more concentrated damages. The effect on the 

coefficients of variation are significant at conventional levels. The essential argument undergirding this 

result is very much in line with that made above. Information regarding firms’ CO2 environmental 

performance is easier to obtain for firms with higher Herfindahl scores. If the information is easier to 

access, it is more likely that a plurality of analysts share the same, or similar, information. This facilitates 

greater agreement among analysts, and, in turn, less dispersion in their EPS estimates.  
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At the margin, increasingly concentrated damages among facilities owned by the same firm induces 

greater EPS surprises and less noisy EPS estimates for more carbon-intensive firms than for firms that 

grew more air pollution intensive. Why would this effect manifest for more carbon-intensive firms?  

One explanation hinges on a version of Keynes’ beauty contest. Analysts expect investors and other 

market participants to react to news about carbon intensive firms because the current offering of 

environmental performance metrics in the market emphasize carbon intensity, not air pollution (MSCI, 

2019; NUVEEN, 2021; Sustainalytics; 2021). Higher Herfindahl Index scores make it easier for both those 

developing the environmental performance metrics and market participants to ascertain CO2 

performance.  So, analysts may believe that highly concentrated, carbon-intensive firms bear additional 

reputation risk in light of the fact that environmental performance metrics guiding ESG allocations 

emphasize carbon and that the transmission of information regarding their performance is facilitated by 

the concentrated nature of damages for these firms. 

A second explanation for the importance of the Herfindahl Index is that market participants might 

consider future regulatory risk for concentrated, carbon-intensive firms. Efforts to manage 

environmental pollution often focus on the largest sources first. As governments increasingly focus on 

limiting GHG emissions from the utilities sector, regulatory constraints may bind first for companies with 

large plants. These are the firms with higher Herfindahl scores. Of course, increased costs of compliance 

with environmental policy would adversely affect profits, and EPS.  

The absence of an effect of the Herfindahl Index for air pollution damage reflects the information 

channel outlined above. Information regarding air pollution emissions has been gathered by federal 

regulators and made available to the public for decades. Some of the local air pollutants covered in the 

(Γ𝑓𝑓,𝑡𝑡
𝐴𝐴 ) measure have been regulated since the 1970s. Since air pollution emissions have been extensively 

monitored for many years, the degree of concentration in damages does not appreciably affect the EPS 
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surprises because information regarding environmental performance in this dimension is already 

accessible to market participants. Further, since extant environmental performance metrics largely 

ignore local air pollution, the degree of concentration in air pollution damage is likely irrelevant to 

market participants and index developers.  

  iii. Returns. 

Table 3 presents little consistent evidence that pollution intensity is associated with current period 

returns. Only the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) and (Γ𝑓𝑓,𝑦𝑦

𝐴𝐴 ) scores are marginally significantly associated with current returns. All 

of the coefficients are positive. The sign of these coefficients is in agreement with Bolton and Kacperczyk 

(2019) who report higher returns for firms with higher total CO2 emissions. However, in light of Bolton 

and Kacperczyk’s (2019) results, the lack of statistical significance in table 3 raises the question of why 

returns are not significantly higher for more pollution intensive firms. One possible explanation is that 

Bolton and Kacperczyk (2019) analyze CO2 emissions across a larger sample of firms in multiple 

industries. It could be the case that utilities, the focus of the present study, may not command such a 

large carbon emission premium10. Table A.2 in the appendix explores how the returns premium varies 

according to model specification. The top panel focuses on current period returns. It shows no 

systematic evidence of a carbon intensity premium. 

Table 4, which focuses on future financial outcomes, offers more conclusive evidence of a pollution 

intensity premium on returns. A one-unit increase in the (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) score is associated with a 1.2 percent 

increase in returns (p < 0.01). The other (Γ𝑓𝑓,𝑦𝑦) scores exhibit positive coefficients with varying degrees of 

significance. The effect sizes range between 0.4 and 0.8 percent. Here again, the largest coefficient is 

associated with the multi-pollutant (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) scores. Returning to the findings of Bolton and Kacperczyk 

                                                            
10 Similarly, Hsu, Li, and Tsou (2020) find higher returns for firms that are higher emitters of toxic air pollutants (not 
those covered herein). 
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(2019), the bottom panel of table A.2 reports systematic evidence of a carbon premium on future 

returns. Depending on model specification, the carbon premium ranges between 0.3 and 1 percent. 

  iv. Risk. 

Table 3 provides suggestive evidence that measures of current period risk are associated with the (Γ𝑓𝑓,𝑡𝑡) 

statistics. For example, volatility (defined as the standard deviation in returns) is higher for more 

pollution intensive firms according to the (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) and (Γ𝑓𝑓,𝑡𝑡

𝐺𝐺 ) scores. The coefficient for (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) is 0.234 (p < 

0.10). The mean volatility for firms in this sample is 1.77: a one unit increase in (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) is associated with a 

13 percent increase in volatility. Greater volatility in returns may stem from the significant reductions in 

current prices (reported in table 3) and the reductions in analysts’ EPS estimates (in the bottom panel of 

table 5). Additionally, firms’ betas from the CAPM regressions are also positively associated with the 

(Γ𝑓𝑓,𝑡𝑡
𝐺𝐺 ) statistics. The average beta for firms in this sample is 0.48 in 2014 and 2017. As such the 

coefficients on (Γ𝑓𝑓,𝑡𝑡
𝐺𝐺 ) in columns (2) and (4) suggest a 15 percent increase in firms’ beta for a one-unit 

increase in CO2 intensity. 

c. Comparing Measures of Financial Performance: Tons and Damages. 

While tables 3 and 4 focus on the (Γ𝑓𝑓,𝑡𝑡) statistics computed using monetized damages, the question of 

how investors responded to other measures of environmental performance is addressed here. Tables 

A.5 through A.8 in the appendix systematically examine how the financial outcomes modeled in tables 3 

and 4 respond to multiple alternative environmental performance metrics. There are two themes worth 

summarizing here. First, functional form matters; the (Γ𝑓𝑓,𝑡𝑡) statistics computed using emissions rather 

than damages exhibit many of the same patterns as damages, whereas raw emissions are, in general, 

less significant determinants of financial outcomes. Second, GHG emissions dominate LAP emissions 

because of the large difference in emissions tonnage. Therefore, multi-pollutant environmental 
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performance scores expressed in terms of emissions mimic CO2. This underscores the importance of 

monetizing multi-pollutant indices. 

Table A.5 indicates that the outcomes that were significantly associated with the (Γ𝑓𝑓,𝑡𝑡) damage statistics 

in table 3 tend to also be significantly associated with the (Γ𝑓𝑓,𝑡𝑡) emission statistics. Specifically, prices are 

negatively associated with emissions. However, the magnitudes of the coefficients are quite different. 

While a one-unit increase in the monetary damage (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) induces an 8 percent reduction in prices, the 

tonnage (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) is associated with a 5 percent reduction in prices. For prices, the combined emissions 

(shown in column 1) display an effect that is nearly identical to GHGs alone, as shown in column 4. This 

occurs because the magnitude of GHG emissions, in mass, dwarfs that of the LAPs combined. Table A.5 

also indicates that results for volatility and firms’ betas from the CAPM regressions are similar to those 

for damages. 

Table A.6 covers forward financial outcomes. Like tables 3 and A.5, the comparison of tables 4 and A.6 

reveals strong commonality between the emission and damage (Γ𝑓𝑓,𝑡𝑡) scores. Forward prices are 

negatively associated with the emissions (Γ𝑓𝑓,𝑡𝑡) scores. The marginal effect of the combined emission 

score is much smaller than the combined damage score. The EPS surprises are consistently associated 

with the emissions (Γ𝑓𝑓,𝑡𝑡) scores. The magnitudes of the coefficients are smaller than those in table 4. 

Again the coefficients for (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) mimic those for (Γ𝑓𝑓,𝑡𝑡

𝐺𝐺 ) in column (4). 

Table A.7 focuses on raw tonnage, rather than the (Γ𝑓𝑓,𝑡𝑡
𝑇𝑇 ) statistics. Here the results are different. The 

signs for the (Γ𝑓𝑓,𝑡𝑡) scores in the price regressions are not robust. P/E ratios are positively associated with 

tonnage. Some points of commonality with the (Γ𝑓𝑓,𝑡𝑡) scores are evident. Volatility and firms’ betas from 

the CAPM regressions are positively associated with combined GHG and LAP emissions and GHG 

emissions alone. Table A.8 indicates that EPS surprises are increasing in both GHG emissions and 



32 
 

combined emissions. Tables A.7 and A.8 also make clear that GHG emissions dominate LAP emissions 

because of the large difference in emissions tonnage. Multi-pollutant environmental performance 

scores expressed in terms of emissions mimic CO2.  

IV. Conclusions. 

This analysis offers a new approach to the measurement of firms’ environmental performance. In 

contrast to existing metrics, which often focus exclusively on CO2 emissions, the present paper 

computes the monetary damage from eight pollutants and devises a summary statistic that relates 

relative pollution damage to relative firm value. Monetization enables multi-pollutant assessments of 

environmental performance. Without monetization, CO2 dominates environmental performance 

because emissions are so abundant relative to other pollution species.  

The paper estimates this new statistic in the context of the U.S. utility industry from 2014 to 2017. This 

is both a data rich and pollution intensive setting. While market capitalization among these firms grew, 

pollution damages fell sharply. Importantly, LAP damages constitute the bulk of these declines, with 

GHG emissions and damages essentially flat from 2014 to 2017. Within utility firms traded on the S&P 

500, there is significant variation in environmental performance. Consolidated Edison’s combined air 

pollution and GHG damage share (relative to the industry total) was one tenth of its market 

capitalization share. At the other end of the spectrum, NRG’s combined air pollution and GHG damage 

share was over five-times larger than its market capitalization share.  

The analysis explores the relationship between this new performance measure and a host of financial 

outcomes. These include current and future prices, P/E ratios, returns, earnings, and three measures of 

risk. Current prices fall when within firms’ pollution damage intensity rises. Analysts tend to 

systematically underestimate future EPS for firms that grew more pollution intensive between 2014 and 

2017. The analysis shows that the intrafirm distribution of damage matters for financial outcomes. The 
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EPS surprises are larger for firms with CO2 damages produced by relatively few sources. Further, EPS 

estimates are less noisy (across analysts producing estimates for the same firm) for firms with more 

concentrated CO2 damages. Information regarding firms’ CO2 environmental performance is easier to 

obtain for firms whose damage emanates from fewer, larger plants. And, if the information is easier to 

access, it is more likely that analysts share the same damage information. This facilitates greater 

agreement among analysts, and, in turn, less dispersion in their EPS estimates. 

A primary goal of the paper is a comparison of the new performance measure to those based only on 

GHGs and only on emissions. These comparisons reveal two important insights. First, without 

monetization, pollution intensity measured by adding up tons of the eight pollutants covered herein is 

dominated by GHGs. This stems from the fact that the volume of GHG emissions is orders of magnitude 

larger than the LAP. Yet, in the U.S. utility sector, the monetary damages from LAPs are on par with 

GHGs (Holland et al., 2020). Adding up tons ignores the vast difference in the value of LAP tons and GHG 

tons at the margin. If a goal of ESG indices is to align the behavior of financial market participants with 

more socially beneficial environmental outcomes, monetization is essential. 

Second, the financial outcomes modeled in this paper are considerably more responsive to the 

monetized multipollutant (Γ) scores than to indices based on GHGs, either monetized or calculated from 

emissions mass. Recall that prices and returns are twice as sensitive. EPS surprises are between three 

and five times more responsive. There are two important implications of this. One, financial market 

participants who rely on the multipollutant (Γ) scores could exploit this heightened sensitivity to bolster 

returns on ESG-oriented capital allocation strategies. Why? Because if the majority of ESG-oriented 

portfolio managers focus only on carbon intensity, they will underestimate the systematic EPS forecast 

errors by as much as a factor of five.  And two, standardized ESG disclosure requirements would benefit 

from the multipollutant (Γ) scores because it is a more effective driver of essential financial market 

outcomes (prices, returns, EPS) than an index relying on tonnage or focusing strictly on GHGs. This 
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position is predicated on the idea that standardized ESG disclosure is intended to affect both firm 

behavior and that of financial market participants in a manner that nudges outcomes in financial 

markets and in the real economy toward a more socially beneficial allocation of resources.  

This paper suggests new research in a number of areas. While the U.S. utility sector is a natural starting 

point, it reflects a small segment of the investible market. In the U.S., the data exist to apply this new 

measure of environmental performance to other sectors. Likely candidates include industrials, consumer 

staples, and energy sectors. Subsequent analyses focusing on these segments of the economy will 

determine whether the relationships between pollution intensity and financial outcomes reported here 

manifest in other sectors. This will matter to asset managers, investors, and analysts as diversified ESG 

strategies must include firms outside of the utility sector. Additionally, estimation of the (Γ) scores in 

other sectors facilities firm rankings beyond the “best in class” scores presented herein. Further, explicit 

consideration of portfolios and investment strategies, only hinted at herein, is enabled by the present 

analysis. And, finally, future work might consider whether the new measure of environmental 

performance varies across private and public firms, as prior research indicates ownership matters for 

environmental outcomes. 
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Tables and Figures. 

Table 1: Growth in Market Capitalization and Pollution Damages. 

 No 
Pollution 

GHGs + 
LAP 

 
LAP 

 
GHG 

Market Cap 
 

0.065A 

(0.051,0.112) 
 

   

GED 
 

 -0.203 
(-0.268,-0.140) 

-0.270 
(-0.377,-0.199) 

-0.069 
(-0.156,0.004) 
 

Market Cap – 
GED 

 0.165 
(0.103,0.187) 

0.142 
(0.080,0.174) 

0.087 
(0.063,0.131) 
 

A = median annualized growth rate between 2014 and 2017. 0.065 = 6.5% annualized growth. 
B = 95% confidence interval for estimated median. 
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Table 2: Environmental Performance of the Utility Firms Listed on the Standard and Poor’s 500. 

2014 2017 
Firm 
 (𝚪𝚪)A 

GED/ 
ShareB GEDC 

Firm 
 (𝚪𝚪) 

GED/ 
Share GED 

American Water Works 0.06 0.99 0.18 Eversource Energy 0.00 0.03 0.01 
Consolidated Edison 0.09 1.56 0.46 Sempra Energy 0.02 0.37 0.09 
PG&E Corp 0.10 1.58 0.70 Exelon 0.05 0.27 0.25 
Pub. Service Ent. Group 0.13 1.58 0.80 PG&E Corp 0.07 0.48 0.24 
Eversource Energy 0.16 2.40 0.76 Consolidated Edison 0.07 0.77 0.23 
NextEra Energy 0.19 1.51 2.57 American Water Works 0.08 0.86 0.15 
Exelon 0.30 3.31 2.85 Pub. Service Ent. Group 0.15 0.92 0.47 
Dominion Resources 0.39 8.77 5.08 NextEra Energy 0.27 1.32 2.47 
Sempra Energy 0.56 17.62 4.39 CenterPoint Energy 0.31 1.17 0.51 
Pinnacle West Capital 0.58 10.42 1.15 Pinnacle West Capital 0.50 5.65 0.63 
NiSource 0.64 7.81 2.45 Dominion Resources 0.51 5.49 3.39 
CenterPoint Energy 0.75 5.56 2.40 CMS Energy Corp 0.66 4.12 1.15 
Xcel Energy 0.82 8.27 4.11 WEC Energy Group 0.66 5.58 1.77 
WEC Energy Group 0.85 12.14 2.79 Edison International 0.78 7.75 2.56 
Edison International 0.96 17.27 5.68 NiSource 0.89 3.09 1.00 
CMS Energy 1.09 10.45 2.84 PPL 0.96 4.73 3.23 
Southern Co 1.17 16.73 14.67 Southern Co 1.17 8.16 7.69 
DTE Energy 1.26 30.87 5.40 Xcel Energy 1.30 8.07 4.11 
Entergy 1.34 32.60 5.82 Duke Energy 1.57 17.84 12.33 
Duke Energy 1.36 31.90 22.52 DTE Energy 1.87 26.67 4.77 
PPL 1.37 14.15 9.39 Entergy 2.15 22.57 4.04 
Evergy 2.09 24.40 3.11 AEP 2.19 20.67 10.17 
Ameren 2.12 26.96 6.59 Evergy 2.64 18.55 2.64 
AES 2.73 11.70 8.75 Ameren 2.66 20.16 4.91 
FirstEnergy 2.88 31.34 13.13 FirstEnergy 2.83 12.14 5.17 
AEP 3.24 54.75 26.66 AES 3.01 4.45 2.94 
NRG Energy 5.81 58.50 18.90 NRG Energy 8.30 25.12 7.94 

A = the ratio of each firm’s contribution to total industry GED, relative to the firm’s contribution to total 
industry market cap. 
B = GED (nominal dollars) per outstanding share. 
C = GED (nominal billions of dollars). 
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Table 3: Firm Current Financial Performance and Pollution Damage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2)  
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.0862***B -0.0483*** -0.0422**  -0.0565*** -0.0503**  

 (0.0276)C    (0.0131)    (0.0192)    (0.0187)    (0.0203)    
Forward P/ED -0.00219    -0.0233*   0.00901    -0.0216    0.00522    

 (0.0298)    (0.0129)    (0.0225)    (0.0131)    (0.0227)    
EPS SurpriseG  -0.494     -1.320      0.350     -1.306      0.324    
 (1.362)    (1.380)    (0.835)    (1.396)    (0.837)    
Returns   0.644*     0.436*     0.281      0.493      0.357    

 (0.362)    (0.258)    (0.200)    (0.297)    (0.213)    
VolatilityE   0.234*     0.124      0.129*     0.149      0.150*   

 (0.117)    (0.0740)    (0.0761)    (0.0919)    (0.0764)    
Beta  0.0201    -0.0391     0.0701*   -0.0250     0.0635*   

 (0.0814)    (0.0610)    (0.0371)    (0.0632)    (0.0324)    
SD  ResidualF -0.0387**  -0.0202**  -0.00572    -0.0218**  -0.0135    
Return  (0.0150)    (0.00826)    (0.0109)    (0.00893)    (0.0111)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 3 is a fitted OLS parameter estimate from distinct regression model of the form in  
(8). The full results for each of the regression models supporting table 3 are reported in the appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = monthly standard deviation in returns. 
F = monthly standard deviation of residual from CAPM regression. 
G = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices, P/E ratios, and SD residuals enter in natural log form. The other dependent variables enter in 
levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table 4: Firm Forward Financial Performance and Pollution Damage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2) 
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.0626**B  -0.0282    -0.0167    -0.0317*   -0.0230    

 (0.0243)C    (0.0193)    (0.0218)    (0.0167)    (0.0191)    
Forward P/ED -0.00702    -0.0303**   0.0139    -0.0284**   0.0102    

 (0.0315)    (0.0133)    (0.0219)    (0.0134)    (0.0228)    
EPS SurpriseG   14.42***   9.187***   2.663*     9.634***   4.437**  
 (2.550)    (1.636)    (1.471)    (1.750)    (2.048)    
Returns   1.210***   0.472*     0.664      0.610**    0.770**  

 (0.401)    (0.278)    (0.413)    (0.301)    (0.375)    
VolatilityE  0.0160    -0.0559      0.105    -0.0352     0.0936    

 (0.125)    (0.0789)    (0.0825)    (0.0781)    (0.0757)    
Beta  0.0241     0.0206    0.00659     0.0231*    0.0163    

 (0.0263)    (0.0137)    (0.0213)    (0.0122)    (0.0213)    
SD  ResidualF  0.0158    0.000320     0.0111    0.00329     0.0112    
Return  (0.0150)    (0.00689)    (0.00998)    (0.00699)    (0.0106)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 4 is a fitted OLS parameter estimate from distinct regression model of the form in  
(8). The full results for each of the regression models supporting table 4 are reported in the appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = monthly standard deviation in returns. 
F = monthly standard deviation of residual from CAPM regression. 
G = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices, P/E ratios, and SD residuals enter in natural log form. The other dependent variables enter in 
levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table 5: Decomposition of Earnings per Share Error. 
      

Forward 
Earnings 

(1) 
GHG & LAPA 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

Actual   0.314***B   0.164***   0.102**    0.181***   0.133**   
(0.0605)C    (0.0354)    (0.0459)    (0.0457)    (0.0649)    

Estimate   0.151***  0.0930***  0.0591      0.103***  0.0770**   
(0.0499)    (0.0254)    (0.0355)    (0.0279)    (0.0379)    

SurpriseD   14.42***   9.187***   2.663*     9.634***   4.437**   
(2.550)    (1.636)    (1.471)    (1.750)    (2.048)    

Current 
Earnings 

(1) 
GHG & LAP 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

Actual  -0.115    -0.00730    -0.0794*   -0.0105    -0.0796*    
(0.0718)    (0.0616)    (0.0426)    (0.0598)    (0.0422)    

Estimate  -0.213*** -0.0424     -0.116*** -0.0469     -0.116***  
(0.0597)    (0.0391)    (0.0337)    (0.0487)    (0.0338)    

Surprise  -0.494     -1.320      0.350     -1.306      0.324     
(1.362)    (1.380)    (0.835)    (1.396)    (0.837)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 5 is a fitted OLS parameter estimate from distinct regression model of the form in  
(8). Since EPS enter the models in levels, the coefficients are in nominal $. 
C = Robust standard errors in parenthesis. 
D = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression model. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table 6: Dispersion of Analysts’ EPS Estimates. 
      

Forward 
Earnings 

(1) 
GHG & LAPA 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

CoefficientD -0.00881**B  -0.00743*** -0.00121    -0.00766*** -0.00269    
of Variation (0.00417)C    (0.00246)    (0.00290)    (0.00229)    (0.00303)    
StandardE  0.0144*   0.00984**  0.00143     0.0101**  0.00340    
Deviation (0.00744)    (0.00415)    (0.00671)    (0.00392)    (0.00652)    
Current 
Earnings 

(1) 
GHG & LAP 

(2) 
LAP 

 
GHG 

(3) 
LAP 

(4) 
GHG 

Coefficient  0.0157    -0.00243     0.0140    -0.00187     0.0140*   
of Variation (0.0156)    (0.0109)    (0.00838)    (0.0130)    (0.00824)    
Standard  0.0221*   0.00478     0.0157*   0.00541     0.0158*   
Deviation (0.0126)    (0.00732)    (0.00789)    (0.00990)    (0.00805)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table 6 is a fitted OLS parameter estimate from distinct regression model of the form in  
(8). The coefficients for the Coefficient of Variation are expressed as a fraction of EPS, those for Standard 
Deviation are in nominal $. 
C = Robust standard errors in parenthesis. 
D = standard deviation of analysts’ EPS estimate/mean EPS estimate 
E = standard deviation of analysts’ EPS estimate 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression model. 
* p<0.10  ** p<0.05  *** p<0.01 
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Figures. 
Figure 1: Comparison of Firms’ Share Prices and Pollution-Adjusted Share Prices. 
 

 
Black line: Monthly average share price reported by Refinitiv®. 
Red line: Monthly average share price – GED per outstanding share. 
All values in nominal USD. 
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Figure 2: Prices and Environmental Performance by Month Forward. 

 

This figure displays the partial effect of (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) on forward prices in current dollars.  

Left column: regression model includes interaction terms between (Γ𝑓𝑓,𝑦𝑦
𝑇𝑇 ) and month fixed effects up to 

one year after environmental performance period.  
Right column: regression model includes interaction terms between (Γ𝑓𝑓,𝑦𝑦

𝑇𝑇 ) and month fixed effects up to 
two years after environmental performance period. 
Bottom horizontal line in each panel = -6.3 percent. This is the point estimate of the effect of the (Γ𝑓𝑓,𝑡𝑡

𝑇𝑇 ) 
score on prices from table 4. 
Dashed lines represent 95 percent confidence intervals. 
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Appendix: 
 
Table A.1: Test of Rational Earnings Forecasts. 

Dep Variable: 
Actual EPS 

(1) (2) (3) (4) 
 

Earnings (EPS)    1.065***   1.065***   1.071***   0.856*** 
Estimate (0.00733)    (0.0102)    (0.00986)    (0.0819)    
Constant  -0.157***  -0.157***  -0.115***   0.376*   
 (0.0225)    (0.0274)    (0.0425)    (0.190)    
adj. R2   0.940      0.940      0.942      0.742    
N    1345       1345       1345       1345    
Firm Fixed Effects    Y 
Year Fixed Effects   Y Y 
Month Fixed Effects   Y Y 
Robust SE  Y Y Y 
Wald Test 
EPS = 1 

78.21***A 

(0.000)B 
40.46*** 
(0.000) 

51.29*** 
(0.000) 

3.08* 
(0.086) 

Dep. Variable: 
Reported EPS 

(1) (2) (3) (4) 
 

Earnings (EPS)    0.982***   0.982***   0.983***   1.161*** 
Estimate (0.00841)    (0.0194)    (0.0194)    (0.146)    
Constant  0.0137     0.0137     0.0462     -0.404    
 (0.0258)    (0.0488)    (0.0498)    (0.350)    
adj. R2   0.910      0.910      0.911      0.668    
N    1345       1345       1345       1345    
Firm Fixed Effects    Y 
Year Fixed Effects   Y Y 
Month Fixed Effects   Y Y 
Robust SE  Y Y Y 
Wald Test 
EPS = 1 

4.81**A 

(0.029)B 
0.91 

(0.341) 
0.78 

(0.377) 
1.22 

(0.275) 
A = F-statistic 
B = p-value 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.2: Carbon Premiums. 
 

Current Returns (1) (2) (3) (4) 
GHGs   0.175A      0.202      0.904**    0.357    

 (0.182)B    (0.162)    (0.362)    (0.213)    
Constant   1.627      1.059      1.122     -38.53*** 

 (1.024)    (1.224)    (1.624)    (14.27)    
Adj. R2  -0.002      0.203      0.264      0.848    
N     925        925        925        925    
Forward Returns (1) (2) (3) (4) 
GHGs   0.361**    0.336**    0.933**    0.770**  
 (0.167)    (0.147)    (0.361)    (0.375)    
Constant   3.196***   1.069      0.372     -210.6*** 
 (0.447)    (0.796)    (2.130)    (30.17)    
Adj. R2   0.132      0.349      0.378      0.679    
N     914        914        914        914    
Firm Fixed Effects N N Y Y 
Month Fixed Effects N Y Y Y 
Year Fixed Effects N Y Y Y 
ADL N N N Y 

A = each entry is a fitted OLS parameter estimate from a regression of returns on (Γ𝑓𝑓,𝑦𝑦
𝐺𝐺 ).  

B = Robust standard errors in parenthesis. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.3: Earnings Surprise and Firms’ Herfindahl Indices. 
 
  

    (1)        (2)        (3)    
GHGs   9.255***A              6.688***  

(2.336)B               (1.844)    
ln(Herfindahl CO2)   6.772***              5.286***  

(2.187)               (1.861)    
LAP              9.674***   8.830***  

           (1.769)    (1.380)    
ln(Herfindahl LAP)              0.250     -0.238     

           (2.409)    (3.512)    
Constant   37.85**    19.53      22.07**   

(18.47)    (13.93)    (10.32)    
Adj. R2   0.936      0.963      0.977    
N     212        213        205    

A = each entry is a fitted OLS parameter estimate from a regression of the form in (12) with EPS Surprise 
as the dependent variable.  
B = Robust standard errors in parenthesis. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.4: Dispersion of Analysts’ EPS Estimates and Firms’ Herfindahl Indices. 
  

CV 
EPS 

Estimate 
(1) 

SD 
EPS 

Estimate 
(2) 

CV 
EPS 

Estimate 
(3) 

SD 
EPS 

Estimate 
(4) 

CV 
EPS 

Estimate 
(5) 

SD 
EPS 

Estimate 
(6) 

GHGs -0.00998**  -0.0000989                          -0.00736    -0.00363     
(0.00427)    (0.00978)                          (0.00455)    (0.0107)    

ln(Herfindahl CO2) -0.0271*** -0.0136                          -0.0251**  -0.0164     
(0.00942)    (0.0282)                          (0.0105)    (0.0261)    

LAP                       -0.00786***  0.0105*** -0.00739***  0.0109**   
                      (0.00270)    (0.00387)    (0.00189)    (0.00459)    

ln(Herfindahl LAP)                       -0.00579     0.0202    -0.0173     0.0200     
                      (0.0122)    (0.0266)    (0.0132)    (0.0600)    

Constant  -0.0360    -0.0436    -0.0189    -0.0599    -0.0226    -0.0550     
(0.0309)    (0.0879)    (0.0291)    (0.0570)    (0.0304)    (0.0857)    

adj. R-sq   0.775      0.373      0.771      0.397      0.785      0.379    
N     253        253        251        251        243        243    

 
A = each entry is a fitted OLS parameter estimate from a regression of the form in (12) with EPS Surprise 
as the dependent variable.  
B = Robust standard errors in parenthesis. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.5: Current Period Firm Financial Performance and Emission Tonnage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2)  
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.0501**B  -0.0274    -0.0468**  -0.0386**  -0.0500**  

 (0.0204)C    (0.0180)    (0.0203)    (0.0158)    (0.0203)    
Forward P/ED 0.00541    -0.00435    0.00591    -0.00296    0.00541    

 (0.0228)    (0.0211)    (0.0229)    (0.0222)    (0.0227)    
EPS SurpriseG  -0.494     -0.268      0.344     -0.174      0.310    
 (1.362)    (1.231)    (0.908)    (1.145)    (0.836)    
Returns   0.357      0.115      0.342      0.198      0.356    

 (0.213)    (0.175)    (0.209)    (0.213)    (0.213)    
VolatilityE   0.150*   -0.0678      0.158**  -0.0310      0.150*   

 (0.0763)    (0.0641)    (0.0768)    (0.0517)    (0.0761)    
Beta  0.0641*   -0.0589     0.0620*   -0.0626     0.0641*   

 (0.0324)    (0.0631)    (0.0316)    (0.0671)    (0.0323)    
SD  ResidualF -0.0136    -0.0239**  -0.00990    -0.0260**  -0.0135    
Return  (0.0111)    (0.0114)    (0.0106)    (0.0121)    (0.0111)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.5 is a fitted OLS parameter estimate from distinct regression model of the form 
in (8). The full results for each of the regression models supporting table A.5 are reported in the 
appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = monthly standard deviation in returns. 
F = monthly standard deviation of residual from CAPM regression. 
G = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices, P/E ratios, and SD residuals enter in natural log form. The other dependent variables enter in 
levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.6: Future Period Firm Financial Performance and Emission Tonnage Gammas. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2) 
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -0.0231B    -0.0495*   -0.0221    -0.0503*   -0.0230    

 (0.0190)C    (0.0278)    (0.0190)    (0.0291)    (0.0190)    
Forward P/ED  0.0104    -0.0145     0.0117    -0.0125     0.0104    

 (0.0228)    (0.0208)    (0.0227)    (0.0228)    (0.0228)    
EPS SurpriseG   4.475**    7.992**    3.012      8.870**    4.453**  
 (2.036)    (3.775)    (1.790)    (3.893)    (2.031)    
Returns   0.772**    0.881***   0.751*     0.911***   0.769**  

 (0.375)    (0.272)    (0.381)    (0.322)    (0.374)    
VolatilityE  0.0926     0.0821     0.0914     0.0842     0.0924    

 (0.0758)    (0.118)    (0.0748)    (0.113)    (0.0756)    
Beta  0.0161    -0.00299     0.0163    -0.000381     0.0160    

 (0.0215)    (0.0227)    (0.0214)    (0.0215)    (0.0214)    
SD  ResidualF 1.54e-10    -0.000000418*   5.62e-11    -0.000000425*   1.55e-10    
Return  (3.83e-10)    (0.000000230)    (3.68e-10)    (0.000000223)    (3.83e-10)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.6 is a fitted OLS parameter estimate from distinct regression model of the form 
in (8). The full results for each of the regression models supporting table A.6 are reported in the 
appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = monthly standard deviation in returns. 
F = monthly standard deviation of residual from CAPM regression. 
G = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices, P/E ratios, and SD residuals enter in natural log form. The other dependent variables enter in 
levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.7: Current Period Firm Financial Performance and Emission Tonnage. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2)  
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices -7.59e-10B    0.00000132**  -6.29e-10    0.00000135**  -7.62e-10    

 (7.18e-10)C    (0.000000530)    (6.03e-10)    (0.000000578)    (7.18e-10)    
Forward P/ED 3.25e-10    0.000000932*   4.15e-10    0.000000914*   3.23e-10    

 (5.70e-10)    (0.000000494)    (4.61e-10)    (0.000000479)    (5.71e-10)    
EPS SurpriseG 2.02e-09    -0.0000129    9.89e-10    -0.0000129    2.05e-09    
 (2.08e-08)    (0.0000114)    (2.09e-08)    (0.0000115)    (2.08e-08)    
Returns 6.88e-09    0.000000404    6.92e-09    0.000000111    6.88e-09    

 (7.92e-09)    (0.00000398)    (7.94e-09)    (0.00000446)    (7.92e-09)    
VolatilityE 4.92e-09*   -0.000000883    4.83e-09*   -0.00000110    4.92e-09*   

 (2.53e-09)    (0.00000152)    (2.51e-09)    (0.00000131)    (2.53e-09)    
Beta 2.34e-09**  0.000000934    2.48e-09*** 0.000000751    2.33e-09**  

 (9.37e-10)    (0.000000824)    (9.13e-10)    (0.000000788)    (9.37e-10)    
SD  ResidualF -6.94e-10*** 8.81e-08    -6.93e-10*** 9.34e-08    -6.95e-10*** 
Return (2.47e-10)    (0.000000191)    (2.46e-10)    (0.000000206)    (2.47e-10)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.7 is a fitted OLS parameter estimate from distinct regression model of the form 
in (8). The full results for each of the regression models supporting table A.7 are reported in the 
appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = monthly standard deviation in returns. 
F = monthly standard deviation of residual from CAPM regression. 
G = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices, P/E ratios, and SD residuals enter in natural log form. The other dependent variables enter in 
levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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Table A.8: Future Period Firm Financial Performance and Emission Tonnage. 
 

Dependent 
Variable 

(1) 
GHG + LAPA 

(2) 
LAP                      GHG 

(3) 
LAP 

(4) 
GHG 

Prices 3.94e-10B    0.00000116**  7.04e-10    0.00000107**  3.92e-10    

 (5.34e-10)C    (0.000000458)    (5.49e-10)    (0.000000404)    (5.34e-10)    
Forward P/ED 6.75e-10    0.000000714    8.54e-10    0.000000617    6.74e-10    

 (5.71e-10)    (0.000000443)    (5.26e-10)    (0.000000414)    (5.71e-10)    
EPS SurpriseG 0.000000134*   0.000105**  0.000000173**  0.0000737*   0.000000134*   
 (7.30e-08)    (0.0000410)    (7.58e-08)    (0.0000415)    (7.29e-08)    
Returns 2.97e-09    -0.0000123    -5.15e-10    -0.0000123    3.00e-09    

 (8.62e-09)    (0.0000118)    (9.37e-09)    (0.0000114)    (8.63e-09)    
VolatilityE 2.18e-09    0.00000134    2.55e-09    0.000000970    2.17e-09    

 (2.21e-09)    (0.00000212)    (2.21e-09)    (0.00000226)    (2.21e-09)    
Beta 2.91e-11    -0.000000589    -1.30e-10    -0.000000575    3.05e-11    

 (4.87e-10)    (0.000000493)    (4.46e-10)    (0.000000477)    (4.87e-10)    
SD  ResidualF 1.54e-10    -0.000000418*   5.62e-11    -0.000000425*   1.55e-10    
Return (3.83e-10)    (0.000000230)    (3.68e-10)    (0.000000223)    (3.83e-10)    

 
A = LAP stands for local air pollutants (SO2, NOx, PM2.5, VOC, NH3) 
B = each entry in table A.7 is a fitted OLS parameter estimate from distinct regression model of the form 
in (8). The full results for each of the regression models supporting table A.7 are reported in the 
appendix. 
C = Robust standard errors in parenthesis. 
D = the forward P/E is current period share prices over estimated earnings per share (EPS). 
E = monthly standard deviation in returns. 
F = monthly standard deviation of residual from CAPM regression. 
G = (Actual EPS – EPS Estimate)/Actual EPS, expressed in % of Actual EPS. 
Column (1) combines LAP and GHG damages. Column (2) includes both LAP and GHG damages 
separately in the same regression model. Column (3) and (4) feature each in separate regression models. 
Prices, P/E ratios, and SD residuals enter in natural log form. The other dependent variables enter in 
levels. 
* p<0.10  ** p<0.05  *** p<0.01 
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