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ABSTRACT

We evaluate the duration of the China trade shock and its impact on a wide range of outcomes 
over the period 2000 to 2019. The shock plateaued in 2010, enabling analysis of its effects for 
nearly a decade past its culmination. Adverse impacts of import competition on manufacturing 
employment, overall employment-population ratios, and income per capita in more trade-exposed 
U.S. commuting zones are present out to 2019. Over the full study period, greater import 
competition implies a reduction in the manufacturing employment-population ratio of 1.54 
percentage points, which is 55% of the observed change in the value, and the absorption of 86% 
of this net job loss via a corresponding decrease in the overall employment rate. Reductions in 
population headcounts, which indicate net out-migration, register only for foreign-born workers 
and the native-born 25-39 years old, implying that exit from work is a primary means of 
adjustment to trade-induced contractions in labor demand. More negatively affected regions see 
modest increases in the uptake of government transfers, but these transfers primarily take the 
form of Social Security and Medicare benefits. Adverse outcomes are more acute in regions that 
initially had fewer college-educated workers and were more industrially specialized. Impacts are 
qualitatively—but not quantitatively—similar to those caused by the decline of employment in 
coal production since the 1980s, indicating that the China trade shock holds lessons for other 
episodes of localized job loss. Import competition from China induced changes in income per 
capita across local labor markets that are much larger than the spatial heterogeneity of income 
effects predicted by standard quantitative trade models. Even using higher-end estimates of the 
consumer benefits of rising trade with China, a substantial fraction of commuting zones appears 
to have suffered absolute declines in average real incomes.
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1 Introduction

Recent literature on how import competition affects local labor markets has transformed our under-

standing of economic adjustment to globalization. Since at least David Ricardo, economists have

appreciated that freer trade creates both winners and losers.1 Yet, until recently, the prevailing view

among scholars was that losses from trade were likely to be diffuse. The logic behind this view is

simple and appealing: if labor is mobile across industries and regions, then the effects of greater

import competition on, say, a labor-intensive and spatially agglomerated industry such as furniture

making would be transmitted across all industries and regions employing less-educated labor.2 Even

though furniture factories in North Hickory, North Carolina, may shut their doors, the pain felt by

former furniture workers in the region would be little different from the losses suffered by those in

equivalently skilled service-sector jobs in Houston or Miami. We have since learned that losses from

trade are often highly regionally concentrated.3

Much of the research that elucidates how local economies adjust to globalization is based on

the China trade shock. In the early 1990s, China had both a large economy, and, for its size, a

narrow comparative advantage in manufacturing. Its rapid opening to trade and investment dis-

rupted global markets. Economies producing the labor-intensive goods that China began exporting

experienced a massive increase in global competitive supply, while those producing the raw mate-

rials and other inputs demanded by China felt a commensurately large increase in global demand.

Recent work exploits the speed, scale, and concentrated impacts of China’s reform-driven export

growth to analyze the labor market consequences of globalization. Labor markets more exposed

to import competition from China experienced more plant closures; larger declines in manufactur-

ing employment, employment-population ratios, earnings for low-wage workers, housing prices, and

tax revenues; and larger increases in childhood and adult poverty, single-parenthood, and mortality

related to drug and alcohol abuse, as well as greater uptake of government transfers.4

1That Ricardo recognized winners and losers from trade is evident in his opposition to the British Corn Laws
(Ricardo, 1815), which he saw as redistributing income to landlords from workers (Maneschi, 2008).

2Labor mobility across industries and regions is core, e.g., to the Heckscher-Ohlin trade model (Feenstra, 2015).
3The seminal work of Jacobson et al. (1993) found scarring effects from job loss due to mass layoffs in the form of

lower long-run earnings, which are more severe when the job loss occurs during a recession (Davis and von Wachter,
2011). Although earlier work in trade found that exposure to imports can induce job loss (Grossman, 1982; Kletzer,
2001), the literature has only recently connected trade shocks to scarring effects from worker displacement.

4Research addresses regional and industry employment (Autor et al., 2013a; Pierce and Schott, 2016; Handley and
Limao, 2017); plant closure (Bernard et al., 2006; Acemoglu et al., 2016; Asquith et al., 2019); labor earnings (Autor
et al., 2014; Chetverikov et al., 2016); government transfers (Autor et al., 2013a; Autor et al., 2014); housing prices
and tax revenues (Feler and Senses, 2017); migration (Autor et al., 2013a; Monte et al., 2018; Faber et al., 2019;
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In this paper, we re-examine the local labor market impacts of exposure to Chinese import com-

petition in order to evaluate which market adjustment mechanisms are operative and over what

time horizons, how long adverse impacts endure, and how adjustment to trade compares to adjust-

ment to other localized shocks. Among the most striking findings in recent work is that regions

experiencing larger trade-induced reductions in manufacturing employment saw neither differen-

tial reductions in labor supply—due, e.g., to out–migration—nor greater absorption of workers by

non-manufacturing sectors. Manufacturing job loss translated nearly one for one into declines in

the employment-population ratio.5 Because in equilibrium changes in the employment rate are ap-

proximately proportional to changes in real income (Amior and Manning 2018; Galle et al. 2020),

trade-induced increases in joblessness may indicate adverse changes in welfare. Motivated by this

concern, we explore the duration of shock impacts through 2019.

In more trade-exposed regions, we find that negative effects on manufacturing employment con-

tinue to build well beyond the culmination of the trade shock itself. Adverse impacts persist out to

2019, nearly a decade after the shock reached peak intensity. When examining the full study period,

the midpoint for estimates using alternative data sources indicates that greater import competition

implied a reduction in the manufacturing employment-population ratio of 1.54 percentage points,

which is 55% of the observed change in the value, and that 86% of this manufacturing employment

decline was absorbed by a decrease in the overall employment rate. Although the trade shock gen-

erated modest net out-migration, this occurred only among the foreign-born and native-born adults

ages 25 to 39. Impacts of the trade shock thus appear to be long-lasting and to entail suppressed

participation in work, as evident in declines in wages and salaries and personal income in trade-

exposed regions. Income losses are only minimally offset by the increased uptake of government

transfers, which also remain elevated to the end of the analytic window.

Why has the China trade shock had such enduring consequences? One logical explanation is

Greenland et al., 2019); and marriage, fertility, and mortality (Autor et al., 2019; Pierce and Schott, 2020). Other
work explores impacts on consumer prices (Bai and Stumpner, 2019; Jaravel and Sager, 2019; Hottman and Monarch,
2020; Borusyak and Jaravel, 2021), U.S. exports (Feenstra et al., 2019), domestic innovation (Hombert and Matray,
2018; Autor et al., 2020b), and schooling (Greenland and Lopresti, 2016). Additional work studies how trade-shock
impacts are mediated by labor market conditions (Austin et al., 2016), industry product cycles (Eriksson et al., 2019),
labor regulations (Chan, 2019), and trade deficits (Dix-Carneiro and Kovak, 2017). Autor et al. (2016) and Redding
(2020) review the literature; and Dorn and Levell (2021) provide a comparative European-U.S. perspective.

5The absence of a local labor supply response to the China trade shock is consistent with findings on the null
impact of generic Bartik (1991) labor demand shocks on local population headcounts for less-skilled workers (e.g.,
Bound and Holzer, 2000; Diamond, 2016; Notowidigdo, 2020). Charles et al. (2019) report comparable downward
impacts on local employment rates from regional exposure to the national decline in manufacturing over 2000 to 2017.

2



that the shock itself never stopped intensifying. The data do not support this conjecture, however.

China’s spectacular manufacturing export growth slowed dramatically in the last decade, by which

point China’s reform-driven boom had run its course and the government had begun to rollback some

reforms (Lardy, 2019; Brandt et al., 2020; Brandt and Lim, 2020). Nor did export growth simply

move en masse from China to nearby countries. Whether we look at the U.S. market presence of

China alone or combined with Vietnam and other Southeast Asian nations, to which China has

begun to offshore some labor-intensive activities, the trade shock reached peak intensity around

2010 and stabilized thereafter. Thus, the China trade shock did not unwind, but it did plateau,

allowing us to examine its consequences for nearly a decade beyond its full expression.

We conduct preliminary analyses of two other explanations for why trade-exposed labor markets

suffered long-lasting hardship. One hypothesis is that many traditional manufacturing regions were

poorly positioned to recover from job loss because of a dearth of college-educated workers, who are in

high demand by sectors that are expanding nationally (Glaeser et al., 1995; Diamond, 2016; Bloom

et al., 2019). A second is that specialization in a narrow set of industries left these regions exposed

to industry-specific shocks that, once industry decline initiated, would set in motion a process that is

self-reinforcing (e.g., Dix-Carneiro and Kovak, 2017). We find some support for both the dearth-of-

human-capital and reverse-agglomeration hypotheses. We also discuss other mechanisms that may

be at work, though we do not provide a definitive, mono-causal explanation

To put the China trade shock in context, we examine adjustment to the secular decline of the

coal industry and the impact of the Great Recession, the intensity of each of which varied sharply

across regions. Regions more specialized in coal saw larger declines in employment rates, which

remained suppressed more than a quarter century after the industry downturn began in 1980 (Black

et al., 2002, 2005). Similarly, localities harder hit by the Great Recession had lower employment-

population ratios 10 years after the recession had officially ended, extending the findings in Yagan

(2019). Although the long-run impacts of import competition from China do not appear to be unique

qualitatively, the quantitative magnitudes of these impacts stand out relative to other shocks.

Much of the empirical trade literature estimates trade-shock impacts by comparing changes

in outcomes in more and less trade-exposed regions. This strategy identifies the relative impact

of the trade shock—e.g., whether manufacturing employment fell by more in more-trade-exposed

locations—but not the absolute impact of the shock, e.g., whether the trade shock reduced manu-

3



facturing employment nationally (Heckman et al., 1998; Helpman, 2018). Although relative impacts

are informative about the distributive consequences of trade, they may not be indicative of changes

in aggregate outcomes.6 To evaluate the welfare impacts of trade, recent literature uses reduced-

form empirical results to discipline the calibration of quantitative trade models. These calibrations

suggest that U.S. aggregate welfare gains from China’s market opening were positive but small, and

that some relatively adversely effected regions may have suffered absolute welfare declines.7 To in-

vestigate these effects further, we compare regional variation in real-income changes in quantitative

analyses with that implied by our reduced-form work, which imposes no model structure. Standard

quantitative models generate regional variation in income changes that is only one-quarter of what

we find in reduced-form estimation. Even higher-end estimates of the cost-reducing impact of trade

with China on U.S. consumer prices (Jaravel and Sager, 2019; Borusyak and Jaravel, 2021) imply

that a substantial number of regional economies suffered absolute declines in real incomes.

A final consideration regards the normative implications of adverse impacts of the China trade

shock on labor markets in the U.S. and other countries. Few economists would interpret our empirical

results as justifying greater trade protection. As expected, quantitative models indicate that U.S.

aggregate gains from trade with China are positive. Yet, the fact that the losses from trade are

regionally concentrated and long lasting suggests that existing policies failed to insulate workers

from the disruptive impacts of globalization. We close the paper by discussing what we know, and

do not know, about policies that help shield workers from concentrated job loss.

2 The Timing of the China Shock

We begin by reviewing China’s recent export performance. Enduring impacts of the China trade

shock on U.S. local labor markets could be the result of the shock continuing to build after the 2000s

and into the 2010s. We find this not to be the case. China’s export growth has progressed through

well-defined periods of initiation, acceleration, and stabilization. The country’s share of the U.S.

market approached peak intensity around 2010 and plateaued thereafter.

That China’s export growth has been explosive is universally understood. Its share of world
6This issue also arises in empirical work in macroeconomics (Chodorow-Reich, 2019, 2020; Guren et al., 2020; Wolf,

2019).
7See Caliendo et al. (2019); Rodríguez-Clare et al. (2019); Adao et al. (2019a); Galle et al. (2020); Kim and Vogel

(2020).

4



Figure 1: China Share of World Trade by Major Sector

(a) China share of world exports (b) China share of world imports
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Note: Data are from UN Comtrade, SITC Revision 2, and cover all merchandise trade.

manufacturing exports rose from 3.1% in 1991 to 17.6% in 2015, before dipping to 14.2% in 2018,

as documented in Figure 1.8 This export boom has been concentrated in manufacturing and is

recognized as transforming China into the world’s factory.9 Conversely, China’s share of world

exports of non-manufactured goods has changed little over time, averaging just 2.3% between 1991

and 2018 and showing no discernible trend. This divergence in export growth between major sectors

reflects China’s powerful comparative advantage in manufacturing—particularly in labor-intensive

manufacturing—which derived from the country’s initial abundant supply of labor relative to its

supplies of agricultural land, natural resources, and physical capital (Wood, 1995, 2018). Once

China began to relax restrictions on foreign trade and investment, first through the expansion of

special enterprise zones initiated by Deng Xiaoping (Naughton, 2007), and later through an economy-

wide liberalization tied to the country’s accession to the World Trade Organization (WTO) in 2001

(Lardy, 2019), it was able to realize this latent prowess and integrate into global value chains. The

surge in manufacturing exports generated a corresponding increase in the import of raw materials

used in industrial production, which mushroomed China’s share of world non-manufacturing imports

from 1.2% in 1991 to 15.7% in 2018 (Figure 1b).10

Our concept of the China shock is the period spanning the country’s reform-driven transition
8Appendix A.2 provides details on the data we use in this section.
9See, e.g., “Global Manufacturing: Made in China,” The Economist, March 12, 2015.

10China’s share of world manufacturing imports also rose over time, from 2.1% in 1991 to 10.0% in 2018, an increase
driven in part by the expansion of global value chains whose assembly operations were anchored in China (Koopman
et al., 2012; Kee and Tang, 2016).
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from an inward-oriented and heavily centrally planned economy to a comparatively open and market-

oriented one in which the majority of production occurred in privately owned firms. We conven-

tionally date the China trade shock as commencing in 1992, when Deng expanded his “reform and

opening” agenda to include foreign trade and investment (Naughton, 2007; Vogel, 2011).11 China’s

market transition unleashed dramatic improvements in productivity resulting from a spatial and

sectoral reallocation of resources (Hsieh and Klenow, 2009; Brandt et al., 2013), the expansion of

the private sector at the expense of inefficient state-owned enterprises (Song et al., 2011; Khandelwal

et al., 2013; Hsieh and Song, 2015; Bai et al., 2017), inflows of foreign capital and imported inter-

mediate inputs (Yu, 2010; Brandt and Morrow, 2017), a reorientation of manufacturing to export

assembly plants producing at the behest of multinational firms (Feenstra and Hanson, 2005; Brandt

et al., 2017), and the adoption of previously banned foreign technologies (Hu and Jefferson, 2009;

Wei et al., 2017; Li, 2020).12 Over 1998 to 2007, output per worker in Chinese manufacturing grew

at the stunning annual average rate of 8.0% (Brandt et al., 2012; Liu and Ma, 2020). The 1992 to

2007 export surge thus appears to be an episode in which China’s trade growth was driven largely

by productivity gains resulting from its marketing opening.

Because much of China’s post-Deng manufacturing growth was transitional, it was destined to

be finite lived (Song et al., 2011). Once a substantial share of the labor force had moved from

the countryside to cities and from state-owned to private firms, easy growth may have been less

attainable. Between 2010 and 2013, Brandt and Lim (2020) estimate that TFP growth in Chinese

manufacturing was negative in 8 of 11 subsectors, in stark contrast to earlier years. Changes in

the political economy of reform may have further hampered manufacturing. In 2008, President Hu

Jintao gave (low productivity) state-owned enterprises renewed prominence in industrial planning

(Naughton, 2016), a shift strongly reinforced by President Xi Jinping in 2012 (Lardy, 2019). After

2007, entry of private and foreign-owned manufacturing firms fell sharply (Brandt et al., 2020). The

end of the productivity-growth miracle and the rollback of pro-market reforms slowed manufacturing

growth after 2010. Whereas the differential in annual manufacturing export growth between China

and the rest of the world was 8.2 percentage points over 1991 to 2001 and 8.4 percentage points over

2001 to 2010, it was -0.4 percentage points over the 2010 to 2018 period.
11China’s manufacturing export growth in fact began in the 1980s (Brandt et al., 2020). Given the country’s very

low initial export levels, however, this early grow did little to change China’s share of global exports.
12The undervaluing of China’s yuan-dollar exchange rate in the early 2000s may have also contributed to the

country’s export boom (Bergsten and Gagnon, 2017), though without creating an industry bias in this growth.
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Figure 2: China vs. U.S. Revealed Comparative Advantage
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Note: Data are from UN Comtrade, SITC Revision 2. Revealed Comparative Advantage (RCA) is a country’s share
of world exports in a sector relative to a country’s share of world exports of all merchandise.

China’s post-2010 slowdown is also apparent when we compare its trade performance to the U.S.,

which is helpful for defining the shock facing U.S. manufacturing industries. A simple method to

evaluate China’s relative export success is to use the Balassa (1965) measure of revealed comparative

advantage (RCA), which is the ratio of a country’s share of world exports in a particular sector to its

share of world exports of all goods.13 In Figure 2, we show the gap between the log China and log U.S.

RCA for manufacturing and non-manufacturing. China began with a modest comparative advantage

in manufacturing over the U.S. in 1991—as indicated by a China-U.S. manufacturing versus all goods

export differential of just 2.0 percentage points in that year. By 2011, its manufacturing-versus-all-

goods export differential over the U.S. had leaped to 13.1 percentage points, before falling and rising

over the ensuing eight years. After 2010, the China-U.S. relative RCA exhibits little trend.

By construction, China’s RCA in non-manufacturing compared to the U.S. exhibits approxi-

mately the inverse pattern, dropping steadily through the 1990s and 2000s and then remaining at

negative levels after 2011. China’s comparative disadvantage in non-manufacturing relative to the

U.S. reflects the success of U.S. firms in exporting agricultural products, certain mineral products,

and oil and gas, to the rest of the world, as well as market forces in China that have concentrated
13In the Eaton and Kortum (2002) model of Ricardian comparative advantage, RCA summarizes differences in

effective productivity between a country and the rest of the world. See also Hanson et al. (2015).
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Figure 3: U.S. Manufacturing Imports from China and Southeast Asia

(a) Shares of U.S. Imports (b) Import Penetration in the U.S. Market
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Note: Shares of U.S. manufacturing imports in (a) are from UN Comtrade, SITC Revision 2; import penetration
in (b) is the ratio of U.S. imports of manufactured goods to U.S. domestic absorption (defined as gross output plus
imports minus exports). All values exclude oil and gas. Gross output is from the St. Louis Federal Reserve Bank.

factors of production in manufacturing at the expense of other sectors.

Even though China’s export growth in manufacturing slowed after 2010, it still could have

contributed to overall U.S. manufacturing import growth by offshoring production to other low-

wage countries. Chinese firms have been active in building industrial parks for export production

in Southeast Asia, and in Vietnam in particular.14 In Figure 3, we plot shares of U.S. imports and

import penetration in the U.S. market for China alone and for China combined with low-income

countries in Southeast Asia. We select these countries—Cambodia, Indonesia, Laos, Myanmar,

Philippines, Vietnam—based on their per capita GDP in 2010 being less than that of China.15 We

also add neighboring Bangladesh to this group because in recent decades multinational companies

from Asia have expanded apparel factories in the country (Heath and Mobarak, 2015). Figure

3 underscores that China’s exports to the U.S. dwarf those of Southeast Asia. In 2010, China

accounted for 23.4% of U.S. manufacturing imports, whereas the Southeast Asian nations accounted

for just 2.6%. In 2018, these figures were only modestly changed, at 23.6% and 3.8%, respectively.

Although Southeast Asian countries did gain a larger share of U.S. imports, the increase over the

2010 to 2018 period was just 1.2 percentage points. Import penetration, shown in Figure 3b, tells
14See, e.g., ”Good Afternoon, Vietnam,” The Economist, August 6, 2016.
15In 2010, World Development Indicators show per capita GDP (at 2010 prices) of $4,560 in China and a range of

$988 (Myanmar) to a $2130 (Philippines) in our Southeast Asian nations. The excluded, higher-income countries in
the region are Brunei, Malaysia, Singapore, and Thailand, whose per capita GDPs range from $5,075 to $46,570.
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a similar story. Whether we look at China alone or combined with low-income Southeast Asian

nations, its U.S. market presence largely stabilized after 2010.16

Taken together, these trade patterns allow us to mark three distinct periods of China’s export

performance: the gradual initiation of China’s export boom in the early 1990s; the dramatic accel-

eration of China’s export growth following its WTO accession in 2001; and China’s export plateau

after 2010, which coincided with slowing manufacturing productivity growth. This slowdown may

have been the result of China having completed its transitional period of post-reform growth, and

possibly too of the partial reversal of reforms by Presidents Hu and Xi. Whatever the cause, the

China trade shock appears to have stopped intensifying after 2010.

3 Estimating Labor Market Adjustment to Trade Shocks

This section presents our measure of the China trade shock and main empirical specification, which

builds on Autor et al. (2013a) and Acemoglu et al. (2016). We aim to identify the causal effect

of import competition from China on labor market outcomes for U.S. commuting zones (CZs), our

measure of local labor markets (Tolbert and Sizer, 1996; Dorn, 2009), and evaluate impacts as the

shock intensifies in the early 2000s, reaches peak intensity around 2010, and stabilizes thereafter.

3.1 Baseline Specification

We examine exposure to import competition from China for the 722 CZs in the continental United

States. As in Acemoglu et al. (2016), our measure of trade exposure is the average change in Chinese

import penetration across industries, weighted by industry shares in initial CZ employment:

∆IP cuiτ = 100×
∑
j

sijt∆IP
cu
jτ , (1)

where ∆IP cujτ = ∆M cu
jτ /(Yjt + Mjt − Xjt) is the growth of Chinese import penetration for U.S.

manufacturing industry j over time interval τ (2000 to 2012 in most cases), t is the base period

(2000 in most cases), and sijt ≡ Lijt/Lit is the share of industry j in CZ i ’s total employment

in the base year. We compute import penetration as the growth in U.S. industry imports from

China, ∆M cu
jτ , divided by initial industry domestic absorption (U.S. industry shipments plus net

16Results are qualitatively similar when we include additional low-income countries in South Asia (India, Pakistan,
Sri Lanka), whose shares of global manufacturing exports have remained flat in recent years (Hanson, 2000).
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Table 1: Summary Statistics for CZ Import Penetration

Change in CZ 
import penetration

Mean        
(ppts)

Standard 
deviation

25th 
percentile

50th 
percentile

75th 
percentile

Imports by US 1991 to 2000 0.94 0.60 0.52 0.88 1.22
2000 to 2007 1.35 0.84 0.84 1.15 1.62
2000 to 2010 0.85 0.59 0.50 0.69 1.07
2000 to 2012 0.89 0.59 0.51 0.75 1.17
2000 to 2014 0.85 0.56 0.47 0.73 1.10

Imports by other 1991 to 2000 0.70 0.48 0.40 0.63 0.87
high-income countries 2000 to 2007 1.38 0.79 0.91 1.31 1.61

2000 to 2010 1.27 0.82 0.82 1.13 1.47
2000 to 2012 1.22 0.69 0.79 1.15 1.44
2000 to 2014 1.01 0.58 0.66 0.96 1.21

Notes: This table shows the change in import penetration (100 x CZ weighted-average change in imports 
from China/domestic industry absorption) for the 722 commuting zones in the continental US and the 
instrumental variable for this value at given time horizons. Values are decadalized (x 10/length of time 
period) and weighted by the CZ working-age population in the initial year.

imports, Yjt +Mjt −Xjt), as summarized in Table 1.17 Differences in ∆IP cuiτ across CZs stem from

variation in local industry employment in the base year, which arises from differential specialization

in manufacturing and in import-intensive industries within manufacturing.

In Figure 4, we map the China trade shock in (1) across commuting zones for the 2000 to 2012

time period. The most impacted CZs, shown as those in the top two deciles of increased import

penetration, are concentrated in the eastern half of the United States, and especially in the Southeast

(north of the Deep South) and Midwest (outside of large metropolitan areas). These CZs are where

U.S. manufacturing relocated as it moved out of major cities in the Northeast and northern Midwest

in the middle of the 20thcentury (Eriksson et al., 2019).18

To quantify the evolving impact of the China trade shock on labor market outcomes, we estimate

first-difference models using successively longer time differences. Our regressions have the form,

∆Yit+h = αt + β1h∆IP cuiτ + X′itβ2 + εit+h, (2)

where ∆Yit+h is the change in an outcome for CZ i between the initial year t and later year t+h for

h = 1, . . . , T , such that we estimate separate regressions for each time difference between 2000-2001
17We measure imports using HS trade data from UN Comtrade, harmonized to 4-digit SIC industries, and industry

shipments using the NBER manufacturing productivity database (Autor et al., 2014).
18Autor et al. (2013b) show that there is little correlation between a CZ’s exposure to Chinese import competition

and exposure to routine task-replacing technological change.
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to 2000-2019. We focus on the period 2000 to 2019, which comprises the decade of China’s most

intense export growth, and the subsequent decade when China’s export growth leveled off, up to the

year before the onset of the Covid-19 recession in 2020. Our baseline definition of the trade shock

is the period 2000 to 2012, whose first year is one year prior to China’s WTO entry and whose final

year post-dates the culmination of the trade shock in 2010 and the volatility in global trade following

the 2008 global financial crisis.19 For h < 12, we estimate shock impacts for outcome periods that

are less than complete—i.e., whose length is less than that of the trade shock itself—which reveals

how long it takes for the full impact of the shock to manifest. For h > 12, we estimate shock

impacts on outcome periods that extend beyond the culmination of China’s export boom, which

reveals whether shock impacts attenuate over longer time horizons. If, for instance, it takes time for

workers displaced from manufacturing to find jobs in other sectors or to migrate elsewhere, we may

not see full adjustment along these margins until well after the shock reaches full intensity.

Figure 4: Chinese Import Penetration (2000-2012) in U.S. Commuting Zones

1.81 − 6.10
1.33 − 1.81
0.85 − 1.33
0.51 − 0.85
0.23 − 0.51
-0.51 − 0.23

2000-2012 trade shock

Note: This figure shows the change in import penetration from China in (1) over 2000-2012. The legend indicates
values for the bottom four quintiles and the top two deciles.

The control vector X′it contains time trends for U.S. Census Divisions and start-of-period CZ-
19We show in Appendix Figure A4 that we obtain nearly identical coefficient estimates when using trade shocks

constructed for the 2000-2007, 2000-2010, 2000-2012, and 2000-2014 time periods. This similarity in results is a
consequence of the post-2000 trade shock being front loaded on the 2000 to 2007 period. The 2000-2007 shock is
79.8% of the magnitude of the 2000-2012 shock and 88.8% of the magnitude of the 2000-2014 shock. The CZ-level
pairwise correlations of the 2000-2007, 2000-2010, 2000-2012, and 2000-2014 trade shocks range from 0.93 to 0.96.
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level covariates: the manufacturing share of employment, which allows us to focus on trade exposure

arising from the within-manufacturing industry mix; specialization in occupations according to their

routine-task intensity and offshorability (based on Autor and Dorn, 2013), thus accounting for expo-

sure to automation and non-China-specific globalization; the fractions of foreign-born, non-whites,

and the college educated in the population, and the fraction of working-age women who are em-

ployed, which absorbs variation in outcomes related to labor-force composition; and the population

shares of residents ages 0 to 17, 18 to 39, and 40 to 64, which control for demographic factors that

may affect labor-force participation and eligibility for government transfers (see Appendix Table A2).

For all outcomes other than population headcounts, regressions are weighted by the CZ working-age

population (ages 18 to 64) in the initial year; for headcount regressions, weights are the total CZ

population in the initial year. All specifications cluster standard errors at the state level.

We focus on U.S. imports from China and not U.S exports to China because the former dwarf the

latter and because our instrumentation strategy (see below) is less well-suited to isolating exogenous

variation in U.S. export growth.20 Autor et al. (2013a) find similar results when replacing growth in

U.S. imports with growth in U.S. net imports. Consistent with these findings, Feenstra et al. (2019)

detect no impact of growth in U.S. exports to China on U.S. manufacturing employment, although

overall U.S. export growth is positively associated with manufacturing activity.21

In related work, Eriksson et al. (2019) study the “Japan trade shock” of 1975 to 1985 (during

which Japan’s exports of autos and other durables surged) and the “East-Asian Tiger trade shock”

of 1975 to 1988 (during which Hong Kong, Korea, Singapore, and Taiwan had manufacturing export

booms), which occurred a dozen years before China’s WTO accession. They detect no impact of

the Japan shock on employment rates in U.S. CZs, while Batistich and Bond (2019) find a similar

overall null effect of the shock on CZ manufacturing employment. It is further the case that the CZs

exposed to the earlier East Asian export surges had limited overlap with those exposed to the later
20The 2000-2012 increase in U.S. manufacturing imports from China ($292bn) was 4.1 times the increase in U.S.

manufacturing exports to China ($71bn), for values in 2015 USD.
21Weak U.S. manufacturing exports to China could be a result of U.S. comparative advantage lying elsewhere, such

as in agriculture, oil and gas, and intellectual property. Dorn and Levell (2021) show that most major European
economies experienced a combination of rapidly increasing Chinese import penetration and modestly growing exports
to China that was quantitatively comparable to the U.S. experience, with the notable exception of Germany where
manufacturing exports (dominated by machine tools and cars) grew in parallel to imports (dominated by labor-
intensive products). In Germany, job loss in import-exposed regions counteracted job growth in export-oriented
ones (Dauth et al., 2014). OECD countries in which exports to China grew to a similar extent as imports from
China experienced smaller declines in manufacturing employment than countries like the U.S., where imports strongly
dominated exports (Dorn and Levell, 2021). Weak U.S. export growth could also be attributable to the forces behind
large trade surpluses in China and trade deficits in the U.S. (Autor et al., 2016; Dix-Carneiro et al., 2021).
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China trade shock. The former group had relatively had high levels of income, college attainment,

and patents per capita, whereas the latter had relatively low values of these indicators.22

Import penetration in (1) includes all types of shipments from China to the United States,

whether they emanate from Chinese companies exporting final goods to the U.S. market on their own

accord or export processing plants—such as Foxconn, which assembles Apple iPhones from imported

parts and components—that are part of global value chains controlled by multinational enterprises.

Boehm et al. (2020) find that much of the post-1990 employment decline in U.S. manufacturing

occurred in establishments owned by U.S. multinationals that were simultaneously expanding oper-

ations in their foreign subsidiaries. Between 1995 and 2005, export processing plants contracting with

multinationals accounted for a hefty 55% of China’s manufacturing exports (Feenstra and Hanson,

2005). Over time, however, Chinese firms have expanded input production in China, which reduced

the share of processing plants in China’s exports to 35% by 2015 (Ma, 2020). Unfortunately, our

data do not allow us to separate U.S. imports from China into those that came through global value

chains versus other channels. In recent work, Aghion et al. (2021) use firm-level data for France to

separate imports from China into “horizontal” products—imports in product categories similar to a

firm’s exports—and “vertical” products—imports in product categories similar to a firm’s imported

inputs. Whereas exposure to the first type of imports predicts employment declines, exposure to

the second type of imports does not. These results suggest that imports that intensify head-to-head

competition with domestic firms spur contraction of domestic manufacturing.23

3.2 Causal Identification

A challenge for identifying the causal impact of import exposure on labor-market outcomes in (2)

is that U.S. imports may change both because of shocks to U.S. product demand and shocks to

foreign product supply, where the former may be correlated with the residual, εit+h. To identify the

foreign-supply-driven component of U.S. imports from China, we follow Autor et al. (2013a) and

Acemoglu et al. (2016) in instrumenting U.S. import exposure, ∆IP cuiτ , using non-U.S. exposure,
22Despite a null net impact of the Japan shock on overall employment levels, Borjas and Ramey (1995) find that

U.S. metropolitan areas more exposed to import competition during the East Asian shock period had large increases
in college-non-college wage differentials. Batistich and Bond (2019) find further that the Japan shock caused changes
in composition of employment in exposed CZs, with employment falling for Black workers and rising for white workers.

23In Aghion et al. (2021), adverse impacts of import exposure are concentrated on low-productivity firms. In the
U.S. market, by contrast, Bernard et al. (2006) and Autor et al. (2014) find that trade-induced employment declines
are concentrated in larger manufacturing establishments, consistent with the framework in Holmes and Stevens (2014).
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∆IP coiτ , which we measure as the industry-level growth of Chinese exports to eight other developed

countries:24

∆IP coiτ =
∑
j

sijt−10∆IP
co
jτ . (3)

where ∆IP cojτ = ∆M co
jτ /(Yjt−3 +Mjt−3 −Xjt−3). This expression differs from (1) by using imports

from China in other high-income markets (∆M co
jτ ) in place of U.S. imports (∆M cu

jτ ), the 3-year lag

of industry absorption (Yjt−3 +Mjt−3−Xjt−3) in place of its base-year t value, and the 10-year lag

of CZ industry employment shares, sijt−10 ≡ Lijt−10/Lit−10, in place year t values (see Table 1).25

Analyses of the China trade shock have used ∆IP coiτ as a shift-share instrument in local labor

market regressions and have directly applied the industry-level shocks, ∆IP cojτ , as instruments for

the growth in industry-level import penetration (e.g., Autor et al., 2014; Autor et al., 2020b). Recent

literature formalizes the basis for identification and inference in such shift-share settings. Borusyak

et al. (2020) treat identification as based on exogeneity of the shifts—i.e., the industry-levels changes

in import penetration—which clarifies the identifying assumptions in the analysis and provides an

asymptotic rationale for using the shift-share structure to construct standard errors.26 Adao et al.

(2019b) present a related method for estimating standard errors. Although these refinements of

the shift-share approach do not change the fundamental conclusions about the impact of the China

trade shock on regional employment, they do formalize exclusion restrictions and advance methods

for statistical inference. In Appendix A.4, we draw on this recent literature to discuss the basis

for econometric identification, present results using alternative methods for constructing standard

errors, and provide analysis of pre-trends in the data.

4 Empirical Results

This section presents our main empirical results for the impact of trade exposure on U.S. commuting

zones. We use equation (2) to estimate how the 2000-2012 trade shock affected CZs over 2000 to

2019, focusing on three sets of outcomes. The first are ratios of manufacturing employment, non-
24The eight comparison countries—determined by the availability of comparable HS trade data for the full sample

period—are Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland.
25The use of lagged values helps reduce both the role of simultaneity and the influence of measurement error.
26The assumption of exogenous shifts is evident in industry-level analyses of the China shock that instrument a

U.S. industry’s import growth from China with these industry’s Chinese imports in other countries (e.g., Autor et al.
(2014); Acemoglu et al. (2016)). Goldsmith-Pinkham et al. (2020) develop an alternative approach to shift-share
analysis, which is based on exogeneity of the shares (i.e., pre-existing industry structures). As we discuss in Appendix
A.4, their approach appears to be less suitable for our application. See Ferman (2019) for further discussion.
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manufacturing employment, and total wage and salary employment to the working-age population

(defined as individuals ages 18 to 64 years old). We measure employment using the Bureau of

Economic Analysis’ (BEA) Regional Economic Information System (REIS), and population using

the National Vital Statistics System, where we aggregate data from the county to the CZ level. Trade

shock impacts on these outcomes reveal the direct consequences on manufacturing employment,

and the magnitude of labor reallocations to non-employment and other sectors. A second set of

outcomes are population headcounts, overall and by nativity and age-based subgroups, which reveal

whether exposure to import competition led to net reductions in the resident population (e.g., due

to out-migration). A third set of outcomes are per capita personal income, labor compensation,

and government transfers, overall and by program type, which reveal the impact of trade shocks

on average income and its components. We measure income, earnings, and government transfers

using county-level data from the REIS. For most series, we use 2000 as the initial year.27 Summary

statistics on outcome and control variables are reported in Appendix Tables A1 and A2; Appendix

A.2 contains further details on data sources and variable construction.

4.1 Employment Outcomes

We begin with the impact of the China trade shock on the CZ employment-population ratio, where

we measure employment either as the total number of wage and salary jobs in a CZ, or by splitting

these jobs into manufacturing and non-manufacturing (where the latter is defined as total wage and

salary employment less manufacturing employment). Figure 5 displays 2SLS estimates of impact

coefficients for trade exposure from the time-difference specification in (2) when using (3) to in-

strument for (1). Each panel shows results for 18 separate regressions, where the horizontal axis

organizes specifications according to the time difference being considered, beginning with 2001 to

2002 and extending out to 2001 to 2019. Vertical bars show 95% confidence intervals for the coeffi-

cient estimates. Structured in this manner, Figure 5 shows the cumulative impact of trade exposure

for progressively longer time differences (1 to 18 years).
27Because of BEA changes in industry classification from the SIC to the NAICS in 2001, our REIS series for

manufacturing and non-manufacturing employment begin in that year, rather than 2000.
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Figure 5: Trade Shock Impact on Employment, 2001-2019

(a) Manuf. employment/Working-age pop. (b) Non-manuf. employment/Working-age pop.
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(c) Total wage & salary employment/Working-age pop.
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Note: Panels (a)-(c) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the specified outcome between 2001 and the year indicated on the horizontal
axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure, as defined in (1) and instrumented
by (3). Control variables include initial-period CZ employment composition (share of employment in manufacturing,
routine-task-intensive occupations, and offshorable occupations, as well as employment share among women), initial-
period CZ demographic conditions (shares of the college educated, the foreign born, non-whites, and those ages 0-17,
18-39, and 40-64 in the population), and Census region dummies. Regressions are weighted by the CZ working-age
population in 2000; standard errors are clustered by state.

The results for manufacturing employment in Figure 5a show a negative effect of trade exposure

that builds quickly and then stabilizes. The impact coefficient is −1.45 (t-value= −4.41) for 2001

to 2007, which is the end year of analysis in Autor et al. (2013a), reaches −1.90 (t-value= −6.24)

for the 2001 to 2015 period, and then attenuates modestly to −1.79 (t-value= −5.42) for the 2001

to 2019 period. As one moves past 2012, the negative effect of greater import competition on

manufacturing employment continues to grow, even though the trade shock itself no longer appears

to be intensifying. Given a decadalized increase in import penetration over 2000 to 2012 of 0.89
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percentage points (Table 1), the implied reduction in the manufacturing employment share over 2001

to 2019 is −1.59 (= −1.79×0.89) percentage points, or 59.3% of the overall 2001-2019 change in the

manufacturing employment share of −2.68 percentage points (Appendix Table A1). Alternatively,

when comparing CZs at the 25th and 75th percentiles of trade exposure, the latter would be predicted

to have a reduction in its manufacturing employment share that is 1.18 (= −1.79 × [1.17− .51])

percentage points larger than in the former over 2001 to 2019. This compares to the 25th–75th

percentile differential change in the manufacturing-employment-share of −2.17 (= −3.79 + 1.62)

percentage points for the same period. Exposure to import competition from China thus appears to

account for a large share of net manufacturing job loss in US commuting zones after 2000.28

Those losing jobs in manufacturing may move into other sectors or out of employment. Simul-

taneously, they may move to another commuting zone.29 In Figure 5b, we consider the impact of

exposure to import competition on the CZ share of the working-age population employed in non-

manufacturing industries. Impact coefficient estimates are close to zero at all time intervals and are

imprecisely estimated (e.g., the impact coefficient for the 2001-2019 period is 0.05, t-value= 0.06).

We see no evidence that non-manufacturing sectors absorbed local workers released from manufac-

turing due to the China trade shock.30 The wide standard error bounds in Figure 5b are suggestive

of heterogeneity across CZs in how non-manufacturing absorbs displaced manufacturing workers, a

possibility we explore in section 4.4.

The fall in manufacturing employment and absence of offsetting job gains in non-manufacturing

imply a decline in total wage and salary employment in trade-exposed CZs, confirmed by Figure 5c.

Decreases in the employment-population ratio are comparable in magnitude to those for manufac-

turing employment. The effect reaches its maximum value for the 2001 to 2017 period: the impact

coefficient of −1.91 (t-value= −2.70) compares to −1.88 (t-value= −5.89) for manufacturing em-

ployment at the same horizon. The impact attenuates modestly late in the period, ending at −1.74

28These sustained negative impacts of trade exposure on local manufacturing employment for the U.S. are consistent
with an analysis by Dix-Carneiro and Kovak (2017) for Brazil where trade liberalization in the 1990s persistently
reduced employment in exposed regions, with even larger magnitudes than China trade impacts for the U.S.

29Workers exiting manufacturing employment may also end up incarcerated, enlisted into military service, homeless,
or deceased. We observe these outcomes imperfectly in the data, but they are likely to be small in aggregate relative
to the margins that we observe. Workers exiting the labor force may be of course replaced by new entrants, offsetting
these losses. Our analysis captures net effects of the trade shock on employment.

30Bloom et al. (2019) report evidence that CZs experiencing greater import competition do see larger increases
in non-manufacturing employment. We do not find this to be the case. We do, however, confirm their finding that
employment losses spurred by the China trade shock are highly durable in less-educated commuting zones while they
are ultimately more than fully offset in more-educated commuting zones (see section 4.4).
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(t-value= −2.35) over 2001 to 2019, which is close to the manufacturing impact at this horizon. At

long time horizons, much of the net absorption of manufacturing job loss is through increases in non-

employment. Amior and Manning (2018) argue that changes in the local employment-population

ratio summarize changes in local average real income. By this logic, the China trade shock would

have substantially altered the distribution of well-being across CZs, a possibility we explore in more

detail below through our analysis of personal income per capita.

Figure 6a maps the actual change in wage and salary employment-population ratios across CZs

for the 2001 to 2019 time period. While the national employment rate barely changed over this

period (+0.19 percentage points), the map reveals considerable variation across space, with lower

employment growth in parts of the South, Midwest and Northeast, and faster employment growth

in the Great Plains and some of the Western and Northeastern coastal areas. In Figure 6b, we map

the implied impact of the China trade shock (as measured in (1) for 2000 to 2012) on changes in

employment-population ratios for the same 2001 to 2019 time period. A visual comparison between

Figure 6’s two panels shows a striking correlation, as many of the CZs that lost employment overall

(in panel a) were also more adversely affected by the trade shock (in panel b). This correlation

suggests that the China shock had an important influence on the differential employment growth

across U.S. regions in the last two decades. The top 5% of CZs in terms of implied reductions in

employment-population ratios, which are listed in Appendix Table A4, include a preponderance of

locations that in 2000 were relatively highly specialized in manufacturing and had relatively few

college-educated workers. In 2000, 33 of the 38 most exposed CZs had a manufacturing employment

share above 25 percent, relative to the population-weighted median of 15.4%, and 33 of 38 had

a college-educated share of the working-age population below 20 percent, relative to the national

population-weighted median of 23.4%. The distinctiveness of trade-impacted commuting zones mo-

tivates the heterogeneity analysis that we undertake in section 4.4.

To test robustness, Appendix Figure A5 replicates the analysis in Figure 5, now using Census

and ACS data to construct changes in employment-population ratios. Census-ACS data have the

advantage over the REIS of measuring employment as the number of individuals with a job rather

than the total number of jobs in a CZ. A disadvantage of these household-survey-based data is

that they offer comparatively small sample sizes in annual samples after 2000, requiring us to use

combined ACS annual surveys. We estimate the impact of the China trade shock on employment-
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Figure 6: Implied Impact of Import Competition on Employment-Population over 2001 to 2019

Change in total employment-population ratio
(a) Actual change (b) Predicted change due to China trade shock

1.82 − 8.26
0.23 − 1.82
-1.01 − 0.23
-2.08 − -1.01
-3.01 − -2.08
-7.12 − -3.01

Deviation from mean
0.66 − 1.39
0.38 − 0.66
0.04 − 0.38
-0.42 − 0.04
-0.88 − -0.42
-5.16 − -0.88

Deviation from mean

Note: Panel (a) plots the observed change in the wage and salary employment-working-age population ratio over 2001
to 2019; panel (b) plots the implied change in this value based due to the China trade shock based on our estimates
(i.e., the product of the change in import penetration over 2000 2012 in (1) multiplied by the 2SLS coefficient estimate
for this variable from the specification in (2) in which the dependent variable is the 2001 to 2019 change in the ratio
of wage and salary employment to the working-age population, as shown in Figure 5c). Legends indicate values for
the bottom four quintiles and the top two deciles of this value, arranged in order of shock intensity.

population ratios for three time differences: 2000 (using data from the 2000 Census 5% sample) to

2007 (using pooled 1% annual samples from the 2006-2008 ACS files), 2012 (using pooled 1% annual

samples from the 2011-2013 ACS files), and 2018 (using pooled 1% annual samples from the 2017-

2019 files).31 The 2000-2007 period matches the later time period studied in Autor et al. (2013a),

the 2000-2012 period matches the duration of our trade shock measure, and 2000 to 2017/2019 is

the longest post-2000 period that we can study using the Census-ACS.

Focusing on results at the long horizon (i.e., 2000 to 2018 in Census-ACS data, 2001 to 2019

in REIS data), we see that in Figure A5 the impact coefficient for manufacturing employment-

population of −1.67 (t-value = −7.00) compares to −1.79 (t-value= −5.42) in Figure 5a. Similarly,

in Figure A5 the impact coefficient for total employment-population of −1.23 (t-value = −3.32)

compares to −1.74 (t-value= −2.35) in Figure 5c. These two sets of results appear quite comparable

in light of the differences between the data sources, specifically: using Census-ACS-based estimates

using 2000 as a start year (instead of 2001); combining 2017-2019 data for the 2019 observation;

and measuring employment as persons employed instead of the total number of jobs. In Census-

ACS data, the implied trade-induced reduction in the manufacturing employment share is −1.49

(= −1.67× 0.89) percentage points, or 50.9% of the overall 2000-2018 change in the manufacturing
31See Appendix Table A3 for summary statistics; other regressions variables are the same as in Figure 5.
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employment share of −2.92 percentage points (Appendix Table A3); recall that when using REIS

data, the corresponding figure is 59.3%. The two sets of results differ mildly in that the long-run

impact of the China trade shock on the non-manufacturing employment ratio is larger in Figure

A5b (β = 0.43, t-value = 1.35) than in Figure 5b (β = 0.05, t-value = 0.06 ), though the former

estimate is imprecise and too small to prevent a decline in the overall employment rate.32 Thus, in

Census-ACS data the long-horizon, trade-induced decline in the overall employment-population ratio

(given by the impact coefficient −1.23) absorbs 73.7% of the trade-induced decline in manufacturing

employment (given by the impact coefficient −1.67), whereas in REIS data the corresponding figure

is 97.2% (= 1.74/1.79).

One of the most surprising results reported by Autor et al. (2013a) is that the adverse impacts

of the China Shock on manufacturing and total employment-to-population persisted over at least a

decade. At the time that paper was written, the China trade shock was ongoing, making it infeasible

to distinguish short-term from steady-state (or “medium run”) impacts. The evidence presented

above makes clear that even in 2019, nine years after the plateau of the China trade shock, there

is no recovery of manufacturing or total employment-to-population rates in trade-exposed CZs. To

a first approximation, more trade-exposed CZs suffered a durable reduction in the size of their

manufacturing labor force, with the bulk of this decline translating into a long-run increase in non-

employment. The consequences of these disruptions went far beyond earnings and employment. Job

loss engendered social dislocation, in the form of lower marriage rates, increased single parenthood,

a higher incidence of children living in poverty, and increased mortality from drug and alcohol abuse,

especially among young males (Autor et al., 2019; Pierce and Schott, 2020).

4.2 Spillovers across Regions and Industries

The empirical specification in (2) is consistent with a setting in which commuting zones are func-

tionally small open economies. If changes in economic conditions in a given CZ do not materially

affect outcomes in other CZs, we can examine each commuting zone on its own without modeling the

transmission of shocks across locations. Of course, trade shocks directly impacting one commuting

zone may be transmitted to other CZs via changes in regional flows of goods and production factors.

We next evaluate evidence of cross-region and cross-industry spillovers of trade shocks.
32Because the China trade shock began in the 1990s, one may view the specification in (2) as incomplete in that it

does not control for the previous decade’s trade shock. Appendix section A.5.1 explores these adjustment dynamics.
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Changes in Local Labor Supply The impact of import competition on CZ population head-

counts summarizes the net effect of trade shocks on the pool of both potential workers and non-

working residents (e.g., children, elderly, and working-age non-participants). Labor supply responses

to negative labor demand shocks may in turn differ by worker age. Younger workers, in particu-

lar, are likely to be relatively mobile (Bound and Holzer, 2000). We examine the responsiveness of

population headcounts to greater import exposure separately for workers 18 to 24, 25 to 39, and

40 to 64 years old. This analysis is complicated by the fact that there are strong secular trends in

population growth across U.S. regions, which began well before the China trade shock (Blanchard

and Katz, 1992). Greenland et al. (2019) suggest that the approach used in Autor et al. (2013a) for

evaluating the impact of trade shocks on labor supply, which conditions on a control vector similar

to that in equation (2), does not account for such dynamics.33 Accordingly, when we estimate (2)

for log population headcounts, we additionally include as a control the log change in CZ population

over 1970 to 1990 in order to capture longstanding trends in population growth.

Figure 7 reports estimation results for population headcounts. In Figure 7a, we find negative

but insignificant impacts of trade exposure on the size of the working-age population, though the

point estimates grow as the time interval lengthens. The next three panels of the figure make

clear that these negative effects are driven by one age group, those 25 to 39 years old. For adults

ages 18 to 24 and 40 to 64, the impact of greater import competition on population headcounts is

negative but small and highly imprecisely estimated for all time differences. The finding of no net

impact of trade exposure on CZ populations is consistent with Faber et al. (2019), while the greater

responsiveness of younger adults echoes Bound and Holzer (2000), who show that less-experienced

workers are relatively more mobile in the face of adverse shocks. For the 2000-2019 time difference,

the coefficient estimate of −5.89 (t-value= −2.52) indicates that when comparing CZs at the 25th and

75th percentiles of trade exposure, the more-exposed CZ would have a −3.89 (−5.89× [1.17− .51])

percentage-point larger decrease in headcounts for this age group. For comparison, the 75th– 25th

percentile difference in population growth across CZs for individuals ages 25 to 39 over 2000 to 2019

was 20.96 (= 16.08 + 4.84) percentage points. Cross-CZ spillovers transmitted via net migration

appear to be modest and concentrated on a narrow age group.
33Estimation results for the employment-population ratio are not subject to this critique because using the ratio of

employment to population effectively differences out population growth trends.
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Figure 7: Trade Shock Impact on Log Population Head Counts, 2000-2019

(a) Log population, ages 18-64 (b) Log population, ages 40-64
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(c) Log population, ages 25-39 (d) Log population, ages 18-24
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Note: Panels (a)-(d) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the specified log population headcount between 2000 and the year indicated
on the horizontal axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure, as defined in (1)
and instrumented by (3); and control variables are the same as in Figure 5 plus CZ population growth over 1970 to
1990. Regressions are weighted by the CZ total population in 2000; standard errors are clustered by state.

The greater mobility of the foreign-born may contribute to the labor-supply responsiveness to

the China trade shock seen in Figure 7 (Cadena and Kovak, 2016). To explore this channel, we

use Census and ACS data to evaluate the impact of trade exposure on population headcounts by

nativity. Appendix Figure A6 summarizes regressions for two time differences: 2000 (using data from

the 2000 Census) to 2010 (using data from the combined 2006-2010 ACS 1% samples), and 2000 to

2019 (using data from the combined 2015–2019 1% samples).34 All other variables are the same as

in the regressions in Figure 7. The impact of trade exposure on the total working-age population is
34Because of small population counts of the foreign-born in many CZs in any individual year., we use combined

five-year ACS samples rather than the combined three-year samples used in Appendix Figure A5.
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negative for both the 2000-2010 (β = −2.42, t-value = −1.92) and 2000-2019 (β = −3.47, t-value

= −1.84) time differences, and marginally significant in each case. When we examine the impact on

the native-born population, we find a smaller and much less precisely estimated effect: the impact

coefficient for 2000 to 2019 is −0.75 (t-value = −0.79). This contrasts with impacts on the foreign-

born, for which greater import competition significantly reduces population headcounts over 2000 to

2019 (β = −6.79, t-value = −2.05). When looking at age subgroups within these populations, we see

negative significant impacts of import competition on native-born workers ages 25 to 39 (β = −5.03,

t-value = −2.29), which aligns with the results in Figure 7, and on foreign-born workers ages 40 to

64 (β = −12.70, t-value = −2.08). Whereas native-born labor-supply responses are strongest for

younger workers, for the foreign-born they are strongest for older workers.

Gravity Based Trade Shocks To evaluate how changes in labor-market outcomes in one region

affect outcomes in other regions, Adao et al. (2019a) build a general equilibrium trade model that

captures such spillovers explicitly and generates reduced-form equilibrium conditions that have a

shift-share structure. If national industries are subject to exogenous shocks, such as reform-induced

growth in Chinese manufacturing, then employment and wages in regional economies will be affected

through two channels. One is through changes in local industry revenue, which in the case of greater

import competition will place downward pressures on local wages and employment, as captured by

changes in import penetration in (2). Second, in the presence of cross-region spillovers, wages and

employment in one region will also be affected by localized changes in import penetration in other

regions, whether through cross-CZ trade or migration. For a given CZ, shocks to other CZs will

matter more the larger and the closer are these other markets, as dictated by the gravity structure

of trade. Adao et al. (2019a) quantify this cross-region spillover by adding to the specification in

equation (2) the gravity-weighted changes in import competition all other regions (i.e., the sum of

the trade shock in each region weighted by the size of and the distance to that region).

We incorporate their approach by estimating an extended version of equation (2) that includes

a gravity-based measure of trade exposure in other CZs. Appendix A.5.3 provides details on the

estimation and reports results. For all time differences, the impacts of own-CZ trade shocks are very

similar in magnitude and significance to those in Figure 5. The impacts of gravity-based trade shocks

are small and imprecisely estimated, both for manufacturing employment and non-manufacturing
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employment-population ratios. Evidence of gravity-based spillovers appears to be weak.

Cross-Industry Spillovers The literature also investigates spillovers in trade shocks between in-

dustries, which may operate both within and across regions. On within region transmission, Autor

et al. (2014) find that workers’ earnings are adversely affected both by shocks to their own industry

of employment and by shocks to the industries of other workers in the same CZ (as captured by the

average trade shock for these workers’ industries). Acemoglu et al. (2016) and Pierce and Schott

(2016) document spillovers that operate through input-output linkages in industry supply chains.

Rising U.S. furniture imports from China, for instance, may cause U.S. factories in this downstream

industry to reduce purchases of inputs from the upstream sectors with which it is linked—e.g., planed

lumber, plywood, woodworking machinery, textiles, screws, and adhesives. Because buyers and sup-

pliers often locate near one another, much of the impact of increased trade exposure in downstream

industries may transmit to suppliers in the same regional market. Using US input-output data to

construct upstream (supplier) and downstream (customer) import exposure shocks for both manu-

facturing and non-manufacturing industries, Acemoglu et al. (2016) estimate negative employment

effects in industries whose customer industries are directly trade-exposed. Conversely, they find

little evidence for differential employment changes in industries whose suppliers are directly trade-

exposed. Trade exposure thus appears to primarily propagate upstream in the supply chain—that

is, from trade-exposed customers to their suppliers.

4.3 Personal Income, Labor Compensation, and Government Transfers

Adverse impacts of trade shocks on local labor demand are likely to reduce labor income, especially

among low–wage workers. Chetverikov et al. (2016) and Autor et al. (2019) find that greater exposure

to import competition from China caused larger relative reductions in earnings in the bottom four

deciles of earnings distributions within CZs, where declines were larger for men than for women.

Yet, impacts of trade exposure on labor earnings provide only a partial sense of the consequences for

economic activity. Reductions in the employment-population ratio in a commuting zone may dampen

demand for local goods and services and housing, possibly reducing revenues flowing to local business

owners and landlords. Feler and Senses (2017) document negative impacts of the China trade shock

on CZ housing values and property tax revenues, though they do not find evidence that more trade-
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exposed commuting zones saw larger declines in the number of business establishments. Declines

in local income may in turn trigger greater uptake of government transfers, as more individuals

qualify for means-tested government assistance or elect to retire and begin to receive Social Security

income. Autor et al. (2013a) find that trade exposure caused an increase in government transfer

receipts in adversely affected commuting zones, with most of the uptake accounted for by retirement,

disability, and medical benefits. These prior analyses extend only through 2007, however, so they

do not illuminate the long-run impact of the China trade shock on local area income.

To fill in this picture, we examine how trade exposure affects the components of personal in-

come per capita. BEA estimates of local area personal income include labor compensation (wages,

salaries, bonuses, employer contributions to health and pension plans), proprietor income (income

of sole proprietorships, partnerships, tax-exempt cooperatives), financial returns (rent, interest, div-

idends, realized capital gains), government transfers (both cash and in-kind), and adjustments to

capture income by place of residence. By including as many sources of income as possible, and by

seeking to assign income according to the place of residence of recipients, BEA personal income per

capita approximates aggregate local income per capita and is therefore suitable for evaluating the

distributional consequences of trade exposure across CZs.

Estimation results appear in Figure 8, where outcomes are in terms of log income and transfers

relative to the total population of a CZ, except for total labor compensation, which is relative

to wage and salary employment.35 The impact of exposure to import competition on personal

income per capita in Figure 8a is negative at all time horizons and precisely estimated for most time

differences from 2000 to 2014 forward. Negative effects reach their peak for the 2000 to 2015 time

difference, for which the impact coefficient is −3.64 (t-value = −2.55). The moderately attenuated

coefficient estimate of −2.66 (t-value = −1.90) for the 2000 to 2019 time difference indicates that

for CZs at the 25th and 75th percentiles of trade exposure, the more-exposed CZ would have a 1.76

(−2.66× [1.17− .51]) percentage point smaller increase in personal income per capita over 2000 to

2019, which compares to the 25th – 75th percentile difference in the growth of personal income per

capita over 2000 to 2019 of −12.2 (= 21.3 − 33.5) percentage points. Consistent with Autor et al.

(2013a), we see in Figure 8b that more trade-exposed CZs had larger increases in government transfer

receipts per capita, which remain elevated through 2019. For the 2000 to 2019 time difference, the
35We normalize personal income by the total (rather than working-age) population, given that non-working-age

individuals may earn income from non-labor sources and receive government transfers of various kinds.
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Figure 8: Trade Shock Impact on Income, 2000 to 2019

(a) Log personal income per capita (b) Log government transfers per capita
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(c) Log total labor compensation per worker
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Note: Panels (a)-(c) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the specified outcome between 2000 and the year indicated on the horizontal
axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure, as defined in (1) and instrumented
by (3); and control variables are the same as in Figure 5. Regressions are weighted by the CZ population in 2000;
standard errors are clustered by state.

impact coefficient of 4.03 (t-value = 2.75) implies that at the 75th- 25th percentile difference in

trade exposure, the more exposed CZ would have a 1.81 (2.75× [1.17− .51]) percentage point larger

increase in transfers per capita over the time period, relative to the 75th – 25th percentile difference

in the growth of transfers per capita of 10.90 (= 67.6− 56.7) percentage points.

In Appendix A.5.4, we further explore the impact of trade shocks on government transfers by

program type. Consistent with results in Autor et al. (2013a) for earlier time periods, adjustments in

Social Security and Medicare benefits account for most of the responsiveness in government transfers

induced by greater import competition, where the magnitude of these benefit gains expands as the
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time horizon lengthens. To receive these benefits, an individual must have left the labor force,

either through retirement or by being declared medically unable to hold a job. The primary means

through which government transfers replace labor income lost due to import competition is thus by

accommodating an exit from paid work, which may help account for the long-run negative effects

of trade exposure on employment-population ratios we see in Figure 5. Despite trade-induced lower

incomes, means-tested government programs meant to provide income assistance to poor households

are instead largely unresponsive to greater import competition.

4.4 Heterogeneity in Impacts across Regions

We have so far focused on the average response of commuting zones to import competition, which

provides insight into the overall implications of the China trade shock. These average impacts

mask heterogeneity in how CZs adjust to adverse shocks. Among the most trade-impacted CZs,

there is wide variation in initial industrial specialization and labor-force composition (see Appendix

Table A4). Consider, for instance, North Hickory (2000 population 378k), and Raleigh-Cary (2000

population 1, 420k), both of which are located in North Carolina. Over 2000 to 2012, the two

CZs were each above the 95th percentile of trade exposure, with increases in import penetration

of 4.4 percentage points for the industries in North Hickory and 3.4 percentage points for those in

Raleigh-Cary. However, these towns entered the 2000s with distinctly different economic structures.

North Hickory was a traditional factory town. In 2000, 43.0% of its working-age population had

a manufacturing job and just 15.6% had a bachelor’s degree. Raleigh-Cary, by contrast, was more

educated and industrially diversified. In 2000, 34.2% of its working-age population had at least a

college degree, and only 17.0% worked in manufacturing. These initial differences may have shaped

how the two commuting zones responded to the large and sudden increase in import competition.

A substantial literature documents that U.S. regions with fewer college-educated workers have

grown less rapidly (e.g., Glaeser et al., 1995; Behrens et al., 2014; Diamond, 2016) and have seen

larger declines in employment rates (Austin et al., 2016). To explore the role that a “dearth of

human capital” contributes to poor adjustment to the China shock, we separately examine CZs that

initially had smaller versus larger supplies of college workers.
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Figure 9: Heterogeneity in Trade Shock Impacts: Initial College Educated Population

(a) Manuf. employment/Working-age pop. (b) Wage & salary employment/Working-age pop.
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(c) Log working-age population (d) Log personal income per capita
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Note: Panels (a)-(d) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
Coefficient estimates whose differences have a minimal Benjamini-Hochberg q-value of less than 0.05 are shown with
solid markers (with hollow markers for other estimates). Estimates are reported for two samples: the 386 CZs whose
share of the college educated in the working-age population was below the population-weighted national median in
2000, and the complementary set of 336 CZs. The dependent variable is the change in the indicated measure between
2001 and and the year on the horizontal axis; the trade shock is the decadalized 2000-2012 change in CZ import
exposure as defined in (1) and instrumented by (3); control variables are the same as in regressions reported in Figure
5. Regressions in panels (a)-(c) are weighted by the CZ working-age population in 2000; regressions in panel (d) are
weighted by the CZ total population in 2000. Standard errors are clustered by state.

Other work studies how greater specialization leaves regions more exposed to industry-specific

shocks (e.g., Feyrer et al., 2007; Michaels, 2011). Many of the labor-intensive U.S. industries exposed

to trade with China were agglomerated in small and medium-sized cities in the U.S. Southeast and

Midwest (Ellison et al., 2010). Existing work documents that the impact of the China shock was

greater in CZs that at the outset had lower employment rates (Austin et al., 2016) and were more

specialized in mature industries positioned later in their product cycles (Eriksson et al., 2019).36 We
36In Brazil, Dix-Carneiro and Kovak (2017) document that regional manufacturing continued to decline well after
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explore the role that “reverse agglomeration” contributes to poor adjustment to the China shock, we

separately analyze CZs that initially were less versus more industrially specialized.

Figure 9 presents estimates in which we divide the sample of CZs into groups based on whether

the share of the college-educated in their working-age populations was above or below the population-

weighted national median in 2000. There are 336 CZs in the former group and 386 in the latter group.

We consider four outcomes: the manufacturing employment-population ratio, the total wage and

salary employment-population ratio, the log working-age population, and log personal income per

capita. To keep the time horizon the same across outcomes, we evaluate time differences from 2001

to 2002 to 2001 to 2019. To control the false discovery rate when evaluating differences in coefficient

estimates across sample splits, we compute and display minimal Benjamin-Hochberg q-values based

on the number hypotheses being tested.37

Although both higher and lower-educated CZs experienced declines in manufacturing employ-

ment, the negative impacts of trade exposure on overall employment in Figure 5 are concentrated in

CZs with relatively few college-educated workers, as shown in Figures 9a and 9b. These results are

consistent with those in Bloom et al. (2019), who study the 1992 to 2012 time period. For the 2001

to 2019 horizon, the first two figures show that in less-educated CZs, a one percentage point increase

in import penetration over 2000 to 2012 predicts a 1.74 (t-value = −4.07) percentage point decrease

in the manufacturing employment-population ratio and a 2.47 (t-value = −3.59) percentage point

decrease in the total wage and salary employment-to-population ratio. Across all CZs (see Figure 5),

trade-induced changes in manufacturing and total employment-population ratios are very similar at

long horizons, indicating that employment impacts on non-manufacturing employment are null. For

CZs with relatively few college workers, the substantially larger impact on total employment than

on manufacturing employment reveals a negative impact of trade exposure on non-manufacturing

employment, as shown in Appendix Figure A9. Despite manufacturing job losses being compounded

by non-manufacturing losses in these CZs, there is no effect of trade exposure on the log working-age

population (Figure 9c). It thus appears that more trade-impacted CZs with fewer college-educated

trade reform had permitted greater import competition, in a manner consistent with agglomeration economies.
37The number of hypotheses (144) is the product of the four outcomes, 18 years in the sample, and two sample

splits. In the standard Benjamini-Hochberg procedure, hypotheses are ranked according to their unadjusted p-value.
For a fixed significance level q, the researcher rejects all hypotheses that satisfy p < qr/M , where p is the p-value,
r is the rank of the p-value, and M is the number of hypotheses being tested. Following the step-up method in
Anderson (2008), we find the smallest q at which each null hypothesis can be rejected. In Figures 9 and 10, we show
the coefficients whose differences across sample splits have a minimal q-value of less than 0.05 with solid markers, and
use hollow markers everywhere else.
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workers did not experience differential out-migration, though they did experience larger declines in

personal income per capita, as shown in Figure 9d. Since economically-motivated migration would

tend to mitigate the local disemployment effects of trade exposure, one interpretation of these results

is that the lack of migration is both symptom and cause of the slow adjustment process.

In CZs with more-educated working-age populations, the pattern of adjustment is qualitatively

different. Impacts of trade exposure on manufacturing employment (Figure 9a) are negative, but

somewhat smaller and less precisely estimated. Impacts on the total wage and salary employment-

population ratio are small and imprecise for short time differences and then become large, positive,

and marginally significant for long time differences. For the 2001-2016 time difference and beyond,

we easily reject that impact coefficients for wage and salary employment-population are the same

in more- versus less-educated CZs. This trade-induced increase in the total employment-population

ratio must imply a corresponding positive impact of trade exposure on the non-manufacturing-

population ratio, as seen in Appendix Figure A9.

As critically, more-educated CZs adjusted to adverse trade shocks in part through net out-

migration. For all time differences except 2001 to 2006, we reject that impact coefficients on the

working-age population are equal for more versus less-educated CZs. At the 2001 to 2019 time

difference in more-educated CZs, a one percentage point increase in import penetration is predicted

to cause a 9.13 (t-value = −3.31) percentage point decrease in the working-age population, or an

annual population decline of approximately one-half a percentage point. The impact coefficient on

log non-manufacturing employment at the 2001 to 2019 time difference of 6.04 (t-value = 2.37,

Appendix Figure A9b) implies that more of the increase in the non-manufacturing employment

population ratio occurred through the out-migration of labor rather than through greater job growth.

Like less-educated CZs, more-educated CZs also see negative impacts of trade exposure on personal

income per capita (Figure 9d). Distinct from less-educated CZs, these impacts reach their maximum

negative value for the 2001 to 2012 time difference and then diminish over time, becoming close to

zero for the 2001 to 2016 horizon and beyond.38

38Appendix Figures A9c and A9d show that in both more and less-educated CZs trade exposure induced an increase
in government transfers per capita, with the majority of this increase accounted for by payments related to Social
Security and Medicare.
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Figure 10: Heterogeneity in Trade Shock Impacts: Initial Industry Specialization

(a) Manuf. employment/Working-age pop. (b) Wage & salary employment/Working-age pop.
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(c) Log working-age population (d) Log personal income per capita
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Note: Panels (a)-(d) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
Coefficient estimates whose differences have a minimal Benjamini-Hochberg q-value of less than 0.05 are shown with
solid markers (with hollow markers for other estimates). Estimates are for two samples: the 619 CZs whose Hirschman
Herfindahl Index of industry specialization was above the population-weighted national median in 2000, and the
complementary set of 103 CZs. The dependent variable is the change in the indicated measure between 2001 and and
the year on the horizontal axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure as defined
in (1) and instrumented by (3); control variables are the same as in regressions reported in Figure 5. Regressions in
panels (a)-(c) are weighted by the CZ working-age population in 2000; regressions in panel (d) are weighted by the
CZ total population in 2000. Standard errors are clustered by state.

Next, we consider a second dimension of heterogeneity in adjustment to the China trade shock.

In Figure 10, we split the sample of CZs by their industrial specialization in 2000, which we measure

using a Hirschman-Herfindahl Index (HHI) equal to the sum of the squared shares of CZ employment

in each industry.39 There are 103 CZs with HHIs above the population-weighted median, and 619 CZs

with HHIs below it. The uneven split in CZs across the two groups reveals, unsurprisingly, that large
39We construct these HHIs using ACS data for 2000 and the 1990 Census industry classification code.
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commuting zones are less specialized by industry than smaller and medium-sized CZs. In Figures

10a and 10b, it appears that the negative impacts of trade exposure on manufacturing and wage and

salary employment across all CZs are driven predominantly by smaller, more industrially-specialized

commuting zones. For these CZs, there are negative and significant impacts of greater import

competition on manufacturing employment and total wage and salary-employment-population ratios.

For less specialized CZs, impacts on manufacturing employment are small, negative and imprecise,

and impacts on total employment are null. In the more-specialized CZs (Figure 10c), but not in

the less-specialized ones (Figure 10c), trade exposure induces larger decreases in the working-age

population. Despite this, employment-population ratios decline by relatively more in more trade-

exposed and more specialized CZs. Our conclusions about differences in adjustment between more

and less-specialized CZs are tentative, however, given that for most time horizons and outcomes we

cannot reject that impact coefficients for the two groups of CZs are the same.

4.5 Putting the Pieces Together

The first wave of China shock research found that greater import competition caused localized job

loss in manufacturing, declines in earnings for low-wage workers, and greater economic distress across

a wide range of outcomes. The primary mechanism of adjustment to trade exposure was exit from

work, rather than increased employment in non-manufacturing or migration to other regions. The

impacts of rising import competition, originally documented for 1991 through 2007, are manifest

out to 2019, nearly two decades after China’s accession to the WTO in 2001 and nine years after the

plateau of China’s export surge. More trade-impacted CZs suffered durable increases in joblessness

and decreases in personal income per capita that are not close to being offset by government trans-

fers. The resulting economic distress appears to be most acute in local labor markets that lacked

abundant supplies of college-educated workers—consistent with the dearth of human capital hy-

pothesis—and that were narrowly specialized in labor-intensive manufacturing—consistent with the

reverse agglomeration hypothesis. For CZs such as North Hickory, North Carolina, the consequences

of the China trade shock have been profound and long-lasting.

There are other plausible explanations for the lack of an out-migration response to the China

trade shock. These include downward pressure on housing values in contracting CZs (Feler and

Senses, 2017), which for renters may have diminished the pressure to leave and for homeowners

32



may have complicated selling their homes (Glaeser and Gyourko, 2005; Notowidigdo, 2020). Lower

housing values may have further blocked local recovery by slowing the formation of new businesses,

which are often financed using home equity (Davis and Haltiwanger, 2019).40 It does not appear,

however, that regional variation in labor market regulations account for differential adjustment to

the China shock. The impacts of trade exposure were no less acute in CZs located in right-to-work

states or states with lower minimum wages (Chan, 2019).

There are alternative characterizations of the China trade shock, which deserve mention. One

is that, amidst the regular ebb and flow of the U.S. labor market, the China shock was no more

consequential than a high tide. If every year millions of jobs are created and millions of jobs are

destroyed, how could job loss in a collection of factory towns be important? A second is that

manufacturing job loss would have happened anyway.41 That is, import competition from low-wage

countries other than China (Hanson, 2000), rising capital intensity in manufacturing (Fort et al.,

2018), and the availability of industrial robots (Acemoglu and Restrepo, 2020) would ultimately have

closed factories and displaced workers, irrespective of China’s rise. Both lines of thought ignore how

the China trade shock was highly concentrated in place and time. The concentration in place was due

to the relocation of manufacturing to smaller cities and towns over the 20thcentury, made possible

by the maturation of industrial production (Eriksson et al., 2019), and improved transportation

(Kim, 1995; Michaels, 2008). The concentration in time was due the speed of China’s rise and

the immensity of its economy (Naughton, 2007). The scarring effects of job loss in trade-exposed

CZs was made more acute by this job loss occurring during trade-induced local economic recessions

(Jacobson et al., 1993; Davis and von Wachter, 2011). Workers were not just losing their jobs, they

were experiencing the dislocating effects work disappearing in their communities (Wilson, 2011;

Autor et al., 2019; Charles et al., 2019).
40Housing market regulations in large U.S. cities could also have impeded adjustment in trade-exposed regions.

Inelastic housing supply in major cities, due in part to housing regulations (Glaeser et al., 2005), may hinder low-
wage workers in the Heartland from moving to expensive coastal cities (Hsieh and Moretti, 2019).

41A related argument, that it was technological change and not import competition that caused manufacturing job
loss in trade-exposed CZs, has two weaknesses. One is that the cross-CZ correlation between exposure to automation
and exposure to import competition is very low (Autor et al., 2013b); a second is that there was no obvious abrupt
acceleration in technological change after 2001 (indeed, productivity growth slowed after 2004).
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5 Was the China Shock Unique?

A question arises whether the China trade shock was a singular event with limited relevance for other

shocks, or whether it holds general lessons about concentrated job loss. The regional consequences

of trade-induced employment contractions in the United States mirror those of the broader decline

of manufacturing. Charles et al. (2019) document that U.S. commuting zones suffering greater job

loss in manufacturing after 2000—whether because of import competition, automation, or other

forces—had larger declines in employment rates and wages out to 2017. We do not know, how-

ever, whether this pattern of adjustment is closely comparable to shocks that are not specific to

manufacturing or that occurred at other moments in time.

To provide a benchmark against which to compare the China trade shock, we examine outcomes

associated with two other major events whose impacts were also highly localized. One is the decline

of the coal industry, which after 1980 suffered two decades of contraction due to changes production

technology and energy demand (Black et al., 2002, 2005).42 A second is the Great Recession, in

which a housing collapse and subsequent credit freeze differentially affected U.S. regions (Mian

and Sufi, 2014; Charles et al., 2018; Beraja et al., 2019; Yagan, 2019). The first episode lets us

evaluate long-run adjustment to a sectoral shock during an earlier period, while the second involves

adjustment to an unusually deep cyclical shock.

5.1 Labor Market Adjustment to the Decline of Coal

The secular decline of employment in the coal industry is a case of a spatially concentrated shock

that precedes the China’s rise. Figure 11 plots employment in U.S. coal mining and, for reference,

employment in U.S. manufacturing, each expressed as the log for a given year relative to the log

value in 1980. There was a boom in coal production during the 1970s due to a spike in energy prices

caused by the decade’s two major oil price shocks. Employment in coal rose from 140,600 workers in

1969 to 263,600 workers in 1979. After 1980, coal prices began an extended decline. Employment in

coal followed suit, falling to 151,200 workers in 1990 and to 80,400 workers in 2000. After rebounding

modestly in the 2000s, coal employment plummeted after 2011. Given these patterns, we specify

the coal shock as the change in coal employment over 1980 to 2000. Our analysis builds on Black
42On regional boom and bust cycles in energy production, see Michaels (2011), Jacobsen and Parker (2016), Allcott

and Keniston (2017), Feyrer et al. (2017), Bartik et al. (2019), Clay and Portnykh (2018) and Kearney and Wilson
(2018).
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Figure 11: Employment Decline in Coal Production vs. Manufacturing
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et al. (2005), who find that during the 1983-1993 coal bust, counties more specialized in coal (as

indicated by initial coal reserves) in Kentucky, Ohio, Pennsylvania, and West Virginia had larger

decreases in employment rates, total earnings, and earnings per worker. We expand their analysis

forward in time from 1993 to 2019 and include all U.S. commuting zones.43

To evaluate local labor market adjustment to the decline of coal, we adapt the specification in

equation (2) to the following:

∆Yit+h = αt + β1h∆SScoali + X′itβ2 + εit+h, (4)

where ∆Yit+h is the change in an outcome for CZ i between year t+ h for h = −5, . . . , 39, and the

base year t = 1980; and ∆SScoali is a shift-share variable that projects the coal shock onto CZ i,

and Xit is a vector of controls. We specify the decadalized shift-share coal shock as,

∆SScoali = −
(

100

20

)
× Lic1980
Li1980

[
lnL−icoal,2000 − lnL−icoal,1980

]
, (5)

where Lic1980/Li1980 is the share of coal production in the employment of CZ i in 1980, and the

term in brackets is the log change in national employment in coal production over 1980 to 2000,

outside of the state in which CZ i is located. To facilitate interpretation, in the regression analysis
43Because CZs are aggregates of counties, our analysis may dampen the county-level effects in Black et al. (2005).
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we multiply the shock in (5) by −1, such that a higher value of the shift-share variable indicates

a larger negative change. The population-weighted mean of this projected employment change is

0.22 (σ = 1.25) percentage points.44 Control variables in the regression include a dummy for the CZ

having positive coal employment in 1980, time trends for Census region divisions, and parallel to

above, values in 1980 for the share of CZ employment in manufacturing, the share of women in CZ

employment, the share of the college educated in the CZ population, and the share of the foreign born

in the CZ population. Because of the spatial concentration of coal deposits, the shock hit a relatively

small number of commuting zones: just 258 (35.7%) of CZs had positive coal employment in 1980,

and the population-weighted median value of the shock is only 0.001 percentage points. By contrast,

the shocks at the 90th and 95th percentiles were 0.19 and 0.83 percentage points, respectively.

Estimation results appear in Figure 12. The impact coefficients for the ratio of wage and salary

employment to population (Figure 12a) become increasingly negative during the 1980-2000 shock.

They are largest for the 1980-2003 horizon (−0.48, t-value= −3.98), and remain negative for all

horizons out to 1980 to 2019, though the estimates for the longest time windows lack statistical

precision. For the 1980 to 2006 difference—on the eve of the Great Recession and 26 years after

coal’s decline had begun—the impact coefficient of −0.39 (t-value= −2.94) indicates that a CZ

subject to a 1980-2000 coal shock at the 95th percentile of intensity would have experienced at

0.32 (= 0.39× [0.83− .001]) percentage point larger decline in its wage and salary employment-

population ratio than a CZ at the median of shock intensity. For context, over 1980 to 2006 the

5th−50th percentile difference in the change in employment-population was −9.4 percentage points.

In Figure 12b, we see that CZs more exposed to the decline of coal also had larger reductions

in total labor compensation per worker, which persist well beyond the 1983-1993 period studied in

Black et al. (2005) and are precisely estimated at long horizons. Over the 1980 to 2019 (β = −1.05,

t-value= −2.46), a CZ subject to a coal shock at the 95th percentile of intensity would have seen a

0.88 (= −1.05× [0.83− .001]) log point greater decline in average labor income.
44Given our shock definition, this indicates that the average change in coal employment across CZs was negative.

The correlation between the coal shift-share variable (5) and the China shock shift-share variable (2) is −0.08.
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Figure 12: Local Labor Adjustment to the Decline of Coal

(a) Wage & salary employment/Working-age pop. (b) Log labor compensation per worker
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(c) Log population, ages 18-64
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Note: Panels (a)-(c) report 2SLS coefficient estimates for β1h in (4) and 95% confidence intervals for these estimates.
The dependent variable is the change in the indicated measure between 1980 and and the year on the horizontal axis;
the coal shock is defined in (5); control variables in the regression include a dummy for the CZ having positive coal
employment in 1980, time trends for Census region divisions, and values in 1980 for the share of CZ employment in
manufacturing, the share of women in CZ employment, the share of the college educated in the CZ population, and
the share of the foreign born in the CZ population. Regressions are weighted by the CZ working-age population in
1980; standard errors are clustered by state.

Given these lasting adverse labor market impacts of the coal shock, one might expect that heavily

exposed CZs saw substantial population declines. However, Figure 12c shows that the impact of

exposure to the coal shock on population headcounts is small and imprecisely estimated for the first

two decades after the coal contraction began. Larger negative population responses appear only well

after 2000, and are statistically significant only for time periods beyond 1980 to 2016. For the 1980

to 2019 difference, the impact coefficient of −1.33 (t-value= −2.15) indicates that a CZ subject to

a coal shock at the 95th percentile of intensity would have had a 1.22 (= −2.23× [0.83− .001]) log
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point larger decline in its working-age population when compared to a CZ at the median of shock

intensity. These impacts are small and do not appear until 25 years after the shock initiated.

Qualitatively, Figure 12 indicates that the reaction of employment, earnings, and population

to the coal shock was similar to the response to the China import shock (see Figures 5, 7 and

8). In both cases, CZs with greater exposure to the adverse sectoral shocks suffered declines in

employment and earnings that persisted well beyond the period reaching peak intensity. These local

labor markets eventually saw a decline in population but that decline was neither immediate nor

large. Despite these qualitative similarities between the coal shock and the China trade shock, there

is a substantial quantitative difference between the two. Whereas the Figure 5 estimates suggest that

the China shock induced a decline in the wage and salary employment-population ratio of −1.55

(= −1.74× 0.89) percentage points between 2001 and 2019, the corresponding employment decline

for the coal shock was only −0.04 (= −0.198× 0.22) percentage points per decade from 1980 to

2019.45 The much smaller average impact of the coal shock may be unsurprising given that only

a subset of CZs produce coal. Nor did the coal shock generate the extremes of variation in labor

market outcomes across CZs that we observe for the China trade shock. Although wage and salary

income per worker in a CZ at the 95th percentile of exposure to the coal shock declined by 0.88 log

points more than in a CZ at the 5th percentile over the 1980-2019 period, the differential impact of

the China shock on wages from 2000 to 2019 was three times as large when comparing CZs at the

75th and 25th (instead of 95th and 5th) percentile of exposure.

5.2 Labor Market Adjustment to the Great Recession

As a second point of comparison, we evaluate local labor market adjustment to the Great Recession.

We adapt the specification in (4) where ∆Yit+h becomes the change in an outcome for CZ i between

year t + h for h = −5, . . . , 13, and base year t = 2006; and ∆SSgri is a shift-share variable that

projects the Great Recession onto CZ i, and Xit is a vector of controls. The NBER dates the Great

Recession as beginning in December 2007, and ending in June 2009. Because U.S. housing markets,

which played a major role in the downturn, began contracting in 2006 (Charles et al., 2016), we

specify the shock as commencing in that year. We estimate (4) for 19 separate time periods: five
45We obtain these estimated impacts by multiplying the impact coefficient for the wage and salary

employment/working-age population ratio (−1.74 for the China shock, −0.19 for the coal shock) that corresponds to
the longest time difference (2001 to 2019 for the China shock, 1980 to 2019 for the coal shock) times the decadalized
mean of the respective shock (0.89 for the China shock, 0.22 for the coal shock).
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periods before the shock begins (2001-2006 to 2005-2006), to check for pre-trends in outcomes; three

shock periods (2006-2007 to 2006-2009), to examine shock impacts as the shock intensifies; and 12

periods after the recession had ended (2006-2007 to 2006 to 2019), to evaluate longer-run adjustment.

Similar to (5), we specify the annualized Great Recession shock in shift-share form as,

∆SSgri = −
(

100

3

)
×
∑
j

Lij2000
Li2000

[
lnL−ij,2009 − lnL−ij,2006

]
, (6)

where Lij2000/Li2000 is the share of industry j in employment of CZ in the year 2000, and the term

in brackets is the log change in national employment in industry j over 2006 to 2009, outside of

the state in which CZ i is located. To help interpret the results, we again multiply the shock in

(6) by −1, such that a higher value indicates a larger negative projected change in employment.

The population-weighted mean of the shift-share variable is 2.19 (σ = 0.73) percentage points—on

average, CZs faced strongly contractionary forces during the recession period. The control variables

included in the regressions are the same as those in the China shock regressions in (2).46

Yagan (2019) documents that the recovery in unemployment rates after the Great Recession was

not matched by a recovery in employment rates. In CZs more adversely affected by the downturn,

employment rates were suppressed out to 2015. Charles et al. (2016) document further that declines

in employment rates were concentrated among the less-educated. We extend Yagan’s analysis out

to 2019, using CZ-level REIS data, as compared to his use of federal income tax records.

Estimation results appear in Figure 13. CZs more exposed to contracting industries during the

Great Recession saw larger declines in their employment rates (Figure 13a). Impact coefficients for

the wage and salary employment-population ratio become rapidly more negative as the recession

intensified, reaching their peak value for the 2006-2009 difference (β = −1.60, t-value= −5.42).

As the post-2009 expansion began, CZs began to recover from earlier declines in employment; the

impact coefficient for the 2006-2016 period is less than one third the size of the 2006-2009 effect.

This recovery appears to stall in 2016, however. For the 2006 to 2019 long difference, CZs that

were more exposed to the Great Recession still register net declines in their employment-population

ratios. The impact coefficient of −0.76 (t-value= −2.11) at that horizon indicates that a CZ subject

to the mean Great Recession shock over 2006 to 2009 would have experienced a 1.66 (= 2.19× 0.76)

46The correlation between the Great Recession shift-share variable in (6) (over 2006 to 2009) and the China Shock
shift-share variable in (2) (over 2000 to 2012) is 0.48. In unreported robustness exercises, we replicate the results
in Figure 13 in which we include as a control variable the instrument for the China trade shock, as defined in (3).
Coefficient estimates and patterns of significance for the two sets of results are very similar.
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percentage point decline in its wage and salary employment-population ratio, relative to the mean

change for the 2006 to 2019 period of +2.20 percentage points (σ = 3.89).

In Figure 13b, we see that CZs more exposed to the Great Recession had larger declines in wage

and salary income. The impact reaches its maximum for the 2006-2011 time difference (β = −1.41,

t-value= −3.52), then attenuates modestly through 2016, after which recovery stops. Over the

2006-2019 long difference, a commuting zone subject to the mean Great Recession shock would have

experienced a 2.45 (= −2.19× 1.12) percentage point decline in compensation per worker.

Figure 13: Local Labor Market Adjustment to the Great Recession
(a) Wage & salary employment/Working-age pop. (b) Log labor compensation per worker
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(c) Log population, ages 18-64
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Note: Panels (a)-(c) report 2SLS coefficient estimates for β1h in (4) and 95% confidence intervals for these estimates.
The dependent variable is the change in the indicated measure between 2006 and and the year on the horizontal
axis; the Great Recession shock is defined in (6); control variables include initial-period CZ employment composition
(share of employment in manufacturing, routine-task-intensive occupations, and offshorable occupations, as well as
employment share among women), initial-period CZ demographic conditions (shares of the college educated, the
foreign born, non-whites, and those ages 0-17, 18-39, and 40-64 in the population), and Census region dummies.
Regressions are weighted by the CZ working-age population in 2001; standard errors are clustered by state.
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The enduring declines in employment ratio and labor income per capita over the period 2006

to 2019 could indicate persistent scarring effects of the Great Recession. However, Figure 13a

and 13b also show that CZs with greater exposure to the Great Recession had differentially faster

growth in employment and labor income leading up to the recession. To the extent that this faster

growth was driven by a temporary boom in construction that expanded employment and earnings

to unsustainable levels (Charles et al., 2016), one might expect that these variables would not

fully recover following the recession. Indeed, the Figure 13c estimates for population belie the

expectation of a lasting downturn in the CZs with greater exposure to the Great Recession. These

CZs experienced only modest and imprecisely estimated population declines during the recession,

and from 2006 to 2016 onward, had faster relative population growth. This rapid growth raises the

denominators for both the employment-population ratio and average wage and salary income, thus

helping to explain why the recovery of those outcomes stalls in exposed CZs after 2015. These CZs

were rapidly gaining population, which is likely a positive economic development.

In summary, we observe that Chinese import competition, the fall in demand for coal, and

the Great Recession each reduced employment and labor incomes as these shocks unfolded. CZs

with greater shock exposure did not experience large declines in population in any of these cases,

suggesting that migration did not disperse the local impacts of these shocks. CZ more exposed

to the Great Recession eventually experienced a substantial recovery of their employment rates,

and faster population growth. Those with greater exposure to the China or coal shocks instead

endured persistently depressed employment rates and labor income levels, combined with a slow

decline in population. The comparison with the coal shock in particular indicates that the China

shock’s long-lasting impact on CZ labor market conditions and the sluggish population response to

depressed local labor market conditions was not without precedent. However, the large magnitude

of the China shock, which had a sizable impact on many local labor markets in the US, sets it apart

from shocks such as the decline of the coal sector whose impact was more limited in scope. As

the United States prepares for potentially more job loss due to the ongoing energy transformation

and expected changes in oil and gas production, the failure of local labor markets to adjustment

successfully to the coal and China trade shocks reminds us that the adjustment process is typically

slow and sclerotic, unlike the textbook model of frictionless labor market adjustment.
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6 The Distributional Consequences of the China Trade Shock

Local labor markets more exposed to import competition from China suffered larger declines in

manufacturing jobs, employment-population ratios, and personal income per capita. These effects

persist for nearly two decades beyond the intensification of the trade shock after 2001, and almost

a decade beyond the shock reaching peak intensity. The absence of a substantial out-migration

response to the shock indicates that resident populations in exposed CZs bore the brunt of local job

loss and its repercussions. While it is uncontroversial to infer that trade-exposed commuting zones

suffered relatively larger losses on average in economic well-being than did less trade-exposed CZs,

these results do not reveal which if any CZs experienced absolute declines in average welfare or by

how much. Computing absolute effects requires combining reduced-form empirical analysis, which

estimates relative effects, with a general equilibrium model, which quantifies aggregate gains.

6.1 Quantitative General Equilibrium Analyses of the China Trade Shock

For individuals living in a given U.S. commuting zone, trade with China affects well-being by chang-

ing earnings and consumption possibilities. If economic reform in China raises its productivity in

labor-intensive manufacturing, economies with a comparative advantage in these industries would

see demand for their factor services contract, thus diminishing their consumption possibilities, while

economies whose comparative advantage lies elsewhere would see their factor demand and consump-

tion possibilities expand (Arkolakis et al., 2012). If labor is fully mobile across regions and sectors

within a country, as has traditionally been assumed in modeling trade shocks, then the change in

welfare would be common across regions. The evidence above contradicts such baseline assumptions;

to a startling degree, trade shocks appear to have an enduring impact on the locations in which their

immediate impact is felt. To interpret cross-region differences in welfare impacts emanating from

trade shocks, theoretical models must incorporate frictions—normally labor market frictions—that

produce the concentrated geographic impacts that we observe in the data.

As a benchmark for how labor immobility affects the welfare impact of the China trade shock,

consider the analysis in Galle et al. (2020).47 They combine an Eaton and Kortum (2002) model of

heterogeneous firms with a Roy (1951) model of heterogeneous workers (Lagakos and Waugh, 2013;

Hsieh et al., 2019). Workers are immobile across regions and partially mobile across sectors. They
47For an early welfare analysis of China’s trade expansion, see Hsieh and Ossa (2016).
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specify the China trade shock as innovations to China’s industrial productivity, which they calibrate

for the period 2000 to 2007 by backing out the implied productivity growth needed to generate

the observed change in U.S. manufacturing imports from China that is predicted by the first-stage

regression of Autor et al. (2013a). Using these innovations, plus assumptions on other parameter

values, they calculate that the average change in real income across CZs from trade with China is

0.22%, with a (unweighted) standard deviation across CZs of 0.31 percentage points.

The analysis in Caliendo et al. (2019), also based on an Eaton and Kortum (2002) model, allows

labor to be mobile geographically in the longer run. Dynamic adjustment in labor allocations across

U.S. states and sectors arises from workers facing a fixed cost in moving from one region-industry to

another and preference shocks in region-industry choice. Applying a calibrated China trade shock

over 2000 to 2007 (again using Autor et al., 2013a), and estimated model elasticities, they find that

labor reallocation across sectors and regions is largely complete by 13 years after shock initiation

(i.e., 2013, which is well within our period of analysis). At this horizon, the average change in welfare

is 0.20%, with a (unweighted) standard deviation across U.S. states of 0.09 percentage points.48

In both studies, because goods prices are assumed identical across regions, aggregate welfare

impacts are similar.49 Naturally, regional variation in welfare impacts is larger in Galle et al. (2020),

owing to geographic labor immobility. The two models also differ in how they model labor market

frictions, which determines how trade shocks affect the overall employment rate.50 In Caliendo et al.

(2019), non-employment arises because of an option for home production; in an extended version

of Galle et al. (2020), non-employment arises because of both a home-production option and search

and matching frictions in the labor market. Notably, in the latter analysis eliminating search and

matching frictions and home production yields little change in the mean and variance of income

changes across CZs. Wherever regional variance in income changes is coming from, it does not

appear to be labor-market frictions within regions as modeled.

To evaluate quantitative analyses of the China trade shock, we compare changes in the regional
48We thank Lorenzo Caliendo for providing this estimate. Regional labor reallocation does not eliminate variation

in welfare impacts across regions because migration costs and region-specific preferences create real adjustment costs.
49Kim and Vogel (2020) provide a related assessment of trade with China, which we discuss in Appendix A.6.
50In related work, Adao et al. (2019a) modify the baseline framework in Galle et al. (2020) by making trade between

CZs costly and production subject to external economies of scale. If some trade-exposed CZs are proximate to other
trade-exposed CZs, the impact of adverse trade shocks will be magnified via localized changes in trade flows, where
scale economies may intensify such effects. Their counterfactual analysis implies that the China trade shock reduced
average real income by 0.35%, with a standard deviation across CZs of 0.56. In Appendix A.5.3, we find weak evidence
of gravity-based spillovers of trade shocks across regions.
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dispersion of income per capita in these analyses with reduced-form estimates of the trade-induced

change in the variance of income across regions. Because quantitative approaches target the average

impact of trade exposure on manufacturing employment in their calibrations, untargeted moments,

such as regional dispersion in income changes, are useful for assessing modeling approaches.

In considering regional variation in trade impacts, we abstract from within-region variation in

the welfare impacts of trade shocks, which would arise from differential effects of trade exposure on

earnings and price levels across households within a CZ. On earnings, Chetverikov et al. (2016) and

Autor et al. (2019) find that lower-wage workers suffered larger percentage declines in earnings in

CZs harder hit by the China trade shock. Our focus on personal income per capita aggregates over

such worker-level variation. On prices, although the China trade shock appears to have raised con-

sumer purchasing power, Borusyak and Jaravel (2021) document that shares of imports in consumer

expenditures are flat across the income distribution, which implies that the purchasing-power effects

of freer trade are distributionally neutral. Relatedly, Bai and Stumpner (2019) and Hottman and

Monarch (2020) find that the impact of trade with China on U.S. product prices was similar across

income groups (and geographic regions). To a first approximation, we can analyze the impact of the

China shock on welfare in the U.S. as the sum of a price level effect, which is presumed homogeneous

across regions, and an income effect, which varies across regions.51

6.2 Relative and Absolute Welfare Effects across Regions

Following Galle et al. (2020), we can write the average change in welfare for a commuting zone due

to the China trade shock as the induced change in real income,

Ŵi =
Ŷi

L̂i

∏
j

P̂
−βj
j (7)

where Ŵi ≡ W
′
i /Wi is the trade-induced change in income per capita (Yci/Lci) in U.S. region i,

relative to the change in the national price index, which applies the βj Cobb-Douglas expenditure

shares for products in each sector j to induced changes in the price level Pj for each sector j. Because

Galle et al. (2020) calibrate their model to the 2000-2007 trade shock, they implicitly assume that

the long run impacts of the shock had been realized by 2007. For context, we see in Figure 5 that

impact of trade exposure on manufacturing employment over 2001 to 2007 (β = −1.45, t-value
51In Appendix A.6, we discuss results in Feler and Senses (2017) on how trade affects housing values.
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= −4.56) is approximately 80 percent of that over the 2001 to 2019 long difference (β = −1.79,

t-value = −5.42). It thus seems reasonable to compare their simulated standard deviation in income

changes (0.31) to that estimated for a long-run time change.

As a reduced-form application of the welfare formula in (7), we estimate the impact of trade

shocks on the variation in average income, Yci/Lci. Specifically, we evaluate the deviation in changes

income per capita in each CZ relative to the national weighted average,

ln
Ŷi

L̂i
−
∑
l

γl ln
Ŷl

L̂l
= βy1∆IP cuiτ −

∑
l

γlβ
y
1∆IP cul , (8)

where γl is the share of region l in the U.S. population, βy1 is the parameter estimate in (2) for the

log change in personal income per capita, and IP cuiτ is the trade shock. This estimate of the relative

impact leaves unmeasured the shock impact on the overall price level, which we treat as common

across regions, as consistent with Caliendo et al. (2019) and Galle et al. (2020).

In Figure 14, we show the estimation-implied variance in (8) induced by the 2000-2012 trade

shock over the 2000 to 2019 horizon.52 The (unweighted) standard deviation in trade shock impacts

on personal income per capita across commuting zones over 2000 to 2019 is 1.22 percentage points,

which far exceeds the cross-CZ income dispersion generated by quantitative models. Appendix Table

A4 lists the CZs that are above the 95th percentile of gross income losses—not accounting for any

offsetting gains from trade—which is 2.23 percentage points. The number of CZs that suffered net

declines in welfare depends, of course, on the magnitude of the gains from trade that potentially

offset these gross losses. The high variance of impacts across CZs, relative to apparently small

average gains from trade in quantitative analyses, raises the possibility that many CZs suffered net

welfare losses. In Caliendo et al. (2019) and Galle et al. (2020), gains from trade in the aggregate are

0.22% or less. When adding this value to the gross losses calculated above, the implied number of

CZs experiencing net losses from trade is 223, representing 32.8% of the U.S. continental population

in 2000. Even if we double these gains to 0.44%, 173 commuting zones, representing 15.9% of the

U.S. population, would be estimated to have suffered net absolute welfare losses.

The translation of the CZ-level relative effects into absolute level effects hinges on the impact of

trade on consumer prices. Jaravel and Sager (2019) estimate the impact of the China trade shock
52The impact coefficient for 2000 to 2019 in Figure 8a is marginally significant (t-value = −1.90). Impacts are

statistically significant for all time differences from 2000 to 2014 to 2000 to 2018. Because these coefficients are larger
in absolute value than the one for 2000 to 2019, using the long period difference can be seen as a conservative choice.
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Figure 14: Implied Variation in Changes in Personal Income per Capita, 2000 to 2019
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Note: This figure shows a histogram for the welfare change in (8), evaluated for the 2000-2012 trade-shock induced
change in personal income per capita (based on results in Figure 8a), expressed as the deviation in shock impacts
from the population-weighted national mean. The impact coefficient used is that for the 2000-2019 time difference
(β = −2.66, t-value = −1.90). The standard deviation in the implied shock impact is 1.22 percentage points.

on consumer prices in a reduced-form analysis. Using the 1991-2007 trade shock from Autor et al.

(2014), they find that a 1.0 percentage point larger increase in import penetration produces a decline

in consumer prices of 1.4%.53 Using the mean decadalized change in import penetration over 2000 to

2012 of 0.89 percentage points (Table 1), the implied reduction in consumer prices based on Jaravel

and Sager (2019) is 1.25%. If the positive impact of trade exposure on consumer prices is indeed

this large—over five times the gains from the China trade shock based on quantitative analyses—the

number of commuting zones suffering net losses from trade is smaller but still meaningful. In Figure

14, there are 82 CZs, representing 6.3% of U.S. population, with declines in personal income per

capita of 1.25% or more. For these CZs, the net effect welfare effect of trade with China is negative,

even when applying the sizable Jaravel-Sager price index adjustment. Given the large dispersion

of per capita incomes across CZs in Figure 14, there would have to be enormous consumer price

benefits from trade with China in order to generate net average gains for all U.S. commuting zones.
53Dorn and Levell (2021) analyze the impact of trade with China on consumer prices in the United Kingdom and

obtain treatment effects that are about half as large as those in Jaravel and Sager (2019).

46



7 Concluding Discussion

Economists have long known that individuals are scarred by job loss. Displaced workers earn signif-

icantly less than similar workers who are not displaced, even years after displacement. The China

trade shock caused locally concentrated job loss, which led to lasting declines in employment rates

and income levels in the most exposed communities. Despite these now well-documented adverse

labor market impacts of globalization, there is no consensus about how to remediate such injuries.

The United States does little to protect workers from mass-layoff events such as the China trade

shock. Although Trade Adjustment Assistance delivers benefits to some workers who have been

displaced by trade shocks (Hyman, 2018), the program is far too small to have reached most workers

who lost their jobs because of import competition in the 1990s and 2000s. A further limitation of

TAA is that it conditions assistance on the cause of job loss, i.e. trade. Presumably, job loss is

equally scarring, no matter whether the underlying cause of displacement is import competition,

technological change (Autor and Dorn, 2013; Acemoglu and Restrepo, 2020), government regulation

(Walker, 2013), or some other factor. Policy failures in this domain are far from innocuous. The

political gains of U.S. and European nationalist-populists, for instance, have been greater in regions

that have suffered larger trade-induced employment declines (Colantone and Stanig, 2018a,b; Autor

et al., 2020a; Rodrik, 2020).

The favored solution of populist politicians to regional distress is to raise import barriers and

block immigration. Indeed, the Donald J. Trump Administration cited the adverse impacts of

the China trade shock to justify taking aggressive trade action against China (Redding, 2020).

The subsequent U.S. China trade war succeeded in elevating U.S. product prices (Amiti et al.,

2019; Fajgelbaum et al., 2020; Cavallo et al., 2021) but not in expanding employment in import-

protected sectors (Flaaen and Pierce, 2019). We are aware of no research that would justify ex-post

protectionist trade measures as a means of helping workers hurt by past import competition.

Recent literature suggests that fostering employment growth in regions beset by chronic jobless-

ness may help workers hurt by persistent negative local labor demand shocks.54 Austin et al. (2016)

find that employment impacts of labor demand shocks are larger in local markets in which joblessness

was initially high. Bartik (2020) argues further that job growth in distressed regions is especially

beneficial for low-wage workers. Absent success in helping regions left behind by globalization, one
54On optimal spatial policies, see Fajgelbaum and Gaubert (2020) and Gaubert et al. (2020).
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may expect continued popular support for political platforms that disparage foreign trade, despite

the apparent inefficacy of these platforms to date.

Because of the distinctiveness of the China trade shock—in terms of its enduring magnitude

and concentration in place and time—some see it as holding few lessons for policymakers. Such

characterizations are mistaken. Large, localized contractions in labor demand—e.g., trade and

technology shocks to autos and steel in the 1970s, price shocks to coal in the 1980s, and ongoing

automation and roboticization—are unfortunately common events. The global economy is now

witnessing another round of localized shocks, arising from the energy transition. If economies succeed

in sharply reducing reliance on fossil fuels, demand will plummet for the workers who mine coal,

drill for oil and gas, refine petroleum, and transport and distribute these outputs (Chen et al.,

2021). Industries that are energy intensive in production, and that located their operations close

to carbon-based energy sources, may also experience significant disruptions. Although increased

demand for renewable energy will surely create new jobs in harnessing solar, wind, and hydro

power, these jobs may be located far from existing carbon-based production facilities. New energy

intensive industries, such as data centers, may choose to locate near renewable energy providers,

possibly further disadvantaging those working in the carbon-based economy. We are now armed

with knowledge both of the consequences of localized job loss and the likely location of future

worker displacement. This should enable policymakers to prepare for assisting workers, as carbon-

based jobs disappear, and regions, as they reorient toward less carbon-intensive activities. Without

such preparation, the energy transition may add to the painful history of regionalized job loss.

It is now clear that the China trade shock as we understand it appears to have stopped intensify-

ing a decade ago. The China shock of the 1990s and 2000s was about China’s one-time transition to

a market economy. This transition, which affected U.S. industries that were late in their economic

lifecycles, was in some sense forecastable based on market fundamentals, both in China and the

United States. The next China shock may be more likely to be triggered by industrial policy, e.g.,

if China makes good on its promise to support advanced technology industries. Such a shock may

depend less on market fundamentals and more on China’s future interventionist policy choices—and

the reactions of the United States and other countries to these choices—making its dimensions diffi-

cult to foresee. Because of China’s immense scale and willingness to enact sweeping policy changes

in short order, future ‘China shocks’ may again have profound albeit unpredictable consequences.
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Appendix

A.1 Trade Data

The trade data we use to examine revealed comparative advantage are from UN Comtrade and

based on SITC Rev. 2 product codes (https://comtrade.un.org). We thank Robert Feenstra and

Mingzhi Xu for access to a cleaned version of these data. We use SITC product codes instead of HS

product codes in order to calculate world exports by product in all years. HS codes, which we use to

construct the China trade shock in the empirical estimation so as to be able to concord trade values

to SIC industries, were adopted after 1991 by many countries. Changes in SITC data in 2017 and

2018 appear to have moved trade in some of China’s manufactured goods into SITC 931 (special

transactions and commodities not classified according to kind, which is a category for anomalies and

errors in trade flows). The share of SITC 93 in China’s merchandise exports rose from 1.3% in 2000

to 4.2% in 2016 and then to 13.7% in 2017, before dropping slightly to 13.4% in 2018.

We classify as manufacturing SITC one-digit categories 5 (chemicals), 6 (manufactured goods

classified by material, excluding SITC 68), 7 (machinery and transport equipment) and 8 (miscel-

laneous manufactures), and select two-digit (09, 11, 25, 41, 42, 43), three-digit (012, 014, 023, 024,

035, 037, 046, 047, 048, 056, 058, 062, 071, 072, 073, 091, 098, 111, 112, 122, 233, 246, 248, 251,

266, 267, 334, 335, 411, 423, 424, 431), and four-digit (0224, 0612, 0615, 0619, 3413) categories from

other one-digit sectors. Because other definitions of manufacturing trade (e.g., World Development

Indicators) exclude SITC 0 (food), 1 (beverages, tobacco), 2 (crude materials), 3 (mineral fuels),

and 4 (animal, vegetable oils) from manufacturing in their entirety—despite the presence of man-

ufactured products within these categories—they may generate values for China’s share of world

trade that are somewhat lower than those we report here.
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A.2 Employment and Earnings Data

A.2.1 REIS vs. QCEW, CBP, Census/ACS and NIPAs

In much of our analysis, we evaluate employment and earnings outcomes based on data from the

Bureau of Economic Analysis (BEA) Regional Economic Information System (REIS). REIS data on

employment at the county level are primarily based on the comprehensive quarterly tabulations of

unemployment insurance contribution reports that the Bureau of Labor Statistics uses to construct

the Quarterly Census of Employment and Wages (QCEW). The BEA also uses supplementary data

sources to additionally account for employment in industries that are not fully covered by unemploy-

ment insurance, and thus achieves slightly more comprehensive coverage of employment than the

QCEW. The REIS data is also more comprehensive than employment counts from the County Busi-

ness Patterns (CBP), which is an annual extension of the Census Bureau’s quinquennial economic

censuses that covers the private non-farm sector (see https://www.bea.gov/help/faq/104).55

The REIS, QCEW and CBP data all report the number of wage and salary jobs in a CZ. The

REIS-based employment-population ratios used here, and the CBP-based employment-population

ratios studied in Acemoglu et al. (2016)), thus indicate the number of jobs in a CZ divided by

CZ working-age population. These employment-population ratios correspond to the employment

rate among the working-age population under the simplifying assumption that all jobs are held by

working-age individuals who have at most one job; they provide a proxy for that employment rate

otherwise.

Autor et al. (2013a) instead measure changes in employment rates based on data from the

decennial population Census and the American Community Survey (ACS). These household survey-

based data enumerate the total number of individuals who have a job rather than the total number

of jobs. Since Census data are available only at decennial frequency while annual ACS samples are

relatively small, the Census/ACS data are not well suited for the data analysis at annual frequency

that we conduct here, although we show Census/ACS-based results for selected time periods in

Figure (A5). For that analysis, the employment rate is based on civilian working-age individuals
55The REIS data allow us to distinguish between employment in the manufacturing and non-manufacturing sectors,

but do not provide a detailed industry breakdown of employment at the county or CZ level. In order to construct CZ-
level trade exposure according to equation (1) and (3), we draw on CBP data on employment by country and 4-digit
SIC or 6-digit NAICS industry. Because the CBP suppresses data in county-industry cells with few establishments,
we imputed values for these cases using the fixed-point algorithm of Autor et al., 2013a.
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(who do not reside in group quarters) who have a job and are not self-employed.

BEA estimates of personal income in the REIS differ slightly from personal income in the National

Income and Product Accounts (NIPA). Whereas the NIPA includes some income earned abroad by

U.S. residents, the REIS excludes such income. Similarly, where the NIPA excludes income earned

by foreign nationals residing in the U.S. for less than a year, the REIS includes these earnings. REIS

personal income is a more expansive measure than adjusted gross income reports (AGI) reported

by the Internal Revenue Service. Unlike AGI, REIS personal income includes the income of non-

profit institutions serving individuals, private non-insured welfare funds, and private trust funds;

all government transfer receipts; and imputed income from in-kind current transfer receipts (such

as Medicaid and Medicare) and employer contributions to health and retirement programs. (See

https://apps.bea.gov/regional/definitions/.)

A.2.2 SIC vs. NAICS Industries in Employment and Trade Data

As in previous work (Autor et al., 2013a), we use SIC industries to define the aggregate trade shock

facing CZs in equation (1). By construction, only SIC manufacturing industries are exposed to

competition though imports of Chinese manufactures. Our outcome measure for aggregate man-

ufacturing employment based on REIS data is instead based on NAICS industries. Because the

transition from the SIC to the NAICS moved just five of 459 SIC industries from manufacturing to

non-manufacturing, this difference does not matter materially in the estimation (which we verify in

unreported robustness exercises). The affected industries are SIC 2411 (logging), SIC 2711 (newspa-

pers), SIC 2721 (periodicals), SIC 2731 (book publishing), and SIC 2741 (miscellaneous publishing).

None of these are ones in which import competition from China grew substantially.
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A.3 Summary Statistics on Outcomes and Controls

Table A1: Summary Statistics for CZ Outcome Variables

Outcome variable Mean
Standard 
deviation

25th 
percentile

50th 
percentile

75th 
percentile

2001 to 2019 change in:

Manufacturing employment/population 18-64 -2.68 1.76 -3.79 -2.66 -1.62
Non-manufacturing employment/population 18-64 2.87 4.17 0.37 2.86 5.49
Wage and salary employment/population 18-64 0.19 4.29 -2.81 0.27 1.79

2000 to 2019 change in:

Wage and salary employment/population 18-64 -1.00 4.67 -4.21 -1.01 1.27

Log population 18-64 12.92 13.98 3.45 10.24 21.33
Log population 18-24 9.05 14.08 0.04 6.28 18.98
Log population 25-39 6.41 15.48 -4.84 4.91 16.07
Log population 40-64 18.73 15.25 9.79 16.10 26.85

Log personal income/total population 26.95 8.07 21.31 26.09 33.49
Log government transfers/total population 61.85 8.70 56.70 62.67 67.59
Log wages, salaries, benefits/total population 17.38 10.40 10.42 17.02 24.09

Government transfers/total population 4,071.74 760.65 3,530.81 4,039.76 4,451.07
Social Security benefits/total population 1,112.62 309.34 886.72 1,056.72 1,310.32
Medicare benefits/total population 1,259.07 276.95 1,086.54 1,204.63 1,425.66
Medicaid benefits/total population 903.43 450.41 534.54 883.83 1,222.22
Income assistance/total population 266.73 102.74 210.35 258.72 332.41

Notes: This table shows changes in outcome variables (x 100 for shares and logs) over the indicated time period across the 
722 commuting zones in the continental US. Values are weighted by the CZ working-age or total population in 2000.

A4



Table A2: Summary Statistics for CZ Control Variables

Control variable Mean
Standard 
deviation

25th 
percentile

50th 
percentile

75th 
percentile

Manufacturing employment/total employment 16.18 7.46 11.28 15.27 19.62
Female employment/total employment 64.38 5.51 60.46 64.69 68.11
Routine occupation employment/total employment 31.90 2.37 30.54 32.22 33.81
Offshorability index 0.00 0.51 -0.37 0.13 0.35
College educated/total population 53.61 7.47 50.34 53.91 57.97
Foreign born/total population 14.76 12.81 4.81 9.19 22.75
Non-white population/total population 18.18 10.95 9.41 17.66 24.98
Population 65+/total population 12.37 2.91 10.62 12.04 13.80
Population 40-64/total population 30.10 1.87 29.15 30.32 31.33
Population 0-17/total population 25.63 2.22 24.52 25.33 26.80
Δ log population 1970-1990/2 12.31 12.25 2.17 10.22 19.23

Notes: This table shows control variables (x 100 for shares and logs) for the indicated time period across the 722 
commuting zones in the continental US. Values are weighted by the CZ working-age or total population in 2000.

Table A3: Summary Statistics for Outcome Variables Based on the Census and ACS

Outcome variable Mean
Standard 
deviation

25th 
percentile

50th 
percentile

75th 
percentile

2000 to 2019 change in:

Total employment/population 18-64 1.55 2.14 0.09 1.37 2.95
Manufacturing employment/population 18-64 -2.92 1.58 -3.42 -2.84 -2.00
Non-manufacturing employment/population 18-64 4.46 2.03 3.15 4.20 5.65

Notes: This table shows changes in employment-population ratios (x 100) over 2000 to 2019 calculate using the 2000 
Census and the 2015-2019 ACS. Values are weighted by the CZ working-age or total population in 2000.
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Table A4: Initial Conditions and Trade Shocks in the Most Trade Impacted CZs

Commuting Zone
Population 

(000s)

Manuf. share of 
employment 

(%)

BA degree 
share of pop. 

18-64 (%)

Change in import 
penetration (ppt), 

2000-2012

Impact on log 
personal income per 

capita, 2000-2019
Sioux City, IA-NE-SD 187.6 27.0 18.8 6.10 -7.89
Union County, MS 54.4 50.1 15.2 5.41 -6.84
Meridian, MS 156.9 26.5 13.3 5.09 -6.37
Hutchinson, MN 73.0 41.5 16.2 4.43 -5.36
North Hickory, NC 377.5 43.0 15.6 4.40 -5.32
Tupelo, MS 198.1 43.7 14.4 4.18 -4.99
Martinsville, VA 19.4 47.4 11.6 3.94 -4.62
Carroll County, VA 27.5 45.1 10.4 3.80 -4.40
Lynchburg, VA 112.4 26.9 18.5 3.74 -4.32
West Hickory, NC 165.1 49.9 12.9 3.70 -4.25
Henderson County, TN 44.9 45.9 9.7 3.58 -4.07
Crossville, TN 104.5 35.6 11.5 3.45 -3.88
Raleigh-Cary, NC 1420.0 17.0 34.2 3.42 -3.84
Cleveland, TN 203.7 39.9 12.4 3.20 -3.50
McMinnville, TN 84.5 48.9 10.4 3.19 -3.48
Faribault-Northfield, MN 110.1 32.9 20.2 3.16 -3.43
St. Marys, PA 41.0 54.7 13.2 3.13 -3.40
Danville, KY 86.7 38.3 16.6 3.01 -3.21
Quincy, IL-MO 152.3 23.8 16.1 2.97 -3.15
Greene County, GA 35.5 41.1 13.4 2.84 -2.96
Fort Wayne, IN 558.4 29.2 18.4 2.83 -2.94
Huntsville, AL 521.4 25.5 24.6 2.75 -2.82
Cherokee County, NC 59.9 30.8 14.9 2.71 -2.76
Fairmont, MN 48.9 28.0 17.2 2.69 -2.73
San Jose-Sunnyvale, CA 2397.6 20.8 34.9 2.67 -2.69
Starkville, MS 105.3 36.9 17.5 2.67 -2.69
Cleburne County, AR 51.8 30.2 11.8 2.58 -2.55
Brownwood, TX 58.2 24.4 16.3 2.57 -2.55
Union City, TN-KY 117.4 38.6 13.6 2.57 -2.55
Vernon County, MO 54.6 29.5 11.6 2.55 -2.51
Middlesborough, KY 66.7 29.4 8.2 2.52 -2.46
Runnels County, TX 23.6 33.0 13.4 2.50 -2.43
Austin-Round Rock, TX 1313.4 15.6 33.0 2.48 -2.41
Corinth, MS 129.7 37.4 9.9 2.45 -2.36
North Wilkesboro, NC 90.3 38.9 12.8 2.42 -2.32
Jonesboro, AR 199.1 34.4 14.6 2.37 -2.24
Toccoa, GA 89.3 41.3 11.6 2.36 -2.23
Richmond, KY 116.7 28.7 13.3 2.36 -2.23

Values in 2000 Trade Shock

Notes: This table summarizes initial conditions in 2000 (total population, share of employment in manufacturing, share of 
working-age population with a BA degree or higher) and the China trade shock (decadalized change in import penetration 
over 2000 to 2012, implied impact on log personal income per capita over 2000 to 2019) in commuting zones above the 
95th percentile of the change in import penetration over 2000 to 2012.
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A.4 Causal Identification and Inference

In this section, we discuss recent literature on identification and inference when using shift-share in-

struments, evaluate evidence of pre-trends in the data, and present results using alternative methods

for constructing standard errors in the estimation of (2), when using (3) to instrument for (1).

In their evaluation of shift-share IV estimators, Borusyak et al. (2020) derive sufficient condi-

tions for causal identification in empirical setups such as those in Autor et al. (2013a), Acemoglu

et al. (2016), and related contexts. Applying their framework here, for the instrument, ∆IP coiτ ,

to be orthogonal to the residual, εit+h, in (3), the following must hold: E
[∑

j sj∆IP
co
jτ εj

]
= 0,

where sj is the national employment share of industry j and εj ≡
∑

i sijt−10εit+h/
∑

i sijt−10 is

the exposure-weighted average of unobserved shocks for industry j. This orthogonality condition

is satisfied if either the large-sample covariance between the industry-level instrument ∆IP coiτ and

unobserved shocks εj is zero, or if the employment shares sijt−10 are exogenous and uncorrelated

with these shocks. Because of the shift-share structure—shocks originate at the industry level and

are transmitted to the region level via CZ industry employment shares—orthogonality is defined for

the sample of industries, rather than for the sample of regions.

As detailed in Borusyak et al. (2020), identification in shift-share analyses, such as in equation

(2), requires exogenous industry shocks (AKA, shifts)—identified by 2SLS in Autor et al. (2014);

Autor et al. (2020b)—while industry shares are taken as given. Conversely, Goldsmith-Pinkham

et al. (2020) study an alternative setting where industry shifts are taken as given while industry

employment shares are assumed to be exogenous. Borusyak et al. (2020) show that the orthogonality

condition is satisfied under the assumptions that industry shocks are as-good-as-randomly assigned

conditional on industry-level unobservables and industry weights, (E [∆IP coiτ |ej , sj ] = µ for all j),

where µ is a constant, and that there are many industry shocks (E[
∑

j s
2
j ] → 0) which themselves

are uncorrelated given unobservables and industry weights (Cov
[
∆IP cojτ ,∆IP

co
kτ |ε̄j , εk, sj , sk

]
= 0

for all industries j and k 6= j). In regressions with covariates, shock expectations can depend on the

observables and must be as-good-as-random conditional on controls.

Our discussion of the substantial industry-level variation in the timing and intensity of the China

trade shock highlighted in section 2 suggests that our approach is more consistent with assuming

shift exogeneity than share exogeneity. To check for industry-level orthogonality, Borusyak et al.
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(2020) recommend regressing current shocks on past outcomes, which are likely correlated with

current residuals. Autor et al. (2013a) and Acemoglu et al. (2016) perform such validation exercises

for CZs and industries and fail to reject industry-level orthogonality. Validating these earlier results,

Borusyak et al. (2018) fail to reject the null of industry-level orthogonality in the Autor et al. (2013a)

estimation for 10 of 12 falsification tests at conventional significance levels, which they interpret as

evidence consistent with the analysis succeeding in leveraging exogenous variation in the estimation.

In Appendix Figure A1, we report falsification tests in which we regress the changes in outcomes

whose end year is 1991, just prior to the onset of the China trade shock, and whose initial year ranges

from 1975 to 1990 on the trade shock in (1), defined over the period 1991 to 2000. (Results are

very similar when we use the 1991 to 2012 trade shock, instead.) This allows us to examine whether

future trade shocks are correlated with pre-China shock changes in labor-market conditions. Control

variables include Census region dummies and the CZ share of employment in manufacturing in 1970.

For the manufacturing employment-working-age population ratio in Figure A1a, there is near zero

correlation with the trade shock for changes in outcomes over the 1985 to 1991 horizon. As we extend

the outcome period further back in time, a slight positive correlation emerges between the future

trade shock and past changes in manufacturing employment, similar to that reported in Autor et al.

(2013a). This indicates that CZs subject to larger increases in import competition after 1991 had

faster manufacturing employment growth in preceding decades. There is no evidence of negative

pre-trends in manufacturing employment growth in more trade-exposed CZs. A similar pattern

emerges when we examine the overall employment-to-population ratio in Figure A1c, and personal

income per capita in Figure A1e. For non-manufacturing employment in Figure A1b, the log change

in the working-age population in Figure A1d, and government transfers per capita in Figure A1f,

there is near zero correlation between the future trade shock and past changes at all time horizons.

(The regression for the log change in population head counts includes lagged CZ population growth

as a control.) We interpret these results as evidence against the existence of negative pre-trends in

labor-market conditions for commuting zones subject to the China trade shock.

Borusyak et al. (2018) show that the impact coefficient in a regional shift-share regression is iden-

tified by regressing the industry level outcome on the industry level shift and using weights that are

a function of regional industry employment shares. Related work by Adao et al. (2019b) evaluates

confidence intervals for shift-share estimators where the residual has a shift-share structure (e.g.,
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where unobserved industry shocks are transmitted to CZs via industry employment weights). Their

corrected shift-share IV standard errors, when applied to Autor et al. (2013a), widen confidence

intervals asymmetrically to include substantially more-negative impacts of trade shocks on manu-

facturing employment (with no change in statistical significance). The coefficient estimate for the

trade shock impact on US manufacturing employment in Autor et al. (2013a) (Table 3, column 6)

is -0.60. Autor et al. (2013a) compute a 95% confidence interval based on standard errors clustered

at the state level whose lower bound is -0.79, while Adao et al. (2019b) and Borusyak et al. (2020)’s

modified version of Adao et al. (2019b) yield much lower bounds of -1.01 and -1.06. The upper

bound of the confidence interval instead has similar values of -0.40 in Autor et al. (2013a), -0.36 in

Adao et al. (2019b), and -0.40 in Borusyak et al. (2020).

In Appendix Figure A2, we replicate the specifications in Figure 5, using the Borusyak et al.

(2020) procedure for constructing standard errors. To aid in comparing the estimates, we report

the Figure 5 estimates side-by-side with Borusyak et al. (2020) based estimates. (Here, we use the

CZ manufacturing employment share in 2000 as a control. Results are similar when using the CZ

manufacturing employment share in 1990, as suggested by Borusyak et al. (2020).) By construction,

the two methods yield identical coefficient estimates and only differ in how they calculate standard

errors. For manufacturing employment (Figure A2a) and non-manufacturing employment (Figure

A2b), standard errors are slightly larger when using the Borusyak et al. (2020) method; for wage

and salary employment, standard errors are modestly small when applying Borusyak et al. (2020).

In the results that follow, we continue to use standard errors clustered by state.

In finite samples, a question arises whether approaches based on asymptotic theory, such Borusyak

et al. (2018) and Adao et al. (2019b), yield results that are more reliable than a simple cluster robust

variance estimator. Ferman (2019) develops a simulation approach to assess this question, which

he applies to Autor et al. (2013a) and other shift-share analyses, as well as other estimation frame-

works. His results suggest that in the specific context of the China trade shock, there is little gain to

applying these alternative methods for estimating standard errors. Stated differently, by clustering

standard errors at the state level, our approach is consistent with Adao et al. (2019b), as long as

common specialization patterns across CZs within states are the source of correlated errors. This

assumption is more restrictive than that in Adao et al. (2019b). However, because our confidence

intervals exclude the larger negative impacts spanned by the Adao et al. (2019b) confidence intervals,
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in this instance our clustering approach would appear to be more conservative in terms of ruling out

very large negative impacts of the China shock.

Figure A1: Analysis of Pre-Trends for 1991-2000 Trade Shock

(a) Manuf. emp./Working-age pop. (b) Non-manuf. emp./Working-age pop.
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(c) Total wage and salary emp./Working-age pop. (d) Log working-age population
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(e) Log personal income per capita (f) Log government transfers per capita
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Note: Panels (a)-(f) report OLS regressions of the change in the indicated outcome between the year indicated on
the horizontal axis and 1991 on the trade shock in (1) for the 1991-2000 period. Control variables include CZ Census
region dummies, and the share of manufacturing in CZ employment in 1970 (except for panel (d) which also includes
the log change in CZ population growth over 1970 to 1975 as a control). Regressions are weighted by the CZ share of
the U.S. mainland population in 1991; standard errors are clustered by state.
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Figure A2: Estimation Results Based on Borusyak, Hull, and Jaravel (2020)

(a) Manufacturing employment/Working-age population
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(b) Non-manufacturing employment/Working-age population
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(c) Wage and salary employment/Working-age population
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Note: Panels (a)-(c) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the specified outcome between 2001 and the year indicated on the horizontal
axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure, as defined in (1) and instrumented
by (3). Control variables include initial-period CZ employment composition (share of employment in manufacturing,
routine-task-intensive occupations, and offshorable occupations, as well as employment share among women), initial-
period CZ demographic conditions (shares of the college educated, the foreign born, non-whites, and those ages 0-17,
18-39, and 40-64 in the population), and Census region dummies. Regressions are weighted by the CZ working-age
population in 2000. Estimates in blue are the same as those in Figure 5; estimates in red, calculate standard errors
based on the method in Borusyak et al. (2020). A11



A.5 Supplementary Figures

A.5.1 Dynamic Adjustment to the China Trade Shock

Because the China trade shock began in the 1990s, one may view the specification in (2) as incomplete

in that it does not control for the previous decade’s trade shock—i.e., the results for 2001 through

2019 could in part reflect ongoing labor market adjustment from the prior decade. To allow for

dynamic adjustment, we could in theory add the lagged trade shock to (2). Complicating this

approach is the fact that the 1991-2000 and 2000-2012 shocks are highly correlated (ρ = 0.57). As

noted in section 3.1, most of the China trade shock occurred after 2000: the average values of the

(undecadalized) change in import penetration in (1) are 0.72 percentage points for 1991-2000 and

2.33 percentage points for 1991-2012, indicating that 69.5% of the shock occurs over the 2000 to

2012 period. Accordingly, we capture the bulk of the China trade shock by studying the post 2000

period.

Appendix Figure A3 compares results for the change in manufacturing employment-population

ratio over 2001 to 2019 when using our baseline 2000-2012 shock (Figure A3a), replacing this shock

with that for 1991-2000 (Figure A3b), and including both shocks together (Figure A3c).56 Because

the trade shocks are highly correlated across decades, coefficient estimates in Figures A3a and

A3b are very similar. Impact magnitudes are naturally larger for the 2000-2012 trade shock, which

contains more information about shock impacts in the 2000s. The high correlation of the trade shocks

means that when including both shocks together in the same regression (Figure A3c), coefficient

estimates for the 2000-2012 trade shock become smaller and less precisely estimated.57 We conclude

that we cannot separately identify impacts of the 2000-2012 trade shock and continued adjustment

to the 1991-2000 trade shock on outcomes in the 2000s. The estimated impact of the 2000-2012

trade shock is therefore a composite of these two effects.
56In Figure A3d, we include an orthogonalized version of the 1991-2000 trade shock (i.e., the residuals from a

regression of the 1991-2000 shock on the 2000-2012 shock). The resulting coefficient estimates for the 2000-2012 shock
are very close to those in Figure A3a (but not identical, due to covariance between the residual and the controls).
Adding the residualized pre-2000 trade shock would thus have little impact on results for the post-2000 trade shock.

57In Figure A3c, unreported coefficients on the 1991-2000 trade shock are small and imprecisely estimated.
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Figure A3: Combined Trade Shock Impacts on Manufacturing Employment

(a) 2000-2012 trade shock (b) 1991-2000 trade shock
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(c) 2000-2012 shock (with 1991-2000 shock) (d) 2000-2012 shock (with residual 1991-2000 shock)
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Note: Panels (a)-(d) report 2SLS estimates of (2). The dependent variable is the change in manufacturing employment
as a share of the working-age population between 2000 and the year indicated on the horizontal axis. Panels (a) and
(b) include the 2000-2012 and 1991-2012 trade shocks alone, respectively; panel (c) includes the two shocks together;
panel (d) includes the 2000-2012 shock and the residualized 1991-2000 shock. The 1991-2000 instrument is used for
the 1991-2000 trade shock, and the 2000-2012 instrument for the 2000-2012 shock. Control variables include initial-
period CZ employment composition (share of employment in manufacturing, routine-task-intensive occupations, and
offshorable occupations, as well as employment share among women), initial-period CZ demographic conditions (shares
of the college educated, the foreign born, non-whites, and those ages 0-17, 18-39, and 40-64 in the population), and
Census region dummies. Regressions are weighted by CZ working-age population in 2000; standard errors are clustered
by state.
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A.5.2 Employment and Population Headcounts

Figure A4: Trade Shock Impact on Manufacturing Employment, Varying Shock Periods

(a) Trade shock, 2000 to 2007 (b) Trade shock, 2000 to 2010
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(c) Trade shock, 2000 to 2012 (d) Trade shock, 2000 to 2014
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Note: Panels (a)-(d) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in manufacturing employment as a share of the working-age population between
2000 and the year indicated on the horizontal axis The trade shock is the decadalized change in CZ import exposure
for the indicated time period, as defined in (1) and instrumented by (3). Control variables include initial-period CZ
employment composition (share of employment in manufacturing, routine-task-intensive occupations, and offshorable
occupations, as well as employment share among women), initial-period CZ demographic conditions (shares of the
college educated, the foreign born, non-whites, and those ages 0-17, 18-39, and 40-64 in the population), and Census
region dummies. Regressions are weighted by the CZ working-age population in 2000; standard errors are clustered
by state.
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Figure A5: Trade Shock Impact on Employment-Population Ratios, Census-ACS data for 2000-2010,
2000-2014, and 2000-2019

(a) Employment/Working-age population by sector
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(b) Employment/Working-age population by sector and worker education
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Note: The figures report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the employment-population ratio for the indicated group (all workers, manu-
facturing workers, non-manufacturing workers), for workers of a given education level (all, bachelor’s degree or high,
no bachelor’s degree), and over the time period indicated on the legend (data for 2000 are from the Census, for 2007
are from the combined 2006-2008 ACS samples, for 2012 are from the combined 2011-2013 ACS samples, and for
2018 are from the combined 2017-2019 ACS samples); the trade shock is the decadalized 2000-2012 change in CZ
import exposure, as defined in (1) and instrumented by (3). Control variables include initial-period CZ employment
composition (share of employment in manufacturing, routine-task-intensive occupations, and offshorable occupations,
as well as employment share among women), initial-period CZ demographic conditions (shares of the college educated,
the foreign born, non-whites, and those ages 0-17, 18-39, and 40-64 in the population), and Census region dummies.
Regressions are weighted by the CZ working-age population in 2000; standard errors are clustered by state.

A15



Figure A6: Trade Shock Impact on Population Headcounts, Census-ACS data for 2000-2010 and
2000-2019

Log population by age cohort and nativity
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Note: The figure reports 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the log working-age population of the indicated nativity and age group over
the time period indicated on the legend (population for 2000 is from the Census, population for 2010 is from the
2006-2010 ACS five-year sample, and population for 2019 is from the 2015-2019 ACS five-year sample); the trade
shock is the decadalized 2000-2012 change in CZ import exposure, as defined in (1) and instrumented by (3). Control
variables include initial-period CZ employment composition (share of employment in manufacturing, routine-task-
intensive occupations, and offshorable occupations, as well as employment share among women), initial-period CZ
demographic conditions (shares of the college educated, the foreign born, non-whites, and those ages 0-17, 18-39, and
40-64 in the population), and Census region dummies, and the change in CZ log total population between 1970 and
1990. Regressions are weighted by the CZ population in 2000. Standard errors are clustered by state.

A.5.3 Gravity-Based Spillovers

Adao et al. (2019a) build a general equilibrium trade model that captures spillovers between regions

and generates reduced-form equilibrium conditions that have a shift-share structure. If national

industries are subject to exogenous shocks, then employment and wages in regional economies will

be affected through two channels. One is through changes in local industry revenue, which in the

case of greater import competition will place downward pressures on local wages and employment.

This is captured by changes in import penetration in (2). Second, in the presence of cross-region

spillovers, wages and employment in one region will also be affected by localized changes in import

penetration in other regions. For a given CZ, shocks to other CZs will matter more the larger and

the closer are these other markets, as dictated by the gravity structure of trade. Adao et al. (2019a)
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quantify this spillover by adding to the specification in (2) the gravity-weighted changes in import

competition all other regions (i.e., the sum of the trade shock in each region weighted by the size of

and the distance to that region).58

We incorporate their approach by estimating the following extended version of equation (2):

∆Yit+h = αt + β1h∆IP cuiτ + β2h
∑
k

zikt∆IP
cu
kτ + X′itβ2 + eit+h. (9)

where the added variable,
∑

k zik∆IP
cu
kτ , is the sum of trade shocks in other commuting zones,

weighted by the gravity-model-implied linkage between CZs, zik, where

zikt ≡
LktD

−δ
ik∑

h LhtD
−δ
ih

, (10)

and Lkt is the initial-period population of CZ k, Dik is the distance between CZs i and k, and δ is

the trade-cost elasticity, which following Adao et al. (2019a) we set equal to 5.59 Appendix Figure

A7 reports the results.
58A third channel through which national industry shocks affect local wages and employment is through changes

in consumption costs. If greater import competition expands local consumption possibilities, real incomes and the
demand for goods will increase. This will give rise to an own-region effect, in which local demand for goods expands,
and a cross-region effect, coming from gravity-weighted changes in demand in other regions. To calculate the change
in consumption possibilities, Adao et al. (2019a) modify (1) by adding the CZ industry consumption share (i.e., the
share of consumption spending a CZ devotes to a good), which they construct based on CZ industry composition
and national input-output tables. The consumption channel introduces two additional terms to (2), one for own-
region consumption effects and a second for gravity-weighted consumption effects in other regions. Their estimated
coefficients on these consumption terms are quantitatively small and imprecisely estimated. These null effects may
indicate that consumption channel effects are common across regions and therefore absorbed into the constant term
and does not necessarily imply that they are small in aggregate (see, e.g., Jaravel and Sager, 2019).

59We instrument for
∑
k zikt∆IP

cu
kτ by applying the gravity weights in (10) to the trade shock instrument in (3).
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Figure A7: Impacts of Local vs. Gravity-Based Trade Shocks on Employment

I. Impact of Local Trade Shock II. Impact of Gravity-Based Trade Shock

(a) Manufacturing employment/Working-age population
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(b) Non-manufacturing employment/Working-age population
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(c) Wage and salary employment/Working-age population
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Note: Panels (a) and (b) report 2SLS coefficient estimates for β1h and β2h in (9) and 95% confidence intervals for
these estimates. The dependent variable is the change in employment for the indicated measure between 2001 and
the year on the horizontal axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure, for the
CZ itself, coefficients on which appear in the first column, and for a gravity-based version of import exposure in other
CZs, coefficients on which appear in the second column; and control variables include initial-period CZ employment
composition (share of employment in manufacturing, routine-task-intensive occupations, and offshorable occupations,
as well as employment share among women), initial-period CZ demographic conditions (shares of the college educated,
the foreign born, non-whites, and those ages 0-17, 18-39, and 40-64 in the population), and Census region dummies.
Regressions are weighted by the CZ working-age population in 2000; standard errors are clustered by state.
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A.5.4 Personal Income and Government Transfers

In Figure A8, we explore the impact of trade shocks on government transfers by program type. To

easily compare impact magnitudes across programs, we express them in terms of dollars per capita

(rather than in logs). Two results stand out. First, consistent with results in Autor et al. (2013a)

for earlier time periods, adjustments in Social Security and Medicare benefits, shown in Figure A8b,

account for most of the responsiveness in government transfers induced by greater import com-

petition, where the magnitude of these benefit gains expands as the time horizon lengthens. For

the 2000 to 2019 time difference, the impact coefficient for Social Security and Medicare benefits

per capita of $201 (t-value = 2.46) is 78.2% (= 191/257) of that for total transfers per capita of

$257 (t-value = 2.07), shown in Figure A8a. Social Security payments include retirement benefits,

from the Social Security Administration pension system, and disability benefits, from Social Secu-

rity Disability Insurance. To receive these benefits, an individual must have left the labor force,

either through retirement or by being declared medically unable to hold a job. The primary means

through which government transfers replace labor income lost due to import competition is thus by

accommodating an exit from paid work. The fact that the preponderance of transfer benefit pay-

ments accrue to non-workers may help account for the long-run negative effects of trade exposure

on employment-population ratios see in Figure 5.

A second notable finding is that, despite trade-induced lower incomes, means-tested government

programs meant to provide income assistance to poor households are largely unresponsive to greater

import competition. We see this in the null or negative and insignificant responses of Medicaid and

government income assistance to trade exposure in Figures A8c and A8d.
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Figure A8: Trade Shock Impact on Government Transfers per Capita by Program Type

(a) Government transfers per capita (b) SSA, SSDI, Medicare payments per capita
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(c) Medicaid benefits per capita (d) Income assistance per capita
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Note: Panels (a)-(d) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these estimates.
The dependent variable is the change in the indicated value per capita between 2000 and the year indicated on the
horizontal axis; the trade shock is the decadalized 2000-2012 change in CZ import exposure, as defined in (1) and
instrumented by (3); and control variables are the same as in Figure 5. Regressions are weighted by the CZ population
in 2000; standard errors are clustered by state.
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A.5.5 Heterogeneity in Impacts

Figure A9: Heterogeneity in Trade Shock Impacts by Initial College Educated Population: Addi-
tional Results

(a) Non-manuf. employment/Working-age pop. (b) Log non-manuf. employment
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Note: Panels (a)and (b) report 2SLS coefficient estimates for β1h in (2) and 95% confidence intervals for these
estimates. Coefficient estimates whose differences have a minimal Benjamini-Hochberg q-value of less than 0.05 are
shown with solid markers (with hollow markers for other estimates). Estimates are reported for two samples: the 386
CZs whose share of the college educated in the working-age population was below the population-weighted national
median in 2000, and the complementary the set of 336 CZs. The dependent variable is the change in the indicated
measure between 2001 and and the year on the horizontal axis; the trade shock is the decadalized 2000-2012 change in
CZ import exposure as defined in (1) and instrumented by (3); control variables include initial-period CZ employment
composition (share of employment in manufacturing, routine-task-intensive occupations, and offshorable occupations,
as well as employment share among women), initial-period CZ demographic conditions (shares of the college educated,
the foreign born, non-whites, and those ages 0-17, 18-39, and 40-64 in the population), and Census region dummies.
Regressions are weighted by the CZ working-age population in 2000.

A.6 Welfare Analysis of the China Trade Shock

A.6.1 Impacts of Import Competition on Housing Values

Quantitative assessments of the China trade shock consider changes in prices of traded goods, and

abstract away from non-traded goods, the most important of which is housing services. Feler and

Senses (2017) document that median contract rents fell by more in commuting zones more exposed

to trade with China. Using data for 1990 to 2007, they estimate that a one-standard deviation

difference in trade shocks between two CZs over 2000 to 2007 would imply a 4.96 percentage point

differential change in contract rents (on a decadalized basis). (This calculation uses the coefficient

estimate in Feler and Senses (2017) Table 5 of −2.47 and multiplies it by the standard deviation of

the 2000-2007 China trade shock (−2.01).) Using this estimate, each 1.0 percentage point increase
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in import penetration over 2000 2012 (on a decadalized basis) implies a 2.78 (= 4.96/ [1.00/0.56])

percentage-point decrease in contract rents (0.56 is the standard deviation of the 2000-2012 trade

shock in Table 1). If we (unrealistically) treat all CZ residents as renters and use a share of housing

in the consumer price index of 32.8% (Moretti, 2013), then each 1.0 percentage point increase in

the trade shock would reduce the Consumer Price Index by 0.91 (= 2.78× 0.33) percentage points

over a decade. Because many residents of trade-exposed CZs are homeowners rather than renters,

this estimate may substantially overstate how trade exposure affects the cost of living through the

price of housing. See Notowidigdo (2020) on how negative impacts of adverse labor demand shocks

on housing prices can reduce incentives for out-migration.

A.6.2 Other Quantitative Analyses of the China Trade Shock

Kim and Vogel (2020), in a related general equilibrium assessment of trade with China, allow for

search and matching frictions in the labor market, which generate unemployment; distinct from the

other approaches, they allow for amenities in employment, such that non-employed workers suffer

an additional non-pecuniary loss. Applying their framework empirically and quantitatively, they

find that trade exposure causes substantial variation in changes in welfare across commuting zones:

the CZ at the 90th percentile of exposure has a change in welfare that is 3.1 percentage points lower

than in a CZ at the 10th percentile of exposure. Because they measure trade exposure using U.S.

tariffs (the threat of which was greatly diminished by China’s entry into the WTO), as in Pierce and

Schott (2016), and not using import penetration, as in Autor et al. (2014), it is difficult to translate

the dispersion in income effects that they find with our analysis.
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