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1 Introduction

Economic development’s various impacts on the environment – such as land use changes,

natural resource extraction, and pollution – are widely seen as key drivers of ecological

degradation and biodiversity loss, but empirical research on the economic roots of biodiversity

trends is rare (Frank and Schlenker, 2016).1 Little causal evidence exists on natural, first-

order questions: Does economic development harm biodiversity and, if so, to what extent?

Do conservation policies such as the creation of nature reserves protect biodiversity from the

harms that may occur from development? Do environmental regulations designed to protect

human health provide co-benefits to help conserve wildlife? In this paper, we provide some

of the first causal evidence for the link between economic production and biodiversity, as

well as the role of environmental policies.

The central obstacle that has impeded attempts to empirically study the economic de-

terminants of biodiversity is the lack of data. Generally, existing datasets on biodiversity

outcomes either provide only cross-sectional information (geographic extent of species), such

as the International Union for Conservation of Nature Red List of Threatened Species (IUCN,

2021); or longitudinal information for a single taxonomic class, as is the case for the North

American Breeding Bird Survey. These limitations hamper the data’s usefulness in estab-

lishing causal inference and in studying the effects of economic development on biodiversity

at broad scales. To the best of our knowledge, most existing evidence on the anthropogenic

drivers of biodiversity loss is either correlational in nature and, hence, might be subject to

confounding factors (Newbold et al., 2015); or is focused on a specific taxon, and so might

not reflect biodiversity across different taxa or biomes (e.g., Liang et al., 2020).

A primary innovation of this paper is that we use a novel biodiversity database known

as BioTIME that has only recently become available (Dornelas et al., 2018; Blowes et al.,

2019). BioTIME is a database of hundreds of ecological studies that maintain assemblage

time-series : academic research studies that measure the abundance (count or biomass) of

relevant species in a particular area over time, with some studies spanning several decades. In

total, BioTIME contains millions of records of species counts at the species-location (latitude

and longitude)-year level at over 10,000 different locations, across many different biomes and

types of organisms. Two key features of BioTIME make the data particularly useful for

studying the link between economic development and biodiversity. First, all the included

studies have consistent sampling protocols within the same sampling locations. This means

1Traditionally, economics has focused on the economic value of biodiversity, an approach that started
with the defining work of Weitzman (1992), and has since been advanced by many others (e.g., Metrick
and Weitzman, 1998; Weitzman, 1998; Heal, 2000; Armsworth et al., 2004; Polasky et al., 2005; Freeman III
et al., 2014; Dasgupta, 2021).
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that the year-over-year variation in biodiversity metrics at the same location reflects genuine

changes in underlying biodiversity conditions, rather than changes in sampling methods

that may be driven by economic factors. Second, BioTIME allows us to observe significant

fractions of the total number of species in different taxonomic classes, which we call taxa.

For example, we observe 80 percent of the known bird species, 40 percent of mammals, 30

percent of amphibians, and 25 percent of freshwater fish. In addition, BioTIME records

observations of thousands of unique plant species. The significant coverage of the dataset

allows us to gain a broad understanding of how economic development affects biodiversity

and ecosystems to an extent that previously was not possible.

With the longitudinal data provided by BioTIME, our analysis revolves around stan-

dard panel data methods that examine how year-over-year changes in economic output in

the United States link to biodiversity outcomes at a given location. Our focal measure of

economic output is local (state) GDP per capita. We examine three fundamental metrics

of biodiversity: species abundance, which measures the total quantity of individuals that

were observed at a given location in a given year; species richness, which measures the to-

tal number of unique species that were observed; and Jaccard similarity, which measures

the share of common species between two adjacent years of a study. In the appendix, we

report robustness checks using alternative biodiversity metrics that are commonly used in

the ecology literature, such as the Gini diversity, Shannon diversity, and Sorensen similarity

indices.

Our baseline analysis is a fixed effects model with a biodiversity metric as the outcome

variable, GDP as the regressor, and a set of location-taxon fixed effects and year fixed

effects. This exercise reveals a strong, negative correlation between economic production

and biodiversity outcomes. The ordinary least squares (OLS) estimates for the elasticity

of the different metrics are -3.6 for abundance, -1.6 for richness, and -0.1 for similarity

(more on effect size below). The adverse effects of economic development appears to be

pervasive. We find negative elasticities across multiple taxa – for amphibians, birds, fish,

freshwater plants and invertebrates, and mammals. The effects emerge in areas with different

levels of economic development: the negative elasticities are not statistically different across

areas with the lowest, middle, or highest quintiles of sample-average GDP per capita.2 The

effects exhibit significant distributional heterogeneity: at the lowest decile of biodiversity,

the negative effects of local economic production are almost twice as large as the average

effects. This finding suggests that economic development exacerbates biodiversity losses

2There is thus limited evidence within our study scope that the effect of economic production on biodiver-
sity exhibits an Environmental Kuznets Curve (Grossman and Krueger, 1995). See, for example, Harbaugh
et al. (2002) and Lin and Liscow (2013) for evidence in other settings.
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to the greatest degree in areas where biodiversity is already low. It also suggests that

biodiversity itself may increase resilience to adverse shocks to the ecosystem (Hautier et al.,

2015).

The fixed effects regression results provide evidence of a general association between bio-

diversity and economic output. We then strengthen the econometric design by honing in

on economic fluctuations that are tied to policy shocks that generate quasi-experimental

variation in GDP. We exploit two distinct quasi-experiments that are known to have oppo-

site effects on local economic output. We first consider government spending shocks that

expand the local economy. We use U.S. military buildups, which are heavily influenced by

geopolitical factors and unexpected military events, to create an exogenous source of varia-

tion in government spending. Military buildups have been widely leveraged in the empirical

macroeconomics literature to estimate the causal effect of government spending on total eco-

nomic output, i.e., the fiscal multiplier (e.g., Hall, 2009; Barro and Redlick, 2011; Ramey,

2011; Nakamura and Steinsson, 2018). We follow this literature and implement a shift-share

design that exploits systematic heterogeneity in a state’s receipt of federal military spending

(and therefore in the state’s output) in response to the national military shock (Nakamura

and Steinsson, 2014). Our second research design exploits regulatory shocks that contract

local economic production. We leverage a series of tightening of Clean Air Act environ-

mental standards across U.S. states and counties since the 1990s. These provisions imposed

sweeping emission abatement requirements on jurisdictions in violation of a set of outdoor

air quality standards. A thorough environmental economics literature has examined the pro-

ductivity, employment, and competitive effects of this policy (e.g., Becker and Henderson,

2000; Greenstone, 2002; Greenstone et al., 2012; Walker, 2013). We follow this literature and

construct regulation shocks from annual listing (and de-listing) of jurisdictions in violation

of such standards across the United States.

Using an instrumental variable (IV) approach, we show that the expansionary spending

shock leads to a deterioration of biodiversity outcomes; by contrast, the contractionary

regulation shock leads to biodiversity improvements. Though both quasi-experiments are

drawn from distinct parts of the economics literature and differ substantially in context and

scope, they nevertheless yield similar causal biodiversity-GDP elasticity estimates. Using

the military spending (regulation) design, we estimate GDP elasticities of -5.9 (-4.5) for

abundance, -3.2 (-2.8) for richness, and -0.54 (-0.52) for similarity. We also find similar

results when both instruments are used simultaneously in an over-identified IV model. These

estimates are statistically more precise than their OLS counterparts.

We are unaware of other published estimates on the biodiversity-GDP links at similar

geographic and taxonomic scales, and so it is difficult to compare our effect sizes with those
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from any prior studies. In light of the difficulty in interpreting absolute effect sizes, we

present two exercises that speak to relative effect sizes. We first consider habitat loss, which

is widely accepted as one of the primary contributors to biodiversity loss (Pimm et al., 2014;

Dı́az et al., 2019). To use this as a comparison, we focus on the second half of our study

period, when the advent of satellite technology makes it possible to take advantage of high-

resolution measures of urbanization near sampling locations. We repeat the panel fixed effects

estimation, but use urbanization as the regressor to compare against the effect size of GDP.

We find that the two effect sizes are on par with each other, suggesting the total ecological

effect measured by the GDP elasticity may be as important as other factors such as habitat

loss that are conventionally thought of as first-order determinants of biodiversity. Second, we

consider how our estimates line up with abundance changes in birds, the best known animal

groups and one of the only taxa for which comprehensive data on historical population trends

are available. Prior research has shown an alarming, 13 percent decline in North American

bird populations between 1990 and 2015 (Rosenberg et al., 2019). Combining our estimates

with GDP growth during this time span suggests that the effect of economic development

may explain virtually the entire decline of bird population.

Readers may find our evidence painting a grim picture, given our findings on pronounced

reductions in biodiversity resulting from increases in economic activity in a wealthy, low-

density country, with an economy geared primarily toward services rather than toward the

exploitation of the natural environment. Is economic development necessarily at odds with

preserving biodiversity? In the final part of the paper, we examine whether two classes

of protective policies – conservation protected areas, and regulation-induced adv ances in

abatement technologies – play a role in mitigating the adverse effect of economic production.

We find evidence that increasing the quantity of land that is protected from development

helps dampen the negative effect of economic development, though not to an enormous

extent. Our analysis finds that protecting 50 percent of the land within 50 kilometers around

a sampling location, as compared to the absence of any such protections, would only reduce

the negative effects of GDP by about 25 percent. Our results also show that the spatial

distribution of the protected areas matters: conditional on the total area under protection,

more fragmentation reduces the protected areas’ ability to mitigate the negative effects of

economic production. We also find that the negative impacts of GDP on biodiversity is muted

in states that have experienced a fast decline of industrial emission intensity (pollution per

unit of output) in the wake of the Clean Air Act Amendments of 1990. This evidence

suggests environmental policies that are nominally designed to protect human health may

provide conservation co-benefits as well. Though these results are based on cross-sectional

comparison of effect sizes rather than using as-good-as-random variation in policy, they both
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point to the possibility that economic development is not necessarily at odds with biodiversity

conservation once it is coupled with appropriate regulations.

Related Literature. The ecological and economic importance of biodiversity has been

widely studied. Higher levels of biodiversity are associated with enhanced ecosystem stability

and resilience, and can affect the physical environment such as local temperature (Tilman

et al., 1996; Cottingham et al., 2001; Missirian et al., 2019). More diverse ecosystems also

tend to have improved natural processes, such as nutrient recycling and biomass production

(Cardinale et al., 2012). Biodiversity is also associated with numerous economic benefits

(Brock and Xepapadeas, 2003). For example, restoration of biodiversity in the fisheries

sector in recent decades has been associated with substantial increases in productivity (Worm

et al., 2006); greater biodiversity in organisms such as pollinators is associated with enhanced

crop yields (Dainese et al., 2019); higher plant species diversity helps mitigate households’

income shocks from natural hazards such as droughts (Noack et al., 2019); biodiversity

has critical value for pharmaceuticals where successful drug discovery hinges on molecular

diversity (Simpson et al., 1996; Rausser and Small, 2000; Costello and Ward, 2006); nature

and biodiversity preservation also have significant non-use and non-market value (Loomis

and White, 1996; Kolstoe and Cameron, 2017).

Massive wildlife losses in recent decades highlight a pressing need to balance economic

development and conservation (Polasky et al., 2005; Frank and Schlenker, 2016; Ando and

Langpap, 2018; Dasgupta, 2021). Extinction rates are currently orders of magnitude higher

than baseline, non-anthropogenic levels (Pimm et al., 2014), and species turnover rates are

elevated as well (Dornelas et al., 2014). Our paper joins an emerging body of research

that identifies specific anthropogenic determinants of biodiversity changes; such research

has examined forest loss (Daskalova et al., 2020), temperature changes (Antão et al., 2020),

agricultural activities (Li et al., 2020; Noack et al., 2021), and industrial pollution (Liang

et al., 2020). Our work is among the first in economics and ecology to provide national-scale

estimates on the GDP-biodiversity link across several different groups of plants and animals;

this complements prior studies based on aggregated data (Dietz and Adger, 2003; Mills and

Waite, 2009; Czech et al., 2012), correlational methods (Newbold et al., 2015), or simulation

(Sumaila et al., 2019).

Our work also contributes to the literature on the costs and effectiveness of conservation

programs (Montgomery et al., 1994; Lueck and Michael, 2003; Lewis et al., 2011; Laurance

et al., 2012; Watson et al., 2014; Geldmann et al., 2019; Auffhammer et al., 2020; Ferris and

Frank, 2021). The benefits derived from these programs will rely on both the economic value

of biodiversity, and the degree to which biodiversity outcomes respond to policy making and

economic changes. Despite the large size of the conservation policy literature, there is little
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evidence that these policies decrease the negative impacts of GDP and general economic

pressures on biodiversity. We provide new evidence that protected areas mitigate negative

effects of economic pressure, and that the spatial structure of the protected areas matters

for their effectiveness.

Some qualifications of our analysis bear mention. First, because of the assemblage time-

series nature of the BioTIME data, our study scope is restricted to the species covered by the

underlying ecological studies. We are unaware of data sources that provide population-based,

longitudinal information for multiple species at similar geographic and temporal scales. Sec-

ond, a key finding of our paper is that economic development as measured by GDP harms

biodiversity. We are, however, agnostic about the precise mechanisms through which these

damages occur. That said, several pieces of evidence appear to consistently hint at an

important role of pollution. Military shocks disproportionately boost manufacturing indus-

tries, which are a highly polluting economic sector (Section 4.1). Regulations that limit

air pollution emissions reduce manufacturing activity and productivity (Sections 4.2 and 5).

Although we focus on macro-/regional-scale economic and policy changes in this paper, the

BioTIME database does include detailed geocoordinate information for each sampling loca-

tion, making it a suitable source to study the determinants of biodiversity in more granular

way and in specific contexts. We hope our analysis fosters future work on the topic.

The paper is organized as follows: Section 2 describes the data. Section 3 presents the

baseline panel data estimation. Section 4 presents the instrumental variable analysis. Section

5 discusses mitigation policies. Section 6 concludes the paper.

2 Data

2.1 BioTIME Database

To help readers conceptualize the data structure, we begin with a brief description of two

example studies included in BioTIME. We also use these examples at other points in the

paper to provide conceptual references when helpful.

Example Study 1: North American Breeding Bird Survey (Birds). The North

American Breeding Bird Survey (BBS) is a long-term and large-scale monitoring program

that tracks the status and trends of North American bird populations (USGS, 2014). The

BBS follows a regular and consistent sampling (observing) protocol. Skilled bird observers

collect observation data at the same stops along the roadside survey routes during the avian

breeding season every year (June for the most part of the United States). Each survey route
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is approximately 24.5 miles long, with stops situated about a half mile apart. At each stop, a

three-minute point count is conducted. During the count, observers record every bird heard

or seen within a 0.25-mile radius. Surveys start one and a half hours before local sunrise

and take about five hours to complete. Over 4,100 survey routes are located across the

continental United States and Canada (Figure A.1). BBS is perhaps the most widely used

data source in the study of birds; as of this writing, it has been used in over 450 scientific

publications, including Rosenberg et al. (2019), which is the major publication we use as a

benchmark for bird population trends (Section 4.4). �

Example Study 2: Sevilleta Long-Term Ecological Research (Mammals). Sev-

eral studies included in BioTIME are conducted under the Sevilleta Long-Term Ecological

Research (LTER) Program at the Sevilleta National Wildlife Refuge in central New Mexico

(Figure A.2). The habitats, about 100,000 hectares in size, represent five regional biomes

that extend through much of the central and western United States and northern Mexico.

One example study in the program is its small mammals census, conducted from 1989 to

2008 (Friggens, 2008). In this study, permanent trapping stations were used to collect ob-

servational data about small mammals which were collected two to three times yearly across

different seasons in multiple habitats within the refuge. During the sampling period, trapping

webs, each consisting of 120 permanently marked trapping stations, were deployed for three

consecutive nights. Sherman live traps (boxes that capture the animal without harming it)

were placed at each station, with four traps placed at the center of the web. Upon capture,

each individual is marked either permanently with tags or temporarily with Sharpies. There

are 16,657 records for 27 distinct species covered in the study. The most commonly observed

species is Dipodomys merriami (Merriam’s kangaroo rat). �

BioTIME has a number of features making it useful for causal analysis. First, the studies

included in the dataset all maintained consistent sampling protocols over time, ensuring that

within-study variation in outcomes does not stem from changes in how species are detected

by the researchers (e.g., sighting versus trapping). Second, each study included in the panel

dataset has at least two years of sampling, and some studies span multiple decades. This

allows us to exploit within-study variation, and to control for any differences across studies

in sampling protocols with location fixed effects. Third, the dataset contains information

on about 40,000 unique species or genus at over 15,000 sampling locations, spanning a wide

range of biomes and ecosystems. While such coverage is by no means “comprehensive”

compared to the overall ecosystem (we observe 80 percent of the known bird species, 40

percent of mammals, 30 percent of amphibians, 25 percent of freshwater fish, among smaller

coverage for other taxa), we believe the data let us gain by far the best understanding of
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which kinds of organisms and biomes are affected by economic production.

We make several sample restrictions. First, we focus on years after 1960 to line up

with our economic data. Second, we include only studies from terrestrial or freshwater

ecosystems, and exclude marine ecosystem studies, which often take place tens or hundreds

of miles offshore and, thus, are difficult to link to measures of economic development. Third,

we aggregate the raw species sampling observations to the taxon-location-year level. The

included taxa are birds, fish, mammals, terrestrial invertebrates, freshwater invertebrates,

terrestrial plants, and freshwater plants.3 Fourth, we use only studies that report species

abundance (i.e., counts of individuals), and exclude studies that only report total species

biomass or species presence so that we have a unified measure of abundance. Last, we focus

on studies in the United States. The United States accounts for about three-quarters of

the total observations in the dataset; the next largest contributor, New Zealand, accounts

for about 10 percent. Focusing on the United States also allows us to implement several

well-understood quasi-experiments in the causal analysis. These sample restrictions give us

a maximum of 66,418 taxon-location-year observations.

2.2 Measures of Biodiversity

Biodiversity is a multi-faceted concept. In this paper, we focus on three intuitive and impor-

tant metrics: abundance, species richness, and the Jaccard similarity index. In the appendix,

we report findings using other common measures of biodiversity.

Abundance is the total number of individuals observed at a given location in a given year.

Abundance simply measures the pure quantity of individuals observed and is agnostic about

the types of species in the sample.

Species richness is the total number of unique species present at a given location in a given

year. This metric is agnostic about the composition of species or how the composition of

species has changed. For example, if there is an equal loss of native species and introduction

of invasive species, species richness will not change despite changes in the composition of the

ecosystem.

Jaccard similarity is an inverse measure of the amount of year-to-year species turnover

at a given location; thus, it provides a measure of compositional changes. Let Sct be the set

of species at some time t and location c, and let n(·) denote the cardinality of a set. The

3BioTIME also includes 30 reptiles observations at one location, and one observation at a second location.
The sparsity of the reptile data makes it impossible to credibly estimate the GDP effect for the taxon, and
we therefore drop these observations from our estimation sample.
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Jaccard similarity index is given by:

Jct =
n(Sct+1 ∩ Sct)

n(Sct+1 ∪ Sct)
,

the number of species present at location c in both times t and t+ 1 relative to the number

of species present in either of the two times. The index is bounded between zero and one

with lower values indicating some combination of loss of species, or the introduction of new

species between times t and t+ 1. In the limiting case where Jct = 0, there are no common

species in times t and t+ 1 (but there still may be observed species at the location); on the

other hand, a similarity index value of one indicates that the exact same set of species is

present in times t and t+ 1 and there is no species turnover.

While our paper focuses on these three metrics, in the appendix, we show that the results

are robust to alternative measures of biodiversity. For example, we repeated our analysis

using a Gini diversity index (essentially a Herfindahl–Hirschman Index) and a Shannon

diversity index (analogous to relative entropy), which account for relative abundances of

different species, rather than indicating only whether a particular species was recorded. We

also present results using a Sorensen index, a commonly used similarity index that is closely

related to a Jaccard index but with a different formulaic specification.

We note three points here before proceeding to our summary statistics: First, we use log

abundance and log species richness as our metrics. This allows us to interpret our coefficients

as elasticities. We do not take a logarithm of the Jaccard similarity index since it is already

a ratio. Second, for succinctness, from here on we refer to all three metrics together as

biodiversity measures, although they are three distinct concepts. When referring to them

individually, we make clear whether we are referring specifically to abundance, richness,

or similarity. Third, we interpret declines in the three measures as worsening biodiversity

outcomes; our reasoning is that declines in these measures indicate reductions in populations

and/or changes in composition.

Summary Statistics. Table 1 reports summary statistics calculated based on taxon-

location-year observations. Column 1 reports number of observations, which shows that

roughly 80 percent of our observations are birds. To make sure that our results are not

driven by a single taxon, we report two sets of results for our analyses: one uses the full

estimation sample including all species, and the other uses a subsample that excludes birds.

Column 2 shows the mean and the standard deviation of abundance by taxa. The large

differences in abundance across taxa partly reflect differences in study scope as well as

sampling methods. For example, consider the North Temperate Lakes Long-Term Ecological
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Research Program, a study that falls in the taxon category of “freshwater invertebrates.”

The study samples zooplankton at the deepest location of lakes in Madison, Wisconsin,

by pulling a conical net vertically through the water column, generating large abundance

counts. By contrast, most studies on mammals use Sherman traps, which capture individual

animals one at a time. For example, the small mammals study included in the Sevilleta

Long-Term Ecological Research in central New Mexico (Section 2.1) reports only 27 unique

species despite its 20-year time span. As previously noted, in all regression specifications we

include taxon-by-location fixed effects to ensure the identifying variation comes from year-

to-year changes in biodiversity outcomes and economic conditions, holding study protocols

constant.

Columns 3 and 4 show the statistics for species richness and Jaccard similarity. Fresh-

water plants have the highest species richness, and mammals have the lowest richness. The

average Jaccard similarity index is 0.425 among all species, indicating that around half of

the species at a sampling location are observed in the next year of the study. The highest

species turnover (or the lowest similarity) takes place among mammals; the lowest species

turnover occurs among amphibians.
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Table 1: Summary Statistics

(1) (2) (3) (4)

Observations Abundance Richness Similarity

All species 66,418 39,132 15.44 0.425

[1,203,156] [19.62] [0.269]

Amphibians 45 2,563 7.267 0.943

[2,557] [2.526] [0.099]

Birds 51,695 216.8 18.43 0.419

[1,967] [20.5] [0.252]

Fish 804 1,405 16.07 0.702

[6,330] [8.501] [0.128]

Freshwater invertebrates 445 5,566,008 24.32 0.715

[13,599,038] [15.43] [0.144]

Freshwater plants 39 2,747,857 83.87 0.470

[1,193,869] [11.56] [0.045]

Mammals 5,658 21.18 1.91 0.316

[174.2] [1.958] [0.339]

Terrestrial invertebrates 6,071 53.32 3.912 0.446

[520.2] [11.12] [0.239]

Terrestrial plants 1,661 1,281 6.515 0.651

[8,296] [11.81] [0.317]

Notes: Column 1 reports total number of observations in the estimation data that correspond to different taxa. For

biodiversity outcomes (columns 2-4), numbers show the means, and standard deviations are in brackets.

Figures 1 and 2 further break down the summary statistics. Figure 1 shows, by taxa

groups, the spatial distribution of sampling locations (upper panel), total number of sam-

pling locations (lower-left panel), and number of taxon-location-year observations (lower-

right panel). In practice, depending on the geographic scope of the study, many sampling

locations may be close to each other but they may follow different sampling protocols; an ex-

ample is given in the SLTER mammal study of Appendix Figure A.2. This explains why there

appear to be many sampling locations but limited overall geographic coverage, especially for

non-bird species. Because distinct sampling locations in the BioTIME data represent dif-

ferent study protocols, in our primary analysis we treat them as separate, cross-sectional

units even if they are very close to each other. However, to address potential concern on

spatial correlation, in Appendix Table A.1, we report the results from a series of robustness

checks in which we “aggregate” the biodiversity outcomes using a spatial-binning approach.

This exercise aggregates out spatial correlation at the cost of increased measurement errors

that occur when samples collected using different protocols are simply “added up”. We find
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that the results hold up qualitatively at various aggregation levels (3-km, 10-km, and 16-km

hexagons) with the point estimates attenuate with coarser aggregation.

Figure 1: Sampling Locations and Observations

Notes: Upper panel plots sampling locations that are included in our main estimation sample. Location

points are distinguished by taxa and are aggregated to a 95-by-95 km hexagon resolution to increase

readability. Lower left panel reports number of sampling locations. Lower right panel reports total number

of location-taxon observations in each year.

Figure 2 further summarizes annual changes in abundance, species richness, and Jac-

card similarity. The scatterplot shows that changes in abundance and species richness are

positively correlated; by contrast, their correlations with the change in the composition of

species represented by the Jaccard similarity index can be of either sign.

12



Figure 2: Year-Over-Year Variation in Species Abundance, Richness, and Jaccard Similarity

Notes: All panels plot the coefficient estimates of our biodiversity metrics on a linear year time trend. The

black point in the left panel is the location mean change in species richness and abundance. The right

panels plot the marginal distributions of the time trend estimates for all three metrics.

2.3 Economic Data

Here we briefly describe the economic data. All data sources we use are in public domain.

Economic Output. We measure local changes in economic production using annual

state level per capita GDP from the Bureau of Economic Analysis from 1966 to 2015. We

use state-level output measures throughout the paper to capture overall economic changes in

the area, so that our estimates do not reflect small-scale spatial displacement, for example,

when individual animals move to a nearby location to avoid a rapid deterioration of the local

environment. The state level measure also allows us to match geographic resolution of some

key variables in the causal inference, such as the instrumental variable on state military

contracting spending.

Military Spending. State level annual military spending and federal prime contracting

data are from Nakamura and Steinsson (2014). The military spending data, sourced from the

U.S. Department of Defense from 1966 to 2006, contain all types of military purchases such
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as purchase of aircraft and repairs of military facilities.4 The federal prime contracting data

identify locations where the majority of work was performed, so that one can attribute the

economic production associated with the procurement to the states. The national average

military spending accounts for around 3 percent of GDP; this share varies widely across

states, from 10 percent in Virginia to 1 percent in Oregon.

Clean Air Act Nonattainment Designation. Annual designation of attainment and

nonattainment areas are sourced from the U.S. Environmental Protection Agency (EPA)

Greenbook for years 1992 to 2015. The data contain designation information for six criteria

pollutants: PM2.5, PM10, O3, SO2, CO, and Pb. For a given pollutant, there may be multiple

versions of standards that differ, for example, by the target metric (average or maximum

concentration) or the year of initial promulgation (most pollution standards tighten over

time). There are in total 12 standards during our study period. A jurisdiction (mostly

county) can be in nonattainment with multiple standards in a given year. Appendix Figure

A.3 plots the location of nonattainment areas as of year 2019.5

Land Cover. We measure urbanization between 2001 and 2015 using satellite data on

land cover type from the Moderate Resolution Imaging Spectroradiometer (MODIS) platform

maintained by the U.S. National Aeronautics and Space Administration (NASA). We use

the yearly Land Cover Type product (product ID: MCD12C1), which classifies land cover

into 17 types, such as urban and rainforest, at a spatial resolution of 0.05 degrees (about

5,600 meters). Our urbanization measure is the share of urban land within a 50-km radius

of the BioTIME sampling site.6

Conservation Protected Areas. Spatial data on protected area are obtained from

the World Database on Protected Areas (WDPA). The data are in the form of a shapefile

that outlines the location of over 250,000 marine and terrestrial protected areas and the

year that protective measures were put in place for each area. To capture conservation

efforts in the vicinity of the sampling sites, we compute the share of land within a 50-km

4These data are based on Department of Defense DD-350 military procurement forms that document all
types of military purchases greater than a certain amount. In total, the data cover 90 percent of all military
purchases in the United States.

5Each year, a jurisdiction’s past three-year air quality metrics are calculated using data from in situ
outdoor air pollution monitors within its administrative border. The calculated metrics, known as the “design
values”, are then compared with the national air quality standards. Nonattainment status is triggered when
a design value exceeds the corresponding standard. Most designations occur at the county level, although
nonattainment status can occasionally be assigned at a sub-county level or at a broader metropolitan-area
level.

6The MODIS land-cover-type product is based on an ensemble-supervised classification algorithm (Friedl
et al., 2010). The key inputs to the algorithm include satellite-based measurements of surface reflectance
and surface temperature. The training data contain over 1,800 manually labeled sites (mostly obtained from
Landsat satellite imagery) around the world.
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radius of the sampling site that is under protection in each year. We also calculate the

number of discontiguous protected areas within this radius to measure fragmentation of the

conservation effort.

Technology Improvements. We measure state level improvements in abatement tech-

nologies using changes in emission intensity, i.e., industrial pollution emissions per unit of

state GDP. We use data on air pollution emissions from the U.S. Environmental Protec-

tion Agency’s Air Pollutant Emissions Trends Data, which contain state-by-year level total

emissions of various criteria air pollutants and their precursors.7

3 Panel Estimates

3.1 Methods

We begin with a panel fixed effects regression model to estimate the within-location correla-

tion between biodiversity outcomes and economic output. The workhorse regression equation

is

Ycjt = β · logGDPcjt + ηcj + ηt + εcjt (1)

Ycjt is one of the three biodiversity metrics at sampling location c for taxon j in year t. For

example, this may be the logged total number of birds observed at a particular sampling

location in a given year. The regressor of interest is logGDPcjt, which is the logged per

capita real output. ηcj are location-by-taxa fixed effects; these are the key panel fixed effects

that ensure the identification is based on year-over-year changes in biodiversity and economic

development for the same sampling location and within species in the same taxa. ηt denotes

year fixed effects. εcjt is the error term. We cluster standard errors at the state level. The key

parameter of interest is β, which measures the elasticity between GDP and our biodiversity

metric of interest.

It is worth clarifying the unit of observation used in our panel estimation. The key

geographic unit is a sampling location c. There may be multiple such locations in a given

ecological study. The North American Breeding Bird Survey (Section 2.1, example study

1), for example, covers over 4,000 bird-observing “routes” that the researchers revisit every

year;in BioTIME, each route is a sampling location identified uniquely by the route’s centroid

7These pollutants include CO, NH3, NOx, PM2.5, PM10, SO2, and VOC. The Air Pollutant Emissions
Trends Data are aggregated from the National Emissions Inventory (NEI) database, which includes plant-
level emissions information for plants in major (“Tier-1”) sectors: biogenics, chemical and allied product
manufacturing, fuel combustion sources, highway vehicles, metals processing, petroleum industries, solvent
utilization, waste disposal and recycling, among other industries.
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latitude and longitude. Some studies sample across multiple taxa at the same location, such

as the Sevilleta Long-Term Ecological Research (LTER) Program (Section 2.1, example study

2), thus the cj subscripts. A key advantage of BioTIME data is that the study inclusion

criteria ensure there are consistent study protocols used within each study conducted at the

same sampling location. This means the year-over-year variation in biodiversity outcomes

within the same location-taxon reflects genuine changes in underlying biodiversity measures,

rather than changes in sampling methods. This feature of the data is important for our

empirical estimation because, conditional on location fixed effects, it frees us from controlling

for any changes in sampling practices that might be influenced by economic conditions across

time.

Finally, the length of a study identified by a location-taxon depends on changes in sam-

pling protocols and the overall study duration. If the sampling methodology changed during

the course of the study, a new study ID is assigned. Our final estimation data are thus

an unbalanced, annual panel of sampling locations by taxon. One potential concern with

such panel structure is whether economic conditions may influence selections of biodiversity

sampling in the first place. For example, one may conjecture that ecological studies are more

likely to be conducted (interrupted) in years with good (bad) GDP due to funding availabil-

ity. The impact of this type of selection on our estimates is largely ambiguous and depends

on the non-linearity of the impact of GDP.8 Alternatively, one might worry that a large

economic boost in an area may distress the local environment so much so that the scientists

give up the sampling location altogether; in this case, the sampling selection would cause us

to understate the negative impact of GDP as the worst consequences are not observed.

These said, empirically, we do not find compelling evidence indicating that sampling

activities respond to year-over-year changes in economic conditions. In fact, a majority,

62.7% of study locations in our estimation sample report biodiversity measures continuously

throughout the study span (defined as the period in-between the first and the last sampling

year); among the non-continuous locations, biodiversity metrics are available on average

63.2% of the time. In Appendix Table A.2, we further present various “zero-stage” regressions

where we test if economic conditions influence sampling in any significant ways. First, in the

cross section of study locations, we test if the average GDP growth rate at the location can

predict the study span. Columns 1 shows the correlation is small: the point estimate suggests

that each percentage point increase in the average GDP growth (or about 50 percent increase

relative to the mean rate) at the study location is associated with 1.3 percent in the study

8In principle, oversampling (undersampling) periods of high (low) GDP would only bias the average
estimate when the “dosage” effect of GDP is nonlinear, i.e., the marginal effects of GDP differ at high vs.
low levels. Figure 3, panel A shows some evidence that the effect of GDP is roughly linear for all three
biodiversity outcomes.
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duration; the coefficient estimate is statistically insignificant. Second, using the panel fixed

effects regression framework outlined in equation 1, we test if year-over-year changes in GDP

(as well as lagged GDP) can predict when a study starts sampling (columns 2 and 3), ends

sampling (columns 4 and 5), and misses samplings (columns 6 and 7). We find no statistical

evidence across the board that economic conditions can predict sampling activities.

3.2 Results

Figure 3, panel A reports the estimation results from equation (1). The three columns

correspond to species abundance, species richness, and Jaccard similarity. We residualize

the biodiversity metrics and log GDP with the fixed effects controls, and then plot one

against the other using a decile binscatter. The slope of the fitted line thus represents the

OLS estimate β̂ of equation (1). Our results indicate negative, statistically significant, and

roughly linear effects of GDP on both abundance (estimated elasticity = -3.580, SE = 1.353)

and richness (estimated elasticity = -1.631, SE = 0.685). The effect of GDP on similarity is

negative but imprecisely estimated (estimated elasticity = -0.104, SE = 0.157). A reduction

in similarity implies that there are fewer species of the same type in a sampling location

compared to the previous year, due to either a loss of species or newly introduced species.

Panel B of Figure 3 shows elasticity estimates separately by taxon, where from left to

right we report effects for amphibians, birds, fish, freshwater invertebrates, freshwater plants,

mammals, terrestrial invertebrates, and terrestrial plants. We find that the negative associ-

ations with GDP emerge not only for birds (which comprise of 80 percent of our estimation

sample), but for most of the taxon groups. Among amphibians and mammals, significantly

negative effects of GDP are detected for all three biodiversity metrics. In following analysis,

we report both full-sample results, and a sub-sample version that excludes birds.

Panel C of Figure 3 shows elasticity estimates by quintiles of the sampling area’s average

(1966-2015) GDP per capita. We find that the GDP-biodiversity elasticities do not vary

substantially across overall levels of GDP. Thus, there is thus limited evidence within our

study scope that the GDP-biodiversity elasticity follows an environmental Kuznets relation-

ship (Grossman and Krueger, 1995; Andreoni and Levinson, 2001; Harbaugh et al., 2002);

rather, the negative effects of GDP persist across different levels of economic development.

Of course, a caveat here is that the range of average GDP per capita levels we examine is

high because we focus on the United States.

Panel D of Figure 3 investigates distributional heterogeneity, showing results from quan-

tile regressions. We consider a fixed-effects-residualized version of equation (1), estimating

regression quantiles using a residualized biodiversity metric as the outcome, and the resid-
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Figure 3: The Biodiversity - GDP Relationship
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Panel C. By sample-average GDP per capita
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Panel D. By regression quantiles
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Notes: Panel A plots decile binscatter of bodiversity and log GDP, both residualized with location-by-taxa
and year fixed effects. The slope of the fitted line represents the OLS estimate β̂ of equation (1). Numbers
in parentheses show standard errors clustered at the state level. Panel B/C/D reports heterogeneous OLS
estimates by taxa/sample-average GDP per capita/regression quantiles. See text for more details.
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ualized log GDP per capita as the explanatory variable. For each outcome, the horizontal

line represents the average effect (i.e., the slope of the fitted line in panel A of Figure 3).

For all three biodiversity outcomes, we find evidence that effects are negative or zero at all

quantiles, and we find heterogeneity in the size of the effect; the negative effects of GDP

are the largest at the lowest quantiles of the distributions of the biodiversity metrics. This

pattern suggests that economic development exacerbates biodiversity losses in areas where

biodiversity is already constrained. The heterogeneous effects also suggest biodiversity may

increase resilience to adverse shocks to the ecosystem.

Overall, Figure 3 suggests a strong, negative, and pervasive relationship between biodi-

versity and GDP in a standard panel data setting. We report two extensions of the panel

estimation in the Appendix. Appendix Table A.3 presents a dynamic specification where we

include a lead and a lag term of GDP in addition to current year’s GDP. We find limited evi-

dence on a lagged effect of GDP; the “placebo”, lead coefficients are statistically insignificant

and in general an order of magnitude smaller than the main GDP effect size. Appendix Table

A.4 presents an extension of the panel estimation results, replacing the GDP term with nine

regressors representing (logged) industry income as measured by two-digit North American

Industry Classification System (NAICS) code-levels. While the industry-specific estimates

tend to be imprecise, negative correlations generally are observed for manufacturing, mining,

retail, and transportation sectors. This evidence appears to hint at an important role played

by industries with heavy environmental externalities. We explore related hypotheses in the

next two sections.

4 Instrumental Variable Estimates

The panel data estimation approach reveals a general association between biodiversity and

economic output, but it is subject to endogeneity concerns. One might worry that unob-

served factors, such as local extreme weather, may correlate with both GDP and biodiversity

(omitted variables); that noisily measured GDP and/or biodiversity outcomes may atten-

uate the elasticity estimates (measurement error); and that biodiversity may itself cause

changes in economic output (reverse causality). In this section, we analyze how biodiver-

sity outcomes respond to plausibly exogenous shocks to economic output that are tied to

policy changes. We then leverage these quasi-experimental research designs to derive causal

GDP-biodiversity elasticity estimates using the instrumental variable (IV) approach.
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4.1 Research Design I: Economic Stimulus

Our first research design leverages positive shocks to state GDP through changes in national

military buildups. This strategy has been widely leveraged in the empirical macroeconomics

literature to estimate the fiscal multiplier, i.e., the effect of government spending on economic

output (e.g., Hall, 2009; Barro and Redlick, 2011; Ramey, 2011; Nakamura and Steinsson,

2014, 2018). Here, we go a step further and ask how exogenous changes in economic output

affect biodiversity outcomes.

Several features of military spending in the United States make it an attractive instru-

ment for economic production in our setting. First, national military buildups are well

known to be driven by geopolitical events such as the Vietnam War and Soviet invasion

of Afghanistan; thus, the timing and magnitude of these events are plausibly exogenous to

biodiversity changes in the United States. Second, because industries that produce mili-

tary equipment are unevenly distributed across the country, national changes in military

buildups leads to greater military spending in some states than in others. Figure 4, adapted

from Nakamura and Steinsson (2014), plots state’s military contract spending as a share of

its GDP. Such variation helps us tease out regional changes in economic output that are at-

tributable to national military spending shocks. Finally, military spending, such as repairs of

military facilities, strongly influence construction and manufacturing outputs; these sectors

are associated with substantial environmental externalities, and may conceivably influence

biodiversity outcomes.

Nakamura and Steinsson (2014) use the cross-state variation associated with military

buildups to estimate the effect of government spending on economic output. We adapt this

approach as essentially our first stage in a two-stage least squares (2SLS) framework. We

construct an instrumental variable that is the interaction between national military spending

and states’ historical average spending as a share of GDP. This shift-share instrument is then

used to tease out the causal effect of GDP on biodiversity. The first-stage regression is

logGDPcjt = θ ·
(
MS

GDP

)
state,1966−1971

×MSt + ηcj + ηt + εcjt (2)

The excluded instrument is the variable
(

MS
GDP

)
state,1966−1971

×MSt, which is the initial

(1966-1971 average) military contract spending (MS) a state receives as a share of GDP,

interacted with annual, national per capita military spending shocks (MSt).
9 As shown in

9The preferred IV design of Nakamura and Steinsson (2014) was an overidentified specification using
national military spending MSt interacted with state-specific dummies as the instrumental variables; the
shift-share IV as in equation (2) was one of the robustness specifications, although we prefer it in our study
context for the sake of its simplicity. We report results with alternative IV constructions in Appendix Table
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Figure 4: Military Contract Spending as a Share of State GDP
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Figure 4, although the share of military spending to GDP changed over the years, the initial

share over the 1966-1971 period still captures systematically different sensitivities of GDP

to military spending shocks across states. We use this heterogeneity in sensitivity to identify

the effect of military spending on GDP. The fixed effects variables are defined as in equation

(1).

A central identifying assumption for the IV approach is that the exclusion restriction

holds. That is, we assume that military spending shocks only affect biodiversity through

their impacts on GDP. Our identification thus relies on the fact that the shock component

of the instrument is as good as random (Borusyak et al., 2018). Here the shock component –

states’ relative differences in response to aggregate military buildups (which are themselves

largely driven by geopolitical factors) – are unlikely to be correlated with unobservable de-

terminants of local biodiversity. For example, the United States will not increase national

military spending because states that receive larger military procurement contracts have

less biodiversity. Because GDP is an overall measure of economic conditions, our IV esti-

mates pick up on multiple mechanisms underlying economic development, such as changes

in environmental pollution and land use.

Table 2 reports the IV results. We begin with panel A, which uses the full sample of

all species. The first row (“Military spending”) reports the effect of the military-spending

IV on log GDP and biodiversity metrics. Column 1 is, hence, the first-stage estimate of θ

in equation (2); it shows that an increase in the state shift-share IV increases state GDP

by 0.3 percent. Columns 2 through 4 report the reduced-form effects of the instrument

on biodiversity outcomes. We find that state military spending shocks lead to statistically

significant decreases in abundance, richness, and similarity.

The IV GDP-biodiversity elasticity estimates are therefore the ratio of the reduced-

form and the first-stage results. We find that increases in state GDP lead to large and

precisely estimated declines in all three biodiversity metrics. Panel A, columns 5 and 6

show the GDP elasticities are -4.485 for the abundance measure (SE=1.594) and -2.753 for

richness (SE=1.226). The corresponding first-stage Kleibergen-Paap F-statistics are about

7.4. Column 7 shows a coefficient of -0.535 for the similarity outcome (SE=0.183), which is

a semi-elasticity estimate as the similarity metric is a ratio rather than a logarithm.

We find similar evidence on the negative effects of GDP on abundance, richness, and

similarity for other taxa excluding birds. In panel B, we repeat the same estimation proce-

dures focusing on non-bird observations (about 20% of full sample). In this subsample of the

data, the predictive power of the IV on GDP is much stronger in the first-stage estimation

A.5.
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Table 2: Military Spending Shocks and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6) (7)
First stage Reduced form IV

GDP Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Military spending 0.299*** -1.341** -0.823** -0.164*** - - -
(0.110) (0.567) (0.354) (0.060) - - -

GDP - - - - -4.485*** -2.753** -0.535***
- - - - (1.594) (1.226) (0.183)

Kleibergen-Paap F-stat. - - - - 7.430 7.430 7.071
Observations 57,714 57,714 57,714 44,479 57,714 57,714 44,479

Panel B. Non-bird species

Military spending 0.528*** -3.286*** -1.685*** -0.360*** - - -
(0.087) (1.075) (0.624) (0.057) - - -

GDP - - - - -6.225*** -3.193*** -0.638***
- - - - (1.167) (0.732) (0.149)

Kleibergen-Paap F-stat. - - - - 37.05 37.05 34.46
Observations 11,861 11,861 11,861 10,335 11,861 11,861 10,335

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for Similarity which is a ratio
(columns 4 and 7). All outcome variables are multiplied by 100. Military spending shock is national per capita procurement
interacted with state’s 1966-1971 average military-GDP ratio. Columns 5 through 6 report IV estimates on the effect of GDP
on biodiversity outcomes, using military spending shocks as the instrumental variable. Panel A reports full sample estimation.
Panel B excludes observations that correspond to bird species. All regressions include location-by-taxa and year fixed effects.
Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

(Kleibergen-Paap F-statistic = 37). This is largely because the non-bird sampling locations

are in states with higher military spending, and are thus more responsive to changes in na-

tional military buildups. In addition, as shown in Figure 1, non-bird observations are more

evenly distributed across the entire study period, allowing us to better exploit temporal

variation in economic changes. Panel B shows that we obtain similar IV elasticity estimates

for the non-bird subsample.

Table A.5 reports a series of robustness checks on the IV estimation. In Panel A, we

change the baseline period of the shift-share IV construction from an initial-period average

(1966-1971) to a long-term average (1966-2006). In Panel B, we follow the primary research

design of Nakamura and Steinsson (2014) and re-construct the IV variable as the fitted value

of state spending on national spending, allowing different sensitivity for each state. In Panel

C, we control for Census Division-specific decadal time trends in addition to the location-

taxa and year fixed effects. Panel D reports the limited information maximum likelihood

(LIML) estimates, which are median-unbiased with weak instruments. Overall, the results

are stable across these specification checks.
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4.2 Research Design II: Regulations

Having shown the effects of stimulus policies that boost the local economy, we now lever-

age regulatory policies to implement a “reverse” quasi-experiment in which local economic

production experiences a negative shock. We consider the Clean Air Act (CAA), which is

one of the first and most influential pieces of environmental legislation in the United States.

The CAA regulates air quality at the state, local, and plant levels through a large number

of individual programs. Our research design focuses on a major amendment of the CAA

that was adopted in 1990, when the National Ambient Air Quality Standards (NAAQS)

established national criteria for outdoor air quality, targeting six widespread air pollutants

that harm public health.

A key component of the NAAQS program is its annual designation of compliance and

non-compliance status. Jurisdictions (mostly counties) in compliance with the air quality

standards are designated “attainment” areas, whereas those in violation with the standards

are designated “nonattainment” areas. A nonattainment determination can be made for

failing to achieve one or more of the pollutant standards (PM2.5, PM10, O3, SO2, CO, and

Pb), and/or for failing to meet one or more of the versions of the standards for a given

pollutant.10 A nonattainment status triggers substantially elevated regulatory scrutiny; the

state government is required to implement stringent regulations on the polluting industries.

Such measures may include the installment of expensive pollution abatement technologies,

and the use of emission permitting programs until air quality in the nonattainment area

meets set standards. Figure 5 shows fraction of sampling locations in the BioTIME data

that were in nonattainment areas with respect to each of the standards.11

We base our research design on two rich lines of environmental economics literature that

document the economic costs and the environmental benefits of the nonattainment regula-

tions. A nonattainment designation has been shown to reduce productivity and output, and

impose considerable compliance and fiscal costs on the local economy (e.g., Greenstone, 2002;

Greenstone et al., 2012; Walker, 2013; Blundell et al., 2020; Shapiro and Walker, 2020) while

effectively reducing air pollution (e.g. Chay and Greenstone, 2005; Sanders et al., 2020).

In a way, the NAAQS regulation research design explores a converse source of variation to

that generated by the military-spending design: while military buildups increase economic

10Versions of standards reflect different target metrics or changes in regulatory stringency over time. For
example, the 1997 PM2.5 standard specifies an annual safety level of 15 ug/m3, whereas the 2006 PM2.5

standard specifies a 24-hour safety level of 35 ug/m3; the 2008 O3 standard (a daily maximum 8-hour
concentration of 0.075 ppm) is a more stringent version of the 1997 O3 standard (0.08 ppm).

11There are usually years of lag between the times when a pollutant standard was promulgated and when
the nonattainment designation actually occurred. For example, as shown in Figure 5, the designation of
nonattainment status with respect to the 1997 PM2.5 standard did not occur until the year 2005.
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Figure 5: Share of Sampling Locations in EPA Nonattainment Jurisdictions
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Notes: This graph shows fraction of BioTIME sampling locations that were in counties designated by the
U.S. Environmental Protection Agency as in “nonattainment” with respect to various air pollutants.
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output and boost polluting industries, nonattainment regulations constrain economic pro-

duction and reduce pollution.

The first-stage regression of the IV approach is

logGDPcjt = θ ·Nonattainmentcounty(c)t + ηcj + ηt + εcjt (3)

The excluded instrument Nonattainmentcounty(c)t is the total number of nonattainment des-

ignations (across different pollutant standards) that were in place in the county of the sam-

pling location c at year t.12 Note that this estimation equation is analogous to equation

(2) except for the change of the instrumental variable. We assume that the annual listing

and de-listing of violating jurisdictions bring exogenous regulatory burdens; these shocks

are borne by polluting firms in the area, which are ultimately reflected in changes of local

GDP. The exclusion restriction of the IV estimation is that these policy-driven shocks would

influence local ecosystem diversity only through environmental and economic changes that

are captured by the overall measure of GDP.

Table 3 summarizes the results. Begin with the first row of panel A (“Nonattainment”)

which reports the effect of nonattainment status on GDP and biodiversity outcomes. Col-

umn 1 is the first-stage result corresponding to equation (3). It shows that one additional

nonattainment designation reduces local GDP by about 3.8 percent. The magnitude of this

estimate is consistent with prior evidence; for example, Greenstone et al. (2012) analyze

production data from the 1972-1993 Annual Survey of Manufactures, and conclude that

the NAAQS regulations have reduced total factor productivity (TFP) by 4.8 percent for

manufacturing plants in nonattainment areas.

Columns 5 through 7 of Panel A show the GDP elasticities are -5.932 for the abundance

measure (SE=0.624), -3.194 for richness (SE=0.268), and -0.519 for similarity (SE=0.532).

The corresponding first-stage Kleibergen-Paap F-statistics are about 7.8. In Panel B, we re-

peat the same procedure using the non-bird subsample. Once again, we find similar evidence

on the negative effects of GDP on biodiversity outcomes with a stronger first stage.13

In Table A.6, we conduct a set of robustness checks similar to those shown in Table

A.5. In Panel A, we change the IV variable from number of nonattainment designations

to an indicator variable for nonattainment of any pollutant standard. Panel B reports an

12In robustness checks, we report alternative IV constructions such as using an indicator variable for the
violation of any pollutant standard, or using multiple indicators for each pollutant standard separately.

13As we mention in Section 4.1, non-bird sampling locations tend to be in more industrialized states, which
increases their exposure to environmental regulations. In addition, we find that, compared to bird sampling
locations, a higher fraction of non-bird sampling locations are in counties that received a nonattainment
designation at some point during the study period; this further increases the predictive power of the regulation
IV.
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Table 3: Environmental Regulation Shocks and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6) (7)
First stage Reduced form IV

GDP Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Nonattainment -3.802*** 22.55*** 12.14*** 2.015 - - -
(1.358) (7.989) (4.623) (1.795) - - -

GDP - - - - -5.932*** -3.194*** -0.519
- - - - (0.624) (0.268) (0.532)

Kleibergen-Paap F-stat. - - - - 7.841 7.841 8.874
Observations 54,887 54,887 54,887 42,406 54,887 54,887 42,406

Panel B. Non-bird species

Nonattainment -5.323*** 37.29*** 19.33*** 3.711*** - - -
(0.749) (3.813) (2.524) (0.676) - - -

GDP - - - - -7.005*** -3.631*** -0.704***
- - - - (0.755) (0.250) (0.097)

Kleibergen-Paap F-stat. - - - - 50.570 50.567 49.56
Observations 13,331 13,331 13,331 12,161 13,331 13,331 12,161

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for Similarity which is a ratio
(columns 4 and 7). All outcome variables are multiplied by 100. Columns 5 through 6 report IV estimates on the effect of
GDP on biodiversity outcomes, using nonattainment status (number of pollutant standards the county was in violation of) as
the instrumental variable. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird
species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p <
0.10; **: p < 0.05; ***: p < 0.01.
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overidentified model with 12 excluded instruments, each indicating nonattainment status for

a separate pollution standard as shown in Figure 5.14 In Panel C, we control for Census

Division-by-year trends in additional to the location-taxa and year fixed effects. Panel D

reports estimates from the LIML estimator. The results are robust to the specification

changes.

4.3 Other Robustness Checks

Although the CAA nonattainment exercise uses an entirely difference source and direction

of GDP shocks compared to the quasi-experiment using military buildups, the biodiversity-

GDP elasticity estimates in Table 3 are remarkably similar to those found in Table 2. In

Appendix Table A.7 we further report the results obtained through overidentified models in

which we use military spending shocks and nonattainment regulation shocks simultaneously

as excluded instruments. We find that the results are, again, similar. This consistency

increases our confidence that the quasi-experimental estimates represent the causal influences

of economic development on biodiversity.

Throughout the paper, we use abundance, species richness, and the Jaccard similarity

index as our focal outcome variables. Here we repeat our panel OLS and IV estimations with

alternative measures of biodiversity that are also commonly used in the ecology literature.

We first consider two alternative measures to species richness. Recall from Section 2.2 that

Sct is the set of species at location c and time t. Let nsct be the abundance of species s ∈ Sct.

We define relative abundance to be rsct = nsct∑
j∈Sct njct

, the share of a particular species out of

the total number of individuals. The Gini diversity index is given by

Ginict =
1∑

s∈Sct r
2
sct

,

and the Shannon diversity index is given by

Shannonct = exp

(
−
∑
s∈Sct

rsct × log rsct

)
.

Notice that the Gini diversity index is effectively an inverse Herfindahl–Hirschman index,

whereas the Shannon diversity index is entropy. Unlike species richness, which considers

only the total number of unique species presence, both Gini and Shannon diversity measures

adjust for the relative abundance of species. If relative abundance is identical across all

14The main tradeoff with the overidentified model is potentially increasing bias from using weak instru-
ments in order to improve efficiency (Wooldridge, 2010).
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species in Sct, then species richness, Gini diversity, and Shannon diversity all yield the

same value.15 If there is heterogeneity in relative abundance across locations, then the Gini

diversity and Shannon diversity measures give a lower value than species richness.

As an alternative to the Jaccard similarity measure, we consider the commonly used

Sorensen similarity index defined by

Sct =
2× n(Sct+1 ∩ Sct)

n(Sct+1 ∪ Sct) + n(Sct+1 ∩ Sct)
.

Appendix Table A.8 repeats both the OLS estimation and the two IV research designs

with these three alternative biodiversity measures. We find that the results are largely the

same regardless of which biodiversity metric we use.

4.4 Effect Size

How economically and ecologically important are the estimated GDP-biodiversity elastici-

ties? We face several challenges interpreting the effect sizes. First, as we noted, because the

BioTIME data are assemblage time series (rather than population monitoring) in nature, the

biodiversity measures we derive from the database need not coincide with population-wide

abundance, richness, and similarity. Second, we are unaware of prior studies of the link

between biodiversity and economic development at similar scales. Therefore it is difficult

to compare our effect sizes with independent, pre-existing evidence. While interpretation of

absolute effect sizes is difficult, here we present two benchmarking exercises that speak to

relative effect sizes of GDP.

We first compare our effect sizes with those from habitat losses, which are widely accepted

as major determinants of biodiversity decline (IUCN, 2021). We find these two effect are

similar in magnitude. Our first exercise leverages the fact that, during the second half of

our study period (post 2001), high-resolution satellite observation of urbanization became

available. This allows us to examine the effect of changes in land use using the identical

panel estimation setting as outlined in equation (1). Our urbanization measure comes from

NASA’s MODIS land cover data (Section 2.3). To capture habitat losses and development

pressure, we focus on the amount of urban land near the sampling sites in the BioTIME

dataset. We construct our measure of urbanization as the (centered) share of land within 50

kilometers of a sampling site that falls under the MODIS urban classification. We replace

GDP in equation (1) with this variable to estimate the change in biodiversity outcomes due

to urbanization. We then compare these regressions with the GDP results with the exact

15For example, if there is an equal share of 2 species in Sct, then all three indices will be 2.
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Table 4: Effect Sizes: Habitat Losses versus GDP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Abundance Richness Similarity

Panel A. All species

%Urban land -1.109*** - -0.901*** -0.428** - -0.280 0.0038 - 0.007
(0.379) - (0.333) (0.166) - (0.171) (0.086) - (0.095)

GDP - -1.624*** -1.555*** - -1.128*** -1.106*** - -0.022 -0.023
- (0.403) (0.407) - (0.208) (0.214) - (0.191) (0.194)

Observations 20,721 20,721 20,721 20,721 20,721 20,721 17,944 17,944 17,944

Panel B. Non-bird species

%Urban land -3.194 - 2.522 0.212 - 3.636 -5.326** - -4.103
(17.67) - (12.09) (12.49) - (9.618) (2.078) - (2.890)

GDP - -3.453*** -3.472*** - -2.051*** -2.080*** - -0.733** -0.701**
- (0.557) (0.539) - (0.437) (0.468) - (0.283) (0.273)

Observations 6,857 6,857 6,857 6,857 6,857 6,857 6,775 6,775 6,775

Notes: Each panel-column is a separate regression. Independent variables are demeaned percent urban land within 50 km2 of
the sampling site and demeaned per capita GDP. All regressions restrict to the 2001-2015 time period when satellite-based
urban land measure is available. Outcome variables are in logs except for Similarity which is a ratio (columns 7 through 9).
All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **:
p < 0.05; ***: p < 0.01.

same specification (also using the post-2001 sample).

Table 4 summarizes the results. In the full sample estimation (Panel A), the effect of

urbanization is similar to GDP for abundance and richness. When estimated separately, the

urbanization elasticity is -1.109 (SE = 0.379) compared to a GDP elasticity of -1.624 (SE =

0.403) for abundance. For species richness, the estimated urbanization and GDP elasticities

are -0.428 (SE = 0.166) and -1.128 (SE = 0.208), respectively. For both abundance and

richness outcomes and in both separate and joint regressions, we cannot reject that the

effects of urbanization and GDP are equal in magnitude. The effects on the similarity index

are in general noisily estimated. Panel B shows that the estimates are less stable because we

lose a large share of our observations when focusing on the non-bird subsample, and when

concentrating exclusively on the period after 2001.

In a second exercise, we benchmark our abundance estimate with the decline of bird

population. Recent work using the North American Breeding Bird Survey (Section 2.2)

suggests a substantial decline in North American bird populations since the 1980s. Rosenberg

et al. (2019) estimated that birds numbered around 8 billion in 1990, but had declined by

about 1 billion by the end of 2015. To evaluate what fraction of such decline might be

attributable to economic production growth during the time period, we estimate a modified

version of equation (1) focusing on bird-related observations and with GDP per capita as

the regressor; this estimation yields an estimated coefficient of -0.167 log units (representing
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a decline in the bird population) per $10,000 increase of GDP per capita. Multiply this

coefficient by the average growth of real GDP per capita between 1990-2015 suggests a

decline of 1.04 billion birds. This implied effect on bird abundance is thus on par with the

overall bird decline, suggesting again that economic development may be considered as a

major contributor to abundance loss.

5 Protective Policies

One interpretation of our findings is that there is a trade-off between economic development

and biodiversity, so that the goal of ecosystem preservation necessarily comes at the cost

of economic slowdown. Alternatively, one could consider protective policies that mitigate

the adverse effects of economic production. In this section, we leverage existing policies to

speak to such possibility. Section 5.1 examines the standard, direct conservation approach

of biodiversity protection, in which certain areas are protected by law from industrialization,

providing ecological buffers from the influence of outside economic progress. Section 5.2

assesses the cleanup of U.S. production technologies, which have led to remarkable declines

in pollution emissions per unit of economic output since the 1990s. We ask whether such

technological advances, mainly driven by regulations intended to protect human health, have

provided conservation co-benefits as well. Both of these policy tools have been extensively

studied in their respective fields. Here we provide a first assessment of their protective roles

in the context of biodiversity conservation.

5.1 Protected Areas

Destruction of habitat is one of the primary drivers of species decline (IUCN, 2021). Since

early 1990s, adoption of conservation protected area policies has grown rapidly (Frank and

Schlenker, 2016).16 Protected areas now cover nearly 15% of the Earth’s land (with U.S.

accounting for a tenth of all protected land worldwide) and 10% of its water. Empirical as-

sessments of protected area yield mixed results due to management issues, funding, resource

exploitation, and ecological leakage to unprotected areas (Leverington et al., 2010; Laurance

et al., 2012; Watson et al., 2014; Di Marco et al., 2019; Geldmann et al., 2019).

To study the effects of protected areas, we use the standard data source from the World

Database on Protected Areas (WDPA). The WDPA is a geospatial database on over 250,000

16According to IUCN, protected areas include national parks, wilderness areas, community conserved
areas, nature reserves and so on. The areas are managed through legal or other effective means by both the
federal and local authorities.

31



Figure 6: Protected Areas

Notes: Green represents areas that were protected any time in the World Database on Protected Areas
(WDPA) sample and within 50 kilometers of a sampling location in BioTIME.
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Table 5: Protective Policy and the Biodiversity - GDP Relationship: Protected Areas

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity

Panel A. All species

GDP -3.798*** -3.410*** -1.721** -1.490*** -0.219 -0.255*
(1.341) (1.142) (0.684) (0.611) (0.147) (0.140)

GDP × %Areas protected 1.765* 2.028* 0.732 0.892 0.890*** 0.864***
(1.023) (1.158) (0.500) (0.555) (0.252) (0.237)

GDP × #Fragmented areas - -0.206* - -0.144 - 0.023
- (0.108) - (0.088) - (0.015)

Observations 54,907 54,907 54,907 54,907 42,426 42,426

Panel B. Non-bird species

GDP -6.510*** -4.229*** -3.277*** -2.339*** -0.652*** -0.754***
(0.787) (0.813) (0.261) (0.436) (0.158) (0.087)

GDP × %Areas protected 7.484 13.976** -0.263 1.805 3.217** 3.520**
(4.812) (6.080) (0.938) (1.269) (1.237) (1.286)

GDP × #Fragmented areas - -0.731* - -0.147 - -0.115
- (0.418) - (0.139) - (0.088)

Observations 13,351 13,351 13,351 13,351 12,181 12,181

Notes: Outcome variables are in logs except for Similarity which is a ratio (columns 5 and 6). “%Areas protected” is the
fraction of protected areas within a 50km radius of the sampling location. “#Fragmented areas” is the number (in 1,000s) of
discontiguous protected areas within 50km radius of the sampling location. Smaller numbers of discontiguous areas indicate
that each protected area is larger on average. All regressions include main effect terms, location-by-taxa fixed effects, and year
fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

marine and terrestrial protected areas. The database is in the form of a shapefile that outlines

the location of each protected area and the year the protected area was implemented. In

each location-year, we compute the total share of land and water within 50 km of the

BioTIME sampling location that is within at least one currently implemented protected

area. Figure 6 plots the location of these protected areas. We also compute the number

of spatially discontiguous protected areas within 50 km. After conditioning on the share

of protected land or water, this later variable helps us tease out the effect of protected

areas fragmentation holding the quantity of protected area fixed. We include this variable

following the recent conservation literature which has suggested that habitat fragmentation

has significant negative effects on biodiversity and the local ecology (Haddad et al., 2015;

Crooks et al., 2017; Newmark et al., 2017), implying that more fragmented configurations

of protected areas may be less effective than contiguous networks.

Table 5 reports how protected areas modulate the effect of GDP on biodiversity outcomes.

Columns 1, 3, and 5 use the same OLS specifications used in equation (1), but also interact

log GDP with the share of nearby protected areas. Columns 2, 4, and 6 include additional
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interaction terms between log GDP and the number of discontiguous protected areas within

50 km.17 Columns 1 and 2 show that the abundance-GDP relationship is attenuated by an

increase in the amount of nearby land that is protected. On average across all species, if the

share of protected land and water within 50 km goes from zero (no conservation areas) to 100

percent, the marginal effect of GDP halves. We estimate larger effects on non-bird species,

where halving the marginal effect of GDP only requires having 15 percent to 50 percent of

area in protection. Consistent with prior evidence on fragmentation, column 2 shows that

having a more fragmented set of protected areas has the opposite effect. Columns 3 and 4

show that protected areas have a noisy relationship with species richness, although the signs

of the effects are generally the same as for abundance. The results are overall similar for

species turnover (columns 5 and 6).

5.2 Improvements in Abatement Technologies

Our results in Section 4 point to environmental pollution as a likely mechanism underpinning

the GDP-biodiversity link. A natural question is whether advances in pollution abatement

technologies, which reduce the emission footprint of economic production, may help dampen

the adverse impacts on biodiversity. Our analysis builds on a prior literature on the re-

markable cleanup of U.S. production technology since the 1990s. Panel A of Figure 7 shows

that real output in the United States doubled between 1990 and 2019, and that, during the

same period, industrial pollution emissions fell by half. Research using detailed data from

the manufacturing sector suggests this cleanup was largely driven by technological improve-

ments. That is, the intensity of emission per unit of output declined dramatically (Levinson,

2009) as a consequence of stringent environmental regulations (Shapiro and Walker, 2018).18

Panel B of Figure 7 presents cross-state heterogeneity in emission intensity trends. We

regress state-year-pollutant level emissions on a set of pollutant fixed effects and state-specific

year trends. We define states with faster advances in abatement technologies as those with

a below-median (i.e., more downward-sloping) state-year trend coefficient.

Table 6 reports an augmented version of equation (1) that allows the GDP-biodiversity

coefficient β̂ to vary by states above and below median of pollution cleanup. We find that

the adverse effects of GDP growth on abundance and species richness are smaller in locations

17Regressions also include the main effect terms for the share of protected area (columns 1, 3, 5) and,
additionally, the number of discontinuous areas (columns 2, 4, 6).

18A number of regulatory programs administered by the U.S. Environmental Protection Agency (EPA)
have been shown to contribute to this trend. The NAAQS program we studied in Section 4.2 is one of them
that targets areas with the highest pollution levels; other programs that reduced emission intensities include
the Acid Rain Program (Barreca et al., 2017) and the NOx Budget Trading Program (Deschênes et al.,
2017).
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Figure 7: State Heterogeneity in Abatement Technology Advances

Panel A. Changes in national GDP and emissions
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Notes: Panel A shows percent changes in national annual real GDP and total air pollutants emissions
according to the National Emissions Inventory. Panel B shows percent changes in state-level annual
emissions-real GDP ratio. Each line represents a state trend which is the average across seven
pollutant-specific trends.
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with more stringent pollution cleanup; the effect on similarity is statistically inconclusive.

Table 6: Protective Policy and the Biodiversity - GDP Relationship: Emission Abatement

(1) (2) (3)

Abundance Richness Similarity

Panel A. All species

GDP × 1(<median tech. advance.) -5.065*** -2.636*** 0.029

(0.796) (0.391) (0.081)

GDP × 1(≥median tech. advance.) -0.598 0.147 -0.186

(0.649) (0.542) (0.153)

Observations 54,886 54,886 42,405

Panel B. Non-bird species

GDP × 1(<median tech. advance.) -4.069 -2.788** 0.531***

(2.370) (1.213) (0.067)

GDP × 1(≥median tech. advance.) -1.214 -1.595** -0.198

(2.521) (0.619) (0.324)

Observations 13,330 13,330 12,160

Notes: Outcome variables are in logs except for Similarity which is a ratio (column 3). To define state environmental

stringency, we first estimate an OLS regression of state-year-pollutant emissions per real GDP on state-year time trends,

pollutant-by-year fixed effects, and state fixed effects. States are then categorized into above (“1(≥median tech. advance.)”)

and below (“1(<median tech. advance.)”) the median of the time trends coefficients times -1 (i.e., more negative trends

implies higher environmental stringency). All regressions include main effect terms, location-by-taxa fixed effects, and year

fixed effects allowed to vary by above/below median states. Standard errors are clustered at the state level. *: p < 0.10; **:

p < 0.05; ***: p < 0.01.

6 Conclusion

This paper provides one of the first estimates on the causal effect of economic production on

biodiversity. Our primary innovation is the use of BioTIME, a novel database of hundreds

of ecological studies that maintain assemblage time-series, which allows us to examine the

economic production-biodiversity link in a longitudinal framework across many different tax-

onomic classes of wildlife. Using both fixed effects and instrumental variable strategies, we

find that biodiversity outcomes respond strongly to local economic changes. In particular,
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our work highlights the importance of economic policymaking on ecosystem health which, in

this paper, manifests as changes in local biodiversity as a consequence of national military

buildups and industrial pollution control legislation. The magnitude of the effect we esti-

mate rivals some well-recognized, direct determinants of biodiversity, such as habitat losses,

which suggests economic production may indeed be considered as a major determinant of

biodiversity during our study period. We also find evidence that protective policies such as

protection areas and general environmental regulations may have helped dampen the neg-

ative effect of economic production. The BioTIME database we use in this paper allowed

us to focus on well-known, macro-scale economic and policy changes, but we note that the

database includes detailed, geocoordinate information for all sampling locations and across

multiple species, attributes that make it a suitable source to study the determinants of bio-

diversity in more granular, specific contexts. We hope our analysis fosters future work on

the topic.
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A Appendix

Figure A.1: Breeding Bird Survey routes across the US and Canada

Note: This figure is from Ziolkowski Jr et al. (2010). It shows the sample collecting routes in the North American Breeding
Bird Survey (BBS), which is one of the studies in the BioTIME database. The BBS is a long-term and large-scale avian
monitoring program that tracks the status and trends of North American bird populations. Professional bird observers collect
bird population data at the same stops along the roadside survey routes during the avian breeding season every year. Over
4100 survey routes are located across the continental US and Canada.
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Figure A.2: Sevilleta Long Term Ecological Research (LTER) Program Map

Note: This figure is from the project overview for the Sevilleta Long Term Ecological Research (LTER) Program at
http://sevlter.unm.edu/. As shown in this figure, several studies included in BioTIME are conducted under the Sevilleta Long
Term Ecological Research (LTER) Program at the 100,000 hectare Sevilleta National Wildlife Refuge in central New Mexico.
One study is the small mammals census from 1989 to 2008 (Friggens, 2008). There are 16,657 records for 27 distinct species
covered in the study. Another study focuses on terrestrial plants in this wildlife refuge Muldavin (2001) collects 5,288 records
for 123 distinct species.
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Figure A.3: Counties Designated “Nonattainment” or “Maintenance”

Note: This map plots counties with Clean Air Act Nonattainment or Maintenance designations with respect to the National
Ambient Air Quality Standards (NAAQS) as of year 2019. Source:
https://www3.epa.gov/airquality/greenbook/map/mapnmpoll.pdf.
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Table A.1: The Biodiversity - GDP Relationship: Hexagon Bin Aggregation

(1) (2) (3) (4)

#Obs. Abundance Richness Similarity

Panel A. All species

Aggregation: 3-km hex. bin. 11,915 -1.209*** -0.454*** -0.066
(0.325) (0.136) (0.062)

Aggregation: 10-km hex. bin. 9,881 -0.887** -0.288* -0.061
(0.377) (0.154) (0.059)

Aggregation: 16-km hex. bin. 8,896 -0.840** -0.206 -0.076
(0.379) (0.187) (0.055)

Panel B. Non-bird species

Aggregation: 3-km hex. bin. 1,401 -1.699** -0.631** -0.261
(0.672) (0.271) (0.159)

Aggregation: 10-km hex. bin. 923 -1.719** -0.586 -0.145
(0.798) (0.354) (0.145)

Aggregation: 16-km hex. bin. 694 -1.417* -0.443 -0.132
(0.756) (0.518) (0.139)

Notes: This table reports the panel OLS estimation results (equation (1)) when the data are geographically aggregated up to
hexagon bins of various resolution. Panel A reports full sample estimation. Panel B excludes observations that correspond to
bird species. All regressions include grid-by-taxa and year fixed effects. Standard errors are clustered at the hexagon grid
level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.2: GDP and Biodiversity Sampling in BioTIME Dataset

(1) (2) (3) (4) (5) (6) (7)
Log(study duration) 1(start year) 1(end year) 1(missed year)

GDP growth (%) 0.013 - - - - - -
(0.054) - - - - - -

GDPt - 0.031 0.391 -0.213 -0.371 0.133 0.171
- (0.057) (0.433) (0.128) (0.355) (0.118) (0.367)

GDPt-1 - - -0.408 - 0.169 - -0.036
- - (0.482) - (0.351) - (0.321)

Data structure cross-section panel panel panel panel panel panel
Observations 15,735 409,838 394,075 409,838 394,075 409,838 394,075

Notes: Estimation data underlying column 1 is a cross section of study locations. Columns 2 through 7 are based on
location-by-year panel data. Outcome variables are log number of years of a study location (column 1), an indicator for the
study location’s first sampling year (columns 2 and 3), an indicator for the study location’s last sampling year (columns 4 and
5), and an indicator for nonsampling in the corresponding location-year (columns 6 and 7). GDPt−1 is the log of lagged one
year GDP. All regressions include location-by-taxa fixed effects, and year fixed effects. Standard errors are clustered at the
state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.3: The Biodiversity - GDP Relationship: Dynamic Specification

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity

Panel A. All species

GDPt+1 - 0.655 - 0.269 - -0.106
- (0.848) - (0.607) - (0.120)

GDPt -3.580** -3.705*** -1.631** -2.246*** -0.104 0.271
(1.353) (1.199) (0.685) (0.671) (0.157) (0.271)

GDPt-1 - -1.006 - 0.417 - -0.377
- (0.760) - (0.661) - (0.445)

Observations 54,887 54,176 54,887 54,176 42,406 41,729

Panel B. Non-bird species

GDPt+1 - -0.229 - -0.776 - 0.091
- (3.322) - (1.551) - (0.164)

GDPt -5.903*** -5.754 -3.302*** -4.043 -0.368 0.392*
(0.990) (4.809) (0.271) (2.448) (0.262) (0.206)

GDPt-1 - -0.420 - 1.752 - -1.129**
- (1.364) - (1.191) - (0.415)

Observations 13,331 13,011 13,331 13,011 12,161 11,875

Notes: Outcome variables are in logs except for Similarity which is a ratio (columns 5 and 6). GDPt−1 is the log of lagged one
year GDP. GDPt+1 is the log of GDP one year in the future. All regressions include location-by-taxa fixed effects, and year
fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.4: Industry income and biodiversity outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

Manufacturing -0.307** -0.273*** -0.029 -0.913 -0.414* -0.059
(0.121) (0.077) (0.027) (0.500) (0.205) (0.100)

Wholesale -0.741* -0.388** 0.168** -1.960*** -1.021*** 0.326***
(0.376) (0.171) (0.069) (0.621) (0.286) (0.043)

Mining -0.078 -0.013 -0.014 -0.389 0.032 -0.142**
(0.065) (0.035) (0.011) (0.225) (0.078) (0.051)

Construction 0.352 0.206*** 0.012 0.928 0.243 0.015
(0.288) (0.064) (0.061) (0.675) (0.258) (0.130)

Retail -0.677 -0.211 -0.157** -1.582 -0.881* -0.415**
(0.463) (0.183) (0.067) (0.956) (0.423) (0.169)

Agricultural 0.057 0.016 0.003 0.834*** 0.205*** 0.044
(0.077) (0.031) (0.008) (0.239) (0.068) (0.038)

Transportation -0.112 -0.080 -0.042 -0.473 -0.076 -0.105
(0.254) (0.067) (0.042) (1.060) (0.252) (0.162)

Finance 0.253 0.029 0.031 0.309 0.101 -0.060
(0.262) (0.068) (0.023) (0.352) (0.164) (0.055)

Service 0.353 0.173 -0.086 2.224 1.185** -0.207
(0.398) (0.290) (0.061) (1.470) (0.526) (0.342)

Observations 60,211 60,211 47,140 13,085 13,085 12,066

Notes: Each column corresponds to a regression. Industry categorizations are based on 2-digit SIC and NAICS codes.
Industry income data are from U.S. Bureau of Economic Analysis 1969 to 2016. Agriculture includes agriculture, forestry, and
fishing. Transportation includes transportation, communications, electric, gas, and sanitary services. Standard errors are
clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.5: Military Spending Shocks and Biodiversity Outcomes: IV Robustness

(1) (2) (3)
Abundance Richness Similarity

IV with alt. base period (1966-2006) -5.086** -3.127* -0.529***
(2.175) (1.649) (0.190)

Kleibergen-Paap F-stat. 6.035 6.035 6.186
Observations 57,714 57,714 44,479

Pred. aggr. shock × state FEs as IV -4.575** -1.932* -0.218
(1.950) (1.031) (0.145)

Kleibergen-Paap F-stat. 1.794 1.794 2.168
Observations 57,714 57,714 44,479

Census Division decadal trends -5.844*** -3.049* -0.750***
(2.050) (1.554) (0.226)

Kleibergen-Paap F-stat. 6.509 6.509 7.034
Observations 57,714 57,714 44,479

LIML -4.485*** -2.753** -0.535***
(1.594) (1.226) (0.183)

Kleibergen-Paap F-stat. 7.430 7.430 7.071
Observations 57,714 57,714 44,479

Notes: Each panel corresponds to an alternative IV specification to equation (2). See text for more details. Standard errors
are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.6: Environmental Protection and Biodiversity Outcomes: IV Robustness

(1) (2) (3)
Abundance Richness Similarity

1(any nonatt. status) as IV -6.518*** -3.730*** 0.267
(1.246) (0.552) (0.254)

Kleibergen-Paap F-stat. 8.823 8.823 8.963
Observations 54,887 54,887 42,406

Multiple pollutants nonatt. IVs -5.261*** -3.118*** -0.275
(0.620) (0.291) (0.494)

Kleibergen-Paap F-stat. 4.448 4.448 4.624
Observations 54,887 54,887 42,406

Census Division year trends -6.081** -3.819*** -0.828
(2.285) (0.985) (0.850)

Kleibergen-Paap F-stat. 9.715 9.715 10.311
Observations 54,887 54,887 42,406

LIML -5.932*** -3.194*** -0.519
(0.624) (0.268) (0.532)

Kleibergen-Paap F-stat. 7.841 7.841 8.874
Observations 54,887 54,887 42,406

Notes: Each panel corresponds to an alternative IV specification to equation (3). See text for more details. Standard errors
are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.7: Overidentified IV Estimation with Both Instruments

(1) (2) (3)
Abundance Richness Similarity

Panel A. All species

ˆGDP (IV) -4.999*** -2.937*** -0.407*
(1.293) (0.967) (0.240)

Kleibergen-Paap F-stat. 5.095 5.095 5.581
Observations 57,714 57,714 44,479

Panel B. Non-bird species

ˆGDP (IV) -5.496*** -3.052*** -0.438***
(0.567) (0.331) (0.129)

Kleibergen-Paap F-stat. 108.9 108.93 118.5
Observations 11,861 11,861 10,335

Notes: Each column-panel represents a separate IV regression, where both military buildups (equation (2)) and
nonattainment designations (equation (3)) are used simultaneously as instrumental variables for log GDP. Panel A reports full
sample estimation. Panel B excludes observations that correspond to bird species. All regressions include location-by-taxa
and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.8: Other Measures of Biodiversity

(1) (2) (3)
Gini Shannon Sorensen

Panel A. All species

GDP (OLS) -1.845* -2.175*** -0.214
(0.946) (1.021) (0.197)

ˆGDP (Military IV) -3.745** -3.800** -0.659***
(1.694) (1.646) (0.223)

ˆGDP (Nonattainment IV) -4.859*** -5.192*** -0.603
(1.347) (1.275) (0.412)

Panel B. Non-bird species

GDP (OLS) -3.877*** -4.302*** -0.659**
(0.630) (0.666) (0.270)

ˆGDP (Military IV) -4.621*** -4.901*** -0.853***
(0.943) (0.995) (0.070)

ˆGDP (Nonattainment IV) -5.345*** -5.731*** -0.949***
(0.270) (0.277) (0.147)

Notes: Each cell represents a separate regression. Each column corresponds to a different biodiversity metric: the Gini index
(column 1), the Shannon index (column 2), and the Sorensen similarity index (column 3). Panel A reports full sample
estimation. Panel B excludes observations that correspond to bird species. All regressions include location-by-taxa and year
fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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