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1 Introduction

A central function of the economics profession is measuring the state of the economy and de-
veloping models that link these measurements to distributions of future outcomes. This arms
consumers, investors, and policymakers with the information and structural context necessary
to allocate resources efficiently. But the economy is a complex system whose current state
defies simple measurement. Vast resources, both public and private, are devoted to measuring
the many facets of economic activity.! Researchers routinely analyze this overlapping ecosys-
tem of numerical business cycle indicators. Yet ascertaining the nature and evolution of the
state of the economy from these data is a notoriously difficult task.

In this paper, we offer an approach to measuring the state of the economy via textual
analysis of business news. The media sector, as a central information intermediary in society,
continually transforms perceptions of economic events into a verbal description that we call
“news.” This transformation involves describing events, interpreting their meaning, forecast-
ing their impacts, and inferring their causes. The information disseminated by news media
is an equilibrium outcome determined by the confluence of consumer preferences and news
production technologies (Mullainathan and Shleifer, 2005). As such, news text is a mirror
of the prevailing economic issues that are important to both news consumers and producers.
News is a one-stop shop for simultaneously understanding many facets of the state of the
economy and how they interact with each other.

While media reflects information that consumers rely on to make allocation decisions in
an evolving environment, little work has directly studied the structure of news. We focus our
analysis on the full text of the The Wall Street Journal (WSJ), consisting of approximately
800,000 articles from 1984-2017. We summarize this dense verbal description of the state of
the economy via a topic model. Topic models are a popular dimension reduction technique
from the fields of machine learning and natural language processing. They have two essential
elements. Just as principal component analysis condenses large data matrices into a compar-
atively low number of common factors, a topic model’s first element reduces an inherently
ultra-high dimension representation of a text corpus into a relatively low-dimensional set of
common “topics.” The formation of topics is unsupervised—they are estimated as clusters of
terms (words or phrases) that tend to co-occur in articles. Those clusters are optimized so

that relatively few clusters (many fewer than the number of distinct terms in the data set)

'For example, the BEA maintains detailed national accounts for income and spending at the aggregate
and industry level, the BLS specializes in measuring employment, wages, and general price levels, and the
Federal Reserve disseminates large data sets of macroeconomic indicators (McCracken and Ng, 2016). In
addition, equity and debt markets provide a barometer for economic conditions facing the corporate sector.
And academic researchers maintain and distribute indices of economic volatility (Engle, 2019) and recession
probabilities (Chauvet and Piger, 2008), to name a few.



preserve as much of the meaning in the original corpus as possible by best explaining the
variation in term usage across articles.

A topic model’s second main element estimates the proportion of text dedicated to each
topic in an article. These proportions are a valuable map from the common topics to the indi-
vidual, article-level narratives that invoke those topics. But more importantly, they quantify
the amount of news attention allocated to each topic. This makes it possible, for example,
to analyze the interaction between news and economic activity. In short, our topic model
accomplishes two important tasks of 1) summarizing dominant themes throughout the history
of the WSJ and 2) tracking how media attention to news topics evolves. We study these as
a new quantitative description of the state of the economy.

Our main empirical findings are the following. First, we characterize the topical structure
in business news. WSJ news decomposes into easily interpretable topics with intuitive time
series patterns. A model with 180 topics is a statistically optimal specification according to a
Bayes factor criterion. Models with fewer topics tend to mix news themes into overly broad
clusters, while allowing for more topics adds parameters without reliably improving model fit.

Almost all topics exhibit strong time series persistence. A long open question in financial
research is why do asset returns exhibit such strong volatility clustering. A leading hypothesis
for this fact is that volatility is driven by news arrivals, and that news itself arrives in clusters
(e.g., Engle et al., 1990). The persistence in news topic attention supports this hypothesis.
For example, WSJ coverage of news associated with the “oil drilling” topic {key terms: exzon
mobil, cubic feet, drill rig, offshore oil} and “oil market” topic {key terms: opec, nonopec, oil
minister, oil demand} has similar time series dynamics as the volatility of crude oil prices.

We find that news is a combination of recurrent, seasonal, and emergent topics. Recurrent
topics are those garnering media attention consistently throughout the sample. For exam-
ple, the “Federal Reserve” topic {key terms: greenspan, yellen, federalfunds rate, fomc} and
“health insurance” topic {key terms: hmo, health plan, health coverage, blue cross} are reg-
ularly active throughout the sample. Seasonal topics include “presidential elections” {key
terms: obama, romney, dukakis, campaign finance} and “earnings forecasts” {key terms: ana-
lyst poll, earn forecast, earningspershare, earn expectation}”, which draw attention with clock-
work regularity. Emergent topics are dormant for much of the sample, then are triggered by
particular events and often remain elevated after. Examples are the “terrorism” topic {key
terms: taliban, queda, suicide bomber, osama} and the “natural disasters” topic {key terms:

katrina, quake, tsunami, hurricane}. These examples also illustrate the fact that many topics

2The phrasing of key terms reflects text processing choices described in Appendix A. For example, “earn
forecast” and “earn expectation” reflect stemming and lemmatization, which reduce “earnings” to “earn” and
“expectations” to “expectation.” Likewise, “earningspershare” is an example of the treatment of punctuation
(dropping hyphens in this case).



describe subjects of the news (elections, the Fed, earnings), and do not assign an obvious
value of assessment of good news versus bad news. For other topics, the subject itself carries
a value assignment (terrorism, recession, natural disasters). And there are a small number of
sentimental topics, such as the “concerns” topic {key terms: raise concern, major concern,
express concern, increase concern}, that provide directional color to the subject topics which
co-occur in a given article.

Our second contribution is to show that the text of business news summarizes wide ranging
facets of the state of the economy. Similar to the oil volatility example, we report a variety
of validation checks showing that economic topics identified from the WSJ text coincide with
conceptually related measures of specific economic activities. For many data series, ranging
from output and employment to financing activity, asset prices, and uncertainty, we find
that a small subset of thematically related news topics provide a close match to the paths of
numerical macro series. Remarkably, we find that news attention explains 25% of the variation
in aggregate stock market fluctuations. Thus, news text partly resolves a central puzzle in
financial economics—the notorious inability to explain stock market fluctuations even ex post
with anything except other asset prices (Shiller, 1981; Roll, 1988).?

More detailed examples of economic activity further demonstrate the explanatory power
of news attention. We find that the volume of leveraged buyout (LBO) transactions is most
associated with the “takeovers” news topic {key terms: poison pill, hostile takeover, share
tender, higher offer} and “control stakes” news topic {key terms: control stake, majority stake,
minority shareholder, acquire stake}, which help explain 58% of the variation in LBO activity.
Similarly, the time series behavior of IPO volume is closely tracked by news attention to the
“IPO” topic {key terms: ipo market, ipo price, roadshow, lockup} and “venture capital” topic
{key terms: joint venture, venture capitalist, venture fund}. The key term lists of statistically
related topics offer an immediate narrative for each numerical time series that we study. These
are not causal narratives. In some cases they may reflect proximate causes, and in others they
may represent anticipated impacts.

Such contemporaneous correlations have little to say about whether news text contains
distinct or incremental information versus standard numerical indicators. To investigate this
directly, we study news attention within an otherwise standard macroeconomic vector au-
toregression (VAR). We find news attention to the “recession” topic has economically large
and highly significant predictive power for future output and employment, after controlling

for a variety of common VAR components such as stock prices, interest rates, and measures

30ur analysis focuses on explaining contemporaneous aggregate stock market fluctuations. Complementary
work by Garcia (2013) shows that news sentiment forecasts stock market returns especially during recessions,
while Boudoukh et al. (2018) and Ke et al. (2019) explain idiosyncratic returns for individual stocks using
news text.



of economic uncertainty. That is, news coverage of recession risk captures distinct useful
information about future economic outcomes above and beyond commonly used indicators.

Modeling economic activity in terms of news-based topics offers economists a new set of
tools for understanding the drivers of economic fluctuations. In a standard macroeconomic
VAR, interpretation often boils down to a choice of rotation for the error covariance ma-
trix and the resulting impulse responses. With a text-augmented VAR, fluctuations can be
directly mapped to textual narratives of economic conditions. We describe an approach to
narrative retrieval that combines estimated VAR coefficients with topic model estimates and
does not require identifying restrictions or economic constraints. It locates the most influen-
tial individual articles—i.e., specific narratives—for interpreting the behavior of model-based
expectations. For example, we find large shifts in output growth expectations associated with
news article headlines such as “Consumer Confidence Slides on Fears of Layoffs” and “ Stocks
Fell Further Amid Concerns Prices Don’t Fully Reflect Worsening Global Growth.” Using the
topic model as a narrative retrieval device, the researcher can map changes in model forecasts
to nuanced verbal interpretations of economic events (i.e., news articles). In essence, the es-
timated model flags articles that the researcher should read thoroughly, without requiring a
close manual read of every article in the WSJ.

Our VAR analysis is a case study of how an economic model can be augmented to use
news attention as an input or retrieve narratives. But these ideas apply to other modeling
approaches as well. For example, the implied residuals from an estimated DSGE model can
be projected on news attention to extract narratives that aid interpretation of those shocks.
More generally, by combining macroeconomic analysis with topic modeling, the researcher
accomplishes the task of drawing on vast written text corpora to better understand quantita-
tive economic phenomena. Our VAR results provide a glimpse into the possibilities of using
textual data for modeling macroeconomic dynamics or the role of information transmission
and media in the macroeconomy. To help facilitate such work, we maintain the interactive
website, www.structureofnews.com, to allow users to visualize and inspect a wide variety
of features from our estimated topic model. In addition, the website allows researchers to
download our WSJ news attention time series for use in their own projects.

Our work contributes to a rapidly growing literature in economics that uses text as data.*
Topic models have only recently begun to be explored in empirical economics research (the
earliest example to our knowledge is Hansen et al., 2017). Papers by Larsen and Thorsrud
(2019) and Thorsrud (2020) also apply Latent Dirichlet Allocation (LDA) to Norwegian news
data and analyze macroeconomic forecasting models.” Using a text-based machine learning

forecasting model, Kelly et al. (2021) show that WSJ news significantly improves macroe-

1See Gentzkow et al. (2019) for a recent survey.
®Subsequent to our paper, Ellingsen et al. (2020) also analyze WSJ news for macroeconomic forecasting.
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conomic predictions but do not discuss the economic underpinnings for this result. Highly
complementary research integrates news text into macro-finance analyses using carefully cu-
rated researcher inputs in place of statistical models. Baker et al. (2016) build indices of
economic policy uncertainty from news articles by counting the occurrences of researcher-
curated key words, and Baker et al. (2021) analyze the drivers of large stock price moves
based on close human reading of business news. In this paper we provide a complete solu-
tion for macroeconomic textual analysis to better understand the driving forces of business
cycles.’ This includes i) estimating and selecting an optimal topic model specification from
a macroeconomic news corpus, ii) a text-augmented VAR that embeds the topic structure in
an otherwise standard empirical macroeconomic model, iii) a selection algorithm for deciding
on the appropriate topics to include in the VAR, and iv) a means of extracting underlying
articles that provide narrative interpretations of business cycle fluctuations.

Section 2 briefly discusses our model structure and estimation. Section 3 describes the
estimated structure of economic news underlying WSJ text. Section 4 documents the close
correspondence of news text and numerical economic data. Section 5 analyzes the role of news

text in a macroeconomic VAR, and Section 6 concludes.

2 Topic Model and Estimation

Our model for the structure of economic news text follows the Latent Dirichlet Allocation
(LDA) topic modeling approach of Blei et al. (2003). We provide a brief summary of the
model and its estimation, and refer interested readers to the original paper for additional
detail.

We study the WSJ text corpus in its “bag-of-words” form, represented numerically as the
article-term matrix, w. This is a 7" x V matrix where row indices correspond to the list of T’
different articles in the corpus, and column indices correspond to the vocabulary of V' unique
terms in the corpus. Its individual elements, w;,, count the number of times that the v term

appears in article ¢.

2.1 Model

While the bag-of-words representation is a dramatic reduction in complexity compared to
the raw text, it remains an extraordinarily high-dimensional object. LDA seeks a tractable

thematic summary of w that reduces the dimensionality of the historical WSJ to a scale that

6While we use LDA and analyze the full text of all WSJ articles, contemporaneous work of Cong et al.
(2020) use word2vec methods and Manela and Moreira (2017) use support vector machines, with both of these
papers analyzing abstracts of front page articles.



can be digested and interpreted by a human reader in one sitting. To achieve this summary, it
1) imposes explicit parametric assumptions on the distribution of term counts and 2) imposes
a factor structure on term counts. In particular, LDA assumes that the V-dimensional vector
of term counts for a given article ¢, denoted wy, are distributed according to a multinomial
distribution:

wy ~ Mult(®'0,, N;), (1)

where NV, is the total number of terms in article ¢ and governs the scale of the multinomial
distribution. In other words, expected term counts are summarized by a comparatively low
dimension set of parameters, §; and ® = [¢y, ..., ¢x)'. The k" “topic” in the text is defined
by the V-dimensional parameter vector ¢y, where ¢, > 0 for all v and > ¢y, = 1. That
is, a news topic is a probability distribution over terms. The set of terms that take especially
high probabilities in ¢, convey the thematic content of the topic. The model’s dimension
reduction is achieved by setting the total number of topics K much smaller than the size of
the vocabulary.

While the topics, ¢y, describe the common themes in the corpus as a whole, LDA treats
an individual article as a mixture of topics. The article-specific parameter vector 6, =
(O41,....,0, k) is also a probability vector, with 6, > 0 for all k¥ and >, 6y, = 1. That
is, #; describes how article ¢ allocates its attention across topics. LDA embeds a factor struc-
ture in which topics (¢y) serve as common factors and 6, captures articles-specific exposure

to those factors.

2.2 Estimation

In principle, one could estimate ¢ and 6 via maximum likelihood according to (1). However, in
most text applications this is computationally unrealistic. Instead, we use Bayesian methods
and approach estimation with the collapsed Gibbs sampler proposed by Xiao and Stibor
(2010).7

The intuition behind the estimation procedure can be understood with minimal technical
overhead. First, note that model (1) can be equivalently represented as a “generative” model;
that is, as a set of sampling rules. Taking model parameters ¢, and 6, as given,® we can
conceptualize writing an article in the context of the model. Consider the t** article with N,
total words. How does the model “write” the first term in the article? First, it draws a topic

at random from the list of all topics, where the probabilities of drawing each topic are given

"We refer interested readers to Steyvers and Griffiths (2007) for an especially transparent description of
LDA Gibbs samplers. Asuncion et al. (2009) review and compare alternative estimation approaches such as
variational Bayes and maximum a posteriori estimation. They conclude that, with proper hyperparameter
tuning, all estimators perform similarly in terms of model fit.

8These are drawn in a preliminary step from the Dirichlet priors, ; ~ Dir(a) and ¢ ~ Dir(53).
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by the K x 1 vector 8. The topic assignment of that first term, call it z ;, is distributed as
a unit multinomial (i.e., categorical) with parameter 6,. Suppose we happened to draw topic
k for the first term’s topic. To then draw the first term itself, we randomly choose from the
vocabulary of all terms, where the probability of drawing any given term is governed by the
V' x 1 vector ¢y, which is the topic-specific term probability distribution. Call this first term
24,1, which is distributed as a unit multinomial with parameter ¢;. This process is repeated
for each subsequent term in the article, a total of IN; times, at which point the model has
authored the complete article and stops. In distribution notation, each term ¢ in the article
is given by
Ty ~ Mult(¢,,,, 1), 2z, ~ Mult(0;,1).

The Gibbs sampling estimation procedure searches for parameter values ¢, and 6, that simu-
late articles most similar to those found in our news data set.”
The estimated attention that article ¢ allocates to topic k can be represented as the fre-

quency with which its terms are assigned to k

b, = S (2 = k)
k= 3K N 17/
Zq:l Yoim1 (2 = q)

, (2)

where Z,,; are topic assignments from the estimated model. Likewise, estimates of the topics
themselves are determined by the number of times each term v in the vocabulary is assigned

to topic k (aggregated over all articles):'"
T N .
Doim1 Doim Lz = 0)I(2 = k)

P = >t 23211221 H(wei = m)I(2; = k) ”

Finally, while 0, describes the allocation of news attention to each topic in article ¢, we are
often interested in how the WSJ as a whole allocates attention over time. We measure the

overall news attention at a point in time 7 (e.g., a given day or month) by summing over all

9We take 300 iterations of the Gibbs sampler over the entire corpus, and use hyperparameters of 8 = 1
and a = 1.

10As shown in (2) and (3), we choose to not incorporate priors in our 6 and ¢ estimates. Griffiths and
Steyvers (2004) show that priors can be easily incorporated as

Y MG =R a3 Y M = v)lG = k) + 8
Yo iz =g+ Ko’ 0 Y0 YL N Mee = m)l(z = k) + VB

O =



articles at that time. Thus, WSJ attention allocation to topic k in month 7 is

N /s
) — 2ter 2aima 1(Ei = k)
D DD PARD DA (CFE)

(4)

Our model reportage focuses on estimates of the topics, ngSk, and estimates of attention allo-

cation across topics, 6;.

2.3 The Wall Street Journal Data Set

The data set we use is among the most extensive text corpora of business news studied in the
economics literature to date. It consists of all articles published in WSJ from January 1984
through June 2017, purchased from the Dow Jones Historical News Archive. This represents
the longest history of full text articles in digital text format available for purchase from
Dow Jones & Company. As a comparison, Manela and Moreira (2017) extract a news-based
analogue to the VIX index using the WSJ over a long sample, but their data only includes
abstracts of front page articles. Baker et al. (2016) study a large collection of newspapers,
but restrict their analysis to counting occurrences of a small, pre-defined key term list. In
contrast, our analysis leverages the richness of full newspaper text.

We take a number of steps to homogenize the data sample and reduce confounding effects
of organizational changes to the WSJ over time. First, the Dow Jones Historical News Archive
contains data as far back as 1979, but data prior to 1984 is limited to article abstracts. We
therefore omit pre-1984 data to maintain consistency in the definition of what constitutes an
article throughout our sample. Next, over its history, WSJ has initiated (and sometimes later
abandoned) a number of non-core sections such as “Personal Journal” (initiated 2002), “Week-
end Journal” (initiated 2005), and “Off Duty” (initiated 2012). To help maintain consistency
in topical content over time, we exclude articles appearing in sections other than the three
core sections (“Section One,” “Marketplace,” and “Money and Investing”) that are available
over our full sample. Because our interest is in economic news, we also exclude articles with
subject tags corresponding to predominantly non-economic content such as sports, leisure,
and arts, and exclude articles that contain data tables with little supporting text.

Next, we transform the dataset from a collection of raw article text files into numerical
term counts for statistical modeling. Our vocabulary of “terms” includes all uni-grams and
bi-grams occurring in our data set after applying a mild set of term filters and lemmatization
of derivative words. Appendix A provides a step-by-step description of the data processing
procedure we use to transform raw article text into term counts.

Our final data set consists of 763,887 articles with a vocabulary of 18,432 unique terms.



Figure 1: WSJ Observation Counts and Model Selection
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Note. The left panel plots the post-processing article count and the total term counts aggregated over all
articles each month. The right panel plots the cross-validated model fit (average log likelihood over ten cross-
validation folds) and the Bayes factor for models with topic count K ranging from 50 to 250 in increments of
10 (we omit labels on the right panel vertical axis as the model fit comparisons are relative and specific values

are uninformative).

The left panel of Figure 1 shows the size of the data set over time in terms of monthly article
count and monthly term count. The structure of the topic model absorbs some of the secular
changes in news production by modeling news term proportions rather than term count levels.
It is worth noting that, our homogenization efforts notwithstanding, the WSJ is an evolving

product that undergoes structural shifts over the course of our sample.

2.4 Topic Model Specification Choice

LDA is an unsupervised machine learning technique that requires the econometrician to choose
only two inputs: The term count data set and the number of topics, K. We take a data-driven
approach to select K. In particular, we estimate a variety of models with K ranging from
50 to 250 topics in increments of ten. We select the model specification from this set as

! For robustness we also approach model selection

the one with the highest Bayes factor.!
with ten-fold cross-validation. In particular, we partition the WSJ sample into ten folds with

equal numbers of articles. We re-estimate each K-topic model on the data ten times, one time

HThe Bayes factor is the ratio of posterior probabilities for the alternative model versus the null model.
When selecting among topic models with different K, we compare all models to the same null model so that
the denominator is constant across K. Thus, our Bayes factor criterion is equivalent to selecting the model
with the highest posterior probability.



excluding each of the ten validation samples, then evaluate its fit on the left-out sample. We
calculate aggregate goodness-of-fit for each model as the average log likelihood value over the
ten validation samples.

The right panel of Figure 1 plots goodness-of-fit across candidate specifications. Bayes
factor and cross-validation analyses indicate that a 170-180 topic specification approximately
optimizes our specification criteria. Manual inspection of estimates for various choices of K
also indicates that K = 180 is a sensible choice. A model with fewer topics (e.g., 50) produces
mixed topics that contain multiple separate themes. A larger model (e.g., 250 topics) delivers
similar interpretability as that for the 180-topic model, but with a number of overly specific
topics that capture one-off events. Finally, all models in the neighborhood of K = 180 look
very similar in their topic composition. Appendix C provides further visual evidence that the

180-topic model strikes a balance between interpretability and parsimony.

3 The Structure of Economic News

In this section we dissect the WSJ news topic model estimates. The reported estimates focus
on the 180-topic specification and are based on a single estimation using the full data sample.
Note that unlike other dimension reduction techniques such as principal component analysis,
LDA does not provide a natural ordering of topics, thus our presentation of topics is based
on expositional convenience. It is also important to recognize that due to the richness of
information contained in news text, our 180-topic model is higher dimensional than typical
economic models, and it is impossible to report the full scope of estimates in this article. To
give readers the ability to explore all facets of our model, we have built an interactive website,

www.structureofnews. com, to allow users to inspect our estimated topic model in fine detail.

3.1 Topic Key Terms

First, we present estimates for each term cluster—that is, the V' x 1 term probability vector
¢r—that defines a given topic k. The most common terms in the vocabulary appear with
high frequency in many topics, and this is naturally reflected in LDA estimates. In order to
best identify the unique semantic content of each topic, we rescale the topic-term weights by

the inverse of the term-frequency, f,:

~

qbk,v

Pr = fo

This scaling emphasizes terms that have an unusually large weight in topic k (terms like

“pharmaceutical” or “iron ore”) and downplays words that are common to the corpus overall
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(terms like “price” and “company”). Sorting the elements of ¢y identifies the terms that are
most diagnostic of the thematic content in topic k.

Table 6 lists the key terms for each topic k, defined as the top ten vocabulary items based
on the sorted ¢ vector. These key terms are entirely unsupervised as they are estimated
from the data without any guidance from article labels or from the researcher. We manually
assign a label to each topic based on our reading of the key term lists. Topic labels serve as
a shorthand for referencing topics throughout the paper.

There are several features of the key term lists that stand out. First, they show that topics
represent coherent concepts with clear interpretability. For example, the first key term list

from the table is

bonus, base salary, total compensation, pay package, compensation package, com-

pensation committee, restrict stock, tyco, executive compensation, bonuses.

This list is easily recognized as an “executive pay” topic. The list is un-mixed; each term has
a direct narrative link to the topic label. The purity of the topic extends beyond the top ten

terms. For example, key terms 11-25 for this topic are

stockoption, executive pay, stock option, compensation, annual salary, tyco inter-
national, erercise option, severance package, severance payment, erercise price,

salary, retention, vest, proxy statement, severance.

This term purity is representative of our estimated model more broadly. No topics appear to
mix themes. To draw a contrast, when we estimate a smaller model with K = 50 topics, we
find topics that begin to lump multiple concepts together. For example, the 50-topic model

generates the following key term list for one of its topics:

creditor lawsuit, unsecured creditor, ual corps, chapter company, texas air, bankruptcy
court, federal bankruptcy, bankruptcy code, continental airline, usair, load factor,
flight attendant, reorganization plan, american airline, northwest airline, chapter
file, amr corps, bankruptcy protection, major airline, corps unit, airline unit, pilot

assoctation, chapter bankruptcy, world airways, twa.

Evidently, this topic combines two distinct topics— “airlines” and “bankruptcy”—that we
identify in the K = 180 specification. While this mixing is understandable given the string
of airline bankruptcies in our sample period, mixing confounds the model’s ability to identify
important non-bankruptcy airline news such as sharp drops in flight demand following terrorist
events. Examples like this abound in smaller models.'? The general absence of mixing in the
K = 180 specification is a validation that the larger model achieves a successful separation of

distinct subjects.

11



Second, we see that most topics represent news subjects, as opposed to appraisals of good
versus bad news for a given subject. Examples of appraisal-free subject topics include “air-

lines,” “Federal Reserve,” and “China.” Some subject topics carry an implicit appraisal, usu-

W«

ally of bad news, such as “terrorism,” “natural disasters,” and “recession.” A small number of

" and “positive sentiment”

sentimental topics also appear, such as the “problems,” “concerns,’
topics. We interpret these as “modifier” topics that, when combined in a news article with a

given subject topic, convey a signed or directional appraisal of the subject’s current events.'?

12 Another example in the K = 50 specification is a topic with key terms
ipo market, sachs group, ipo, csfb, stearns cos, berkshire, buffett, berkshire hathaway, suisse
group, ipo price, brother hold, investmentbanking business, stanley group, goldman, hathaway,
group credit, firstday, weill, witter discover, investmentbanking, stanley dean, goldman sachs,
sachs, warren buffett, credit suisse,

which is a mixture of the “IPO,” “investment banking,” and “Buffett” topics in the K = 180 model.
I3There is also a very small number of topics that represent shifts in language usage over time, but do not
have any economic meaning. For example, there is a “corrections/amplifications” topic {key terms: article

Figure 2: Hierarchical Taxonomy of WSJ News
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Note. Hierarchical agglomerative clustering dendrogram based on qZ;k similarity among the 180 topics listed

on the right.

A larger K results in more specific subject categories. An advantage of having fine-grained

topics is that, if a broader notion of a topic is desired, finer topics can be agglomeratized into

correction, amplifications, incorrect, misstated} and a “news conference” topic {key terms: press conference,
told reporter, apology, issue statement}. Both of these have a clear positive time trend. Language topics are
valuable for de-noising news text by absorbing common variation in language that is distinct from genuine
news content, and that would otherwise be absorbed into a content topic and act as a source of noise in our

subsequent analysis.



broader metatopics. In fact, we find that our 180 topics cluster into an intuitive hierarchy of
increasingly broad metatopics. Figure 2 illustrates the topical hierarchy in our model in the
form of a dendrogram. We estimate this hierarchy with recursive agglomeration (Murtagh
and Legendre, 2014) based on the semantic distance between topics (defined as the distance
in their qgk vectors). Like the estimation of topics themselves, the connectivity of topics in the
dendrogram is entirely data driven, and we only supply metatopic labels based on our manual
read of the clusters.

Figure 2 provides a full taxonomy of WSJ news. At the broadest level, news is classified
into either “economy” topics (top half of the dendrogram) or “politics and culture” (bottom
half) topics. Within “economy,” topics split into broad metatopics such as “financial inter-

PY N4

mediaries,” “economic growth,” and “industry.” The “politics and culture” branch includes

bREN14

topic clusters such as “international relations,” “national politics,” and “science and arts.”
As emphasized by Quinn et al. (2010), an intuitive metatopic hierarchy is a useful check on
the semantic validity of a model. Furthermore, it gives us the ability to analyze attention to

news topics at various levels of granularity.

3.2 Quantifying News Attention

With an understanding of the topic structure in place, we turn to the second main output
of the model—its estimate of news attention paid to each topic. Attention allocation is a
convenient quantitative transformation of news composition that can serve as numerical input
to subsequent empirical investigations of economic hypotheses. Our estimates describe how

allocation of media attention across topics evolves over time.

3.2.1 News Attention by Month

Topic attention is estimated at the article level but can be summed to any level of aggregation
according to Equation (4). We focus on aggregate WSJ topic attention at the monthly
frequency by summing attention estimates over all articles published in the same calendar
month. Figure 3 shows the time series variation in attention for a subset of six illustrative
topics.!* The black line, corresponding to the left vertical axis, shows the attention to a given
topic as a percent of total monthly WSJ news production. The right vertical axis lists the key
terms, and the blue line shows the weight of each term in the topic (scaled by the maximum
term weight within that topic), corresponding to the top horizontal axis.

The topic attention plots highlight a number of stylized facts about the composition of

business news. First, news attention is generally persistent. This is clearly evident in the top

4 Appendix Figure 11 plots an additional 24 illustrative topic attention time series, and the website for this
research project, www.structureofnews.com, includes time series plots for all 180 topics.
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15



‘uorprodord uojUL)IR SMOU LGA| ISOUSIY JO SULIS) UL IUOW [ord g pur | payuer sotdo) o1y syrodel aInsy oy, 920N

S0.T0¢ TovT0C 600T0C S0.00¢ TOr00C 60000¢ S0.66T TOVe6T 60066T S0/86T

TOr86T

4

2T

Zz T

2 <
TATAR 1¢

4 11T T 4

¢ cmT T
2T T de-¢ T 4
amax T
4 it 4 ec-¢@—<t
T v Z2TT <
4 < @ 4 @ 1T 4
4 T 4 T
Z¢ T & 7
e T¢ -zze
azz
e T AT
4 ¢ ave ¢
[44r¢
T e ¢ - aam T 4 4
¢ THETIT
TATETT
Tz 1 70 amT T T
ZzzTh T TT ¢ T & amT ¢ 2 am
¢ ¢ 4 4 ATATTTZTITTTTTTLTCC 22 ¢¢¢ ¢ecee
T 4 2 4
Z TWITA Cce WM - T1Z @ W 2T Z&Wme: 7 VaZ <
4 4 ¢ ¢ 2@ TAT T WAL ¢ TOIIIITIL 2 - 22 T
-T2 ¢ T IO T TN 252 T IO AL - ¢ 4 ¢-C- @ Tz

on-a 1-a 1T za

¢tecetree 1T
[44 [44d 1 & @

AWM T2 T T, gus mI-2 T

IO Ag sordof, jueurtio(] :j 9Insiq

ZZMMZC 4 4 4%

¢cma ¢ wm z -

[4 e
TE 7 AW

T &z amr &

U0 SSa09Y

Buijup | 0

sendo.d eiuey

So|nN

suodireIsIuIwWpe Aves

spuny enn |y

2./:eM}j0S

Avewlos

»yfew |nq/reag

S1jold

asessiq

8210 YLION/Jea[onN

sonijod AN

sjebpng JusWwuBA0D
11IN9SS [euoiieN

XIABUONdO

|1y

3oueINsUl Y1leaH

pxal

S91Uedwiod suoyd

e'ulyo

eISY 1Seayinos

Sallpowiwod

SS01A8p 3|IqO N

awlin/ed1jod

sueo| 79 sbulnes

asPP SN

SIoAOYE |

SRIses|p eINEN

eIssNy

sdnijod ueadoing

BunuNod0 Y

SUNoD

SjuBWIOIpU |

saGeb1I0 |\

dNJSSaY [eJoped

spunya %oc\b_:co SRl

Anide buipel L

asvN

3w (10

saxe |

SISLO eloueuly

suoulD

m%qﬁm:ago\ﬁ:m

SeRW/S10UBLIND

paJeeIdp|qeAU0D

1Se9 3|PPIA

uebeay

BUR|

109ep ubeJencs ueadoing

WsHotR |

sBuue

sdeo |ews

spuoq Ainseal ]
sabueyoxe [euoireuRIU|
suonx®[3

16



Figure 5: News Attention Across Metatopics
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Note. Stacked area plot of attention allocation to 23 metatopics based on the first-level clustering of baseline
topics.

two topics, “recession” and “health insurance,” which exhibit prolonged waves of high and
low attention. “Recession” is a prime example of a recurrent topic that is active throughout
the sample. As is the “health insurance” topic, which becomes highly prevalent during debate
of the Clinton Health Plan proposal (peaking around President Clinton’s speech to Congress
in September 1993), the proposal and passage of Obamacare in 2008-2010, and around the
debated repealing of Obamacare around the 2016 presidential election. The middle two plots
in Figure 3 are examples of seasonal topics. “Elections” coverage has a clockwork pattern
peaking every four years with a secondary peak every two years, and the “earnings forecasts”
topic which spikes ahead of each quarterly earnings announcement season. The last two plots
are examples of emergent topics. Usually dormant, they are punctuated by intense coverage
around particular events. The “terrorism” topic is a prototypical regime shift: It receives
minute attention for the first half of our sample, spikes dramatically at 9/11, and remains
high henceforth. Similarly, the “natural disasters” topic draws very little attention during
most of the sample, but rises sharply in August 2005 (Hurricane Katrina), then reverts but

remains slightly elevated for much of the remaining sample, presumably due to increased news
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Figure 6: News Attention Within Metatopics
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attention on climate change (Engle et al., 2019).

With 180 topics, it is difficult to isolate the focus of attention at each point in time in
a single line plot overlaying many time series. To overcome this, Figure 4 shows the top
two topics receiving the most news attention each month. Dominant topics vary depending
on exogenous factors (such as election cycles or natural disasters) and endogenous states of
the economy (such as recessions and sovereign debt crises), with primary attention rotating
between political, macroeconomic, industrial, and financial topics.

Figure 5 zooms out to show how attention behaves at the 23-metatopic level (the first
level of aggregation on the right side of Figure 2). The fraction of news attention allocated
to metatopics is fairly stable over time. Yet there is a high degree of attention churn within
metatopic clusters. For example, while attention to “technology” is stable over time in Figure
5, its contents transition rather dramatically over time (upper left panel of Figure 6). It
is dominated by mainframe and desktop computers at the start of the sample, is displaced
by attention to software mid-sample, which is in turn displaced by mobile devices and the
internet in the later part of the sample. Likewise, while attention to the “banks” metatopic

is stable over time, the focus shifts from savings and loans in the 1980’s to mortgages in
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the mid 2000’s, and remains dominated by attention to financial crises even through the
recent economic expansion. The “international affairs” metatopic includes steady attention
to western Europe, but also shows episodic spikes in attention to Russia, a brief focus on
Southeast Asia during its 1998 crisis, and the gradual emergence of China as a focal point by
the end of the sample. The “financial markets” metatopic shifts focus from Treasuries and
international markets in the first half of the sample, to small caps during the dotcom era and

leading up to the financial crisis, after which bond yields become a focal point.

4 Matching News Attention To Economic Activity

In the next two sections we investigate how faithfully the topical content of WSJnews captures
the state of the economy. First, we present a descriptive analysis documenting the high
correlation between news text and a wide range of numerical economic time series. Then in
Section 5 we present a structured analysis of news text and macroeconomic dynamics in the

form of VAR impulse responses.

4.1 Selection Via Lasso Regression

As a first step toward establishing that news attention beneficially measures the state of the
economy, we document that diverse numerical measurements of economic activity all share a
close correspondence with thematically related topical content of news text.

To this end, we devise a generic means of evaluating the alignment between a candidate nu-
merical measure of economic activity, z;, and the set of estimated topic attention proportions,
ar = (ay4,...,ax,). Our criteria for this analysis are two-fold. First, we evaluate accuracy
of the text-based explanation in terms of regression fit, and second, we evaluate whether the
most influential news topics in the regression are thematically related to x;.

With K = 180 topics, the attention vector is high-dimensional relative to the number of
monthly time series observations, so OLS regression of z; on a; will be difficult to interpret and
suffer from overfit. Therefore we use lasso regression and set the lasso penalty parameter such
that exactly five out of the 180 coefficients take non-zero values. We choose a fixed five-variable
regression to ensure clear interpretability of results, to have uniformity and comparability
across the different x variables that we study, and to limit the undue influence of data mining
on our conclusions.

Because lasso penalization serves in part as a model selection device, standard errors on
the non-zero coefficients must be adjusted to account for model search. Our reported p-values

use the post-selection inference procedure of Tibshirani et al. (2016). We scale regression
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Table 1: Reconstructing Macroeconomic Time Series

Industrial Production Growth Employment Growth
Topic Coeff. p-val. Topic Coeft. p-val.
Recession -0.38 0.00 Recession -0.61 0.00
Oil market -0.17 0.00 Rail/trucking/shipping 0.22 0.01
Southeast Asia 0.11 0.10 Bush/Obama/Trump -0.15 0.09
Health insurance 0.06 0.93 Iraq -0.14 0.01
Clintons 0.03 0.40 Clintons 0.12 0.01
In-Sample R? 0.21 In-Sample R? 0.59
Out-of-Sample R? 0.06 Out-of-Sample R?2 0.48

—— Actual —— Actual
—— Predicted —— Predicted
1984 1988 1992 1996 2000 2004 2008 2012 2016 1984 1988 1992 1996 2000 2004 2008 2012 2016
Market Returns Market Volatility

Topic Coeft. p-val. Topic Coeft. p-val.
Recession -0.35 0.00 Recession 0.48 0.00
Problems -0.19 0.00 Options/VIX 0.24 0.00
Convertible/preferred -0.16 0.21 Problems 0.22 0.00
Record high 0.12 0.08 Small business -0.18 0.00
Options/VIX -0.11 0.76 Investment banking 0.13 0.00
In-Sample R? 0.25 In-Sample R? 0.63
Out-of-Sample R? 0.18 Out-of-Sample R? 0.44

—— Actual
—— Predicted

—— Actual
—— Predicted

1984 1988 1992 1996 2000 2004 2008 2012 2016 1984 1988 1992 1996 2000 2004 2008 2012 2016

Note. Five-regressor active-set regression estimates based on lasso selection with p-values adjusted for post-

selection inference.

coefficients to reflect the dependent variable’s response in standard deviation units to a one

standard deviation change in the regressor.

20



To assess the breadth of economic summary achieved by studying news text, we examine a
diverse set of numerical economic data series. The gamut of variables that we study includes
macroeconomic aggregates, corporate financing activities, measures of industry-level risks,

and uncertainty about a range of economic policies.

4.2 Macroeconomic Aggregates

We begin by studying monthly data on aggregate output, employment, stock market returns,
and stock market volatility. The top left of Table 1 reports results for the lasso regression
of log industrial production growth on the 180 news attention time series. Among the five
selected topics, news attention to the “recession” and “oil market” topics significantly nega-
tively correlates with output growth. The coefficient estimates are economically large. A one
standard deviation increases in “recession” attention associates with a 0.38 standard deviation
drop in output growth.

In fact, “recession” attention is by far the strongest explanatory variable for all four eco-
nomic aggregates in Table 1. A unit standard deviation rise in “recession” attention associates
with a 0.61 standard deviation drop in log employment (non-farm payrolls) growth. Employ-
ment growth also has a significant positive coefficient on “rail/trucking/shipping” attention
and a negative coefficient on “Iraq” attention, though the impact of these topics is small
compared to “recession” attention.!”

The lower left panel regresses returns on the value-weighted US stock market index on

16" “Recession” attention is the largest determinant of

AR(1) innovations in topic attention.
market returns with a coefficient of —0.35. The second largest effect comes through atten-
tion to the “problems” topic, which describes adverse conditions more generally {key terms:
problem face, biggest problem, big problem, matter worse}.

“Recession” and “problems” attention are also significant positive drivers of market volatil-
ity, defined as the realized standard deviation of daily market returns within each month.
They both enter with large positive coefficients, reflecting the strongly countercyclical nature
of market volatility. It also shows that “small business” topic tends to associate with low
volatility regimes in our sample.

For all four macroeconomic variables, five news topics explain a significant fraction of their

variation measured by R?. That news attention explains 25% of the variation in stock market

5The lasso regression juxtaposes the employment experience under various presidential administrations,
though these are insignificant effects at the 5% level. This result also shows how the choice of topic number
can influence second-stage economic analysis. A finer decomposition of the WSJ into 300 topics produces
separate topics for each presidential administration, while a coarser decomposition of 50 topics groups all
administrations together.

16Market returns have close to zero serial correlation and theoretically behave like a martingale difference
sequence, making it natural to likewise represent the regressors as time series innovations.
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Table 2: Reconstructing Stock Market Returns

Topic Model & CFNAI Topic Model & FRED-MD
Topic Coeft. p-val. Topic Coeff. p-val.
Recession -0.35 0.00 Recession -0.36 0.00
Problems -0.19 0.00 Problems -0.18 0.00
Convertible/preferred -0.16 0.20 Convertible/preferred -0.14 0.24
Record high 0.12 0.08 Record high 0.13 0.07
Options/VIX -0.11 0.76 IPNCONGD (FRED-MD) -0.10 0.98
Full R? 0.25 Full R? 0.25
Benchmark R? 0.02 Benchmark R? 0.09

Note. Five-regressor active-set regression estimates based on lasso selection with p-values adjusted for post-
selection inference. Full R? corresponds to the fit with both topics and benchmark variables. Benchmark R2

corresponds to the fit with only benchmark variables.

fluctuations is a rather extraordinary result. One of the central puzzles in financial economics
is the notorious inability to explain stock market fluctuations even ex post with anything
other than other asset prices (Shiller, 1981; Roll, 1988). To illustrate, Table 2 compares news
attention to other business cycle leading indicators. First we regress stock returns on AR(1)
innovations in the four sub-indices of the Chicago Fed National Activity Index (CFNAI).
These indices measure production/income, employment/unemployment/hours, personal con-
sumption/housing, and sales/orders/inventory. CFNAI indices jointly explain only 2% of the
variation in contemporaneous monthly stock returns. Table 2 also shows that when we in-
clude these along with the news attention series in our five-regressor lasso model, none of the
CFNAI indices are selected.

As another benchmark, we regress market returns on AR(1) innovations in the 101 macroe-
conomic variables in the FRED-MD database.!” To remain comparable with our news atten-
tion regressions, we likewise impose a lasso penalty to select exactly five non-zero coefficients
among the FRED-MD variables. We find an R? of 9%, which exceeds that from the CFNAI
regression, but is less than half of the news-based result.'® When we include the 101 FRED-
MD series alongside the news attention series in the lasso model, only one FRED-MD variable
is selected, industrial production growth of non-durable consumption goods (IPNCONGD),

though it is insignificant and enters with a counter-intuitive negative sign.

17Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/. We exclude
FRED-MD interest rate and exchange rate variables. These are asset prices and have mechanical links to
stock market returns.

8This result is robust to a variety of regression specifications. The explained variation in returns is
essentially unchanged if we use other constructions of macro variable innovations, or if we control for lagged
as well as contemporaneous values. Even if we include interest rate and exchange rate variables, the R? rises
only to 17%.
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To further demonstrate the robustness of news attention in explaining contemporaneous
variation in macroeconomic aggregates, we calculate out-of-sample regression R? in an ex-
panding estimation window. The first estimation window includes the first half of our sample,
and we recursively re-estimate each year adding the twelve most recent data points. In each
estimation sample, we fit a five-regressor lasso model and use the estimated coefficients to
produce fitted values for the next year of data. Table 1 reports the resulting out-of-sample
regression R? just below the in-sample R?. While the out-of-sample fits are predictably lower
than those in-sample, we still achieve an R? of 17.8% for market returns and 43.6% for market
volatility, demonstrating the stability of this result throughout our sample.

The ability of non-price variables, and interpretable text-based regressors in particular,
to produce such a large gain in explained return variation is significant progress in resolving
the Roll (1988) puzzle. In our macroeconomic VAR analysis below, we find that “recession”
attention is a particularly strong forecaster of future economic outcomes, and discuss how this
rationalizes the high contemporaneous correlation between “recession” attention and stock

market fluctuations.

4.2.1 Financing Activity

As a second and more specific example, we analyze how news attention tracks fluctuations in
financing activity. We choose x; variables that help illustrate how specific news topics line up
with detailed differences across economic activities.

First, we study monthly dollar volumes of IPOs and LBOs. Table 3 shows that news
attention closely tracks fluctuations in both series with an R? of 44% and 58%, respectively.
More interestingly, the news topics that associate most strongly with each financing variable
are also those with the most similar thematic content. The three significant topics in the IPO

PR3

volume regression are “IPOs,” “venture capital” which is the typical form of financing prior

to IPO, and “internet” which is the industry that saw the greatest IPO activity during our

” W

sample period. For LBO volume, “takeovers,” “control stakes,” “key role,” and “job cuts”
topics capture key LBO concepts such as transition from public market to private ownership
and control, management changes (“key role”), and eliminating jobs to reduce costs and
improve production efficiency.

Table 3 also looks at the credit risk side of financing, measured first as the monthly count of
bankruptcies among US public companies. News attention explains variation in bankruptcy

%W

intensity with an R? of 42%, and the four significantly associated topics (‘“recession,” “ac-

PR A4

counting,” “venture capital,” and “small caps”) are all themes that commonly coincide with
debt default. The last panel introduces an international dimension to credit risk in the form of

average CDS spreads among Eurozone sovereigns (available beginning in 2002). A one stan-
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Table 3: Reconstructing Financial Activity

Topic Coeft. p-val. Topic Coeft. p-val.
IPO Volume LBO Volume

IPOs 0.26 0.00 Takeovers 0.31 0.28
Venture cap. 0.22 0.00 Insurance -0.28 0.02
Bankruptcy -0.14 0.25 Control stakes 0.27 0.03
Internet 0.13 0.08 Key role 0.23 0.70
M&A 0.09 0.72 Job cuts -0.18 0.13
R? 0.44 R? 0.58

—— Actual
— Predicted

—— Actual
—— Predicted

1984 1988 1992 1996 2000 2004 2008 2012 2016 1984 1988 1992 1996 2000 2004 2008 2012 2016

Bankrupty Filings European CDS Spreads

Recession 0.48 0.00 Euro. sov. debt 0.58 0.00
Venture cap. 0.25 0.01 Govt. budgets 0.17 0.61
Accounting 0.24 0.01 Middle east 0.16 0.08
Small caps 0.12 0.00 Mobile devices 0.09 0.06
Machinery -0.06 0.31 News conference 0.07 0.98
R? 0.42 R? 0.78

—— Actual — Actual

—— Predicted —— Predicted

1984 1988 1992 1996 2000 2004 2008 2012 2016 2002 2004 2006 2008 2010 2012 2014 2016

Note. Five-regressor active-set regression estimates based on lasso selection with p-values adjusted for post-
selection inference.

dard deviation rise in the lone significant news topic, “European sovereign debt,” associates
with a 0.58 standard deviation increase in European sovereign credit spreads. The time series
plot of actual spreads versus spreads reconstructed from news shows the rapid rise and fall of

CDS spreads. This data series amounts to only a handful of distinct observations around the
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financial crisis. Yet despite this, estimated news topic attention is informative enough that
lasso regression hones in on the correct narrative account of these events. While other news
topics related to financial crises and subprime mortgages follow similar time series patterns,

the penalized regression bypasses these in favor of the European sovereign debt narrative.
4.2.2 Industry Volatility

Table 4: Reconstructing Industry Volatility (Innovations)

Topic Coeff. p-val. Topic Coeff. p-val. Topic Coeff. p-val.
Automotive Banking Pharmaceuticals
Automotive 0.16 0.03 Nonperform. loans  0.26 0.00 Clintons 0.20 0.01
Fees 0.14 0.11 Mortgages 0.20 0.00 News conf. -0.14 048
Mutual funds -0.13  0.33 Options/VIX -0.18  0.00 Pharma 0.14 0.10
Corporate govt.  0.12 0.59 Chemicals/paper -0.15  0.10 Earnings fcts.  0.12 0.35
Financial crisis -0.08  0.87 NASD -0.09  0.76 Health ins. 0.10 0.62
R? 0.10 R? 0.17 R? 0.11
Computer Hardware Oil and Gas Tobacco

Retail 0.20 0.00 Oil market 0.34 0.00 Tobacco 0.17 0.34
Computers 0.17 0.01 Earnings losses -0.15  0.05 Problems -0.10 043
Software 0.10 0.18 Options/VIX -0.15  0.87 Mexico 0.10 0.98
Fees -0.09 0.72 Cultural life 0.14 0.08 Terrorism -0.09 0.41
Russia -0.08  0.93 Elections -0.13  0.46 Lawsuits 0.09 0.59
R? 0.09 R? 0.21 R? 0.08

Note. Five-regressor active-set regression estimates based on lasso selection with p-values adjusted for post-

selection inference.

Our next example investigates how well news attention accounts for patterns in industry-
level stock volatility. We use the 49 industry categories from Ken French’s website, and
measure monthly volatility as the standard deviation of daily industry returns within the
month. All equity portfolios tend to share a large common time series component associated
with overall market volatility (Herskovic et al., 2016). To hone in on industry-specific volatility
patterns that are distinct from the aggregate market volatility analysis in Table 1, we perform
two adjustments to the raw industry volatility data. First, we orthogonalize each industry
volatility series against the first principal component of the industry volatility panel. Then,

we construct the AR(1) innovations in the adjusted series."”

9Without the principal component adjustment, we essentially recover the results seen for market volatility
in Table 1. While the principal component adjustment is necessary for our conclusions, the results from
our analysis are largely unchanged if we use levels of orthogonalized industry volatility rather than AR(1)
innovations.
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Table 4 reports results from five-regressor lasso regressions of industry volatility innovations
on AR(1) innovations in news topic attention. For the sake of brevity, the table reports
results for nine of the 49 industries that best illustrate how specific aspects of news attention
align with specific industry behaviors. Indeed we find that the influential topics in each
regression are close thematic counterparts for the respective industry. For example, banking
sector volatility is highest amid news attention to “nonperforming loans” and “mortgages”
topics. Volatility in the computer hardware industry (which includes firms like Apple, Dell,
and Hewlett Packard) is most tightly linked to “retail,” “computers,” and “software” topic
attention. In addition to the “pharma” news topic, volatility in the pharmaceuticals sector is
associated with attention to the “Clintons” topic, reflecting the important role of healthcare
reform in the policy platforms of both Bill and Hillary Clinton, as well as attention to the
“health insurance” topic. Occasionally we find unintuitive but significant topic assignments

such as “cultural life” in the oil and gas industry regression, though these examples are rare.

4.2.3 Policy Uncertainty

In influential recent work, Baker et al. (2016) develop a broad index of economic policy un-
certainty (EPU) based on news text, as well as a number of category-specific sub-indices
that focus on particular aspects of economic policy like trade, taxes, and financial regulation.
Table 5 reports the five-regressor lasso regression of BBD’s 12 EPU indices (11 catagorical
EPU indices plus their broad EPU index) on our estimated news attention time series. Our
estimated topics are closely related to the EPU indices developed by BBD. For example, the
news attention regression explains 55% of the variation in the BBD “government spending”
uncertainty index. This is driven primarily by our “government budget” topic {key terms:
spend cut, deficit reduction, grammrudman, federal budget, balance budget}, which has a uni-

variate correlation of 66% with the BBD index. The BBD “financial regulation” uncertainty

” W bRANAA

index looks like a combination of “financial crisis,” “competition,” “problems,” “bank loans,”

and “recession” topics (R? = 44%). It is interesting to note that “competition” is the only
topic significantly negatively associated with financial regulation uncertainty. And the BBD
“trade policy” uncertainty index behaves like a combination of “Mexico,” “trade agreements,”,
“consumer goods,” “job cuts,” and “investment banking” topics (R* = 52%).

We briefly contrast our textual analysis method with that of BBD. To construct their
main EPU index, BBD measure the fraction of articles in ten leading U.S. newspapers that

bYN14

contain the terms “economic” or “economy;” “uncertain” or “uncertainty;” and “Congress,”

PP A4

“deficit,” “Federal Reserve,” “legislation,” “regulation,” or “White House.” Their textual
analysis approach emphasizes more researcher judgement than statistical modeling, which has

advantages and limitations. Thoughtfully choosing a small list of search terms ex ante has the
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Table 5: WSJ Topics and Economic Policy Uncertainty Indices

Topic

Coeff P-Value

Topic

Coeff P-Value

Topic

Entitlement Programs

Financial Regulation

Fiscal Policy /Spending/Taxes

Govt. budgets 0.46 0.00 Financial crisis 0.25 0.00 Govt. budgets  0.48 0.00
Takeovers -0.18 0.19 Competition -0.24 0.00 Recession 0.25 0.00
Credit ratings 0.17 0.19 Problems 0.16 0.04 M&A -0.19 0.00
Euro. sov. debt 0.17 0.00 Bank loans 0.16 0.01 Restraint 0.15 0.73
Economic growth 0.08 0.16 Recession 0.11 0.08 Competition -0.07 0.02
R? 0.45 R? 0.44 R? 0.54
Government Spending Health Care Monetary Policy
Govt. budgets 0.54 0.00 Govt. budgets 0.38 0.29 Problems 0.27 0.00
Restraint 0.17 0.00 Economic growth 0.25 0.00 Restraint 0.22 0.00
M&A -0.17 0.00 Bush/Obama/Trump 0.17 0.00 Airlines 0.19 0.00
Problems 0.13 0.23 Takeovers -0.17 0.93  Justice Dep. -0.15 0.47
Competition -0.05 0.61 Euro. sov. debt 0.14 0.00 Record high -0.10 0.02
R? 0.55 R? 0.53 R? 0.35
National Security Regulation Sov. Debt/Currency Crises

Iraq 0.51 0.00 Govt. budgets 0.26 0.04 Euro. sov. debt 0.39 0.56
Internet -0.21 0.00 Financial crisis 0.21 0.00 Southeast Asia  0.39 0.36
Airlines 0.18 0.00 Recession 0.20 0.25 Cultural life 0.30 0.88
Record high -0.14 0.01 M&A -0.19 0.00 Movie industry -0.15 0.09
US defense 0.12 0.01 Competition -0.16 0.00 Problems 0.13 0.09
R? 0.56 R? 0.44 R? 0.45

Taxes Trade Policy Broad EPU
Govt. budgets 0.43 0.00 Mexico 0.38 0.00 M&A -0.31 0.00
Recession 0.22 0.00 Trade agreements 0.32 0.00 Problems 0.30 0.00
Competition -0.16 0.00 Foods/con. goods 0.18 0.00 Govt. budgets 0.27 0.00
M&A -0.15 0.00 Job cuts 0.17 0.00 Restraint 0.19 0.00
Credit ratings 0.12 0.20 Investment banking -0.15 0.00 Bank loans 0.07 0.99
R? 0.48 R? 0.52 R? 0.52

Note. Five-regressor active-set regression estimates based on lasso selection with p-values adjusted for post-

selection inference.

advantage that a researcher can hone in on the text content of interest while easily avoiding
the complexity and noise of surrounding text. But relying on detailed researcher input (i.e.,

strong priors) makes this textual analysis approach prone to misspecification biases. These

considerations are a manifestation of the bias-variance tradeoff at the core of statistics.

In contrast, our topic modeling approach is unsupervised and comparatively unrestricted.
This flexible statistical approach has the advantage of being less biased, but comes with the

cost of higher variance due to confronting noisy term count data in their complex and high-

27

Coeff P-Value



dimensional form. That said, the high degree of interpretability in our estimated topics and
their intuitive correspondence with a range of numerical economic data suggest that we pay
a small variance cost for our flexible statistical model.

The BBD approach and our topic modeling framework share a common great advantage—
the natural interpretability inherent in the use of text as data. While the BBD approach
demonstrates the success that can be achieved through careful researcher intervention in
curating specialized search term lists, our results illustrate the complementary potential that
topic models and other machine learning methods offer for constructing indices of economic

conditions from news text with little researcher intervention.

5 News Attention and Macroeconomic Dynamics

Thus far we have analyzed contemporaneous correlations between news narratives of economic
time series. This helps validate the conjecture that news can be a useful quantitative tool for
summarizing the state of the economy and helps demonstrate the interpretability of quanti-
tative analyses that use topic model estimates. However, it has little to say about whether
news text conveys novel information that is distinct from information in standard numerical
macroeconomic indicators, or whether news text helps in modeling longer term macroeconomic
trajectories.

We investigate this question by studying the role of news attention in a macroeconomic
VAR. We build on the five-variable monthly VAR specification studied by Baker et al. (2016),
which includes (in order) the EPU index, log value of the S&P 500 index, Federal Reserve
funds rate, log employment, and log industrial production. The BBD VAR is a natural starting
point for our analysis given that paper’s large impact in macroeconomics and given the fact
that news text is an input to the EPU index.

In our baseline formulation, we augment the VAR to include news attention to the “reces-
sion” topic, based on its central role in the lasso regressions of Table 1, in place of EPU (and
we include three lags of all variables).?’ We estimate the VAR using data from 1985-2017.!
We then plot output and employment impulse response functions for a shock to “recession”

news attention.?” We define a news impulse as a shift in “recession” attention from its 5

20Gection 5.2 shows that this is a statistically optimal choice from the full set of topics.

21'We update BBD’s publicly available data (which runs from 1985-2014) through June 2017 to correspond
with our WSJ sample. We also replace their S&P 500 index data, which is constructed from the average daily
index value within the month, with the value of the S&P 500 on the last day of the month. Using average
daily values within the month causes additional serial correlation in log changes in the series (an increase
from 6% with month-end values to 26% with average daily values). This change has only minor quantitative
consequences for our results as well as the results of BBD.

22We define orthogonal shocks based on the Choleski decomposition given the BBD variable ordering plus
the “recession” topic (ordered first in the vector).
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Figure 7: Output and Employment Responses to “Recession” News Attention Shock
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Note. Responses of output and employment to a “recession” attention impulse in various VAR specifications,
1985-2017. The red shaded regions in the top plots are 90% confidence bands. This gold shaded regions in

the bottom plots are 90% confidence bands when news attention is ordered last in the VAR (corresponding to

the gold impulse response curves).

percentile to its 95*. We use the same definition of an impulse for EPU in our comparisons

below (following the impulse definition in BBD).

Panel A of Figure 7 plots the results. A shock to “recession” news attention generates a

1.99% drop in industrial production after 17 months. Employment declines by 0.92% after

20 months. These effects are highly statistically significant, as shown by the 90% confidence

bands.?® The estimated responses are large economic magnitudes. As a benchmark, Panel B

Z3We compute bootstrap confidence intervals following Kilian (1999).
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compares our baseline VAR specification (solid black line) to the impulse response for EPU
(solid gray line) in the VAR model of BBD.?* The response of output to EPU (—0.98%) is
roughly half as large as the response to “recession” attention, and the employment response
(—0.34%) is roughly one third as large.

Panel B demonstrates the robustness of our baseline VAR conclusions to alternative spec-
ifications. First, we consider ordering news attention last in the VAR while preserving the
order of other covariates. In this case, the impulse responses reflect the macroeconomic impact
of “recession” news coverage after controlling for contemporaneous responses to all other vari-
ables. This has a notable impact on our estimates, reducing the maximum output response
from —1.99% to —1.25% (shown in gold, surrounded by the 90% confidence band also in gold).
The maximum impact on employment is —0.51%, versus —0.92% in the baseline specification.
The effects of “recession” news attention, though smaller when it is ordered last in the VAR,
remain highly significant and larger than the impulse responses to EPU.

If we instead alter the order of variables so that “recession” attention is second (after
the S&P 500 index but before the Fed funds rate, employment, and industrial production),
we see similar impulse responses to the case where news is ordered last. The difference in
“baseline” and “news 2nd” specifications highlights that media outlets and financial markets
have a partially synchronized response to news arrival (consistent with the high R? for the
stock market return regression in Table 1).

When we simultaneously control for EPU (which we order second in the VAR after “reces-
sion” attention), the “recession” attention impulse responses are essentially unchanged from
the baseline. Replacing EPU with the Michigan Consumer Sentiment Index has a small effect
on the output response to “recession” news (changing from —1.99% to —1.74%) and a small
effect on the employment response (changing from —0.92% to —0.76%). Likewise, accounting
for fluctuations in economic uncertainty via inclusion of the VIX index, introducing a time
trend, and incorporating six rather than three lags in the VAR leave results qualitatively

unchanged.

5.1 News Attention and Stock Market Dynamics

A large literature beginning with Fama (1990) argues that stock price fluctuations are driven
by changing expectations about future macroeconomic outcomes. Section 4.2 documents a
strong contemporaneous correlation between stock market returns and news attention (a cor-
relation unmatched by any FRED-MD macro series). In light of this, a natural interpretation

of this high correlation is that news text, like the stock market, reflects agents’ expectations of

24This is the same five-variable specification of BBD, with EPU ordered first, and excluding “recession”
attention.
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Figure 8: Stock Market and “Recession” Attention
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Note. Panel A plots the response of output to an impulses in “recession” attention and stock market value.
Panel B reports the response of stock market value to an impulse in “recession” attention in our baseline
VAR (left plot) and an impulse in EPU in the BBD VAR (right plot), and includes specifications for impulse
variables ordered either before or after the S&P 500 in their respective VARs. Sample is 1985-2017.

the future macroeconomy, and these expectations are not well captured by time series patterns

in numerical macroeconomic data.

An

market also contain notably different information about future macroeconomic outcomes. The

intriguing implication of the VAR analysis is that recession attention and the stock

top two panels of Figure 8 compare industrial production impulse responses for shocks to news

attention and stock valuations.”” The top left shows the baseline VAR (with news ordered first

25The S&P 500 impulse response is defined as the 95" percentile of log changes in the index. In other

31



and the S&P 500 second) and the top right shows the VAR with S&P 500 ordered first and news
second. Both cases tell a similar story: “Recession” attention contains information about the
future macroeconomy that is not fully reflected in stock prices. It has a large negative impact
on future output, even when ordered after the S&P 500. Moreover, “recession” news has a
stronger association with future output than the stock market does (regardless of ordering),
which is a surprising and impressive fact given the Fama (1990) result.

The bottom left panel of Figure 8 further illustrates the dynamic association between re-
cession news and stock prices when news is ordered first. Upon arrival of a positive “recession”
attention shock, prices initially drop by about —5%. But this response is incomplete. Over
the next year prices drop further, reaching 7% below their pre-shock levels. When news is or-
dered second, the total response is smaller and borderline insignificant, but still economically
large at —2.4% over 18 months. The bottom right panel helps illustrate the large economic
magnitude of stock market responses to “recession” attention. It shows the stock market
response to an EPU impulse based on the VAR in BBD. When EPU is ordered first in the
VAR, EPU has a negative and prolonged impact on stock prices, though the magnitude is
about half as large as the impulse response to “recession” attention. Furthermore, if EPU is
ordered second in the VAR (after the S&P 500), the stock market response to EPU is zero at

first, then becomes positive.

5.2 Attention Selection in a Text-augmented VAR

Our VAR specification uses recession attention as the only news topic variable in the sys-
tem. We next show that this is not an arbitrary choice, but is in fact a statistically optimal
specification in terms of its tradeoff of model fit and parameter parsimony.

Due to the large size of the topic model, including all news attention series in the VAR is
obviously problematic due to “degrees-of-freedom problems” (Bernanke et al., 2005). Instead,
we seek a VAR which includes news topics that genuinely influence macroeconomic dynamics
and avoids spurious inclusion of irrelevant topics. This is a model selection problem and we
solve it with a standard tool: cross-validated lasso regression.

We begin with the four core macroeconomic variables in the VAR specification above (S&P
500 index, Fed funds rate, employment, and industrial production) which we denote as y; and
fix as left side variables in a multivariate regression. We then consider a collection of predictors
that includes the 180 news attention series as well as EPU, VIX, and the Michigan consumer

sentiment index, which we arrange as x; = (214, ..., 153+). The right side variables are three

words, the shock corresponds to a one month stock market return of 6.9%
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lags each of y; and xy:

3
Y = C + Z(Qlyt*l + Fll'tfl) + €. (5)
=1

Our modeling approach uses a lasso penalty to select robust predictors of y,. We prefer to
select or remove a right side variable in its entirety (rather than selecting, say, only the third
lag of a given variable, or selecting a variable to explain one element of y, but not another).
The group-lasso of Yuan and Lin (2006) is ideally suited for this task. Group-lasso assigns
non-zero coefficients to only those predictor groups that most reliably forecast y;, where the
notion of “reliable” is determined by the penalty parameter \. We use 183 groups, one for
each variable in x; (for example, the group for z;, includes all terms on the right-hand-side
of (5) associated with z;; 1,2, 2, and z;,_3). We include lags of y, without penalization.?®

Figure 9 summarizes the importance of each predictor for forecasting macroeconomic out-
comes. It shows the ¢2 norm of coefficients for each predictor variable as a function of the
penalty parameter. When A — 0 there is no selection and all variables are included.?” As \
rises, parameters become more heavily penalized, and weak predictors begin to drop out. At
high levels of A\, only the most potent macroeconomic predictors receive non-zero coefficients.

The legend reports the ten predictor variables that survive heavy penalization, ordered
in terms of statistical importance from top to bottom. One predictor stands out above all
others—attention to “recession” news. Remarkably, its predictive contribution dominates
EPU, VIX, and the consumer sentiment (of these, only EPU makes the list of top ten predic-
tors). At lower levels of penalization, other news variables that enter the model include “SEC

7w

(Securities Exchange Commission),” “mortgages,” and “credit ratings.”

Figure 9 establishes that the recession topic is the appropriate choice for inclusion in
the VAR if we were to choose just one topic. But, if we were to use the group-lasso to
decide on a model specification, what is the best model? Or, equivalently, which value of A
is most appropriate? A standard criterion for selecting among A values is cross-validation,
which is designed to identify the model with the lowest expected out-of-sample forecast error.
Specifically, we choose the A corresponding to the model with lowest mean squared forecast

error in ten-fold cross-validation.

268pecifically, our group-lasso estimation objective is

4 T 4 3 183 3 2 183
minz ZZ (yi’t - Z Zwi,j,lyj,tfl - Z Z’Yi,m,lxm,tl) + A Z

(b, 3 155 j=11=1 m=1 =1 m=1

where w; j; and v, ;; are the (4,7) elements of {; and I';. All variables are variance-standardized prior to
model estimation to ensure comparability of coeflicient estimates.

2"When A = 0, the model has more regressors than observations and the estimator is not defined, hence
the first estimates on the left of Figure 9 correspond to a small positive value of .
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Figure 9: Group-Lasso VAR Selection
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Note. 2 norm for all variables considered in a group-lasso VAR as a function of the penalty parameter A. The
legend shows the ten predictors that survive the highest levels of penalization. Variable names in quotation
refer to news attention series.

The optimal cross-validated model corresponds to A = 0.054, depicted as a vertical line in
Figure 9. This model selects a single news attention topic, “recession,” for inclusion in the
VAR. It is based on this result that our text-augmented VAR specification uses “recession”

attention alone, as it represents a statistically optimal set of news topics for VAR prediction.?®

5.3 VAR Discussion

Combining macroeconomic analysis with topic modeling, we draw on a vast corpus of news
text to better understand quantitative economic phenomena. Our VAR demonstrates a large
incremental role for news attention in understanding economic dynamics. Our interpretation of
this result is that news media reflects agents’ perceptions of the state of the economy, including

(but not limited to) their expectations of future macroeconomic conditions. It should not be

28 A technical point regarding our construction of bootstrap standard errors in Figure 7 is that they are
not adjusted for lasso model selection. In Appendix D we describe and report impulse response standard
errors accounting for post-selection inference. While post-selection inference widens our confidence bands, the
effect is small and does not change our conclusions about the statistical significance of news attention impulse
responses. Hence, to simplify exposition in the main text, we stick with standard bootstrap confidence intervals
without selection adjustment.
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surprising that news media can offer a representation of economic conditions that is unspanned
by commonly studied numerical macroeconomic data. News contains information about our
high dimensional perceptions of the world around us, distilled into narratives through the
complex process of human understanding.

Figure 7 provides evidence of economic fluctuations emerging from news. This news is
an amalgamation of at least four phenomena. First, business news provides a summary of
expectations about future productivity. The news-driven business cycle literature has made
theoretical strides in understanding how changes in expectations induce booms and busts
even absent concurrent changes in fundamentals (Beaudry and Portier, 2004, 2007, 2014).
Second is the closely connected role of noise in business cycle dynamics (as in Lorenzoni,
2009; Angeletos and La’o, 2010). Inevitable imperfections in macroeconomic expectations
(as summarized by news media) can induce volatility in economic activity. A third and also
closely related component of news text is the sentiment of economic agents, akin to Keynesian
“animal spirits,” which drive fluctuations as in Angeletos and La’o (2013). Frequent WSJ
interviews of influential asset managers, corporate executives, and policymakers are a likely
vehicle through which sentiments become reflected in news text. Fourth, news production
is determined by media firm incentives, which are in turn influenced by consumer demand
(Mullainathan and Shleifer, 2005; Gentzkow and Shapiro, 2010). As such, news text also

reflects media slant, which can in turn influence economic dynamics.

5.4 Narrative Retrieval

Empirical macroeconomics research has long wrestled with the issue of shock identification
(see Ramey, 2016, for a survey discussion). A common approach to model interpretation
imposes identifying restrictions on the residual covariance matrix in a VAR, then studies
impulse response functions for each variable in the system. Our analysis in Figure 7 is one
such example.

A great advantage of embedding news text in macroeconomic models is that fluctuations
can be directly mapped to narratives of economic conditions in the underlying article text.
This offers a new approach to model interpretation that complements traditional methods.
Specifically, we propose a scheme for narrative retrieval in text-augmented VAR models. It
relies on only two inputs—the estimated VAR coefficients and topic model parameters—
without requiring the researcher to impose additional identifying restrictions or economic
constraints.

First, we trace future macroeconomic outcomes to prevailing levels of news attention
through the estimated VAR coefficients. From here, we further trace economic fluctuations

to specific textual narratives using topic model estimates. In each month ¢, we identify the
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Figure 10: Narrative Retrieval for Industrial Production Growth Forecasts
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Note. The figure shows one-month-ahead growth rate expectations from the baseline VAR (red line) and
contribution to the expectation coming from “recession” attention (black line). We annotate seven of the
largest shifts in “recession” attention-based expectations. Annotations are headlines of articles that have the
highest allocation to the “recession” topic in a given month.

WSJ article published during the month that is most representative of a given VAR topic, k.
This representative article is defined as the article ¢ with the largest proportion of its content
(6;) allocated to topic k. This chain of estimates identifies the most influential individual
articles—i.e., specific narratives—that underlie model-implied macroeconomic expectations.

Our narrative retrieval procedure is a natural way to flag articles that coincide with large
shifts in model predictions. It points the researcher to the most diagnostic articles for deep
reading, bypassing the labor intensive process of reading every document in the underlying
corpus. And it automates the integration of narratives into macroeconomic models, rather
than relying on manual narrative selection (as in Romer and Romer, 1989).

We demonstrate this approach in the baseline VAR of Figure 7, and study the narrative
determinants of output expectations. In Figure 10, the red curve shows one-month-ahead
expected output growth based on the estimated VAR. The black curve shows how “recession”
news attention contributes to this expectation. This is another visualization of the large
impact that news has on output dynamics to complement the impulse responses shown earlier.

Next, we annotate seven of the largest monthly drops in expected output growth coming

290ur VAR uses a single topic attention series, but this narrative retrieval approach generalizes to a VAR
with any number of topic elements.
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from shifts in “recession” attention. Annotations show the headline of the article with the
highest attention allocation to “recession” at the time of the drop. These articles are the
biggest contributors to month-to-month variation in “recession” attention.

Reading the flagged articles carefully, we find output growth expectations are underpinned
by narratives that support theories discussed in Section 5.3. An informative example is the
April 2001 article “Consumer Confidence Slides on Fears of Layoffs.” The author, Greg Ip,

notes that consumer confidence surveys have recently soured and offers an interpretation:

“mostly because consumers have been more pessimistic about the future as lay-
off announcements have mounted, energy costs have risen, and stock prices have

fallen.”

This is a narrative of deteriorating consumer demand born from declining expectations for
future growth, consistent with news-driven business cycle theory. The article then goes on
to quote viewpoints of two experts, reflecting the mechanism described by Angeletos and
La’o (2013) in which macroeconomic expectations emerge from heterogeneous beliefs that

propagate across agents. For example, the article notes that

“Chris Varvares, economist at Macroeconomic Advisers LLC, said that so far there
has been a big disconnect with confidence falling amid resilient consumer spending.
... He said the economic fundamentals of employment income and wealth may now
be deteriorating enough to undermine consumer spending but he thinks they will

be good enough to keep us out of recession.”

A number of other articles also highlight narratives about economic growth expectations
(November 2008, September 2015) and corporate profit expectations (August 2001, August
2008, February 2016) as primary drivers of VAR forecasts. The September 2015 article “Dow
Drops 6.6% in August — Stocks Fell Further on Monday Amid Concerns Prices Don’t Fully
Reflect Worsening Global Growth” is another informative example. Why does news text
provide such large incremental predictive information above S&P 500 valuations? This article
suggests a rationale in the form of heterogeneous belief propagation. Despite the fact that
“the Dow lost 6.6% in August, its largest one-month percentage decline since May 2010,” the
Dow fell another 0.7% on Monday, September 1, 2015. The narrative put forth by journalists
Saumya Vaishampayan and Christopher Whittall is:

“Monday’s selling was driven by intensifying concerns that stock prices don’t fully
reflect the deterioration in recent months of the global economic outlook, traders
said. ... While many traders and analysts remain upbeat on the prospects for

the U.S. economy and generally optimistic about investing in the shares of large
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U.S. companies, market sentiment is broadly cautious following the sharp price
swings of the past two weeks.... Some portfolio managers are heeding signs that
growth is slowing in the economies of many developing nations and that economic
gains are likely to be slow in coming elsewhere. ‘Emerging markets don’t look
that great, the Federal Reserve is going to raise rates, and Europe is still gradually
emerging from recession,” said David Lebovitz, global market strategist for J.P.

Morgan Asset Management.”

The November 1987 article “Survey Finds Sharp Drop in Confidence Of Consumers After
Stock Market Crash” is yet another informative data point. This article’s narrative illustrates

how the sudden and extreme stock price drop in October 1987 dented consumer confidence:

“Consumer Sentiment stood at 92.5 before the panic selloff on Wall Street Oct. 19
but plummeted to 82.4 for the rest of the month. ... ‘Needless to say the current
situation is volatile,” the surveyors said. ‘Whether a recession eventually develops
can’t be determined from these data (because) the response by consumers has
yet to move past their initial reactions. Nonetheless the data indicate weakening
sales and a much larger potential downside risk.” ... The surveyors conceded that
‘caution must be used in the interpretation of these results because the post-crash
sample was so small.” ... Mr. Curtin®® said consumers still haven’t assessed the
personal toll such as reduced income or lost jobs that the crash may ultimately

exact.”

In the context of the text-augmented VAR, this narrative is associated with a drop in expected
one-month industrial production grown of roughly 0.25%. The causes of the 1987 crash are
hotly debated to this day,®' but it is generally agreed that the crash was a transitory incident
with little effect on subsequent macroeconomic fundamentals (Barro, 1990). All the more
impressive, then, is how the uncertainty emphasized in this article harms economic expecta-
tions in the immediate aftermath of the crash. Moreover, the decline in VAR-based output
expectations recovers within two months of the crash as recession narratives associated with
the crash quickly disappear. This episode resembles the effects of a prototypical noise shock
in noisy business theories (Lorenzoni, 2009; Angeletos and La’o, 2010).

In sum, a text-augmented VAR and the narratives that underlie it reveals a confluence of
a multiple theoretical mechanisms that contribute to observed economic fluctuations. It also

suggests that there is much more we can learn about business cycle fluctuations by studying

30Richard T. Curtin, director of consumer surveys at the University of Michigan’s Institute of Social Re-
search

31Potential explanations range from the prevalence of portfolio insurance strategies (Brady et al., 1988) to
proposed and eventually abandoned legislation on corporate takeovers (Mitchell and Netter, 1989).
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the news narratives. For instance, other articles shown in Figure 10 reference economic mech-
anisms such as monetary policy (“Retail Sales Fall as Stimulus Fades” from August 2008) and
financial frictions (the November 2008 article “Sector Slides on Lack of Orders and Credit”
notes that “more than two-thirds of [survey| respondents have been affected by credit woes

from recent financial-market turmoil”) as drivers of VAR-based expectations.

6 Conclusion

Understanding the forces that drive fluctuations in the state of the economy is central to eco-
nomic modeling. The overwhelming majority of empirical research has focused on numerical
macroeconomic indicators to approach this problem. We offer an alternative approach that
summarizes economic conditions in terms of narratives in business news.

Our approach is motivated by the view that news text is a mirror of the state of the
economy. The media sector is an information intermediary that meets information demand of
consumers and investors with verbal descriptions of economic events and their interpretation.
Of course, news media is a verbal mirror of the economy that comes with flawed refractions,
often in the form of producer and consumer biases, noisy inferences, and speculative sentiment.

We estimate a topic model from the full text of The Wall Street Journal. Our estimates
provide a taxonomy of themes that are the subjects of attention in financial markets and
the broader economy. We measure how much attention is allocated to each theme at each
point in time, and then use these measurements as inputs into statistical models of economic
fluctuations.

Economic topics identified from WSJ text closely coincide with related numerical mea-
sures of economic activity, including macroeconomic aggregates like output and employment,
financing activity, asset prices, and different measures of economic uncertainty. In the context
of a standard macroeconomic VAR, we show that news topic attention strongly influences
economic dynamics above and beyond standard numerical economic indicators.

We propose a new perspective on model interpretation with narrative retrieval. Our ap-
proach relies on the model to digest massive text corpora that are beyond human readability
and flags articles that are most statistically related to a specific fluctuation of interest. It thus
isolates news-based narratives of those events that the researcher can “close-read” for detail
and nuance about the drivers of model-based expectations.

While we conduct our macroeconomic analysis in the context of a VAR, this is just one
example for how to combine an economic model with news attention to aid inference and
interpretation. Other exciting applications include using text narratives to better understand

survey revisions and forecast errors (Coibion and Gorodnichenko, 2015; Bordalo et al., 2020)
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or to interpret residuals implied from DSGE models.

Finally, readers may explore our results in greater detail through the interactive web-
site, www.structureofnews.com, where we post all of our topic model output. Through the
website, researchers can download our WSJ news attention time series for use in their own

projects. We intend to post regular model updates as new data becomes available.

References

Angeletos, George-Marios, and Jennifer La’o, 2010, Noisy business cycles, NBER Macroeco-
nomics Annual 24, 319-378.

Angeletos, George-Marios, and Jennifer La’o, 2013, Sentiments, Econometrica 81, 739-779.

Asuncion, Arthur, Max Welling, Padhraic Smyth, and Yee Whye Teh, 2009, On smoothing
and inference for topic models, in Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence, 27-34, AUAI Press.

Baker, Scott R, Nicholas Bloom, and Steven J Davis, 2016, Measuring economic policy un-

certainty, The quarterly journal of economics 131, 1593-1636.

Baker, Scott R, Nicholas Bloom, Steven J Davis, and Marco C Sammon, 2021, What triggers

stock market jumps?, Technical report, National Bureau of Economic Research.

Barro, Robert J, 1990, The stock market and investment, The review of financial studies 3,
115-131.

Beaudry, Paul, and Franck Portier, 2004, An exploration into pigou’s theory of cycles, Journal
of monetary Fconomics 51, 1183-1216.

Beaudry, Paul, and Franck Portier, 2007, When can changes in expectations cause business

cycle fluctuations in neo-classical settings?, Journal of Economic Theory 135, 458-477.

Beaudry, Paul, and Franck Portier, 2014, News-driven business cycles: Insights and challenges,
Journal of Economic Literature 52, 993-1074.

Bernanke, Ben S, Jean Boivin, and Piotr Eliasz, 2005, Measuring the effects of monetary

policy: a factor-augmented vector autoregressive (favar) approach, The Quarterly journal
of economics 120, 387-422.

Blei, David M, Andrew Y Ng, and Michael I Jordan, 2003, Latent dirichlet allocation, Journal
of machine Learning research 3, 993-1022.

40


www.structureofnews.com

Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, and Andrei Shleifer, 2020, Overreaction in

macroeconomic expectations, American Economic Review 110, 2748-82.

Boudoukh, Jacob, Ronen Feldman, Shimon Kogan, and Matthew Richardson, 2018, Infor-
mation, trading, and volatility: Evidence from firm-specific news, The Review of Financial
Studies 32, 992-1033.

Brady, Nicholas, Presidential Task Force on Market Mechanisms, et al., 1988, Report of the
Presidential Task Force on Market Mechanisms: Submitted to the President of the United
States, the Secretary of the Treasury and the Chairman of the Federal Reserve Board (US

Government Printing Office).

Chauvet, Marcelle, and Jeremy Piger, 2008, A comparison of the real-time performance of

business cycle dating methods, Journal of Business € FEconomic Statistics 26, 42-49.

Coibion, Olivier, and Yuriy Gorodnichenko, 2015, Information rigidity and the expectations
formation process: A simple framework and new facts, American Economic Review 105,
2644-78.

Cong, Lin William, Tengyuan Liang, and Xiao Zhang, 2020, Textual factors: A scalable, inter-
pretable, and data-driven approach to analyzing unstructured information, SSRN Working

Paper .

Ellingsen, Jon, Vegard Larsen, and Leif Anders Thorsrud, 2020, News Media vs. FRED-
MD for Macroeconomic Forecasting, Working Paper ID 3720396, Social Science Research
Network, Rochester, NY.

Engle, Robert, Takatoshi Ito, and Wen-Ling Lin, 1990, Meteor showers or heat waves? het-

eroskedastic intra-daily volatility in the foreign exchange market, Fconometrica 58, 525-42.

Engle, Robert F, 2019, Financial volatility in an age of geopolitical risks, Technical report,
NYU Working Paper.

Engle, Robert F, Stefano Giglio, Bryan T Kelly, Heebum Lee, and Johannes Stroebel, 2019,

Hedging climate change news, Review of Financial Studies .

Fama, Eugene F, 1990, Stock returns, expected returns, and real activity, The journal of
finance 45, 1089-1108.

Garcia, Diego, 2013, Sentiment during recessions, Journal of Finance 68, 1267-1300.

41



Gentzkow, Matthew, Bryan Kelly, and Matt Taddy, 2019, Text as Data, Journal of Economic
Literature 57, 535-574.

Gentzkow, Matthew, and Jesse M Shapiro, 2010, What drives media slant? evidence from us

daily newspapers, Fconometrica 78, 35-T71.

Hansen, Stephen, Michael McMahon, and Andrea Prat, 2017, Transparency and deliberation
within the fomc: a computational linguistics approach, The Quarterly Journal of Economics
133, 801-870.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh, 2016, The
common factor in idiosyncratic volatility: Quantitative asset pricing implications, Journal
of Financial Economics 119, 249-283.

Ke, Zheng Tracy, Bryan T Kelly, and Dacheng Xiu, 2019, Predicting returns with text data,

Technical report, National Bureau of Economic Research.

Kelly, Bryan, Asaf Manela, and Alan Moreira, 2021, Text selection, Journal of Business &

Economic Statistics 1-21.

Kilian, Lutz, 1999, Finite-sample properties of percentile and percentile-t bootstrap confidence

intervals for impulse responses, Review of Economics and Statistics 81, 652—-660.

Larsen, Vegard H., and Leif A. Thorsrud, 2019, The value of news for economic developments,
Journal of Econometrics 210, 203-218.

Lorenzoni, Guido, 2009, A theory of demand shocks, American Economic Review 99, 2050-84.

Maaten, Laurens van der, and Geoffrey Hinton, 2008, Visualizing data using t-sne, Journal of

machine learning research 9, 2579-2605.

Manela, Asaf, and Alan Moreira, 2017, News implied volatility and disaster concerns, Journal
of Financial Economics 123, 137-162.

McCracken, Michael W, and Serena Ng, 2016, Fred-md: A monthly database for macroeco-

nomic research, Journal of Business & Economic Statistics 34, 574-5809.

Mitchell, Mark L, and Jeffry M Netter, 1989, Triggering the 1987 stock market crash: Anti-
takeover provisions in the proposed house ways and means tax bill?, Journal of Financial
Economics 24, 37-68.

Mullainathan, Sendhil, and Andrei Shleifer, 2005, The market for news, American economic
review 95, 1031-1053.

42



Murtagh, Fionn, and Pierre Legendre, 2014, Ward?s hierarchical agglomerative clustering
method: which algorithms implement ward?s criterion?, Journal of classification 31, 274—
295.

Quinn, Kevin M, Burt L. Monroe, Michael Colaresi, Michael H Crespin, and Dragomir R
Radev, 2010, How to analyze political attention with minimal assumptions and costs, Amer-
ican Journal of Political Science 54, 209-228.

Ramey, Valerie A, 2016, Macroeconomic shocks and their propagation, Handbook of macroe-
conomics 2, 71-162.

Roll, Richard, 1988, Presidential address: R2, Journal of Finance 43, 51-566.

Romer, Christina D, and David H Romer, 1989, Does monetary policy matter? a new test in

the spirit of friedman and schwartz, NBER macroeconomics annual 4, 121-170.

Shiller, Robert J., 1981, Do Stock Prices Move Too Much to be Justified by Subsequent
Changes in Dividends?, The American Economic Review 71, 421-436.

Steyvers, Mark, and Tom Griffiths, 2007, Probabilistic topic models, Handbook of latent se-
mantic analysis 427, 424-440.

Thorsrud, Leif Anders, 2020, Words are the New Numbers: A Newsy Coincident Index of the
Business Cycle, Journal of Business € Economic Statistics 38, 393-409.

Tibshirani, Ryan J, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani, 2016, Ex-
act post-selection inference for sequential regression procedures, Journal of the American
Statistical Association 111, 600—620.

Xiao, Han, and Thomas Stibor, 2010, Efficient collapsed gibbs sampling for latent dirich-
let allocation, in Proceedings of 2nd asian conference on machine learning, 63-78, JMLR

Workshop and Conference Proceedings.

Yuan, Ming, and Yi Lin, 2006, Model selection and estimation in regression with grouped
variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68,
49-67.

43



A

Internet Appendix

Constructing the WSJ Document-Term Matrix

We conduct data processing steps in the following order:

1.

10.

11.

Remove all articles prior to January 1984 and after June 2017 (data purchased at the beginning
of July 2017).

Replace all non-alphabetical characters with an empty string and set the remaining characters

to lower-case.

Parse article text into a white-space-separated word list retaining the article’s word ordering.

Exclude single-letter words.

Exclude articles with page-citation tags corresponding to any sections other than A, B, C, or

missing.

. Exclude articles corresponding to weekends.

Exclude articles with subject tags associated with obviously non-economic content such as

sports. List of exclusions available from authors on request.

Exclude articles with the certain headline patterns (such as those associated with data tables or
those corresponding to regular sports, leisure, or books columns). List of exclusions available

from authors on request.
Concatenate articles with the same accession-number as these are chained articles.
Exclude articles with less than 100 words.

Remove common “stop” words and URL-based terms. List of exclusions is standard but

available from authors on request.

Lastly, we conduct light lemmatizing of derivative words. The following rules are applied in
the order given, where 'x’ is a candidate term. In each case, the stemming is only applied if

the multiple terms reduce to the same stem.

a) Replace trailing “sses” with “ss”

(a)
(b) Replace trailing “ies” with “y”
(c) Remove trailing “s”
(d) Remove trailing “ly”
)

(e) Remove trailing “ed.” Replace remaining trailing “ed” with “e”
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(f) Replace trailing “ing” with “e”. For remaining trailing “ing” that follow a pair of identical

consonants, remove “ing” and one consonant. Remove remaining trailing “ing”

(g) Remove words with less than 3 letters.

12. From the resulting uni-grams, generate the set of bi-grams as all pairs of (ordered) adjacent

uni-grams.

13. Exclude terms (both uni-grams and bi-grams) appearing in less than 0.1% of articles. The
unique set of terms is the corpus vocabulary. Each column of the DTM corresponds to an

element of the vocabulary.
14. Convert an article’s word list into a vector of counts for each term in the vocabulary. This

vector is the row of the DTM corresponding to the article.

B Topic Key Terms
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Figure 11: Topic Attention Proportions
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Figure 12: Article-level Nearest Neighbor Embedding

Note. The top shows the two-dimensional embedding of WSJ articles, where each topic is assigned a color
and articles are colored in correspondence with their dominant topic. The bottom left panel highlights only
“pure” (those with maximum topic proportion exceeding 33%), while the bottom right shows “mixed” articles

(maximum topic proportion below 25%).
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C Article-level News Attention

Time series plots describe the attention paid to each topic by the WSJ as a whole. In this section,
we explore patterns in topic attention at the article level. Article-level attention is a 180-dimension
vector listing the proportion attention that the article pays to each topic. While this is an enormous
reduction in dimensionality relative to the term count representation, the fits amount to a large
dataset in their own right: a matrix of roughly 800,000 articles by 180 topics. In order to visualize and
interpret article-level fits, we project the fitted proportions into two dimensions using t-distributed
stochastic nearest neighbor embedding (t-SNE, Maaten and Hinton, 2008). Intuitively, the ¢-SNE
plot assigns a two-dimensional coordinate to each article so that the nearness of articles in the plane
best represents the nearness of the article fits in the full 180-dimensional space.

The top panel of Figure 12 shows the two-dimensional embedding of model fits for every WSJ
article in our data set, and Figure 13 breaks down the complexity of Figure 12 by separately plotting
articles based on their leading topic for an illustrative subset of nine topics. In Figure 12, each topic
is assigned a color, and each article (a single point) is colored in correspondence with the topic having
the highest weight in that article. Naturally, articles cluster spatially based on their dominant topics.
Graphically, an article (which the model views as a mixtures of topics) is an intersection of topic
clouds. Articles that mix many topics must intersect with many clouds, so they are centrally located
in the plot. Similarly, clouds of topics that tend to co-occur with other topics (such as “Federal
Reserve”) need to be dispersed throughout the ¢-SNE, while those that mix with only a few other
topics are more concentrated (such as “mortgages” and “terrorism”). This can also be seen at the
article level via the two bottom panels of Figure 12, which separates articles by their purity. “Pure”
articles are shown in color on the left, and are defined as those with a maximum topic proportions
exceeding 33%. These articles (18% by count) are dominated by a single topic. The right shows the
set of “mixed” articles (maximum topic proportion below 25%). Pure articles, which have little need
for proximity to other topics, and tend to live on the periphery of the embedding. Mixed articles
require topic crossing and are thus centrally located.

Figure 14 provides more detail for one specific example. It documents the other topical content of
articles whose leading topic is “Federal Reserve.” It splits articles within the Fed topic based on their
second largest topic allocation. Figure 14 shows that articles about the Fed also tend to relate to the

bY A3

“economic growth,” “European sovereign debt,” “bond yields,” “macroeconomic data,” “ITreasury

” “mortgages,” and “China” topics, with each of these secondary topics

bonds,” “financial crisis,
tightly spatially clustered within the Fed topic.

Like the hierarchical metatopic analysis, the --SNE plots as a whole demonstrate coherence of the
estimated topic model. They show that an economic event—captured verbally as a news article—
is summarized via our model as the constellation of topics that constitute that event. Likewise,
the point-in-time distribution of aggregate topic proportions summarizes the overall state of the
economy. These model estimates illustrate that the economy is fundamentally complex. An attempt

at parsimoniously representing the verbal state of the economy, while a drastic simplification of the
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Figure 13: Article-level Nearest Neighbor Embedding (Topic Breakout)

Note. Two-dimensional embedding of WSJ articles broken out by individual topics.

full WSJ narrative, nonetheless requires an elaborate specification to capture its common themes.
But our model estimation results, and our further empirical analysis below, also demonstrate that

this complexity can be effectively harnessed for economic analysis.
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Figure 14: Articles Featuring the Federal Reserve

u“eon

All Articles

Other

Economic growth
European sovereign debt
Bond yields
Macroeconomic data
Currencies/metals
Treasury bonds
Financial crisis
Mortgages

China

* & & 0 o & ° ® @

Note. Detail of two-dimensional embedding for article whose dominant topic is “Federal Reserve.” Articles

within this set are colored according to their second largest topic proportion.

D Post-selection Inference For Impulse Responses

When developing our text-augmented VAR, we use group-lasso to select news topics for model
inclusion. This selection step affects inferences of statistical significance for our impulse response
estimates. In this section we describe a post-selection inference method for constructing impulse
response confidence intervals that account for group-lasso selection.

Our method to construct appropriate confidence intervals builds on the bootstrap procedure
of Kilian (1999) that we use in Figure 7. First, we construct VAR residuals from our baseline
VAR specification (which includes “recession” attention as the only news-based variable). Next, we
resample residuals to produce bootstrap data samples. In each bootstrap sample, we select topics
for inclusion in the VAR based on the cross-validated value of A = 0.054 from our analysis in Figure
9. All topics that receive non-zero group-lasso estimates based on this value of A are included in

the VAR model, which we re-estimate with OLS. From this we produce the “recession” attention
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Figure 15: Impulse Responses With Confidence Intervals Adjusted for Lasso Selection
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——IRF
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Note. Responses of output and employment to a “recession” attention impulse in various VAR specifications,

1985-2017. Confidence intervals are adjusted to reflect lasso model selection.

impulse response function (if “recession” is not selected in the VAR for a given bootstrap sample,
the impulse responses are set to zero). Confidence intervals are then defined as the point-wise 5% to
95% range of bootstrapped impulse response functions.

Figure 15 reports the post-selection adjusted confidence intervals for our baseline VAR specifi-
cation. We note that the confidence intervals are somewhat wider than those in Figure 7, but that
the quantitative magnitudes are similar and our conclusions regarding statistical significance of the

impulse responses are unaffected by the post-selection adjustment.
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