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ABSTRACT

Lead poisoning has well-known impacts for the developing brain of young children, with a large 
literature documenting the negative effects of elevated blood lead levels on academic and 
behavioral outcomes. In April of 2014, the municipal water source in Flint, Michigan was 
changed, causing lead from aging pipes to leach into the city’s drinking water. In this study, we 
use Michigan’s universe of longitudinal, student-level education records, combined with home 
water service line inspection data containing the location of lead pipes, to empirically examine 
the effect of the Flint Water Crisis on educational outcomes of Flint public school children. We 
leverage parallel causal identification strategies, a between-district synthetic control analysis and 
a within-Flint difference-in-differences analysis, to separate out the direct health effects of lead 
exposure from the broad effects of living in a community experiencing a crisis. Our results 
highlight a less well-appreciated consequence of the Flint Water Crisis – namely, the 
psychosocial effects of the crisis on the educational outcomes of school-age children. These 
findings suggest that cost estimates which rely only on the negative impact of direct lead 
exposure substantially underestimate the overall societal cost of the crisis.

Sam Trejo
Princeton University
106 Wallace Hall
Princeton, NJ 08544
samtrejo@princeton.edu

Gloria Yeomans-Maldonado 
Children’s Learning Institute 
University of Texas Medical Center 
7000 Fannin, Suite 2300  
Houston, TX 77030
Gloria.Yeomans@uth.tmc.edu

Brian Jacob
Gerald R. Ford School of Public Policy
University of Michigan
735 South State Street
Ann Arbor, MI 48109
and NBER
bajacob@umich.edu



1 

1. Introduction 

In January of 2016, the eyes of America became fixed firmly upon Flint, Michigan. 

National news outlets reported that Flint’s water supply had been contaminated with high levels 

of lead. After months of state officials insisting the tap water was safe to drink, then-Michigan 

Governor Rick Snyder declared a state of emergency and called in the National Guard to 

distribute bottled water. Within weeks, the Flint Water Crisis was classified as a federal disaster 

and the Environmental Protection Agency took over management of the town’s water supply 

(EPA 2016). By then, the roughly 100,000 citizens of Flint had been exposed to polluted water 

for over a year and a half. The majority Black, industrial city quickly became a national symbol 

for governmental negligence and racial injustice. 

A substantial medical and social scientific literature documents the relationship between 

lead poisoning in early childhood and future cognitive and behavioral challenges. Lead exposure 

during childhood is associated with a host of negative outcomes, including increased anxiety 

(Winter and Sampson 2017), increased behavioral problems (Washerman et al. 1998), lower 

levels of self-regulation and executive functioning (Canfield, Gendle, and Cory-Slechta 2004), 

and decreased academic achievement (Amato et al. 2012). In adulthood, individuals exposed to 

lead as a child have decreased brain volume (Cecil et al. 2008), higher rates of criminal 

offending (Beckley et al. 2018), and decreased social mobility (Reuben et al. 2017). 

In this study, we document another, less well appreciated, consequence of the Flint Water 

Crisis – namely, the psychosocial effects of the crisis on the educational outcomes of school-age 

children. Previous research has found that while the Flint Water Crisis led to only modest 

increases in child blood lead levels on average (Zahran, McElmurry, and Sadler 2017)1, it 

                                                       
1 The authors find an average increase of roughly 0.5 µg/dL, which they describe as similar to that of the annual 
change in lead exposure experienced by children in Flint from winter to summer 
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resulted in substantial increases among a small proportion of children. Hanna-Attisha et al. 

(2016) find that the percentage of Flint children with elevated blood lead levels doubled, from 

roughly 2.5% to 5%, as a result of the crisis. Given the low levels of exposure on average, and 

the fact that the consequences of lead contamination are known to be most severe for infants and 

toddlers, it is not clear if one would expect the lead exposure caused by the crisis to have had a 

noticeable impact on average educational outcomes in Flint in the short run. However, the crisis 

also had a profoundly negative psychosocial impact on Flint residents, who reported increased 

anxiety, depression, post-traumatic stress, sleep problems and worries about physical health 

(Brooks and Patel 2020).  

To quantify the impact of the Flint Water Crisis on several important educational 

outcomes, we utilize the universe of longitudinal, student-level education records for the State of 

Michigan matched to address-level information on the water service lines in Flint collected 

during inspections conducted shortly after the crisis.2 We first employ a between-district analysis 

using synthetic control methods (Abadie 2021; Ben-Michael, Feller, and Rothstein 2021; 

Arkhangelsky et al. 2018) to compare educational outcomes in Flint to outcomes in 

observationally similar school districts throughout Michigan. Such an analysis captures both the 

direct health impact of lead exposure as well as any psychosocial effects resulting from the 

upheaval of the crisis on individual children.  

Second, we employ difference-in-differences methods to compare the academic 

trajectories of Flint children living in homes with dangerous service lines (i.e. lead or galvanized 

steel) to children in the same neighborhoods living in homes with safer service lines (i.e. copper), 

                                                       
2 Public education records may well be the only data on virtually all children living in Flint, which has very low 
rates of private school attendance that begins before the crisis and follows them longitudinally. 
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which present low risk of lead exposure.3 Past research has shown that Flint children living in 

homes with lead pipes consumed 4.5 times the amount of lead per day than children living in 

homes with copper pipes (Zahran et al. 2020). Even after controlling for a detailed set of house 

characteristics, there is substantial variation in the presence of lead service lines across houses 

within census blocks. Moreover, there is no association between the presence of lead service 

lines in a child’s home and an extensive set of student demographic variables and baseline 

academic measures, suggesting that lead exposure may have been quasi-randomly distributed 

across children within a census block. This within-Flint analysis isolates the direct health effect 

of lead exposure resulting from lead service lines on the academic outcomes of Flint children. 

The results of our between-district analysis suggest that the Flint Water Crisis induced a 

0.14 standard deviation decrease in math achievement and a 9% increase in the number of 

students with a qualified special educational need. We find limited or no evidence for effects on 

reading achievement or daily attendance. In our within-Flint analysis, however, we find little to 

no difference in the academic outcomes of children living in homes with lead pipes compared to 

observationally similar children living in the same neighborhoods in homes with copper pipes. 

 Together, these results suggest that, for school-age children, the broad psychosocial 

effects of the Flint Water Crisis were larger than the direct health effects of lead poisoning on 

these educational outcomes. This finding is consistent with a large extant literature on the 

psychosocial consequences of adverse community events. From a policy perspective, our 

                                                       
3 In Flint, lead service lines, galvanized steel service lines, and a small fraction of service lines made of non-standard 
materials were all considered dangerous (and scheduled for replacement) because they could leach lead into the 
water supply. For the sake of parsimony, we henceforth use the term “lead” pipes to refer collectively to housing 
with any pipe material (lead, galvanized steel, or non-standard materials) that increased the risk of lead 
contamination. Nonetheless, just 2% of home that we include in our lead variable are comprised only of other 
dangerous pipes (i.e., galvanized steel or non-standard materials). Likewise, we refer to pipes that constituted 
minimal risk of exposure as “copper” pipes. In Table A8 of the appendix, we probe the robustness of our results 
with varying definitions of definitions of lead and copper (i.e. dangerous and not dangerous) service lines. 
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findings suggests that existing estimates of the effects of lead exposure on child outcomes may 

substantially underestimate the overall cost of crises like the one that occurred in Flint.   

Our research contributes to the literature in several ways. First, we quantify the 

educational costs of a famous case of government mismanagement. Second, we provide the first 

quasi-experimental study of a lead poisoning event due to lead plumbing in contemporary times. 

Third, we explore of the effects of lead on children who are exposed when they are above the age 

of five. Fourth, we highlight the indirect ways in which experiencing a community crisis can 

itself profoundly affect the educational development of school-age children.  

At the same time, the present study has important limitations. Most importantly, because 

we observe only school-age children in our data, we cannot speak to the educational 

consequences of the Flint Water Crisis on infants or young children. Moreover, our analysis is 

limited to specific educational outcomes captured in state administrative data, such as 

standardized test scores and special needs classification. Hence, we are therefore unable to detect 

impacts on a variety of meaningful behaviors and skills. While our parallel identification 

strategies help us to separate the direct health effects of lead from the psychosocial effects of the 

ensuing crisis, we cannot identify precisely pathways through which any indirect psychosocial 

effects may have operated. Finally, community organizations in Flint responded to the crisis by 

dramatically expanding the set of social, medical and educational services available to children 

in Flint, suggesting that even our between-district estimates understate the negative effects of the 

crisis alone.4  

The remainder of the paper proceeds as follows. In Section 2, we discuss the prior 

literature on lead poisoning and the psychosocial impacts of crises, with an eye toward their 

                                                       
4 See, for example, the work of the newly formed Flint Pediatric Public Health Initiative, https://msuhurleypphi.org 

https://msuhurleypphi.org/
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effects the cognitive and emotional development of children. In Section 3, we provide relevant 

background information on the Flint Water Crisis. In Section 4, we describe our between-district 

data, analysis, and results. In Section 5, we describe our within-Flint data, analysis, and results. 

We interpret and discuss our findings and conclude the paper in Section 6. 

 

2. Background Literature 

 

2.i. The Effects of Lead Poisoning  

Lead is a powerful neurotoxin with no known safe level of exposure (Cecil et al. 2008; 

Reuben et al. 2020).5 While lead exposure has fallen dramatically over the past 40 years, 

estimates suggest that over 500,000 children under the age of five in the United States today still 

have elevated blood lead levels. Lead exposure is particularly dangerous for young children, who 

are comparatively small in size (and therefore more susceptible to low amounts of lead) and in 

the midst of a critical period for brain development (Lidsky and Schneider 2003). Lead exposure 

during childhood is associated with a host of negative outcomes, including increased anxiety 

(Winter and Sampson 2017), increased behavioral problems (Washerman et al. 1998), lower 

levels of self-regulation and executive functioning (Canfield, Gendle, and Cory-Slechta 2004),  

and decreased academic achievement (Amato et al. 2012). In adulthood, individuals exposed to 

lead as a child have decreased brain volume (Cecil et al. 2008), higher rates of criminal 

offending (Beckley et al. 2018), and decreased social mobility (Reuben et al. 2017). 

Unfortunately, correlational analyses may suffer from confounding due to omitted variables, 

                                                       
5 The CDC has repeatedly lowered the threshold level of concern for children’s blood lead, from 20 µg/dL to 10 
µg/dL to 5 µg/dL (CDC 2013). Substantial evidence suggests that even amounts of lead below the current threshold, 
5 µg/dL, can lead to intellectual and behavioral impairment (Canfield et al. 2003; Winter and Sampson 2017; 
Reuben et al. 2017). 
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such as socioeconomic status. In addition, the extent to which lead exposure is associated with 

negative outcomes is less well understood in children who are exposed at ages greater than five. 

A growing quasi-experimental literature documents the causal effects of lead on 

downstream health and human development.6 Much of the extant research leverages exogenous 

variation in exposure to lead resulting from public health programs that test children’s blood and 

screen homes for exposed lead paint.7 Billings and Schnepel (2018) and Aizer et al. (2018) 

combine individual-level blood lead measures with administrative school data to show a negative 

relationship between childhood exposure to lead and future math and reading test scores. 

Sorensen et al. (2019) utilize publicly available aggregate data for the entire United States and 

leverage the timing of Department of Housing and Urban Development lead abatement grants to 

show that abatement programs reduce lead poisoning incidents by roughly 70%, increase overall 

academic achievement, and decrease racial disparities in achievement. 

Another strategy that has been used to identify the causal effects of lead is to exploit 

large, regional changes in exposure to lead. For example, Reyes (2007; 2015) shows that the 

removal of lead from gasoline in the late 1970s as a result of the Clean Air Act explains part of 

the decrease of antisocial and risky behavior in adolescents and violent crime in adulthood. Aizer 

and Currie (2017) use a similar approach to show that lead exposure in childhood increases 

future school suspensions and incarceration. Historically, the expansion of lead pipes in the early 

20th century corresponded with increases in infant mortality (Troesken 2008), decreases in 

                                                       
6 While compelling, existing quasi-experimental studies using of blood lead measurements of children are not 
without their challenges. Measurement of lead is complicated by the fact that the amount of lead in the blood can 
fluctuate wildly, dissipates quickly after exposure, and is often not a reliable signal of the amount of lead in an 
individual’s body (Lidsky and Schneider 2003), leading to attenuation bias. 
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military test scores (Ferrie, Rolf, and Troesken 2012), and increases in homicide rates 

(Feigenbaum and Muller 2016).  

Table A1 of the appendix uses estimates from previous studies to benchmark the 

magnitude of the relationship between lead exposure and cognitive ability. A one microgram per 

deciliter (µg/dL) increase in blood lead is associated with approximately 0.03 SD reduction in 

cognitive ability, math achievement, and reading achievement. Thus, moving from no lead 

exposure to the CDC threshold of 5 µg/dL would translate to an approximately 0.15 SD effect on 

cognitive outcomes. Similarly, an increase of 0.5 µg/dL, the estimated change among children 

living in Flint during the crisis, would be expected to correspond to a 0.015 SD effect on 

cognitive outcomes.  

 

2ii. Lead Contamination via Drinking Water 

Lead has been a common material used in plumbing for over a thousand years.8 For 

meaningful amounts of lead to contaminate tap water, there must both be lead pipes supplying 

the water and water corrosive enough to break down the interior of the pipes and cause leaching. 

Lead in water is uniquely difficult to contain; while most contaminants can be filtered out at the 

water plant, lead typically gets into drinking water at the end of the system through lead service 

lines, which run beneath the ground and connect individual residences to city water mains.9 

Today, 30% of the community water systems use some lead pipes (Cornwell, Brown, and 

Via 2016). The most recent surveys suggest that 6.7 million homes, serving approximately 19 

                                                       
8 In 1900, of the forty-six largest cities in the U.S. for which data are available on piping material, thirty-nine used 
lead pipes (Troesken 2006). Lead pipes were preferred because, while costly, they lasted longer and were more 
malleable than alternative materials, making them easier to bend around existing structures. However, lead particles 
from these pipes can leach into drinking water. 
9 As such, there is typically both a publicly-owned and privately-owned portion of each house’s service line. 
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million Americans, are supplied by lead service lines across the country. Furthermore, though 

most homes have their water supplied through “lead-free” pipes, they are not entirely without 

risk. Lead-free pipes can contain up to 8% lead, which has caused lead poisoning in cities that 

never had lead pipes (Renner 2010). Moreover, lead in home faucets and other fixtures can 

contaminate drinking water.   

 

2iii. The Psychosocial Impacts of Community Crisis 

The neurological effect of lead poisoning is not the only pathway through which the 

events of the Flint Water Crisis may have negatively impacted children. A large literature 

suggests that social and psychological processes also have an important role to play in shaping 

the outcomes of individuals living in crisis-affected communities. For example, in assessing the 

long-term effects of the Chernobyl nuclear accident in Ukraine, a United Nations report 

concluded that the negative effects on mental health outcomes as a result of fear, anxiety, and 

trauma actually surpassed the negative physical health effects of exposure to radiation 

(Chernobyl Forum 2006). 

There are a range of psychosocial pathways by which a crisis like Flint’s may affect child 

development. Traumatic events, such as terrorist attacks and natural disasters, are associated with 

negative psychological consequences to entire communities. For example, using interviews of 

individuals following major events such as the 1995 Oklahoma City bombing (Pfefferbaum et al. 

1999; 2000), the September 11, 2001 terrorist attacks (Neria, DiGrande, and Adams 2011), and 

Hurricane Katrina (Spell et al. 2008), researchers have documented persistent psychological 

distress and trauma to residents of the affected regions. Importantly, this is often true even 

among those who were themselves not exposed to the direct impacts of the crises themselves (for 
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example, children who were not present for the events of the Oklahoma City bombing and lived 

many miles away).10 

A more recent, a causal literature leverages quasi-experimental variation in violent events 

across place and time to study the psychosocial effects of community-level trauma. Sharkey 

(2010) and Rossin-Slater et al. (2020) show that community exposure to deadly shootings 

negative affect children’s academic performance and mental health, respectively. The effects on 

academic performance emerge almost immediately, and the effects on mental health persist for 

many years. Similarly, Gershenson and Tekin (2018) show schools near the locations of the 2002 

DC sniper attacks experienced decreases in academic achievement, with the effects largely being 

driven by effects on children in high poverty schools. 

Internationally, we observe similar trends with respect to the broad effects of adverse 

community shocks. A study of civil war and genocide in Cambodia (Omoeva et al. 2018) found 

that disruptions to primary education during civil conflicts decreased educational attainment and 

earnings decades later. In Colombia, increased regional exposure to violence resulting from the 

emergence of drug cartels led to negative impacts on the academic achievement and educational 

attainment of children, with effects on fetal and child physical and mental health as a probable 

mechanism for the observed effects. 

In addition, racialized events within a community like the Flint Water Crisis can produce 

a sense of social marginalization and subsequent civil unrest, which has been shown to impact 

academic performance. For example, Gershenson and Hayes (2018) show that the weeks of 

protests in Ferguson, Missouri, following the 2014 police killing of 18-year-old unarmed Black 

man Michael Brown caused decreases in math and reading achievement, partly mediated through 

                                                       
10 Notably, Spell et. al 2008 found that parental stress and mental health served as a mediator of the effects of 
Hurricane Katrina on children. 
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decreases in student attendance. Such events may limit instructional time and learning by 

increasing absences, school closures, and disruption to daily routines. 

Finally, there has been a concern that children in Flint will be stigmatized as a result of 

the public perception of how the water crisis negatively affected children (Green 2019; Gómez 

and Dietrich 2018).  Such stigmatization may negatively impact development through processes 

like interpersonal discrimination (Goosby, Cheadle, and Mitchell 2018) and stereotype threat 

(Spencer, Logel, and Davies 2016). 

 

3. The Flint Water Crisis 

 

3.i. Timeline 

Flint, a mid-sized industrial city in east-central Michigan, has experienced severe 

economic decline over the last half-century. Since the 1960s, Flint residents had been supplied 

water from Lake Huron, provided by Detroit’s Water and Sewerage Department. In 2011, with 

Flint’s government bankrupt, then-Michigan governor Rick Snyder appointed the first of a long 

string of emergency city managers tasked with balancing the city’s budget. To reduce costs, the 

City of Flint ordered that the flow of water from Detroit be shut off and replaced by the Flint 

River, a small river which runs through its downtown.11 This raised concerns because the Flint 

River’s water presents a challenge to treat due to high levels of bacteria and carbon 

concentrations (Masten, Davies, and McElmurry 2016). Moreover, this change shifted the 

responsibility of treating Flint drinking water from Detroit to Flint’s own Water Service Center, 

                                                       
11 The switch to the Flint River as the city’s municipal water source was intended to be only a temporary measure 
while Flint and neighboring municipalities in Genesee County could form a new water system, the Karegnondi 
Water Authority. While this system began operation in 2017, Flint would never connect to it. 
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a small facility traditionally maintained as a backup facility that was ill-prepared to conduct 

Flint’s water treatment. 

On April 25, 2014, Flint’s residents began receiving drinking water from the Flint River. 

Figure A1 in the appendix provides a timeline of the events surrounding the Flint Water Crisis. 

As is the case in many older cities, a large fraction of Flint’s service lines were made of lead. 

The water from the Flint River was both corrosive and improperly treated, causing lead from the 

pipes to leach into the tap water (Pieper, Tang, and Edwards 2017). Almost immediately, Flint 

residents began to complain about the color, taste, and odor of their drinking water. While some 

Flint residents opted to begin consuming bottled water, many continued to drink the tap water as 

city and state officials insisted on its safety.12 

In early 2015, local researchers and some employees in federal EPA began to raise 

concerns about elevated lead levels in the tap water of Flint residents as well as increased blood 

lead levels among Flint children. In October 2015, the city switched back to water from Detroit. 

However, the city’s tap water remained unsafe to drink as a protective mineral film needed to 

develop over time inside the pipes to prevent further leaching. In January 2016, almost 18 

months after the April 2014 switch to water from the Flint River, Michigan Governor Rick 

Snyder declared a state of emergency and called in the Michigan National Guard to distribute 

clean water. In August 2020, the state of Michigan reached a $600 million settlement with the 

victims of the crisis, with the bulk of the money going to those who were children. Today, the 

vast majority of lead service lines in Flint have been inspected and, if necessary, replaced. 

  

                                                       
12 Famously, the Mayor of Flint appeared on local on local news to drink the tap water himself and publicly 
demonstrated its supposed safety (WNEM 2015). 
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3.ii. Prior Research on Flint Water Crisis 

 Prior research has found that blood lead levels in Flint children increased by roughly 0.5 

µg/dL (0.2 SD) as a result of the crisis (Zahran, McElmurry, and Sadler 2017). In addition, the 

fraction of children identified with blood lead levels above the CDC’s acceptable threshold (5 

µg/dL) roughly doubled, rising from 2.5% to 5% (Hanna-Attisha et al. 2016), with the greatest 

increases in neighborhoods with highest water lead levels. While any increase in lead exposure 

can be damaging, the average blood lead increase experienced by Flint children in prior research 

(an approximately 20% increase from the pretreatment period mean of approximately 2.5 

µg/dL), was relatively modest—similar to that of the annual change in lead exposure 

experienced by children in Flint from winter to summer (Laidlaw et al. 2016; Zahran, 

Mcelmurry, and Sadler 2017).13 According to this research, even in the midst of the Flint Water 

Crisis, the fraction of child blood lead attributable to non-water sources (for example, paint, soil 

dust, and airplane fuel) was larger than water lead sources (Zahran et al. 2020). However, others 

in the medical and public health community in Flint argue that the blood level measures are not 

reliable, and likely understate the true extent of the exposure that children experienced during the 

crisis.14 

There is somewhat mixed evidence on the causal effects of the Flint Water Crisis on 

neonatal outcomes. Grossman and Slusky (2019) examine the impact of the Flint Water Crisis on 

fertility and infant health using difference-in-differences by comparing childbirths in Flint to 

other Michigan cities before and after the water crisis. They find that the Flint Water Crisis 

                                                       
13 Children's blood levels peak in summer and fall and retreat during winter and spring period. There are many 
potential explanations for this phenomenon, including seasonal changes to meteorological factors like precipitation, 
wind, humidity that suspend lead dust in soil, the fact that a greater amount of lead leaching has been shown to occur 
at higher water temperatures, and that opening and closing windows releases lead paint particulates. 
14 Personal communication with Mona Hanna-Attisha (September 10, 2021).  
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decreased fertility by 12% (which they attribute to a corresponding increase in rates of preterm 

pregnancy loss) and that the overall health of Flint newborns decreased. However, Gómez et al. 

(2019) found that lead levels in Flint females of childbearing age did not increase during the 

Flint Water Crisis and subsequent 18-month time period, casting doubt on lead as a pathway for 

the observed effects. 

Regardless of the physical role of lead, residents of the Flint viewed the crisis as having a 

profoundly negative impacting their wellbeing. A recent review of 11 predominantly cross-

sectional studies highlights the ways in which Flint residents perceived the crisis as increasing 

anxiety, depression, post-traumatic stress, sleep problems and worries about physical health 

(Brooks and Patel 2020). In addition, studies in this review found that residents reported that 

coping with these negative mental health consequences lead to increases in risky health 

behaviors such as smoking and alcohol misuse. Some studies also found that, among Flint 

residents, lower perceived tap water quality was associated with poorer mental and physical 

health, and that the negative psychological consequences of the Flint Water Crisis continued 

even after the state of emergency was lifted. 

 

4. Between-District Analysis 

 In this section, we leverage a between-district analysis to determine the total impact of 

the Flint Water Crisis on student outcomes. That is, we compare the academic trajectories of 

students living in Flint to those of students living in observationally similar districts using data 

spanning 2006 through 2019. This strategy allows us to estimate the total impact of the Flint 

Water Crisis on student outcomes, including both direct health and psychosocial pathways. 
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4.i. Data 

Our primary data source is student-level administrative educational records from the state 

of Michigan spanning 2006-2019. This data was provided by the Michigan Education Data 

Center and links students across time with a unique identifier. It contains annual information on 

all students in Michigan public schools (including charter schools), from pre-kindergarten 

through high school, and includes demographics, enrollment information (including attendance 

and mobility), and outcomes such as academic achievement. This data also contains United 

States Census and American Community Survey data taken from IPUMS that characterizes the 

demographic and socioeconomic characteristics of the census block groups in which students 

live. 

We focus on four key educational outcomes: math achievement, reading achievement, 

special needs status, and daily attendance. Math and reading achievement are measured using 

annual state-administered educational assessments, which are given to students in grades 3-8 

starting in 2007. We standardize these test scores at the grade-subject-year level using the 

distribution of all students in Michigan. Special needs status and daily attendance are observed 

for all students regardless of grade level (i.e. K-12), with the former available since 2006 and the 

latter available starting in 2009. We choose these four outcomes because (a) they are well-

measured beginning many years prior to treatment and continuing through the Flint Water Crisis 

and (b) they are good theoretical candidates to be impacted by lead exposure and community 

crisis.  

 To construct a panel of Michigan districts, we first must assign each student to a school 

district. School choice is widespread in Michigan, and during the 2013-2014 school year only 

45% of public-school students living in Flint city limits attended Flint Community Schools, 
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Flint’s zoned school district (the remainder of students living in Flint attended charter schools or 

neighboring districts and are still captured in our data). However, the Flint Water Crisis impacted 

all children living in Flint regardless of where they attended school. For this reason, we define 

our treatment group to include all students living within Flint, or identically, the geographic 

boundaries of the Flint Community Schools. Similarly, our comparison districts are defined 

based on students’ zoned school district (i.e. their geographic district) as opposed to the district 

they actually attend (i.e. their administrative district).15 For the remainder of the paper, we will 

use the term district to refer to a geographic school district. To facilitate the synthetic control 

analysis, we collapse the student-level data into a geographic district-year panel from 2006-2019.  

 In 2013-2014, Flint’s 16,210 zoned students in K-12 made it the 9th largest residential 

district in the Michigan. Flint also has an exceptionally high fraction of economically 

disadvantaged students (89%) and fraction of Black students (76%). To ensure we are comparing 

Flint to similar districts, we first exclude very small school districts (specifically, the 185 

districts with fewer than 1,000 students in the 2013-2014 school year) from our set of potential 

comparison districts. The exclusion of very small districts also helps reduce year-to-year 

fluctuations in outcomes that can occur with a small number of observations. Relative to these 

remaining Michigan districts with at least 1,000 students, Flint is at the 99th percentile in terms of 

fraction Black and fraction economically disadvantaged. Thus, we restrict our control sample to 

districts whose student composition place them in the top 10% of either of those two 

characteristics which make Flint an outlier. These criteria leave us with 54 potential control 

districts. See Appendix Figure A3 for a graphical illustration of the sample selection process and 

Appendix Table A2 for the complete list of potential comparison districts. 

                                                       
15 In Column 3 of Figure A5 in the appendix, we explore whether our results differ depending on whether students 
attended their “home” school district or not. 
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Table 1 displays descriptive statistics for all Michigan geographic districts for 2013-2014. 

While the 54 potential control districts more closely mirror Flint in terms of size and 

demographics, Flint has notably lower academic achievement than this group. We now turn to 

our synthetic control algorithm to identify the weighted average of these 54 potential control 

districts that best approximates Flint’s outcome trends in the pre-treatment period. 

 

4.ii. Trends in Educational Outcomes in Flint 

We begin by plotting academic outcomes over time in Flint (Figure 1). For math 

achievement, we observe a positive trend in the pretreatment period from 2007-2014 and then a 

drop of roughly 0.15 standard deviations in the first year following the water crisis. The negative 

trend that began in 2015 trend largely continues through 2019. The descriptive trend in reading 

achievement is similar but smaller in magnitude. With respect to special needs, we observe a 

positive trend before the crisis that appears to quicken following the water crisis. Turning to K-

12 student attendance, we observe a steady decrease in attendance before the crisis that grows in 

2017 and 2018. 

The graphs in Appendix Figure A2 explore several additional features of the Flint trends 

over time. To explore whether a change in the fraction of students tested could explain any of the 

observed achievement trends, we plot the fraction of students tested but find no change around 

the time of the water crisis.16 To examine whether selective out-migration may confound the 

picture, we plot the enrolment in the Flint district as well as the fraction of Flint students who left 

the district each year. Again, we see no sharp changes coincident with the water crisis.  

                                                       
16 Some students with a severe disability or who have recently immigrated to the United States are not subject to 
state testing. In addition, students who do not come to school on the test day or make-up day will have missing test 
score information.  
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The trends shown in Figure 1 provide suggestive evidence that the Flint Water Crisis 

negatively impacted student outcomes. However, it is possible that other factors may have 

played a role, ranging from changing economic conditions in Michigan to changes in state 

education policies. For this reason, we turn to synthetic control methods to estimate how 

educational outcomes in Flint would have evolved in the absence of the water crisis.   

 

4.iii. Empirical Strategy: Synthetic Control  

To isolate the causal effect of the Flint Water Crisis, we utilize a synthetic control 

methodology (SCM) that compares Flint to other Michigan districts over time. SCM was first 

developed by Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmuller (2010). It 

is a matching estimator designed to be used in situations with a single treated unit and a small 

number of potential control units. Synthetic control methods use pre-treatment outcome data to 

identify the weighted average of control districts that most closely approximates the treated unit. 

This approach can reduce bias through improved pretreatment fit and allow for a more 

transparent counterfactual selection process. 

We implement a recent extension of synthetic control methods known as demeaned, or 

intercept-shift, synthetic control (Doudchenko and Imbens 2017), which we summarize here and 

discuss in greater detail in Section A2 of the appendix. This approach involves first subtracting 

each treatment and control unit’s pretreatment outcome mean from all pre- and post-treatment 

observations (conceptually similar to a unit fixed effect), and then fitting a classic synthetic 

control model on those residuals. In doing so, demeaned synthetic control methods match control 

units to the treatment unit using only data on pretreatment trends rather than on pretreatment 

means (i.e. levels). Put differently, the demeaned synthetic control, like the classic difference-in-



18 

differences model, compares only changes over time (rather than average cross-sectional 

differences) between treated and control units. While Flint’s mean academic outcomes are 

extreme outliers in the overall state distribution, its trends resemble many other districts that lie 

closer to the area of common support (i.e. convex hull) of control outcomes; thus, demeaning 

drastically increases our common support between Flint and potential control units. At the same 

time, demeaning does not stretch our relatively short panel of pretreatment outcomes too thin, as 

would more complicated extensions, such as incorporating time weights, outcome modeling, or 

machine learning. 

The demeaned synthetic control that we implement is identical to several synthetic 

control methods extensions recently suggested in the literature. For example, our approach is 

equivalent to using augmented synthetic control methods in the specific case where each unit’s 

pretreatment mean is used as covariate with a coefficient constrained to be equal to 1 (Ben-

Michael, Feller, and Rothstein 2021). Our approach is also identical to fitting synthetic 

difference-in-differences with uniform time weights and including a unit intercept (Arkhangelsky 

et al. 2018). As such, our demeaned synthetic control estimator can be identically expressed as a 

weighted difference-in-differences estimator. While early versions of synthetic control methods 

balanced both lagged outcomes and covariates, we follow the recent literature (Doudchenko and 

Imbens 2017; Arkhangelsky et al. 2018; Ben-Michael, Feller, and Rothstein 2021) and choose to 

balance only lagged outcomes.17 

One potentially unsatisfying aspect of existing synthetic control methods is that in the 

standard approach each implementation is specific to only a single outcome. Because of this, the 

                                                       
17 Covariates have been shown to be redundant in synthetic control when used alongside all lagged outcomes (Kaul 
et al. 2021). Thus, our demeaned synthetic control estimates the causal effect of the Flint Water Crisis on a given 
outcome using a demeaned weighted average of only that outcome for the selected control units.  
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synthetic control weights for a given treated unit might different substantially across the multiple 

outcomes considered (Jardim et al. 2017). For example, it might be odd if the synthetic Flint for 

math achievement is comprised of an entirely different set of control districts that the synthetic 

Flint for reading achievement. We address this multiple outcome issue by finding a single set of 

synthetic control weights that simultaneously balances all four of our educational outcomes in 

the pretreatment period. In addition, using more pretreatment data to identify our synthetic 

control weights helps maximize their stability and thereby increase the statistical power of our 

analysis. 

 

4.iv. Results 

Figure 2 presents the synthetic control estimates described above. The thick blue line 

measures the difference between student outcomes in Flint versus the synthetic control group. 

Starting in 2015, the blue line reflects the treatment effect of the Flint Water Crisis and the 

shaded grey area corresponds to the confidence interval around the estimate. Panel A of Table 2 

lists the ten control districts assigned a non-zero weight in the construction of the Flint 

counterfactual. Four districts play a large role in the comparison: Oak Park, Lincoln, Dowagiac 

and River Rouge. River Rouge and Oak Park are small urban districts near Detroit with very 

high percentages of both low-income and Black students. Dowagiac is a predominantly white 

district (roughly 65%) located in the Southwest part of the state with very high poverty levels 

(75%). Lincoln is an urban district located near Ypsilanti, Michigan, roughly 45 minutes 

southwest of Detroit. While the selected comparisons are similar to Flint in these demographic 

characteristics, the demeaned synthetic control model selects comparison districts whose pre-

2014 educational trends most closely match Flint’s. Hence, the most important test of the SCM 
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model is how closely the outcome trends of the controls match Flint’s prior to the water crisis. 

As one would hope, the blue line prior to 2014 is nearly zero, suggesting a very good match. The 

root mean square error in the pretreatment period (pre-RMSE) provides a formal measure of 

model fit, and are shown in the Panel B of Table 2. The scaled pre-RMSE (.07 SD) is generally 

low,18 showing that even while balancing four outcomes simultaneously, we are able to provide 

reasonably good fit in the pretreatment period.19 

Our results suggest the Flint Water Crisis negatively impacted student performance along 

several dimensions. Math achievement in Flint closely tracks the comparison districts from 2006 

through 2014, but drops notably starting in 2015. The SCM estimates indicate a 0.14 standard 

deviation decrease in student performance in math (Table 2). The 0.14 SD effect on math 

achievement falls within the range of “medium” effect size according to recently introduced 

standards for educational interventions (Kraft 2020). However, when you consider both the large 

size of the treated group and the fact that the effect is negative, math results might be considered 

within the “large” effect size category. We did not observe a significant detectable effect on 

reading achievement in our main analysis (though our robustness checks yielded some 

suggestive results). This pattern of results is consistent with many other studies that suggest 

student math performance is more malleable to interventions than reading performances 

(Alexander, Pitcock, and Boulay 2016). We find no impact on student attendance, which is 

somewhat surprising given the social and community upheaval associated with the crisis.  

                                                       
18 The unit of the pre-RMSE represents the standard deviation of the outcomes among the final 55 districts provided 
to the synthetic control software. Math achievement and special needs, for example, have SD of .2 and .02, 
respectively, in our 54 district synthetic control sample (See Table 1). Thus, rescaling the pre-RMSE back to the 
original units of our outcome variable’s yields pre-RMSEs of .014 SD of the statewide distribution and 0.14 
percentage points, respectively. 
19Note that the individual RMSE values in Table 2 are displayed in the specific units of each outcome (e.g., standard 
deviation of the overall Michigan distribution of achievement, proportion for special needs, etc.) while the overall 
RMSE value is scaled to each variable in our data’s standard deviation. 
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 Finally, the graph in the bottom left of Figure 2 suggests that the Flint Water Crisis led to 

a 1.3 percentage point (9%) increase in the proportion of students with a documented special 

educational need. It is possible that the heightened attention on Flint schoolchildren during the 

crisis led to greater screening, which in turn increased special needs diagnosis rates while leaving 

underlying population characteristics unchanged.20 On the other hand, the concurrent reduction 

in math performance, which is not subject to bias due to increased screening, suggests that 

underlying needs in the population likely increased as well. We suspect the observed increase 

reflects some combination of both forces, though it is difficult to know the exact magnitude of 

this increase. 

Section A3 of the appendix presents the results from a series of alternative specifications 

meant to assess the sensitivity of our primary estimates. In particular, one might be concerned 

about the slight uptick in special needs classifications in Flint that is evident prior to the water 

crisis in the primary results (see Panel C of Figure 2). As described in in the prior section, we 

estimated a single synthetic control model simultaneously for all four outcomes. A downside of 

this approach is that it will not maximize the pre-treatment fit for each outcome. For this reason, 

we fit alternative versions of the synthetic control that consider each outcome individually as 

well as models that include two of the four outcomes together (one model that includes math and 

reading achievement and another model that includes attendance and special need services 

together).21 The alternative specifications for special needs, which have improved fit and display 

                                                       
20 Lawsuits brought by the ACLU and Education Law Center against the city of Flint spurred efforts to identify 
children in need of academic support. See, for example, https://www.aclumich.org/en/press-releases/flint-students-
secure-groundbreaking-gains-settlement-special-education-class-action. 
21 A number set of the models considering only a single outcome attain perfect fit in the pretreatment period. 
Perhaps counterintuitively, perfect fit is problematic for synthetic control methods; it implies that the models do not 
converge to a sufficiently unique solution and that we need either a longer pretreatment panel or more outcomes to 
balance. We therefor omit all results that attain perfect fit.  

https://www.aclumich.org/en/press-releases/flint-students-secure-groundbreaking-gains-settlement-special-education-class-action
https://www.aclumich.org/en/press-releases/flint-students-secure-groundbreaking-gains-settlement-special-education-class-action
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no pre-treatment trend (see Figure A4), show that the potential pre-treatment trend is not driving 

our results.  

 We also estimate models using a restricted set of potential comparison districts. Rather 

than using the 54 districts that are in the top 10% in terms of fraction Black or fraction 

economically disadvantaged, we use only the 26 districts that are in the top 5% in terms of at 

least one of these characteristics. Estimates based on this restricted sample are comparable to our 

baseline estimates. 

 Finally, we test the robustness of our results to student residential mobility. The key 

concern is that the treatment might have led to compositional changes in Flint, which could bias 

our estimates. Because geographic school districts are our unit of observation, a student who 

transfers to a school in a neighboring district will remain in our Flint sample, unless they change 

their residential address to outside Flint. The mobility trends for Flint shown in Appendix Figure 

A5 suggest that this is not a concern in practice. As a further check (see Tables A6 and A7), we 

re-estimate our SCM using a panel of data based on only students living in Flint or the 

comparison districts during the 2013-2014 school year. Using this “fixed sample” approach, a 

student that leaves Flint following the Water Crisis will nonetheless be contribute to the Flint 

average in these later years. Results based on this “fixed” sample are comparable to our primary 

estimates.22  

In order to explore heterogeneity in the effects of the Water Crisis, we decompose our 

effect estimates by subgroup, based on gender, grade level and administrative district (see 

Appendix Table A5).23 The effects on math achievement were larger for children who were 

                                                       
22 Very few students from any district leave the state or transfer to private schools so, in practice, attrition from our 
statewide database of public school students is not a concern.  
23 We describe this decomposition further in Section A2.iv of the appendix. 
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younger at the time of the crisis and for students who attended a school in the Flint 

administrative district (rather than a charter school or a school in a neighboring district). The 

effects on special needs status were larger for boys than for girls. 

 

5. Within-Flint Analysis  

 In this section, we conduct a within-Flint analysis to better isolate the effects of lead 

exposure itself on student outcomes. In particular, we compare the educational trajectories of 

Flint children living in housing units that were exposed to different levels of lead contamination 

during the water crisis. We ask: How did Flint children who lived in homes with lead pipes fare 

compared to Flint children who lived in homes with copper pipes before and after the crisis? We 

begin by describing our student-level panel construction. Next, we discuss the difference-in-

differences methods we utilize to estimate the causal effect living in home with lead pipes during 

the Flint Water Crisis. Finally, we present event study and difference-in-difference results.  

 

5i. Data  

To identify households with the greatest risk of exposure to lead contamination, we use 

data on the materials of the water service lines running to individual buildings (we call this the 

“pipes data”). This data comes from service line inspections conducted by Flint’s Fast Action 

and Sustainability Program (FAST Start), a team of city- and state-appointed officials who were 

tasked with managing lead service line replacement following the Flint Water Crisis. 24 In total, 

                                                       
24 The data was generously provided to us by academic researchers at the University of Michigan and Georgia Tech 
University who partnered with the FAST Start team to help with data management and refine the prediction of 
service line material (Abernethy et al., 2018). This team developed a web and mobile application where on-site 
contractors as well as state and local officials filled in essential information about service line work accomplished at 
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this data includes 24,646 unique parcels with valid inspection data. Notably, this set of parcels 

contains most but not all occupied properties in Flint, which restricts the number of home 

addresses, and in turn Flint children, that we are able to include in our within-Flint analysis.25 

The inspection data indicates the material used in both the public service line (i.e., the 

pipes running from the city water supply to the private home) and the private service line (i.e., 

the pipes running from the public lines into the specific unit and to the faucets within the home). 

In addition to lead, galvanized steel is considered a dangerous material for service lines that have 

at one point contained lead in the system because they have been known to capture small pieces 

of lead in the corrosion in their inner walls. Even if the lead piping was removed from a water 

system long ago, galvanized steel pipes can still release trapped lead into the water. In contrast, 

copper service lines are considered very safe and are the standard service line material used in 

new pipe construction today. For our main analysis, we follow the approach used by the FAST 

Start team and consider any home with lead, galvanized steel, or an unknown material in either 

the public or private service lines to be a danger in terms of lead exposure. In Table A8, we show 

that our results are robust to alternative definitions, such as only considering lead lines to be 

dangerous and copper service lines to be not dangerous. In addition to information on service 

line materials, the inspection data includes a host of other variables describing the housing unit, 

including: the use type (residential, commercial, industrial), rental or owner-occupied, year built, 

the condition of the house unit in 2014 (good, fair, poor, or structurally deficient), assessed 

building value, and assessed land value.  

                                                       
each site. These researchers have since formed the company BlueConduit to continue their municipal lead service 
line prediction work. Our data was extracted for their database on January 8, 2020. 
25 According to the city of Flint's 2016 tax parcel data, there were 31,685 residential properties in Flint that were not 
vacant. However, at the time of the crisis, only 26,642 properties had active water accounts and met certain 
minimum criteria regarding age of house and lead risk were eligible to be inspected and potentially replaced. In 
addition, not all of the eligible properties have been replaced; only 24,646 of the eligible parcels had valid inspection 
data as of 2020, when the latest update was provided to our research team. 

https://www.blueconduit.com/
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Past research utilized the same service line inspections data, combined with home water 

testing results, to show that service lines were a key source of lead exposure in Flint. During the 

peak of the crisis, children living in homes with lead service lines consumed 4.5 times the 

amount of lead per day than children residing in homes with copper pipes (Zahran et al. 2020).26 

However, by 2017, two years after switching back to Detroit’s water, children in homes with 

lead service lines were consuming virtually no lead in their home drinking water and there were 

no longer meaningful differences in lead exposure across homes with varying service line 

material types.27 By matching data on residential water tests with data on pipe material for a 

subset of students (see Section A4 of the appendix for more details), we were able to confirm 

that similar patterns applied in our analytic sample. In particular, in our student sample, homes 

with lead or galvanized steel service lines were 4.7 percentage points (P<.01), or 77%, more 

likely to exhibit water lead levels above the EPA threshold of 15 ppb. 

To create our analysis sample, we start with the 17,024 students who were living in Flint 

and enrolled in Michigan public schools during the 2013-2014 school year (the final academic 

year before the Flint Water Crisis).28 Using a probabilistic matching algorithm based on street 

number, street direction, street name and street type, we were able to identify the service line 

material for 10,245 students, or 60.18% of the initial sample.29 A small fraction of the non-

                                                       
26 The same study found that during the Flint Water Crisis, galvanized steel service lines, which we include in our 
primary “lead” treatment definition, were associated with 1.8 times more childhood lead consumption with copper 
pipes. 
27 It is important to recognize that lead service lines were not the only source of lead release. Premise plumbing 
(plumbing inside a home) has lead and children consumer water from multiple locations. For example, Flint 
schools had significant water lead levels despite the fact that schools did not have lead service lines. 
28 This analytic sample is slightly larger than the sample used in our between-district analysis. There, we focus only 
on children in kindergarten through 12th grade because districts across the state may vary in their pre-K enrollment 
and high school matriculation policies. In our within-Flint analysis, where our identification strategy relies on 
within-student comparisons over time, we elect to include observations of students in pre-K and in ungraded 
classrooms.  
29 This address-level match was executed on our behalf by staff at the University of Michigan, who obtained special 
permission from the Michigan’s Department of Education to use personally identifiable information (in particular, 

https://www.michigan.gov/flintwater/0,6092,7-345-76292_76294_76297_77897---,00.html
https://www.michigan.gov/flintwater/0,6092,7-345-76292_76294_76297_77897---,00.html
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matches, roughly 1%, were due to missing or invalid address information in either the pipes data 

or the student education records. A manual review conducted on a random subsample of the data 

suggests that our matching algorithm failed to match roughly 18% of true matches. Thus, the 

primary reason for unmatched students is likely the limited coverage of the pipes data.  

While the match rate will not affect the internal validity of our estimates, it may limit the 

generalizability of our findings. To help understand how well results from the matched sample 

may generalize to the full population of Flint students, Table 3 compares the full set of Flint 

students to the set whose addresses matched the pipes data. The matched students appear 

extremely similar to the unmatched students, particularly when we compare students within the 

same census blocks (Column 5). For example, 74% of matched students are Black compared 

with 79% of unmatched students, but if we limit our comparison to students within the same 

census block, this modest difference completely disappears. There are modest but noticeable 

differences in terms of the schools attended, even within census blocks. Students who matched to 

pipes data were less likely to be attending charter schools (27% vs. 35%) and more likely to be 

attending traditional public schools in either Flint or a neighboring school district. Matched 

students were living in census blocks with slightly lower poverty rates (40% vs. 45%). The 

overall similarity of students in the matched and unmatched samples suggests that our results 

should generalize well to the broader population of Flint children.   

 

5ii. Empirical Strategy: Difference-in-Differences  

Using the language of program evaluation, our within-Flint analysis considers children 

living in housing units with lead pipes in 2014 as the treatment group and their peers living in 

                                                       
historical address data from all Michigan students). Students’ home addresses, as well as all other personally 
identifiable information, were stripped from the matched data before it was returned to our research team. 
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housing units with copper pipes as the control group. If children were randomly distributed 

across housing units in Flint, one could estimate the impact of potential lead exposure simply by 

comparing outcomes of children living in homes with and without lead pipes. 

However, given Flint’s historical growth patterns and the decreases over time in the 

installation of lead pipes, there is reason to believe that homes in certain neighbourhoods are 

more likely to have lead piping than others.30 Consistent with this intuition, we find that 37.5% 

of the variation in the presence of lead pipes occurs between (as opposed to within) census 

blocks. To examine the determinants of lead pipes in our analytic sample, Table 4 presents 

results from several regression models that include both household-level and neighborhood-level 

predictors. Column 1 shows that a small set of house characteristics are strong predictors of the 

presence of lead piping. For example, older houses are more likely to contain lead pipes; all else 

equal, a house that is 10 years older is 20 percentage points more likely have lead pipes, a large 

effect given that just 40% of all houses have lead pipes. Conditional on age, rental status, and 

house condition, a $10,000 increase in the assessed home value is associated with a 0.6 

percentage point reduction in the likelihood of lead service lines. Column 2 shows that, 

conditional on house characteristics, units located in higher poverty census blocks are more 

likely to have lead piping, although the magnitude of this relationship is modest; a 10 percentage 

point increase in the poverty rate is associated with a 2.5 percentage point increase in the 

likelihood of lead piping.31 When we include census block fixed effects in Column 3, the 

housing unit characteristics remain significant predictors. However, they only explain about 33% 

                                                       
30 An 1897 Flint city ordinance required “all connections with any water mains be made with lead pipe” (Masten, 
Davies, and McElmurry 2016), and the use of lead pipes as service lines was slowly phased out over the 21st 
century. 
31 Interestingly, the magnitude of the coefficient on the neighborhood poverty variable does not change much if one 
omits the other census block characteristics.  
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of within-block variation, suggesting that considerable variation in the presence of dangerous 

piping even among observationally identical housing units located in the same census block. This 

is consistent with a quasi-random distribution of pipe materials across houses of similar vintage 

in similar neighborhoods, which is unsurprising given that the city and homeowners alike largely 

did not know which houses had lead services lines prior to the inspections in the wake of the 

crisis. This fact forms the basis for our within-Flint empirical strategy, described below. 

We next examine the relationship between pipe material and student and school 

characteristics. Table 5 compares the characteristics of students living in homes with and without 

lead pipes. Looking at Column 4, we see students living in homes with lead versus copper pipes 

have virtually identical test scores and virtually identical rates of disability and daily attendance. 

Consistent with the results shown earlier, students in homes with lead pipes are more likely to be 

Black (7.9 percentage points) and economically disadvantaged (3.1 percentage points). Columns 

5 and 6 present the difference across groups from regressions model that includes census block 

fixed effects, ensuring comparisons between students living in the same census blocks. 

Additionally, the specification reported in Column 6 controls for the house characteristics listed 

in Table 4. Once we condition on neighborhood and house characteristics, the small to modest 

differences between students living in homes with lead versus copper pipes diminish 

substantially. Indeed, none of the 11 student characteristics in the top panel are statistically 

significant at the 5% level in Columns 5 or 6. Across 13 individual demographic characteristics 

and measures of academic performance, there are only 3 differences that are statistically 

significant at the 5% level. The only school characteristics that remain significant are school 

location (city versus suburb), magnet school, and racial composition of the school.  



29 

Children living in homes that were most susceptible to lead exposure were 

observationally similar to children in homes with copper pipes that presented no lead danger. 

Nonetheless it is possible that the two groups of children differ in unobservable ways that 

influence their educational outcomes after the water crisis. To account for unobservable time-

invariant child and family characteristics, we estimate difference-in-differences models.  

To this end, we construct a student-year panel for the 10,245 matched students that runs 

from the 2009-10 through 2018-19 academic years. This allows us to examine up to five years 

for each child prior to the water crisis and up to four years following the crisis. Note that this is 

an unbalanced panel because not all children appear in all years (e.g., many of the older children 

in 2014 will have graduated or dropped out prior to 2019, and the very young children in 2014 

were not yet enrolled in public school in 2010). 

In order to generate difference-in-difference estimates of the average treatment effect of 

having lead pipes during the Flint Water Crisis, it is standard to estimate a two-way fixed effects 

model for outcome 𝑦𝑦 for student 𝑖𝑖 in year 𝑡𝑡:  

 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖>2014𝐷𝐷𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

(5.ii.a) 

 

𝜆𝜆𝑖𝑖: Student fixed effects 

𝛿𝛿𝑖𝑖: Year fixed effects 

𝑃𝑃𝑖𝑖𝑖𝑖>2014: Post-treatment period dummy variable 

𝐷𝐷𝑖𝑖: Lead service line dummy variable 
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The identifying assumption of the difference-in-differences model is commonly referred 

to as “parallel trends,” meaning that in the absence of the exposure, the outcomes of the 

treatment group would follow the same path as that of the control group. A standard approach to 

testing the plausibility of this assumption is to estimate an event study model, which is simply an 

extension of the two-way fixed effects model above that allows the effect of the exposure to 

differ by year relative to the start of the treatment.  This corresponds to the following regression 

model:  

 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖 + 𝛿𝛿𝑖𝑖 + � 𝛾𝛾𝑖𝑖𝑖𝑖=𝑇𝑇𝐷𝐷𝑖𝑖

2014

𝑇𝑇=2011

+ � 𝛾𝛾𝑖𝑖𝑖𝑖=𝑇𝑇𝐷𝐷𝑖𝑖

2019

𝑇𝑇=2015

+ 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 

(6.ii.b) 

 

𝛾𝛾𝑖𝑖𝑖𝑖=𝑇𝑇: Year dummy variable 

 

The coefficients 𝛾𝛾𝑖𝑖 trace out the differences by year in outcomes between students living 

in homes with and without lead service lines, with 2010 serving as the omitted year. The 

estimates of 𝛾𝛾𝑖𝑖 from 2011 through 2014 serve as a specification check, whereas the estimates 

from 2015 to 2019 reflect the impact of greater exposure to lead.  

However, a recent and growing literature highlights several important limitations of the 

standard two-way fixed effect differences in differences approach (de Chaisemartin and 

D’Haultfœuille 2020; Borusyak, Jaravel, and Spiess 2021; Goodman-Bacon 2021; Callaway and 

Sant’Anna 2020). Perhaps most importantly, these papers point out that the canonical regression 
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difference-in-differences estimate relies on the strong assumption of treatment effect 

homogeneity. This is because the two-way fixed effects estimators produce a weighted average 

of many different comparisons between never treated, yet to be treated, and already treated units. 

In certain cases, these weights can even be negative, producing a situation in which the estimate 

has a different sign than the true parameter.   

For this reason, we utilize the novel imputation estimator proposed by Borusyak, Jaravel, 

and Spiess (2021), henceforth BJS, which has the dual advantages of being intuitively clear and 

straightforward to implement. We first estimate the two-way fixed effects model described 

above, using only the untreated observations, which includes all observations of the control 

students (i.e., those living in homes without lead pipes) as well as the pre-treatment observations 

for treatment students (i.e., years 2010 through 2014). Using these estimates, we generate 

predicted (imputed) values of the outcome for treatment students in the post-treatment period. 

For each student-year observation, we then calculate the difference between their observed and 

predicted outcome (which each correspond to students’ potential outcome in the treated state and 

untreated state, respectively). These student-year “effects” can then be aggregated in various 

ways. To recover the canonical difference-in-differences estimate, we calculate a simple 

(unweighted) average of all treatment group students in all post-treatment years. To estimate the 

year-specific “event study” effects shown in equation 6.ii.b, we generate separate averages for 

each year. While visual inspection of these pre-exposure estimates can be useful, we also 

conduct formal tests of the null hypothesis that the pre-exposure effects are jointly significant. 

Standard errors that account for heterogeneity and serial correlation within students over time are 

calculated via a bootstrap procedure outlined in Borusyak, Jaravel, and Spiess (2021).32  

                                                       
32 We implement this procedure using the Stata command did_imputation written by Borusyak, Jaravel, and Spiess 
(2021).    
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In our baseline models, we only include student and year fixed effects. To increase our 

statistical power and test the sensitivity of our results, we estimate additional models that include 

a variety of additional controls. We first add school-grade fixed effects to limit our comparison 

to students in comparable educational settings. We also add a host of further controls. We 

include race-gender-year fixed effects to allow the outcomes for different demographic groups to 

evolve differently over time. To allow outcomes to evolve differently for students in different 

grade cohorts, we include interactions between a student’s grade in the year before the crisis 

(2013-2014) and year dummies. Finally, to allow outcomes for students in different 

neighborhoods to evolve differently over time, we include interactions between census block 

poverty in 2013-2014 and year dummies.  

One final concern involves differential attrition. If the water crisis caused Flint students 

living in homes with lead pipes to exit the public school system differently than other Flint 

students, our difference-in-differences estimates could be biased.33 Crucially, our data includes 

all Michigan public school students, so students that merely leave the Flint Public Schools do not 

exit our sample. To determine whether students living in homes with lead pipes in 2014 were 

more likely to leave the Michigan public schools, we estimated a series of OLS regression 

models. The coefficient on lead pipes was consistently very small and not close to statistical 

significance, regardless of the control variables included (including none) or the year examined. 

This suggests that attrition bias is not a concern in the results discussed below.  

  

                                                       
33 General attrition from the public schools among all Flint students would not lead to bias.   
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5iii. Results 

Figure 3 displays connected scatterplots of our four main academic outcomes, with the 

trends broken out separately by home service line material.34 In it, we see only small differences 

between the trends of students with lead pipes and students with copper pipes before and after 

the crisis. These descriptive patterns foreshadow the largely small or null within-Flint results in 

our difference-in-differences and event study models. 

The results from our event study models are displayed in Figure 4. Beginning with our 

baseline two-way fixed effect model in the left panel and focusing on the coefficients prior to 

treatment in 2014, we see little evidence for differential trends across students with and without 

lead pipes. In three of the four outcomes, a test of the joint significance of the pre-exposure 

effects is not significant. In the case of math achievement, however, we do reject the null 

hypothesis that treatment student trends were equal to those of control students. While there is 

not a clear pattern to the pre-exposure trend, math achievement appears to dip in the final 

pretreatment year.  

As described earlier, because students were not randomly assigned to homes with lead 

pipes, it is likely that there may be some differences between our treatment and control groups. 

To account for some of the observable differences, we re-estimate our event study models 

including the large set of controls described above (shown in the right panel of Figure 4). While 

the joint test of pre-trends for math is no longer statistically significant (p=0.14), a similar 

observational pattern emerges. However, because we would a priori expect negative effects of 

dangerous pipes on math achievement, this potential violation merely entails that our math 

                                                       
34 Appendix Figure A5 presents the analogous scatterplots for four student mobility outcomes. 
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affects are biases to be larger in magnitude. Figure A6 of the appendix displays the event study 

plots from our two regression specifications with intermediate levels of additional controls. 

When viewing these figures, it is important to keep in mind that the composition of the 

treatment and control groups are changing across time periods as students graduate, drop out, or 

(quite infrequently) leave the public school system. This is particularly important when 

considering the achievement outcomes because we only observe test scores for students in grades 

3-8.  

We now turn to Table 6, which displays results from four different specifications of 

difference-in-differences imputation models. In the baseline two-way fixed effects models, 

dangerous services lines have a -0.03 SD effect on math achievement, a -0.02 SD effect on 

reading achievement, a 0.5 percentage point effect on special needs status, and a 0.02 percentage 

point effect on daily attendance. In our most saturated models, with school-grade fixed effects 

and a variety of other controls, dangerous services lines have a -0.02 effect on math achievement, 

a -0.01 effect on reading achievement, a 0.26 percentage point effect on special needs status, and 

a 0.07 percentage point effect on daily attendance. None of the coefficients on our four 

educational outcomes are statistically significant at the 95% level in any of the four 

specifications. 

In general, the small, statistically insignificant effects that we observe within-Flint stand 

in stark contrast to the dramatic decline in math achievement and increase in special needs status 

that we observe for all Flint students in our between-district analysis. Importantly, our 

difference-in-differences analyses are not powered to detect small effects. For example, using a 

95% confidence interval around the estimates from our most saturated model, we can only rule 

out an increase special needs status greater than in 0.60 percentage points and decreases greater 
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than 0.060 SD for math achievement, 0.063 SD for reading achievement, and 0.25% for 

attendance. 

Our difference-in-differences results are robust to various alternative specifications. 

Table A8 displays results from classic OLS difference-in-differences models, which are quite 

comparable the imputation results. Table A9 shows results from a model that uses difference 

definitions of lead and copper service lines. Specifically, one might be concerned that our results 

may be sensitive to the way in which we defined various service line materials connoting lead 

risk. To address this concern, we construct two additional definitions for lead service lines and 

copper service lines, each more restrictive than the last; our results are not sensitive to 

differences in how we define lead treatment. Table A10 in the appendix shows difference-in-

differences models split into three dimensions of heterogeneity: different grade cohorts (testing 

whether effects may vary by age at treatment), sex, and administrative district (whether a student 

attended Flint Community Schools); again, we come up with small, insignificant effects.  

 

6. Discussion 

In the first quasi-experimental study of a lead poisoning event due to lead plumbing in 

contemporary times, we find substantial negative effects of the Flint Water Crisis on the 

academic outcomes of children living in Flint. However, our analysis reveals a somewhat 

unexpected pattern of results. Comparing Flint to observationally equivalent school districts in 

Michigan, we find compelling evidence that the Flint Water Crisis reduced student math 

achievement and increased the proportion of students with special needs. When we look within 

Flint and compare children living in homes with lead service lines to their neighborhood peers 
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living in homes with copper service lines, however, we do not find evidence for meaningful 

differences in academic outcomes.  

What might explain the differing results in our between-district and within-Flint 

analyses? At first glance, it may seem a potential explanation may be that our within-Flint 

analysis suffers from a bias towards zero that our between-district analysis does not. For 

example, whereas it is easy to observe our treatment variable in the between-district analysis 

(where a child lives), it is more difficult to accurately measure treatment in the within-Flint 

analysis (how much lead a child was exposed to). The within-Flint treatment variable that we 

use—a child’s home service line material—likely serves as a noisy proxy for their true risk of 

lead exposure during the Flint Water Crisis. Children consume a portion of their water outside 

the home (for example, at school and community organizations), and service lines are not the 

only source of exposure to lead in water systems (lead fixtures and lead solder also play a role). 

In addition, if children consume water at their neighbors’ houses or if one child’s educational 

outcomes affect the outcomes of their peers, treatment spillovers are potentially introduced. The 

existence of measurement error in our treatment variable and positive treatment spillovers could 

attenuate the estimated effects from our difference-in-difference analysis. Thus, it may well be 

that there were small effects of lead exposure during the Flint Water Crisis on academic 

outcomes among the children in our study that went largely undetected. 

However, by focusing on specifically math achievement, we can see theoretically that the 

lead pathway is insufficient to explain the overall academic effects of the Flint Water Crisis 

estimated in our between-district analysis. Past findings help benchmark the anticipated impact 

on math achievement of children in Flint as a direct result of lead exposure. As we show in 

Section A1 of the appendix, we would expect only a .017 SD decrease in math scores as a result 
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of lead effects observed during the Flint Water Crisis, almost an order of magnitude smaller than 

the .14 SD decrease in math achievement estimated using our synthetic control models. 

Moreover, because only 40% of children living in Flint were exposed to lead service lines at 

their residence, lead effects would become attenuated in the between-district analysis. If in fact 

within-Flint lead effects were driving the observed between-district effects, they would need to 

be substantially larger than .14 SD. Thus, both theoretically and empirically, lead explains little 

of the between-district results. 

While the precise mechanisms of the observed effects remain largely unknown, they are 

unlikely to be driven primarily by lead poisoning. At first blush, the Flint Water Crisis may have 

appeared as predominantly an environmental health catastrophe, but we believe our results show 

that there is more to the story. In particular, the complex community-level psychosocial process 

that created a crisis surrounding the actual lead exposure played a substantial role in additional to 

whatever direct health effects lead did have. That is, we would expect the effects of only lead to 

be substantially smaller than the overall effects of the Flint Water Crisis. The Flint Water Crisis 

affected all children living in Flint, not just those children living in homes with lead service 

lines. While it is unclear why we see achievement effects in math but not reading, math scores 

have been shown to be more sensitive to other short-term mechanisms in middle childhood, such 

as summer learning loss (Alexander, Pitcock, and Boulay 2016). 

What, then, may help explain the null results within-Flint? One possibility is that many 

Flint residents stopped drinking tap water at home immediately after the switch. Perhaps more 

likely is that children in houses lead pipes did consume high levels of lead in their water, but that 

this exposure was not with sufficiently high to cause measurable academic impairments in 

school-age children. Lead is more likely to affect the developing rather than the mature brain 



38 

because the “blood-brain” barrier is less effective in young children compared to adults, and it is 

possible that school-age children are largely beyond their critical period (Lidsky and Schneider 

2003). Previous quasi-experimental studies, Aizer et al. (2018) and Billings and Schnepel (2018), 

focus on children exposed to lead around 1-3 years of age. Because students are only tested in 

grades 3-8, the average age of exposure of children for whom we observe math and reading 

achievement is about 6 years old. 

Should we expect the large psychosocial effects observed in Flint to generalize well to 

other lead-in-water crises? There are reasons to be cautious. Unlike other water crises, the 

change in Flint happened very discretely and was accompanied by a change in taste and 

discoloration, making it very noticeable to the city’s populace. In addition, the magnitude of 

cover-up and ensuing scandal was large and received prolonged national attention. For this 

reason, we would expect people to substitute away from contaminated tap water at greater rates 

than other crises, which would decrease the lead effects. At the same time, Flint citizens were 

likely more aware of the crisis than people exposed to lead in tap water elsewhere in the United 

States, thereby heightening the social and psychological mechanisms. 

Nonetheless, we believe that documenting Flint case is important in and of itself, and it 

also serves as an important demonstration that the ways in which such events may affect citizens 

are not necessarily straightforward; we cannot treat these crises as merely strictly medical 

phenomena. In addition, our results suggest that we currently substantially underestimate the 

costs of the Flint Water Crisis. Existing estimates, ranging from 50-400 million dollars (Muennig 

2016; Zahran, Mcelmurry, and Sadler 2017), use only the lead effects, not the overall effects 

stemming from the psychosocial consequences as well. We hope this work draws attention to the 

huge potential costs of these water crises, and motivates preventative measures, which by 
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comparison are cheap. Tragically, the Flint water switch was intended to save just 5-7 million 

dollars (about 2 million dollars each year from April 2014 until the completion of the 

Karegnondi Water Authority). 

We must emphasize that our study has important limitations. First and foremost, we 

utilize school records that can only identify children living in Flint when they enter school. 

Therefore, we cannot speak to the educational consequences of the Flint Water Crisis on infants 

or young children. Infants or toddlers in homes with lead pipes were likely more substantially 

impacted than the school-age children we observe. It is possible, if not probable, that the groups 

most affected by lead in Flint had yet to enter school and went unobserved in our analysis, which 

suggests the importance of continued monitoring of and support for infants and toddlers at the 

time of the crisis. Another limitation is that we do not observe child blood lead levels directly.35 

Our analysis is also limited to specific educational outcomes captured in state administrative 

data. Hence, we are unable to detect impacts on a variety of potentially important behaviors and 

skills. While our parallel identification strategies help us to separate the direct health effects of 

lead from the psychosocial effects of the resulting crisis, we cannot say precisely what pathways 

any indirect effects may operate through. Finally, it is worth noting that the substantial public 

health response to the crisis likely mitigated potential negative effects, suggesting what we find 

in both the within and between Flint analyses underestimate the impact of the crisis alone. Local 

organizations in Flint, supported by state, federal and foundation funding, responded to the crisis 

by dramatically expanding the set of social, medical and educational services available to 

                                                       
35 One way to explore these hypotheses would be to test the individual children living in these homes to get actual 
measures of the lead level in their blood. However, even if pre and post blood tests were available for all children in 
these homes, one might be concerned because lead is hard to measure in blood. This is because a single blood lead 
measure often does not capture true lead risk because lead exists in the blood only temporarily before it is deposited 
into the hair, bones, brain, and other organs. 
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children in Flint, ranging from positive messaging campaigns to free childcare to literacy 

programs (for example, the work of the recently formed Flint Pediatric Public Health Initiative). 

Flint is just one piece of a broader puzzle; researchers must continue exploring the ways in which 

lead plumbing underlays complex processes that produce health and social burden in the United 

States. As the risk of exposure from lead paint continues to fall with the success of many public 

health interventions, policymakers may do well to begin to shift their attention back towards 

understanding lead plumbing, and the community crises that it helps create, as an important 

health and social burden in America today. 
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Figure 1. Mean Educational Outcomes Over Time in Flint. 

Note. This figure displays descriptive trends in the mean academic outcomes for the Flint geographic district from 2006-2019. Data is taken from 
the Michigan Department of Education’s longitudinal administrative database. Grey dotted line represents time that the Flint Water Crisis begins. 
Math and reading achievement are observed for only for grades 3-8 and are standardized within test subject, grade, and year to the overall state 
distribution scores. Math and reading achievement observations begin in 2007. Both special needs and attendance are observed in grades K-12, 
and special needs status observations begin in 2006 whereas attendance observations begin in 2009. 
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Figure 2. Synthetic Control Estimates of the Effect of the Flint Water Crisis on Student Outcomes. 

Note. ATT estimates of the causal effects of Flint Water Crisis on standardized math and reading academic achievement, fraction special needs, and 
fraction of school days attended are plotted over time. 2015 is the first year post-treatment. A treatment effect was estimated for each year in the post-
period (2015-2019). The grayed shaded area represents the 95% confidence interval of the treatment effect estimates. Synthetic Flint was constructed 
by taking a weighted average of the 54 districts listed in table A1 in the appendix. 



51 

Figure 3. Mean Educational Outcomes Over Time in Flint by Service Line Material. 

Note: This figure displays descriptive trends in the mean academic outcomes for the Flint geographic district from 2010-2019. Education data is taken from the 
Michigan Department of Education’s longitudinal administrative data base. The black lines display students living in homes with copper service lines, while the 
red lines display students living in homes with lead service lines. Service line material data was collected during the City of Flint’s service line inspection and 
replacement program that was implemented in the aftermath the Crisis. The grey dotted vertical line represents time that the Flint Water Crisis begins. Math and 
reading achievement are observed in only grades 3-8, whereas special needs and attendance are observed in grades K-12. 
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Figure 4. Event Study Imputation Estimates of Lead Pipes on Student Outcomes. 

Note. This figure displays Dangerous Pipes * Year Dummy event study coefficients. Confidence intervals are shown in shaded red and blue areas. 
Dangerous Pipes * 2010, the first year in our Flint student-level panel, is the omitted category. The left four figures correspond to Models 1, 5, 9, and 
13 and the right four figures correspond to models 4, 8, 12, and 16 from Table 6, respectively. Controls include race-gender-year fixed effects, a vector 
of interactions between a student’s grade in 2013-2014 and year dummies, and a vector of interactions between a student’s census block poverty in 
2013-2014 and year dummies. 
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Table 1. Descriptive Statistics on Michigan Geographic Districts, 2013-2014. 

Note. This table contains geographic school district characteristics from the Michigan Department of Education’s longitudinal administrative data. Geographic 
school districts with greater than 1000 students are considered large. Math and reading achievement are standardized within test subject, grade, and year to the 
overall state distribution scores. Math and reading achievement are observed for grades 3-8; all other variables are observed for grades K-12. A full list of control 
districts is reported in Table A1. All variables are from the 2013-2014 academic year.  

All Districts All Large 
Districts 

Potential Control 
Districts Flint 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Math Achievement -0.01 0.01 -0.34 -0.51
(0.30) (0.30) (0.20) (.)

Reading Achievement 0.03 0.04 -0.31 -0.53
(0.25) (0.25) (0.18) (.)

Fraction Special Needs 0.15 0.14 0.15 0.15
(0.04) (0.03) (0.02) (.)

Fraction School Days Attended 0.95 0.95 0.94 0.91
(0.03) (0.01) (0.01) (.)

Fraction Female 0.48 0.49 0.49 0.49
(0.04) (0.01) (0.01) (.)

Fraction Black 0.08 0.10 0.40 0.76
(0.16) (0.17) (0.26) (.)

Fraction Hispanic 0.06 0.06 0.12 0.04
(0.08) (0.08) (0.14) (.)

Fraction Economically Disadvantaged 0.51 0.49 0.75 0.89
(0.18) (0.19) (0.11) (.)

Fraction Limited English Proficiency 0.03 0.03 0.09 0.03
(0.06) (0.06) (0.11) (.)

Fraction Attending Charter Schools 0.04 0.04 0.13 0.31
(0.09) (0.06) (0.11) (.)

Fraction Attending Administrative District 0.79 0.83 0.69 0.45
(0.18) (0.11) (0.14) (.)

Enrollment 2,883 3947 7496 16210
(6,083) (7007) (15922) (.) 

Number of Districts 548 362 54 1 
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Table 2. Synthetic Control Weights & Effect Estimates. 

Panel A. District Weights 
District Code District Name Weight 
14020 Dowagiac Union School District 0.14 
25240 Beecher Community School District 0.05 
35040 Whittemore-Prescott Area Schools 0.07 
63250 Oak Park School District 0.20 
72020 Houghton Lake Community Schools 0.08 
80090 Bloomingdale Public School District 0.01 
81070 Lincoln Consolidated School District 0.14 
82060 Hamtramck School District 0.13 
82120 River Rouge School District 0.11 
82430 Van Buren Public Schools 0.06 

Sum 1.00 
Panel B. Estimates 

Pre-RMSE Treatment Effect 
Math Achievement 0.0388 -0.1373

(0.0629)

Reading Achievement 0.0307 -0.0080
(0.0187)

Special Needs 0.0025 0.0130 
(0.0047) 

Attendance 0.0034 -0.0019
(0.0046)

Overall (Scaled) 0.0689 

Note. This table displays results from a synthetic control model using a sample of geographic 
school districts taken from the Michigan Department of Education’s longitudinal administrative 
data base. Math and reading achievement are standardized within test subject, grade, and year to the 
overall state distribution scores. Math and reading achievement are observed in only grades 3-8, 
whereas all other variables as observed in grades K-12. Only control districts given non-zero 
weights by the synthetic control model are listed in Panel A; a list of all control districts can be 
found in Table A2. 
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Table 3. Student Education Record to Home Service Line Data Match. 

Note. This table compares the full set of Flint students to the set whose addresses matched the service line data. To 
estimate the differences between the matched and unmatched sample, we used a series of regressions that adjusted 
the standard errors for clustering at the school-level and census block. For the student-level characteristics, we 
clustered the standard errors at the school level for all variables except percent attending Flint, another school 
district, charter, and living in Flint in 2014-15, for which we adjusted standard errors using census block. For 
school-level variables, we used adjusted standard errors for census block. 

Flint Students Matched to Service Line Data 

All Flint 
students 

(n=17,024) 

Matched 
(n = 10,245) 

Not Matched 
(n = 6,779) Difference 

Difference 
(w/census 

block fixed 
effects) 

(1) (2) (3) (4) (5) 
Student 

Math Achievement (z-score) -0.51 -0.50 -0.52 0.023 -0.014
Reading Achievement (z-score) -0.53 -0.51 -0.57 0.052* 0.031
Special Needs (%) 0.16 0.16 0.15 0.014* 0.022*
School Days Attended (%) 0.91 0.91 0.90 0.010** 0.009**
Female (%) 0.49 0.48 0.49 -0.006 0.003
Black (%) 0.76 0.74 0.79 -0.047** -0.006
Hispanic (%) 0.04 0.05 0.03 0.012** 0.006
Economically Disadvantaged (%) 0.88 0.87 0.90 -0.030** -0.025**
Limited English Proficiency (%) 0.03 0.03 0.02 0.017** 0.009*
Flint Community Schools (%) 0.45 0.48 0.41 0.061** 0.053**

School 
City (%) 0.57 0.59 0.54 0.055** 0.056** 
Suburb (%) 0.38 0.36 0.42 -0.061** -0.066**
Charter (%) 0.30 0.27 0.35 -0.085** -0.076**
Magnet (%) 0.54 0.58 0.50 0.080** 0.068**
Enrollment (N) 598.41 600.33 595.51 3.902 -24.590*
Economically Disadvantaged (%) 0.80 0.80 0.81 -0.016** -0.017**
Black (%) 0.67 0.66 0.68 -0.019* -0.018**
Hispanic (%) 0.04 0.04 0.04 0.002* 0.003**
White (%) 0.24 0.25 0.23 0.015* 0.014*

First Year Teachers (%) 0.05 0.05 0.05 -0.003 -0.001

District per-pupil expenditures ($) 6410.22 6567.91 6172.36 379.687** 307.118** 

Neighborhood 
Black (%) 0.57 0.56 0.60 -0.036**
Hispanic (%) 0.03 0.03 0.04 -0.003
Age 65+ (%) 0.12 0.12 0.11 0.010**
Age 25+: BA (%) 0.10 0.11 0.10 0.009

Age 25+: <HS Degree (%) 0.18 0.17 0.18 -0.014**

Below Poverty Line (%) 0.42 0.40 0.45 -0.052**
Unemployed (%) 0.28 0.27 0.29 -0.012
Owner-occupied Houses (%) 0.43 0.46 0.39 0.067**
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Table 4. The Determinants of Lead Pipes in the Homes of Flint Children. 

(1) (2) (3) 
Housing characteristics 
Year built -0.020*** -0.019*** -0.016***

(0.001) (0.001) (0.000)
Housing condition 2014: Poor 0.050* 0.045* 0.002

(0.026) (0.026) (0.015)
Housing condition 2014: Fair -0.008 -0.015 -0.008

(0.017) (0.017) (0.008)
Residential value ($10,000) 0.006** 0.007** 0.006***

(0.003) (0.003) (0.001)
Land improvement flag -0.033* -0.019 -0.017

(0.020) (0.019) (0.011)
Rental 0.004 -0.000 0.005

(0.012) (0.012) (0.007)
Missing: Year built -38.114*** -36.826*** -30.510***

(1.477) (1.559) (0.475) 
Neighborhood characteristics 
% Black -0.001*

(0.000)
% Hispanic -0.003

(0.002) 
% Persons: 65 and over 0.001 

(0.002) 
% Persons 25 years and over with bachelors 0.002 

(0.001) 
% Persons 25 years and over with less than HS -0.000

(0.001)
% Economically Disadvantaged 0.002**

(0.001)
% Unemployed 0.001

(0.001)
% Owner-occupied -0.002**

(0.001)
Constant 38.817*** 37.495*** 31.132*** 

(1.476) (1.563) (0.477) 

Fixed effects for census blocks? No No Yes 
Notes: N=10,180 
*p < 0.05, **p < 0.01, ***p < 0.001

Note. This table presents results from several regression models that include both household-level and 
neighborhood-level predictors.  
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Table 5. Comparing Flint Children with Lead versus Copper Pipes. 

All matched students 
(n  = 10,245) 

Copper Pipes 
(n = 6,183) 

Lead Pipes 
 (n = 4,062) Difference 

Difference 
(w/census block 

fixed effects)  

Difference 
(w/ census block 
fixed effects and 

housing 
characteristics) 

(1) (2) (3) (4) (5) (6) 
Student 

Math Achievement (z-score) -0.5 -0.51 -0.49 0.013 -0.029 -0.025 
Reading Achievement (z-score) -0.51 -0.53 -0.5 0.029 -0.034 -0.035 
Special Needs (%) 0.16 0.16 0.17 0.007 0.009 0.01
School Days Attended (%) 0.91 0.92 0.91 -0.005 0.003 0.001 
Female (%) 0.48 0.48 0.49 0.002 0.001 -0.033 
Black (%) 0.74 0.77 0.69 -0.079** -0.012 0.022
Hispanic (%) 0.05 0.04 0.06 0.017* 0.001 -0.002 
Economically Disadvantaged (%) 0.87 0.86 0.89 0.031** 0.025 0.022
Limited English Proficiency (%) 0.03 0.03 0.05 0.019** 0.01 0.011 
Attending school in Flint (%) 0.48 0.45 0.51 0.058** 0.039 0.044 
Attending another school district (%) 0.25 0.27 0.23 -0.035** -0.033 -0.038 

School 
City (%) 0.59 0.56 0.63 0.072** 0.044 0.053* 
Suburb (%) 0.36 0.38 0.32 -0.055** -0.043 -0.051* 
Charter (%) 0.27 0.28 0.25 -0.024* -0.006 -0.007
Magnet (%) 0.58 0.56 0.6 0.035** 0.04 0.059* 
Enrollment (N) 600.33 606.51 590.94 -15.746 -11.637 -3.789 
Economically Disadvantaged (%) 0.8 0.79 0.8 0.008* 0.012* 0.011
Black (%) 0.66 0.66 0.66 0.002 0.017 0.028* 
Hispanic (%) 0.04 0.04 0.04 0.002* -0.001 -0.001 
White (%) 0.25 0.25 0.25 -0.003 -0.015 -0.026* 

FTE teachers in their first year of teaching (%) 0.05 0.05 0.04 -0.002 -0.002 -0.003 

Per-pupil district-level total instructional expenditures ($) 6567.91 6492.08 6683.42 190.476** 75.048 65.572 

Neighborhood 
Black (%) 0.56 0.6 0.5 -0.094** 
Hispanic (%) 0.03 0.03 0.04 0.005*
Age 65 and over (%) 0.12 0.13 0.11 -0.020** 
Age 25 and over: BA (%) 0.11 0.11 0.1 -0.011* 

Age 25 and over: less than high school (%) 0.17 0.16 0.19 0.024** 
Economically Disadvantaged (%) 0.4 0.37 0.44 0.070** 
Unemployed (%) 0.27 0.27 0.29 0.019** 
Owner-occupied Houses (%) 0.46 0.48 0.42 -0.068** 

Note. *p < 0.05, **p < 0.01 
Service line material is considered dangerous based on pipes made out of lead. Water is coded as dangerous if it contains >15 PPB of lead. 
aThe difference column was calculated by regressing dangerous status on each of the variables listed on the table with census blocks fixed effects. 
For the service line materials, the overall F-test using all listed variables to predict dangerous status was significant, F(12, 1663) = 1.49, p = 0.12. 
For the water material, the overall F-test using all listed variables to predict dangerous status was significant, F(10, 1534) = 0.96, p = 0.487.  
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Table 6. Difference in Difference Imputation Results: Dangerous Service Line. 

Math Achievement Reading Achievement 
(1) (2) (3) (4) (5) (6) (7) (8)

Dangerous Pipes * Post -0.0319 -0.0314 -0.0198 -0.0161 -0.0190 -0.0152 -0.0199 -0.0110
(0.0218) (0.0233) (0.0212) (0.0225) (0.0250) (0.0267) (0.0246) (0.0264) 

Control Mean {-.62} {-.62} {-.62} {-.62} {-.60} {-.60} {-.60} {-.60} 

Controls X X X X 
School-Grade Fixed Effects X X X X 
Pre-Trends P-Value  0.0219 0.107 0.0504 0.137 0.122 0.473 0.165 0.526 
Students 8034 8018 7959 7944 8024 8008 7953 7938 
Student-Years 33159 33084 32851 32781 33057 32982 32755 32685 

Special Needs Attendance 
(9) (10) (11) (12) (13) (14) (15) (16)

Dangerous Pipes * Post 0.00398 -0.00553 -0.000318 -0.00255 0.000225 -0.00269 -0.000740 0.000700
(0.00558) (0.00587) (0.00559) (0.00581) (0.00169) (0.00172) (0.00159) (0.00166) 

Control Mean {.176} {.176} {.175} {.174} {.916} {.917} {.916} {.916} 

Controls X X X X 
School-Grade Fixed Effects X X X X 
Pre-Trends P-Value  0.365 0.753 0.862 0.796 0.640 0.412 0.183 0.433 
Students 10245 10225 10238 10218 9921 9898 9866 9847 
Student-Years 80818 80654 79642 79477 66797 66666 66208 66092 

*p < 0.05, **p < 0.01

Note. This table displays results from difference-in-differences regressions of the effect of having dangerous pipe materials on a student’s academic outcomes during the Flint 
Water Crisis using a panel spanning 2010-2019. All models include student fixed effects and year fixed effects. Education data is taken from the Michigan Department of 
Education’s longitudinal administrative data base. Service line material data was collected during the City of Flint’s service line inspection and replacement program that was 
implemented in the aftermath the crisis. Lead or galvanized steel service lines are classified as dangerous, whereas copper service lines are classified as not dangerous. Models 
with controls include race-gender-year fixed effects, a vector of interactions between a student’s grade in 2013-2014 and year dummies, and a vector of interactions between a 
student’s census block poverty in 2013-2014 and year dummies. These difference-in-differences models are estimated using imputation (Borusyak, Jaravel, and Spiess 2021 
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A1. The Expected Educational Impacts of Lead on Flint Children 
How would we expect the amount of increased lead exposure that resulted from the Flint 

Water Crisis to impact educational outcomes? There are a few studies that provide recent and 
rigorous evidence studies regarding the effects of blood lead on academic achievement and 
intelligence (Aizer et al., 2018; Lanphear et al., 2005; Reuben et al., 2017). Aizer et al. (2018) 
uses an instrumental variables strategy, whereas the other two studies are simple linear 
regression (controlling for confounding factors such as parental cognition and childhood 
socioeconomic status). We omit Billings & Schnepel (2018) because they leverage lead 
reductions that results from a broad public health program that may have had its additional, non-
lead driven effects on educational development. 

In Aizer et al. (2018), the authors using two different instrumental variables strategies to 
quantify the causal effects of blood lead, measured in early childhood (i.e. below the age of 6), 
on third grade math and reading test scores using administrative data from Rhode Island. The 
first strategy uses one childhood measure of blood lead as an instrument for another from the 
same child, thereby reducing measurement error (Blood Lead IV). The second strategy uses the 
timing and geographic roll-out of a lead-free home certificate program as an instrument for a 
child’s blood levels (Certificate IV). The second stage of both approaches estimates the effect of 
(predicted) blood lead on both math and reading achievement. All point estimates are negative 
and of the same order of magnitude but estimates from the Blood Lead IV are much more precise 
than estimates from the Certificate IV. 
 A second relevant study is Reuben et al. 2017. Here, the authors use rich longitudinal 
data from New Zealand to estimate the association between blood lead measured at age 11 on IQ 
in adulthood (age 38). They provide unconditional estimates as well as estimates from regression 
models that control for sex, maternal IQ, IQ at age 11, and children’s socioeconomic status. The 
association between blood lead and IQ attenuate only slightly when controls are included. A 
third study, Lanphear et al. 2005, a presents a pooled international analysis that measures the 
association between blood lead and children’s IQ. When we transform their results in order to be 
comparable to the other studies,1 their estimates are not substantively different from Rueben et 
al. 2017. 

In summary, the results from these three studies displayed in Table A1 of the appendix, 
converge surprisingly well; a one microgram per deciliter (ug/dL) increase in blood lead is 
associated with approximately 0.03 SD reduction in cognitive ability, math achievement, and 
reading achievement. Given that children experienced roughly a 0.5 ug/dL average increase in 
blood lead following the Flint Water Crisis, we would expect only a .017 SD decrease in math 
scores as a result of lead effects. In the education literature, a .017 SD effect is quite small 

                                                       
1 Lanphear et al. 2005 find nonlinear effects of lead (i.e. the marginal blood lead effects are larger for children with 
less lead in their body than children with more lead in their body). For this reason, we focus on their estimates from 
the lower end of the lead distribution (<10 ug/dL), where most Flint children fell both before and after crisis. Using 
their preferred estimate, Lanphear observes a “decline of 6.2 IQ points (95% CI, 3.8-8.6) for an increase in blood 
lead levels from < 1 to 10 pg/d." Dividing 6.2 by 10 yields the effect of a one ug/dL change in blood lead on 
unstandardized IQ points per entails an average (0.62). Finally, if we divide .62 by the standard deviation of the IQ 
measure in their study (19.2), we are left with the effect of a one ug/dL change in lead on standardized IQ (.032) 
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(Kraft, 2020). Lead is also known to have effects on behavioral outcomes, which we can index 
through special needs status and daily attendance, though expected the expected effects are 
unknown. 

 
A2. Synthetic Control Methods 
 
A2.i. Notation 

Suppose we have a panel of data with districts 𝑖𝑖 over time 𝑡𝑡. Flint, our treated district, has 
𝑖𝑖 = 1. We observe a total of 𝑇𝑇 time periods of some educational outcome 𝑌𝑌𝑖𝑖𝑖𝑖 for 𝑁𝑁 unique school 
districts. The final pretreatment year is 𝑡𝑡∗ such that 1 <  𝑡𝑡∗ < 𝑇𝑇. Here,  𝑇𝑇 = 14 (i.e. we have 
yearly observations ranging from 2006 − 2019), 𝑡𝑡∗ = 9 (i.e. 2014), and 𝑁𝑁 = 55 (i.e. Flint and 
54 control districts). 

We begin with our data structured as the following 𝑁𝑁 ×  𝑇𝑇 matrix:  
 

𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝑡𝑡
𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑖𝑖𝑡𝑡

⋮
𝐿𝐿𝐿𝐿𝐹𝐹𝐿𝐿𝑖𝑖𝐹𝐹𝐿𝐿

   

⎣
⎢
⎢
⎡
𝑌𝑌1,1 𝑌𝑌1,2 ⋯ 𝑌𝑌1,𝑖𝑖∗ 𝑌𝑌1,𝑖𝑖∗+1 ⋯ 𝑌𝑌1,𝑇𝑇
𝑌𝑌2,1 𝑌𝑌2,2 ⋯ 𝑌𝑌2,𝑖𝑖∗ 𝑌𝑌2,𝑖𝑖∗+1 ⋯ 𝑌𝑌2,𝑇𝑇

⋮ ⋮
𝑌𝑌𝑁𝑁,1 𝑌𝑌N,2 ⋯ 𝑌𝑌𝑁𝑁,𝑖𝑖∗ 𝑌𝑌𝑁𝑁,𝑖𝑖∗+1 ⋯ 𝑌𝑌𝑁𝑁,𝑇𝑇⎦

⎥
⎥
⎤
 

(A2.i.a) 
𝑌𝑌𝑖𝑖𝑖𝑖: Educational outcome for district 𝑖𝑖 in time 𝑡𝑡  
𝑇𝑇: Scalar for total number of time periods observed 
𝑁𝑁: Total number of unique districts in our data 
𝑡𝑡∗:  Final year 𝑡𝑡 before treatment begins 
 

To aid in the exposition of our methodology, for the remainder of the paper we partition 
pretreatment outcome observations (i.e. 𝑡𝑡 ≤ 𝑡𝑡∗) into 𝑋𝑋𝑖𝑖𝑖𝑖 and use  𝑌𝑌𝑖𝑖𝑖𝑖 to refer solely to 
posttreatment observations (i.e. 𝑡𝑡 > 𝑡𝑡∗). 
 

⎣
⎢
⎢
⎡
𝑋𝑋1,1 𝑋𝑋1,2 ⋯ 𝑋𝑋1,𝑖𝑖∗ 𝑌𝑌1,𝑖𝑖∗+1 ⋯ 𝑌𝑌1𝑇𝑇
𝑋𝑋2,1 𝑋𝑋2,2 ⋯ 𝑋𝑋2,𝑖𝑖∗ 𝑌𝑌2,𝑖𝑖∗+1 ⋯ 𝑌𝑌2𝑇𝑇
⋮ ⋮

𝑋𝑋N,1 𝑋𝑋𝑁𝑁,2 ⋯ 𝑋𝑋𝑁𝑁,𝑖𝑖∗ 𝑌𝑌𝑁𝑁,𝑖𝑖∗+1 ⋯ 𝑌𝑌𝑁𝑁𝑇𝑇⎦
⎥
⎥
⎤
 

 
(A2.i.b) 

 
A2.ii. Potential Outcomes Framework 

Using the potential outcomes framework (Rubin, 2005), in order to calculate the causal 
effect of the Flint Water Crisis on some educational outcome 𝑌𝑌𝑖𝑖𝑖𝑖, we must identify the difference 
between the potential outcome that was observed in Flint, 𝑌𝑌1𝑖𝑖(1), and the potential outcome that 
we would have observed if Flint had not experienced its water crisis, 𝑌𝑌1𝑖𝑖(0).  
 

𝐴𝐴𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑌𝑌1𝑖𝑖(1) − 𝑌𝑌1𝑖𝑖(0) 
 

𝐴𝐴𝑇𝑇𝑇𝑇 =
1

𝑇𝑇 − 𝑡𝑡∗
� 𝐴𝐴𝑇𝑇𝑇𝑇𝑖𝑖

𝑇𝑇−𝑖𝑖∗ 

𝑖𝑖=1
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(A2.ii.a) 
𝐴𝐴𝑇𝑇𝑇𝑇𝑖𝑖: Average treatment on the treated of the Flint Water Crisis in year 𝑡𝑡  
𝐴𝐴𝑇𝑇𝑇𝑇: Overall average treatment on the treated of the Flint Water Crisis 
𝑌𝑌1𝑖𝑖(1): Potential outcome for Flint (i.e 𝑖𝑖=1) in year t when treated 
𝑌𝑌1𝑖𝑖(0): Potential outcome for Flint (i.e 𝑖𝑖=1) in year t when untreated 
 

Of course, we do not observe both 𝑌𝑌𝑖𝑖𝑖𝑖(1) and 𝑌𝑌𝑖𝑖𝑖𝑖(0) for any district in our panel. Instead, 
we observe 𝑌𝑌𝑖𝑖𝑖𝑖(1) for Flint and 𝑌𝑌𝑖𝑖𝑖𝑖(0) for all our control districts. Thus, we are left needing a 
reliable way to combine 𝑌𝑌𝑖𝑖𝑖𝑖(0) for the 54 control districts to approximate Flint’s potential 
outcome in the absence of treatment, 𝑌𝑌1𝑖𝑖(0). 

In many panel data settings, difference-in-differences methods are a credible way to 
obtain 𝑌𝑌�1𝑖𝑖(0), an estimate of 𝑌𝑌1𝑖𝑖(0), and thereby estimate the causal effects of an event like the 
Flint Water Crisis (though some challenges to estimating difference-in-differences with a single 
treated unit remain, see Ferman and Pinto 2019; Conley and Taber 2011).2 However, finding a 
valid counterfactual for Flint is quite difficult. Even setting aside the water crisis, as a waning, 
mid-size city with residents who are disproportionately black and extremely poor, Flint is unique 
(see Figure 1). No districts in our panel readily support the common trends assumption required 
by differences-in-differences models. 
 
A2.iii. Demeaned Synthetic Control Methods 

To address the problem of that lack of a clear counterfactual district, we use synthetic 
control methods (Abadie 2021). The earliest variations iterations of this method were developed 
by Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmuller (2010). Synthetic 
control methodologies use pre-treatment data to identify the weighted average of control districts 
that most closely approximates the treated unit. They have the advantage of reducing bias 
through improved pretreatment fit and also allow for a more transparent counterfactual selection 
process, leaving less researcher degrees of freedom. 

We implement a recent extension known as demeaned, or intercept-shift, synthetic 
control (Doudchenko & Imbens, 2017). Such a methodology involves first subtracting off each 
unit 𝑖𝑖’s pretreatment outcome mean from all pre and posttreatment observations (conceptually 
similar to a unit fixed effect), and then fitting classic synthetic control on those residuals. 
 

𝑋𝑋�𝑖𝑖 =
1
𝑡𝑡∗
�𝑋𝑋𝑖𝑖𝑖𝑖

𝑖𝑖∗

𝑖𝑖=1

 

 

𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖 −
1
𝑡𝑡∗
�𝑋𝑋𝑖𝑖𝑖𝑖

𝑖𝑖∗

𝑖𝑖=1

 

(A2.iii.a) 
𝑋𝑋�𝑖𝑖: Mean of outcome for unit 𝑖𝑖 in the pretreatment period 

 

                                                       
2 The inference strategy presented in Ferman and Pinto (2019) does not generalize to the case where a weighted set 
of control units approximates the treated unit. 
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 We follow the literature (Arkhangelsky et al., 2018; Ben-Michael et al., 2021; 
Doudchenko & Imbens, 2017) and choose to balance only lagged outcomes, 𝑋𝑋𝑖𝑖𝑖𝑖, and not 
covariates. Covariates have been shown to be redundant in synthetic control when used alongside 
all lagged outcomes (Kaul et al., 2021). Our demeaned synthetic control estimator estimates 
𝑌𝑌�1𝑖𝑖(0) using a demeaned weighted average of any number of control units. Thus, our estimating 
equation becomes: 
 

𝐴𝐴𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑌𝑌1𝑖𝑖(1) − [𝑋𝑋�1 + �𝑤𝑤𝑖𝑖(𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑖𝑖))]
𝑁𝑁

𝑖𝑖=2

 

(A2.iii.b) 
𝑤𝑤𝑖𝑖: Synthetic control weight for district 𝑖𝑖  
 

Demeaned synthetic control allows us to match on pretreatment trends rather than on 
pretreatment means. While Flint’s mean academic outcomes are extreme outliers, its trends lie 
closer to the convex hull of control outcomes; thus, demeaning drastically increases our common 
support between Flint and the control units. At the same time, demeaning does not stretch our 
relatively short panel of pretreatment outcomes too thin, as would more complicated extensions, 
such as incorporating time weights, outcome modeling, or machine learning. 

The demeaned synthetic control that we implement is identical to a few control 
extensions recently suggested in the literature. For example, our approach is equivalent to using 
augmented synthetic control methods in the specific case where each unit’s pretreatment mean is 
used as covariate with a coefficient constrained to be equal to 1 (Ben-Michael et al., 2018). Our 
approach is also the identical to fitting synthetic difference-in-differences with uniform time 
weights and including a unit intercept (Arkhangelsky et al., 2018). As such, the demeaned 
synthetic control estimator we use can be expressed as a weighted difference-in-differences 
estimator. 

 

𝐴𝐴𝑇𝑇𝑇𝑇𝑖𝑖 = [𝑌𝑌1𝑖𝑖 −
1
𝑡𝑡∗
�(𝑋𝑋�1𝑖𝑖)]
𝑖𝑖∗

𝑖𝑖=1

− [�(𝑤𝑤𝑖𝑖(𝑌𝑌𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=2

− 𝑋𝑋�𝑖𝑖) 

(A2.iii.c) 
 
In the case of traditional, unweighted difference-in-differences, unit weights are uniform 

and sum to one (i.e. each district’s 𝑤𝑤 is equal to 1
𝑁𝑁−1

). If we were to implement such weights in 
Equation 5c.iii, we are left with the familiar difference-in-differences estimator: 

 

𝐴𝐴𝑇𝑇𝑇𝑇𝑖𝑖 = [𝑌𝑌1𝑖𝑖 − 𝑋𝑋�1] −
1

𝑁𝑁 − 1
[�[𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑖𝑖]
𝑁𝑁

𝑖𝑖=2

 

(A2.iii.d) 
 
As a reminder, 𝑋𝑋𝑖𝑖𝑖𝑖 represents the outcome variable 𝑌𝑌𝑖𝑖𝑖𝑖 in the pretreatment period.  
 
A2.iv. Estimating Weights 
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 We construct the vector of synthetic control weights, 𝒘𝒘, by solving for the values that 
minimizes the squared distance between demeaned pretreatment outcomes for Flint and 
demeaned pretreatment outcomes for the other districts. 
 

𝒘𝒘 = �

𝑤𝑤2
𝑤𝑤3
⋮
𝑤𝑤𝑁𝑁

� 

(A2.iv.a) 
𝒘𝒘:  𝑁𝑁 − 1 ×  1 vector of basic synthetic control weights 𝑤𝑤𝑖𝑖 from i = 2, … , N 
 
Specifically, we solve: 
 

min 
𝒘𝒘

 �[(𝑋𝑋1𝑖𝑖 − 𝑋𝑋�1)
𝑖𝑖∗

𝑖𝑖=1

−�(𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑖𝑖)
𝑁𝑁

𝑖𝑖=2

𝑤𝑤𝑖𝑖]  

 

subject to     �𝑤𝑤𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=2

 

                
                                        𝑤𝑤𝑖𝑖 ≥ 0, 𝑖𝑖 = 2, … ,𝑁𝑁 

(A2.iv.b) 
 

However, our problem in practice is slightly more complicated. We identify a single set 
of synthetic control weights that simultaneously balances all four of our educational outcomes in 
pretreatment period. Let us denote each outcome with 𝑗𝑗, where 𝐽𝐽 is the total outcomes. For every 
outcome 𝑗𝑗, we have a unique 𝑁𝑁 ×  𝑇𝑇 matrix described in Equation (5a.ii). Thus, we can solve for 
the values of 𝒘𝒘 that simultaneously minimize the squared distance between all 𝐽𝐽 demeaned 
pretreatment outcomes for Flint and all 𝐽𝐽 demeaned pretreatment outcomes for control districts. 
We first normalize each outcome by dividing by its standard deviation so that differences in 
scaling do not influence the optimization. 
 

min 
𝒘𝒘

 �� [(𝑋𝑋1𝑖𝑖𝑡𝑡 − 𝑋𝑋�1𝑡𝑡)
𝑖𝑖∗−1

𝑖𝑖=1

−��𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑋𝑋�𝑖𝑖𝑡𝑡�
𝑁𝑁

𝑖𝑖=2

𝑤𝑤𝑖𝑖]
𝐽𝐽

𝑡𝑡=1

   

(A2.iv.c) 
 
We calculate these weights, estimate treatment effects, and calculate standard errors 

using the publicly available R package augsynth.3 The standard error estimation is described in 
more detail in Ben-Michael, Feller, and Rothstein 2019 and Arkhangelsky et al. 2019. In short, 
we use heteroskedasticity-consistent standard errors for panel data settings using the R package 
sandwich (Zeileis, 2004),with variance estimated via the jackknife (Miller, 1974). A desirable 
feature of these standard errors using the jackknife is that they incorporate uncertainty created by 

                                                       
3 Available at https://github.com/ebenmichael/augsynth/blob/master/vignettes/augsynth-vignette.md. 

https://github.com/ebenmichael/augsynth/blob/master/vignettes/augsynth-vignette.md
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the weight selection process in addition to uncertainty due to imperfect fit in the pre-treatment 
period. 
 In order to probe whether the treatments effects we observe are heterogeneous by some 
dichotomous subgroup 𝑣𝑣, we can decompose our treatment effect by maintaining the same 
weights as the main effects and estimating the treatment effects within subgroup. Unfortunately, 
there is no obvious way to yield standard errors for this decomposition. Nonetheless, we believe 
such an endeavor may still provide useful suggestive information regarding which underlying 
subgroups may be driving any observed treatment effects. 
 

A3. Synthetic Control Robustness 
Here we describe in more detail the ways in which we probe the robustness of our 

synthetic control results. Our robustness analyses center on We do so by altering our synthetic 
control models across three distinct dimensions: 1) the number of outcomes estimated 
simultaneously, 2) the sample of control districts used, and 3) the way in which district 
membership is defined (i.e. traditional vs. fixed). Tables A6 and A7 present the results of 21 
synthetic control models. Across all the specifications, our key results—a large decrease in math 
achievement and a corresponding increase in special needs—remain unchanged.  

First, we fit models that vary by the number of outcomes considered simultaneously. In 
addition to our preferred model results presented in this section, we fit six news versions of 
synthetic controls model: each outcome on its own, math achievement and reading achievement 
jointly, and special needs and attendance jointly. A number set of the models considering only a 
single outcome attain perfect fit in the pretreatment period. Perhaps counterintuitively, perfect fit 
is problematic for synthetic control methods; it implies that the models do not converge to a 
sufficiently unique solution and that we need either a longer pretreatment panel or more 
outcomes to balance. We therefor omit all results that attain perfect fit.  
 The second dimension that we vary is the set of control districts used to construct 
synthetic Flint. One concern might be that are results are sensitive to the specific pool of control 
districts used. Further, using districts too distant from Flint in covariate space might lead to an 
apples and orange comparison. We test the sensitivity of our results to this concern by restricting 
to a narrower set of districts that are more similar to Flint. As discussed earlier, relative to all 
Michigan districts with at least 1000 students, Flint is at the 99th percentile in terms of fraction 
black and in terms of fraction economically disadvantaged. Rather than using districts that are in 
the top decile in terms of fraction black or fraction economically disadvantaged, we use only 
districts that are in the top 5% in terms of at least one of these characteristics. This includes only 
26 of the 54 districts included in our baseline comparison group. Panel B of Figure A3 in the 
appendix illustrates how these districts were identified. Table A2 provides a list of the 26 
districts and Table A3 displays descriptive statistics. Models 8-14 in Tables A6  and A7 present 
synthetic control results using this more restricted set of control districts. 
 Finally, we test the robustness of our results to student residential mobility. The key 
concern is that the treatment might have led to compositional changes in Flint, which could bias 
our estimates. Because we are measuring things on the basis of geographic school district, a 
student who transfers to a school in a neighboring district will remain in our Flint sample, unless 
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they change their residential address to outside Flint. To determine if any such movement 
influences our estimates, we re-estimate our SCM using a panel of data based on only students 
living in Flint or the comparison districts during the 2013-2014 school year. Using this “fixed 
sample” approach, a student that leaves Flint following the Water Crisis will nonetheless be 
contribute to the Flint average in these later years. This fixed sample approach ensures that the 
results we derive are not simply a function of selective attrition of Flint over time, as very few 
students attrit from the fixed sample (i.e., only those that switch to private school or move out of 
Michigan). Table A4 present descriptive statistics of this fixed panel alongside the traditional 
sample (i.e. our main specification).  Models 15-21 in Tables A6 and A7 present synthetic 
control results using the fixed sample. Though there is some evidence for reading effects when 
using the fixed sample; see Models 17 and 18, given the mixed evidence we refrain from reading 
into them too deeply. 
 

A4. Lead Water Test Data 
For certain auxiliary analyses, we use data on residential water test results obtained from 

the state of Michigan (we refer to this data as “water data”).4 The water data contains results 
from lead tests using a voluntary homeowner-driven sampling program whereby concerned 
citizens were provided testing kits and conduct sampling on their own. Despite the lack of a 
statistical sampling strategy, voluntary testing turned out to largely representative of the Flint’s 
housing stock (Goovaerts, 2017). We use data from water tests conducted in 2016, which 
consists of 17,421 addresses in the city of Flint. Because many addresses had multiple tests 
within 2016, we create a single binary variable that indicates whether the address had at least one 
water test return a value of lead concentration greater than one part per billion.  

Next, we matched our household water testing data to our analytic sample of 17,024 
students to any of the 17,421 unique addresses with valid water test data in 2016. To do so, 
University of Michigan research staff first parsed addresses to facilitate the algorithm responsible 
for the match using the ArcGIS Geocoding Parser.5 From there, they attempted to match students 
to water test results from the water data using student home address. We were able to match to 
home water test results to 5,355 students, or 31.46% of our analytic sample 17,024. Both pipes 
and water data were matched to just 3,430 students. The comparatively fewer Flint addresses 
with water data largely explains why we were able to match a smaller proportion of students to 
water test results. 
 
  

                                                       
4 Obtained at the following URL in January 2021: https://www.michigan.gov/flintwater/0,6092,7-345-
76292_76294_76297---,00.html. 
5Parsing involved splitting an address into various fields (e.g., address number, street name pre-directional such as 
north or south, street name, zip code). Roughly 80% of the original water material addresses that were fully parsed 
(n = 17,024). This step was not necessary for the service line materials addresses because they had been previously 
parsed using the Google Maps API by the researchers who collected the data.  

https://www.michigan.gov/flintwater/0,6092,7-345-76292_76294_76297---,00.html
https://www.michigan.gov/flintwater/0,6092,7-345-76292_76294_76297---,00.html
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Figure A1. Timeline of Flint Water Crisis. 

December 2011: With Flint’s municipal government bankrupt, Michigan governor Rick Snyder 
appoints the first of a long string of emergency city managers to sort out the city’s budget 
troubles. 

April 2014: To reduce costs, Flint stops using water from Lake Huron and instead begins 
obtaining its drinking water from the Flint River.  

May 2014: Flint residents begin complaining about the odor, color, and taste of their tap water. 

October 2014: The General Motors plant in Flint discontinues its use of the municipal water 
supply because its corrosivity is damaging car parts.  

February 2015: Despite the continued presence of sediment and discoloration, a city of Flint 
consultant tells the public that the tap water is safe to drink. However, employees at the federal 
EPA inform the city of Flint and the Michigan Department of Environmental Quality that lead 
and other contaminants are leaching into the water system. 

September 2015: Local Flint pediatrician and researcher Dr. Mona Hanna-Attisha announces 
that the number of children with elevated blood lead levels had doubled since the water switch. 
Virginia Tech engineering professor Dr. Mark Edwards finds that lead readings in the tap water 
of 5,000 Flint homes exceed safe levels. 

October 2015: The state of Michigan detects an increase in child blood lead levels in Flint since 
the city’s switch in routine testing required by the US CDC. Flint switches its municipal water 
back to the original Detroit source, though until a protective mineral film to redevelops inside the 
leaching pipes the city’s water remains unsafe to drink. 

November 2016: A class action lawsuit is filed against the city of Flint and the state of 
Michigan. 

January 2016: Governor Rick Snyder declares a state of emergency. The top Flint health official 
publicly advises residents against using tap water. The National Guard is called into Flint to 
distribute bottled water. 

March 2016: The first lead service line is inspected and replaced as a part of the City’s FAST 
Start program. 

January 2019: Roughly 8,000 out of the 20,000 homes inspected as part of the FAST Start 
program have been found to have lead or galvanized service lines and were subsequently replace.  

June 2019: EPA declares that Flint’s water currently meets all health-based standards and is safe 
to drink, but then-Flint mayor Karen Weaver dismisses this conclusion as premature. 

August 2020: The state of Michigan reaches a $600 million settlement with the victims of the 
Flint Water Crisis, with the bulk of this money going to those who were children at the time of 
the crisis.
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Figure A2. Observations of Educational Outcomes Over Time in Flint. 
 

 
Note: This figure displays descriptive trends in the number of observations of academic outcomes for the Flint geographic district from 2006-2019. Data is taken 
from the Michigan Department of Education’s longitudinal administrative data base. The grey dotted vertical line represents time that the Flint Water Crisis 
begins. Math and reading achievement are observed in only grades 3-8, whereas special needs and attendance are observed in grades K-12. Traditional sample is 
used for our main synthetic control analysis, while the fixed sample is use for a robustness check described in Section 5C.
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Figure A3. Synthetic Control Sample Selection. 
 

 
 
Note. Each circle represents a Michigan geographic school district. Data is taken from the Michigan 
Department of Education’s longitudinal administrative data base. All districts with enrollment greater 
than 1,000 students are displayed, and the size of each school’s circle is proportional to its student 
enrollment. Dashed lines in Panel A are at X=.73 and Y=.31, the 90th percentile of fraction 
economically disadvantaged and fraction black, respectively. Dashed lines in Panel B are at X=.8 and 
Y=.54, the 95th percentile of fraction economically disadvantaged and fraction black, respectively. All 
variables were measured in the 2013-2014 academic year 
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Figure A4. Synthetic Control Robustness: Special Needs Plot. 
 

             
 
Note. This figure presents estimates of an alternative version of the synthetic control that consider each outcome individually (left-side of panel) as well as 
models that include two of the four outcomes together. The right-side of the figure presents results that includes attendance and special need services together, 
corresponding to models from Column 7 of Tables A6 and A7. 
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Figure A5. Mean Mobility Outcomes Over Time by Service Line Material. 
 

 
 
Note. This figure displays descriptive trends in the means mobility outcomes for the Flint geographic district from 2006-2019 by service line material. Data is 
taken from the Michigan Department of Education’s longitudinal administrative data base. Grey dotted line represents time that the Flint Water Crisis begins.  
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Figure A6. Event Study Imputation Estimates of Lead Pipes on Student Outcomes. 
 

 
Note. This figure displays Dangerous Pipes * Year Dummy event study coefficients. Dangerous Pipes * 2010, the first year in our Flint student-level 
panel, is the omitted category. The left four figures correspond to Models 2, 6, 10, and 12 and the right four figures correspond to models 3, 7, 11, and 
15 from Table 6, respectively. Controls include race-gender-year fixed effects, a vector of interactions between a student’s grade in 2013-2014 and 
year dummies, and a vector of interactions between a student’s census block poverty in 2014-2014 and year dummies. 
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Table A1. Previous Estimates of Lead on Achievement. 

Aizer et al. 2018 Blood Lead IV Certificate IV 
 Test Score Test Score/SD Test Score Test Score/SD 

Reading (Age 8) -0.396 -0.030 -0.931 -0.072 
 [0.0372] [0.003] [0.516] [0.040] 
     

Math (Age 8) -0.266 -0.020 -0.431 -0.033 
   [0.0347] [0.003] [0.471] [0.036] 

     
     

Rueben et al. 2017 Unadjusted Covariate Adjusted* 
 Test Score Test Score/SD Test Score Test Score/SD 

Cig (Age 38) -0.394 -0.026 -0.322 -0.021 
 [0.140] [0.009] [0.089] [0.006] 
     

*Covariates include sex, maternal IQ, childhood IQ (age 11), and childhood socioeconomic 
status. 
     
     
Lanphear et al. 2005     Covariate Adjusted** 

     Test Score Test Score/SD 
IQ (Age 7)   -0.620 -0.032 

   [0.133] [0.007] 
**Covariates include birth weight, maternal IQ, and maternal education.   

 
Note: This table displays previous estimates of the effect lead on achievement taken from three studies (Aizer et al. 
2018; Reuben et al. 2017; Lanphear et al. 2005).  
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Table A2. List of Control Districts. 
District Code District Name Full Control Group  

(n = 54) 
Restricted Control Group 
(n = 26) 

13020 Battle Creek Public Schools X  
82160 Wayne-Westland Community School District X  
80020 Bangor Public Schools (Van Buren) X  
25240 Beecher Community School District X X 
25060 Bendle Public Schools X X 
11010 Benton Harbor Area Schools X X 
80090 Bloomingdale Public School District X X 
73180 Bridgeport-Spaulding Community School District X  
25080 Carman-Ainsworth Community Schools X  
50070 Clintondale Community Schools X  
82030 Dearborn City School District X  
82040 Dearborn Heights School District #7 X  
82240 Westwood Community School District X X 
82010 Detroit City School District X X 
14020 Dowagiac Union School District X  
50020 East Detroit Public Schools X X 
82250 Ecorse Public Schools X X 
63020 Ferndale Public Schools X  
50090 Fitzgerald Public Schools X X 
41120 Godfrey-Lee Public Schools X X 
41020 Godwin Heights Public Schools X X 
41010 Grand Rapids Public Schools X  
82060 Hamtramck School District  X X 
82320 Harper Woods The School District X X 
18060 Harrison Community Schools X  
80120 Hartford Public Schools X  
63130 Hazel Park School District  X  
72020 Houghton Lake Community Schools X  
38170 Jackson Public Schools X  
39010 Kalamazoo Public Schools X  
41140 Kelloggsville Public Schools X  
41160 Kentwood Public Schools X  
33020 Lansing Public School District X  
81070 Lincoln Consolidated School District X  
82090 Lincoln Park School District X  
82045 Melvindale-North Allen Park Schools X X 
50160 Mount Clemens Community School District X  
25040 Mt. Morris Consolidated Schools X X 
61010 Muskegon Public Schools  X X 
63250 Oak Park School District  X X 
61190 Orchard View Schools X  
63030 Pontiac City School District X X 
82110 Redford Union Schools District No. 1 X X 
82120 River Rouge School District  X X 
82130 Romulus Community Schools X X 
73010 Saginaw School District  X X 
50200 South Lake Schools X  
82140 South Redford School District X X 
63060 Southfield Public School District X X 
82430 Van Buren Public Schools X  
50220 Van Dyke Public Schools X  
33215 Waverly Community Schools X  
35040 Whittemore-Prescott Area Schools X X 
81020 Ypsilanti Community Schools X X 

Note. The control samples were selected from the distribution of all Michigan geographic districts with enrollment greater than 
1,000 students during the 2013-2014 academic year. Data is taken from the Michigan Department of Education’s longitudinal 
administrative data base. The full control sample includes districts in the top 10% of either fraction black or fraction 
economically disadvantaged. The restricted sample includes districts in the top 5% of either fraction black or fraction 
economically disadvantaged.  
 



19 

Table A3. Descriptive Statistics on Restricted Control Sample. 

Note. This table contains geographic school district characteristics from the Michigan Department of Education’s longitudinal administrative data base. 
Math and reading achievement are standardized within test subject, grade, and year to the overall state distribution scores. Math and reading 
achievement are observed in only grades 3-8, whereas all other variables as observed in grades K-12. A list of control districts in the full and restricted 
samples can be found in Table A1. All variables are from the 2013-2014 academic year. 

  
Full Control Group  

Mean (SD) 

Restricted Control 
Group 

Mean (SD) 
Flint 

Mean (SD) 
Math Achievement (SD) -0.34 -0.46 -0.51 

 (0.20) (0.16) (.) 
Reading Achievement (SD) -0.31 -0.41 -0.53 

 (0.18) (0.16) (.) 
Fraction Special Needs 0.15 0.16 0.15 

 (0.02) (0.02) (.) 
Fraction School Days Attended 0.94 0.93 0.91 

 (0.01) (0.02) (.) 
Fraction Female 0.49 0.48 0.49 

 (0.01) (0.01) (.) 
Fraction Black 0.40 0.51 0.76 

 (0.26) (0.29) (.) 
Fraction Hispanic 0.12 0.12 0.04 

 (0.14) (0.16) (.) 
Fraction Economically Disadvantaged  0.75 0.81 0.89 

 (0.11) (0.09) (.) 
Fraction Limited English Proficiency 0.09 0.10 0.03 

 (0.11) (0.12) (.) 
Fraction Attending Charter Schools 0.13 0.16 0.31 

 (0.11) (0.12) (.) 
Fraction Attending Administrative District 0.69 0.65 0.45 

 (0.14) (0.14) (.) 
Enrollment 7496 8457 16210 
  (15922) (22096) (.) 
Number of Districts 54 26 1 
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Table A4. Descriptive Statistics on Fixed Michigan District Panel. 
  2010 2014 2018 
Traditional Sample X  X X  
Fixed Sample  X X  X 
Math Achievement  -0.58 -0.59 -0.51 -0.73 -0.73 
          
Reading Achievement  -0.62 -0.64 -0.53 -0.68 -0.68 
          
Fraction Special Needs 0.14 0.16 0.15 0.16 0.18 
          
Fraction School Days Attended 0.92 0.93 0.91 0.89 0.89 
          
Fraction Female 0.49 0.49 0.49 0.48 0.48 
          
Fraction Black 0.77 0.78 0.76 0.69 0.69 
          
Fraction Hispanic 0.04 0.04 0.04 0.05 0.05 
          
Fraction Economically Disadvantaged  0.77 0.87 0.89 0.92 0.90 
          
Fraction Limited English Proficiency 0.02 0.02 0.03 0.04 0.04 
          
Fraction Attending Charter Schools 0.25 0.27 0.31 0.37 0.27 
          
Fraction Attending Administrative District 0.66 0.54 0.45 0.31 0.25 
          
Number of Observations 19,254 10,141 16,210 15,466 11,213 

 
Note. This table contains geographic school district characteristics from the Michigan Department of Education’s 
longitudinal administrative data. Math and reading achievement are standardized within test subject, grade, and year 
to the overall state distribution scores. Math and reading achievement are observed in only grades 3-8, whereas all 
other variables as observed in grades K-12. The Traditional Sample defines a student’s geographic district using a 
student’s home address in that year, whereas the Fixed Sample defines a student’s geographic district using a 
student’s home address during the 2013-2014 school year (final pre-treatment period). Thus, the Traditional and 
Fixed samples for 2013-2014 are mechanically identical.   
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Table A5. Synthetic Control Heterogeneity Estimates. 

           

    Gender 
(1) 

Grade 
(2) 

Administrative District 
(3) 

  
All Boys Girls Grades 3-5 Grades 6-8 

Flint 
Community 

Schools 

Other 
District 

Math Achievement -0.14 -0.15 -0.13 -0.18 -0.10 -0.30 -0.20 
Reading Achievement -0.01 -0.01 0.00 -0.03 0.02 -0.13 -0.10 
Special Needs 0.01 0.02 0.01 0.01 0.01 0.03 0.01 
Attendance 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 

        
This table decomposes our main synthetic control effect estimates by dichotomous subgroup (using the same set of identified weights). 

  



22 

Table A6. Synthetic. Control Robustness: Estimates. 

 
Note. This table displays effect estimates from a synthetic control models using a sample of geographic school districts taken from the Michigan Department of 
Education’s longitudinal administrative data base. Estimates from models that achieve perfect fit are not displayed. 
 
  

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) 

Fixed 
Sample 

              
X X X X X X X               

Traditional 
Sample 

X X X X X X X X X X X X X X 
       
       

Full Control 
Group 

X X X X X X X 
       

X X X X X X X        
Restricted 
Control 
Group 

       
X X X X X X X 

       
              

                      

Math 
Achievement 

 -0.1618 -0.1247 -0.1373     -0.1376 -0.1195 -0.0909     — -0.1221 -0.1262    
 (0.0511) (0.0216) (0.0629)     (0.0611) (0.0143) (0.0115)     — (0.0577) (0.0672)    

                      

Reading 
Achievement 

  -0.0287 -0.0080 —     -0.0021 -0.0151 0.0228     -0.0919 -0.0620 —   
  (0.0703) (0.0187) —     (0.0429) (0.0316) (0.0455)     (0.0535) (0.0388) —   

                      

Special 
Needs 

   0.0130  — 0.0106    0.0217  — 0.0113    0.0184  — 0.0155 

   (0.0047)  — (0.0057)    (0.0053)  — (0.0053)    (0.0054)  — (0.0055) 

                      

Attendance 

—   -0.0019   -0.0006 —   0.0008   0.0009 0.0019   -0.0016   0.0020 

—   (0.0046)   (0.0039) —   (0.0035)   (0.0055) (0.0026)   (0.0013)   (0.0023) 

                      
Pre-RMSE 0.000 0.003 0.031 0.069 0.000 0.000 0.002 0.000 0.031 0.040 0.097 0.010 0.000 0.005 0.001 0.000 0.026 0.058 0.000 0.000 0.008 
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Table A7. Synthetic Control Robustness: Weights. 
 
District Code (2) (3) (4) (7) (9) (10) (11) (12) (14) (15) (17) (18) (21) 
11010 0 0 0 0 0 0 0 0 0 0.2 0 0.12 0.09 
14020 0.14 0 0.14 0      0 0.01 0 0 
25040 0 0 0 0.02 0 0 0.05 0.09 0.15 0 0 0 0 
25240 0 0.19 0.05 0 0.29 0.28 0.2 0.2 0 0 0.27 0.28 0 
33215 0 0 0 0      0 0.01 0.17 0.19 
35040 0 0 0.07 0.04 0.09 0 0 0 0.02 0 0 0 0.05 
41160 0 0 0 0.17      0.28 0 0 0.07 
50020 0 0 0 0.15 0 0 0 0 0 0 0 0 0 
50090 0 0 0 0.04 0 0 0 0 0.22 0 0 0 0 
50220 0 0 0 0      0 0.26 0 0 
61010 0 0.28 0 0 0.43 0.5 0.09 0.34 0 0.23 0 0.16 0.1 
63020 0.12 0.1 0 0      0 0 0 0 
63130 0 0 0 0      0 0.1 0 0 
63250 0 0 0.2 0.27 0 0 0.21 0.13 0.19 0.14 0 0.07 0.16 
81070 0 0 0.14 0      0 0 0.08 0 
82060 0.18 0.14 0.13 0 0.2 0.15 0.17 0.05 0 0 0.22 0.12 0 
82120 0 0.1 0.11 0 0 0.07 0.16 0.18 0.14 0.15 0 0 0.24 
82140 0 0 0 0.13 0 0 0 0 0.16 0 0 0 0 
82430 0.38 0.11 0.06 0      0 0.02 0 0 

 
Note. This table displays weights from a synthetic control models using a sample of geographic school districts taken from the Michigan Department of 
Education’s longitudinal administrative data base. Only control districts with a weight in any model greater than .1 are displayed; a list of all control districts can 
be found in Table A1. Weights from models that achieve perfect fit are not displayed.
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Table A8. Traditional Difference in Difference Results: Dangerous Service Line. 
 

 
*p < 0.05, **p < 0.01 
 
Note. This table displays results from OLS difference-in-differences regressions of the effect of having dangerous 
pipe materials on a student’s academic outcomes during the Flint Water Crisis using a panel spanning 2010-2019. 
All models include student fixed effects and year fixed effects. Education data is taken from the Michigan 
Department of Education’s longitudinal administrative data base. Service line material data was collected during the 
City of Flint’s service line inspection and replacement program that was implemented in the aftermath the crisis. 
Lead or galvanized steel service lines are classified as dangerous, whereas copper service lines are classified as not 
dangerous. These difference-in-differences models are estimated using OLS regression. 

 
 
 
  

 Math Achievement Reading 
Achievement Special Needs Attendance 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dangerous 
Pipes * Post 

-0.0387 -0.0262 -0.00875 -0.00168 -0.00537 -0.00382 -0.00369* -0.000536 

 (0.0199) (0.0191) (0.0225) (0.0220) (0.00540) (0.00526) (0.00174) (0.00160) 

Control Mean {-.62} {-.62} {-.60} {-.60} {.176} {.175} {.917} {.917} 

                  

School-Grade 
Fixed Effect 

     X       X       X       X  

Students 8219 8094 8208 8073 10180 10165 10001 9931 

Student-
Years 

35933 35104 35837 34992 80753 79158 67438 66118 
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Table A9. Difference in Difference Results: Alternative Lead/Copper Definitions. 
 

 
* p<.05; ** p<.01  
Note. This table displays results from difference-in-differences regressions of the effect of having lead + copper (as 
opposed to only lead) pipe materials on a student’s academic outcomes during the Flint Water Crisis using a panel 
spanning 2010-2019. All models include student fixed effects and year fixed effects and control for having 
galvanized steel pipes. In the difference-in-differences models presented in the main text, the “Lead” variable is 
equal to l for all service line materials considered dangerous (and scheduled for replacement by Flint’s FAST Start 
team) and is equal to 0 for all other service line materials. In the Panel A above, the “Lead2” variable is equal to 1 
only for lead or galvanized steel service, equal to 0 for only copper or safe non-copper service lines, and is set to 
missing otherwise. In Panel B above, the “Lead3” variable is equal to 1 for only lead service lines, is equal to 0 only 
for copper service lines, and is set to missing otherwise. These difference-in-differences models are estimated using 
OLS regression. 

 
 
  

 (1) (2) (3) (4) 

 
Math 

Achievement 
Reading 

Achievement 
Special 
Needs Attendance 

A.     
Lead Pipes * Post -0.0262 -0.00168 -0.00382 -0.000536 

 (0.0191) (0.0220) (0.00526) (0.00160) 
Control Mean {-.62} {-.60} {.175} {.917} 
          
Students 8094 8073 10165 9931 
Student-Years 35104 34992 79158 66118 
B.     
Lead2 Pipes * Post -0.0253 0.00351 -0.00479 -0.00145 

 (0.0194) (0.0223) (0.00533) (0.00164) 
Control Mean {-.62} {-.60} {.175} {.917} 
          
Students 7907 7886 9913 9683 
Student-Years 34290 34183 77217 64475 
C.     
Lead3 Pipes * Post -0.0292 -0.00288 -0.00427 -0.00167 

 (0.0197) (0.0225) (0.00540) (0.00166) 
Control Mean {-.62} {-.60} {.176} {.917} 
          
Students 7723 7702 9685 9460 
Student-Years 33504 33399 75436 63008 
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Table A10. Difference in Differences Results by Grade Cohort, Gender, and Administrative 
District. 

 
* p<.05; ** p<.01 
 
This table displays results from various subgroup analysis using difference-in-differences regressions of the effect of 
having lead pipe materials on a student’s academic outcomes during the Flint Water Crisis using a panel spanning 
2010-2019. All models include student fixed effects and year fixed effects and control for having galvanized steel 
pipes. These difference-in-differences models are estimated using OLS regression. 

 
 

 (1) (2) (3) (4) 

  
Math 

Achievement 
Reading 

Achievement Special Needs Attendance 

By Grade Cohort     
A. Grades PK-2 in 2014     
Lead Pipes * Post — — -0.00916 0.00363 

 — — (0.0115) (0.00284) 
Control Mean {-.72} {-.65} {.168} {.914} 
          
B: Grades 3-7 in 2014     
Lead Pipes * Post -0.0191 -0.00221 -0.0113 -0.000857 

 (0.0191) (0.0223) (0.00810) (0.00225) 
Control Mean {-.61} {-.58} {.177} {.918} 
          
C: Grades 8-12 in 2014     
Lead Pipes * Post — — 0.00898 -0.00105 

 — — (0.00772) (0.00335) 
Control Mean {-.56} {-.60} {.151} {.917} 
By Gender     
D: Male     
Lead Pipes * Post -0.0125 -0.00363 -0.00355 0.000268 

 (0.0269) (0.0310) (0.00816) (0.00231) 
Control Mean {-.63} {-.72} {.231} {.913} 
          
E: Female     
Lead Pipes * Post -0.0383 -0.00342 -0.00389 -0.000468 

 (0.0270) (0.0305) (0.00647) (0.00226) 
Control Mean {-.61} {-.48} {.115} {.921} 

By Administrative District         
F: Flint Community Schools     
Lead Pipes * Post -0.0287 0.0119 0.00117 -0.00218 

 (0.0283) (0.0322) (0.00770) (0.00242) 
Control Mean {-.76} {-.76} {.179} {.91} 
          

    
Lead Pipes * Post -0.0123 -0.00390 -0.00812 0.000790 

 (0.0257) (0.0305) (0.00721) (0.00212) 
Control Mean {-.51} {-.48} {.171} {.923} 


	A substantial medical and social scientific literature documents the relationship between lead poisoning in early childhood and future cognitive and behavioral challenges. Lead exposure during childhood is associated with a host of negative outcomes, ...
	2. Background Literature
	2.i. The Effects of Lead Poisoning
	A growing quasi-experimental literature documents the causal effects of lead on downstream health and human development.5F  Much of the extant research leverages exogenous variation in exposure to lead resulting from public health programs that test c...
	Another strategy that has been used to identify the causal effects of lead is to exploit large, regional changes in exposure to lead. For example, Reyes (2007; 2015) shows that the removal of lead from gasoline in the late 1970s as a result of the Cle...
	Table A1 of the appendix uses estimates from previous studies to benchmark the magnitude of the relationship between lead exposure and cognitive ability. A one microgram per deciliter (µg/dL) increase in blood lead is associated with approximately 0.0...
	Today, 30% of the community water systems use some lead pipes (Cornwell, Brown, and Via 2016). The most recent surveys suggest that 6.7 million homes, serving approximately 19 million Americans, are supplied by lead service lines across the country. F...
	There are a range of psychosocial pathways by which a crisis like Flint’s may affect child development. Traumatic events, such as terrorist attacks and natural disasters, are associated with negative psychological consequences to entire communities. F...
	A more recent, a causal literature leverages quasi-experimental variation in violent events across place and time to study the psychosocial effects of community-level trauma. Sharkey (2010) and Rossin-Slater et al. (2020) show that community exposure ...
	Internationally, we observe similar trends with respect to the broad effects of adverse community shocks. A study of civil war and genocide in Cambodia (Omoeva et al. 2018) found that disruptions to primary education during civil conflicts decreased e...
	3. The Flint Water Crisis
	3.i. Timeline
	In early 2015, local researchers and some employees in federal EPA began to raise concerns about elevated lead levels in the tap water of Flint residents as well as increased blood lead levels among Flint children. In October 2015, the city switched b...
	3.ii. Prior Research on Flint Water Crisis
	There is somewhat mixed evidence on the causal effects of the Flint Water Crisis on neonatal outcomes. Grossman and Slusky (2019) examine the impact of the Flint Water Crisis on fertility and infant health using difference-in-differences by comparing ...
	Regardless of the physical role of lead, residents of the Flint viewed the crisis as having a profoundly negative impacting their wellbeing. A recent review of 11 predominantly cross-sectional studies highlights the ways in which Flint residents perce...
	4. Between-District Analysis
	In this section, we leverage a between-district analysis to determine the total impact of the Flint Water Crisis on student outcomes. That is, we compare the academic trajectories of students living in Flint to those of students living in observation...
	4.i. Data
	Our primary data source is student-level administrative educational records from the state of Michigan spanning 2006-2019. This data was provided by the Michigan Education Data Center and links students across time with a unique identifier. It contain...
	We focus on four key educational outcomes: math achievement, reading achievement, special needs status, and daily attendance. Math and reading achievement are measured using annual state-administered educational assessments, which are given to student...
	To construct a panel of Michigan districts, we first must assign each student to a school district. School choice is widespread in Michigan, and during the 2013-2014 school year only 45% of public-school students living in Flint city limits attended ...
	In 2013-2014, Flint’s 16,210 zoned students in K-12 made it the 9th largest residential district in the Michigan. Flint also has an exceptionally high fraction of economically disadvantaged students (89%) and fraction of Black students (76%). To ensu...
	Table 1 displays descriptive statistics for all Michigan geographic districts for 2013-2014. While the 54 potential control districts more closely mirror Flint in terms of size and demographics, Flint has notably lower academic achievement than this g...
	4.ii. Trends in Educational Outcomes in Flint
	We begin by plotting academic outcomes over time in Flint (Figure 1). For math achievement, we observe a positive trend in the pretreatment period from 2007-2014 and then a drop of roughly 0.15 standard deviations in the first year following the water...
	The graphs in Appendix Figure A2 explore several additional features of the Flint trends over time. To explore whether a change in the fraction of students tested could explain any of the observed achievement trends, we plot the fraction of students t...
	The trends shown in Figure 1 provide suggestive evidence that the Flint Water Crisis negatively impacted student outcomes. However, it is possible that other factors may have played a role, ranging from changing economic conditions in Michigan to chan...
	4.iii. Empirical Strategy: Synthetic Control
	To isolate the causal effect of the Flint Water Crisis, we utilize a synthetic control methodology (SCM) that compares Flint to other Michigan districts over time. SCM was first developed by Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainm...
	We implement a recent extension of synthetic control methods known as demeaned, or intercept-shift, synthetic control (Doudchenko and Imbens 2017), which we summarize here and discuss in greater detail in Section A2 of the appendix. This approach invo...
	The demeaned synthetic control that we implement is identical to several synthetic control methods extensions recently suggested in the literature. For example, our approach is equivalent to using augmented synthetic control methods in the specific ca...
	4.iv. Results
	Figure 2 presents the synthetic control estimates described above. The thick blue line measures the difference between student outcomes in Flint versus the synthetic control group. Starting in 2015, the blue line reflects the treatment effect of the F...
	Our results suggest the Flint Water Crisis negatively impacted student performance along several dimensions. Math achievement in Flint closely tracks the comparison districts from 2006 through 2014, but drops notably starting in 2015. The SCM estimate...
	Section A3 of the appendix presents the results from a series of alternative specifications meant to assess the sensitivity of our primary estimates. In particular, one might be concerned about the slight uptick in special needs classifications in Fli...
	In order to explore heterogeneity in the effects of the Water Crisis, we decompose our effect estimates by subgroup, based on gender, grade level and administrative district (see Appendix Table A5).22F  The effects on math achievement were larger for ...
	5. Within-Flint Analysis
	In this section, we conduct a within-Flint analysis to better isolate the effects of lead exposure itself on student outcomes. In particular, we compare the educational trajectories of Flint children living in housing units that were exposed to diffe...
	5i. Data
	To identify households with the greatest risk of exposure to lead contamination, we use data on the materials of the water service lines running to individual buildings (we call this the “pipes data”). This data comes from service line inspections con...
	The inspection data indicates the material used in both the public service line (i.e., the pipes running from the city water supply to the private home) and the private service line (i.e., the pipes running from the public lines into the specific unit...
	Past research utilized the same service line inspections data, combined with home water testing results, to show that service lines were a key source of lead exposure in Flint. During the peak of the crisis, children living in homes with lead service ...
	To create our analysis sample, we start with the 17,024 students who were living in Flint and enrolled in Michigan public schools during the 2013-2014 school year (the final academic year before the Flint Water Crisis).27F  Using a probabilistic match...
	While the match rate will not affect the internal validity of our estimates, it may limit the generalizability of our findings. To help understand how well results from the matched sample may generalize to the full population of Flint students, Table ...
	5ii. Empirical Strategy: Difference-in-Differences
	Using the language of program evaluation, our within-Flint analysis considers children living in housing units with lead pipes in 2014 as the treatment group and their peers living in housing units with copper pipes as the control group. If children w...
	However, given Flint’s historical growth patterns and the decreases over time in the installation of lead pipes, there is reason to believe that homes in certain neighbourhoods are more likely to have lead piping than others.29F  Consistent with this ...
	We next examine the relationship between pipe material and student and school characteristics. Table 5 compares the characteristics of students living in homes with and without lead pipes. Looking at Column 4, we see students living in homes with lead...
	Children living in homes that were most susceptible to lead exposure were observationally similar to children in homes with copper pipes that presented no lead danger. Nonetheless it is possible that the two groups of children differ in unobservable w...
	To this end, we construct a student-year panel for the 10,245 matched students that runs from the 2009-10 through 2018-19 academic years. This allows us to examine up to five years for each child prior to the water crisis and up to four years followin...
	In order to generate difference-in-difference estimates of the average treatment effect of having lead pipes during the Flint Water Crisis, it is standard to estimate a two-way fixed effects model for outcome 𝑦 for student 𝑖 in year 𝑡:
	,𝑦-𝑖𝑡.=,𝜆-𝑖.+,𝛿-𝑡.+,𝑃-𝑡-𝑡>2014.,𝐷-𝑖.+,𝜀-𝑖𝑡.
	The identifying assumption of the difference-in-differences model is commonly referred to as “parallel trends,” meaning that in the absence of the exposure, the outcomes of the treatment group would follow the same path as that of the control group. A...
	,𝑦-𝑖𝑡.=,𝜆-𝑖.+,𝛿-𝑡.+,𝑇=2011-2014-,𝛾-𝑡-𝑡=𝑇.,𝐷-𝑖..+,𝑇=2015-2019-,𝛾-𝑡-𝑡=𝑇.,𝐷-𝑖..+,𝜀-𝑖𝑡𝑘.
	5iii. Results
	Figure 3 displays connected scatterplots of our four main academic outcomes, with the trends broken out separately by home service line material.33F  In it, we see only small differences between the trends of students with lead pipes and students with...
	The results from our event study models are displayed in Figure 4. Beginning with our baseline two-way fixed effect model in the left panel and focusing on the coefficients prior to treatment in 2014, we see little evidence for differential trends acr...
	As described earlier, because students were not randomly assigned to homes with lead pipes, it is likely that there may be some differences between our treatment and control groups. To account for some of the observable differences, we re-estimate our...
	When viewing these figures, it is important to keep in mind that the composition of the treatment and control groups are changing across time periods as students graduate, drop out, or (quite infrequently) leave the public school system. This is parti...
	We now turn to Table 6, which displays results from four different specifications of difference-in-differences imputation models. In the baseline two-way fixed effects models, dangerous services lines have a -0.03 SD effect on math achievement, a -0.0...
	In general, the small, statistically insignificant effects that we observe within-Flint stand in stark contrast to the dramatic decline in math achievement and increase in special needs status that we observe for all Flint students in our between-dist...
	Our difference-in-differences results are robust to various alternative specifications. Table A8 displays results from classic OLS difference-in-differences models, which are quite comparable the imputation results. Table A9 shows results from a model...
	6. Discussion
	In the first quasi-experimental study of a lead poisoning event due to lead plumbing in contemporary times, we find substantial negative effects of the Flint Water Crisis on the academic outcomes of children living in Flint. However, our analysis reve...
	What might explain the differing results in our between-district and within-Flint analyses? At first glance, it may seem a potential explanation may be that our within-Flint analysis suffers from a bias towards zero that our between-district analysis ...
	However, by focusing on specifically math achievement, we can see theoretically that the lead pathway is insufficient to explain the overall academic effects of the Flint Water Crisis estimated in our between-district analysis. Past findings help benc...
	While the precise mechanisms of the observed effects remain largely unknown, they are unlikely to be driven primarily by lead poisoning. At first blush, the Flint Water Crisis may have appeared as predominantly an environmental health catastrophe, but...
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