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We present a novel methodology to estimate the CO: fertilization effect on crop yields using data
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was a major driver of past yield growth, particularly for wheat—with important implications for
estimates of future climate change damages.
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An understanding of the drivers of agricultural productivity is critical for explaining
patterns of economic growth within the farm sector and across other sectors of the economy.
For example, the adoption of high-yield varieties had significant positive economic spillovers
in India (Gollin et al., 2021) and other countries more generally (McArthur and McCord,
2017).

The “Green Revolution” brought about a massive increase in crop yields across the world.
In the US, for example, corn yields increased sixfold since 1940, while soybean and wheat
yields increased by a factor of three. Prior to this point, however, yields fluctuated around a
constant mean, as shown in Figure (I} By extension, productivity of the agricultural sector
increased rapidly (Jorgenson and Gollop, 1992)). Before 1950, US farm sector productivity
growth was half that of the non-farm sector, but afterwards the relationship reversed, with
farm productivity growth exceeding the non-farm sector by 62% (Pardey and Alston|, [2021]).
Factors such as increased input usage, mechanization, irrigation, and improved crop genetics
all contributed to yield growth (Wang et al., 2015). But since aggregate US farm output
increased several-fold while the aggregate quantity of inputs (land, capital, labor, and mate-
rials) stayed flat, technology is generally seen as the main driver of agricultural productivity
growth.

This paper argues that carbon dioxide (CO5) fertilizationE] may help illuminate the puz-
zling conclusion of |[Jorgenson and Gollop (1992): why did productivity growth explain over
80% of agriculture’s postwar growth but less than 15% in the non-farm economy? During
this time, both atmospheric CO4y and crop yields were steadily increasing as shown in Fig-
ure[I] The physiological response of plants to CO5 is well-known: COs drives photosynthesis
and has long been used as a greenhouse input to boost yields. Over the last 40 years, half of
the world’s vegetated area has undergone greening, of which 70% is attributed to elevated
CO, (Zhu et all, 2016) P

Our paper investigates the extent to which elevated COy contributed to the observed
increase in US crop yields over time. Establishing a causal link between two trending vari-
ables is statistically challenging. CO, has risen smoothly in tandem with crop yields as well
as other factors such as mechanization and input use. Industrialization, both in agriculture
and other sectors, could have independently increased CO, levels as well as yields—making

it difficult to disentangle CO, fertilization from other productivity drivers.

'The CO, fertilization effect is defined in the scientific literature as the increase in photosynthetic activity
in response to elevated COs. In this paper, we use the term more specifically to refer to an outcome of
increased crop yields.

2That paper defines “greening” as an increase in the growing season integrated leaf area index.



We develop a new approach to estimate the effect of COy on crop yields that relies
on neither process-based models nor localized field experiments, while enabling analysis of
most US cropland. We use observed ambient CO, data from NASA’s Orbiting Carbon
Observatory (OCO) satellites (OCO-2 and OCO-3) and link it to county-level crop yield
data in the United States. The OCO satellites detect changing ambient COy levels that
occur within and across locations and the growing season (Crisp, [2015)). While CO5 mixes
in the atmosphere, there are temporal and spatial deviations due to variance in CO4 sources
and sinks and changing atmospheric conditions and wind patterns (see Appendix Figure
for an illustration from 2019). We focus on the US as it is the largest producer of corn and
soybeans, accounting for 33% of global production (FAOSTAT) over our sample time frame,
and 7% of global wheat production.

We use several empirical approaches that isolate both time-series and cross-sectional vari-
ation in CO, levels. In assessing causal impacts, a major identification concern involves the
potential correlation of COy anomalies with other factors that influence crop yields. One
could imagine several such confounders related to agricultural practices, fossil fuel produc-
tion, urbanization, and large-scale weather systems. While we control for such factors when
possible, we employ an instrumental variables approach that leverages wind variation. We
instrument for CO4 exposure in a county using upwind CO, concentrations. Our results
are robust to myriad sensitivity checks, i.e., the functional form (logarithmic versus levels),
whether the temporal trend is by state or county, sample selection, and the choice of controls
for co-occurring air pollutants. We bolster our findings with a national-level time series anal-
ysis using Mauna Loa measurements from 1958-2024, which produces consistent estimates
of the CO, fertilization effect, particularly for wheat.

We consistently find significant CO, fertilization effects on US yields: a 1 part per million
(ppm) increase in CO; equates to yield increases of 0.17%, 0.20%, and 0.55% for corn,
soybeans, and winter wheat, respectively, in our preferred IV modelﬂ Our estimates are on
the higher end of those found in the agronomic literature, a fact we discuss in more detail
in Section |5, We see the major contributions as follows:

First, this paper provides an example of how satellite-based measures of CO, can com-
plement field experiments to ensure external validity of COjy’s effect on agriculture and
ecosystem functioning at a global scale. We measure the effect under real-world growing

conditions.

3This is after adjusting by a scaling factor to account for the fact that COy varies more at ground level
than it does across the total air column observed by the satellite, further explained in equation (3) below.



Second, our finding that CO, fertilization has driven a significant portion of the historical
increase in crop yields—particularly for wheat—has implications for how we think about the
drivers of agricultural productivity growth, which has very large economic spillovers (Gollin
et al. [2021), and the contribution of environmental factors versus technological change to
this growth.

Third, our results shed light on a driver of yield growth that is usually taken as exogenous.
The recent literature has used panel variation to estimate climate change damages by relating
outcomes to random exogenous year-to-year weather fluctuations (Dell et al., 2014). This
approach, which relies on annual variation in weather, does not take into account longer-
term dynamics that are correlated with climate change. Consequently, part of the estimated
damages may be offset by yield gains from rising CO,.

Fourth, our results are relevant for estimating the impact of climate change on agriculture.
There is a disconnect between process-based studies of climate change, which incorporate
COy, fertilization, and statistical studies, which tend to omit this factor (Lobell and Asseng,
2017). As a result, estimates of climate impacts can vary widely. For example, one study
finds that the net welfare effect on agriculture is negative in the absence of CO, fertilization
but negligible when fertilization is included (Moore et al., [2017a) [T

Fifth, as many previous studies have suggested, the CO, fertilization effect varies across
crop types and environmental conditions, raising the possibility that global inequalities could
be exacerbated, since the welfare effects of climate change on agriculture vary across regions
even before considering CO, fertilization (Nath| [2025; Hultgren et al.,|[2025). The implication
is that yields in areas with few limiting conditions (e.g., nutrient deficiency)—which tend
to be higher to begin with—might grow more than in areas facing greater constraints. This
would widen the yield gap and alter the comparative advantage between countries (Costinot
et al., [2016)). The importance of the CO, fertilization effect was also emphasized in a recent
report on the economic costs of climate change in the USE] which argued that US agriculture

could benefit from climate change (U.S. Department of Energy, 2025).@

4Recent research places the social cost of carbon (SCC) at $185 per ton CO,, with agricultural impacts
contributing $84 per ton—almost half the total—in one model. However, the uncertainty surrounding the
interactions between COs, temperature, and crop yields produces a wide confidence interval for agriculture’s
contribution to the SCC, ranging from -$23 to $263 per ton CO5 (Rennert et al.l [2022; [Moore et al.| [2017b).
Hultgren et al.| (2025)) estimates a partial SCC from agriculture between $1 and $49 per ton COs, depending
on modeling assumptions.

5The report cited an earlier version of this paper. The principal change since that version is that we now
scale our estimates by the factor k, as specified in equation .

6Some argue that CO, fertilization is understood well enough to be directly included in global climate
models and impact projections (Toreti et al.l [2020; Rezaei et al., |2023; [Makowski et al., 2020)).



Finally, we emphasize that the strong fertilization effect we observe occurs under current
day CO, levels and environmental conditions. The experimental evidence indicates a taper-
ing of the CO, fertilization effect at higher concentrations, so any linear extrapolation of our
estimates into the future should be approached with caution. While previous studies have
projected weather changes into the future—justified in part by the observation that exist-
ing cross-sectional yield differences across climates resemble those identified from weather
variation in panel data (Schlenker and Roberts, [2009)—a similar approach is not warranted
for COy. In other words, while we can currently observe hot locations (which provide a
useful counterfactual for warming’s impact on cooler locations), we do not have equivalent
real-world data for places with substantially higher CO5 concentrations.

Our paper proceeds as follows: Section [If provides some background on the CO4 fertil-
ization effect and current estimates. Section |2 describes how we construct our CO, anomaly
measure from the OCO-2 satellite data product, as well as the other datasets used in this
analysis. Section |3| describes our identification strategies and empirical approaches before
Section {4 presents our regression results along with robustness tests. The implications of
these results are discussed in Section [5| by exploring the scientific and policy implications of

our study before Section [6] concludes the paper.

1 Background on CQO, Fertilization

Plants respond directly to rising COy through photosynthesis and stomatal conductance,
which is the basis for the fertilization effect (Long et al. 2004; Ainsworth and Rogers|,
2007)). This response has been known for over 200 years. The role of CO; in plant growth
was first demonstrated in 1796 by Swiss botanist Jean Senebier, and COs gas has long
been pumped into greenhouses to spur photosynthesis and increase the yield of horticultural
crops, especially during daytime hours, when photosynthesis reduces the amount of available
COg in the greenhouse. The fact that greenhouse operators pay to pump COy into their
chambers showcases that COs is an input that meaningfully enhances yields. Optimal levels
are reported to be in the range of 800-1000 ppm, more than twice the current atmospheric
COg concentrations of 420 ppm (Wang et al.| 2022)).

The fertilization process varies by crop type. For C3 crops like soybeans, wheat, and rice,
mesophyll cells containing RuBisCO are in direct contact with the air. RuBisCO is an enzyme
that fixes atmospheric COy during photosynthesis. Thus, higher ambient CO, increases
photosynthetic COy uptake because RuBisCO is not COs-saturated at today’s atmospheric



levels (Long et all [2004). For C4 crops like corn, on the other hand, RuBisCO is located
in bundle sheath cells, where CO, levels are several times higher than atmospheric levels.
At this concentration, RuBisCO is COs-saturated and a direct photosynthetic response to
changing atmospheric CO, levels is limited. However, C4 yields respond indirectly to elevated
COs, mainly through increased water use efficiency driven by reduced stomatal conductance
(Long et al.; 2006). All things being equal, one would expect a larger CO4 fertilization effect
for wheat and soybeans than for corn.

Historical estimates of yield responses to CO, came from controlled experiments in lab-
oratories and greenhouses, where CO, levels can easily be controlled. There are clear ad-
vantages to such experiments, i.e., the ability to isolate change in one variable: COs. This
approach, however, faces challenges of its own. The conditions in a well-controlled experi-
ment might not be indicative of real-world farming conditions. Large regional differences in
crop responses to CO, reflect geographic variation in crop distribution and environmental
conditions (McGrath and Lobell, [2013). CO, fertilization may be negligible in the presence
of limiting factors such as nutrient deficiency (Kimball et al., 2001} [Hungate et al.l 2003}
Reich et al., 2006; Ziska and Bunce, 2007). The effect is generally stronger under water
deficit conditions (Ottman et al., 2001; |Leakey et al., |2006; Keenan et al., 2013} Morgan
et al. 2011), with the exception of soybeans (Gray et al., [2016) and possibly rice (Zheng
et al.,[2020). Elevated CO, may also increase high temperature stress due to stomatal closure
(Batts et al., 1997).

Differences in observed outcomes across field experiments suggest that the CO, fertiliza-
tion effect crucially depends on other limiting factors and field conditions; yet, there is only
one major agriculture-focused CO, enrichment experiment in the breadbasket of the US, the
Midwest: SOYFACE, which is located at the University of Illinois and focuses mainly on
soybeans. Whether this experiment station is representative of diverse real-world growing
conditions is doubtful.

There are other downsides of controlled field experiments: they can suffer from signifi-
cant measurement error due to the difficulty of controlling elevated CO4 concentrations in
turbulent air (Allen et al. 2020). In other words, the CO5 that is pumped into the experi-
mental plots might dissipate too quickly or lead to large pulses in CO, rather than achieve
the permanent level of elevated CO, the experiment is designed to simulate. Although CO,
enrichment experiments have generated important insights into the physiological channels
of the fertilization effect and its environmental interactions, they are limited in the extent

to which they reflect growing conditions on commercial farms at a large geographic scale, as



well as the background process of gradually increasing ambient COs.

We next turn to the range of estimates found in field and chamber experiments. An early
survey concluded that doubling ambient CO, increased yields by 24-43% for C3 crops in the
context of full water and nutrient availability (Kimball, 1983), which aligned with USDA
reporting a 33% increase in yields for most crops under similar settings (Allen Jr et al.
1996). Another study estimated that COs could have accounted for 15% US soybean yield
growth from 1972 to 1997 (Specht et al.| [1999).

In recent decades, free-air concentration enrichment (FACE), a process involving a series
of pipes in fields that emit COs, has allowed for larger-scale trials under more realistic crop-
growing conditions. A survey of over 25 years of FACE experiments concludes that increasing
CO, from 353 to 550 ppm results in 19% higher C3 yields, on average, while C4 crops were
only affected under conditions of water scarcity (Kimball, 2016). FACE experiments tend to
show a lower fertilization effect than laboratory or greenhouse enclosure studies (Long et al.,
2006). However, recent work has pointed out potential measurement error, arguing that
FACE estimates may need to be adjusted upward by 18-50% to account for the effect of air
turbulence and short-term CO, fluctuations, whereby crops in FACE experiments experience
a 10-times greater range in COy fluctuations compared to crops under natural conditions
(Allen et al., 2020, 2025)).

Given the heterogeneous COs fertilization effect, which varies according to other limit-
ing factors, an outstanding question pertains to the external validity of these field experi-
ments—specifically, what the correct average effect is under real-world growing conditions.
This issue is especially pertinent because the geographic extent of FACE experiments is lim-
ited: there are only two long-standing agricultural FACE sites in the US—Arizona FACE in
Maricopa, AZ, and SOYFACE in Champaign, IL—with only the latter located in the tradi-
tional Midwestern breadbasket. This motivated us to use satellite data to measure the effect
under actual growing conditions. We note other recent work using OCO-2 satellite data to
estimate the impact of the 2019 Midwestern floods on CO, uptake and crop productivity
(Yin et all 2020).



2 Data

Yield Data

Our dependent variables are county-level crop yields for corn, soybeans, and winter wheat
and were obtained from USDA’s National Agricultural Statistics Service. Note that the
USDA stopped reporting county-level wheat yields after 2023. See Figure for the num-

ber of counties that report yields in our datasets.

CO,; Data

Our primary measure of atmospheric COy comes from two Orbiting Carbon Observatory
(OCO) products, OCO-2 and OCO-3. Launched in 2014, OCO-2 is NASA’s first satellite
specifically designed to measure atmospheric COy with the aim of better understanding
the geographic distribution of COy sources and sinks and their changes over time. We
downloaded the bias-corrected OCO-2 LITE Level 2 v11 product, specifically the dry-air
mole fraction of CO, averaged over the atmospheric column (XCO2) in parts per million
(ppm). The satellite has a sun-synchronous orbit with an equatorial crossing time at 13:30
hours and a repeat cycle of 16 days. Each frame records eight adjacent footprints (~1.29
x 2.25 km), yielding a swath ~10 km wide. A typical daily output contains over 150,000
XCO2 global readings, including the latitude-longitude point. About 50% of readings have
quality flags, which we exclude from our analysis.

We also incorporate CO5 data from OCO-3, which was launched in 2019. This spectrom-
eter is similar to OCO-2 and produces comparable XCO2 retrievals, but was mounted on
the International Space Station (ISS). Because the ISS flies a precessing orbit between 52°S
and 52°N, OCO-3 samples a range of local times from dawn to dusk in contrast to the fixed
early afternoon sampling of OCO-2. As an added feature, OCO-3 has a two-axis pointing
mirror that allows for dense scans of areas of interest, such as cities and point sources.

In our baseline analysis, we pool readings from OCO-2 and OCO-3 to calculate the
annual crop-specific COy measure for each county and crop from 2015 to 2022. A detailed
description of the aggregation procedure is given in [Appendix Al

Figure displays the resulting number of observations per county in the dataset, i.e.,
where CO, readings and annual crop yield data are available over the eight years from 2015
to 2022. Given the satellites’ high resolution, the relatively long revisit time (16-days for
OCO-2), and the size of the median US county (1,610 km?), CO, readings are not obtained
for each US county in each year. Since we include both county fixed effects and county-

specific annual time trends, we need at least three degrees of freedom per county, i.e., we can



only include counties with at least 3 observations in our regressions. The resulting average
number of counties with observations per year is 1196 for corn, 1064 for soybeans, and 747

for wheat.

Flux Tower Data
Our analysis uses satellite-derived measures of CO, levels in the air column below it. A
common issue with remotely-sensed products is whether the data captured across the entire
column is indicative of the conditions found at the ground level, in our case, the crop canopy.
We examine this issue using in situ flux towers from the AmeriFlux network, which, impor-
tantly for us, measure CO, levels at various heights of the tower. outlines our
steps: we first compute year-to-year CO, anomalies accounting for annual time trends. We
then calculate the standard deviation of these anomalies across flux towers and at different
instrument heights, which can be visualized in Figure

We then contrast the average flux tower variability with OCO satellite variability at the
same locations, as reported in Table [l The standard deviation calculation for OCO mirrors
the processing of the flux tower data. Specifically, we select all OCO readings within a 0.1°
radius of each flux tower. We processed these readings following the steps in [Appendix A]
which include averaging seasonally-adjusted values over April-September and accounting for
a location-specific fixed effect and location-specific linear time trend. Across flux towers with
overlapping data, the standard deviation at 2 m (closest to ground level) is about 4.5 times

larger, on average, than the variability in the OCO satellite column average.

Weather Data

For weather, we use a recalculated version of the fine-scale PRISM data at the same 2.5-
minute resolution, or 4.5 km by 4.5 km, that maintains the set of weather stations constant
over time. We follow the approach of [Schlenker and Roberts| (2009), which found that four
weather variables (two temperature, two precipitation) are good predictors of crop yields.
The two temperature variables are degree days 10-29°C (moderate degree days) and degree
days above 29°C (extreme degree days) for corn. The upper bound is slightly higher for
soybeans, resulting in degree days 10-30°C and degree days above 30°C. We use the same
degree day variables for winter wheat as for soybeans. In each regression, we also include a
quadratic of season-total precipitation. Precipitation and degree days are summed across the
six-month growing season from April to September and spatially averaged using the same
PRISM grid weights as for the CO, data based on USDA’s Cropland Data Layer for each



county.

Air Pollution Data

Air pollution data come from the EPA’s national network of pollution monitors. We use
hourly data from the EPA’s Pre-Generated Data Filed'] for five major pollutants: Ozone O
(44201), sulfur dioxide SO5 (42401), carbon monoxide CO (42101), nitrogen dioxide NOq
(42602), and particulate matter PM;y, Mass (81102). We use the spatial interpolation ap-
proach of |Boone et al. (2019) to get the pollution variables at the PRISM grid, and then
take the crop area-weighted average (again using the Cropland Data Layer, similar to what
was used for COy and weather) of all grids in a county across the six-month growing season

from April to September.

Additional Data

For the analysis of long-term trends in vegetation density, we use NOAA’s Advanced Very
High Resolution Radiometer (AVHRR) satellite measure of Normalized Difference Vegetation
Index (NDVI) at 0.05° resolution, or 5.6 km at the equator (Vermote et al [2014). Accessed
through Google Earth Engine, the advantage of AVHRR relative to MODIS and other, more
recent, remote sensing products is its three-decade time span encompassing growing seasons
from 1982 to 2013.

In a sensitivity check in we focus on innovations in the annual time series of
growing season COs levels as recorded at Mauna Loa Observatory, Hawaii.

There are other potential CO, data sources: the OCO-2 GEOS Level 3 daily product,
which gap-fills observations in time and space using short transport simulations from the
GEOS atmospheric model (Weir and Ott}, [2022) and is utilized for the monthly visualiza-
tion of COy anomalies in Figure [DI] Another is NOAA’s CarbonTracker, which is based
on air sample measurements across 460 global sites and an inverse model of atmospheric
COs that adjusts surface-level uptake and releases to align with observational constraints
(Jacobson et al., 2020)). We prefer the OCO-2 and OCO-3 Level 2 satellite products due
to their minimal processing, thus avoiding endogeneity concerns arising from the modeling
assumptions behind the OCO-2 Level 3 and CarbonTracker products in relation to weather
and vegetation dynamics, or ground-level confounders such as local pollution and economic
activity. Further, reanalysis products may suffer from the promulgation of interpolation
errors (Parker] [2016)

"Available https://aqgs.epa.gov/agsweb/airdata/download_files.html
8Nevertheless, we replicate our main analysis using CarbonTracker data and find a statistically significant
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3 Model and Empirical Strategy

To estimate the CO, fertilization effect across US croplands, we first need to link OCO
satellite data with US county-level yield data. The latter is observed once per year and we
hence need to aggregate the CO, exposure to the annual level. There are several identification
challenges to address. While gaseous CO, ultimately diffuses across space and becomes
uniformly distributed in the atmosphere,ﬂ this process occurs over weeks to months and
is affected by specific emission events, local COs sources and sinks, as well as wind and
weather dynamics (Hakkarainen et al [2016; [Massen and Beck, [2011)). Spatial variation in
CO4 exposure at any given time is driven by such disturbances. Figure visualizes this
variation across the US during each month of the growing season in an example year, 2019.
Taking Nebraska as an example, we see that in April, COy exposure is low compared to
the US average, high in May, lower in June, neutral in July, high in August, and lower in
September.

Our empirical approach links local variation (i.e., anomalies) in CO5 around its location-
specific trend to fluctuations in crop yields. We combine the CO, and yield data at the
county-year level with weather outcomes for the areas where corn, soybeans, and winter
wheat are grown within each county, respectively. All models use CO, anomalies in parts
per million (ppm), adjusted for seasonality and annual trends as described in ,
and the natural logarithm of county-level yields as the outcome variable, unless otherwise
noted.

Focusing on the US, a top global agricultural producer, our primary analysis encompasses
counties east of the 100° meridian for corn and soybeans—the same set of counties used in
Schlenker and Roberts| (2009). Because winter wheat is grown farther west, we use all states
east of the Rocky Mountains as the baseline for wheat. These areas account for the vast
majority of US row crop production. As a sensitivity check, we conduct our analysis on the

entire continental US and other subsamples, as visualized in Figure [A3]

Panel model
The setup of our panel model is similar to empirical specifications that link annual crop

yields to weather and pollution outcomes. Specifically, we regress log yields on CO,, while

COy, fertilization effect at the county level in the US (available upon request). They are larger for corn than
what we find in the analysis using satellite data, and smaller for wheat.

9The spatial diffusion of COs is what makes climate change a global public goods problem. It also allows
scientists to rely on singular sources of long-term CO5 measurements, such as the Mauna Loa Observatory,
to estimate global CO4 levels, which are then incorporated into global process-based models.
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controlling for the four weather variables that were found to best predict corn and soybean
yields (Schlenker and Roberts, 2009), as well as criteria air pollutants (CO, NOg, O3, PMyj,
SO,). The panel model includes county fixed effects to account for differences in average
yields across counties driven by factors such as soil quality and average climate, as well as
county-specific time trends to account for local trends in yields—helping to guard against
spurious correlation with trending variables such as CO,. Figure [2] illustrates the variation
leveraged in the panel model, highlighting the correlation in Macoupin County, Illinois, which

is downwind from St. Louis. The panel model specification is:
Yit = o + aat + B cit + YWip + 0Py + € (1)

where y;; is the log crop yield in county ¢ and year t; «;o is a county fixed effect; a;; is a
county-specific time trend; § measures the observed CO, fertilization effect from the CO,
anomaly c¢; in county ¢ in year tﬂ and ~ is a vector of coefficients for weather variables
W,; (which includes two temperature degree day variables, precipitation, and precipitation
squared, all summed over the six-month growing season, fixed as April-September for all
crops); 8 is a vector of coefficients for the five criteria air pollutants P, (CO, NOg, Os,
PM;g, SO,), calculated as daily means averaged over the growing season April-September.
The error terms, €;, are clustered at the state level to account for spatial correlation and
common state-level policy.

The effect of year-to-year weather fluctuations on annual yield outcomes are clearly visible
in Figure (1|, where, for example, there is a significant reduction in national corn yields in
2012, when the Corn Belt experienced a major extreme heat event.

Identification remains challenged by several factors. There is the possibility that local
drivers of CO, anomalies could also affect yields. For example, intense agricultural activity,
fossil fuel production, or nearby urbanization might correlate with both higher CO5 and
higher yields, potentially biasing estimates upward. However, we expect downward biases to
dominate for two reasons: first, reverse causality implies that higher yields (and thus higher
photosynthetic activity) reduce local atmospheric COs, creating a negative correlation; sec-
ond, CO, anomalies often co-vary with yield-damaging pollutants, further contributing to a
downward bias in our estimates. While we control for confounders where possible, we next

adopt an instrumental variables approach that uses COy anomalies in upwind counties to

10The Frisch-Waugh-Lovell theorem implies that including a9 and «y; is equivalent to first regressing
both the dependent and all independent variables on ;9 and «;1, and then using the resulting residuals (i.e.,
anomalies around a trend) in the regression equation.

12



ensure that local COy levels are not driven by local conditions. Given the likely net down-

ward bias, we would expect the estimates to increase once we employ our IV setup.

Wind instrument

Wind direction is often employed in health economics to obtain exogenous variation in pol-
lution exposure (Schlenker and Walker| 2016; |[Deryugina et al., 2019). In the context of our
study, CO, levels and fluxes are related to the wind direction at localized CO, emission
sources (Coutts et al| [2007; Massen and Beck|, 2011; Garcia et al., 2012; |[Xueref-Remy et al.|
2018). And while there are non-wind drivers of CO, anomalies, like power plants, vegeta-
tion, and geysers, these features vary far less over time and space than the relatively random
atmospheric phenomena that influence wind patterns.

One limitation of this instrument is that wind-driven CO, exposure could also be corre-
lated with other co-occurring pollutants. We try to address this by explicitly controlling for
the five criteria air pollutants. In any case, given the negative effect of pollutants like ozone
on crop yield (Boone et al., [2019), this would likely bias our estimates downward.

Figure |3| shows our approach to deriving a wind instrument that follows Braun and
Schlenker, (2023|) by pairing a county with the neighbor that is most frequently upwind
during the growing season April-September. We outline the exact procedure in
A2

The strength of the upwind relationship is an important consideration. Figure [4] displays
the number of hours that the “upwind” county is actually upwind in a given year for each
crop. A lower number of hours indicates that wind direction varies across many upwind
counties over the growing season. For example, a value of 1,000 hours means that the county
most frequently upwind is in fact upwind 23% of the time[”| In our IV regression, we vary
the minimum number of upwind hours required for a county to be considered “upwind” and

thus included in our sample. Summary statistics relating to the IV setup are presented in
Table The wind IV implies the following first stage:

Cit = Q; + aﬂt + b Cg?pwind] + an + GP“ + €t (2&)
Yir = oo + it + B cip + YWy + 0Py + €3 (2b)

where items are defined as in equation for the panel model, except that [ measures the

observed CO, fertilization effect from the instrumented CO, value (c;), and ci.j;p wndl s the

1193% equals 1,000 divided by the 4,392 hours in the growing season.
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instrument using the CO, value from the county that is most frequently upwind in that year

based on the hourly wind data. Note that the upwind county can change year-to-year.

Variation in CO; Anomalies in the Crop Canopy versus Satellites

Before we present the results of our empirical analysis linking county-level crop yields in
commercially-farmed fields in the US to satellite measurements of CO,, we discuss a scaling
issue to adjust for the different variances of CO5 anomalies in the crop canopy compared to
what is measured by satellites in the entire air column.

COq levels vary not only in space but also with altitude. Our remotely-sensed data come
from satellites that measure CO5 across the entire atmospheric column, i.e., the air mass
between the satellite and the ground. What matters for plants, however, is the variation in
CO, within the canopy at ground level, not at higher altitudes.

Concentrations across the air column are related through diffusion processes. Temporary
CO; disturbances at ground level due to ground sources dissipate with altitude. As a result,
the variation observed in the satellite data is likely smaller than the actual ground-level
variation (Keppel-Aleks et al., 2011; Broquet et al., 2018), which can lead to an upward bias
in the estimated CO, fertilization coefficient.

An example may illustrate this point: assume that CO; anomalies in the crop canopy

have a standard deviation of ggurower =4.5 ppm, an amount which boosts crop yields by

1%. The CO, fertilization effect would then be 4.513;111 = 0.22 percent per ppm. However,

ground-level shocks dissipate with altitude. For illustrative purposes, suppose the 4.5 ppm
anomaly at ground level is reduced to an additional 1.5 ppm at 100 meters and declines
exponentially at higher altitudes. Assume the variation detected by the satellite, averaged
across altitudes, is thus only ocpoco =1 ppm for the original 4.5 ppm ground-level anomaly.

Using the uncorrected satellite reading would upwardly bias the CO, fertilization effect to

1%
1 ppm
in CO4 observed across the atmospheric column to the variation at ground level, which in

= 1 percent per ppm. To address this, we scale (multiply) by the ratio of the variation

this case would be by multiplying by the factor ﬁ = g. More specially, the scaling factor

1S:
K — Joco (3)

O fluxTower

Figure shows that the standard deviation—i.e., the variability—of CO, anomalies

indeed decreases with altitude using data from AmeriFlux towers, as described in the Data

12The general concern about how well remotely-sensed measurements capture ground-level conditions is
increasingly addressed in the economics literature; see, e.g., [Fowlie et al.| (2019); |Proctor et al.| (2023).
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Section and [Appendix C| The results hold whether we use all towers or only those over
cropland areas. We derive the standard deviation in the crop canopy as the predicted value
at a height of 2 meters, which roughly matches the average height of weather stations that
measure temperature.

We next compute the variation in CO,y satellite readings at the locations of the flux
towers.m Table |1| presents results for all flux towers (first two columns) and just those
located in cropland areas (last two columns). Since our empirical analysis focuses on US
crop yields, we provide results for both the entire world and for towers located only in the
United States. Panel A displays the variability observed in the remotely-sensed satellite
data, while Panel B shows the results using flux tower data. The different sub-panels vary
the selection of locations, for example, including (i) any location where a tower ever reported
data; (ii) restricting to only the years used in our analysis, 2015-2022; or (iii) restricting to
locations present in both datasets.

Two findings emerge: first, the standard deviation in our county-level satellite measure
of COs, 0oco, ranges from 1.01 for wheat to 1.16 for soybeans, matching the value observed
in Panel A2 around flux tower locations. In other words, the satellite-measured variation
at flux tower sites is representative of the satellite-measured variation across US counties
more generally. Second, we obtain an average gguxtower Of 4.5 When including all global flux
towers or cropland towers. Subsetting the data to include only US towers, or restricting to
a subset of years, reduces the number of observations and yields a noisier signal, which can
sometimes be larger or smaller, but on average remains close to 4.5.

When taking the ratio of these standard deviations (k = 0oco/TfuxTower), We Obtain a
value of approximately 1/4.5 (see Table . This implies that the variation at ground level
is about 4.5 times larger than what is observed in the atmospheric column. Since the OCO
satellite detects a dampened signal, the raw regression coefficients will be inflated by this
same factor. Thus, going forward we scale all our regression results by multiplying by

(equivalent to dividing by 4.5) to recover the crop canopy level effect of CO, fertilization.

13The calculation of coco mirrors that of TguxTower. Specifically, we select all OCO readings within a 0.1°
radius of each flux tower, seasonally adjusted readings following the steps in average them
over April-September of each year, and then account for linear time trends.
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4 Results

Panel Regression

The results of our panel model testing the relationship between CO, anomalies and county-
level crop yields in the US are presented in Table[2] We present three specifications: column
(a) includes only county fixed effects and county-specific time trends, column (b) adds the
four weather variables (W, in equation ([1))), and column (c) adds five criteria air pollutants
(P in equation (|1))). Our preferred model specification is the full model in column (c);
however, we find a statistically significant CO, fertilization effect in all specifications for all
three crops.

When moving from column (a) to (b), the CO4 fertilization effect increases for all three
crops. This finding is consistent with our hypothesis that omitting weather variables will
downwardly bias the results, as weather influences yields, which in turn affects photosynthesis
and COy levels. This creates a negative feedback loop between yields and CO, levels, as
higher yields imply lower CO5 concentrations. The effect is more pronounced for corn and
soybeans, as our weather measures are tailored to those crops, while the effects of weather
on wheat yields vary across seasons in more complex ways (Tack et al., 2015)E

Finally, when also controlling for pollution in column (c), the CO, fertilization effect
increases very slightly for corn and soybeans, and decreases for wheat. We find that a 1 ppm
increase in CO, equates to yield increases for corn, soybeans, and winter wheat of 0.12%,
0.13%, and 0.19%, respectively. The fertilization effect is smaller for corn (a C4 crop) and
greater for soybeans and winter wheat (C3 crops), consistent with findings from controlled
experiments. The weather controls in columns (b) and (c) confirm that moderate degree
days are generally yield-enhancing, while extreme heat (measured by extreme degree days) is
highly detrimental. Similarly, the quadratic term for precipitation is hill-shaped, suggesting
that a moderate amount of precipitation is generally optimal. Other pollutants besides COq
tend to reduce yields (i.e., they have negative and sometimes significant coefficients).

These results do not appear to be driven by outliers: Figure plots the anomalies
for CO5 anomalies after controlling for all covariates in the preferred panel model shown in

columns (c) of Table E Note that we observe both positive and negative anomalies within

14\We experimented with more disaggregated weather measures for wheat yields but did not find significant
results. This is likely due to the fact that Tack et al|(2015) use data from field trials that allow for better
matching than what is possible with county-level aggregates.

15By the Frisch-Waugh-Lovell theorem, our panel regression is equivalent to first regressing both the log
of yields and our satellite measure of CO9 on all covariates, and then regressing the residual from the former
on the residual from the latter. The figure displays the variation in these latter residuals, i.e., the COq
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each year across counties, and only a few outliers. This ensures that our results are not

driven by common year-to-year macroeconomic shocks or by individual outliers.

Wind IV

Table [3] presents the results from the IV model in which CO; levels are instrumented by
those of the upstream neighbor. All columns report the full model specification, including
weather and pollution controls—that is, the same as in column (c) of Table 2] While our
panel model included all counties with at least three CO5 and yield observations, the wind
IV approach further requires at least three observations in which both the county itself and
its upwind neighbor have CO5; measurements availablem This requirement further reduces
the sample size. To account for this, the table first replicates the panel regression results
for the restricted sample in the top row, columns (b), (¢), and (d), and then reports the IV
results for the same sample in the bottom row. This approach ensures that any differences
can be attributed to the IV strategy rather than changes in sample composition.

As described in the modeling section, any feedback mechanism—whereby higher yields
remove CO, from the atmosphere through increased photosynthesis—would induce a down-
ward bias in our estimates, manifesting as a negative correlation. We would thus expect the
coefficient to increase when we instrument with upwind COy levels, which is indeed what
we observe. Compared to the OLS panel estimates, the coefficients for corn, soybeans, and
winter wheat are larger by factors of 1.4, 1.7, and 2.7, respectively, when averaged across
columns (b), (c), and (d). These relative ratios, reported in the second-to-last row, are
robust to varying the stringency of the upwind county definition—that is, whether we re-
quire the most frequent upwind county to be at least 0, 1,000, or 1,500 hours upwind during
the growing season. Further restricting our dataset to counties with more consistent wind
patterns—where the upwind county is even more frequently the same—shifts the sample
towards the drier western regions of the US, particularly the Great Plains, where a strong
north—-south wind pattern prevails. As a result, the sample becomes less representative of

average conditions across the US. Our preferred specification, columns (c), uses a 1,000 hour

anomalies used for identification.
16Recall that the CO5 exposure of the upwind county is measured over the entire county area and not just
cropland area; i.e., the measure will exist even if the county is urban, as long as there are satellite readings.
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cutoff to balance these tradeoffs[T"]

Sensitivity Checks

We perform a number of sensitivity checks that produce largely similar results. First, we
run our analyses across different US geographies, as visualized by the colored regions in
Figure . Our primary analysis encompasses counties east of the 100° meridian (excluding
Florida) for corn and soybeans—an area accounting for the vast majority of US production of
these crops—as well as counties east of the Rocky Mountains for wheat. Figure [A6| presents
results for samples comprising the entire contiguous US, counties east of the Rockies, and
counties east of the 100° meridian where row crop agriculture is primarily rainfed. The
results are again fairly stable, mitigating concerns that the observed relationship is driven
by regional dynamics such as irrigation. Note that the color coding of geographic subsets in
this figure matches the map in Figure [A3]

The bottom of Figure [Af] displays the fraction of US production covered by our analysis,
based on the sample of counties with at least one OCO-satellite reading; in all cases our
analysis encompasses over half of total US production, with the exception of wheat grown
east of the 100° meridian—but this fraction increases when considering the contiguous US.
The wind IV approach reduces the sample size further by requiring not only an OCO-satellite
reading over a county, but also a reading over its upwind neighbor (used in the first-stage
regression H

Second, we vary the time trends to allow for the possibility that the upward-trending
relationship between CO, and crop yields may occur at a geographic level different from
the county, for example, if state-level policies drive both energy and agricultural production.

Figure [A7] plots the COy coefficient for all the panel and IV models, alternately using no

"By focusing on areas with dominant wind directions, we also limit the number of times the upwind
county changes from year to year. Identification therefore relies on two sources of variation: (i) temporal
fluctuations in the CO5 anomaly of a stable upwind neighbor, and (ii) changes in the identity of the upwind
neighbor. As Table shows, the upwind neighbor remains constant for the majority of observations, and
thus the temporal channel is the primary source of variation.

18An alternative way to address concerns about missing data is to use a reanalysis product that fills
in missing observations. We replicate our main analysis using COy from NOAA’s CarbonTracker release
CT2019B (Jacobson et al., 2020)), selecting the measurement level closest to the ground, which corresponds
to 25 m above the Earth’s surface. The data are available for the years 2000-2018. We consistently find
significant COs fertilization effects at the county-year level (results are available upon request), although the
effects for corn become larger. Since interpolated reanalysis data products like CarbonTracker involve many
modeling assumptions, we prefer our less processed OCO satellite measurements—especially in relation to our
instrumental variables approach where spatially-interpolated data may mechanically produce a significant
first stage.
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time trend, a common national trend, state-level trends, and county-level trends. All point
estimates are positive. While there is some variation in the panel or IV setup when using a
common national time trend or omitting trends altogether, the granularity of the time trend
(state-specific versus county-specific) does not have a substantial effect.

Third, we vary the end year used in our analysis. USDA stopped reporting county-level
wheat yields after 2023, in part due to a continuous decline in the response rate to USDA-
NASS surveys (Johansson and Coble, [2017). There was even consideration of ending all
county-level yield reporting in 2024. The year 2023 saw significant wildfire smoke over the
central United Statesﬂ which led to substantial CO, and particulate matter emissions—
the latter being far outside the normal range, risking bias in our pollution control. As a
result, we end our baseline analysis in 2022. Figure [A8|varies the last year between 2020 and
2024. The results are fairly stable for the first three years—i.e., we get very similar results
whether we end the analysis in 2020, 2021, or 2022, but estimates start to become smaller in
magnitude and less significant if we include data from 2023 or 2024, coinciding with declining
response rate to USDA-NASS surveys, and hence fewer counties reporting yields as shown
in Figure [Ad] Panel estimates remain significant for corn and soybeans, while the results
from the wind IV remain significant for wheat.

Fourth, our baseline analysis uses a longitudinal setting, observing around a thousand
counties each year. Since there is a large amount of spatial correlation—a fact our wind
IV specifically relies on since CO4 levels are in part determined by upwind CO; levels—we
supplement our panel setting with a national-level time series analysis in where
we rely on one observation per year. We follow the approach of |Bilal and Kanzig (2024) and
construct CO5 innovations from an autoregressive process, which we use to explain aggregate
crop yields in the US. A benefit of this approach is that we can go back in time before the 2015
launch of the OCO-2 satellite: we use COy measurements from the Mauna Loa Observatory
in Hawaii, which started year-round reporting in 1958, giving us a sample from 1958-2024 (67
years). But going from the county level to national level results in much fewer observations,
and the confidence intervals become larger. They are highly significant for wheat, marginally
significant for corn, and not significant for soybeans. However, in the case of soybeans, the
results are also not significantly different from our baseline estimates. We find it reassuring
that this entirely different approach—using in situ rather than remotely-sensed data—also
points toward sizable CO, fertilization effects.

Fifth, we vary the model specification to test for non-linear effects. Our baseline model

9For example, see Figures 2 and 3 in |[Lee and Jaffe| (2024).
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links log yields to CO4 levels, assuming that a 1 ppm change in CO5 has the same relative
(percent) effect on yields. Figure compares the effect of the main specification (log-
linear) to other functional form combinations: linear-linear (constant absolute effect), log-
log (constant elasticity), and linear-log. To make the results comparable, we do not show
the coefficients directly; instead, we present the effect of a 1 ppm increase in CO5 on corn
yields in each case, along with the 90% confidence interval. The figure displays results for
both the panel regression and the wind IV. The results are similar, which is not surprising
given that we have only eight years of data, during which CO, varies by about 20 ppm;
over such a limited range, all specifications provide local linear approximations, making it
difficult to detect non-linear relationships. It is important to note, however, that in our
thought exercise in the next section—where we extend the coefficient backward to 1940 to
simulate earlier COq effects—the functional form makes a large difference, as it would when

projecting several decades into the future.

5 Discussion

Global ambient CO4 levels have increased by 2 to 2.5 ppm per year on average since 2000.
Our preferred IV models estimate yield responses between 0.2% and 0.6% per 1 ppm CO,.
These estimates, which are at the higher end of the range found in the literature, imply that
CO,, fertilization was a major contributor to recent crop productivity in the US. That is,
yields may have increased 0.5% to 1.5% per year due to CO, in recent years, fully accounting
for observed yield increases in the case of wheat.

Looking further back in time, Figure [1| shows that since 1940, corn yields have increased
by 500%, while soybean and winter wheat yields have increased by 200%. This was during
a time when ambient CO, levels rose by about 100 ppm. We can conduct a back-of-the-
envelope counterfactual in which we hold CO, constant at 1940 levels while everything else
remains constant. We assume that the CO, fertilization effect estimated using 2015-2022
data can be applied from 1940 to the present. Admittedly, this is a strong assumption, as
previous studies (see Section |1)) have shown that the CO, fertilization effect may diminish
under stressors such as nutrient or water deficiencies. If crops suffered from such limiting
factors, the CO, fertilization effect might have been weaker. Moreover, the climate in recent
decades would not be the same if atmospheric CO5 had remained at 1940 levels. Nevertheless,
we find it useful to run this thought experiment to highlight the possible magnitude of the
CO, fertilization effect. Figure [5f shows the results, implying that CO, fertilization may be
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responsible for a substantial share of past productivity growth, especially for wheat.

How could this have occurred? One source of insight is the period before 1940, when crop
yields were largely stagnant despite rapid industrialization and economic growth. |Olmstead
and Rhode (2002) argue that from 1800 to 1940, “wheat production witnessed wholesale
changes in varieties and cultural practices...without these changes, vast expanses of the
wheat belt could not have sustained commercial production and yields everywhere would
have plummeted due to the increasing severity of insects, diseases, and weeds.” What if
this same dynamic persisted after 1940, such that agricultural innovation mainly served to
protect crops against loss rather than to increase yields? One-third of all crop seed patents
are related to crop pests or pathogens (Moscona and Sastry, |2025), and many agricultural
technologies are focused on crop resilience to extreme weather (e.g., flood and drought tol-
erance). Furthermore, only a small share of yield gains since 2005 can be attributed to
genetic improvements (Rizzo et all [2022). Taken together, if COy had remained static,
wheat yields could have conceivably grown only modestly over time—especially given that
extreme weather and pest pressures have increased with globalization and climate change
(Bebber et al.l 2014; Deutsch et al., 2018).

Notwithstanding these explanatory factors, how do these results compare with existing
COq, fertilization estimates? Most FACE experiments raise CO, levels by 190 to 200 ppm over
a 350 ppm baseline, typically showing yield responses of 18-19% (Kimball, 2016 Ainsworth
and Long, 2021)), or approximately 0.1% per ppm. Our estimates of 0.2-0.6% per ppm are
thus 2 to 6 times larger. However, the average effect from the literature conceals significant
variation across crops, locations, and growing conditions. For example, a FACE study of
dryland wheat in Australia showed that a 180 ppm increase in COy was associated with yield
increases of 24% and 53% in two sites, with some yield responses reaching 79% (Fitzgerald
et al., 2016). The latter estimate, equivalent to 0.44% per ppm, is closer to what we find
for wheat. Similarly, under varying environmental conditions, yield responses have been
observed above 35% for corn, rice, cotton, as well as various leguminous and root crops
(Kimball, 2016; |Ainsworth and Long) 2021). Given such variation in FACE results and the
complexities of environmental interactions, it is difficult to benchmark our results precisely.

FACE experiments are likely to underestimate the effect of CO, fertilization due to
measurement error related to the difficulty of maintaining elevated gas concentrations in
open-air settings. FACE experiments regulate CO, through a series of pipes that inject the
gas at high velocity in response to sensor feedback. CO4 concentrations in FACE experiments

fluctuate widely due to air turbulence, varying 10 times more than what plants experience
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under natural conditions (Kimball, 2016; Allen et al., 2020)). When elevated CO, is supplied
in cycles or pulses, crop responses are lower than if CO, is supplied more steadily (Bunce),
2012)@ Just as CO4 can be better controlled in chamber studies than in FACE experiments,
our study’s smaller absolute variation in ambient COy would also imply less fluctuation. A
recent review of FACE experiments by USDA researchers found that they underestimate
yield responses due to CO, fluctuations by 18-50% (Allen et al., 2020, [2025). Our estimates
point in the same direction.

It is worth noting that there are only two long-standing FACE experiments in the US that
focus on agriculture: the Arizona FACE in Maricopa, AZ, and SOYFACE at the University of
[linois in Champaign, IL (Ainsworth and Long, 2021). Other FACE experiments study non-
cropland ecosystems like forests, grasslands, and tundra, as well as crops in other countries.
Only SOYFACE in Illinois has the potential to approximate agricultural conditions in the
Midwest, where most US crop production occurs—though SOYFACE’s primary focus on
soybeans limits what can be said about other crops. Moreover, SOYFACE consists of 16
octagonal experimental sites, each 20 m wide (283 m?), covering over 4,500 m? in total, or
slightly more than one acre. For comparison, the average farm in the US is 445 acres (USDA
ERS), which raises questions about the generalizability of the results—especially considering
the large variation in crop yields across counties and even within fields (Lobell and Azzari
2017)).

Therefore, it is possible that FACE experiments do not reflect the growing conditions
and farming practices of the major growing regions. Given the well-documented interactions
between CO, and environmental conditionsﬂ COq fertilization effects could vary between
FACE experiments and commercial agricultural operations in response to differing fertiliza-
tion and input regimes, soil and water management practices, and local air pollution and
climate anomalies across regions—as well as conditions that vary over time. Our experimen-
tal design, utilizing OCO satellite measurements of ambient CO,, allows us to account for
this variation across thousands of US counties and across multiple years of observations.

Nevertheless, we offer another potential explanation for why our estimated CO, fertiliza-

tion effects are higher than those generally found in the literature. Our study focuses only

20Short-term fluctuations in CO, can affect photosynthetic activity, in part because leaves have little
storage capacity for gaseous CO, and the half-life of COs in the gas space is short, e.g., 0.20 seconds for
wheat (Hendrey et al.l [1997]).

21Including nutrient availability (Kimball et al. [2001; Hungate et all [2003; [Reich et al.l [2006; [Ziska and
Bunce, [2007)), water availability (Ottman et al.| |2001} Leakey et al., 2006; Keenan et al., 2013; Morgan et al.,
2011; |Zheng et al., [2020; |Gray et al., |2016)), and combined nutrient-water-COsq interactions (Markelz et al.,
2011)).
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on small increases in CO,, and it may be inappropriate to extrapolate the fertilization effect
to much higher CO, concentrations if there are diminishing returns. Most studies (includ-
ing FACE, open-top chamber, and greenhouse experiments) involve large increases in COq
(200 ppm or more) over ambient levels. In contrast, our analysis relies on variation in the
range of 20 ppm during the OCO timeline from 2015 to 2022. Such marginal increases could
produce relatively higher fertilization effects, as the photosynthetic response curve of plants
to elevated COsy is diminishing. For example, the rate of CO, assimilation in C4 plants is
approaching saturation at current global CO; concentrations (Lambers and Oliveiray, 2019)).
Our results may reflect higher yield responses around current ambient COy levels, which
occur on a steeper part of the response curve. This same dynamic could explain part of the
observed decline in the global carbon fertilization effect (Wang et al., [2020]).

More generally, a strong positive relationship between COs and yields should not be
surprising. COs, is a purchased input in many agricultural settings. As mentioned earlier,
the gas has long been pumped into greenhouses to spur photosynthesis and increase the yield
of horticultural crops. Optimal CO4 concentrations of 900 ppm have been suggested, which
is more than twice current ambient levels (Mortensen, 1987)). It has also been argued that
rising CO4 levels were a necessary condition for the emergence of agriculture in the Holocene
(Richerson et al., [2001]).

An alternative way to contextualize our results is to examine trends in non-cropland
vegetation in the US. As mentioned earlier, studies have documented a global greening trend
associated with CO, fertilization (Zhu et al., 2016)). In a similar vein, Figure analyzes
trends in NDVI—a measure of vegetative density—over 32 years from 1982 to 2013 using
AVHRR satellite data. We find that NDVI increases by 0.48% per year, on average, across
the entire US. Focusing on forested land, which is still subject to CO, fertilization but less
actively managed than cropland, NDVI growth is 0.64% per year. This is in line with our
estimates of the crop yield response of 0.2-0.6% per COy ppm, or 0.5-1.5% per year@
We can further restrict the sample to isolated and protected forests like the Adirondacks
or the Ozarks to limit ourselves to locations largely untouched by agricultural innovation.
The bottom panel shows that several of these locations experienced an even higher greening

trend, closer to 1% per year. Acknowledging that vegetation indices are not the same as

22Caution is warranted when comparing NDVI and crop yields, which are correlated but inherently different
measures. Forest growth can also reflect the aggregate impact of CO5 and factors like forest succession and
climate change. Nevertheless, the higher forestland average aligns with evidence from FACE experiments
showing trees to be more responsive than herbaceous species (e.g., row crops) to elevated CO2 (Ainsworth
and Long, 2005]).
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crop yields, this analysis suggests that CO, fertilization likely played a material role in
greening forestlands near US croplands in a way that cannot be attributed to technology-
driven productivity drivers, and on an order of magnitude similar to what we find in managed

croplands.

6 Conclusion

We find a significant and robust CO, fertilization effect by linking satellite-measured COq
fluctuations to yield fluctuations of corn, soybeans, and winter wheat from 2015 to 2022.
Our study spans more than half of commercially farmed production for these crops in the
US and offers a test of whether the fertilization effects found in controlled experiments can
be verified under real-world growing conditions. While panel models linking weather and
yield anomalies have shown the possible detrimental effect of extreme heat on yield, the same
setup can be used to show that localized CO, anomalies drive significant yield changes—a
finding that is confirmed when relying on upwind CO, levels as an instrumental variable.
Our results suggest that CO, is an important driver of past agricultural productivity growth.

Our paper illustrates how satellite-based measures of CO5 can be useful in complementing
FACE field experiments, especially in the context of ensuring external validity of estimates for
the effect of CO4 on agriculture and ecosystem functioning at large scales. The approach can
be extended to study real-world crop responses globally. Our results also merit consideration
in the context of climate models used to estimate climate change impacts and the social cost
of carbon, though we caution against extrapolating the fertilization effect far into the future,
which requires further assumptions about the functional form, the extent of diminishing
returns to additional COs, and ongoing uncertainty about future environmental interactions.

Relatedly, our analysis is focused on the US, and it is possible that fertilization effects
will differ greatly across countries based on prevailing crops and environmental conditions
(McGrath and Lobell, [2013)), especially as climate change alters the coupling of temperature,
soil moisture, and precipitation that determine crop yields (Proctor et al., 2022). Under
future climate change, such heterogeneity could exacerbate spatial inequalities (Cruz and
Rossi-Hansberg, 2024) and alter the comparative advantage of different crops and regions
(Costinot et al., |2016; [Nath, 2025), with potentially large welfare effects that are worth
investigating. While recent research has shown that mechanization significantly increases
productivity and welfare (Caunedo and Kala, 2022)), as do well-functioning credit markets

(Wiipper et al., 2023), we argue that environmental factors like CO also play a crucial role.
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We would like to close by stressing that the overall effect of climate change will consist of
the positive effect of CO, fertilization net of the effect of extreme heat, which is highly signif-
icant in our regression tables and predicted to rise with ongoing climate change. Moreover,
COgq-driven yield increases may be offset by effects on food nutrition and quality (Loladze,
2002; Taub and Allen|, 2008; Myers et al.| |2014]). Nevertheless, this paper demonstrates that
marginal increases in COs have a strong countervailing fertilization effect, and that such ef-
fects may account for a material proportion of historical productivity improvements in wheat

yields.
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Figures and Tables

Figure 1: Agricultural Yields and COy Levels
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Notes: The figure displays the evolution of yearly aggregate US yields (left axis) and annual COy averages
(right axis). Each time series is normalized relative to 1940 (value = 100). Aggregate US corn yields are
shown in dark green from 1866-2024, aggregate US soybean yields in green from 19242024, and aggregate
US winter wheat yields in light green from 1909-2024, corresponding to the years for which data are reported
by USDA. Monthly CO readings at Mauna Loa Observatory are shown from March 1958 onward in blue,
while earlier years use annual averages from ice cores (Etheridge et al., [1996) as provided by NASA (link).
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Figure 2: Yield and CO, Anomalies in Macoupin County, Illinois
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Notes: The figure displays corn yields (left axis, shown in red) and COq levels (right axis, shown in blue) in
Macoupin County, Illinois, which is also shown in Figure [3] Dashed lines represent the county-specific time
trend over the eight-year period (2015-2022), while solid lines show anomalies (annual deviations from the

trend). The correlation between corn yield anomalies and COs anomalies is 0.55.
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Figure 3: IV Setup
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Notes: The figure outlines the construction of the wind instrument, using Macoupin County, Illinois (FIPS code 17117) as an example. The left

panel demonstrates the first step: we derive the centroid (shown as +) for Macoupin County (shown in dark green) as the cropland-weighted
average of all grids in the county. The weight is the combined corn, soybean, and winter wheat acreage from the Cropland Data Layer. We
pair Macoupin’s centroid with the centroids of all its six neighbors (shown as *), which are not cropland-area weighted, as we are including all
COs readings as part of our instrument, not just those over cropland. The middle panel demonstrates how we determine the upwind county:
the red arrows show the direction in which neighbor centroids are located, which are time-invariant. The blue arrow shows the wind direction
at 12 noon on July 15, 2021. This is constructed from hourly NLDAS data, using the cropland-area weighted average of all NLDAS grid cells
in Macoupin County. At each hour, we compute the cosine between the direction of neighboring counties (red arrows) and the wind direction
(blue arrow), and record which neighbor is “upwind”—the one with a cosine closest to —1. The right panel shows how often a neighboring
county is “upwind” during the 4,392 hours in April-September of a year, with the widths of the arrows proportional to frequency. For example,
COg readings over Madison County (entire county, not just agricultural area) are used as an instrument for COy over the agricultural area of
Macoupin County in 2021, as it is upwind 1,659 hours (38% of the time). Both counties are downwind from the city of St. Louis (shown in

gray). Note that the “upwind” county can change year to year.



Figure 4: Histogram of Hours a County is Upwind
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Notes: The figure displays histograms of the number of hours the county used as the IV is upwind (out of
a possible 4,392 hours in April-September of a year). Data are shown for counties east of the 100° meridian
for corn and soybeans (shown in green in Figure , and east of the Rocky Mountains for winter wheat
(shown in green and blue in Figure .
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Figure 5: Counterfactual if CO, Remained at 1940 Levels
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Notes: The figure displays the evolution of yearly aggregate US yields as a dashed black line. Yield trends (estimated using restricted cubic
splines with three knots) since 1940 are shown as a solid black line. The graph adds counterfactuals where COs levels are kept constant at
the 1940 value, assuming the CO, fertilization effect estimated from 2015-2022 data applies throughout the 1940-2024 period. The blue line
uses the coefficient estimates from columns (c) of the panel regressions in Table [2| The red line uses the IV estimates from the columns (c) of
the wind IV regressions in Table 3] We adjust the yield trend only by the difference between actual COs and CO4 in 1940, leaving all other

factors, notably realized weather, unchanged. The 95% confidence bands are shown as shaded areas.



Table 1: Standard Deviation of Annual CO5 Anomalies in Satellite and FluxTower Data

All flux towers Cropland flux towers

World US World US
Panel A: OCO Reading Around Tower Location
A1: Location of towers across all years

00CoO 1.30 1.29 1.40 1.37
Ntower [375] [317] [93] [91]
A2: Location of towers with 2015-2022 data
00Co 1.21 1.25 1.21 1.21
Ntower [96] [90] [20] [20]

Panel B: Flux Tower at 2 m Height
B1: All years

OfluxTower 0.83 0.28 6.35 0.91
Ntower [287] [226] [48] [42]
B2: 2015-2022
OfluxTower 5.36 4.88 6.07 5.64
Ntower [206] [178] [36] [32]
B3: 2015-2022 with OCO data
OfluxTower 4.94 4.91 6.97 6.97
Niower 196] [90] 120] 120]
Ratio k = % ﬁ ﬁ T155 ﬁ
Ratio k = g—g ﬁ 3._191 5.—174 ﬁ

Notes: The table displays the year-to-year standard deviation of CO5 anomalies from OCO satellite readings
(coco in Panel A) and at flux towers (guxTower i Panel B). The second row of each panel gives the number of
towers (locations) included in the dataset. OCO readings are averaged within a 0.1-degree longitude/latitude
radius around each flux tower location. The combined cropland area in the 2022 USDA Census of Agriculture
was 382 million acres, equating to an average of 118,000 acres (or 184 square miles) across 3,244 US counties.
For comparison, the area of a 0.1-degree circle is 150 square miles at the equator, which is roughly comparable.
Panel A1 uses all flux tower locations (including those without height information for COs measurements),
while Panel A2 only uses flux tower locations with COy data from 2015-2024 that report the height of the
instrument. Panels B1-B3 fit a restricted cubic spline to estimate oo, as a function of measurement height
and evaluates it at 2 m. Panel B1 uses data across all years (observations start in 1993 for all towers, and
2001 for cropland towers). Panel B2 is restricted to locations with flux towers that have CO2 data from
2015-2024. Panel B3 only includes flux towers where there is also CO5 data from OCO. Panels B3 and
A1 therefore use the same locations. The final two rows report the ratio xk = —22¢°— using the standard

O fluxTower

deviations from Panels Al and B1 (second to last row), as well as standard deviations from Panels A2 to
B3 (last row). An average baseline scaling factor of k = 4%5 is obtained when using all available data, %,
or when using all towers in the world (first column) or just cropland towers (third column). For simplicity
in the text we may refer to the reciprocal of this scaling factor, 1/k & 4.5, which represents the factor by
which ground-level variation exceeds the satellite variation.
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Table 2: Baseline Panel Regression

Corn Soybeans Winter Wheat

(1a) (1b) (1c) (2a) (2b) (2¢) (3a) (3b) (3¢)

COq (ppm) 0.071* 0.118** 0.118™* 0.087* 0.113"*  0.128"* 0.238** 0.293**  (0.194**
(0.030)  (0.029)  (0.031) (0.038) (0.038)  (0.032) (0.113) (0.115)  (0.077)

Moderate DDay 0.277*  0.282** 0.295**  0.557*** 0.024 0.178
(0.097)  (0.082) (0.109)  (0.097) (0.238)  (0.232)
Extreme DDay -0.396™**  -0.395*** -0.601**  -0.593*** -0.262*  -0.278*
(0.070)  (0.070) (0.096)  (0.092) (0.115)  (0.107)

Precipitation 0.525%*  0.547* 0.478*  0.476** 1.052* 0.773
(0.176)  (0.181) (0.178)  (0.190) (0.545)  (0.508)
Prec. squared -0.443**  -0.457** -0.348"*  -0.368*** -0.971*  -0.836**
(0.114)  (0.118) (0.112)  (0.132) (0.377)  (0.355)

Mean CO -0.001 -0.574* 0.006
(0.286) (0.295) (0.514)

Mean NO, -0.007 -0.024* 0.018
(0.012) (0.013) (0.016)

Mean O3 -0.032 -2.447* -0.320
(0.693) (0.575) (1.303)
Mean PM;, 0.151 0.284 -1.948***
(0.500) (0.316) (0.627)

Mean SO, -0.008 -0.037** -0.011
(0.017) (0.013) (0.014)

R? 0.8230  0.8533 0.8535  0.8203  0.8559 0.8651  0.8347 0.8509  0.8559

Observations 8337 8337 8337 7918 7918 7918 4990 4990 4990

Notes: The table regresses log yields on CO4 from OCO satellite readings between 2015 and 2022. Reported coeflicients are multiplied by 100 so
that estimates represent the percentage yield change per 1 ppm increase in COs. All regressions include county fixed effects and county-specific
time trends. Columns (b) further include four weather variables: moderate degree days x1000 (degree days 10-29°C for corn and 10-30°C for
soybeans and winter wheat), extreme degree days x100 (degree days above 29°C for corn and above 30°C for soybeans and winter wheat), and
a quadratic in precipitation (in meters). Columns (c¢) include the mean pollution levels of five criteria air pollutants: CO (in ppm), NOy (in
ppm), O3 (in 100 ppb), PM;o (in 100 pug/m3), and SOs (in ppm). All weather and pollution variables are constructed over the growing season
(April-September). Corn and soybean regressions use counties east of the 100° meridian (green in Figure , while wheat regressions include
all counties east of the Rocky Mountains (green and blue in Figure . COg, coefficients were scaled by k = 4—{,) as outlined in equation
and Table [1| Standard errors are clustered at the state level. Stars indicate significance levels: * 10%, ** 5%, *** 1%.
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Table 3: IV Regression using Upwind CO,

Corn Soybeans Winter Wheat
(1a) (1b) (1c) (1d) (2a) (2b) (2¢) (2d) (3a) (3b) (3¢) (3d)
Min hours - 0 1000 1500 - 0 1000 1500 - 0 1000 1500

OLS Regression
CO3 (ppm) 0.118*** 0.127*** 0.135"** 0.175*  0.128*** 0.124™* 0.132*** 0.207*** 0.194**  0.191* 0.180 0.352**
(0.031)  (0.038)  (0.042) (0.100) (0.032)  (0.085)  (0.039)  (0.065) (0.077) (0.100)  (0.115)  (0.149)

IV Regression

CO, (ppm) 0.177°  0.174**  0.288" 0.209°*  0.197**  0.416*** 0.533"**  0.555"**  (.798"***
(0.076)  (0.079)  (0.166) (0.086)  (0.090)  (0.117) (0.190)  (0.207)  (0.281)
T (1st stage) 16.33 16.07 1108 15.04  15.62 9.89 13.89 13.71 7.24
Ratio IV/OLS 1.39 1.29 1.65 1.68 1.49 2.00 2.80 3.08 2.27
Observations 8337 7219 6641 2436 7918 6885 6354 2288 4990 4406 4117 2173

Notes: The table regresses log yields on COz (x100) from OCO satellite readings between 2015 and 2022.

The table regresses log yields on COs from OCO satellite readings between 2015 and 2022. Reported coefficients are multiplied by 100 so
that estimates represent the percentage yield change per 1 ppm increase in COs. Each coefficient is from a separate regression. Column (a)
replicates the specification from column (c) in Table [2| Columns (b), (c), and (d) replicate the same OLS regression for the set of observations
included in the IV regression in the second row, where COs readings are instrumented with the COq reading (averaged over the entire county,
not just the agricultural area) from the predominant upwind county. Columns (b), (¢), and (d) differ in how the upwind county is classified for
the IV: column (b) uses the county most frequently upwind during April-September as measured from hourly wind data from NLDAS (a total
of 4,392 hours in April-September); columns (c¢) and (d) include counties only if they are upwind for at least 1,000 or 1,500 hours, respectively.
All regressions include county fixed effects, county-level time trends, and controls for four weather and five pollution variables. CO5 coefficients
were scaled by k = %5 as outlined in equation and Table Standard errors are clustered at the state level. Stars indicate significance
levels: * 10%, ** 5%, *** 1%.
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Appendix A Analysis Using OCO Satellite Data

Appendix A.1 Derivation of County-level CO, Exposure

To derive county-level CO, exposure, we first independently aggregate the raw OCO readings
(Level 2) to the county-month level. For both OCO-2 and OCO-3, we follow a procedure that
closely mirrors how the corresponding weather variables are constructed, before averaging
across the two data sources and then across month of the growing season. The specific steps
are:

1) Seasonality Adjustment: Since observations over a given county occur at different
times of the crop-growing season, reflecting the satellite’s revisit timing and the pres-
ence of quality flags, we adjust CO, values to make them comparable by accounting
for the annual pattern in which ambient CO4 concentrations decrease in the spring and
summer, when plants are actively photosynthesizing in the Northern hemisphere, and
increase in the fall and winter, when plants are respiring on net.

We seasonally adjust the CO, readings for a common within-year seasonality, convert-
ing each reading to its equivalent value as of July 1st of the same year. The seasonal
pattern is shown in Figure where we fit a 4""-order Chebyshev Polynomial over
the year, which we normalize to [-1,1] by transforming January 1st to equal -1 and
December 31st to equal 1 We restrict the seasonality so the value on January 1
(time -1) equals the value on December 31 (time 1). We further include a time trend
to account for annual increases in CO, at the global level. For example, if the average
COs level on April 1st is 2.2 ppm higher than on July 1st, we subtract 2.2 ppm to all
observations from April 1st[*?]

2) Link with PRISM grid: Each longitude-latitude coordinate from a seasonality-
adjusted OCO reading in step (1) is linked to the PRISM grid cell in which it falls.
The PRISM grid is a i degree raster in both longitude and latitude. For each day, we
average all readings within a given grid. This results in a daily grid-level CO5 measure.

3) CO;, by county-crop-month: We derive a monthly county-level CO5 exposure that
varies by crop, since different crops may be grown in different areas within a county.

3a) For each month, we compute the weighted average COs exposure across all daily
PRISM grids from step (2) within a county to derive the crop-specific exposure.

AlThis normalization is necessary as leap years have an additional day.

A200, also exhibits strong diurnal within-day variation (Idso et al., [2002} Xueref-Remy et al.l 2018). The
OCO-2 satellite is sun-synchronous and revisits points at the same time each day, so diurnal variation is
not a concern. For OCO-3, we average across readings that cycle through the sunlit hours at regular and
repeating intervals, thus not producing any location-specific diurnal biases.

i



4)

The weights are given by the crop-specific average growing area, as reported in
the Cropland Data Layer by USDA (2015-2024), which specifies for each 30 m
grid cell what crop is grown. We sum all pixels growing either corn, soybeans, or
wheat to obtain the growing area for each crop in the PRISM grid (roughly 4.5 km
resolution), i.e., by counting how many of the 30 m x 30 m pixel centroids within
a PRISM grid cell are classified as each crop. For example, if one grid grows twice
as much corn as a neighboring grid, it receives twice the weight in the average.

We also average all readings within a month, without adjusting for the frequency
of readings in a grid cell. As a result, if a grid has readings on two days and
another on one, the first grid effectively receives twice the weight as we have a
clearer (less noisy signal).

3b) Additionally, we retain the sum of the grid-cell specific growing area across all
grids and days in a county and month, which reflects how representative the
exposure measure is—either because readings are taken from grids with significant
crop coverage, or because certain grids are sampled more frequently. We need this
measure as weight in the next step.

Aggregating monthly OCO-2 and OCO-3 data: We average the OCO-2 and
OCO-3 measures derived in step (3a), weighting them according to the coverage mea-
sure from step (3b). Intuitively, if OCO-2 has more readings, or readings from areas
with more crop coverage than OCO-3, its monthly average receives a higher weight.
See Figure for a cross-plot of observations.

CO; over growing season: We then average the monthly values from step (4) over
the period April-September, giving each month equal weight. We do not weight by
the number of readings in a month, since there is high serial correlation in the data,
and readings from different months convey more information than the same number of
readings within the same month.

Derivation of CO, Anomalies: Our baseline regressions use the values of step (5)
while including county fixed effects and county-specific linear time trends as outlined in
equation . However, for the scaling factor s in equation we require the standard
deviation of the anomalies, which we compute as residuals after fitting a linear model
with county fixed effects and county-specific linear time trends to match the variation
used in the regressions.
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Appendix A.2 Derivation of Upwind Neighbor

Neighboring counties are derived using the following four steps:

)

Cropland-weighted centroid: We first calculate the centroid of a county as the
cropland-weighted average of all grids within the county, weighting by the average
acreage of corn, soybeans, and winter wheat from the Cropland Data Layer for 2015-
2024. This provides a time-invariant measure of where the cropping area is, on average,
located within each county.

Pairing with unweighted centroids of neighboring counties: We begin by pair-
ing each county’s cropland-weighted centroid with the unweighted centroids of all its
neighboring counties, since we use all CO, sources as instruments, not only those over
agricultural areas. The direction to each neighboring county is time-invariant and
calculated once.

Hourly wind direction and upwind neighbor: Hourly wind data are obtained
from the North American Land Data Assimilation System (NLDAS)@ using the
cropland-area-weighted average of all NLDAS grid cells within each county. We deter-
mine which county is “upwind” by calculating the cosine of the angle between the wind
direction and the direction to each neighboring county, identifying the county whose
cosine is closest to —1.

Cumulative time county is upwind: For each neighboring county, we then sum
the number of hours it is “upwind” of our target county over the 4,392 hours that
comprise the growing season (April to September) in a given year. The neighboring
county that is most frequently upwind is thus categorized as the “upwind” county for
that year, which can vary from year to year. We then instrument each county’s COq
anomaly with that of its most frequently upwind neighbor in the given year.

A3The data is available at https://hydrol.gesdisc.eosdis.nasa.gov/data/NLDAS/NLDAS_FORA0125_H.2.0/

v
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Figure A1l: Seasonality in CO,
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Notes: The chart displays the seasonality in CO5 concentrations. To make readings comparable and compute
average CO- levels at the county-year level, satellite readings are seasonally adjusted to July 1 (red dashed
line) of each given year; that is, each reading is corrected by the difference between the July 1 value of the
fitted seasonality curve and the value of the curve on the day of measurement. We fit a 4*"-order Chebyshev
polynomial in the day of year and a linear time trend across years to the unbalanced daily time series of COq
satellite readings. Since years have different numbers of days, we normalize January 1 to —1 and December
31 to 1. The seasonality regression is constrained so that the value at the end of the year (December 31)
equals the value at the beginning of the year (January 1). The seasonality curves used in the analysis (solid
lines) are estimated using readings without quality flags across the contiguous US. For comparison, the
dashed lines use all observations across the US, including those with flags. The main growing season for corn

and soybeans (April-September) is indicated by gray dashed lines.



Figure A2: Comparing Observations in OCO-2 and OCO-3
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Notes: The chart displays county-level measures of COz from OCO-2 (x-axis) and OCO-3 (y-axis) in our
corn sample for the years in which both satellites report data (2019-2024). If the measurements were in
perfect agreement, all points would lie on t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>