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An understanding of the drivers of agricultural productivity is critical for explaining

patterns of economic growth within the farm sector and across other sectors of the economy.

For example, the adoption of high-yield varieties had significant positive economic spillovers

in India (Gollin et al., 2021) and other countries more generally (McArthur and McCord,

2017).

The “Green Revolution” brought about a massive increase in crop yields across the world.

In the US, for example, corn yields increased sixfold since 1940, while soybean and wheat

yields increased by a factor of three. Prior to this point, however, yields fluctuated around a

constant mean, as shown in Figure 1. By extension, productivity of the agricultural sector

increased rapidly (Jorgenson and Gollop, 1992). Before 1950, US farm sector productivity

growth was half that of the non-farm sector, but afterwards the relationship reversed, with

farm productivity growth exceeding the non-farm sector by 62% (Pardey and Alston, 2021).

Factors such as increased input usage, mechanization, irrigation, and improved crop genetics

all contributed to yield growth (Wang et al., 2015). But since aggregate US farm output

increased several-fold while the aggregate quantity of inputs (land, capital, labor, and mate-

rials) stayed flat, technology is generally seen as the main driver of agricultural productivity

growth.

This paper argues that carbon dioxide (CO2) fertilization1 may help illuminate the puz-

zling conclusion of Jorgenson and Gollop (1992): why did productivity growth explain over

80% of agriculture’s postwar growth but less than 15% in the non-farm economy? During

this time, both atmospheric CO2 and crop yields were steadily increasing as shown in Fig-

ure 1. The physiological response of plants to CO2 is well-known: CO2 drives photosynthesis

and has long been used as a greenhouse input to boost yields. Over the last 40 years, half of

the world’s vegetated area has undergone greening, of which 70% is attributed to elevated

CO2 (Zhu et al., 2016).2

Our paper investigates the extent to which elevated CO2 contributed to the observed

increase in US crop yields over time. Establishing a causal link between two trending vari-

ables is statistically challenging. CO2 has risen smoothly in tandem with crop yields as well

as other factors such as mechanization and input use. Industrialization, both in agriculture

and other sectors, could have independently increased CO2 levels as well as yields—making

it difficult to disentangle CO2 fertilization from other productivity drivers.

1The CO2 fertilization effect is defined in the scientific literature as the increase in photosynthetic activity
in response to elevated CO2. In this paper, we use the term more specifically to refer to an outcome of
increased crop yields.

2That paper defines “greening” as an increase in the growing season integrated leaf area index.
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We develop a new approach to estimate the effect of CO2 on crop yields that relies

on neither process-based models nor localized field experiments, while enabling analysis of

most US cropland. We use observed ambient CO2 data from NASA’s Orbiting Carbon

Observatory (OCO) satellites (OCO-2 and OCO-3) and link it to county-level crop yield

data in the United States. The OCO satellites detect changing ambient CO2 levels that

occur within and across locations and the growing season (Crisp, 2015). While CO2 mixes

in the atmosphere, there are temporal and spatial deviations due to variance in CO2 sources

and sinks and changing atmospheric conditions and wind patterns (see Appendix Figure D1

for an illustration from 2019). We focus on the US as it is the largest producer of corn and

soybeans, accounting for 33% of global production (FAOSTAT) over our sample time frame,

and 7% of global wheat production.

We use several empirical approaches that isolate both time-series and cross-sectional vari-

ation in CO2 levels. In assessing causal impacts, a major identification concern involves the

potential correlation of CO2 anomalies with other factors that influence crop yields. One

could imagine several such confounders related to agricultural practices, fossil fuel produc-

tion, urbanization, and large-scale weather systems. While we control for such factors when

possible, we employ an instrumental variables approach that leverages wind variation. We

instrument for CO2 exposure in a county using upwind CO2 concentrations. Our results

are robust to myriad sensitivity checks, i.e., the functional form (logarithmic versus levels),

whether the temporal trend is by state or county, sample selection, and the choice of controls

for co-occurring air pollutants. We bolster our findings with a national-level time series anal-

ysis using Mauna Loa measurements from 1958–2024, which produces consistent estimates

of the CO2 fertilization effect, particularly for wheat.

We consistently find significant CO2 fertilization effects on US yields: a 1 part per million

(ppm) increase in CO2 equates to yield increases of 0.17%, 0.20%, and 0.55% for corn,

soybeans, and winter wheat, respectively, in our preferred IV model.3 Our estimates are on

the higher end of those found in the agronomic literature, a fact we discuss in more detail

in Section 5. We see the major contributions as follows:

First, this paper provides an example of how satellite-based measures of CO2 can com-

plement field experiments to ensure external validity of CO2’s effect on agriculture and

ecosystem functioning at a global scale. We measure the effect under real-world growing

conditions.

3This is after adjusting by a scaling factor to account for the fact that CO2 varies more at ground level
than it does across the total air column observed by the satellite, further explained in equation (3) below.
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Second, our finding that CO2 fertilization has driven a significant portion of the historical

increase in crop yields—particularly for wheat—has implications for how we think about the

drivers of agricultural productivity growth, which has very large economic spillovers (Gollin

et al., 2021), and the contribution of environmental factors versus technological change to

this growth.

Third, our results shed light on a driver of yield growth that is usually taken as exogenous.

The recent literature has used panel variation to estimate climate change damages by relating

outcomes to random exogenous year-to-year weather fluctuations (Dell et al., 2014). This

approach, which relies on annual variation in weather, does not take into account longer-

term dynamics that are correlated with climate change. Consequently, part of the estimated

damages may be offset by yield gains from rising CO2.

Fourth, our results are relevant for estimating the impact of climate change on agriculture.

There is a disconnect between process-based studies of climate change, which incorporate

CO2 fertilization, and statistical studies, which tend to omit this factor (Lobell and Asseng,

2017). As a result, estimates of climate impacts can vary widely. For example, one study

finds that the net welfare effect on agriculture is negative in the absence of CO2 fertilization

but negligible when fertilization is included (Moore et al., 2017a).4

Fifth, as many previous studies have suggested, the CO2 fertilization effect varies across

crop types and environmental conditions, raising the possibility that global inequalities could

be exacerbated, since the welfare effects of climate change on agriculture vary across regions

even before considering CO2 fertilization (Nath, 2025; Hultgren et al., 2025). The implication

is that yields in areas with few limiting conditions (e.g., nutrient deficiency)—which tend

to be higher to begin with—might grow more than in areas facing greater constraints. This

would widen the yield gap and alter the comparative advantage between countries (Costinot

et al., 2016). The importance of the CO2 fertilization effect was also emphasized in a recent

report on the economic costs of climate change in the US,5 which argued that US agriculture

could benefit from climate change (U.S. Department of Energy, 2025).6

4Recent research places the social cost of carbon (SCC) at $185 per ton CO2, with agricultural impacts
contributing $84 per ton—almost half the total—in one model. However, the uncertainty surrounding the
interactions between CO2, temperature, and crop yields produces a wide confidence interval for agriculture’s
contribution to the SCC, ranging from -$23 to $263 per ton CO2 (Rennert et al., 2022; Moore et al., 2017b).
Hultgren et al. (2025) estimates a partial SCC from agriculture between $1 and $49 per ton CO2, depending
on modeling assumptions.

5The report cited an earlier version of this paper. The principal change since that version is that we now
scale our estimates by the factor κ, as specified in equation (3).

6Some argue that CO2 fertilization is understood well enough to be directly included in global climate
models and impact projections (Toreti et al., 2020; Rezaei et al., 2023; Makowski et al., 2020).
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Finally, we emphasize that the strong fertilization effect we observe occurs under current

day CO2 levels and environmental conditions. The experimental evidence indicates a taper-

ing of the CO2 fertilization effect at higher concentrations, so any linear extrapolation of our

estimates into the future should be approached with caution. While previous studies have

projected weather changes into the future—justified in part by the observation that exist-

ing cross-sectional yield differences across climates resemble those identified from weather

variation in panel data (Schlenker and Roberts, 2009)—a similar approach is not warranted

for CO2. In other words, while we can currently observe hot locations (which provide a

useful counterfactual for warming’s impact on cooler locations), we do not have equivalent

real-world data for places with substantially higher CO2 concentrations.

Our paper proceeds as follows: Section 1 provides some background on the CO2 fertil-

ization effect and current estimates. Section 2 describes how we construct our CO2 anomaly

measure from the OCO-2 satellite data product, as well as the other datasets used in this

analysis. Section 3 describes our identification strategies and empirical approaches before

Section 4 presents our regression results along with robustness tests. The implications of

these results are discussed in Section 5 by exploring the scientific and policy implications of

our study before Section 6 concludes the paper.

1 Background on CO2 Fertilization

Plants respond directly to rising CO2 through photosynthesis and stomatal conductance,

which is the basis for the fertilization effect (Long et al., 2004; Ainsworth and Rogers,

2007). This response has been known for over 200 years. The role of CO2 in plant growth

was first demonstrated in 1796 by Swiss botanist Jean Senebier, and CO2 gas has long

been pumped into greenhouses to spur photosynthesis and increase the yield of horticultural

crops, especially during daytime hours, when photosynthesis reduces the amount of available

CO2 in the greenhouse. The fact that greenhouse operators pay to pump CO2 into their

chambers showcases that CO2 is an input that meaningfully enhances yields. Optimal levels

are reported to be in the range of 800-1000 ppm, more than twice the current atmospheric

CO2 concentrations of 420 ppm (Wang et al., 2022).

The fertilization process varies by crop type. For C3 crops like soybeans, wheat, and rice,

mesophyll cells containing RuBisCO are in direct contact with the air. RuBisCO is an enzyme

that fixes atmospheric CO2 during photosynthesis. Thus, higher ambient CO2 increases

photosynthetic CO2 uptake because RuBisCO is not CO2-saturated at today’s atmospheric
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levels (Long et al., 2004). For C4 crops like corn, on the other hand, RuBisCO is located

in bundle sheath cells, where CO2 levels are several times higher than atmospheric levels.

At this concentration, RuBisCO is CO2-saturated and a direct photosynthetic response to

changing atmospheric CO2 levels is limited. However, C4 yields respond indirectly to elevated

CO2, mainly through increased water use efficiency driven by reduced stomatal conductance

(Long et al., 2006). All things being equal, one would expect a larger CO2 fertilization effect

for wheat and soybeans than for corn.

Historical estimates of yield responses to CO2 came from controlled experiments in lab-

oratories and greenhouses, where CO2 levels can easily be controlled. There are clear ad-

vantages to such experiments, i.e., the ability to isolate change in one variable: CO2. This

approach, however, faces challenges of its own. The conditions in a well-controlled experi-

ment might not be indicative of real-world farming conditions. Large regional differences in

crop responses to CO2 reflect geographic variation in crop distribution and environmental

conditions (McGrath and Lobell, 2013). CO2 fertilization may be negligible in the presence

of limiting factors such as nutrient deficiency (Kimball et al., 2001; Hungate et al., 2003;

Reich et al., 2006; Ziska and Bunce, 2007). The effect is generally stronger under water

deficit conditions (Ottman et al., 2001; Leakey et al., 2006; Keenan et al., 2013; Morgan

et al., 2011), with the exception of soybeans (Gray et al., 2016) and possibly rice (Zheng

et al., 2020). Elevated CO2 may also increase high temperature stress due to stomatal closure

(Batts et al., 1997).

Differences in observed outcomes across field experiments suggest that the CO2 fertiliza-

tion effect crucially depends on other limiting factors and field conditions; yet, there is only

one major agriculture-focused CO2 enrichment experiment in the breadbasket of the US, the

Midwest: SOYFACE, which is located at the University of Illinois and focuses mainly on

soybeans. Whether this experiment station is representative of diverse real-world growing

conditions is doubtful.

There are other downsides of controlled field experiments: they can suffer from signifi-

cant measurement error due to the difficulty of controlling elevated CO2 concentrations in

turbulent air (Allen et al., 2020). In other words, the CO2 that is pumped into the experi-

mental plots might dissipate too quickly or lead to large pulses in CO2 rather than achieve

the permanent level of elevated CO2 the experiment is designed to simulate. Although CO2

enrichment experiments have generated important insights into the physiological channels

of the fertilization effect and its environmental interactions, they are limited in the extent

to which they reflect growing conditions on commercial farms at a large geographic scale, as
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well as the background process of gradually increasing ambient CO2.

We next turn to the range of estimates found in field and chamber experiments. An early

survey concluded that doubling ambient CO2 increased yields by 24-43% for C3 crops in the

context of full water and nutrient availability (Kimball, 1983), which aligned with USDA

reporting a 33% increase in yields for most crops under similar settings (Allen Jr et al.,

1996). Another study estimated that CO2 could have accounted for 15% US soybean yield

growth from 1972 to 1997 (Specht et al., 1999).

In recent decades, free-air concentration enrichment (FACE), a process involving a series

of pipes in fields that emit CO2, has allowed for larger-scale trials under more realistic crop-

growing conditions. A survey of over 25 years of FACE experiments concludes that increasing

CO2 from 353 to 550 ppm results in 19% higher C3 yields, on average, while C4 crops were

only affected under conditions of water scarcity (Kimball, 2016). FACE experiments tend to

show a lower fertilization effect than laboratory or greenhouse enclosure studies (Long et al.,

2006). However, recent work has pointed out potential measurement error, arguing that

FACE estimates may need to be adjusted upward by 18-50% to account for the effect of air

turbulence and short-term CO2 fluctuations, whereby crops in FACE experiments experience

a 10-times greater range in CO2 fluctuations compared to crops under natural conditions

(Allen et al., 2020, 2025).

Given the heterogeneous CO2 fertilization effect, which varies according to other limit-

ing factors, an outstanding question pertains to the external validity of these field experi-

ments—specifically, what the correct average effect is under real-world growing conditions.

This issue is especially pertinent because the geographic extent of FACE experiments is lim-

ited: there are only two long-standing agricultural FACE sites in the US—Arizona FACE in

Maricopa, AZ, and SOYFACE in Champaign, IL—with only the latter located in the tradi-

tional Midwestern breadbasket. This motivated us to use satellite data to measure the effect

under actual growing conditions. We note other recent work using OCO-2 satellite data to

estimate the impact of the 2019 Midwestern floods on CO2 uptake and crop productivity

(Yin et al., 2020).
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2 Data

Yield Data

Our dependent variables are county-level crop yields for corn, soybeans, and winter wheat

and were obtained from USDA’s National Agricultural Statistics Service. Note that the

USDA stopped reporting county-level wheat yields after 2023. See Figure A4 for the num-

ber of counties that report yields in our datasets.

CO2 Data

Our primary measure of atmospheric CO2 comes from two Orbiting Carbon Observatory

(OCO) products, OCO-2 and OCO-3. Launched in 2014, OCO-2 is NASA’s first satellite

specifically designed to measure atmospheric CO2 with the aim of better understanding

the geographic distribution of CO2 sources and sinks and their changes over time. We

downloaded the bias-corrected OCO-2 LITE Level 2 v11 product, specifically the dry-air

mole fraction of CO2 averaged over the atmospheric column (XCO2) in parts per million

(ppm). The satellite has a sun-synchronous orbit with an equatorial crossing time at 13:30

hours and a repeat cycle of 16 days. Each frame records eight adjacent footprints (∼1.29

× 2.25 km), yielding a swath ∼10 km wide. A typical daily output contains over 150,000

XCO2 global readings, including the latitude-longitude point. About 50% of readings have

quality flags, which we exclude from our analysis.

We also incorporate CO2 data from OCO-3, which was launched in 2019. This spectrom-

eter is similar to OCO-2 and produces comparable XCO2 retrievals, but was mounted on

the International Space Station (ISS). Because the ISS flies a precessing orbit between 52◦S

and 52◦N, OCO-3 samples a range of local times from dawn to dusk in contrast to the fixed

early afternoon sampling of OCO-2. As an added feature, OCO-3 has a two-axis pointing

mirror that allows for dense scans of areas of interest, such as cities and point sources.

In our baseline analysis, we pool readings from OCO-2 and OCO-3 to calculate the

annual crop-specific CO2 measure for each county and crop from 2015 to 2022. A detailed

description of the aggregation procedure is given in Appendix A.

Figure A3 displays the resulting number of observations per county in the dataset, i.e.,

where CO2 readings and annual crop yield data are available over the eight years from 2015

to 2022. Given the satellites’ high resolution, the relatively long revisit time (16-days for

OCO-2), and the size of the median US county (1,610 km2), CO2 readings are not obtained

for each US county in each year. Since we include both county fixed effects and county-

specific annual time trends, we need at least three degrees of freedom per county, i.e., we can
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only include counties with at least 3 observations in our regressions. The resulting average

number of counties with observations per year is 1196 for corn, 1064 for soybeans, and 747

for wheat.

Flux Tower Data

Our analysis uses satellite-derived measures of CO2 levels in the air column below it. A

common issue with remotely-sensed products is whether the data captured across the entire

column is indicative of the conditions found at the ground level, in our case, the crop canopy.

We examine this issue using in situ flux towers from the AmeriFlux network, which, impor-

tantly for us, measure CO2 levels at various heights of the tower. Appendix C outlines our

steps: we first compute year-to-year CO2 anomalies accounting for annual time trends. We

then calculate the standard deviation of these anomalies across flux towers and at different

instrument heights, which can be visualized in Figure C2.

We then contrast the average flux tower variability with OCO satellite variability at the

same locations, as reported in Table 1. The standard deviation calculation for OCO mirrors

the processing of the flux tower data. Specifically, we select all OCO readings within a 0.1◦

radius of each flux tower. We processed these readings following the steps in Appendix A,

which include averaging seasonally-adjusted values over April–September and accounting for

a location-specific fixed effect and location-specific linear time trend. Across flux towers with

overlapping data, the standard deviation at 2 m (closest to ground level) is about 4.5 times

larger, on average, than the variability in the OCO satellite column average.

Weather Data

For weather, we use a recalculated version of the fine-scale PRISM data at the same 2.5-

minute resolution, or 4.5 km by 4.5 km, that maintains the set of weather stations constant

over time. We follow the approach of Schlenker and Roberts (2009), which found that four

weather variables (two temperature, two precipitation) are good predictors of crop yields.

The two temperature variables are degree days 10-29◦C (moderate degree days) and degree

days above 29◦C (extreme degree days) for corn. The upper bound is slightly higher for

soybeans, resulting in degree days 10-30◦C and degree days above 30◦C. We use the same

degree day variables for winter wheat as for soybeans. In each regression, we also include a

quadratic of season-total precipitation. Precipitation and degree days are summed across the

six-month growing season from April to September and spatially averaged using the same

PRISM grid weights as for the CO2 data based on USDA’s Cropland Data Layer for each
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county.

Air Pollution Data

Air pollution data come from the EPA’s national network of pollution monitors. We use

hourly data from the EPA’s Pre-Generated Data Files7 for five major pollutants: Ozone O3

(44201), sulfur dioxide SO2 (42401), carbon monoxide CO (42101), nitrogen dioxide NO2

(42602), and particulate matter PM10 Mass (81102). We use the spatial interpolation ap-

proach of Boone et al. (2019) to get the pollution variables at the PRISM grid, and then

take the crop area-weighted average (again using the Cropland Data Layer, similar to what

was used for CO2 and weather) of all grids in a county across the six-month growing season

from April to September.

Additional Data

For the analysis of long-term trends in vegetation density, we use NOAA’s Advanced Very

High Resolution Radiometer (AVHRR) satellite measure of Normalized Difference Vegetation

Index (NDVI) at 0.05◦ resolution, or 5.6 km at the equator (Vermote et al., 2014). Accessed

through Google Earth Engine, the advantage of AVHRR relative to MODIS and other, more

recent, remote sensing products is its three-decade time span encompassing growing seasons

from 1982 to 2013.

In a sensitivity check in Appendix B we focus on innovations in the annual time series of

growing season CO2 levels as recorded at Mauna Loa Observatory, Hawaii.

There are other potential CO2 data sources: the OCO-2 GEOS Level 3 daily product,

which gap-fills observations in time and space using short transport simulations from the

GEOS atmospheric model (Weir and Ott, 2022) and is utilized for the monthly visualiza-

tion of CO2 anomalies in Figure D1. Another is NOAA’s CarbonTracker, which is based

on air sample measurements across 460 global sites and an inverse model of atmospheric

CO2 that adjusts surface-level uptake and releases to align with observational constraints

(Jacobson et al., 2020). We prefer the OCO-2 and OCO-3 Level 2 satellite products due

to their minimal processing, thus avoiding endogeneity concerns arising from the modeling

assumptions behind the OCO-2 Level 3 and CarbonTracker products in relation to weather

and vegetation dynamics, or ground-level confounders such as local pollution and economic

activity. Further, reanalysis products may suffer from the promulgation of interpolation

errors (Parker, 2016).8

7Available https://aqs.epa.gov/aqsweb/airdata/download_files.html
8Nevertheless, we replicate our main analysis using CarbonTracker data and find a statistically significant
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3 Model and Empirical Strategy

To estimate the CO2 fertilization effect across US croplands, we first need to link OCO

satellite data with US county-level yield data. The latter is observed once per year and we

hence need to aggregate the CO2 exposure to the annual level. There are several identification

challenges to address. While gaseous CO2 ultimately diffuses across space and becomes

uniformly distributed in the atmosphere,9 this process occurs over weeks to months and

is affected by specific emission events, local CO2 sources and sinks, as well as wind and

weather dynamics (Hakkarainen et al., 2016; Massen and Beck, 2011). Spatial variation in

CO2 exposure at any given time is driven by such disturbances. Figure D1 visualizes this

variation across the US during each month of the growing season in an example year, 2019.

Taking Nebraska as an example, we see that in April, CO2 exposure is low compared to

the US average, high in May, lower in June, neutral in July, high in August, and lower in

September.

Our empirical approach links local variation (i.e., anomalies) in CO2 around its location-

specific trend to fluctuations in crop yields. We combine the CO2 and yield data at the

county-year level with weather outcomes for the areas where corn, soybeans, and winter

wheat are grown within each county, respectively. All models use CO2 anomalies in parts

per million (ppm), adjusted for seasonality and annual trends as described in Appendix A,

and the natural logarithm of county-level yields as the outcome variable, unless otherwise

noted.

Focusing on the US, a top global agricultural producer, our primary analysis encompasses

counties east of the 100° meridian for corn and soybeans—the same set of counties used in

Schlenker and Roberts (2009). Because winter wheat is grown farther west, we use all states

east of the Rocky Mountains as the baseline for wheat. These areas account for the vast

majority of US row crop production. As a sensitivity check, we conduct our analysis on the

entire continental US and other subsamples, as visualized in Figure A3.

Panel model

The setup of our panel model is similar to empirical specifications that link annual crop

yields to weather and pollution outcomes. Specifically, we regress log yields on CO2, while

CO2 fertilization effect at the county level in the US (available upon request). They are larger for corn than
what we find in the analysis using satellite data, and smaller for wheat.

9The spatial diffusion of CO2 is what makes climate change a global public goods problem. It also allows
scientists to rely on singular sources of long-term CO2 measurements, such as the Mauna Loa Observatory,
to estimate global CO2 levels, which are then incorporated into global process-based models.
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controlling for the four weather variables that were found to best predict corn and soybean

yields (Schlenker and Roberts, 2009), as well as criteria air pollutants (CO, NO2, O3, PM10,

SO2). The panel model includes county fixed effects to account for differences in average

yields across counties driven by factors such as soil quality and average climate, as well as

county-specific time trends to account for local trends in yields—helping to guard against

spurious correlation with trending variables such as CO2. Figure 2 illustrates the variation

leveraged in the panel model, highlighting the correlation in Macoupin County, Illinois, which

is downwind from St. Louis. The panel model specification is:

yit = αi0 + αi1t+ β cit + γWit + δPit + εit (1)

where yit is the log crop yield in county i and year t; αi0 is a county fixed effect; αi1 is a

county-specific time trend; β measures the observed CO2 fertilization effect from the CO2

anomaly cit in county i in year t;10 and γ is a vector of coefficients for weather variables

Wit (which includes two temperature degree day variables, precipitation, and precipitation

squared, all summed over the six-month growing season, fixed as April–September for all

crops); δ is a vector of coefficients for the five criteria air pollutants Pit (CO, NO2, O3,

PM10, SO2), calculated as daily means averaged over the growing season April-September.

The error terms, εit, are clustered at the state level to account for spatial correlation and

common state-level policy.

The effect of year-to-year weather fluctuations on annual yield outcomes are clearly visible

in Figure 1, where, for example, there is a significant reduction in national corn yields in

2012, when the Corn Belt experienced a major extreme heat event.

Identification remains challenged by several factors. There is the possibility that local

drivers of CO2 anomalies could also affect yields. For example, intense agricultural activity,

fossil fuel production, or nearby urbanization might correlate with both higher CO2 and

higher yields, potentially biasing estimates upward. However, we expect downward biases to

dominate for two reasons: first, reverse causality implies that higher yields (and thus higher

photosynthetic activity) reduce local atmospheric CO2, creating a negative correlation; sec-

ond, CO2 anomalies often co-vary with yield-damaging pollutants, further contributing to a

downward bias in our estimates. While we control for confounders where possible, we next

adopt an instrumental variables approach that uses CO2 anomalies in upwind counties to

10The Frisch–Waugh–Lovell theorem implies that including αi0 and αi1 is equivalent to first regressing
both the dependent and all independent variables on αi0 and αi1, and then using the resulting residuals (i.e.,
anomalies around a trend) in the regression equation.
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ensure that local CO2 levels are not driven by local conditions. Given the likely net down-

ward bias, we would expect the estimates to increase once we employ our IV setup.

Wind instrument

Wind direction is often employed in health economics to obtain exogenous variation in pol-

lution exposure (Schlenker and Walker, 2016; Deryugina et al., 2019). In the context of our

study, CO2 levels and fluxes are related to the wind direction at localized CO2 emission

sources (Coutts et al., 2007; Massen and Beck, 2011; Garćıa et al., 2012; Xueref-Remy et al.,

2018). And while there are non-wind drivers of CO2 anomalies, like power plants, vegeta-

tion, and geysers, these features vary far less over time and space than the relatively random

atmospheric phenomena that influence wind patterns.

One limitation of this instrument is that wind-driven CO2 exposure could also be corre-

lated with other co-occurring pollutants. We try to address this by explicitly controlling for

the five criteria air pollutants. In any case, given the negative effect of pollutants like ozone

on crop yield (Boone et al., 2019), this would likely bias our estimates downward.

Figure 3 shows our approach to deriving a wind instrument that follows Braun and

Schlenker (2023) by pairing a county with the neighbor that is most frequently upwind

during the growing season April-September. We outline the exact procedure in Appendix

A.2.

The strength of the upwind relationship is an important consideration. Figure 4 displays

the number of hours that the “upwind” county is actually upwind in a given year for each

crop. A lower number of hours indicates that wind direction varies across many upwind

counties over the growing season. For example, a value of 1,000 hours means that the county

most frequently upwind is in fact upwind 23% of the time.11 In our IV regression, we vary

the minimum number of upwind hours required for a county to be considered “upwind” and

thus included in our sample. Summary statistics relating to the IV setup are presented in

Table A1. The wind IV implies the following first stage:

cit = ai0 + ai1t+ b c
[upwind]
it + ηWit + θPit + eit (2a)

yit = αi0 + αi1t+ β cit + γWit + δPit + εit (2b)

where items are defined as in equation (1) for the panel model, except that β measures the

observed CO2 fertilization effect from the instrumented CO2 value (cit), and c
[upwind]
it is the

1123% equals 1,000 divided by the 4,392 hours in the growing season.
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instrument using the CO2 value from the county that is most frequently upwind in that year

based on the hourly wind data. Note that the upwind county can change year-to-year.

Variation in CO2 Anomalies in the Crop Canopy versus Satellites

Before we present the results of our empirical analysis linking county-level crop yields in

commercially-farmed fields in the US to satellite measurements of CO2, we discuss a scaling

issue to adjust for the different variances of CO2 anomalies in the crop canopy compared to

what is measured by satellites in the entire air column.

CO2 levels vary not only in space but also with altitude. Our remotely-sensed data come

from satellites that measure CO2 across the entire atmospheric column, i.e., the air mass

between the satellite and the ground. What matters for plants, however, is the variation in

CO2 within the canopy at ground level, not at higher altitudes.

Concentrations across the air column are related through diffusion processes. Temporary

CO2 disturbances at ground level due to ground sources dissipate with altitude. As a result,

the variation observed in the satellite data is likely smaller than the actual ground-level

variation (Keppel-Aleks et al., 2011; Broquet et al., 2018), which can lead to an upward bias

in the estimated CO2 fertilization coefficient.

An example may illustrate this point: assume that CO2 anomalies in the crop canopy

have a standard deviation of σfluxTower =4.5 ppm, an amount which boosts crop yields by

1%. The CO2 fertilization effect would then be 1%
4.5 ppm

= 0.22 percent per ppm. However,

ground-level shocks dissipate with altitude. For illustrative purposes, suppose the 4.5 ppm

anomaly at ground level is reduced to an additional 1.5 ppm at 100 meters and declines

exponentially at higher altitudes. Assume the variation detected by the satellite, averaged

across altitudes, is thus only σOCO =1 ppm for the original 4.5 ppm ground-level anomaly.

Using the uncorrected satellite reading would upwardly bias the CO2 fertilization effect to
1%

1 ppm
= 1 percent per ppm. To address this, we scale (multiply) by the ratio of the variation

in CO2 observed across the atmospheric column to the variation at ground level, which in

this case would be by multiplying by the factor 1
4.5

= 2
9
.12 More specially, the scaling factor

is:

κ =
σOCO

σfluxTower

(3)

Figure C2 shows that the standard deviation—i.e., the variability—of CO2 anomalies

indeed decreases with altitude using data from AmeriFlux towers, as described in the Data

12The general concern about how well remotely-sensed measurements capture ground-level conditions is
increasingly addressed in the economics literature; see, e.g., Fowlie et al. (2019); Proctor et al. (2023).
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Section and Appendix C. The results hold whether we use all towers or only those over

cropland areas. We derive the standard deviation in the crop canopy as the predicted value

at a height of 2 meters, which roughly matches the average height of weather stations that

measure temperature.

We next compute the variation in CO2 satellite readings at the locations of the flux

towers.13 Table 1 presents results for all flux towers (first two columns) and just those

located in cropland areas (last two columns). Since our empirical analysis focuses on US

crop yields, we provide results for both the entire world and for towers located only in the

United States. Panel A displays the variability observed in the remotely-sensed satellite

data, while Panel B shows the results using flux tower data. The different sub-panels vary

the selection of locations, for example, including (i) any location where a tower ever reported

data; (ii) restricting to only the years used in our analysis, 2015–2022; or (iii) restricting to

locations present in both datasets.

Two findings emerge: first, the standard deviation in our county-level satellite measure

of CO2, σOCO, ranges from 1.01 for wheat to 1.16 for soybeans, matching the value observed

in Panel A2 around flux tower locations. In other words, the satellite-measured variation

at flux tower sites is representative of the satellite-measured variation across US counties

more generally. Second, we obtain an average σfluxTower of 4.5 when including all global flux

towers or cropland towers. Subsetting the data to include only US towers, or restricting to

a subset of years, reduces the number of observations and yields a noisier signal, which can

sometimes be larger or smaller, but on average remains close to 4.5.

When taking the ratio of these standard deviations (κ = σOCO/σfluxTower), we obtain a

value of approximately 1/4.5 (see Table 1). This implies that the variation at ground level

is about 4.5 times larger than what is observed in the atmospheric column. Since the OCO

satellite detects a dampened signal, the raw regression coefficients will be inflated by this

same factor. Thus, going forward we scale all our regression results by multiplying by κ

(equivalent to dividing by 4.5) to recover the crop canopy level effect of CO2 fertilization.

13The calculation of σOCO mirrors that of σfluxTower. Specifically, we select all OCO readings within a 0.1◦

radius of each flux tower, seasonally adjusted readings following the steps in Appendix A, average them
over April–September of each year, and then account for linear time trends.
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4 Results

Panel Regression

The results of our panel model testing the relationship between CO2 anomalies and county-

level crop yields in the US are presented in Table 2. We present three specifications: column

(a) includes only county fixed effects and county-specific time trends, column (b) adds the

four weather variables (Wit in equation (1)), and column (c) adds five criteria air pollutants

(Pit in equation (1)). Our preferred model specification is the full model in column (c);

however, we find a statistically significant CO2 fertilization effect in all specifications for all

three crops.

When moving from column (a) to (b), the CO2 fertilization effect increases for all three

crops. This finding is consistent with our hypothesis that omitting weather variables will

downwardly bias the results, as weather influences yields, which in turn affects photosynthesis

and CO2 levels. This creates a negative feedback loop between yields and CO2 levels, as

higher yields imply lower CO2 concentrations. The effect is more pronounced for corn and

soybeans, as our weather measures are tailored to those crops, while the effects of weather

on wheat yields vary across seasons in more complex ways (Tack et al., 2015).14

Finally, when also controlling for pollution in column (c), the CO2 fertilization effect

increases very slightly for corn and soybeans, and decreases for wheat. We find that a 1 ppm

increase in CO2 equates to yield increases for corn, soybeans, and winter wheat of 0.12%,

0.13%, and 0.19%, respectively. The fertilization effect is smaller for corn (a C4 crop) and

greater for soybeans and winter wheat (C3 crops), consistent with findings from controlled

experiments. The weather controls in columns (b) and (c) confirm that moderate degree

days are generally yield-enhancing, while extreme heat (measured by extreme degree days) is

highly detrimental. Similarly, the quadratic term for precipitation is hill-shaped, suggesting

that a moderate amount of precipitation is generally optimal. Other pollutants besides CO2

tend to reduce yields (i.e., they have negative and sometimes significant coefficients).

These results do not appear to be driven by outliers: Figure A5 plots the anomalies

for CO2 anomalies after controlling for all covariates in the preferred panel model shown in

columns (c) of Table 2.15 Note that we observe both positive and negative anomalies within

14We experimented with more disaggregated weather measures for wheat yields but did not find significant
results. This is likely due to the fact that Tack et al. (2015) use data from field trials that allow for better
matching than what is possible with county-level aggregates.

15By the Frisch–Waugh–Lovell theorem, our panel regression is equivalent to first regressing both the log
of yields and our satellite measure of CO2 on all covariates, and then regressing the residual from the former
on the residual from the latter. The figure displays the variation in these latter residuals, i.e., the CO2
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each year across counties, and only a few outliers. This ensures that our results are not

driven by common year-to-year macroeconomic shocks or by individual outliers.

Wind IV

Table 3 presents the results from the IV model in which CO2 levels are instrumented by

those of the upstream neighbor. All columns report the full model specification, including

weather and pollution controls—that is, the same as in column (c) of Table 2. While our

panel model included all counties with at least three CO2 and yield observations, the wind

IV approach further requires at least three observations in which both the county itself and

its upwind neighbor have CO2 measurements available.16 This requirement further reduces

the sample size. To account for this, the table first replicates the panel regression results

for the restricted sample in the top row, columns (b), (c), and (d), and then reports the IV

results for the same sample in the bottom row. This approach ensures that any differences

can be attributed to the IV strategy rather than changes in sample composition.

As described in the modeling section, any feedback mechanism—whereby higher yields

remove CO2 from the atmosphere through increased photosynthesis—would induce a down-

ward bias in our estimates, manifesting as a negative correlation. We would thus expect the

coefficient to increase when we instrument with upwind CO2 levels, which is indeed what

we observe. Compared to the OLS panel estimates, the coefficients for corn, soybeans, and

winter wheat are larger by factors of 1.4, 1.7, and 2.7, respectively, when averaged across

columns (b), (c), and (d). These relative ratios, reported in the second-to-last row, are

robust to varying the stringency of the upwind county definition—that is, whether we re-

quire the most frequent upwind county to be at least 0, 1,000, or 1,500 hours upwind during

the growing season. Further restricting our dataset to counties with more consistent wind

patterns—where the upwind county is even more frequently the same—shifts the sample

towards the drier western regions of the US, particularly the Great Plains, where a strong

north–south wind pattern prevails. As a result, the sample becomes less representative of

average conditions across the US. Our preferred specification, columns (c), uses a 1,000 hour

anomalies used for identification.
16Recall that the CO2 exposure of the upwind county is measured over the entire county area and not just

cropland area; i.e., the measure will exist even if the county is urban, as long as there are satellite readings.
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cutoff to balance these tradeoffs.17

Sensitivity Checks

We perform a number of sensitivity checks that produce largely similar results. First, we

run our analyses across different US geographies, as visualized by the colored regions in

Figure A3. Our primary analysis encompasses counties east of the 100° meridian (excluding

Florida) for corn and soybeans—an area accounting for the vast majority of US production of

these crops—as well as counties east of the Rocky Mountains for wheat. Figure A6 presents

results for samples comprising the entire contiguous US, counties east of the Rockies, and

counties east of the 100° meridian where row crop agriculture is primarily rainfed. The

results are again fairly stable, mitigating concerns that the observed relationship is driven

by regional dynamics such as irrigation. Note that the color coding of geographic subsets in

this figure matches the map in Figure A3.

The bottom of Figure A6 displays the fraction of US production covered by our analysis,

based on the sample of counties with at least one OCO-satellite reading; in all cases our

analysis encompasses over half of total US production, with the exception of wheat grown

east of the 100° meridian—but this fraction increases when considering the contiguous US.

The wind IV approach reduces the sample size further by requiring not only an OCO-satellite

reading over a county, but also a reading over its upwind neighbor (used in the first-stage

regression 2a).18

Second, we vary the time trends to allow for the possibility that the upward-trending

relationship between CO2 and crop yields may occur at a geographic level different from

the county, for example, if state-level policies drive both energy and agricultural production.

Figure A7 plots the CO2 coefficient for all the panel and IV models, alternately using no

17By focusing on areas with dominant wind directions, we also limit the number of times the upwind
county changes from year to year. Identification therefore relies on two sources of variation: (i) temporal
fluctuations in the CO2 anomaly of a stable upwind neighbor, and (ii) changes in the identity of the upwind
neighbor. As Table A1 shows, the upwind neighbor remains constant for the majority of observations, and
thus the temporal channel is the primary source of variation.

18An alternative way to address concerns about missing data is to use a reanalysis product that fills
in missing observations. We replicate our main analysis using CO2 from NOAA’s CarbonTracker release
CT2019B (Jacobson et al., 2020), selecting the measurement level closest to the ground, which corresponds
to 25 m above the Earth’s surface. The data are available for the years 2000–2018. We consistently find
significant CO2 fertilization effects at the county-year level (results are available upon request), although the
effects for corn become larger. Since interpolated reanalysis data products like CarbonTracker involve many
modeling assumptions, we prefer our less processed OCO satellite measurements—especially in relation to our
instrumental variables approach where spatially-interpolated data may mechanically produce a significant
first stage.
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time trend, a common national trend, state-level trends, and county-level trends. All point

estimates are positive. While there is some variation in the panel or IV setup when using a

common national time trend or omitting trends altogether, the granularity of the time trend

(state-specific versus county-specific) does not have a substantial effect.

Third, we vary the end year used in our analysis. USDA stopped reporting county-level

wheat yields after 2023, in part due to a continuous decline in the response rate to USDA-

NASS surveys (Johansson and Coble, 2017). There was even consideration of ending all

county-level yield reporting in 2024. The year 2023 saw significant wildfire smoke over the

central United States,19 which led to substantial CO2 and particulate matter emissions—

the latter being far outside the normal range, risking bias in our pollution control. As a

result, we end our baseline analysis in 2022. Figure A8 varies the last year between 2020 and

2024. The results are fairly stable for the first three years—i.e., we get very similar results

whether we end the analysis in 2020, 2021, or 2022, but estimates start to become smaller in

magnitude and less significant if we include data from 2023 or 2024, coinciding with declining

response rate to USDA-NASS surveys, and hence fewer counties reporting yields as shown

in Figure A4. Panel estimates remain significant for corn and soybeans, while the results

from the wind IV remain significant for wheat.

Fourth, our baseline analysis uses a longitudinal setting, observing around a thousand

counties each year. Since there is a large amount of spatial correlation—a fact our wind

IV specifically relies on since CO2 levels are in part determined by upwind CO2 levels—we

supplement our panel setting with a national-level time series analysis in Appendix B, where

we rely on one observation per year. We follow the approach of Bilal and Känzig (2024) and

construct CO2 innovations from an autoregressive process, which we use to explain aggregate

crop yields in the US. A benefit of this approach is that we can go back in time before the 2015

launch of the OCO-2 satellite: we use CO2 measurements from the Mauna Loa Observatory

in Hawaii, which started year-round reporting in 1958, giving us a sample from 1958–2024 (67

years). But going from the county level to national level results in much fewer observations,

and the confidence intervals become larger. They are highly significant for wheat, marginally

significant for corn, and not significant for soybeans. However, in the case of soybeans, the

results are also not significantly different from our baseline estimates. We find it reassuring

that this entirely different approach—using in situ rather than remotely-sensed data—also

points toward sizable CO2 fertilization effects.

Fifth, we vary the model specification to test for non-linear effects. Our baseline model

19For example, see Figures 2 and 3 in Lee and Jaffe (2024).
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links log yields to CO2 levels, assuming that a 1 ppm change in CO2 has the same relative

(percent) effect on yields. Figure A9 compares the effect of the main specification (log-

linear) to other functional form combinations: linear-linear (constant absolute effect), log-

log (constant elasticity), and linear-log. To make the results comparable, we do not show

the coefficients directly; instead, we present the effect of a 1 ppm increase in CO2 on corn

yields in each case, along with the 90% confidence interval. The figure displays results for

both the panel regression and the wind IV. The results are similar, which is not surprising

given that we have only eight years of data, during which CO2 varies by about 20 ppm;

over such a limited range, all specifications provide local linear approximations, making it

difficult to detect non-linear relationships. It is important to note, however, that in our

thought exercise in the next section—where we extend the coefficient backward to 1940 to

simulate earlier CO2 effects—the functional form makes a large difference, as it would when

projecting several decades into the future.

5 Discussion

Global ambient CO2 levels have increased by 2 to 2.5 ppm per year on average since 2000.

Our preferred IV models estimate yield responses between 0.2% and 0.6% per 1 ppm CO2.

These estimates, which are at the higher end of the range found in the literature, imply that

CO2 fertilization was a major contributor to recent crop productivity in the US. That is,

yields may have increased 0.5% to 1.5% per year due to CO2 in recent years, fully accounting

for observed yield increases in the case of wheat.

Looking further back in time, Figure 1 shows that since 1940, corn yields have increased

by 500%, while soybean and winter wheat yields have increased by 200%. This was during

a time when ambient CO2 levels rose by about 100 ppm. We can conduct a back-of-the-

envelope counterfactual in which we hold CO2 constant at 1940 levels while everything else

remains constant. We assume that the CO2 fertilization effect estimated using 2015–2022

data can be applied from 1940 to the present. Admittedly, this is a strong assumption, as

previous studies (see Section 1) have shown that the CO2 fertilization effect may diminish

under stressors such as nutrient or water deficiencies. If crops suffered from such limiting

factors, the CO2 fertilization effect might have been weaker. Moreover, the climate in recent

decades would not be the same if atmospheric CO2 had remained at 1940 levels. Nevertheless,

we find it useful to run this thought experiment to highlight the possible magnitude of the

CO2 fertilization effect. Figure 5 shows the results, implying that CO2 fertilization may be
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responsible for a substantial share of past productivity growth, especially for wheat.

How could this have occurred? One source of insight is the period before 1940, when crop

yields were largely stagnant despite rapid industrialization and economic growth. Olmstead

and Rhode (2002) argue that from 1800 to 1940, “wheat production witnessed wholesale

changes in varieties and cultural practices. . . without these changes, vast expanses of the

wheat belt could not have sustained commercial production and yields everywhere would

have plummeted due to the increasing severity of insects, diseases, and weeds.” What if

this same dynamic persisted after 1940, such that agricultural innovation mainly served to

protect crops against loss rather than to increase yields? One-third of all crop seed patents

are related to crop pests or pathogens (Moscona and Sastry, 2025), and many agricultural

technologies are focused on crop resilience to extreme weather (e.g., flood and drought tol-

erance). Furthermore, only a small share of yield gains since 2005 can be attributed to

genetic improvements (Rizzo et al., 2022). Taken together, if CO2 had remained static,

wheat yields could have conceivably grown only modestly over time—especially given that

extreme weather and pest pressures have increased with globalization and climate change

(Bebber et al., 2014; Deutsch et al., 2018).

Notwithstanding these explanatory factors, how do these results compare with existing

CO2 fertilization estimates? Most FACE experiments raise CO2 levels by 190 to 200 ppm over

a 350 ppm baseline, typically showing yield responses of 18–19% (Kimball, 2016; Ainsworth

and Long, 2021), or approximately 0.1% per ppm. Our estimates of 0.2–0.6% per ppm are

thus 2 to 6 times larger. However, the average effect from the literature conceals significant

variation across crops, locations, and growing conditions. For example, a FACE study of

dryland wheat in Australia showed that a 180 ppm increase in CO2 was associated with yield

increases of 24% and 53% in two sites, with some yield responses reaching 79% (Fitzgerald

et al., 2016). The latter estimate, equivalent to 0.44% per ppm, is closer to what we find

for wheat. Similarly, under varying environmental conditions, yield responses have been

observed above 35% for corn, rice, cotton, as well as various leguminous and root crops

(Kimball, 2016; Ainsworth and Long, 2021). Given such variation in FACE results and the

complexities of environmental interactions, it is difficult to benchmark our results precisely.

FACE experiments are likely to underestimate the effect of CO2 fertilization due to

measurement error related to the difficulty of maintaining elevated gas concentrations in

open-air settings. FACE experiments regulate CO2 through a series of pipes that inject the

gas at high velocity in response to sensor feedback. CO2 concentrations in FACE experiments

fluctuate widely due to air turbulence, varying 10 times more than what plants experience
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under natural conditions (Kimball, 2016; Allen et al., 2020). When elevated CO2 is supplied

in cycles or pulses, crop responses are lower than if CO2 is supplied more steadily (Bunce,

2012).20 Just as CO2 can be better controlled in chamber studies than in FACE experiments,

our study’s smaller absolute variation in ambient CO2 would also imply less fluctuation. A

recent review of FACE experiments by USDA researchers found that they underestimate

yield responses due to CO2 fluctuations by 18–50% (Allen et al., 2020, 2025). Our estimates

point in the same direction.

It is worth noting that there are only two long-standing FACE experiments in the US that

focus on agriculture: the Arizona FACE in Maricopa, AZ, and SOYFACE at the University of

Illinois in Champaign, IL (Ainsworth and Long, 2021). Other FACE experiments study non-

cropland ecosystems like forests, grasslands, and tundra, as well as crops in other countries.

Only SOYFACE in Illinois has the potential to approximate agricultural conditions in the

Midwest, where most US crop production occurs—though SOYFACE’s primary focus on

soybeans limits what can be said about other crops. Moreover, SOYFACE consists of 16

octagonal experimental sites, each 20 m wide (283 m2), covering over 4,500 m2 in total, or

slightly more than one acre. For comparison, the average farm in the US is 445 acres (USDA

ERS), which raises questions about the generalizability of the results—especially considering

the large variation in crop yields across counties and even within fields (Lobell and Azzari,

2017).

Therefore, it is possible that FACE experiments do not reflect the growing conditions

and farming practices of the major growing regions. Given the well-documented interactions

between CO2 and environmental conditions,21 CO2 fertilization effects could vary between

FACE experiments and commercial agricultural operations in response to differing fertiliza-

tion and input regimes, soil and water management practices, and local air pollution and

climate anomalies across regions—as well as conditions that vary over time. Our experimen-

tal design, utilizing OCO satellite measurements of ambient CO2, allows us to account for

this variation across thousands of US counties and across multiple years of observations.

Nevertheless, we offer another potential explanation for why our estimated CO2 fertiliza-

tion effects are higher than those generally found in the literature. Our study focuses only

20Short-term fluctuations in CO2 can affect photosynthetic activity, in part because leaves have little
storage capacity for gaseous CO2 and the half-life of CO2 in the gas space is short, e.g., 0.20 seconds for
wheat (Hendrey et al., 1997).

21Including nutrient availability (Kimball et al., 2001; Hungate et al., 2003; Reich et al., 2006; Ziska and
Bunce, 2007), water availability (Ottman et al., 2001; Leakey et al., 2006; Keenan et al., 2013; Morgan et al.,
2011; Zheng et al., 2020; Gray et al., 2016), and combined nutrient-water-CO2 interactions (Markelz et al.,
2011).
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on small increases in CO2, and it may be inappropriate to extrapolate the fertilization effect

to much higher CO2 concentrations if there are diminishing returns. Most studies (includ-

ing FACE, open-top chamber, and greenhouse experiments) involve large increases in CO2

(200 ppm or more) over ambient levels. In contrast, our analysis relies on variation in the

range of 20 ppm during the OCO timeline from 2015 to 2022. Such marginal increases could

produce relatively higher fertilization effects, as the photosynthetic response curve of plants

to elevated CO2 is diminishing. For example, the rate of CO2 assimilation in C4 plants is

approaching saturation at current global CO2 concentrations (Lambers and Oliveira, 2019).

Our results may reflect higher yield responses around current ambient CO2 levels, which

occur on a steeper part of the response curve. This same dynamic could explain part of the

observed decline in the global carbon fertilization effect (Wang et al., 2020).

More generally, a strong positive relationship between CO2 and yields should not be

surprising. CO2 is a purchased input in many agricultural settings. As mentioned earlier,

the gas has long been pumped into greenhouses to spur photosynthesis and increase the yield

of horticultural crops. Optimal CO2 concentrations of 900 ppm have been suggested, which

is more than twice current ambient levels (Mortensen, 1987). It has also been argued that

rising CO2 levels were a necessary condition for the emergence of agriculture in the Holocene

(Richerson et al., 2001).

An alternative way to contextualize our results is to examine trends in non-cropland

vegetation in the US. As mentioned earlier, studies have documented a global greening trend

associated with CO2 fertilization (Zhu et al., 2016). In a similar vein, Figure D2 analyzes

trends in NDVI—a measure of vegetative density—over 32 years from 1982 to 2013 using

AVHRR satellite data. We find that NDVI increases by 0.48% per year, on average, across

the entire US. Focusing on forested land, which is still subject to CO2 fertilization but less

actively managed than cropland, NDVI growth is 0.64% per year. This is in line with our

estimates of the crop yield response of 0.2–0.6% per CO2 ppm, or 0.5–1.5% per year.22

We can further restrict the sample to isolated and protected forests like the Adirondacks

or the Ozarks to limit ourselves to locations largely untouched by agricultural innovation.

The bottom panel shows that several of these locations experienced an even higher greening

trend, closer to 1% per year. Acknowledging that vegetation indices are not the same as

22Caution is warranted when comparing NDVI and crop yields, which are correlated but inherently different
measures. Forest growth can also reflect the aggregate impact of CO2 and factors like forest succession and
climate change. Nevertheless, the higher forestland average aligns with evidence from FACE experiments
showing trees to be more responsive than herbaceous species (e.g., row crops) to elevated CO2 (Ainsworth
and Long, 2005).
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crop yields, this analysis suggests that CO2 fertilization likely played a material role in

greening forestlands near US croplands in a way that cannot be attributed to technology-

driven productivity drivers, and on an order of magnitude similar to what we find in managed

croplands.

6 Conclusion

We find a significant and robust CO2 fertilization effect by linking satellite-measured CO2

fluctuations to yield fluctuations of corn, soybeans, and winter wheat from 2015 to 2022.

Our study spans more than half of commercially farmed production for these crops in the

US and offers a test of whether the fertilization effects found in controlled experiments can

be verified under real-world growing conditions. While panel models linking weather and

yield anomalies have shown the possible detrimental effect of extreme heat on yield, the same

setup can be used to show that localized CO2 anomalies drive significant yield changes—a

finding that is confirmed when relying on upwind CO2 levels as an instrumental variable.

Our results suggest that CO2 is an important driver of past agricultural productivity growth.

Our paper illustrates how satellite-based measures of CO2 can be useful in complementing

FACE field experiments, especially in the context of ensuring external validity of estimates for

the effect of CO2 on agriculture and ecosystem functioning at large scales. The approach can

be extended to study real-world crop responses globally. Our results also merit consideration

in the context of climate models used to estimate climate change impacts and the social cost

of carbon, though we caution against extrapolating the fertilization effect far into the future,

which requires further assumptions about the functional form, the extent of diminishing

returns to additional CO2, and ongoing uncertainty about future environmental interactions.

Relatedly, our analysis is focused on the US, and it is possible that fertilization effects

will differ greatly across countries based on prevailing crops and environmental conditions

(McGrath and Lobell, 2013), especially as climate change alters the coupling of temperature,

soil moisture, and precipitation that determine crop yields (Proctor et al., 2022). Under

future climate change, such heterogeneity could exacerbate spatial inequalities (Cruz and

Rossi-Hansberg, 2024) and alter the comparative advantage of different crops and regions

(Costinot et al., 2016; Nath, 2025), with potentially large welfare effects that are worth

investigating. While recent research has shown that mechanization significantly increases

productivity and welfare (Caunedo and Kala, 2022), as do well-functioning credit markets

(Wüpper et al., 2023), we argue that environmental factors like CO2 also play a crucial role.
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We would like to close by stressing that the overall effect of climate change will consist of

the positive effect of CO2 fertilization net of the effect of extreme heat, which is highly signif-

icant in our regression tables and predicted to rise with ongoing climate change. Moreover,

CO2-driven yield increases may be offset by effects on food nutrition and quality (Loladze,

2002; Taub and Allen, 2008; Myers et al., 2014). Nevertheless, this paper demonstrates that

marginal increases in CO2 have a strong countervailing fertilization effect, and that such ef-

fects may account for a material proportion of historical productivity improvements in wheat

yields.

25



References

Ainsworth, Elizabeth A, and Stephen P Long. 2005. “What have we learned from

15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of

photosynthesis, canopy properties and plant production to rising CO2.” New phytologist

165 (2): 351–372.

Ainsworth, Elizabeth A., and Stephen P. Long. 2021. “30 years of free-air carbon

dioxide enrichment (FACE): What have we learned about future crop productivity and its

potential for adaptation?” Global Change Biology 27 (1): 27–49.

Ainsworth, Elizabeth A., and Alistair Rogers. 2007. “The response of photosynthesis

and stomatal conductance to rising CO2: mechanisms and environmental interactions.”

Plant, Cell & Environment 30 (3): 258–270.

Allen Jr, L Hartwell, Jeff T Baker, and Ken J Boote. 1996. “The CO2 fertiliza-

tion effect: higher carbohydrate production and retention as biomass and seed yield.”

Global climate change and agricultural production. Direct and indirect effects of changing

hydrological, pedological and plant physiological processes.

Allen, Leon H, Bruce A Kimball, James A Bunce, Kenneth J Boote, and Jef-

frey W White. 2025. “Metrics of plant response to CO2 Enrichment.” Agricultural and

Forest Meteorology 370 110557.

Allen, LH, BA Kimball, JA Bunce, M Yoshimoto, Y Harazono, JT Baker,

KJ Boote, and JW White. 2020. “Fluctuations of CO2 in Free-Air CO2 Enrichment

(FACE) depress plant photosynthesis, growth, and yield.” Agricultural and Forest Meteo-

rology 284 107899.

Batts, G.R., J.I.L. Morison, R.H. Ellis, P. Hadley, and T.R. Wheeler. 1997. “Ef-

fects of CO2 and temperature on growth and yield of crops of winter wheat over four

seasons.” European Journal of Agronomy 7 (1-3): 43–52.

Bebber, Daniel P, Timothy Holmes, and Sarah J Gurr. 2014. “The global spread of

crop pests and pathogens.” Global Ecology and Biogeography 23 (12): 1398–1407.

Bilal, Adrien, and Diego R. Känzig. 2024. “The Macroeconomic Impact of Climate

Change: Global vs. Local Temperature.” NBER Working Paper 32450. https://doi.org/

10.3386/w32450.

26

http://dx.doi.org/https://doi.org/10.3386/w32450
http://dx.doi.org/https://doi.org/10.3386/w32450


Boone, Christopher, Wolfram Schlenker, and Juha Siikamäki. 2019. “Ground-Level
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Figures and Tables

Figure 1: Agricultural Yields and CO2 Levels
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Notes: The figure displays the evolution of yearly aggregate US yields (left axis) and annual CO2 averages

(right axis). Each time series is normalized relative to 1940 (value = 100). Aggregate US corn yields are

shown in dark green from 1866–2024, aggregate US soybean yields in green from 1924–2024, and aggregate

US winter wheat yields in light green from 1909–2024, corresponding to the years for which data are reported

by USDA. Monthly CO2 readings at Mauna Loa Observatory are shown from March 1958 onward in blue,

while earlier years use annual averages from ice cores (Etheridge et al., 1996) as provided by NASA (link).
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Figure 2: Yield and CO2 Anomalies in Macoupin County, Illinois
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Notes: The figure displays corn yields (left axis, shown in red) and CO2 levels (right axis, shown in blue) in

Macoupin County, Illinois, which is also shown in Figure 3. Dashed lines represent the county-specific time

trend over the eight-year period (2015–2022), while solid lines show anomalies (annual deviations from the

trend). The correlation between corn yield anomalies and CO2 anomalies is 0.55.

36



Figure 3: IV Setup

Notes: The figure outlines the construction of the wind instrument, using Macoupin County, Illinois (FIPS code 17117) as an example. The left

panel demonstrates the first step: we derive the centroid (shown as +) for Macoupin County (shown in dark green) as the cropland-weighted

average of all grids in the county. The weight is the combined corn, soybean, and winter wheat acreage from the Cropland Data Layer. We

pair Macoupin’s centroid with the centroids of all its six neighbors (shown as ∗), which are not cropland-area weighted, as we are including all

CO2 readings as part of our instrument, not just those over cropland. The middle panel demonstrates how we determine the upwind county:

the red arrows show the direction in which neighbor centroids are located, which are time-invariant. The blue arrow shows the wind direction

at 12 noon on July 15, 2021. This is constructed from hourly NLDAS data, using the cropland-area weighted average of all NLDAS grid cells

in Macoupin County. At each hour, we compute the cosine between the direction of neighboring counties (red arrows) and the wind direction

(blue arrow), and record which neighbor is “upwind”—the one with a cosine closest to −1. The right panel shows how often a neighboring

county is “upwind” during the 4,392 hours in April–September of a year, with the widths of the arrows proportional to frequency. For example,

CO2 readings over Madison County (entire county, not just agricultural area) are used as an instrument for CO2 over the agricultural area of

Macoupin County in 2021, as it is upwind 1,659 hours (38% of the time). Both counties are downwind from the city of St. Louis (shown in

gray). Note that the “upwind” county can change year to year.
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Figure 4: Histogram of Hours a County is Upwind

�

���

���

���

���

���

���

���

���

���

����

/
VN

CF
S�P

G�0
CT
FS
WB
UJP
OT

��� ���� ���� ���� ���� ���� ���� ����
)PVST�DPVOUZ�JT�VQXJOE�JO�"QSJM�4FQUFNCFS�	PVU�PG�QPTTJCMF������IPVST


$PSO 4PZCFBOT 8IFBU

Notes: The figure displays histograms of the number of hours the county used as the IV is upwind (out of

a possible 4,392 hours in April–September of a year). Data are shown for counties east of the 100° meridian

for corn and soybeans (shown in green in Figure A3), and east of the Rocky Mountains for winter wheat

(shown in green and blue in Figure A3).
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Figure 5: Counterfactual if CO2 Remained at 1940 Levels
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Notes: The figure displays the evolution of yearly aggregate US yields as a dashed black line. Yield trends (estimated using restricted cubic

splines with three knots) since 1940 are shown as a solid black line. The graph adds counterfactuals where CO2 levels are kept constant at

the 1940 value, assuming the CO2 fertilization effect estimated from 2015–2022 data applies throughout the 1940–2024 period. The blue line

uses the coefficient estimates from columns (c) of the panel regressions in Table 2. The red line uses the IV estimates from the columns (c) of

the wind IV regressions in Table 3. We adjust the yield trend only by the difference between actual CO2 and CO2 in 1940, leaving all other

factors, notably realized weather, unchanged. The 95% confidence bands are shown as shaded areas.
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Table 1: Standard Deviation of Annual CO2 Anomalies in Satellite and FluxTower Data

All flux towers Cropland flux towers
World US World US

Panel A: OCO Reading Around Tower Location
A1: Location of towers across all years

σOCO 1.30 1.29 1.40 1.37
Ntower [375] [317] [93] [91]

A2: Location of towers with 2015-2022 data
σOCO 1.21 1.25 1.21 1.21
Ntower [96] [90] [20] [20]

Panel B: Flux Tower at 2 m Height
B1: All years

σfluxTower 5.83 5.28 6.35 5.91
Ntower [287] [226] [48] [42]

B2: 2015-2022
σfluxTower 5.36 4.88 6.07 5.64
Ntower [206] [178] [36] [32]

B3: 2015-2022 with OCO data
σfluxTower 4.94 4.91 6.97 6.97
Ntower [96] [90] [20] [20]

Ratio κ = A1
B1

1
4.49

1
4.09

1
4.55

1
4.30

Ratio κ = A2
B3

1
4.10

1
3.91

1
5.74

1
5.74

Notes: The table displays the year-to-year standard deviation of CO2 anomalies from OCO satellite readings

(σOCO in Panel A) and at flux towers (σfluxTower in Panel B). The second row of each panel gives the number of

towers (locations) included in the dataset. OCO readings are averaged within a 0.1-degree longitude/latitude

radius around each flux tower location. The combined cropland area in the 2022 USDA Census of Agriculture

was 382 million acres, equating to an average of 118,000 acres (or 184 square miles) across 3,244 US counties.

For comparison, the area of a 0.1-degree circle is 150 square miles at the equator, which is roughly comparable.

Panel A1 uses all flux tower locations (including those without height information for CO2 measurements),

while Panel A2 only uses flux tower locations with CO2 data from 2015–2024 that report the height of the

instrument. Panels B1-B3 fit a restricted cubic spline to estimate σCO2 as a function of measurement height

and evaluates it at 2 m. Panel B1 uses data across all years (observations start in 1993 for all towers, and

2001 for cropland towers). Panel B2 is restricted to locations with flux towers that have CO2 data from

2015–2024. Panel B3 only includes flux towers where there is also CO2 data from OCO. Panels B3 and

A1 therefore use the same locations. The final two rows report the ratio κ = σOCO

σfluxTower
using the standard

deviations from Panels A1 and B1 (second to last row), as well as standard deviations from Panels A2 to

B3 (last row). An average baseline scaling factor of κ = 1
4.5 is obtained when using all available data, A1

B1 ,

or when using all towers in the world (first column) or just cropland towers (third column). For simplicity

in the text we may refer to the reciprocal of this scaling factor, 1/κ ≈ 4.5, which represents the factor by

which ground-level variation exceeds the satellite variation.
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Table 2: Baseline Panel Regression

Corn Soybeans Winter Wheat
(1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

CO2 (ppm) 0.071∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.087∗∗ 0.113∗∗∗ 0.128∗∗∗ 0.238∗∗ 0.293∗∗ 0.194∗∗

(0.030) (0.029) (0.031) (0.038) (0.038) (0.032) (0.113) (0.115) (0.077)
Moderate DDay 0.277∗∗∗ 0.282∗∗∗ 0.295∗∗ 0.557∗∗∗ 0.024 0.178

(0.097) (0.082) (0.109) (0.097) (0.238) (0.232)
Extreme DDay -0.396∗∗∗ -0.395∗∗∗ -0.601∗∗∗ -0.593∗∗∗ -0.262∗∗ -0.278∗∗

(0.070) (0.070) (0.096) (0.092) (0.115) (0.107)
Precipitation 0.525∗∗∗ 0.547∗∗∗ 0.478∗∗ 0.476∗∗ 1.052∗ 0.773

(0.176) (0.181) (0.178) (0.190) (0.545) (0.508)
Prec. squared -0.443∗∗∗ -0.457∗∗∗ -0.348∗∗∗ -0.368∗∗∗ -0.971∗∗ -0.836∗∗

(0.114) (0.118) (0.112) (0.132) (0.377) (0.355)
Mean CO -0.001 -0.574∗ 0.006

(0.286) (0.295) (0.514)
Mean NO2 -0.007 -0.024∗ 0.018

(0.012) (0.013) (0.016)
Mean O3 -0.032 -2.447∗∗∗ -0.320

(0.693) (0.575) (1.303)
Mean PM10 0.151 0.284 -1.948∗∗∗

(0.500) (0.316) (0.627)
Mean SO2 -0.008 -0.037∗∗∗ -0.011

(0.017) (0.013) (0.014)
R2 0.8230 0.8533 0.8535 0.8203 0.8559 0.8651 0.8347 0.8509 0.8559
Observations 8337 8337 8337 7918 7918 7918 4990 4990 4990

Notes: The table regresses log yields on CO2 from OCO satellite readings between 2015 and 2022. Reported coefficients are multiplied by 100 so

that estimates represent the percentage yield change per 1 ppm increase in CO2. All regressions include county fixed effects and county-specific

time trends. Columns (b) further include four weather variables: moderate degree days ×1000 (degree days 10–29◦C for corn and 10–30◦C for

soybeans and winter wheat), extreme degree days ×100 (degree days above 29◦C for corn and above 30◦C for soybeans and winter wheat), and

a quadratic in precipitation (in meters). Columns (c) include the mean pollution levels of five criteria air pollutants: CO (in ppm), NO2 (in

ppm), O3 (in 100 ppb), PM10 (in 100 µg/m3), and SO2 (in ppm). All weather and pollution variables are constructed over the growing season

(April–September). Corn and soybean regressions use counties east of the 100° meridian (green in Figure A3), while wheat regressions include

all counties east of the Rocky Mountains (green and blue in Figure A3). CO2 coefficients were scaled by κ = 1
4.5 as outlined in equation (3)

and Table 1. Standard errors are clustered at the state level. Stars indicate significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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Table 3: IV Regression using Upwind CO2

Corn Soybeans Winter Wheat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) (3a) (3b) (3c) (3d)

Min hours - 0 1000 1500 - 0 1000 1500 - 0 1000 1500

OLS Regression
CO2 (ppm) 0.118∗∗∗ 0.127∗∗∗ 0.135∗∗∗ 0.175∗ 0.128∗∗∗ 0.124∗∗∗ 0.132∗∗∗ 0.207∗∗∗ 0.194∗∗ 0.191∗ 0.180 0.352∗∗

(0.031) (0.038) (0.042) (0.100) (0.032) (0.035) (0.039) (0.065) (0.077) (0.100) (0.115) (0.149)

IV Regression
CO2 (ppm) 0.177∗∗ 0.174∗∗ 0.288∗ 0.209∗∗ 0.197∗∗ 0.416∗∗∗ 0.533∗∗∗ 0.555∗∗∗ 0.798∗∗∗

(0.076) (0.079) (0.166) (0.086) (0.090) (0.117) (0.190) (0.207) (0.281)
F (1st stage) 16.33 16.07 11.08 15.94 15.62 9.89 13.89 13.71 7.24
Ratio IV/OLS 1.39 1.29 1.65 1.68 1.49 2.00 2.80 3.08 2.27
Observations 8337 7219 6641 2436 7918 6885 6354 2288 4990 4406 4117 2173

Notes: The table regresses log yields on CO2 (×100) from OCO satellite readings between 2015 and 2022.

The table regresses log yields on CO2 from OCO satellite readings between 2015 and 2022. Reported coefficients are multiplied by 100 so

that estimates represent the percentage yield change per 1 ppm increase in CO2. Each coefficient is from a separate regression. Column (a)

replicates the specification from column (c) in Table 2. Columns (b), (c), and (d) replicate the same OLS regression for the set of observations

included in the IV regression in the second row, where CO2 readings are instrumented with the CO2 reading (averaged over the entire county,

not just the agricultural area) from the predominant upwind county. Columns (b), (c), and (d) differ in how the upwind county is classified for

the IV: column (b) uses the county most frequently upwind during April–September as measured from hourly wind data from NLDAS (a total

of 4,392 hours in April–September); columns (c) and (d) include counties only if they are upwind for at least 1,000 or 1,500 hours, respectively.

All regressions include county fixed effects, county-level time trends, and controls for four weather and five pollution variables. CO2 coefficients

were scaled by κ = 1
4.5 as outlined in equation (3) and Table 1. Standard errors are clustered at the state level. Stars indicate significance

levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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Appendix A Analysis Using OCO Satellite Data

Appendix A.1 Derivation of County-level CO2 Exposure

To derive county-level CO2 exposure, we first independently aggregate the raw OCO readings
(Level 2) to the county-month level. For both OCO-2 and OCO-3, we follow a procedure that
closely mirrors how the corresponding weather variables are constructed, before averaging
across the two data sources and then across month of the growing season. The specific steps
are:

1) Seasonality Adjustment: Since observations over a given county occur at different
times of the crop-growing season, reflecting the satellite’s revisit timing and the pres-
ence of quality flags, we adjust CO2 values to make them comparable by accounting
for the annual pattern in which ambient CO2 concentrations decrease in the spring and
summer, when plants are actively photosynthesizing in the Northern hemisphere, and
increase in the fall and winter, when plants are respiring on net.

We seasonally adjust the CO2 readings for a common within-year seasonality, convert-
ing each reading to its equivalent value as of July 1st of the same year. The seasonal
pattern is shown in Figure A1, where we fit a 4th-order Chebyshev Polynomial over
the year, which we normalize to [-1,1] by transforming January 1st to equal -1 and
December 31st to equal 1.A1 We restrict the seasonality so the value on January 1
(time -1) equals the value on December 31 (time 1). We further include a time trend
to account for annual increases in CO2 at the global level. For example, if the average
CO2 level on April 1st is 2.2 ppm higher than on July 1st, we subtract 2.2 ppm to all
observations from April 1st.A2

2) Link with PRISM grid: Each longitude-latitude coordinate from a seasonality-
adjusted OCO reading in step (1) is linked to the PRISM grid cell in which it falls.
The PRISM grid is a 1

24
degree raster in both longitude and latitude. For each day, we

average all readings within a given grid. This results in a daily grid-level CO2 measure.

3) CO2 by county-crop-month: We derive a monthly county-level CO2 exposure that
varies by crop, since different crops may be grown in different areas within a county.

3a) For each month, we compute the weighted average CO2 exposure across all daily
PRISM grids from step (2) within a county to derive the crop-specific exposure.

A1This normalization is necessary as leap years have an additional day.
A2CO2 also exhibits strong diurnal within-day variation (Idso et al., 2002; Xueref-Remy et al., 2018). The

OCO-2 satellite is sun-synchronous and revisits points at the same time each day, so diurnal variation is
not a concern. For OCO-3, we average across readings that cycle through the sunlit hours at regular and
repeating intervals, thus not producing any location-specific diurnal biases.
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The weights are given by the crop-specific average growing area, as reported in
the Cropland Data Layer by USDA (2015-2024), which specifies for each 30 m
grid cell what crop is grown. We sum all pixels growing either corn, soybeans, or
wheat to obtain the growing area for each crop in the PRISM grid (roughly 4.5 km
resolution), i.e., by counting how many of the 30 m × 30 m pixel centroids within
a PRISM grid cell are classified as each crop. For example, if one grid grows twice
as much corn as a neighboring grid, it receives twice the weight in the average.

We also average all readings within a month, without adjusting for the frequency
of readings in a grid cell. As a result, if a grid has readings on two days and
another on one, the first grid effectively receives twice the weight as we have a
clearer (less noisy signal).

3b) Additionally, we retain the sum of the grid-cell specific growing area across all
grids and days in a county and month, which reflects how representative the
exposure measure is—either because readings are taken from grids with significant
crop coverage, or because certain grids are sampled more frequently. We need this
measure as weight in the next step.

4) Aggregating monthly OCO-2 and OCO-3 data: We average the OCO-2 and
OCO-3 measures derived in step (3a), weighting them according to the coverage mea-
sure from step (3b). Intuitively, if OCO-2 has more readings, or readings from areas
with more crop coverage than OCO-3, its monthly average receives a higher weight.
See Figure A2 for a cross-plot of observations.

5) CO2 over growing season: We then average the monthly values from step (4) over
the period April–September, giving each month equal weight. We do not weight by
the number of readings in a month, since there is high serial correlation in the data,
and readings from different months convey more information than the same number of
readings within the same month.

6) Derivation of CO2 Anomalies: Our baseline regressions use the values of step (5)
while including county fixed effects and county-specific linear time trends as outlined in
equation (1). However, for the scaling factor κ in equation (3) we require the standard
deviation of the anomalies, which we compute as residuals after fitting a linear model
with county fixed effects and county-specific linear time trends to match the variation
used in the regressions.
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Appendix A.2 Derivation of Upwind Neighbor

Neighboring counties are derived using the following four steps:

1) Cropland-weighted centroid: We first calculate the centroid of a county as the
cropland-weighted average of all grids within the county, weighting by the average
acreage of corn, soybeans, and winter wheat from the Cropland Data Layer for 2015–
2024. This provides a time-invariant measure of where the cropping area is, on average,
located within each county.

2) Pairing with unweighted centroids of neighboring counties: We begin by pair-
ing each county’s cropland-weighted centroid with the unweighted centroids of all its
neighboring counties, since we use all CO2 sources as instruments, not only those over
agricultural areas. The direction to each neighboring county is time-invariant and
calculated once.

3) Hourly wind direction and upwind neighbor: Hourly wind data are obtained
from the North American Land Data Assimilation System (NLDAS),A3 using the
cropland-area-weighted average of all NLDAS grid cells within each county. We deter-
mine which county is “upwind” by calculating the cosine of the angle between the wind
direction and the direction to each neighboring county, identifying the county whose
cosine is closest to −1.

4) Cumulative time county is upwind: For each neighboring county, we then sum
the number of hours it is “upwind” of our target county over the 4,392 hours that
comprise the growing season (April to September) in a given year. The neighboring
county that is most frequently upwind is thus categorized as the “upwind” county for
that year, which can vary from year to year. We then instrument each county’s CO2

anomaly with that of its most frequently upwind neighbor in the given year.

A3The data is available at https://hydro1.gesdisc.eosdis.nasa.gov/data/NLDAS/NLDAS FORA0125 H.2.0/
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Figure A1: Seasonality in CO2
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Notes: The chart displays the seasonality in CO2 concentrations. To make readings comparable and compute

average CO2 levels at the county-year level, satellite readings are seasonally adjusted to July 1 (red dashed

line) of each given year; that is, each reading is corrected by the difference between the July 1 value of the

fitted seasonality curve and the value of the curve on the day of measurement. We fit a 4th-order Chebyshev

polynomial in the day of year and a linear time trend across years to the unbalanced daily time series of CO2

satellite readings. Since years have different numbers of days, we normalize January 1 to −1 and December

31 to 1. The seasonality regression is constrained so that the value at the end of the year (December 31)

equals the value at the beginning of the year (January 1). The seasonality curves used in the analysis (solid

lines) are estimated using readings without quality flags across the contiguous US. For comparison, the

dashed lines use all observations across the US, including those with flags. The main growing season for corn

and soybeans (April–September) is indicated by gray dashed lines.
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Figure A2: Comparing Observations in OCO-2 and OCO-3
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Notes: The chart displays county-level measures of CO2 from OCO-2 (x-axis) and OCO-3 (y-axis) in our

corn sample for the years in which both satellites report data (2019–2024). If the measurements were in

perfect agreement, all points would lie on the 45-degree line. Some divergence between the two measures

is expected, as the satellites operate at different frequencies and times, and the data inherently include

sampling noise. To mitigate this noise and provide the most reliable signal, we average readings from both

satellites.
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Figure A3: Number of Observations per County in 2015-2022

Panel A: Corn

Panel B: Soybeans

Panel C: Winter Wheat

Notes: The figure displays the number of observations per county in the dataset, i.e., counties where yield,

weather, air pollution, and CO2 data (from either OCO-2 or OCO-3) are available over the sample period

used in the baseline regression, 2015–2022. The analysis is split into three geographic subsets: east of the

100° meridian excluding Florida (Schlenker and Roberts, 2009) (shown in shades of green); inter-mountain

states east of the Rocky Mountains (shown in blue); and western states (Arizona, California, Idaho, Nevada,

Oregon, Utah and Washington; shown in red). Since the specification includes county fixed effects and

county-specific time trends, at least three observations are required for a county to be included in the

analysis. vii



Figure A4: Number of Counties Reporting Yields in 2015-2024
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Notes: The figure displays the number of counties reporting yields in the National Agricultural Statistics

Service (NASS) dataset. These include counties in all states and territories, and are not confined to specific

geographic subsets. Note the precipitous drop in 2024, when the USDA stopped reporting county-level crop

yields for several commodities, including wheat.
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Figure A5: Variation in CO2 Anomalies
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Notes: The graphs display histograms of the variation in CO2 anomalies (after controlling for all covariates)

by year for corn, soybeans, and wheat, respectively. Each histogram shows the fraction of anomalies falling

within each 0.25 ppm bin. The leftmost bin is bottom-coded to include all anomalies below −5 ppm, while

the rightmost bin is top-coded to include all anomalies above 5 ppm.
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Figure A6: Sensitivity to Geographic Subset
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Notes: The figure displays the sensitivity of the results to the geographic subset used in the estimation,

as shown in Figure A3. The “East of 100” sample includes all counties whose centroid is east of the 100°
meridian (shown in green in Figure A3). The “East of Rockies” sample includes all counties east of the

Rocky Mountains (shown in green or blue in Figure A3). The “Contiguous US” sample includes all counties

in the continental US (shown in green, blue, or red in Figure A3). In each case, a county must report yields

in at least three years to be included, as our specification has county fixed effects as well as county-specific

time trends. Using the baseline period from 2015–2022, specifications correspond to columns (c) of both

the panel regressions (Table 2) and the wind IV (Table 3). CO2 coefficients were scaled by κ = 1
4.5 as

outlined in equation (3) and Table 1. Point estimates are shown as a star, while the whiskers indicate the

90% confidence interval. The bottom row shows, in percent, the share of US production over the time period

that is included in the analysis.
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Figure A7: Sensitivity to Time Trend
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Notes: The figure displays the sensitivity of the results to the included time trend, ranging from no time

trend at all, to a common time trend for all counties, a state-specific time trend, and county-specific time

trends used in our baseline model. Using the baseline period from 2015–2022, all specifications include the

controls from columns (c) of both the panel regressions (Table 2) and the wind IV (Table 3). CO2 coefficients

were scaled by κ = 1
4.5 as outlined in equation (3) and Table 1. Point estimates are shown as stars, while the

whiskers indicate the 90% confidence interval. The bottom row shows, in percent, the share of US production

over the time period that is included in the analysis.
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Figure A8: Sensitivity to Last Year in Sample
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Notes: The figure displays the sensitivity of the results to the choice of end year in the analysis. The sample

always begins in 2015, but the last year varies from 2020 to 2024. Specifically, blue colors represent data

from 2015–2020, while red colors represent data from 2015–2024. Specifications correspond to columns (c)

of both the panel regressions (Table 2) and the wind IV (Table 3). CO2 coefficients were scaled by κ = 1
4.5

as outlined in equation (3) and Table 1. Point estimates are shown as stars, while the whiskers indicate the

90% confidence interval. The bottom row shows, in percent, the share of US production over the time period

included in the analysis.
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Figure A9: Sensitivity to Functional Form
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Notes: The figure displays the sensitivity of the results to the functional form. Our baseline model (“Log-

Lin”; constant relative effect) regresses log yields on CO2 levels. The “Lin-Lin” model (constant absolute

effect) regresses yields on CO2 levels, the “Log-Log” model (constant elasticity) regresses log yields on log

CO2 levels, and the “Lin-Log” model regresses yields on log CO2 levels. Using the baseline period from

2015–2022, all specifications include the controls from columns (c) of both the panel regressions (Table 2)

and the wind IV (Table 3). CO2 coefficients were scaled by κ = 1
4.5 as outlined in equation (3) and Table 1.

Point estimates are shown as stars, while the whiskers indicate the 90% confidence interval. The bottom

row shows, in percent, the share of US production over the time period included in the analysis.
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Table A1: Summary Statistics of IV Setup

Corn Soybeans Wheat
Panel A: All counties

Hours Upwind
Mean 1461 1442 1563
Range [615,3933] [670,3086] [670,3505]
Standard deviation (1461) (1442) (1563)

County Upwind
Always the same 1025 944 558
One of two counties 309 307 140
One of three or more counties 52 46 18

Panel B: At least 1000 hours
Hours Upwind

Mean 1506 1483 1613
Range [997,3933] [997,3086] [997,3505]
Standard deviation (1506) (1483) (1613)

County Upwind
Always the same 1012 940 550
One of two counties 260 255 112
One of three or more counties 23 23 7

Panel C: At least 1500 hours
Hours Upwind

Mean 1884 1832 1955
Range [1497,3933] [1497,3086] [1497,3505]
Standard deviation (1884) (1832) (1955)

County Upwind
Always the same 492 452 298
One of two counties 21 23 21
One of three or more counties 0 0 0

Notes: The table provides summary statistics for the IV setup outlined in Figure 3 using the baseline period

from 2015–2022. The first three rows of each panel report the number of hours a county is upwind in the IV

setup (the corresponding histogram is shown in Figure 4). Values are relative to 4,392 hours, the number of

hours during the growing season April–September. The last three rows in each panel display the variation

whether the upwind county changes between years or is always the same. For the majority of counties, the

upwind county remains the same every year. Panel A includes all counties using the most frequent upwind

neighbor, regardless of how many hours it is upwind; Panel B requires the upwind county to be upwind at

least 1,000 hours; and Panel C requires the upwind county to be upwind at least 1,500 hours.
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Appendix B Time Series Analysis Using Annual Data

Our baseline model used satellite measures of CO2 anomalies throughout the US in a panel
setting. We follow the recent work of Bilal and Känzig (2024) and present a time series
analysis; that is, we reduce our sample size to one observation per year. While we lose
coverage in space, we can extend the analysis to include additional years before the satellite
began reporting. CO2 levels are obtained from the Mauna Loa Observatory in Hawaii, which
began reporting in 1958. We continue to focus on the main growing season and derive the
average CO2 from April to September for the years 1958–2024 (67 years), linking these values
to annual average US crop yields for corn, soybeans, and wheat.

The revised regression equation becomes

yt = α0 + α1t+ α2t
2 + β ĉt + γWt + εt (B1)

It is analogous to equation (1), except that we include an additional squared term for the
time trend, α2, given the much longer time frame of 67 years, over which the assumption of
a linear trend is inadequate. Furthermore, we no longer control for pollution, as the EPA
did not start reporting most pollutants until the 1980s.

We construct ĉt = ε̂t as the predicted innovations from an autoregressive process with up
to L lags:

ct = α0 +
L∑

k=1

βkct−k + εt (B2)

The resulting CO2 innovations are displayed in Figure B1. The standard deviation of these
shocks ranges between 0.52 and 0.55.B1 Note the correlation with El Niño: major El Niño
events are associated with positive CO2 innovations. This raises a potential drawback:
El Niño changes weather patterns that may themselves influence yields. However, as dis-
cussed in the main paper, we would expect this effect to downward bias our estimates, as
higher CO2 levels are the result of reduced biological activity (photosynthesis), due, for ex-
ample, to more extreme heat, which leads to a negative association between CO2 and crop
yields. Controlling for weather should therefore increase the predicted effect, especially for
corn, a C4 crop with a lower expected CO2 response, where we have a statistical model with
great explanatory power. We derive the aggregate weather Wt for the US as the weighted
average of all county-level weather variables.B2

The results are shown in Figure B2. The CO2 fertilization effect is estimated with more
noise (larger standard errors) than in our baseline results, which is not surprising given that
we only have 67 observations. As hypothesized, controlling for weather increases the coeffi-

B1The standard deviation of these Mauna Loa-derived CO2 shocks (σMaunaLoa) is lower than those of the
OCO satellite (σOCO), hence we need to rescale by a factor κ = 1

11 to match the variation found at 2 m in
the FluxTower data as outlined in Table 1.

B2Weights are based on the predicted production of a county, as counties with higher output have a larger
share in the overall average yield. Specifically, we fit state-specific quadratic time trends to the county-level
log yield data and derive the weight as the product of the predicted yield (according to the trend) and the
growing area.
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cient in the case of corn, highlighting the negative correlation between CO2 anomalies and
crop yields. Once we control for weather, the results for corn are marginally significant under
AR(1) and AR(2) innovations and become statistically significant under AR(3). Consistent
with our baseline results, the CO2 fertilization effect is strongest for wheat, remaining statis-
tically significant in all models, whether we control for weather or not. On the other hand,
the results are never significant for soybeans, but given the wide confidence intervals, they
are also not statistically significantly different from our baseline results.

While confidence intervals are larger when we switch to the time series analysis, the
findings broadly support what we found in the baseline regression, despite using a completely
different source of variation, ground-level observations at Mauna Loa, rather than satellite
data. This provides additional evidence for our CO2 fertilization effects under real-world
growing conditions.

Figure B1: CO2 Innovations in Autoregressive Process
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Notes: The figure displays the predicted innovations (errors) from the autoregressive process given in equa-

tion (B2), where the number of lags is varied from L = 1 to L = 3. The underlying CO2 values are the

average readings for April–September as recorded by the Mauna Loa Observatory in Hawaii. Dashed lines

indicate major El Niño events: 1972–1973, 1982–1983, 1987–1988, 1997–1998, 2015–2016, and 2023–2024.
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Figure B2: Time Series Regression Linking Yields to CO2 Innovations
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Notes: The figure displays the results when CO2 innovations from Figure B1 are used in a time series

regression linking yields to CO2. For reference, the blue whiskers show the results from our baseline panel

regression (columns (c) of Table 2) as well as the wind IV (columns (c) of Table 3). The remaining entries use

the innovations from AR(1), AR(2), and AR(3) regressions, respectively. All time series regressions include

quadratic time trends. For each, we present the results first without controlling for weather, and then when

controlling for the same four weather variables as in columns (b) of Table 2. CO2 coefficients were scaled

by κ = 1
11 as outlined in equation (3) and Table 1. Point estimates are shown as stars, while the whiskers

indicate the 90% confidence interval.
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Appendix C Flux Tower Data

Appendix C.1 Derivation of Variation in CO2 Exposure

We downloaded all tower data from AmeriFlux to estimate how the fluctuation in CO2

anomalies vary by height.

1) Download all data from the AmeriFlux tower network. The locations of the flux towers
are shown in Figure C1.

2) Compute the average CO2 reading over April–September of each year at each instru-
ment.C1 Note that most flux towers have several instruments at various heights. They
generally report hourly data throughout the growing season, and we therefore do not
need to perform the seasonality adjustment applied to the sparser OCO satellite data;
such an adjustment would only add a constant, which is irrelevant when deriving the
standard deviation of fluctuations. Seasonality patterns only matter when data are
reported infrequently, as part of the year-to-year changes might otherwise be due to
differences in sampling dates within the growing season.

3) Fit a model with instrument-level fixed effects and instrument-specific time trends to
the annual observations from step (2), and compute the annual residuals around these
time trends. Note that we estimate a separate time trend for each instrument at a
flux tower, thereby allowing the trend to differ across the various heights at which the
instruments are placed.

4) Calculate the standard deviation of the anomalies derived in step (3). We then fit a
restricted cubic spline with three knots to model the relationship between the standard
deviation of these anomalies and the height of the instrument.C2

5) Plot the standard deviation of the instrument-specific anomalies in Figure C2. Each x
in the plot represents the standard deviation from a different instrument across years.
The restricted cubic spline from step (4) is shown as a solid line, with the locations
of the knots indicated by gray dashed lines. The top panel uses data from all flux
towers for all available years (the earliest towers began reporting in 1993, and data
through 2024 are included). The bottom panel restricts the data to instruments from
flux towers located in cropland areas.C3 The earliest flux tower began reporting in
1983, whereas the earliest flux tower located in cropland started reporting in 2001.

C1We exclude CO2 readings below 300 ppm and above 1000 ppm to ensure data integrity. We deliberately
keep the month span constant, even though a few towers are in the Southern Hemisphere; omitting these
towers has no effect, as shown below.

C2We exclude one outlier instrument positioned much higher than 125 m, as it would have a dispropor-
tionate influence on the restricted cubic spline fit.

C3Flux towers with a vegetation class between 1 and 9.
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Figure C2 shows, in all panels, that annual CO2 fluctuations over the growing season (April–
September) decrease with instrument height. Each panel displays the standard deviation
at 2 m, as predicted by the fitted restricted cubic spline, as well as at the upper limit of
observed heights. Since our satellites measure CO2 over the entire atmospheric column, we
need to correct for the fact that fluctuations are higher within the crop canopy (2 m) than
they are for the full column.
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Appendix C.2 AmeriFlux Data

We downloaded all available AmeriFlux data to conduct our analysis. Reference to particular
sites is given in Table C1. We would like to acknowledge that funding for the AmeriFlux
data portal was provided by the US Department of Energy Office of Science.

Table C1: Reference to AmeriFlux Data

Site ID Citation

AR-Bal Maria Isabel Gassmann, Natalia Edith Tonti (2024), AmeriFlux BASE AR-Bal Balcarce BA, Ver. 2-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2315764

AR-CCa Gabriela Posse (2022), AmeriFlux BASE AR-CCa Carlos Casares agriculture, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1880910

AR-CCg Gabriela Posse (2025), AmeriFlux BASE AR-CCg Carlos Casares grassland, Ver. 5-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1865474

AR-TF1 Lars Kutzbach (2021), AmeriFlux BASE AR-TF1 Rio Moat bog, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1543389

AR-TF2 Lars Kutzbach (2025), AmeriFlux BASE AR-TF2 Rio Pipo bog, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1543388

BR-CST Antonio Antonino (2019), AmeriFlux BASE BR-CST Caatinga Serra Talhada, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1562386

BR-Npw George Vourlitis, Higo Dalmagro, Jose Ì de S. Nogueira, Mark Johnson, Paulo Arruda (2019),
AmeriFlux BASE BR-Npw Northern Pantanal Wetland, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1579716

BR-Sa1 Natalia Restrepo-Coupe, Scott Saleska (2025), AmeriFlux BASE BR-Sa1 Santarem-Km67-Primary Forest,
Ver. 6-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1245994

BR-Sa3 Mike Goulden (2019), AmeriFlux BASE BR-Sa3 Santarem-Km83-Logged Forest, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1245995

CA-AF1 Manuel Helbig, Deirdre Spearns (2025), AmeriFlux BASE CA-AF1 Acadia Research Forest, Ver. 2-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2479623

CA-ARB Aaron Todd, Elyn Humphreys (2018), AmeriFlux BASE CA-ARB Attawapiskat River Bog, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1480319

CA-ARF Aaron Todd, Elyn Humphreys (2018), AmeriFlux BASE CA-ARF Attawapiskat River Fen, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1480318

CA-BOU Michelle Garneau (2023), AmeriFlux BASE CA-BOU Bouleau Peatland, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1987599

CA-Ca1 T. Andrew Black (2018), AmeriFlux BASE CA-Ca1 British Columbia - 1949 Douglas-fir stand, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1480300

CA-Ca2 T. Andrew Black (2018), AmeriFlux BASE CA-Ca2 British Columbia - Clearcut Douglas-fir stand (harvested
winter 1999/2000), Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1480301

CA-Ca3 T. Andrew Black (2025), AmeriFlux BASE CA-Ca3 British Columbia - Pole sapling Douglas-fir stand, Ver.
7-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1480302

CA-Cbo Ralf Staebler (2022), AmeriFlux BASE CA-Cbo Ontario - Mixed Deciduous, Borden Forest Site, Ver. 6-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498755

CA-CF1 Tim Papakyriakou (2023), AmeriFlux BASE CA-CF1 Churchill Fen Site 1, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1660336

CA-CF2 Mario Tenuta (2023), AmeriFlux BASE CA-CF2 Churchill Fen Site 2, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1634879

CA-CF3 Kyle Arndt, Susan Natali (2025), AmeriFlux BASE CA-CF3 Churchill Fen Site 3, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2335573

CA-Cha Charles Bourque (2018), AmeriFlux BASE CA-Cha New Brunswick - Charlie Lake site 01 (immature balsam fir
forest to be thinned in year 3), Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1436317

CA-DB2 Sara Knox (2021), AmeriFlux BASE CA-DB2 Delta Burns Bog 2, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1811362

CA-DBB Andreas Christen, Sara Knox (2021), AmeriFlux BASE CA-DBB Delta Burns Bog, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1543378

CA-DSM Sara Knox (2025), AmeriFlux BASE CA-DSM Delta Salt Marsh, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1964085

CA-EM1 Pascal Badiou (2024), AmeriFlux BASE CA-EM1 Newdale Manitoba, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2315766

CA-EM2 Pascal Badiou (2024), AmeriFlux BASE CA-EM2 Shoal Lake Manitoba, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2331380
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Site ID Citation

CA-ER1 Claudia Wagner-Riddle (2021), AmeriFlux BASE CA-ER1 Elora Research Station, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1579541

CA-Gro Harry McCaughey (2019), AmeriFlux BASE CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1245996

CA-HPC Oliver Sonnentag, Phil Marsh (2021), AmeriFlux BASE CA-HPC Havikpak Creek, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1773392

CA-LP1 Thomas Andrew Black (2025), AmeriFlux BASE CA-LP1 British Columbia - Mountain pine beetle-attacked
lodgepole pine stand , Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660337

CA-MA1 Brian Amiro (2023), AmeriFlux BASE CA-MA1 Manitoba Agricultural Site 1, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1617701

CA-MA2 Brian Amiro (2023), AmeriFlux BASE CA-MA2 Manitoba Agricultural Site 2, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1617702

CA-MA3 Brian Amiro (2023), AmeriFlux BASE CA-MA3 Manitoba Agricultural Site 3, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1617703

CA-Man Brian Amiro (2023), AmeriFlux BASE CA-Man Manitoba - Northern Old Black Spruce (former BOREAS
Northern Study Area), Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1245997

CA-Mer Elyn Humphreys, Peter Lafleur (2024), AmeriFlux BASE CA-Mer Ontario - Eastern Peatland, Mer Bleue,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2448423

CA-Mtk Kyle Arndt, Susan Natali (2025), AmeriFlux BASE CA-Mtk Mittimatalik (Pond Inlet) Tundra, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531141

CA-Na1 Charles P.-A. Bourque (2018), AmeriFlux BASE CA-Na1 New Brunswick - 1967 Balsam Fir
- Nashwaak Lake Site 01 (Mature balsam fir forest), Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1436319

CA-NS1 Mike Goulden (2019), AmeriFlux BASE CA-NS1 UCI-1850 burn site, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1245998

CA-NS2 Mike Goulden (2019), AmeriFlux BASE CA-NS2 UCI-1930 burn site, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1245999

CA-NS3 Mike Goulden (2019), AmeriFlux BASE CA-NS3 UCI-1964 burn site, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246000

CA-NS4 Mike Goulden (2019), AmeriFlux BASE CA-NS4 UCI-1964 burn site wet, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246001

CA-NS5 Mike Goulden (2019), AmeriFlux BASE CA-NS5 UCI-1981 burn site, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246002

CA-NS6 Mike Goulden (2019), AmeriFlux BASE CA-NS6 UCI-1989 burn site, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246003

CA-NS7 Mike Goulden (2019), AmeriFlux BASE CA-NS7 UCI-1998 burn site, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246004

CA-Oas T. Andrew Black (2016), AmeriFlux BASE CA-Oas Saskatchewan - Western Boreal, Mature Aspen, Ver. 1-1,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1375197

CA-Obs T. Andrew Black (2016), AmeriFlux BASE CA-Obs Saskatchewan - Western Boreal, Mature Black Spruce,
Ver. 1-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1375198

CA-Ojp Andrew T. Black (2019), AmeriFlux BASE CA-Ojp Saskatchewan - Western Boreal, Mature Jack Pine, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1375199

CA-Qc2 Hank Margolis (2018), AmeriFlux BASE CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75), Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1419514

CA-Qcu Hank A. Margolis (2016), AmeriFlux BASE CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine
Cutover, Ver. 1-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246828

CA-Qfo Hank A. Margolis (2019), AmeriFlux BASE CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246829

CA-RBM Sara Knox (2025), AmeriFlux BASE CA-RBM Richmond Brackish Marsh, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2563527

CA-RSB Kyle Arndt, Susan Natali (2025), AmeriFlux BASE CA-RSB Resolute Bay Polar Desert, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2563528

CA-SCB Oliver Sonnentag, William L Quinton (2021), AmeriFlux BASE CA-SCB Scotty Creek Bog, Ver. 2-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498754

CA-SCC Oliver Sonnentag, William L Quinton (2025), AmeriFlux BASE CA-SCC Scotty Creek Landscape, Ver. 2-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1480303

CA-SF1 Brian Amiro (2020), AmeriFlux BASE CA-SF1 Saskatchewan - Western Boreal, forest burned in 1977, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246006

CA-SF2 Brian Amiro (2019), AmeriFlux BASE CA-SF2 Saskatchewan - Western Boreal, forest burned in 1989, Ver.
3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246007

CA-SF3 Brian Amiro (2020), AmeriFlux BASE CA-SF3 Saskatchewan - Western Boreal, forest burned in 1998, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246008
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CA-SJ1 Alan Barr (2018), AmeriFlux BASE CA-SJ1 Saskatchewan - Western Boreal, Jack Pine forest harvested in
1994, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1436320

CA-SJ2 Alan Barr, Andrew T. Black (2018), AmeriFlux BASE CA-SJ2 Saskatchewan - Western Boreal, Jack Pine
forest harvested in 2002, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1436321

CA-SMC Oliver Sonnentag (2021), AmeriFlux BASE CA-SMC Smith Creek, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1767830

CA-TP1 M. Altaf Arain (2025), AmeriFlux BASE CA-TP1 Ontario - Turkey Point 2002 Plantation White Pine, Ver.
4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246009

CA-TP2 M. Altaf Arain (2018), AmeriFlux BASE CA-TP2 Ontario - Turkey Point 1989 Plantation White Pine, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246010

CA-TP3 M. Altaf Arain (2025), AmeriFlux BASE CA-TP3 Ontario - Turkey Point 1974 Plantation White Pine, Ver.
4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246011

CA-TP4 M. Altaf Arain (2025), AmeriFlux BASE CA-TP4 Ontario - Turkey Point 1939 Plantation White Pine, Ver.
5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246012

CA-TPA M. Altaf Arain (2025), AmeriFlux BASE CA-TPA Ontario Turkey Point Observatory Agricultural Site, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2563529

CA-TPD M. Altaf Arain (2025), AmeriFlux BASE CA-TPD Ontario - Turkey Point Mature Deciduous, Ver. 3-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246152

CA-TVC Oliver Sonnentag, Philip Marsh (2025), AmeriFlux BASE CA-TVC Trail Valley Creek, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1767831

CL-ACF Antonio Lara (2025), AmeriFlux BASE CL-ACF Alerce Costero Forest, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2563530

CL-SDF Jorge Perez-Quezada, Juan J. Armesto (2022), AmeriFlux BASE CL-SDF Senda Darwin Forest, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1902273

CL-SDP Jorge Perez-Quezada, Juan J. Armesto (2022), AmeriFlux BASE CL-SDP Senda Darwin Peatland, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1902274

CR-Fsc Mark Johnson (2024), AmeriFlux BASE CR-Fsc Filadelfia sugar cane cropland, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1829504

CR-SoC Anthony T. Cahill, Georgianne W. Moore, Gretchen R. Miller, Jaeyoung Song (2022), AmeriFlux BASE
CR-SoC Soltis Center, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1880911

MX-Aog Enrico A. Yepez (2020), AmeriFlux BASE MX-Aog Alamos Old-Growth tropical dry forest, Ver. 1-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1756414

MX-PMm Ma. Susana Alvarado-Barrientos (2021), AmeriFlux BASE MX-PMm Puerto Morelos mangrove, Ver. 2-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1756415

MX-Tes Enrico A. Yepez, Jaime Garatuza (2021), AmeriFlux BASE MX-Tes Tesopaco, secondary tropical dry forest,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1767832

PE-QFR Tyler Roman, Timothy Griffis, Randy Kolka, Craig Wayson, Erik Lilleskov, Dennis del Castillo, Lizardo
FachÃn, Jhon Rengifo (2025), AmeriFlux BASE PE-QFR Quistococha Forest Reserve, Ver. 3-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1671889

PR-xGU NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE PR-xGU NEON Guanica Forest
(GUAN), Ver. 8-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1773393

PR-xLA NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE PR-xLA NEON Lajas Experi-
mental Station (LAJA), Ver. 8-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1773394

US-A03 Ryan Sullivan, Dave Billesbach, David Cook, Sebastien Biraud (2025), AmeriFlux BASE US-A03 ARM-
AMF3-Oliktok, Ver. 6-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498752

US-A10 Ryan Sullivan, Dave Billesbach, David Cook, Sebastien Biraud (2025), AmeriFlux BASE US-A10 ARM-NSA-
Barrow, Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498753

US-A32 Dave Billesbach, Lara Kueppers, Margaret Torn, Sebastien Biraud (2018), AmeriFlux BASE US-A32 ARM-
SGP Medford hay pasture, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1436327

US-A37 Ryan Sullivan, Evan Keeler, Jenni Kyrouac, Sujan Pal (2025), AmeriFlux BASE US-A37 ARM-SGP-
Waukomis, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531140

US-A39 Ryan Sullivan, Dave Billesbach, David Cook, Evan Keeler, Jenni Kyrouac, Sebastien Biraud, Sujan
Pal (2025), AmeriFlux BASE US-A39 ARM-SGP-Morrison, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2563531

US-A74 Dave Billesbach, Lara Kueppers, Margaret Torn, Sebastien Biraud (2018), AmeriFlux BASE US-A74 ARM
SGP milo field, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1436328

US-Act Sarah Waldo (2022), AmeriFlux BASE US-Act Acton Lake Flux Tower Site, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1846660

US-ADR Michael Moreo (2018), AmeriFlux BASE US-ADR Amargosa Desert Research Site (ADRS), Ver. 1-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1418680

US-Akn Monique Leclerc (2023), AmeriFlux BASE US-Akn Savannah River Site, Ver. 6-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246141
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US-ALQ Brent Olson (2025), AmeriFlux BASE US-ALQ Allequash Creek Site, Ver. 21-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1480323

US-AMS Gavin McNicol, Roser Matamala (2025), AmeriFlux BASE US-AMS Argonne Testbed for Multiscale Obser-
vational Science (ATMOS), Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531142

US-An1 Adrian Rocha, Gaius Shaver, John Hobbie (2020), AmeriFlux BASE US-An1 Anaktuvuk River Severe Burn,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246142

US-An2 Adrian Rocha, Gaius Shaver, John Hobbie (2020), AmeriFlux BASE US-An2 Anaktuvuk River Moderate
Burn, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246143

US-An3 Adrian Rocha, Gaius Shaver, John Hobbie (2020), AmeriFlux BASE US-An3 Anaktuvuk River Unburned,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246144

US-AR1 Dave Billesbach, James Bradford, Margaret Torn (2019), AmeriFlux BASE US-AR1 ARM USDA UNL OSU
Woodward Switchgrass 1, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246137

US-AR2 Dave Billesbach, James Bradford, Margaret Torn (2019), AmeriFlux BASE US-AR2 ARM USDA UNL OSU
Woodward Switchgrass 2, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246138

US-ARb Margaret Torn (2019), AmeriFlux BASE US-ARb ARM Southern Great Plains burn site- Lamont, Ver. 3-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246025

US-ARc Margaret Torn (2019), AmeriFlux BASE US-ARc ARM Southern Great Plains control site- Lamont, Ver.
3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246026

US-ARM Sebastien Biraud, Marc Fischer, Stephen Chan, Margaret Torn (2025), AmeriFlux BASE US-
ARM ARM Southern Great Plains site- Lamont, Ver. 14-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246027

US-ASH Ray G. Anderson (2020), AmeriFlux BASE US-ASH USSL San Joaquin Valley Almond High Salinity, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1634880

US-ASL Ray G. Anderson (2020), AmeriFlux BASE US-ASL USSL San Joaquin Valley Almond Low Salinity, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617706

US-ASM Ray G. Anderson (2020), AmeriFlux BASE US-ASM USSL San Joaquin Valley Almond Medium Salinity,
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617709

US-Aud Tilden Meyers (2016), AmeriFlux BASE US-Aud Audubon Research Ranch, Ver. 4-1, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246028

US-Bar Andrew Richardson, David Hollinger (2025), AmeriFlux BASE US-Bar Bartlett Experimental Forest, Ver.
7-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246030

US-Bi1 Camilo Rey-Sanchez, Carlos Tianxin Wang, Daphne Szutu, Robert Shortt, Samuel D. Chamberlain, Joseph
Verfaillie, Dennis Baldocchi (2025), AmeriFlux BASE US-Bi1 Bouldin Island Alfalfa, Ver. 14-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1480317

US-Bi2 Camilo Rey-Sanchez, Carlos Tianxin Wang, Daphne Szutu, Kyle Hemes, Joseph Verfaillie, Dennis Bal-
docchi (2025), AmeriFlux BASE US-Bi2 Bouldin Island corn, Ver. 19-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1419513

US-Blo Allen Goldstein (2019), AmeriFlux BASE US-Blo Blodgett Forest, Ver. 4-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246032

US-BMM Paul Stoy, E. N. J. Brookshire (2022), AmeriFlux BASE US-BMM Bangtail Mountain Meadow, Ver. 3-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660338

US-Bo1 Tilden Meyers (2016), AmeriFlux BASE US-Bo1 Bondville, Ver. 2-1, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246036

US-Bo2 Carl Bernacchi (2016), AmeriFlux BASE US-Bo2 Bondville (companion site), Ver. 2-1, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246037

US-BRG Kimberly Novick (2020), AmeriFlux BASE US-BRG Bayles Road Grassland Tower, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1756416

US-Bsg Chris Still (2022), AmeriFlux BASE US-Bsg Burns Sagebrush, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1846661

US-BWa Kenneth Davis (2023), AmeriFlux BASE US-BWa INFLUX - NIST Turfgrass Site, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2229153

US-BWb Kenneth Davis (2023), AmeriFlux BASE US-BWb INFLUX - Montgomery County pasture site, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2229154

US-BZB Eugenie Euskirchen (2025), AmeriFlux BASE US-BZB Bonanza Creek Thermokarst Bog, Ver. 5-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1773401

US-BZF Eugenie Euskirchen (2025), AmeriFlux BASE US-BZF Bonanza Creek Rich Fen, Ver. 5-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1756433

US-BZo Eugenie Euskirchen (2025), AmeriFlux BASE US-BZo Bonanza Creek Old Thermokarst Bog, Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1846662

US-BZS Eugenie Euskirchen (2025), AmeriFlux BASE US-BZS Bonanza Creek Black Spruce, Ver. 4-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1756434

US-CAK Kyle Arndt, Susan Natali (2025), AmeriFlux BASE US-CAK Council Alaska Tundra, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2563532
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US-CC1 Paul Stoy, Sharifa Brevert (2022), AmeriFlux BASE US-CC1 Coloma Corn 1, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1865475

US-CC2 Paul Stoy, Sharifa Brevert, Anam Khan (2022), AmeriFlux BASE US-CC2 Coloma Corn 2, Ver. 2-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1865476

US-CdM David Bowling, Steve Kannenberg, William Anderegg (2025), AmeriFlux BASE US-CdM Cedar Mesa, Ver.
3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1865477

US-Ced Ken Clark (2025), AmeriFlux BASE US-Ced Cedar Bridge, Ver. 8-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246043

US-CF1 Claire L. Phillips, Dave Huggins (2022), AmeriFlux BASE US-CF1 CAF-LTAR Cook East, Ver. 3-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1543382

US-CF2 Dave Huggins (2021), AmeriFlux BASE US-CF2 CAF-LTAR Cook West, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1543383

US-CF3 Dave Huggins (2022), AmeriFlux BASE US-CF3 CAF-LTAR Boyd North, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1543385

US-CF4 Dave Huggins (2022), AmeriFlux BASE US-CF4 CAF-LTAR Boyd South, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1543384

US-CGG Patty Oikawa (2025), AmeriFlux BASE US-CGG Concord Grazed Grassland, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1987600

US-ChR Tilden Meyers (2016), AmeriFlux BASE US-ChR Chestnut Ridge, Ver. 2-1, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246044

US-CLF Kenneth J. Davis (2023), AmeriFlux BASE US-CLF Cole Farm, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1987601

US-Cms Akira Miyata, Yoshinobu Harazono (2025), AmeriFlux BASE US-Cms Central Marsh, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1987602

US-CMW Russell Scott (2022), AmeriFlux BASE US-CMW Charleston Mesquite Woodland, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1660339

US-Cop David Bowling (2019), AmeriFlux BASE US-Cop Corral Pocket, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246129

US-CPk Brent Ewers, Mario Bretfeld, Elise Pendall (2016), AmeriFlux BASE US-CPk Chimney Park, Ver. 2-1,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246150

US-CRK Asko Noormets (2025), AmeriFlux BASE US-CRK Davy Crockett National Forest, Ver. 6-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2204055

US-CRT Jiquan Chen, Housen Chu (2021), AmeriFlux BASE US-CRT Curtice Walter-Berger cropland, Ver. 5-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246156

US-CS1 Ankur Desai (2023), AmeriFlux BASE US-CS1 Central Sands Irrigated Agricultural Field, Ver. 3-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1617710

US-CS2 Ankur Desai (2023), AmeriFlux BASE US-CS2 Tri county school Pine Forest, Ver. 5-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1617711

US-CS3 Ankur Desai (2023), AmeriFlux BASE US-CS3 Central Sands Irrigated Agricultural Field, Ver. 4-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1617713

US-CS4 Ankur Desai (2023), AmeriFlux BASE US-CS4 Central Sands Irrigated Agricultural Field, Ver. 4-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1756417

US-CS5 Ankur Desai (2022), AmeriFlux BASE US-CS5 Central Sands Irrigated Agricultural Field, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1846663

US-CS6 Ankur Desai (2023), AmeriFlux BASE US-CS6 Central Sands Irrigated Agricultural Field, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/2001297

US-CS8 Ankur Desai (2023), AmeriFlux BASE US-CS8 Central Sands Irrigated Agricultural Field, Ver. 2-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/2001298

US-Cst Kim Novick (2022), AmeriFlux BASE US-Cst Crossett Experimental Forest, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1902275

US-CU1 Bhupendra Raut, Sujan Pal, Paytsar Muradyan, Joseph R. O’Brien, Max Berkelhammer, Matthew Tuftedal,
Max Grover, Scott Collis, Robert C. Jackson (2025), AmeriFlux BASE US-CU1 UIC Plant Research Labo-
ratory Chicago, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531143

US-Cwt A. Christopher Oishi (2025), AmeriFlux BASE US-Cwt Coweeta, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1671890

US-DBk Allen Goldstein, Joshua Apte (2025), AmeriFlux BASE US-DBk Berkeley Way West, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2567980

US-DFC Alison Duff, Ankur Desai (2025), AmeriFlux BASE US-DFC US Dairy Forage Research Center, Prairie du
Sac, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660340

US-DFK Alison Duff, Ankur Desai, Valentin Picasso Risso (2021), AmeriFlux BASE US-DFK Dairy Forage Research
Center - Kernza, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1825937

US-Dia Sonia Wharton (2016), AmeriFlux BASE US-Dia Diablo, Ver. 1-1, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246146
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US-Dix Ken Clark (2025), AmeriFlux BASE US-Dix Fort Dix, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246045

US-Dk1 Chris Oishi, Kim Novick, Paul Stoy (2018), AmeriFlux BASE US-Dk1 Duke Forest-open field, Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246046

US-Dk2 Chris Oishi, Kim Novick, Paul Stoy (2018), AmeriFlux BASE US-Dk2 Duke Forest-hardwoods, Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246047

US-Dk3 Chris Oishi, Kim Novick, Paul Stoy (2018), AmeriFlux BASE US-Dk3 Duke Forest - loblolly pine, Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246048

US-Dmg Ariane Arias-Ortiz, Dennis Baldocchi (2025), AmeriFlux BASE US-Dmg Dutch Slough Marsh Gilbert Tract,
Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1964086

US-DPW Charles Ross Hinkle, Rosvel Bracho (2019), AmeriFlux BASE US-DPW Disney Wilderness Preserve Wetland,
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1562387

US-DS1 Nick Christen (2024), AmeriFlux BASE US-DS1 Staten Corn 1, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2407202

US-DS2 Steve Deverel (2024), AmeriFlux BASE US-DS2 Staten Corn 2, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2407203

US-DS3 Michael R. Schuppenhauer, Sebastien C. Biraud, Steve Deverel, Stephen Chan (2025), AmeriFlux BASE
US-DS3 Staten Rice 1, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1890490

US-DUF John Frank (2025), AmeriFlux BASE US-DUF Denver Urban Field Station, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2567981

US-EA4 Tyson McKinney (2025), AmeriFlux BASE US-EA4 EAA Field Research Park Woodland, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2315767

US-EA5 Tyson McKinney (2024), AmeriFlux BASE US-EA5 Uvalde Ranch Mesquite Woodland, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2204056

US-EA6 Preston Fleck (2024), AmeriFlux BASE US-EA6 Camp Wood Shield Ranch Oak Savannah, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/2315768

US-EDN Patty Oikawa (2025), AmeriFlux BASE US-EDN Eden Landing Ecological Reserve, Ver. 4-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1543381

US-EKH Adina Paytan (2025), AmeriFlux BASE US-EKH Elkhorn Slough Hester Marsh, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2479624

US-EKN Adina Paytan (2025), AmeriFlux BASE US-EKN Elkhorn Slough North Marsh, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2531144

US-EKP Adina Paytan (2025), AmeriFlux BASE US-EKP Elkhorn Slough Porter Marsh, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2479625

US-Elm Gregory Starr, Steve Oberbauer (2025), AmeriFlux BASE US-Elm Everglades (long hydroperiod marsh), Ver.
7-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246118

US-EML Rosvel Bracho, Gerardo Celis, Heidi Rodenhizer, Craig See, Edward A. Schuur (2021), AmeriFlux BASE
US-EML Eight Mile Lake Permafrost thaw gradient, Healy Alaska., Ver. 4-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1418678

US-Esm Gregory Starr, Steve Oberbauer (2025), AmeriFlux BASE US-Esm Everglades (short hydroperiod marsh),
Ver. 7-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246119

US-EvM Gregory Starr, Steven F. Oberbuer (2024), AmeriFlux BASE US-EvM Everglades Saltwater intrusion marsh,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2229155

US-Fcr Masahito Ueyama, Hiroki Iwata, Yoshinobu Harazono (2023), AmeriFlux BASE US-Fcr Cascaden Ridge Fire
Scar, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1562388

US-Fmf Sabina Dore, Thomas Kolb (2019), AmeriFlux BASE US-Fmf Flagstaff - Managed Forest, Ver. 6-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246050

US-Fo1 John Kochendorfer, Praveena Krishnan, Mark Heuer (2025), AmeriFlux BASE US-Fo1 Flux Observations
of Carbon from an Airborne Laboratory (FOCAL) Campaign Site 1, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2531145

US-Fo2 Praveena Krishnan, Mark Heuer (2025), AmeriFlux BASE US-Fo2 Flux Observations of Carbon
from an Airborne Laboratory (FOCAL) Campaign Site 2, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2531146

US-Fuf Sabina Dore, Thomas Kolb (2019), AmeriFlux BASE US-Fuf Flagstaff - Unmanaged Forest, Ver. 6-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246051

US-Fwf Sabina Dore, Thomas Kolb (2019), AmeriFlux BASE US-Fwf Flagstaff - Wildfire, Ver. 8-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246052

US-GBT Bill Massman (2016), AmeriFlux BASE US-GBT GLEES Brooklyn Tower, Ver. 1-1, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1375200

US-GL1 Chris Spence (2024), AmeriFlux BASE US-GL1 Stannard Rock, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2204057

US-GLE John Frank, George Valentine, Bill Massman (2021), AmeriFlux BASE US-GLE GLEES, Ver. 8-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246056
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US-Ha1 J. William Munger (2025), AmeriFlux BASE US-Ha1 Harvard Forest EMS Tower (HFR1), Ver. 25-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246059

US-Ha2 Julian Hadley, J. William Munger (2025), AmeriFlux BASE US-Ha2 Harvard Forest Hemlock Site, Ver. 14-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246060

US-HB1 Jeremy D. Forsythe, Michael A. Kline, Thomas L. O’Halloran (2023), AmeriFlux BASE US-HB1 North Inlet
Crab Haul Creek, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660341

US-HB2 Jeremy D. Forsythe, Michael A. Kline, Thomas L. O’Halloran (2020), AmeriFlux BASE US-HB2 Hobcaw
Barony Mature Longleaf Pine, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660342

US-HB3 Jeremy D. Forsythe, Michael A. Kline, Thomas L. O’Halloran (2023), AmeriFlux BASE US-
HB3 Hobcaw Barony Longleaf Pine Restoration, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1660343

US-HB4 Tom O’Halloran (2025), AmeriFlux BASE US-HB4 Minim Creek Brackish Impoundment, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2001299

US-HBK Eric Kelsey, Mark Green (2023), AmeriFlux BASE US-HBK Hubbard Brook Experimental Forest, Ver. 2-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1634881

US-Hn2 Heping Liu, Maoyi Huang, Xingyuan Chen (2019), AmeriFlux BASE US-Hn2 Hanford 100H grassland, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1562389

US-Hn3 Heping Liu, Maoyi Huang, Xingyuan Chen (2019), AmeriFlux BASE US-Hn3 Hanford 100H sagebrush, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1543379

US-Ho1 David Hollinger (2025), AmeriFlux BASE US-Ho1 Howland Forest (main tower), Ver. 11-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246061

US-Ho2 David Hollinger (2025), AmeriFlux BASE US-Ho2 Howland Forest (west tower), Ver. 8-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246062

US-Ho3 David Hollinger (2025), AmeriFlux BASE US-Ho3 Howland Forest (harvest site), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246063

US-HRA Benjamin R. K. Runkle (2021), AmeriFlux BASE US-HRA Humnoke Farm Rice Field â€“ Field A, Ver. 3-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1543376

US-HRC Michele L. Reba (2021), AmeriFlux BASE US-HRC Humnoke Farm Rice Field â€“ Field C, Ver. 3-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1543375

US-Hsm Ariane Arias-Ortiz, Daphne Szutu, Joseph Verfaillie, Dennis Baldocchi (2025), AmeriFlux BASE US-Hsm
Hill Slough Marsh, Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1890483

US-HVs Akira Miyata, Yoshinobu Harazono (2023), AmeriFlux BASE US-HVs Happy Valley Wet Sedge Tundra, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1964087

US-HWB Sarah Goslee (2023), AmeriFlux BASE US-HWB USDA ARS Pasture Sytems and Watershed Management Re-
search Unit- Hawbecker Site, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1811363

US-IAB Vanloocke Andy (2025), AmeriFlux BASE US-IAB Iowa State University NE tower, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2567982

US-IAM Vanloocke Andy (2025), AmeriFlux BASE US-IAM Iowa State University Miscanthus, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2567983

US-IB1 Roser Matamala (2019), AmeriFlux BASE US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricul-
tural site), Ver. 8-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246065

US-IB2 Roser Matamala (2019), AmeriFlux BASE US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie
site), Ver. 8-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246066

US-ICh Eugenie Euskirchen, Gaius Shaver, Syndonia Bret-Harte (2025), AmeriFlux BASE US-ICh Imnavait Creek
Watershed Heath Tundra, Ver. 6-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246133

US-ICs Eugenie Euskirchen, Gaius Shaver, Syndonia Bret-Harte (2025), AmeriFlux BASE US-ICs Imnavait Creek Wa-
tershed Wet Sedge Tundra, Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246130

US-ICt Eugenie Euskirchen, Gaius Shaver, Syndonia Bret-Harte (2025), AmeriFlux BASE US-ICt Imnavait Creek
Watershed Tussock Tundra, Ver. 7-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246131

US-INa Kenneth Davis (2025), AmeriFlux BASE US-INa INFLUX - Cemetery Turfgrass Tower, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2001300

US-INb Kenneth Davis (2025), AmeriFlux BASE US-INb INFLUX - Golf Course, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2001301

US-INc Kenneth Davis (2025), AmeriFlux BASE US-INc INFLUX - Downtown Indianapolis (Site-3), Ver. 3-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1987603

US-INd Kenneth Davis (2023), AmeriFlux BASE US-INd INFLUX - Agricultural Site East near Pittsboro, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001302

US-INe Kenneth Davis (2023), AmeriFlux BASE US-INe INFLUX - Agricultural Site West near Pittsboro, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001303

US-INf Kenneth Davis (2023), AmeriFlux BASE US-INf INFLUX - East 21st St (Site 2), Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2001304

US-INg Brandon R Forsythe, Jason Horne, Kenneth Davis (2025), AmeriFlux BASE US-INg INFLUX - Wayne Twp
Comm (Site-7), Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001305
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US-INi Kenneth Davis (2023), AmeriFlux BASE US-INi INFLUX - Agricultural Site East of Indianapolis (Site-9a),
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001306

US-INj Kenneth Davis (2023), AmeriFlux BASE US-INj INFLUX - Agricultural Site East of Indianapolis (Site-9b),
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001307

US-INn Kenneth Davis (2023), AmeriFlux BASE US-INn INFLUX - Agricultural Site West of Indianapolis (Site-14a),
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001308

US-INp Kenneth Davis (2023), AmeriFlux BASE US-INp INFLUX - Agricultural Site West of Indianapolis (Site-14b)
, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001309

US-Jo1 Craig Tweedie (2024), AmeriFlux BASE US-Jo1 Jornada Experimental Range Bajada Site, Ver. 4-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1767833

US-Jo2 Enrique R. Vivoni, Eli R. Perez-Ruiz (2022), AmeriFlux BASE US-Jo2 Jornada Experimental Range Mixed
Shrubland, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617696

US-JRn Derek Johnson, Gil Bohrer, Jaclyn Hatala Matthes (2020), AmeriFlux BASE US-JRn WV Jacks Run, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617714

US-KFS Nathaniel Brunsell (2020), AmeriFlux BASE US-KFS Kansas Field Station, Ver. 7-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246132

US-KL1 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KL1 KBS Lux Arbor Reserve Corn, Ver.
3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660344

US-KL2 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KL2 KBS Lux Arbor Reserve Switchgrass,
Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1644212

US-KL3 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KL3 KBS Lux Arbor Reserve Prairie, Ver.
4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1647438

US-KLS Nathaniel Brunsell (2021), AmeriFlux BASE US-KLS Kansas Land Institute, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1498745

US-KM1 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KM1 KBS Marshall Farms Corn, Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1647439

US-KM2 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KM2 KBS Marshall Farms Prairie, Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1647440

US-KM3 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KM3 KBS Marshall Farms Switchgrass, Ver.
3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660345

US-KM4 G. Philip Robertson, Jiquan Chen (2022), AmeriFlux BASE US-KM4 KBS Marshall Farms Smooth Brome
Grass (Ref), Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1634882

US-Kon Nathaniel Brunsell (2020), AmeriFlux BASE US-Kon Konza Prairie LTER (KNZ), Ver. 5-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246068

US-KPL Patrick Sullivan (2023), AmeriFlux BASE US-KPL Lily Lake Fen, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1865478

US-KS1 Bert Drake, Ross Hinkle, Rosvel Bracho, Thomas Powell, Sabina Dore (2019), AmeriFlux
BASE US-KS1 Kennedy Space Center (slash pine), Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246069

US-KS2 Bert Drake, Ross Hinkle, Rosvel Bracho, Sabina Dore, Thomas Powell (2019), AmeriFlux
BASE US-KS2 Kennedy Space Center (scrub oak), Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246070

US-KS3 Rosvel Bracho, Charles Ross Hinkle (2019), AmeriFlux BASE US-KS3 Kennedy Space Center (salt marsh),
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1562390

US-KUT Joe McFadden (2016), AmeriFlux BASE US-KUT KUOM Turfgrass Field, Ver. 1-1, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246145

US-LA1 Ken Krauss (2019), AmeriFlux BASE US-LA1 Pointe-aux-Chenes Brackish Marsh, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1543386

US-LA2 Eric Ward, Sergio Merino, Camille Stagg, Ken Krauss (2025), AmeriFlux BASE US-LA2 Salvador WMA
Freshwater Marsh, Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1543387

US-LA3 Eric Ward, Sergio Merino, Camille Stagg, Ken Krauss (2025), AmeriFlux BASE US-LA3 Barataria Bay Saline
Marsh, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2229156

US-Lin Silvano Fares (2019), AmeriFlux BASE US-Lin Lindcove Orange Orchard, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246830

US-LL1 Gregory Starr (2021), AmeriFlux BASE US-LL1 Longleaf Pine - Baker (Mesic site), Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1773395

US-LL2 Gregory Starr (2021), AmeriFlux BASE US-LL2 Longleaf Pine - Dubignion (Intermediate site), Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1773396

US-LL3 Gregory Starr (2021), AmeriFlux BASE US-LL3 Longleaf Pine - Red Dirt (Xeric site), Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1773397

US-Los Ankur Desai (2025), AmeriFlux BASE US-Los Lost Creek, Ver. 32-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246071
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US-LS1 Russell Scott (2020), AmeriFlux BASE US-LS1 San Pedro River Lewis Springs Sacaton Grassland, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660346

US-LS2 Russell Scott (2020), AmeriFlux BASE US-LS2 San Pedro River Lewis Springs Savanna, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1660347

US-MBP Tyler Roman, Andrew C. Hill, Randy Kolka, Timothy Griffis, Julian Deventer (2025), Amer-
iFlux BASE US-MBP Marcell Bog Lake Peatland, Ver. 5-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1767835

US-MC1 Paul Stoy, Jessica Torrion (2020), AmeriFlux BASE US-MC1 Creston, Montana pivot-irrigated spring wheat,
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660348

US-MC2 Paul Stoy, Jessica Torrion (2021), AmeriFlux BASE US-MC2 Creston, Montana pivot-irrigated spring wheat
2, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1829506

US-Me1 Bev Law (2019), AmeriFlux BASE US-Me1 Metolius - Eyerly burn, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246074

US-Me2 Bev Law (2025), AmeriFlux BASE US-Me2 Metolius mature ponderosa pine, Ver. 21-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246076

US-Me3 Bev Law (2018), AmeriFlux BASE US-Me3 Metolius-second young aged pine, Ver. 4-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246077

US-Me4 Bev Law (2025), AmeriFlux BASE US-Me4 Metolius-old aged ponderosa pine, Ver. 7-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246078

US-Me5 Bev Law (2021), AmeriFlux BASE US-Me5 Metolius-first young aged pine, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246079

US-Me6 Bev Law (2025), AmeriFlux BASE US-Me6 Metolius Young Pine Burn, Ver. 18-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246128

US-Me7 Chad Hanson, Chris Still (2024), AmeriFlux BASE US-Me7 Metolius Low Burn Severity Subcanopy, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2331381

US-MEF John Frank (2025), AmeriFlux BASE US-MEF Manitou Experimental Forest, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2567984

US-Men Ankur Desai (2018), AmeriFlux BASE US-Men Lake Mendota, Center for Limnology Site, Ver. 3-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1433375

US-MH1 Paul Stoy, Kent McVay (2020), AmeriFlux BASE US-MH1 Huntley, Montana irrigated barley site 1, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660349

US-MH2 Paul Stoy, Kent McVay (2021), AmeriFlux BASE US-MH2 Huntley, Montana irrigated barley site 2, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1825938

US-Mi1 Sarah Goslee (2022), AmeriFlux BASE US-Mi1 LTAR UCB (Upper Chesapeake Bay) Miscanthus 1, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1865479

US-Mi2 Sarah Goslee (2022), AmeriFlux BASE US-Mi2 LTAR UCB (Upper Chesapeake Bay) Miscanthus 2, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1865480

US-Mi3 Sarah Goslee (2022), AmeriFlux BASE US-Mi3 LTAR UCB (Upper Chesapeake Bay) Miscanthus 3, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1865481

US-Mj1 Paul C. Stoy, Elizabeth Vick (2020), AmeriFlux BASE US-Mj1 Montana Judith Basin wheat field, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617715

US-Mj2 Paul C. Stoy, Elizabeth Vick (2020), AmeriFlux BASE US-Mj2 Montana Judith Basin summer fallow field,
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617716

US-MMS Kim Novick, Rich Phillips (2025), AmeriFlux BASE US-MMS Morgan Monroe State Forest, Ver. 29-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246080

US-MN1 Christina Helseth, Jane Johnson (2025), AmeriFlux BASE US-MN1 Morris: Corn-Soybean with Cover Crops,
Strip Tillage, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2407204

US-MN2 Christina Helseth, Jane Johnson (2025), AmeriFlux BASE US-MN2 Morris: Corn-Soybean-Wheat with Cover
Crops, Minimal Tillage, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2407205

US-MN3 Christina Helseth, Jane Johnson (2025), AmeriFlux BASE US-MN3 Morris: Corn-Soybean, Conventional
Tillage, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2407206

US-Mo1 Adam Schreiner-McGraw (2025), AmeriFlux BASE US-Mo1 LTAR CMRB Field 1 (CMRB ASP), Ver. 4-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1870588

US-Mo2 Adam Schreiner-McGraw (2025), AmeriFlux BASE US-Mo2 LTAR CMRB Tucker Prairie (CMRB TP), Ver.
4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1902276

US-Mo3 Adam Schreiner-McGraw (2024), AmeriFlux BASE US-Mo3 LTAR CMRB Field 3 (CMRB BAU), Ver. 3-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1870589

US-MOz Jeffrey Wood, Lianhong Gu (2022), AmeriFlux BASE US-MOz Missouri Ozark Site, Ver. 11-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246081

US-Mpj Marcy Litvak (2024), AmeriFlux BASE US-Mpj Mountainair Pinyon-Juniper Woodland, Ver. 25-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1246123

US-MSR Paul Stoy (2022), AmeriFlux BASE US-MSR Montana Sun River winter wheat , Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1617717
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US-MtB Greg Barron-Gafford (2025), AmeriFlux BASE US-MtB Mt Bigelow, Ver. 5-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1579717

US-MVF Paul Stoy (2021), AmeriFlux BASE US-MVF Montana Vaughn Fallow, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1829507

US-MVW Paul Stoy (2021), AmeriFlux BASE US-MVW Montana Vaughn Wheat, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1829508

US-Myb Jaclyn Hatala Matthes, Cove Sturtevant, Patty Oikawa, Samuel D Chamberlain, Daphne Szutu, Ariane Arias-
Ortiz, Joseph Verfaillie, Dennis Baldocchi (2025), AmeriFlux BASE US-Myb Mayberry Wetland, Ver. 15-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246139

US-NC1 Asko Noormets, Ge Sun, Michael Gavazzi, Steve McNulty, Jean-Christophe Domec, John
King (2018), AmeriFlux BASE US-NC1 NC Clearcut, Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246082

US-NC2 Asko Noormets, Ge Sun, Michael Gavazzi, Jean-Christophe Domec, Steve McNulty, Guofang Miao,
Maricar Aguilos, Bhaskar Mitra, Kevan Minick, John King, Linqing Yang, Prajaya Prajapati
(2025), AmeriFlux BASE US-NC2 NC Loblolly Plantation, Ver. 18-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246083

US-NC3 Asko Noormets, Michael Gavazzi, Maricar Aguilos, John King, Bhaskar Mitra, Jean-Christophe
Domec (2022), AmeriFlux BASE US-NC3 NC Clearcut#3, Ver. 4-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1419506

US-NC4 Asko Noormets, John King, Bhaskar Mitra, Guofang Miao, Maricar Aguilos, Kevan Minick, Prajaya Prajapati,
Jean-Christophe Domec (2025), AmeriFlux BASE US-NC4 NC AlligatorRiver, Ver. 7-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1480314

US-Ne1 Andy Suyker (2025), AmeriFlux BASE US-Ne1 Mead - irrigated continuous maize site, Ver. 19-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246084

US-Ne2 Andy Suyker (2024), AmeriFlux BASE US-Ne2 Mead - irrigated maize-soybean rotation site, Ver. 18-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246085

US-Ne3 Andy Suyker (2025), AmeriFlux BASE US-Ne3 Mead - rainfed maize-soybean rotation site, Ver. 19-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246086

US-NGB Margaret Torn, Sigrid Dengel (2023), AmeriFlux BASE US-NGB NGEE Arctic Barrow, Ver. 5-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1436326

US-NGC Margaret Torn, Sigrid Dengel (2023), AmeriFlux BASE US-NGC NGEE Arctic Council, Ver. 3-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1634883

US-NMj Jiquan Chen (2019), AmeriFlux BASE US-NMj Northern Michigan Jack Pine Stand, Ver. 3-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246087

US-NR1 Peter D. Blanken, Russel K. Monson, Sean P. Burns, David R. Bowling, Andrew A. Turnipseed (2025),
AmeriFlux BASE US-NR1 Niwot Ridge Forest (LTER NWT1), Ver. 23-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246088

US-NR3 John Knowles (2025), AmeriFlux BASE US-NR3 Niwot Ridge Alpine (T-Van West), Ver. 6-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1804491

US-NR4 John Knowles (2025), AmeriFlux BASE US-NR4 Niwot Ridge Alpine (T-Van East), Ver. 6-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1804492

US-Oho Jiquan Chen, Housen Chu, Asko Noormets (2021), AmeriFlux BASE US-Oho Oak Openings, Ver. 7-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246089

US-ONA Maria L. Silveira, Rosvel Bracho (2024), AmeriFlux BASE US-ONA Florida pine flatwoods, Ver. 4-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1660350

US-OPE Joe Alfieri (2024), AmeriFlux BASE US-OPE Optimizing Production Inputs for Economic and Environmental
Enhancement (OPE3), Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2315769

US-ORv Gil Bohrer (2020), AmeriFlux BASE US-ORv Olentangy River Wetland Research Park, Ver. 3-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246135

US-OWC Gil Bohrer, Janice Kerns (2024), AmeriFlux BASE US-OWC Old Woman Creek, Ver. 5-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1418679

US-PAS Rosvel Bracho, Maria L. Silveira (2023), AmeriFlux BASE US-PAS Florida, Paspalum notatum pasture, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1870590

US-PFa Ankur Desai (2025), AmeriFlux BASE US-PFa Park Falls/WLEF, Ver. 31-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246090

US-PFb Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFb NW1 Pine-1 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717850

US-PFc Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFc NW2 Aspen-1 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717851

US-PFd Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFd NW3 Tussock-1 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717852

US-PFe Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFe NW4 Lake-1 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717853
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US-PFf Ankur Desai, Brian Butterworth, Jonathan Thom, Paul Stoy (2025), AmeriFlux BASE US-PFf NW5 Grass-1
CHEESEHEAD 2019, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1890484

US-PFg Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFg NE1 Pine-2 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717854

US-PFh Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFh NE2 Pine-3 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717855

US-PFi Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFi NE3 Hardwood-1
CHEESEHEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717856

US-PFj Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFj NE4 Maple-1 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717857

US-PFk Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFk SW1 Aspen-2 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717858

US-PFL Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFL SW2 Aspen-3 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717859

US-PFm Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFm SW3 Hardwood-2
CHEESEHEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717860

US-PFn Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFn SW4 Hardwood-3
CHEESEHEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717861

US-PFo Ankur Desai, Brian Butterworth, Jonathan Thom, Paul Stoy (2022), AmeriFlux BASE US-PFo SE1 Lake-2
CHEESEHEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1880912

US-PFp Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFp SE2 Hardwood-4
CHEESEHEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717862

US-PFq Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFq SE3 Aspen-4 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717863

US-PFr Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFr SE4 Tussock-2 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717864

US-PFs Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFs SE5 Aspen-5 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717865

US-PFt Ankur Desai, Brian Butterworth, Steven Oncley (2020), AmeriFlux BASE US-PFt SE6 Pine-4 CHEESE-
HEAD 2019, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1717866

US-PHM Anne Giblin (2021), AmeriFlux BASE US-PHM Plum Island High Marsh, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1543377

US-Pnp Ankur Desai (2023), AmeriFlux BASE US-Pnp Lake Mendota, Picnic Point Site, Ver. 8-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1433376

US-Prr Go Iwahana, Hideki Kobayashi, Hiroki Ikawa, Rikie Suzuki (2023), AmeriFlux BASE US-
Prr Poker Flat Research Range Black Spruce Forest, Ver. 4-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246153

US-PSH Ray G. Anderson (2020), AmeriFlux BASE US-PSH USSL San Joaquin Valley Pistachio High, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617719

US-PSL Ray G. Anderson (2020), AmeriFlux BASE US-PSL USSL San Joaquin Valley Pistachio Low, Ver. 1-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617720

US-RC1 Jinshu Chi, Brian Lamb, Shelley Pressley (2021), AmeriFlux BASE US-RC1 Cook Agronomy Farm - No Till,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498748

US-RC2 Jinshu Chi, Brian Lamb, Shelley Pressley (2021), AmeriFlux BASE US-RC2 Cook Agronomy Farm - Con-
ventional Till, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498747

US-RC3 Jinshu Chi, Brian Lamb, Shelley Pressley (2021), AmeriFlux BASE US-RC3 WSU Lind Dryland Research
Station, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498749

US-RC4 Jinshu Chi, Brian Lamb, Shelley Pressley (2021), AmeriFlux BASE US-RC4 Moscow Mountain on-farm site,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498750

US-RC5 Jinshu Chi, Brian Lamb, Shelley Pressley (2021), AmeriFlux BASE US-RC5 Moses Lake on-farm site, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1498751

US-RGA Michael R. Schuppenhauer, Sebastien C. Biraud, Stephen Chan (2025), AmeriFlux BASE US-RGA Arkansas
Corn Farm, Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1880913

US-RGB Michael Schuppenhauer, Sebastien C. Biraud, Stephen Chan (2025), AmeriFlux BASE US-RGB Butte County
Rice Farm, Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1870591

US-RGF Michael R. Schuppenhauer, Sebastien C. Biraud, Stephen Chan (2025), AmeriFlux BASE US-RGF Stanislaus
County Forage Farm, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001310

US-RGo Michael R. Schuppenhauer, Sebastien C. Biraud, Stephen Chan (2025), AmeriFlux BASE US-RGo Glenn
County Organic Rice Farm, Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1880914

US-RGW Michael R. Schuppenhauer, Sebastien C. Biraud, Stephen Chan (2025), AmeriFlux BASE US-RGW Desha
County Rice Farm, Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1880915

US-Rls Gerald Flerchinger (2025), AmeriFlux BASE US-Rls RCEW Low Sagebrush, Ver. 7-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1418682
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US-Rms Gerald Flerchinger (2025), AmeriFlux BASE US-Rms RCEW Mountain Big Sagebrush, Ver. 7-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1375202

US-Ro1 John Baker, Tim Griffis, Timothy Griffis (2018), AmeriFlux BASE US-Ro1 Rosemount- G21, Ver. 5-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246092

US-Ro2 John Baker, Tim Griffis (2023), AmeriFlux BASE US-Ro2 Rosemount- C7, Ver. 2-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1418683

US-Ro3 John Baker, Tim Griffis (2019), AmeriFlux BASE US-Ro3 Rosemount- G19, Ver. 4-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246093

US-Ro4 John Baker, Tim Griffis (2024), AmeriFlux BASE US-Ro4 Rosemount Prairie, Ver. 26-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1419507

US-Ro5 John Baker, Tim Griffis (2024), AmeriFlux BASE US-Ro5 Rosemount I18 South, Ver. 26-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1419508

US-Ro6 John Baker, Tim Griffis (2024), AmeriFlux BASE US-Ro6 Rosemount I18 North, Ver. 26-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1419509

US-Rpf Masahito Ueyama, Hiroki Iwata, Yoshinobu Harazono (2025), AmeriFlux BASE US-Rpf Poker Flat Re-
search Range: Succession from fire scar to deciduous forest, Ver. 11-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1579540

US-RRC Lisa Haber, Katrina Poppe (2024), AmeriFlux BASE US-RRC Rice Rivers Center Marsh, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2331382

US-Rwe Gerald Flerchinger, Michele L. Reba (2020), AmeriFlux BASE US-Rwe RCEW Reynolds Mountain East, Ver.
1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617721

US-Rwf Gerald Flerchinger (2025), AmeriFlux BASE US-Rwf RCEW Upper Sheep Prescibed Fire, Ver. 5-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1617724

US-Rws Gerald Flerchinger (2025), AmeriFlux BASE US-Rws Reynolds Creek Wyoming big sagebrush, Ver. 7-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1375201

US-Sag Akira Miyata, Yoshinobu Harazono (2023), AmeriFlux BASE US-Sag Sag River, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1987604

US-SdH Dave Billesbach, Tim J. Arkebauer (2016), AmeriFlux BASE US-SdH Nebraska SandHills Dry Valley, Ver.
1-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246136

US-Seg Marcy Litvak (2025), AmeriFlux BASE US-Seg Sevilleta grassland, Ver. 26-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246124

US-Ses Marcy Litvak (2025), AmeriFlux BASE US-Ses Sevilleta shrubland, Ver. 26-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246125

US-SHC Sebastian Wolf (2025), AmeriFlux BASE US-SHC Sagehen Creek Field Station, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2567985

US-Slt Ken Clark (2025), AmeriFlux BASE US-Slt Silas Little- New Jersey, Ver. 6-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246096

US-Snd Matteo Detto, Cove Sturtevant, Patty Oikawa, Joseph Verfaillie, Dennis Baldocchi (2016), AmeriFlux BASE
US-Snd Sherman Island, Ver. 2-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246094

US-Sne Robert Shortt, Kyle Hemes, Daphne Szutu, Joseph Verfaillie, Dennis Baldocchi (2021), Ameri-
Flux BASE US-Sne Sherman Island Restored Wetland, Ver. 7-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1418684

US-Snf Kuno Kusak, Camilo Rey Sanchez, Daphne Szutu, Dennis Baldocchi (2020), AmeriFlux BASE US-Snf Sher-
man Barn, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1579718

US-SP1 Rosvel Bracho, Timothy A. Martin (2023), AmeriFlux BASE US-SP1 Slashpine-Austin Cary- 65yrs nat regen,
Ver. 5-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246100

US-SP2 Rosvel Bracho, Timothy Martin (2016), AmeriFlux BASE US-SP2 Slashpine-Mize-clearcut-3yr,regen, Ver.
3-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246101

US-SP3 Rosvel Bracho, Timothy Martin (2016), AmeriFlux BASE US-SP3 Slashpine-Donaldson-mid-rot- 12yrs, Ver.
3-1, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246102

US-SP4 Rosvel Bracho, Timothy A. Martin (2019), AmeriFlux BASE US-SP4 Slashpine-Rayonier-mid-rot- 12yrs, Ver.
3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246103

US-SRC Shirley Kurc (2019), AmeriFlux BASE US-SRC Santa Rita Creosote, Ver. 6-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246127

US-SRG Russell Scott (2025), AmeriFlux BASE US-SRG Santa Rita Grassland, Ver. 18-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246154

US-SRM Russell Scott (2025), AmeriFlux BASE US-SRM Santa Rita Mesquite, Ver. 29-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246104

US-Srr Brian Bergamaschi, Lisamarie Windham-Myers (2018), AmeriFlux BASE US-Srr Suisun marsh - Rush Ranch,
Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1418685

US-SRS Enrique R. Vivoni (2022), AmeriFlux BASE US-SRS Santa Rita Savanna, Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1660351
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US-SSH Brandon R. Forsythe, Jason Horne, Kenneth J. Davis (2022), AmeriFlux BASE US-SSH
Susquehanna Shale Hills Critical Zone Observatory, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1880916

US-Sta Brent Ewers, Elise Pendall (2019), AmeriFlux BASE US-Sta Saratoga, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246831

US-StJ Rodrigo Vargas (2020), AmeriFlux BASE US-StJ St Jones Reserve, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1480316

US-SuM Dong Wang, Ray Anderson (2019), AmeriFlux BASE US-SuM Maui Sugarcane Middle, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246158

US-SuS Dong Wang, Ray Anderson (2019), AmeriFlux BASE US-SuS Maui Sugarcane Lee/Sheltered, Ver. 2-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246159

US-SuW Dong Wang, Ray Anderson (2019), AmeriFlux BASE US-SuW Maui Sugarcane Windy, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246157

US-Syv Ankur Desai (2025), AmeriFlux BASE US-Syv Sylvania Wilderness Area, Ver. 30-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246106

US-TaS Sparkle Malone, Tiffany Troxler (2024), AmeriFlux BASE US-TaS Taylor Slough/Panhandle, Ver. 1-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2331383

US-TEF Paul Stoy (2024), AmeriFlux BASE US-TEF Tenderfoot Creek Experimental Forest, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2315770

US-TLR Camilo Rey-Sanchez (2025), AmeriFlux BASE US-TLR Timberlake Observatory for Wetland Restoration
(TOWeR), Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2531147

US-Ton Siyan Ma, Liukang Xu, Joseph Verfaillie, Dennis Baldocchi (2025), AmeriFlux BASE US-Ton Tonzi Ranch,
Ver. 23-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1245971

US-TrB Paul Stoy, Ankur Desai, Hilary Dugan, Paul Schramm (2025), AmeriFlux BASE US-TrB Trout Bog, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1804493

US-TrS Paul Stoy, Ankur Desai, Hilary Dugan, Paul Schramm (2025), AmeriFlux BASE US-TrS Trout Lake Area
South Sparkling Bog, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1825939

US-Tur Paul Stoy, Adam Cook, John Dore (2025), AmeriFlux BASE US-Tur Turner Ranch, Ver. 2-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1825940

US-Tw1 Alex Valach, Robert Shortt, Daphne Szutu, Elke Eichelmann, Sara Knox, Kyle Hemes, Joseph Verfaillie,
Dennis Baldocchi (2024), AmeriFlux BASE US-Tw1 Twitchell Wetland West Pond, Ver. 11-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246147

US-Tw2 Cove Sturtevant, Joseph Verfaillie, Dennis Baldocchi (2019), AmeriFlux BASE US-Tw2 Twitchell Corn, Ver.
2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246148

US-Tw3 Samuel D Chamberlain, Patty Oikawa, Cove Sturtevant, Daphne Szutu, Joseph Verfaillie, Dennis Bal-
docchi (2018), AmeriFlux BASE US-Tw3 Twitchell Alfalfa, Ver. 5-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246149

US-Tw4 Elke Eichelmann, Robert Shortt, Sara Knox, Camilo Rey Sanchez, Alex Valach, Cove Sturtevant, Daphne
Szutu, Joseph Verfaillie, Dennis Baldocchi (2024), AmeriFlux BASE US-Tw4 Twitchell East End Wetland,
Ver. 14-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246151

US-Tw5 Alex Valach, Kuno Kasak, Daphne Szutu, Joseph Verfaillie, Dennis Baldocchi (2020), AmeriFlux BASE
US-Tw5 East Pond Wetland, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1543380

US-Twt Sara Knox, Jaclyn Hatala Matthes, Joseph Verfaillie, Dennis Baldocchi (2023), AmeriFlux BASE US-Twt
Twitchell Island, Ver. 7-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246140

US-Uaf Masahito Ueyama, Hiroki Iwata, Yoshinobu Harazono (2025), AmeriFlux BASE US-Uaf University of Alaska,
Fairbanks, Ver. 13-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1480322

US-UC1 Sarah Goslee (2025), AmeriFlux BASE US-UC1 LTAR UCB (Upper Chesapeake Bay) EC1, Ver. 5-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1865482

US-UC2 Sarah Goslee (2025), AmeriFlux BASE US-UC2 LTAR UCB (Upper Chesapeake Bay) EC2, Ver. 5-5, Amer-
iFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1865483

US-UiA Carl Bernacchi, Bethany Blakely, Caitlin Moore, Taylor Pederson (2025), AmeriFlux BASE US-UiA University
of Illinois Switchgrass, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617725

US-UiB Carl J Bernacchi, Bethany Blakely, Caitlin Moore, Taylor Pederson (2025), AmeriFlux BASE US-UiB Uni-
versity of Illinois Miscanthus, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1846664

US-UiC Carl J Bernacchi, Bethany Blakely, Caitlin Moore, Taylor Pederson (2022), AmeriFlux BASE US-UiC Uni-
versity of Illinois Maize-Soy, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1846665

US-UiD Carl Bernacchi, Bethany Blakely, Caitlin Moore, Taylor Pederson (2025), AmeriFlux BASE US-
UiD University of Illinois Restored Native Prairie, Ver. 2-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1987605

US-UiE Carl J Bernacchi (2025), AmeriFlux BASE US-UiE University of Illinois Sorghum-Soy, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2567986

US-UM3 Gil Bohrer (2018), AmeriFlux BASE US-UM3 Douglas Lake, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1480315

xxxiv



Site ID Citation

US-UMB Christopher Gough, Gil Bohrer, Peter Curtis (2025), AmeriFlux BASE US-UMB Univ. of Mich. Biological
Station, Ver. 22-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246107

US-UMd Christopher Gough, Gil Bohrer, Peter Curtis (2025), AmeriFlux BASE US-UMd UMBS Disturbance, Ver.
17-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246134

US-UTB Kathryn Ladig, Paul Inkenbrandt (2024), AmeriFlux BASE US-UTB UFLUX Bonneville Salt Flats, Ver. 2-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2001311

US-UTD Paul Inkenbrandt (2025), AmeriFlux BASE US-UTD UFLUX Dugout Ranch, Ver. 1-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/2531148

US-UTE Paul Inkenbrandt (2025), AmeriFlux BASE US-UTE UFLUX Escalante, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2531149

US-UTJ Paul Inkenbrandt (2025), AmeriFlux BASE US-UTJ UFLUX Bluff, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2531150

US-UTM Kathryn Ladig, Paul Inkenbrandt (2025), AmeriFlux BASE US-UTM UFLUX Matheson, Ver. 1-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/2507521

US-UTN Paul Inkenbrandt (2023), AmeriFlux BASE US-UTN UFLUX Nephi, Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2204058

US-UTP Paul Inkenbrandt (2025), AmeriFlux BASE US-UTP UFLUX Great Salt Lake Phragmites, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/2531151

US-UTV Kathryn Ladig, Paul Inkenbrandt (2025), AmeriFlux BASE US-UTV UFLUX Desert View, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/2531152

US-UTW Kathryn Ladig, Paul Inkenbrandt (2025), AmeriFlux BASE US-UTW UFLUX Wellington, Ver. 1-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/2507522

US-Var Siyan Ma, Liukang Xu, Joseph Verfaillie, Dennis Baldocchi (2025), AmeriFlux BASE US-Var Vaira Ranch-
Ione, Ver. 23-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1245984

US-Vcm Marcy Litvak (2024), AmeriFlux BASE US-Vcm Valles Caldera Mixed Conifer, Ver. 26-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246121

US-Vcp Marcy Litvak (2025), AmeriFlux BASE US-Vcp Valles Caldera Ponderosa Pine, Ver. 25-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246122

US-Vcs Marcy Litvak (2025), AmeriFlux BASE US-Vcs Valles Caldera Sulphur Springs Mixed Conifer, Ver. 18-5,
AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1418681

US-VT1 Kesondra Key, Kim Novick (2025), AmeriFlux BASE US-VT1 Vermillion Tributary Paired Crop-
land â€“ Site 1 (Corn/Soy; No Cover Crops), Ver. 1-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/2567994

US-VT2 Kesondra Key, Kim Novick (2025), AmeriFlux BASE US-VT2 Vermillion Tributary Paired Cropland â€“ Site
2 (Corn/Soy; Cover Crops), Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2567995

US-WCr Ankur Desai (2025), AmeriFlux BASE US-WCr Willow Creek, Ver. 32-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246111

US-Whs Russ Scott (2025), AmeriFlux BASE US-Whs Walnut Gulch Lucky Hills Shrub, Ver. 25-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246113

US-Wi0 Jiquan Chen (2020), AmeriFlux BASE US-Wi0 Young red pine (YRP), Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246016

US-Wi1 Jiquan Chen (2020), AmeriFlux BASE US-Wi1 Intermediate hardwood (IHW), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246015

US-Wi2 Jiquan Chen (2020), AmeriFlux BASE US-Wi2 Intermediate red pine (IRP), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246017

US-Wi3 Jiquan Chen (2020), AmeriFlux BASE US-Wi3 Mature hardwood (MHW), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246018

US-Wi4 Jiquan Chen (2020), AmeriFlux BASE US-Wi4 Mature red pine (MRP), Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246019

US-Wi5 Jiquan Chen (2020), AmeriFlux BASE US-Wi5 Mixed young jack pine (MYJP), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246020

US-Wi6 Jiquan Chen (2020), AmeriFlux BASE US-Wi6 Pine barrens #1 (PB1), Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246021

US-Wi7 Jiquan Chen (2020), AmeriFlux BASE US-Wi7 Red pine clearcut (RPCC), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246022

US-Wi8 Jiquan Chen (2020), AmeriFlux BASE US-Wi8 Young hardwood clearcut (YHW), Ver. 3-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246023

US-Wi9 Jiquan Chen (2020), AmeriFlux BASE US-Wi9 Young Jack pine (YJP), Ver. 3-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1246024

US-Wjs Marcy Litvak (2025), AmeriFlux BASE US-Wjs Willard Juniper Savannah, Ver. 25-5, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246120

US-Wkg Russell Scott (2025), AmeriFlux BASE US-Wkg Walnut Gulch Kendall Grasslands, Ver. 25-5, AmeriFlux
AMP, (Dataset). https://doi.org/10.17190/AMF/1246112
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US-Wlr David Cook, Richard L. Coulter (2018), AmeriFlux BASE US-Wlr Walnut River Watershed (Smileyburg),
Ver. 4-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1246115

US-WPT Jiquan Chen, Housen Chu (2019), AmeriFlux BASE US-WPT Winous Point North Marsh, Ver. 4-5, Ameri-
Flux AMP, (Dataset). https://doi.org/10.17190/AMF/1246155

US-Wrc Sonia Wharton (2016), AmeriFlux BASE US-Wrc Wind River Crane Site, Ver. 8-1, AmeriFlux AMP,
(Dataset). https://doi.org/10.17190/AMF/1246114

US-WT1 Craig Bednarz (2025), AmeriFlux BASE US-WT1 Kress, TX no-till cotton and grain sorghum production,
Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2407207

US-xAB NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xAB NEON Abby Road
(ABBY), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617726

US-xAE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xAE NEON Klemme Range
Research Station (OAES), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671891

US-xBA NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xBA NEON Barrow Environ-
mental Observatory (BARR), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671892

US-xBL NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xBL NEON Blandy Exper-
imental Farm (BLAN), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671893

US-xBN NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xBN NEON
Caribou Creek - Poker Flats Watershed (BONA), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1617727

US-xBR NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xBR NEON Bartlett Exper-
imental Forest (BART), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1579542

US-xCL NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xCL NEON LBJ National
Grassland (CLBJ), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671894

US-xCP NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xCP NEON
Central Plains Experimental Range (CPER), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1579720

US-xDC NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xDC NEON Dakota Coteau
Field School (DCFS), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617728

US-xDJ NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xDJ NEON Delta Junction
(DEJU), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1634884

US-xDL NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xDL NEON Dead Lake
(DELA), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1579721

US-xDS NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xDS NEON Disney Wilder-
ness Preserve (DSNY), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671895

US-xGR NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xGR NEON Great
Smoky Mountains National Park, Twin Creeks (GRSM), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1634885

US-xHA NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xHA NEON Harvard Forest
(HARV), Ver. 11-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1562391

US-xHE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xHE NEON Healy (HEAL),
Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617729

US-xJE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xJE NEON Jones Ecological
Research Center (JERC), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617730

US-xJR NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xJR NEON Jornada LTER
(JORN), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617731

US-xKA NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xKA NEON Konza
Prairie Biological Station - Relocatable (KONA), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1579722

US-xKZ NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xKZ NEON Konza Prairie
Biological Station (KONZ), Ver. 11-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1562392

US-xLE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xLE NEON Lenoir Landing
(LENO), Ver. 8-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1773398

US-xMB NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xMB NEON Moab (MOAB),
Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671896

US-xML NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xML NEON Mountain Lake
Biological Station (MLBS), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671897

US-xNG NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xNG NEON
Northern Great Plains Research Laboratory (NOGP), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1617732

US-xNQ NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xNQ NEON Onaqui-Ault
(ONAQ), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617733
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US-xNW NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xNW NEON
Niwot Ridge Mountain Research Station (NIWO), Ver. 9-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1671898

US-xPU NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xPU NEON
Pu’u Maka’ala Natural Area Reserve (PUUM), Ver. 8-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1773399

US-xRM NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xRM NEON
Rocky Mountain National Park, CASTNET (RMNP), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1579723

US-xRN NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xRN NEON Oak Ridge
National Lab (ORNL), Ver. 8-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1773400

US-xSB NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSB NEON Ordway-Swisher
Biological Station (OSBS), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671899

US-xSC NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSC NEON
Smithsonian Conservation Biology Institute (SCBI), Ver. 9-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1671900

US-xSE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSE NEON
Smithsonian Environmental Research Center (SERC), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1617734

US-xSJ NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSJ NEON San Joaquin
Experimental Range (SJER), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671901

US-xSL NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSL NEON North Sterling,
CO (STER), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617735

US-xSP NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSP NEON Soaproot Saddle
(SOAP), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617736

US-xSR NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xSR NEON Santa Rita Ex-
perimental Range (SRER), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1579543

US-xST NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xST NEON Steigerwaldt
Land Services (STEI), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617737

US-xTA NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xTA NEON Talladega Na-
tional Forest (TALL), Ver. 9-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1671902

US-xTE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xTE NEON Lower Teakettle
(TEAK), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617738

US-xTL NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xTL NEON Toolik (TOOL),
Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617739

US-xTR NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xTR NEON Treehaven
(TREE), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1634886

US-xUK NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xUK NEON
The University of Kansas Field Station (UKFS), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1617740

US-xUN NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xUN NEON Univer-
sity of Notre Dame Environmental Research Center (UNDE), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1617741

US-xWD NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xWD NEON Woodworth
(WOOD), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1579724

US-xWR NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xWR NEON Wind River Ex-
perimental Forest (WREF), Ver. 10-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1617742

US-xYE NEON (National Ecological Observatory Network) (2025), AmeriFlux BASE US-xYE NEON
Yellowstone Northern Range (Frog Rock) (YELL), Ver. 10-5, AmeriFlux AMP, (Dataset).
https://doi.org/10.17190/AMF/1617743

US-YK1 Susan Natali (2024), AmeriFlux BASE US-YK1 Yukon-Kuskokwim Delta, Izaviknek-Kingaglia uplands,
Burned 2015, Ver. 1-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2331384

US-YK2 Sue Natali (2025), AmeriFlux BASE US-YK2 Yukon-Kuskokwim Delta, Izaviknek-Kingaglia uplands, Un-
burned, Ver. 2-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/2331385
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Appendix D Other Figures and Charts

Figure D1: Spatial Variation in CO2 Anomalies within a Growing Season, 2019

Notes: The figure displays CO2 anomalies relative to the mean value on the first day of each month during

the 2019 growing season, using OCO-2’s GEOS Level 3 daily modeled product (Weir and Ott, 2022). While

our analysis uses the non-interpolated Level 2 satellite measurements, this figure shows the smoothed spatial

extent of the anomalies using the Level 3 product.
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Figure D2: Annual Trends in NDVI Vegetation from the AVHRR Satellite, 1982-2013

Notes: The figure displays 30 m pixel-level linear trends in log NDVI values by year for the six months of the

growing season (April to September) over 31 years from 1982 to 2013, using AVHRR satellite data (Vermote

et al., 2014). Map visualization and calculations were produced using Google Earth Engine.
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