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ABSTRACT

We assess the CO2 fertilization effect on US agriculture using spatially-varying CO2 data from 
NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite covering the majority of US cropland 
under actual growing conditions. This study complements the many CO2 enrichment experiments 
that have found important interactions between CO2 and local environmental conditions in 
controlled settings.  We use three empirical strategies: (i) a panel of CO2 anomalies and county 
yields, (ii) a panel of spatial first-differences between neighboring counties, and (iii) a cross-
sectional spatial first-difference. We find consistently high fertilization effects: a 1 ppm increase 
in CO2 equates to a 0.5%, 0.6%, and 0.8% yield increase for corn, soybeans, and wheat, 
respectively. Viewed retrospectively, 10%, 30%, and 40% of each crop's yield improvements 
since 1940 are attributable to rising CO2.

Charles A. Taylor
Columbia University
420 W 118th St
New York, NY 10027
cat2180@columbia.edu

Wolfram Schlenker
School of International and Public Affairs (SIPA)
Columbia University
420 West 118th St
New York, NY 10027
and NBER
wolfram.schlenker@columbia.edu



Introduction

The Green Revolution has significantly increased agricultural yields around the world. In the

United States, the agricultural sector had one of the highest productivity growth rates in the

post-war period (Jorgenson and Gollop 1992) with input usage, mechanization, irrigation,

and improved crop genetics all being identified as drivers of yield growth (Wang, Heisey,

Schimmelpfennig, and Ball 2015). Growth in agricultural productivity is not confined to the

agricultural sector itself: the adoption of high-yield varieties in India had significant positive

economic spillovers for the larger economy (Gollin, Hansen, and Wingender 2021). Under-

standing the drivers of agricultural productivity growth is hence important for economic

growth both inside the agricultural sector as well as other sectors.

Corn yields in the US, for example, have increased six-fold since 1940, prior to which

point they were rather flat, as shown in Figure 1. Similarly, yields of US soybeans and

winter wheat have increased by a factor of three since 1940. At the same time, atmospheric

CO2 has been steadily increasing, which has driven a global greening trend: over the last

40 years, half of global vegetated area has undergone greening as defined by growing season

integrated leaf area index, of which 70% is attributed to elevated CO2 (Zhu et al. 2016).

How much has elevated CO2 contributed to the observed increase in crop yields during this

time? Establishing a causal link between two trending variables is statistically challenging.

Industrialization, both in agriculture and other sectors, might have independently increased

CO2 levels as well as yields. Disentangling the effect of CO2 fertilization from other produc-

tivity drivers is difficult given that CO2 has risen smoothly in tandem with other factors like

mechanization and average crop yields.

Field experiments and process-based analyses have been the most common approaches

to attribute yield trends. These approaches, however, face challenges of their own. The

conditions in a well-controlled experiment might not be indicative of real-world farming con-

ditions. There are large regional differences in crop responses to CO2 that reflect geographic

variation in crop distribution and environmental conditions (McGrath and Lobell 2013).

CO2 fertilization may be negligible in the presence of limiting factors like nutrient defi-

ciency (Kimball et al. 2001, Hungate, Dukes, Shaw, Luo, and Field 2003, Reich et al. 2006,

Ziska and Bunce 2007), while it is generally higher under water deficit conditions (Ottman

et al. 2001, Leakey, Uribelarrea, Ainsworth, Naidu, Rogers, Ort, and Long 2006, Keenan,

Hollinger, Bohrer, Dragoni, Munger, Schmid, and Richardson 2013, Morgan et al. 2011),

although some have found a larger effect under irrigation (Zheng, He, Guo, Hao, Cheng, Li,

Peng, and Xu 2020). Elevated CO2 may increase high temperature stress due to stomatal
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closure (Batts, Morison, Ellis, Hadley, and Wheeler 1997). A decline in the global carbon

fertilization effect over time has been documented, likely attributable to changes in nutrient

and water availability (Wang et al. 2020). While CO2 enrichment experiments, both in the

laboratory and field, have generated important insights into the physiological channels of

the fertilization effect and its environmental interactions, they are limited in the extent to

which they reflect real-world growing conditions in commercial farms at a large geographic

scale.

To this end, we provide a new approach to estimating the effect of CO2 on crop yields that

relies neither on process-based models nor localized field experiments. While experiments

are conducted at individual sites, our dataset covers the majority of the US crop growing

area. We use observed ambient CO2 data from NASA’s recently-launched Orbiting Carbon

Observatory-2 (OCO-2) satellite and county-level crop yield data. The OCO-2 satellite

detects changing ambient CO2 concentrations that occur within and across locations and

growing seasons (Crisp 2015). We focus on the US, which is the biggest producer of corn

and soybeans, accounting for 33% of global production (FAOSTAT) over OCO-2’s sample

timeframe from 2015-2020, and 7% of global wheat production.

While gaseous CO2 ultimately diffuses across space and becomes uniformly distributed

in the atmosphere,1 this process occurs over the course of weeks to months and is affected by

specific emission events, local CO2 sources and sinks, as well as wind and weather dynamics

(Hakkarainen, Ialongo, and Tamminen 2016). Variations in satellite CO2 readings around the

steady upward trend are driven by such local disturbances. We link the resulting variation

(i.e., anomalies) to fluctuations in yields. Since OCO-2 measures the entire air column,

we replicate all of our analyses using modelled data from NOAA’s CarbonTracker, which

provides spatially-resolved estimates of surface-level CO2 from 2000 to 2018.

We document a significant CO2 fertilization effect for corn, soybeans, and winter wheat

using three separate approaches that isolate both time-series and cross-sectional variation

with both OCO-2 and CarbonTracker data. Our results are robust to a myriad of sensitivity

checks, i.e., the functional form (logarithmic versus levels), whether the temporal trend is

common to all counties or varies by state or county, whether or not we include controls

for co-occurring air pollutants, weather, or vegetative greenness measures. The latter two

factors are designed to absorb local feedback effects, i.e., a situation where elevated CO2 is a

response to a crop-failure that reduces photosynthetic activity, which would only downward

1The spatial diffusion of CO2 is what makes climate change a global public goods problem. It also allows
scientists to rely on singular sources of long-term CO2 measurements, like the Mauna Loa Observatory, to
estimate global CO2 levels, which are then incorporated into global process-based models.
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bias our estimates.

In the US, we find fertilization effects that are high relative to the literature: a 1 part

per million (ppm) increase in CO2 equates to a 0.5%, 0.6%, and 0.8% yield increase for corn,

soybeans, and wheat, respectively. Our findings are relevant in several contexts: first, in pro-

viding an example of how satellite-based measures of CO2 can complement field experiments

to ensure external validity of the effect of CO2 on agriculture and ecosystem functioning at

a large scale. Second, our finding that 10-40% of historical crop yield improvements in the

US are attributable to CO2 fertilization has implications for the literature on the drivers of

agricultural productivity, which can have very large economic spillovers (Gollin et al. 2021).

Lastly, while our paper focuses on explaining past drivers of productivity growth, it has

also implications for the future: future CO2 fertilization effects are critical to accurately

estimating the impact of climate change on agriculture. Our preferred panel specification

has been used to link random year-to-year weather fluctuations to annual yield outcomes

(Schlenker and Roberts 2009). The effects are clearly visible in Figure 1 where we see a sig-

nificant reduction in national corn yields in 2012 when the Corn Belt experienced higher than

normal extreme heat. Studies employing such panel variation to estimate climate change

damages relate outcomes of interest to random exogenous year-to-year weather fluctuations

to obtain damage estimates (Dell, Jones, and Olken 2014). Overall, climate change is pre-

dicted to increase the occurrence of extreme heat and significantly reduce yield potential.

This approach, which relies on annual variation in weather, does not take into account longer-

term dynamics which are correlated with climate change. Part of the estimated damages

may be offset by yield gains from rising CO2.

There is a gap between process-based studies of climate change which incorporate CO2

fertilization and statistical ones which tend to omit it (Lobell and Asseng 2017), and the

resulting estimates of climate impacts can vary greatly. For example, one study found that

the significant negative net welfare effects on agriculture in the absence of CO2 fertilization

become negligible with fertilization (Moore, Baldos, and Hertel 2017). Others argue that

crop responses to CO2 are now understood well enough for fertilization estimates to be

directly included in global climate models and impact projections (Toreti et al. 2020). Our

paper demonstrates that increases in CO2 can also have strong countervailing fertilization

effects, at least at current levels. Given that experimental evidence shows a tapering of

the CO2 fertilization effect at higher levels, a linear extrapolation into the future has to be

considered with caution.

4



Background

Plants respond directly to rising CO2 through photosynthesis and stomatal conductance,

which is the basis for the fertilization effect (Long, Ainsworth, Rogers, and Ort 2004,

Ainsworth and Rogers 2007). The process varies by crop type. For C3 crops like soybeans,

wheat, and rice, mesophyll cells containing ribulose-1,5-bisphosphate carboxylase-oxygenase

(RuBisCO) are in direct contact with the air. RuBisCO is an enzyme that fixes atmospheric

CO2 during photosynthesis and in oxygenation of the resulting compound during photores-

piration. Thus, higher ambient CO2 increases photosynthetic CO2 uptake because RuBisCO

is not CO2-saturated at today’s atmospheric levels (Long et al. 2004). For C4 crops like corn,

on the other hand, RuBisCO is located in bundle sheath cells where CO2 levels are several

times higher than atmospheric levels. At this concentration, RuBisCO is CO2-saturated

and there may not be a direct photosynthetic response to changing atmospheric CO2 levels.

However, C4 yields are still indirectly affected through increased water use efficiency via re-

duction in stomatal conductance (Long, Ainsworth, Leakey, Nösberger, and Ort 2006). All

things being equal, one would expect a larger CO2 fertilization effect for wheat and soybeans

than for corn.

Historical estimates of yield responses to CO2 have relied on experiments in greenhouses

and laboratory controlled-environments where CO2 levels can easily be controlled. An early

survey concluded that doubling ambient CO2 increased yields by 24 to 43% for C3 crops

in the context of full water and nutrient availability (Kimball 1983), which aligned with

USDA reporting a 33% increase in yields for most crops under similar settings (Allen Jr.,

Baker, and Boote 1996). In recent decades, free-air concentration enrichment (FACE), a

process involving a series of pipes in fields emitting CO2-enriched air, has allowed for larger-

scale trials in more realistic crop growing conditions. A survey of over 25 years of FACE

experiments concludes that increasing CO2 from 353 to 550 ppm results in 19% higher C3

yields, on average, while C4 crops were only affected under conditions of water scarcity

(Kimball 2016). FACE experiments tend to show a lower CO2 fertilization effect than either

laboratory or greenhouse enclosure studies (Long et al. 2006). FACE-derived estimates have

been found to generally align with assumptions in global crop model simulations (Tubiello

et al. 2007). We also note recent work that utilized OCO-2 satellite data estimate the impact

of the 2019 Midwestern floods on CO2 uptake and crop productivity (Yin et al. 2020).
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Data

Measurements of atmospheric CO2 come from the Orbiting Carbon Observatory-2 (OCO-2).

Launched in 2014, OCO-2 is NASA’s first satellite designed specifically to measure atmo-

spheric CO2 with the goal of better understanding the geographic distribution of CO2 sources

and sinks and their changes over time. We downloaded version B10206 of the bias-corrected

OCO-2 LITE Level 2 product, specifically the ’XCO2’ value of averaged dry air CO2 mole

fraction over the atmospheric column between the ground and the satellite. While the

satellite measures the entire column, as long as the ground level disturbance is not system-

atically correlated with disturbances in higher altitudes, we will get an unbiased estimate of

ground-level conditions. A typical daily output contains over 150,000 XCO2 global readings,

including the latitude-longitude point. Readings have quality flags (about 50% of readings),

which we exclude from our analysis.

NOAA’s CarbonTracker provides spatially-resolved estimates of ground-level CO2 from

2000 to 2018 derived from measurements of air samples collected at 460 sites around the

world by 55 laboratories. Unconnected to OCO-2, CarbonTracker involves an inverse model

of atmospheric CO2 that adjusts surface-level CO2 uptake and releases to align with obser-

vational constraints. We use use product release CT2019B (Jacobson et al. 2020) and the

level 1 estimates which correspond to 25m above the Earth’s surface.

We seasonally adjust CO2 levels from OCO-2 and CarbonTracker to account for annual

patterns in which ambient concentrations decrease in the spring and summer when plants are

actively photosynthesizing and increase in the fall and winter when plants are respiring on

net. To identify CO2 anomalies relative to this seasonality pattern, we estimate the average

seasonality over the contiguous US with a 4th-order Chebychev Polynomial over the year

which we normalize to [-1,1] by transforming January 1st to equal -1 and December 31st to

equal 1 with leap years having an additional day as well. We restrict the seasonality so the

value on January 1 (time -1) equals the value on December 31 (time 1).

The left chart of Figure A1 displays the seasonality in CO2 in the OCO-2 data. We

include a time trend to account for the annual increase in CO2. Our seasonality adjusted

values factor out the seasonality and re-normalize all values to July 1st. Note that in the

construction of the 4th-order Chebyshev polynomial we include all non-flagged readings over

the US, not just those over cropland. We assign each seasonally adjusted OCO-2 reading to

the PRISM grid (1/24° grid in latitude and longitude) in which it falls. Readings are averaged

if there are more than one for a grid during the growing season from April to September.

The PRISM grids within a county are then averaged using the amount of cropland area in
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the PRISM grid, where we aggregate the 30m-resolution from USDA’s Cropland Data Layer

to the PRISM grid. An analogous procedure is used for CarbonTracker, where we take the

distance-weighted average of the surrounding four CarbonTracker grids for each PRISM grid

to derive PRISM-grid level CO2 exposure, which is then aggregated to the county level using

cropland weights from the Cropland Data Layer. Figure A7 displays the cross-plot of CO2

anomalies from the OCO-2 satellite and CarbonTracker during the four years (2015-2018)

in which the datasets overlap.

Figures A2, A3, and A4 display the resulting number of observations per county and by

crop that have both CO2 readings and annual yield data over the six years from 2015 to

2020 for OCO-2 (top panel) and from 2000 to 2018 for CarbonTracker (bottom panel). Since

we include both county fixed effects and county-specific time trends, we need at least three

degrees of freedom per county, i.e., we can only include counties with at least 3 observations

in our regressions.

Solar-induced chlorophyll fluorescence (SIF) is another remote sensing product available

from the OCO-2 satellite. SIF is a measure of terrestrial photosynthesis that captures the

energy emitted from plant chlorophyll molecules immediately following light absorption be-

tween wavelengths 600-800nm (Baker 2008). The OCO-2 SIF retrieval is based on in-filling

solar Fraunhofer lines around 757nm and 771nm which limit the impact of atmospheric scat-

tering due to aerosols or thin clouds lines (Sun, Frankenberg, Jung, Joiner, Guanter, Köhler,

and Magney 2018). As with XCO2, we use bias-corrected SIF retrievals from the LITE Level

2 product. This SIF product opens new opportunities for improved mechanistic understand-

ing of the response of crop yields to climate change and environmental conditions (Guan,

Berry, Zhang, Joiner, Guanter, Badgley, and Lobell 2016). We adjust for SIF seasonality in

the same way as we do for CO2, as shown in the right chart of Figure A1.

Enhanced Vegetation Index (EVI) comes from NASA’s MODIS Terra Vegetation satellite

product MOD13Q1v006, which is generated every 16 days at 250m resolution. EVI is used

to minimize canopy background variation, maintain sensitivity over dense vegetation, and

remove residual atmosphere contamination caused by smoke and sub-pixel thin cloud clouds

(Didan 2015). Values are averages over the growing season window from April to September

over NLCD cropland area at 30m resolution for each county.

For weather we use daily fine-scale PRISM data at 2.5 minute resolution, or 4.5 km

by 4.5 km, following the approach from Schlenker and Roberts (2009) which found that

four weather variables (two temperature, two precipitation) predict yields well. The two

temperature variables are degree days 10-29◦C (moderate degree days) and degree days
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above 29◦C (extreme degree days) for corn. The upper bound is slightly higher for soybeans,

resulting in degree days 10-30◦C and degree days above 30◦C. We use the same degree days

variables for winter wheat as for soybeans. We experimented with using separate temperature

measures by trimester (Tack, Barkley, and Nalley 2015), but did not find an improved fit.

In each regression we also include a quadratic of season-total precipitation. Precipitation

and degree days are summed across the six-month growing season from April to September

and spatially averaged using the same PRISM grid weights that are aggregates of USDA’s

Cropland Data Layer for each county.

County-level crop yields for corn, soybeans, and winter wheat were obtained from USDA’s

National Agricultural Statistics Service.

Model

We utilize data from the OCO-2 satellite and CarbonTracker to estimate the CO2 fertilization

effect on corn, soybeans, and wheat in the US, the world’s biggest agricultural producer. We

focus on counties east of the Rocky Mountains (excluding Florida), an area accounting for

the vast majority of US production of corn and soybeans, but for completeness we also

replicate the analyses across the entire continental US as well as the primarily-rainfed area

east of the 100° meridian that were used in previous studies (Schlenker and Roberts 2009).

We match the yield data with local CO2 readings and weather outcomes over the area where

corn, soybeans, and winter wheat are grown within each county, respectively. All models

use log of county-level yields as the outcome variable and seasonality-adjusted CO2 in ppm

unless otherwise noted.

We employ three modelling approaches that exploit differing sources of variation to iden-

tify the CO2 fertilization effect: first, a panel model that effectively links CO2 and yields

anomalies. These anomalies are calculated after controlling for the four weather variables

that were found to best predict corn and soybean yields (Schlenker and Roberts 2009) and

criteria air pollutants (CO, NO2, O3, PM10, SO2). The panel model includes county fixed

effects to account for differences in average yields across counties driven by factors such as

soil quality and average climate, as well as county-specific time trends to account for local

trends.

Our panel model specification is:

yit = αi0 + αi1t+ β CO2it + γWit + δPit + εit (1)
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where yit is log crop yield in county i in year t; αi0 is a county fixed effect; αi1 is a county-

specific time trend; β measures the observed CO2 fertilization effect from the seasonally-

adjusted CO2 reading (CO2it) in the county i in year t; γ is a control vector for weather

(two temperature degree day variables, precipitation and precipitation-squared), while δ is

a control for five criteria air pollutants Pit (CO, NO2, O3, PM10, SO2). We use the daily

mean for CO, NO2, PM10, and SO2, and a restricted cubic spline with seven knots for O3

(Boone, Schlenker, and Siikamäki 2019). Finally, εit are the errors (clustered at the state

level to account for spatial correlation).

Second, we employ a spatial first difference model (SFD - Residuals) that is a general-

ization of Druckenmiller and Hsiang (2019). It compares the change in the CO2 and yield

anomalies across neighboring counties after removing county fixed effects and county-specific

time trends in a given year, while again controlling for spatial differences in the other con-

trol variables (weather and other pollutants). To do this, we use a two step procedure: we

first derive anomalies by factoring out fixed effects and county-specific time trends for all

variables:

vit = αi0 + αi1t+ εit (2)

where vit ∈ {yit, CO2it,Wit,Pit} to obtain the anomalies ε
(v)
it for each variable. By the

Frisch-Waugh-Lovell theorem, regressing ε
(y)
it on ε

(CO2)
it while controlling for ε

(W)
it and ε

(P)
it

would give the same estimate for β as in equation (1). Instead, we look at the spatial first

difference by pairing each county i with all of its neighbors j, defined as having a common

coordinate in the county shape file. We take the difference in anomalies in a given year

between neighbors: ∆
(v)
ijt = ε

(v)
it − ε

(v)
jt , so any common shock would be differenced out. In

a second step we then link these differences in annual anomalies (one observation for each

county-pair per year):

∆
(y)
ijt = β∆

(CO2)
ijt + γ∆

(W)
ijt + δ∆

(P)
ijt + εijt (3)

Third, we use a the SFD cross-sectional model to examine persistent average gradients

in CO2 and yields in space while again controlling for weather and co-pollutants. Ignoring

annual anomalies (shocks), for each variable we derive the average outcome over all years

vi = 1
T

∑T
t=1 vit, and again pair county i to all its neighbors j, defined as having a common

coordinate in the county shape file. We take the difference in average outcomes between

neighbors: ∆
(v)
ij = vi − vj and link these differences in space in a cross-sectional regression
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(one observation for each county-pair):

∆
(y)
ij = β∆

(CO2)
ij + γ∆

(W)
ij + δ∆

(P)
ij + εij (4)

The latter two SFD methods address concerns about the high spatial correlation in CO2

levels. Different setups require different assumptions, i.e., that the annual CO2 anomalies

are uncorrelated with other omitted explanatory variables or that the average gradient in

CO2 is uncorrelated with other omitted explanatory variables. The fact that we obtain a

robust consistent positive CO2 fertilization effect makes it less likely that they are driven by

the particular assumptions of each individual approach.

We illustrate our identification strategies in Figure 2. For the panel model, the top

row shows CO2 anomalies as measured by OCO-2 and CarbonTracker and how they relate

to yield anomalies in an example year 2015. Note that in our actual panel regressions we

include additional years. Figure A5 illustrates the variation in the panel model another way,

highlighting the correlation for one particular county in Iowa over time after controlling for

the trend. The bottom row in Figure 2 shows how gradients of CO2 and yield anomalies are

calculated across neighbors in an example latitude band in Iowa for the SFD-residual model.

Note that in our SFD regressions we include as observations all neighboring gradients and

not just horizontal ones, as well as all counties in the US and not just Iowa.

For each of these three modelling approaches, we provide estimates using CO2 data from

both the OCO-2 satellite and CarbonTracker. This provides different spatial coverage in sam-

pled counties and temporal span (2015-2020 for OCO-2 and 2000-2018 for CarbonTracker).

CarbonTracker has an advantage of explicitly modelling surface-level CO2, while OCO-2

readings are column-averaged. On the other hand, OCO-2 are raw measurements from a

satellite, while CarbonTracker is a reanalysis product that might suffer from promulgation

of interpolation errors.

Results

Figure 3 shows our main results of the aggregate effect of CO2 on county-level crop yields

in the US. The point estimates of the CO2 fertilization effect are positive in all cases, and

significant for 15 of the 18 regressions. A 1 ppm increase in CO2 equates to yield increases for

corn, soybeans, and wheat of 0.5%, 0.6%, 0.8%, respectively, using our preferred panel model

specification with OCO-2 data from 2015 to 2020 (green line in coefficient plot). In this case,

the fertilization effect is less for corn (C4 crop) and greater for soybeans and winter wheat (C3
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crops), as observed in controlled experiments. However, the corn estimate becomes larger

when using the modelled CarbonTracker data that spans a longer timeline (2000-2018) and

larger geographic extent. For soybeans and winter wheat, alternating between OCO-2 and

CarbonTracker also increases the point estimates, but generally does not produce statistically

different estimates. Figure A7 plots the correlation between OCO-2 and CarbonTracker

anomalies during the four years (2015-2018) in which the datasets overlap. The regression

coefficients from our preferred panel models are shown in columns (a) and (c) of Table A1.

Results do not appear to be driven by outliers: Figure A6 plots the anomalies for both

OCO-2 and CarbonTracker in the preferred panel model after the covariates are factored out

with the regression line and a 90% confidence band.

Many factors influence yields beyond CO2, and to that end we see that much variation

remains after accounting for CO2 as well as our controls for weather and other environmental

factors. However, as long as CO2 fluctuations are uncorrelated with the other remaining

unaccounted factors, our approach provides an unbiased estimate of the CO2 fertilization

effect. Moreover, as we show below, the inclusion and exclusion of a myriad of controls

known to influence crop yields do not significantly alter our findings, so any omitted variable

would have to be correlated with both CO2 and yields, but not the other controls. In

addition, the SFD models, which allow us to directly isolate variation between neighboring

counties, both for annual shocks and for average levels, consistently give positive coefficients.

This provides additional assurance that the results are not driven by annual effects at the

regional level or through feedback loops.

We perform a number of sensitivity checks that produce largely similar results. First,

we vary the model specification: our baseline model links log yields to CO2 levels, assuming

that a 1 ppm change in CO2 has the same relative (percent) effect on yields. Figure A8 links

log yields to log CO2 levels assuming a constant elasticity, Figure A9 links yields to CO2

levels, assuming that a 1 ppm change in CO2 has the same absolute effect on yields, while for

completeness Figure A10 links yields to log CO2. Results are very similar. The one minor

difference is that the larger CO2 fertilization effects found for corn using the CarbonTracker

data in our main analysis are reduced somewhat when the dependent variable is yields instead

of log yields.

Second, we vary the time trends to allow for the possibility that temporal patterns

in CO2 levels and crop yields may be occurring at a geographic level different than the

county level—e.g., state-level policies may drive energy or agricultural production. Results

are largely similar using state trends (Figure A11), but become less precise when trends
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are excluded altogether (Figure A12), highlighting our approach to not correlate trending

variables. In other words, the granularity of the time trend (state-specific versus county-

specific) does not matter, as long a trend is included to account for the steady increase in

global CO2.

Third, we run our analyses comprising different US geographies as visualized by the

colored regions in Figures A2-A4. Similar results are shown using the entire contiguous

US in Figure A13 and the primarily-rainfed agricultural counties east of 100° meridian in

Figure A14—mitigating concerns the this relationship is driven by regional dynamics like

irrigation.

Fourth, we add a control for vegetation intensity in order to rule out endogenous feedback

effects, e.g., where crop photosynthesis influences the ambient CO2, rather than the other

way around (Yin et al. 2020). It is important to note that such a feedback would downward

bias our results, yet we find larger estimates to begin with. Figure A15 controls for solar-

induced florescence (SIF) derived from OCO-2, as well as the Enhanced Vegetation Index

(EVI) from MODIS in the case of the longer duration CarbonTracker data. Omitting the four

weather variables in these regressions, we find that the inclusion of such vegetation measures

increases the observed CO2 coefficients for corn and soybeans to some extent, but not wheat.

We would expect this local feedback to be stronger in corn and soybean-growing counties

in our sample, where the combined cropland area in the 2018 Census was 47% and 49% of

county land area, respectively. The combined cropland area in the counties growing winter

wheat in our sample is only 35%, i.e., crops cover a smaller fraction of the overall county

area. The negative bias is likely the result of adverse local weather conditions reducing

yields and photosynthesis, thereby increasing observed CO2 readings, leading to a negative

correlation between yields and CO2. We note that this specification has limitations given

that vegetation measures like SIF and EVI have been used to directly model crop yields.

Nevertheless, the coefficient remains significant in almost all cases even after accounting for

greenness measures.

Alternatively, Figure A16 only uses CO2 measures at the beginning of the growing season

(April-June) to further limit potential plant growth-CO2 feedbacks. The sample size is

reduced in half when using OCO-2 data as the satellite only provides readings for a subset

of locations during each orbit and we limit the time frame to three months instead of six

months. Accordingly, the standard errors increase significantly and the estimates become

noisier, although not statistically different. CarbonTracker, on the other hand, is reanalysis

data and does not suffer from the same issue: the number of observations is the same
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irrespective of which months we include as they are consistently available for each grid. The

point estimates and confidence intervals hardly change at all. We therefore attribute the

fluctuations of the estimates in the revised OCO-2 sample to the reduction in observations

rather than a systematic difference in crop response to CO2 during the early part of the

growing season.

Fifth, we show in Figure A17 that our results are robust to omitting controls for other

pollutants, which we include in our main specification to address concerns that the fossil fuel

usage driving the increase in atmospheric CO2 is also associated with co-occurring pollutants

like ozone, nitrogen oxide, and sulfur dioxide, each of which has been shown to affect crop

yields (Boone et al. 2019, Sanders and Barreca 2021).

Finally, we test for potential economic confounders, e.g., if local CO2 anomalies are driven

by a change in energy use, which in turn is driven by economic activity. In such a case, it

is plausible that the higher yields we attribute to a CO2 fertilization effect may actually

reflect different farming practices when the local economy is strong and farmers invest more

in their crop (i.e., apply more fertilizer). The SFD analyses should address these concerns

by comparing differences in CO2 and yield anomalies across county neighbors, given that

neighboring counties generally face similar economic conditions. As additional evidence,

Table A2 regresses aggregate US log yields on GDP growth rates (i.e., change in log GDP).

We find no evidence that yields are linked to overall economic conditions in the US.

Relatedly, one may be concerned that our results are influenced by the degree of urban

intensity, which can affect the proportion of land in agriculture, industrial pollution, or other

things that may be correlated with CO2. To address this, Table A1 includes an interaction of

our CO2 measure with each county’s urban-rural continuum level (1-6 values) as categorized

by USDA. We find a very imprecisely estimated crop fertilization effect in the most urban

counties, which agrees with the near absence of cropland in these places. However, among all

other county classifications, we find a CO2 fertilization effect of generally similar magnitude,

implying that the effect is not limited to places that are relatively more or less rural. This

also mitigates concerns of a reverse feedback: that higher aggregate photosynthesis activity

in counties with majority cropland (i.e., generally more rural) can act as a CO2 sink that

drives variation in observed local CO2 levels.
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Discussion

Global ambient CO2 has increased by 2 to 2.5 ppm per year, on average, or 0.5% annually

since 2000. Our results imply that CO2 fertilization may have been a large contributor to

recent crop productivity in the US. Our baseline estimates of yield responses of 0.5% to

0.8% per 1 ppm CO2 are on the very high end of the range found in the literature—put

another way, yields may have increased 1-2% per year due to CO2 fertilization in recent

years. Looking historically since 1940, corn yields have increased by 500% and soybeans

and winter wheat yields by 200% as shown in Figure 1. During this time ambient CO2

levels increased by slightly more than 100 ppm. A back-of-the-envelope calculation using

our present-day estimates implies that CO2 fertilization is responsible for increasing yields

by 50% for corn, 60% for soybeans, and 80% for wheat—or about 10%, 30%, and 40% of

past productivity growth for each crop, respectively.

The choice of using a logarithmic or linear extrapolation becomes crucial when projecting

out yield responses to a doubling of CO2. Figures A8-A10 variously log-transform the inde-

pendent variable (CO2) and the dependent variable (crop yield) and find similar magnitude

results when concentrating on the observed range of CO2 values in 2000-2020. While this

is unsurprising as they give similar linearized local approximations, we urge caution in the

forward project of our results.

Most contemporary estimates of CO2 fertilization are derived from free-air concentration

enrichment (FACE) experiments, in which CO2 levels were raised by 190 to 200 ppm, on av-

erage, over a baseline average of 350 ppm. Surveying past FACE results, this 54-57% increase

over the baseline (or 19% log difference) in CO2 is associated with average yield increases

of 18-19% (Kimball 2016, Ainsworth and Long 2021). However, this average effect conceals

significant variation in the yield response across crops, location, and growing conditions. A

FACE study of dryland wheat in Australia, for example, showed that a 40% increase in CO2

was associated with yield increases of 24% and 53% in two sites, with some yield responses

reaching 79% (Fitzgerald et al. 2016). Under varying environmental conditions, equivalent

yield responses above 35% have been observed for corn, rice, cotton, as well as various legu-

minous and root crops (Kimball 2016, Ainsworth and Long 2021). It is worth noting that

a strong positive relationship between CO2 and yields should not be inherently surprising.

CO2 is a purchased input in many agricultural settings. The gas has long been pumped into

greenhouses to spur photosynthesis and increase the yield of horticultural crops. Optimal

CO2 concentrations of 900 ppm have been suggested, which is over twice current ambient

levels (Mortensen 1987).
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Nevertheless, we offer some potential explanations for why our CO2 fertilization estimates

are higher than the average found in the literature. First, our study looks only at small

increases in CO2, and it may be inappropriate to extrapolate out fertilization effects which

may diminish at higher CO2 levels. As noted, most studies (including FACE, open top

chamber, and greenhouse experiments) involve large one-time increases in CO2 levels of 200

ppm or more over ambient levels. In contrast, our paper relies on variation in the range of 13

ppm during the OCO-2 timeline from 2015 to 2020 and 39 ppm for CarbonTracker from 2000

to 2018. Such marginal increases could produce relatively higher fertilization effects given

the diminishing photosynthetic response curve of plants to elevated CO2. The rate of CO2

assimilation in C4 plants, for example, is close to saturated at CO2 concentrations of 400 ppm

(Lambers and Oliveira 2019). Our results may reflect higher yield responses around current

ambient CO2 levels that occur at a steeper part of the photosynthetic response curve. This

same dynamic could explain part of the observed decline in the global carbon fertilization

effect over time (Wang et al. 2020).

Another consideration is that CO2 concentrations in FACE studies fluctuate widely due

to air turbulence (Kimball 2016). When elevated CO2 is supplied in cycles or pulses, crop

responses may be lower than if the CO2 is supplied more steadily (Bunce 2012). Just as

CO2 levels can be better controlled in chamber studies than FACE experiments, it is also

possible that the smaller absolute variation in ambient CO2 utilized in our study results in

less fluctuations as well.

It is worth noting that there are only two large-scale and long-standing FACE experiments

in the US that focus on agriculture: one in Maricopa, AZ, and another at the University

of Illinois in Champaign, IL (Ainsworth and Long 2021). Other FACE experiments study

non-cropland ecosystems like forests, grasslands, and tundra, as well as crop responses in

other countries. Only the Champaign site has the potential to approximate agricultural

conditions in the Midwest, where most crop production occurs in the US. Thus it is possible

that FACE experiments do not fully reflect the growing conditions and farming practices

of the major growing regions. Given the important CO2 interactions with nutrient avail-

ability (Kimball et al. 2001, Hungate et al. 2003, Reich et al. 2006, Ziska and Bunce 2007)

and water availability (Ottman et al. 2001, Leakey et al. 2006, Keenan et al. 2013, Morgan

et al. 2011, Zheng et al. 2020), as well as nutrient-water-CO2 interactions (Markelz, Strell-

ner, and Leakey 2011), CO2 fertilization effects could vary between FACE experiments and

commercial agricultural operations in response to differing fertilization and input regimes,

soil and water management practices, and local air pollution and climate anomalies across

15



regions—as well as conditions that vary over time. Our experimental design utilizing OCO-2

satellite measures of ambient CO2 allows us to account for this variation at a larger scale

and across multiple years of observations.

Conclusion

We find a significant and robust CO2 fertilization effect by linking OCO-2 satellite-measured

CO2 fluctuations to yield fluctuations of corn, soybeans, and winter wheat from 2015 to

2020. For additional verification, we obtain generally similar results using modelled ground-

level CO2 data from CarbonTracker from 2000-2018. Our study spans more than half of the

commercially-farmed area of these crops in the US and offers a test of whether the fertilization

effects found in controlled experiments can be verified under real-world growing conditions.

While panel models linking weather and yield anomalies have shown the possible detrimental

effect of extreme heat on yield, the same setup can be used to show that localized CO2

anomalies drive significant yield changes—outcomes also reflected when utilizing alternate

empirical approaches like spatial first differences across neighboring counties using both

annual anomalies as well as average CO2 gradients in space. Our preferred panel specification

suggests that 10%, 30%, and 40% of observed yield gains for corn, soybeans, and wheat,

respectively, since 1940 are due to increases in CO2, an important driver of agricultural

productivity growth.

Our paper shows how satellite-based measures of CO2 can be useful in complementing

FACE field experiments, especially in the context of ensuring the external validity of esti-

mates of the effect of CO2 on agriculture and ecosystem functioning at a large scale. The

approach can be extended to study real-world crop responses globally. Our results also merit

consideration in the context of climate models used to estimate climate change impacts, but

we caution against extrapolating the fertilization effect far into the future, which requires

further assumptions on the functional form and the extent there are decreasing returns to

further CO2 increases as well as uncertainty about future environmental interactions.

While we reiterate that climate change will likely have a large negative impact on agri-

culture in aggregate, especially in regions exposed to extreme heat, and that CO2-driven

yield increases may be offset by effects on food nutrition and quality (Loladze 2002, Taub

and Allen 2008, Myers et al. 2014), this paper demonstrates that marginal increases in CO2

can also have strong countervailing fertilization effects—and that such effects may account

for a material proportion of historical productivity improvements in US agriculture with
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implications for the literature on agricultural productivity and structural transformation of

economies.
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Ozone and Corn Yields in the United States.” CEEP Working Paper 7.

Bunce, J.A. 2012. “Responses of cotton and wheat photosynthesis and growth to cyclic

variation in carbon dioxide concentration.” Photosynthetica 50 (3): 395–400.

Crisp, David. 2015. “Measuring atmospheric carbon dioxide from space with the Orbit-

ing Carbon Observatory-2 (OCO-2).” In Earth Observing Systems XX, Volume 9607.

960702. https://doi.org/10.1117/12.2187291.

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. 2014. “What Do We

Learn from the Weather? The New Climate-Economy Literature.” Journal of Eco-

nomic Literature 53 (3): 740–798.

Didan, Kamel. 2015. “MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m

SIN grid V006.” NASA EOSDIS Land Processes DAAC 10.

17

http://dx.doi.org/https://doi.org/10.1117/12.2187291


Druckenmiller, Hannah, and Solomon Hsiang. 2019. “Accounting for Unobservable

Heterogeneity in Cross Section Using Spatial First Differences.” NBER Working Paper

25177.

Fitzgerald, Glenn J., Michael Tausz, Garry O’Leary et al. 2016. “Elevated atmo-

spheric CO2 can dramatically increase wheat yields in semi-arid environments and

buffer against heat waves.” Global Change Biology 22 (6): 2269–2284.

Gollin, Douglas, Casper Worm Hansen, and Asger Mose Wingender. 2021. “Two

Blades of Grass: The Impact of the Green Revolution.” Journal of Political Economy

129 (8): 2344–2384. https://doi.org/10.1086/714444.

Guan, Kaiyu, Joseph A. Berry, Yongguang Zhang, Joanna Joiner, Luis Guanter,

Grayson Badgley, and David B. Lobell. 2016. “Improving the monitoring of crop

productivity using spaceborne solar-induced fluorescence.” Global Change Biology 22

(2): 716–726.

Hakkarainen, Janne, Iolanda Ialongo, and Johanna Tamminen. 2016. “Direct space-

based observations of anthropogenic CO2 emission areas from OCO-2.” Geophysical

Research Letters 43 (21): 11–400.

Hungate, Bruce A., Jeffrey S. Dukes, M. Rebecca Shaw, Yiqi Luo, and Christo-

pher B. Field. 2003. “Nitrogen and climate change.” Science 302 (5650): 1512–1513.

Jacobson, Andrew R., Kenneth N. Schuldt, John B. Miller et al. 2020. “Carbon-

Tracker CT2019B.” https://doi.org/10.25925/20201008.

Jorgenson, Dale W., and Frank M. Gollop. 1992. “Productivity Growth in U.S. Agri-

culture: A Postwar Perspective.” American Journal of Agricultural Economics 74 (3):

745–750, http://www.jstor.org/stable/1242588.

Keenan, Trevor F., David Y. Hollinger, Gil Bohrer, Danilo Dragoni, J. William

Munger, Hans Peter Schmid, and Andrew D. Richardson. 2013. “Increase in

forest water-use efficiency as atmospheric carbon dioxide concentrations rise.” Nature

499 (7458): 324–327.

Kimball, B. A., C. F. Morris, P. J. Pinter Jr et al. 2001. “Elevated CO2, drought

and soil nitrogen effects on wheat grain quality.” New Phytologist 150 (2): 295–303.

18

http://dx.doi.org/https://doi.org/10.1086/714444
http://dx.doi.org/https://doi.org/10.25925/20201008
http://www.jstor.org/stable/1242588


Kimball, Bruce A. 1983. “Carbon Dioxide and Agricultural Yield: An Assemblage and

Analysis of 430 Prior Observations.” Agronomy Journal 75 (5): 779–788.

Kimball, Bruce A. 2016. “Crop responses to elevated CO2 and interactions with H2O, N,

and temperature.” Current Opinion in Plant Biology 31 36–43.

Lambers, Hans, and Rafael S. Oliveira. 2019. “Photosynthesis, Respiration, and Long-

Distance Transport: Photosynthesis.” In Plant Physiological Ecology, 11–114, Springer.

Leakey, Andrew D.B., Martin Uribelarrea, Elizabeth A. Ainsworth, Shawna L.

Naidu, Alistair Rogers, Donald R. Ort, and Stephen P. Long. 2006. “Photo-

synthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation

of CO2 Concentration in the Absence of Drought.” Plant Physiology 140 (2): 779–790.

Lobell, David B., and Senthold Asseng. 2017. “Comparing estimates of climate change

impacts from process-based and statistical crop models.” Environmental Research Let-

ters 12 (1): 015001.

Loladze, Irakli. 2002. “Rising atmospheric CO2 and human nutrition: toward globally

imbalanced plant stoichiometry?” Trends in Ecology & Evolution 17 (10): 457–461.

Long, Stephen P., Elizabeth A. Ainsworth, Andrew D. B. Leakey, Josef

Nösberger, and Donald R. Ort. 2006. “Food for Thought: Lower-Than-Expected

Crop Yield Stimulation with Rising CO2 Concentrations.” Science 312 (5782): 1918–

1921.

Long, Stephen P., Elizabeth A. Ainsworth, Alistair Rogers, and Donald R. Ort.

2004. “Rising atmospheric carbon dioxide: plants FACE the future.” Annual Review

of Plant Biology 55 591–628.

Markelz, R. J. Cody, Reid S. Strellner, and Andrew D. B. Leakey. 2011. “Impair-

ment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and amelio-

rated by elevated CO2 in maize.” Journal of Experimental Botany 62 (9): 3235–3246.

McGrath, Justin M., and David B. Lobell. 2013. “Regional disparities in the CO2

fertilization effect and implications for crop yields.” Environmental Research Letters 8

(1): 014054.

19



Moore, Frances C., Uris Lantz C. Baldos, and Thomas Hertel. 2017. “Economic

impacts of climate change on agriculture: a comparison of process-based and statistical

yield models.” Environmental Research Letters 12 (6): 065008.

Morgan, Jack A., Daniel R. LeCain, Elise Pendall et al. 2011. “C4 grasses prosper

as carbon dioxide eliminates desiccation in warmed semi-arid grassland.” Nature 476

(7359): 202–205.

Mortensen, Leiv M. 1987. “CO2 Enrichment in Greenhouses. Crop Responses.” Scientia

Horticulturae 33 (1-2): 1–25.

Myers, Samuel S., Antonella Zanobetti, Itai Kloog et al. 2014. “Increasing CO2

threatens human nutrition.” Nature 510 (7503): 139–142.

Ottman, M. J., B. A. Kimball, P.J. Pinter et al. 2001. “Elevated CO2 increases

sorghum biomass under drought conditions.” New Phytologist 150 (2): 261–273.

Reich, Peter B., Sarah E. Hobbie, Tali Lee et al. 2006. “Nitrogen limitation constrains

sustainability of ecosystem response to CO2.” Nature 440 (7086): 922–925.

Sanders, Nicholas J, and Alan Barreca. 2021. “Adaptation to Environmental Change:

Agriculture and the Unexpected Incidence of the Acid Rain Program.”Technical re-

port, National Bureau of Economic Research.

Schlenker, Wolfram, and Michael J. Roberts. 2009. “Nonlinear Temperature Effects

Indicate Severe Damages to U.S. Crop Yields under Climate Change.” Proceedings of

the National Academy of Sciences 106 (37): 15594–15598.

Sun, Ying, Christian Frankenberg, Martin Jung, Joanna Joiner, Luis Guanter,
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Figure 1: Annual Yields and CO2
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Notes: Figure displays the evolution of yearly aggregate US yields (left axis) and annual CO2 averages (right

axis). Each time series is normalized relative to 1940 (value = 100). Aggregate US corn yields are shown

in dark green from 1866-2020, aggregate US soybeans yields in green from 1924-2020, and aggregate US

winter wheat yields in light green from 1909-2020, the years for which the data is reported by the National

Agricultural Statistics Service (NASS) by USDA. The annual average CO2 estimate is added in blue from

NOAA.
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Figure 2: Identifying Variation Used in Analysis

Notes: Top panel (A) illustrates the empirical variation used in the panel models, in which CO2 anomalies

as measured by OCO-2 and CarbonTracker (top left and middle charts) relate to yield anomalies (top right

chart) in example year 2015. Anomalies are obtained after accounting for county fixed effects (averages) and

county-specific time trends. Note that our actual panel regressions include additional years beyond 2015 and

all counties east of the Rockies. Bottom panel (B) illustrates the variation used in the spatial first difference

(SFD) models. For counties spanning an example latitude band in Iowa, each letter (A to K) represents

the difference in CO2 and yield anomalies between neighboring counties (bottom left and middle charts) in

example year 2016. The bottom right chart plots these differences to showcase the relationship. Note that

in our actual SFD regressions we include as observations all neighboring gradients and not just horizontal

ones, as well as all counties in the US.
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Figure 3: CO2 Fertilization Effects
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Notes: Figure displays the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm on aggregate

yields in the sample for corn, soybeans and wheat. The point estimates are marked by an x, and the 90%

confidence intervals are added as lines. Figure displays three sources of variation. The panel results regress

the log of county-level yields on seasonality-adjusted CO2, weather variables (Schlenker and Roberts 2009),

controls for other pollutants (CO, NO2, O3, PM10, SO2), county fixed effects and county-specific time trends.

The spatial first difference (SFD Residuals) looks at the change in the anomalies between neighboring counties

in a given year after removing county fixed effects and county-specific time trends. It links changes in the log

yield anomalies to changes in CO2 anomalies as well as anomalies of the weather and pollution variables. The

spatial first difference (SFD Cross-section) looks at changes in the average outcome for each variable between

neighbors, linking again changes in the average of log yield to average CO2 as well as average weather and

pollution. The first three estimates for each crop use satellite readings from OCO-2 (2015-2020), while the

last three use data from CarbonTracker (2000-2018). The bottom row displays the share of US production

in the estimation sample for those years.
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Figure A1: Seasonality in CO2 and SIF
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Notes: Left chart displays the seasonality in CO2, the right chart shows the seasonality of solar-induced

chlorophyll fluorescence (SIF) for the 740nm, 757nm and 771nm bands. To make readings comparable, they

are seasonality-adjusted to July 1st (red dashed line) of that year, i.e., a reading on a particular day is

corrected by the difference between the July 1st value of the above seasonality curve and the value of the

seasonality curve on the day of the measurement. The seasonality curves are estimated using all OCO2

readings without quality fags over the contiguous US using a 4th-order Chebyschev polynomial in the day

of year as well as a linear time trend. Since years have different numbers of days, we normalize January 1st

to -1 and December 31st to 1. The seasonality regression is constraint so the value at the end of the year

(December 31st) equals the value at the beginning of the year (January 1st). The main growing season for

corn and soybeans (April-September) is added as grey dashed lines.
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Figure A2: Number of Observations per County - Corn

Panel A: OCO-2 (2015-2020)

Panel B: CarbonTracker (2000-2018)

Notes: Figure displays the number of observations per county in the date set, i.e., where both yield data

and CO2 data are available. The top panel shows the number of observations for the six years 2015-2020

where OCO-2 data are available. The bottom panel shows the number of observations in 2000-2018 where

CarbonTracker data are available. We split the analysis into three geographic subsets: east of the 100°
meridian excluding Florida (Schlenker and Roberts 2009) shown in shades of green, arid Western United

States (California, Arizona, Utah, Nevada, Oregon, Idaho, and Washington) shown in red, and the remaining

counties shown in blue. Since our specification includes county fixed effects and county-specific time trends,

we require at least 3 observation to be included in the dataset.
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Figure A3: Number of Observations per County - Soybeans

Panel A: OCO-2 (2015-2020)

Panel B: CarbonTracker (2000-2018)

Notes: Figure displays the number of observations per county in the date set, i.e., where both yield data

and CO2 data are available. The top panel shows the number of observations for the six years 2015-2020

where OCO-2 data are available. The bottom panel shows the number of observations in 2000-2018 where

CarbonTracker data are available. We split the analysis into three geographic subsets: east of the 100°
meridian excluding Florida (Schlenker and Roberts 2009) shown in shades of green, arid Western United

States (California, Arizona, Utah, Nevada, Oregon, Idaho, and Washington) shown in red, and the remaining

counties shown in blue. Since our specification includes county fixed effects and county-specific time trends,

we require at least 3 observation to be included in the dataset.
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Figure A4: Number of Observations per County - Winter Wheat

Panel A: OCO-2 (2015-2020)

Panel B: CarbonTracker (2000-2018)

Notes: Figure displays the number of observations per county in the date set, i.e., where both yield data

and CO2 data are available. The top panel shows the number of observations for the six years 2015-2020

where OCO-2 data are available. The bottom panel shows the number of observations in 2000-2018 where

CarbonTracker data are available. We split the analysis into three geographic subsets: east of the 100°
meridian excluding Florida (Schlenker and Roberts 2009) shown in shades of green, arid Western United

States (California, Arizona, Utah, Nevada, Oregon, Idaho, and Washington) shown in red, and the remaining

counties shown in blue. Since our specification includes county fixed effects and county-specific time trends,

we require at least 3 observation to be included in the dataset.
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Figure A5: Identifying Variation Used in Analysis
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Notes: Figure displays the variation used in the statistical analysis. We include county-fixed effects and

county-specific time trends. This is equivalent to fitting a time trend (shown as dashed lines) to both yields

and CO2 readings for each county and then looking at the residuals. The above figure shows this for the more

urban Polk county in Iowa (FIPS code 19153), the county where Des Moines is located and CO2 anomalies

are less driven by agriculture itself. Corn anomalies are shown as solid red lines, while CO2 anomalies are

shown as blue lines. When CO2 positively (negatively) deviates from the trend, so do yields. Figure A6

shows the cross-plot for all observations (counties and years) after additionally removing the effect of weather

and other pollutants.
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Figure A6: Scatter Plots of Log Yield Anomalies against CO2 Anomalies
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Panel B: Soybeans
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Panel C: Wheat
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Notes: Figure summarizes anomalies after county fixed effects, county-specific time trends, the four weather

variables, and five pollutants are partialled out. This is the variation we use to identify the effect of CO2

on yields in the panel regressions in Figure 3. The top graphs displays the results for corn, the middle for

soybeans, and the bottom for winter wheat. The left column uses OCO-2 satellite readings, the right column

data from CarbonTracker. The regression results on the CO2 fertilization effect are shown as solid line with

90% confidence interval added in grey. In the CarbonTracker data there is one outlier for soybeans and four

for wheat that are not shown in the picture, but including or excluding them has no effect given the large

sample size.
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Figure A7: Crossplots of CO2 Anomalies in CarbonTracker and OCO-2 (2015-2018)
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Notes: Figure displays the cross-plot of CO2 anomalies in CarbonTracker and OCO-2 satellite readings. The

two data sources only overlap for four years (2015-2018). We include county-year observations east of the

Rocky Mountains that have at least three observations for both CO2 measures so we can fit county fixed

effects and county-specific time trends. The grey regression line shows the results of a first-stage regression

that instruments the CarbonTracker data with OCO-2 readings.
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Figure A8: Sensitivity Check: Log-Log Model Specification
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each specifica-

tion (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), expect that

it uses the log of CO2 rather than CO2 levels as explanatory variable. Graphs display the CO2 fertilization

effect of an increase in CO2 concentration by 1 ppm on aggregate yields in the sample for corn, soybeans

and wheat. The point estimates are marked by an x, and the 90% confidence intervals are added as lines.

The bottom rows display the share of US production in the estimation sample.
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Figure A9: Sensitivity Check: Lin-Lin Model Specification
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each speci-

fication (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), expect

that the dependent variable is yields instead of log yields. Graphs display the CO2 fertilization effect of an

increase in CO2 concentration by 1 ppm on aggregate yields in the sample for corn, soybeans and wheat.

The point estimates are marked by an x, and the 90% confidence intervals are added as lines. The bottom

rows display the share of US production in the estimation sample.
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Figure A10: Sensitivity Check: Lin-Log Model Specification

Corn Soybeans Wheat
US share: 55,55 55,55 55,55 90,90 90,90 90,90 58,58 57,57 57,57 96,96 96,96 96,96 45,45 44,44 45,45 75,75 75,75 75,75
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each speci-

fication (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), expect

that yields are linked to the log of CO2 levels rather than linking log yields to CO2 levels in the baseline.

Graphs display the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm on aggregate yields

in the sample for corn, soybeans and wheat. The point estimates are marked by an x, and the 90% confidence

intervals are added as lines. The bottom rows display the share of US production in the estimation sample.
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Figure A11: Sensitivity Check: State-Specific Time Trends
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each spec-

ification (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), using

state-specific time trends to calculate the anomalies rather than county-specific time trends in the baseline.

Graphs display the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm on aggregate yields

in the sample for corn, soybeans and wheat. The point estimates are marked by an x, and the 90% confidence

intervals are added as lines. The bottom rows display the share of US production in the estimation sample.
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Figure A12: Sensitivity Check: No Time Trend
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each specifi-

cation (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), using no

time trends across the US to calculate the anomalies rather than county-specific time trends in the baseline.

Graphs display the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm on aggregate yields

in the sample for corn, soybeans and wheat. The point estimates are marked by an x, and the 90% confidence

intervals are added as lines. The bottom rows display the share of US production in the estimation sample.
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Figure A13: Sensitivity Check: Data From Entire Contiguous US
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each specifi-

cation (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), using all

counties in the contiguous US rather than just the ones east of the Rocky Mountains (colored green or blue

in Figures A2-A4. Graphs display the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm

on aggregate yields in the sample for corn, soybeans and wheat. The point estimates are marked by an x,

and the 90% confidence intervals are added as lines. The bottom rows display the share of US production

in the estimation sample.
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Figure A14: Sensitivity Check: Data From Counties East of 100° Meridian

Corn Soybeans Wheat
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each spec-

ification (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), using

counties east of the 100° meridian except Florida following (Schlenker and Roberts 2009), i.e., counties col-

ored green in Figures A2-A4 rather than all counties east of the Rocky Mountains (colored green or blue in

Figures A2-A4). Graphs display the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm

on aggregate yields in the sample for corn, soybeans and wheat. The point estimates are marked by an x,

and the 90% confidence intervals are added as lines. The bottom rows display the share of US production

in the estimation sample.
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Figure A15: Sensitivity Check: Accounting for Greenness Measures

Corn Soybeans Wheat
US share: 55,55 55,55 55,55 90,90 90,90 90,90 58,58 57,57 57,57 96,96 96,96 96,96 45,45 44,44 45,44 75,75 75,75 75,75

-.5
0

.5
1

1.
5

2
2.

5
In

cr
ea

se
 in

 Y
ie

ld
s 

(p
er

ce
nt

 p
er

 p
pm

)

 

OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each speci-

fication (panel or spatial first difference using both the OCO-2 and CarbonTracker dataset), use a measure

of greenness (solar-induced chlorophyll florescence (SIF) at 757nm in the case of OCO-2 and the Enhanced

Vegetation Index (EVI) in the case of CarbonTracker) instead of the four weather variables. The greenness

measure, like weather, should capture endogenous feedbacks, i.e., where more plant growth (higher green-

ness) reduces CO2. Graphs display the CO2 fertilization effect of an increase in CO2 concentration by 1 ppm

on aggregate yields in the sample for corn, soybeans and wheat. The point estimates are marked by an x,

and the 90% confidence intervals are added as lines. The bottom rows display the share of US production

in the estimation sample.

xvi



Figure A16: Sensitivity Check: Using CO2 Readings from April-June Only

Corn Soybeans Wheat
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each specifi-

cation (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), but only

include CO2 readings for April-June rather than April-September. All other controls (weather and pollution

variables) are still averaged over April-September. Graphs display the CO2 fertilization effect of an increase

in CO2 concentration by 1 ppm on aggregate yields in the sample for corn, soybeans and wheat. The point

estimates are marked by an x, and the 90% confidence intervals are added as lines. The bottom rows display

the share of US production in the estimation sample.
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Figure A17: Sensitivity Check: Not Accounting for Other Pollutants

Corn Soybeans Wheat
US share: 55,59 55,59 55,59 90,96 90,96 90,96 58,59 57,58 57,58 96,96 96,96 96,96 45,45 44,44 45,45 75,75 75,75 75,75
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OCO-2: Panel SFD Residuals SFD Cross-Section
CarbonTracker: Panel SFD Residuals SFD Cross-Section

Notes: Figure replicates Figure 3 shown in darker colors for reference. The lighter colors rerun each specifi-

cation (panel or spatial first difference (SFD) using both the OCO-2 and CarbonTracker dataset), but do not

account for other co-pollutants (CO, NO2, O3, PM10, SO2). Graphs display the CO2 fertilization effect of

an increase in CO2 concentration by 1 ppm on aggregate yields in the sample for corn, soybeans and wheat.

The point estimates are marked by an x, and the 90% confidence intervals are added as lines. The bottom

rows display the share of US production in the estimation sample.
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Table A2: Effect of GDP Growth on Log Yields

Corn Soybeans Winter Wheat
(1a) (1b) (2a) (2b) (3a) (3b)

GDP Growth Rate 0.549 0.389 -0.038 -0.024 -0.061 -0.191
(0.847) (0.513) (0.397) (0.382) (0.828) (0.545)

Time (x100) 2.099∗∗∗ 3.858∗∗∗ 1.254∗∗∗ 1.099∗∗∗ 1.356∗∗∗ 2.791∗∗∗

(0.083) (0.247) (0.040) (0.174) (0.082) (0.222)
Time (x100) Squared -2.416∗∗∗ 0.212 -1.971∗∗∗

(0.327) (0.221) (0.288)
R-squared 0.9104 0.9526 0.9350 0.9359 0.8663 0.9292
Observations 72 72 72 72 72 72

Notes: Tables regresses aggregate US log yields on GDP growth rates (change in log GDP). Columns (1a)-

(1b) give the results for corn, (2a)-(2b) for soybeans, and (3a)-(3b) for wheat. Columns (a) include a linear

time trend (years since 1947), while columns (b) also include a quadratic of the time trend. Stars indicate

significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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