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1 Introduction

In 1979, the incoming class of Yale College freshmen stood at 1,346 students (Waters,
2001). In 2015, the size of the incoming class of Yale College freshmen stood at 1,360 stu-
dents, an increase of just 14 students. Over the same period, the number of applications to
Yale College increased by over 300 percent, from 9,331 students in 1979 to 30,932 in 2015.1

Across elite colleges, the story is the same—increasing demand for spaces but with only
a small increase in supply. In contrast, less elite colleges have largely expanded supply in
response to increasing demand.

The large growth in the demand for U.S. college education has been well documented,
reflecting growing demand by international students (Bound et al., 2016; Li, 2017) and
U.S. women (Goldin, Katz, and Kuziemko, 2006; Malkiel, 2016) as well as increasing re-
turns to education (Katz and Murphy, 1992; Blackburn and Neumark, 1993; Goldin and
Katz, 2009; Baum, Ma, and Payea, 2010), including at elite colleges (Hoxby, 1998; Dale
and Krueger, 2002, 2011; Long, 2008; MacLeod, Riehl, Saavedra, and Urquiola, 2017).2

Consistently, Figure 1 on page 2 shows that applications across most colleges have
nearly doubled since 2003, the first year in which this data was tracked by the Integrated
Postsecondary Education Data System (IPEDS).3 Notice that applications to highly selec-
tive colleges, with selectivity measured by the average SAT score of the students matric-
ulating the college in 2015,4 grew only slightly faster relative to non-elite colleges. Our
model presented later produces this interesting fact, which balances two effects in appli-
cation strategy: applying to more schools in the face of falling admit rates (Bound et al.,
2009) and an increase in the quality threshold for applicants applying to elite colleges in
the presence of fixed application costs (Chade et al., 2014).

Supply-side dynamics, the main focus of the current paper, has received less attention
than the demand side in the previous literature. The related empirical facts are striking.
Figure 2 shows that rising enrollment is sharply inversely related to selectivity. For colleges
in the Bottom 25% of SAT selectivity, enrollment increased by 61 percent between 1990
and 2015. However, four colleges that regularly rotate as the nation’s top ranked college
in the widely-cited U.S. News annual survey—Harvard, Princeton, Stanford and Yale

1For 2017, Yale conducted a one-time expansion of enrollment by 15%, adding 200 students while still
decreasing its admit rate from 6.8% in 2016 to 6.7%. Yale’s new enrollment value now puts it at the middle
of the Ivy League college enrollments and smaller than most Ivy Plus colleges.

2Dale and Krueger (2014) estimate that the returns to attending a selective college is highest for students
who are racial minorities.

3The IPEDS has been tracking individual college enrollments since 1990 and applicants since 2003.
4Using an anchor year prior to 2015 has little impact on the sorting, especially for elite colleges. Since

IPEDS tracking of SAT information for non-elite colleges improved over time, 2015 maximizes the number
of colleges included in the sorting.
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Figure 1: Applicant Ratio (2003 = 1), 2003 - 2015,
Sorted by Average SAT Percentiles
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Figure 2: Enrolled Students, Normalized (1990 = 1), 1990 - 2015,
Sorted by Average SAT Percentiles
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Source: Authors’ calculations based on IPEDS. HPSY colleges are also included in the “Top 2%” group.
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(herein “HPSY”)—increased their enrollment by only 7 percent. While not tracked by
IPEDS, the sorting of enrollment by selectivity appears to extend back to 1970.5

Rather than increase supply with demand, elite colleges have chosen to allow their
admit rates (applications divided by admission offers) to fall. Figures 3 and 4 report
plummeting admit rates for Ivy League and ”Ivy League Plus” colleges. Figure 5 shows
that admit rates, however, have increased across non-elite colleges.6 The enrollment-
weighted average admit rate across all colleges increased by 36 percent between 2003 and
2015. Falling admit rates, therefore, is mainly an elite college phenomenon.

Consistently, Figure 6 shows that the share of aggregate college enrollments captured
by elite colleges fell by 40 percent between 1990 and 2015.7 Elite colleges, therefore, are
serving a smaller and smaller share of total college-bound students, becoming more ex-
clusive over time. Elite colleges are now often distinguished by their rising SAT scores and
falling admit rates. Consider the following headline in the April 8, 2016 edition of The
Harvard Crimson: “For Fourth Year in a Row, Stanford Beats Harvard’s Admissions Rate.”
Or, as playfully described by New York Times columnist, Frank Bruni (2016):

Cementing its standing as the most selective institution of higher education in
the country, Stanford University announced this week that it had once again
received a record-setting number of applications and that its acceptance rate—
which had dropped to a previously uncharted low of 5 percent last year—
plummeted all the way to its inevitable conclusion of 0 percent. ... With no
one admitted to the class of 2020, Stanford is assured that no other college can
match its desirability in the near future.

At first glance, it might seem that the welfare loss from the rise in exclusivity might be
small in the presence of an increasing number of “close substitutes” to elite colleges. The
evidence presented in Avery et al. (2012) shows just the opposite: there is a considerable
drop-off in applicant utility-based revealed preference by school selectivity. As we show
in Appendix A, the loss in consumer (student) surplus from being rejected from a HPSY

5Between 1970 and 2015, U.S. Census data indicates that enrollment by full-time undergraduate stu-
dents increased by more than 200 percent nationally (https://www.census.gov/content/dam/Census/
library/visualizations/time-series/demo/fig 6.png). In contrast, during the same 45-year period, enroll-
ment at Yale and Stanford, two of the HSPY colleges for which early historical data is most readily available,
increased by 16 percent and 13 percent, respectively (Pierson, 1983; Stanford, 2017).

6Calculated on a weighted-average basis. Because of missing enrollment data in earlier years in the
IPEDS for some colleges, a decision must be made about how to clean the data. We choose a minimalist
procedure. If data were missing for a specific college between years where the data exists for that college,
we linearly interpolated to obtained the in-between years data for that college. Otherwise, missing data
was dropped for this calculation. In particular, we did not try to fill in missing data for one college based
on data from other colleges with similar characteristics, as the random effect is too large.

7Recall, by construction, the basket of elite colleges as well as all percentiles are determined by SAT
scores in 2015 and, therefore, held fixed going back in time.
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Figure 3: Admit Rates in Ivy League, 1987 - 2015
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Figure 4: Admit Rates in Selected Ivy Plus, 1987 - 2015
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Figure 5: Change in Admit Rate,
Weighted within Percentile by its Enrollment, 2003 - 2015
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Figure 6: Total Enrollment Shares by Percentile, 1990 - 2015
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The shown percentile’s share is equal the percentile’s total enrollment divided by the total enrollment across
all percentiles. Source: Authors’ calculations based on data from IPEDS.
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college is, conservatively, equal to about 140% of the mean total tuition over four years of
college in the Avery et al. (2012) sample. This loss is also of the same order of magnitude
as recent illegal payments to coaches by parents for the purpose of getting their students
into elite universities.

Indeed, if the welfare loss from rising exclusivity were small, falling admit rates would
not receive so much attention in the media, including a Washington Post (2016) article that
compares modern elite college admissions to the “The Hunger Games.” Falling admit
rates would also not receive so much attention (and resources) by parents.8 As Stanford
President John Hennessy (2007) wrote in the 2007 Stanford Magazine:

I have been president for seven years and it is still one of the most difficult
parts of the job to explain to parents with gifted children why a son or daugh-
ter was denied admission. And at the same time, I must come to terms with
the fact that we are denying Stanford the benefit of talent that could contribute
to the University and society at large in a significant way.

Before the modern college ratings era begin in earnest in the 1970’s, Stanford increased
its enrollment—by over 250 percent between 1920 and 1970—similar to many Ivy League
colleges at the time (Appendix B). Nonetheless, one could argue that many small col-
lege “officials” (or their faculty) settled upon the absolute size of their campus, consistent
with some “look and feel” that they want to preserve, at a point in time that coincided
with the start of the modern ratings era. Put differently, a falling admit rate is a mere
residual of a general rising demand for college. However, Figure 7 revisits the admit
rate patterns shown in Figure 2 by restricting the data to “small colleges” with total un-
dergraduate enrollments no larger than Harvard’s enrollment in 1990, the largest HPSY
college.9 By construction, colleges in this restricted sample should have a similar “look
and feel” of the elite colleges except maybe without the prestige associated with high se-
lectivity. Nonetheless, Figure 7 shows that the same basic pattern previously reported in
Figure 2 is preserved, with elite colleges growing substantially slower.10

Of course, one might even argue that the taste for status quo “look and feel” is espe-
cially pronounced at more elite colleges. Of course, the data shows that the appearance of

8Parents spent over $1.1 billion in 2019 on tutoring and test preparation for their children, with 25%
devoted to college test preparation (IBISWorld, 2020).

9The results are robust to capping enrollment at Princeton’s value in 1990, the smallest HPSY college.
Moreover, while not shown to preserve space, the growth in application ratios for small colleges is very
similar to the results shown earlier in Figure 1 for all colleges.

10Figure 7 shows that the “Bottom 25%” colleges eventually expanded less than colleges with average
SAT scores in the 25-50% range. This crossing, which did not happen in Figure 2 is presumably due to
demand-side differences driven by quality differences associated with smaller, less-selective colleges.
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Figure 7: Student Ratio (1990 = 1), 1990 - 2015,
Sorted by Average SAT Percentiles,

Smaller Colleges Only
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Source: Authors’ calculations based on 2015 IPEDS.

Explanation: Data restricted to colleges with total undergraduate enrollment in 1990 no larger than
Harvard’s 1990 enrollment, the largest of the HPSY colleges. Results are robust to capping enrollment at
Princeton’s value in 1990, the smallest of the HPSY colleges.

this taste must be the case at some definitional (even tautological) level since elite colleges
are generally not barred by law from expanding. A more interesting question is, what
type of preference is consistent with falling admit rates among elite colleges that compete
for the best students in the presence of rising demand? A related question is, could such
a preference produce social inefficiencies? Our paper address both questions.

We formally prove that if colleges only value the absolute skill level of their students,
admit rates always increase in response to rising demand. Instead, falling admit rates
require that an elite college also values some positional good that compares the skill of its
students (or its admit rate) relative to peer institutions, which we will refer to as having a
concern for “prestige.”11 We also prove that a concern for prestige is socially inefficient.

11The exact reason why a college might value prestige is mostly unimportant for our purposes. Like
many positional goods, a college might individually rationally value prestige for many reasons that have
little overall social benefit: to build its “war chest” (endowment); increase third-party ratings; a compen-
sation “ego” differential for professors, researchers, and even staff. We also do not try to model how some
colleges acquired historical “prestige capital” over very long periods of time. While interesting in its own
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More specifically, we show that when a college places a weight on prestige above a
critical value, an increase in demand decreases its admit rate, as observed with elite col-
leges. However, the admit rate increases with demand for colleges whose prestige weight
falls below this critical value, consistent with the evidence presented above for non-elite
colleges. For elite colleges, prestige competition generates a non-pecuniary externality
that produces a low level of enrollment that makes students and elite colleges worse off.

One sharp policy prediction of our analysis is that allowing elite colleges to coordinate
(“collude”) their admissions could be Pareto improving. For example, if legalized, the top
200 U.S. colleges could agree to minimum enrollments by college that increase over time,
much like maximum carbon caps by country found in the multinational Paris climate ac-
cord that decrease over time for some nations. In some countries, (quasi-)government
institutions already determine total enrollment at elite colleges that receive public sup-
port, internalizing the prestige externality.12 A similar practice happens with many U.S.
public universities at the state level, although state-level action fails to internalize the
prestige externality across state boundaries.13

This paper is organized as follows. Section 2 provides a literature review. Section
3 presents a simple single-stage theoretical model supporting algebraic solutions that
helps build intuition, with proofs provided in Appendix D and various model extensions
considered in Appendix C. Section 4 presents an enhanced three-stage simulation model
where (Stage 1) each student decides to which colleges to apply in the face of a fixed appli-
cation cost, (Stage 2) colleges make admissions and financial aid decisions, and (Stage 3)
each student picks the actual college to attend among those admitted. Section 5 discusses
model calibration. Section 6 brings comparative static predictions of the enhanced model
to data. Section 7 concludes. Appendix B considers competing explanations for why elite
colleges have expanded so slowly over time: physical capacity constraints; maintaining
student or research quality; “knock-on” effects; and, more discussion of “look and feel.”
We argue that each explanation is inconsistent with the data and often simply imposes an
exogenous restriction on outcomes that our model treats as endogenous.

right, that topic is inter-disciplinary in nature (history, geography, and sociology), with likely idiosyncratic
factors. Our focus is squarely on the economic effects of this inherited capital when colleges compete on it.

12The Australian government, for example, determines enrollment at its elite “Group of Eight” univer-
sities. A similar practice exists in Scandinavian countries, including Norway and Sweden (Kirkeboen, Leu-
ven, and Mogstad, 2016; Altmejd, Barrios-Fernández, Drlje, Goodman, Hurwitz, Kovac, Mulhern, Neilson,
and Smith, 2021), and in various European and Central America countries (Kirkeboen et al., 2016).

13For example, the State of California might wish to protect some of its universities’ reputations at the
national level.
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2 Previous Literature

A large portion of the college markets literature focuses on college demand and matching,
with a fixed supply.14 The demand side of our model builds upon several papers, includ-
ing: Arcidiacono (2005) and Fu (2014), who estimate structural models of applications,
admissions, and college choice; Bound et al. (2009), who shows that applications increase
strategically as admits rates fall; and, Chade et al. (2014), who examines student sorting
in the presence of fixed application costs and uncertainty in admissions.

Fewer papers allow for elastic supply (enrollment), which is our main focus. A no-
table exception is Epple et al. (2006) who present an equilibrium model that incorporates
student selection, financial aid, enrollment, and educational outcomes. Colleges in their
model compete over the absolute quality of students, producing a socially efficient equilib-
rium. We build upon their work but allow colleges to compete on a relative measure of
quality (“prestige”), like a positional good (Charles et al., 2009). The equilibrium in our
model is typically socially inefficient. On a more technical side, we also derive algebraic
results in our base model using a simpler type space.15 We formally prove equilibrium
uniqueness and key comparative statics. We also prove that a relative measure is necessary
to explain falling admit rates among elite colleges with rising admit rates elsewhere.

Our analysis is also consistent with Avery et al. (2012) who show that most stan-
dard college ranking methods, including that used by US News and World Report, create
strong incentives for colleges to adopt strategic admission policies to improve their rank-
ings. Ranking measures are highly correlated with various potential measures of prestige
including selectivity (e.g., average student SAT score) and admit rate.16 Our analysis
demonstrates how this strategic behavior leads to an inefficient low level of supply.We
don’t seek to directly prove the casual relationship between the modern ratings period
and a concern for prestige. Rather, like Avery et al. (2012), we take college preferences,
whether for ratings or prestige, as given and demonstrate the competitive outcome.

14A partial list includes Arcidiacono (2005); Azevedo and Leshno (2016); Black and Smith (2006); Dillon
(2007); Hoxby (2009); Bound et al. (2009); Avery and Levin (2010); Avery et al. (2012); Chade et al. (2014); Fu
(2014); Bulman (2015); Hinrichs (2015); Che and Koh (2016); Azevedo and Leshno (2016); Bond et al. (2016),
Gordon and Hedlund (2016) and Knight and Schiff (2019). Fu (2014) considers a counter-factual experiment
where the government increases the number of spaces at non-elite colleges; but supply is exogenous.

15Specifically, Epple et al. (2006) numerically solve a two-dimensional type space where students are
differentiated by skill and parental income. Because these two variables are highly correlated (our Section
4), we collapse them into one skill dimension to derive algebraic results.

16In contrast, yield rates are not a common measure of prestige (or used in rankings) and not nearly as
correlated with ratings. Many unranked colleges—for example, BYU, U. of Alaska, U. of Nevada, U. of
North Dakota, Yeshiva—have higher yield rates than Ivy League colleges, due to regional and religious
preferences. Unlike admit rates, yields are also conditional of being admitted. As a result, elite colleges
yield rates are often quite similar to many public schools.
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3 Theory

Azevedo and Leshno (2016) shows how stable matching between many students and a
discrete number of colleges with fixed supplies can be represented as a standard supply-
demand problem. We follow their lead but with additional restrictions that accommodate
an endogenous supply with analytical expressions to build intuition. To isolate the role of
prestige, we consider monopolist elite colleges facing identical linear demand curves that
only compete on prestige. Section 4 provides a richer model that is solved numerically.

3.1 Setting

Colleges and students are arranged spatially by distinct geographic regions.
Regions. There are N geographic regions indexed by i ∈ {1, .., N}. Each region has

one “elite” college and an arbitrary number of identical non-selective “safety” colleges.
Safety colleges produce an elastic supply priced at the constant marginal cost cs and are
not selective. To simplify notation, elite colleges are identical across regions, as are safety
colleges.17 Appendix C generalizes the analytical results presented below to a setting
with heterogeneous elite colleges.

Students. Each region contains an identical set of students with abilities uniformly
distributed between 0 and 1, θ ∈ U [0, 1]. The total measure of students in each region
is one. Students do not apply to colleges in other regions.18 A student of type θ gets
Ve(θ) value from an elite college (e.g., present value of increase in future earnings, value
of assortative mating, etc.) relative to no college. Similarly, Vs(θ) is the value of a safety
college, where, naturally, Vs(θ) < Ve(θ), ∀θ. The willingness-to-pay curve across the
student ability type space for the elite college equals Ve(θ) - Vs(θ) + Ps, where Ps = cs is
the price of the safety college. Normalize Ps = cs = 0 and set college application costs
to zero. All students, therefore, apply to the elite college and at least one safety college
in their respective regions. Assume that Ve(θ) - Vs(θ) = bθ, for some constant b > 0, so
that willingness-to-pay is supermodular in ability and college quality, consistent with the
standard assumption that student ability and college quality are complements.19 Then,

17We, therefore, only need to track the index i for school Nash decision rules, which takes other peer
schools −i choices as given. We do not need to track i for preferences or equilibrium outcomes.

18The regional modeling focuses the model with little impact on the role of prestige. Even in the real
world, colleges do not report “takeaway” ratios that count the number of matriculates won by a college for
students who also applied to peer colleges. Instead, colleges report metrics such as average SAT scores and
admit rates even if drawing from distinct applicant pools.

19In particular, the difference Ve(θ) - Vs(θ) is increasing in θ, so that higher ability students receive a
greater return from an elite college. For example, suppose that the value functions, themselves, increase
linearly in θ, Ve(θ) = beθ and Vs(θ) = bsθ, where, naturally, be > bs. Then, b = be − bs. The more general

10



bθ represents the willingness to pay for the elite college by student with ability θ.
Colleges. Each elite college i, therefore, is a monopoly within its region. The value

of a student’s ability θ is fully observable and the elite college accepts all students with
abilities above a cutoff value θi, rejecting all other students. Denote qi = 1 − θi as the
number of applicants that are accepted at cutoff θi. The student willingness to pay in the
quantity dimension equals bθ = b(1− qi) = b− bqi, which forms a linear inverse demand
curve that we will represent below using more familiar notation of P0− bqi, where P0 = b.
Elite colleges do not offer financial aid and all admitted students pay the tuition “sticker”
price. When drawing from its distinct student pool, each elite college cares about its
“prestige,” represented by some metric relative to elite colleges in other regions.20

3.2 College Admission

Let Q equal the identical number of students (and, hence, applicants) to the elite college
located in region i (“college i” for shorthand). Recall, that qi equals the endogenous num-
ber of applicants accepted by elite college i. 21 College i chooses qi to maximize utility,

Ui = (P0 − bqi)qi − cqi︸ ︷︷ ︸
“Profit”

+ r
[(

1− ai

1− a−i

)
− 1
]

︸ ︷︷ ︸
“Prestige”

, (1)

over its concern for profit and prestige. The first term represents the college’s “profit”22

with term ci equal to college i’s constant marginal cost (also generalized in Section 4).
The second term of equation (1) represent college i’s concern for its “prestige.” Variable

r is an elite college’s preference weight on prestige relative to its profit. Variable ai ≡ qi
Q

is college i’s admit rate and a−i ≡
∑j 6=i aj
N−1 is the average admit rate of its N − 1 peers in

other regions. Prestige, therefore, is increasing in college i’s rejection rate, 1− ai, relative
to average rejection rate of its peers, 1 − a−i. The subsequent subtraction of one from
this ratio inside [•], while not materially important, conveniently normalizes [•] to zero
in equilibrium where a−i = ai. While there is considerable evidence that elite colleges
care about their admit rates,23 Section 4 also considers a formulation of prestige based on

condition stated in the text allows for non-linear value functions with equal slopes at θ.
20As noted in Section 1, we do not take an exact stand for the basis of prestige. In the current setting,

consider “regional pride” that leads to more alumni engagement or faculty pride among peers.
21The i index on qi is needed as choice variable since qi are identical only in equilibrium.
22In practice, this profit could be used to satisfy other mission objectives not directly related to prestige,

including various sports, or offsetting public subsidies. For our purposes, we only need another motivation
besides prestige.

23 “One of the ways that colleges are measured is by the number of applicants and their admit rate,
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average matriculate test scores relative to those of peer colleges.
We scale the value of r relative to college i’s maximum potential social surplus,

r = ρ× SS ≡ ρ

[
(P0 − c)2

2b

]
, (2)

where ρ is the “intrinsic prestige weight” for college i, and SS is, without loss in gener-
ality, the maximum social surplus that college could generate, that is, at the competitive
solution.24 Without this normalization, a rising demand for college i (e.g., an increase in
P0,i) would cause a mechanical decline in the importance of prestige, ri[•]. With this nor-
malization, the intrinsic prestige weight, ρi, is scale independent, so that our subsequent
comparative statics are driven by prestige effects rather than by mechanical scale effects.

Extending to Dynamics. The values of P0, b and ρ, of course, are fixed for a single
period. Appendix C introduces a two-period inter-temporal model where college i can
reduce reduce admissions and profits in order to boost their future intrinsic prestige ρ

and increase demand tomorrow. The key results presented below remain unchanged.

3.3 Equilibrium

We start with some definitions:

Definition 1. a∗i is the equilibrium admit rate that maximizes equation (1), given a∗−i, ∀i.

Definition 2. a ≡ P0−c
2bQ is the no-prestige monopoly admit rate.

In particular, it is easy to show that a is the admit rate that maximizes each identical elite
college’s utility (1) with no prestige (ρ = 0).

and some colleges do things simply to increase their applicant pool and manipulate those numbers,” said
Christoph Guttentag, the dean of undergraduate admission at Duke (Pérez-Peña, 2014). For example,
Swarthmore eliminated an extra-500 word essay in order to increase applications (Snyder, 2015). According
to an investigation by the Wall Street Journal (2019), elite colleges routinely invite high school students to
apply that they have no intention of admitting: “Some applicants, in effect, become unknowing pawns.”
Arcidiacono (2019) presents evidence that “Harvard encourages applications from many students who ef-
fectively have no chance of being admitted, and that this is particularly true for African Americans.” More-
over, newspaper articles routinely focus on a college’s admit rate, including falling rates at elite colleges.
Using the New’s Bank Access World News database, we searched 460 major U.S. publications for articles
since 1978 discussing college admissions versus yields. Articles about admit rates outnumbered articles
about, for example, yield rates (the fraction of admitted students that matriculated) by a factor of 25 or
more, depending on the search term.

24The competitive solution sets price equal to marginal cost and ignores both market power and prestige
(ρ = 0). Other scaling factors could be used with no material change. For example, the social surplus at
the monopoly equilibrium without prestige is equal to 3

4 SS, and so the 3
4 value would get absorbed into ρ.

Alternatively, enrollment quantities, rather than surplus, could be used.
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Lemma 1. The admit rate a maximizes the sum of college utilities, ∑N
i=1 Ui, in effect, internalizing

the prestige externality.

Theorem 1. With 0 ≤ ρ ≤ 1
a , there is a unique, feasible and symmetric Nash equilibrium, a∗.

Moreover, a∗ < a, and a∗ is Pareto inefficient.

As shown in the proof to Theorem 1, the constraint, ρ ≤ 1
a , is required to have a feasible

(positive) equilibrium admit rate, a∗ > 0.25 A larger rejection rate (1− a∗i ) by college i
generates a non-pecuniary negative externality for college j 6= i. There is a symmetric
admit rate â, with a∗ < â ≤ a, where each college obtains more profit and its relative
admit rate (prestige) does not change. Hence, each college is better off at â. But, â is not
an equilibrium, as each college will deviate downward. Non-admitted students are worse
off by revealed preference. The equilibrium is inefficient.

3.4 Traditional Surplus Measures

We drop college index i in this section without risk of ambiguity due to symmetry in
equilibrium admit rates. Following conventional terminology, consumer surplus is the area
between the inverse demand curve and the equilibrium price while producer surplus is
area between the equilibrium price and the marginal cost curve.

Lemma 2. The consumer (student) surplus is CS(a) = P2
0 a2

2b . Similarly, the producer surplus is

PS(a) = P2
0
b (2a− a) a, where, recall that a is the monopoly admit rate without prestige (ρ = 0).

Also following convention, social surplus is the sum of consumer and producer sur-
plus. Define the traditional dead-weight loss (DWL) equal to the competitive social surplus
(i.e., the social surplus calculated at the admit rate where price equals marginal cost) mi-
nus the monopoly social surplus without prestige (i.e., the social surplus calculated at admit
rate a). Hence, DWL corresponds to the usual definition in the industrial organization
and public economics literature (Harberger, 1964). Also, define the prestige dead-weight
loss (PDWL) as the monopoly social surplus minus the prestige social surplus (i.e., the social
surplus calculated at a∗).

Figure 8 provides an illustration. As proven in Appendix D, the presence of the pres-
tige externality effectively shifts up the constant marginal cost curve, c, by

(
r

Q−q∗

)
, where

q∗ = a∗Q is the equilibrium number of matriculates. Intuitively, as college i expands its
quantity enrollment qi, college i faces its traditional marginal cost of education delivery

25In particular, the marginal revenue term in college’s utility (1) is linear whereas the marginal benefit
of additional prestige is not. If college i cares too much about prestige then they will not admit a positive
level of students.
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Figure 8: Social Surplus Loss from Prestige
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Explanation: q∗ and P∗ are the quantity of enrollment and college price, respectively, consistent with the
admit rate a∗ with prestige (ρ > 0). q and P are the quantity of enrollment and college price, respectively,
consistent with the monopoly admit rate a without prestige (ρ = 0). qPC and PPC are the quantity of
enrollment and college price, respectively, consistent with a competitive admit rate where the produces
quantity where marginal costs equals price. The hatched lines in area 1 indicate the traditional
dead-weight loss (DWL) associated with monopolistic competition relative to perfect competition (with no
prestige effects). The area 2 indicates the prestige dead-weight loss (PDWL) from prestige alone, that is,
compared to the monopoly level of production.

plus the marginal cost of reduced prestige in Nash equilibrium where the quantities of
the other colleges q−i are taken as given. Since the demand curve is linear, the admit rate
of the perfectly competitive college, 2a, is exactly twice as large as that of the monopoly
admit rate, a. The value of DWL is shown in region 1 , the shaded area between the
monopoly quantity q = aQ and the perfectly competitive quantity qPC = 2aQ. The value
of PDWL is shown in region 2 , the area between the equilibrium quantity with prestige
q∗ = a∗Q and the monopoly quantity without prestige q = aQ.

For elite colleges, the prestige dead-weight loss PDWL can easily be larger than the
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traditional dead-weight loss DWL.

Theorem 2. The traditional dead-weight loss is equal to DWL ≡ P2
0 a2

2b . The prestige dead-weight

loss is equal to PDWL ≡ P2
0

2b (a− a∗)(3a− a∗). If a∗ < a(2−
√

2), then PDWL > DWL.

3.5 Comparative Statics

To demonstrate the change in admit rate in the presence of rising demand, the following
result is useful:

Lemma 3. The equilibrium admit rate a∗ is decreasing in the prestige ratio ρ > 0.

We now arrive at our key comparative static:

Theorem 3. There exists a threshold value of the instrinic prestige ratio, ρ∗ ∈ [0, 1
ā ], such that

an increase in consumer demand (P0) results in a decrease in the admit rate
(

i.e., da∗
dP0

< 0
)

if the
weight placed on prestige by the group of competing colleges is above this critical value (ρ > ρ∗).
If the weight placed on prestige is below this critical value (ρ < ρ∗), increases in customer demand
result in an increase in the admit rate

(
i.e., da∗

dP0
> 0

)
. This prediction is broadly consistent with

the evidence of falling admit rates at elite colleges and increasing admit rates at non-elite colleges
presented in Section 1.

3.5.1 Remark: A Concern for Absolute Metrics

The relative nature of prestige is critical for capturing how admit rates fall in applications.
Suppose, for example, that college j only cared about the absolute value of some metric
such as its own admit rate aj, or, equivalently, rejection rate, 1− aj.

Ui = ri · (1− ai)︸ ︷︷ ︸
Weight on absolute metric

+ (P0,i − biqi)qi − ciqi︸ ︷︷ ︸
“Profit”

. (3)

Since a college’s rejection rate is a linear function of the quantity it admits, adding a con-
cern for a college’s admit rate simply adjusts the marginal cost function while adding a
constant intercept:

Ui = ri︸︷︷︸
Intercept

+(P0,i − biqi)qi −
(

ci +
ri

Q

)
︸ ︷︷ ︸
Effective MC

qi (4)

In fact, this intuition holds for almost any absolute measure such as the average “quality”—
test scores, GPA, extracurricular skills, diversity, etc.—of students, that can be written as
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a linear or quadratic function in quantity admitted q. As a result, an increase in demand
P0 fails to lower its admit rate. In sum, a concern by a college over an absolute metric
cannot explain a decline in admit rates in the presence of rising demand; the metric must
relative to the college’s peers.

4 Model

This section presents a richer three-stage model that supports calibration to real-world
data under prestige competition along with counter-factual simulations without the pres-
ence of prestige (equivalently, prestige is internalized). A student is characterized by skill
θ ∈ Θ drawn from the continuous probability distribution γ(θ) over type space Θ. There
are N discrete peer colleges indexed by i. In each academic year, students and colleges
make decisions across three stages, solved backwards under rational expectations.

Stage 1: Student θ applies to colleges, paying a fixed cost per application.
Stage 2: College i selects students to admit and awards needs-based financial aid.
Stage 3: Each admitted student θ decides which college j to attend.

4.1 Stage 1: Students Choose Where to Apply

A positive application cost ki(θ) > 0 ensures that all students don’t apply to every col-
lege.26 As Chade et al. (2014) notes, in the presence of these costs, if colleges’ admit poli-
cies were deterministic and common knowledge, students would only apply to colleges
to which they would be admitted, trivially producing 100% admit rates. Accordingly, we
assume that college i rejects student θ with probability λi(θ), which is decreasing in θ.
Naturally, λi(θ) functionals are equilibrium objects.

Let ηi(θ) denote the probability that student θ applies to college i; as shown below,
ηi(θ) ∈ {0, 1} (i.e., binary), and so ηi(θ) becomes an indicator function. Student θ picks
the college application vector ~η(θ) = {η1(θ), η2(θ), ..., ηN(θ)} to maximize the expected
benefit of her application choices less the application costs:

N

∑
i=1

∆i(θ)ηi(θ)(1− λi(θ))yi(θ)
i−1

∏
j=1

λj(θ)︸ ︷︷ ︸
Expected Benefit of Applications

−
N

∑
i=1

ki(θ)ηi(θ)︸ ︷︷ ︸
Cost of Applications

(5)

∆i(θ) represents type θ’s willingness-to-pay for attending college i if accepted. As dis-

26Knight and Schiff (2019) provides evidence that reducing application frictions increases the number of
college applications.
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cussed below, ∆i(θ) is potentially a complicated endogenous operator, but its value can
be identified structurally using observed prices. The “yield” yi(θ) is the probability that
student θ attends college i if admitted, determined in Stage 3, where ∑i yi(θ) = 1. The
term ∏i−1

j=1 λj(θ) recognizes that the expected value of applying to an additional college
in the peer group decreases if the student already has a low chance of being rejected to
another college in the peer group to which the student has already applied.

It is easy to see that optimal solution for ηi(θ) is a boolean operator given by:

η∗i (θ) =

1, if ∆i(θ)(1− λi(θ))yi(θ)∏i−1
j=1 λj(θ) > ki(θ)

0, otherwise
(6)

In words, student θ applies to college i if her willingness-to-pay conditional on admission,
∆i(θ), times the probability of admission, 1−λi(θ), times the probability of attending if ad-
mitted, yi(θ), times the marginal value of this additional application, ∏i−1

j=1 λi(θ), exceeds
the application costs, ki(θ). As Chade et al. (2014) notes, while the value of ki(θ) might
seem small in practice relative to the value of college, the marginal value of an additional
application can quickly diminish, which, in fact, occurs in our simulations reported later.

Several technical remarks are in order:
First, there are N! possible college index orderings. With heterogeneous colleges, the

order that a student applies to colleges, therefore, matters when ki > 0. The optimal
application ~η vector, therefore, produces the largest value of equation (5) across N! com-
binations. This technicality, though, turns out to be numerically unimportant below due
to the similarity of colleges within a peer group, and so we do not modify our notation
presented above to explicitly accommodate the maximum of N! different orderings.

Second, notice that the tuition price does not directly enter equation (6). Following
Epple et al. (2006), financial aid enters as first-degree price discrimination where a college
extracts consumer surplus. As Epple et al. (2006) argue, this assumption is reasonable
for elite colleges with market power who have access to extensive personal finance data
provided by its applicants.

Third, as in Chade et al. (2014), we don’t take a strong position whether the expected
benefit of an additional application corresponds to ”expected value” (EV) or “expected
utility” (EU). The interpretation of ∆i(θ) determines the technical distinction between
these two choices, either as a monetary payoff for attending college i (EV) or in utility
units (EU). Unlike many applications where this distinction matters, students in our set-
ting cannot allocate their human capital investments across multiple colleges similar to
diversifying financial capital across multiple asset classes. Imposing some curvature over
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the monetary outcome (to produce EU) would just mainly serve to dampen the number
of elite colleges to which a marginal skill student applies (their “stretch schools”). But the
operator ∏i−1

j=1 λi(θ) also serves this purpose with positive application costs, and so focus-
ing on EV allows us to calibrate ∆i(θ) as the additional net monetary reward that student
θ receives from attending college i.

Assumption 1. Student θ is a price taker in college i’s rejection rate, λi(θ).

Assumption 1 says that no single student θ strategically anticipates how his or her own ap-
plication to college i impacts its rejection rate. This assumption is standard (e.g., Azevedo
and Leshno (2016)) since there are many students relative to colleges.

The total number of applicants to college i equals

Qi = Mi

∫
Θ

γ(θ)ηi(θ)dθ (7)

where Mi is a scaling parameter that maps the measure-one student type space to empir-
ical values reported below. Mi can be interpreted as the “potential” number of applicants
to college i, maybe reflecting student regional, legacy and other idiosyncratic preferences.
Unless application costs ki(θ) are small, the value of Mi is typically latent and larger than
Qi, and so the value of Mi is inferred as part of model calibration discussed below.

4.2 Stage 2: Colleges Admit Students with Needs-Based Financial Aid

The (expected) number of matriculating students to college i equals.27

qi = Mi

∫
Θ

γ(θ)ηi(θ)(1− λi(θ))yi(θ)dθ, (8)

College i picks qi through its rejection function λi(θ), a potentially infinite-dimensional
equilibrium object. As justified in the calibration section presented below, we consider a
rejection function of the form λi(θ) = λi(θ; αi), where αi is a scalar that college i picks to
control the shape of λ over the type space, Θ. College i, therefore, chooses αi to maximize
its utility over profits and prestige:28

α∗i = argmin
αi

Revi − ciqi︸ ︷︷ ︸
profit

+ Ri

(
1− ai

1− a−i

)
︸ ︷︷ ︸
relative admit rate

+ Si

(
θ̄i

θ̄−i

)
︸ ︷︷ ︸
relative skill

(9)

27While qi is an expected value, it becomes nearly deterministic with enough students. So, we will save
on the “expected” terminology throughout.

28To enhance concavity and computation speed, the terms
( •
•
)

in equation (9) can be raised to a power
of 1

2 , for example, without much loss in generality.
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where
Revi = Mi

∫
Θ

γ(θ)ηi(θ)(1− λi(θ))yi(θ)∆i(θ)dθ,

equals total revenue under first-degree price discrimination in a given year. Profit is,
therefore, equal to total revenue less total cost, ciqi, where is ci the constant average cost.

College i’s prestige, however, can depend on its relative admit rate (as before) or its
average student ability (“skill”) relative to the average average skill of its N − 1 peers. The
second term in equation (9) represents college i’s prestige from its relative admit rate. As
before, Ri is the prestige weight college i puts on its admit rate,

ai =
Mi
∫

Θ γ(θ)ηi(θ)(1− λi(θ; αi))dθ

Qi
, (10)

relative to the average admit rate of college i’s peers,

a−i =
1
N

N

∑
j 6=1

aj. (11)

The third term in equation (9) equals college i’s prestige from its average student skill,

θi =

∫
Θ θγ(θ)ηi(θ)(1− λi(θ; αi))yi(θ)dθ∫
Θ γ(θ)ηi(θ)(1− λi(θ; αi))yi(θ)dθ

, (12)

relative to the average average student skill of its peers, θ−i. Variable Si is the corresponding
prestige weight for college i while θ−i is defined analogously to a−i.

4.3 Stage 3: Students Pick a College

Students now pick a college. If a student is admitted to more than one college, a coin
flip as a tie breaker rule is innocuous and standard in game theory if payoffs are nearly
homogeneous. The yield of college i for student type θ, conditional on being admitted, is
then the inverse of the (expected) number of colleges that admit student θ:

y∗i (θ) =
1

1 + ∑j 6=i ηj(θ)(1− λj(θ; αj))
. (13)

The value of 1 in the denominator reflects the condition that student θ has been admitted
to college i. Term ∑j 6=i[·] is the expected number of peer colleges to which student θ

applied and is admitted. For heterogeneous colleges, this rule is less innocuous if the
values ∆i(θ), i ∈ {1, . . . , N}, differ substantially. Given our choice of peer groups in
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simulations reported below, the limited heterogeneity is numerically immaterial.

4.4 Equilibrium

Definition 3. The equilibrium values of η∗i (θ), α∗i and y∗i (θ) solve equations (6), (9) and (13) for
all students θ ∈ [θmin, θmax] and colleges i ∈ {1, . . . , N}.

Given Assumption 1, the equilibrium is solved computationally as follows. The stu-
dent type space is discretized into a fine grid, Θ ⊂ [θmin, θmax]. Then:

Step 1: An initial guess is made for rejection parameters αi, i ∈ {1, . . . , N}.
Step 2: For each θ ∈ Θ and i ∈ {1, . . . , N}, solve Stages 1 and 3 simultaneously for

ηi(θ) and y∗i (θ), i.e., taking αi as given (price taking).
Step 3: Solve Nash game in Stage 2 for the “new value” of αi, αnew

i , i ∈ {1, . . . , N}.
Step 4: Compute the sup norm across the set {(αi − αnew

i )}, i ∈ {1, . . . , N}, and
return to Step 2 if not sufficiently small (10−12).

The generality of our model makes it challenging to produce analytical solutions, in-
cluding proofs of equilibrium existence and uniqueness. Uniqueness is the bigger con-
cern. We (imperfectly) attempt to detect multiple equilibria using globally robust solu-
tion methods that can report out multiple stable equilibria. The case study explored in
the remainder of this paper focuses on the Harvard-Princeton-Stanford-Yale (HPSY) peer
group, where heterogeneity appears to be limited enough to produce a unique solution.

5 Calibration

In the remainder of the paper, we consider a case study of the Harvard-Princeton-Stanford-
Yale (HPSY) peer group to examine the role of prestige in limiting admissions between
1990 and 2015. We first calibrate latent model variables in the “baseline” model with pres-
tige competition to match model moments with data. Counter-factual simulations then
turn off prestige effects (i.e., Ri = Si = 0) with no changes in the values of other latent
parameters. More specifically, we proceed as follows:
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Step 1: Functions: Pick functional forms for skill distribution, willingness-to-
pay, college rejection, and costs based on data.

Step 2: Parameters: Calibrate latent parameters, indexed by college and year, by
matching model price cap (“sticker price”), admit rate, and
number of matriculates in Nash equilibrium for each year
between 1990 and 2015.

Step 3: Model fit: Report over-identification moments for these same years,
including mean skill of matriculates, number of applicants,
and mean skill of applicants.

Step 4: Counterfactual: Turn off just the prestige terms (Ri = Si = 0), and report
key model moments related to applications, matriculates,
and skills as well as the change in social surplus.

Steps 1 and 2 are reported in this section, followed by a brief discussion that contrasts
our “limited-number-but-exact” moment matching exercise against competing calibra-
tion methods in an inter-temporal setting. Steps 3 and 4 are addressed Section 6.

5.1 Functional Forms

We first discuss function forms, before discussing calibration of latent parameters:

Student skill distribution, γ(θ). Figure 9 shows that SAT (and ACT converted) scores
are normally distributed, which we take as a proxy for a student’s skill, θ.29 SAT scores
are integer valued whereas converted ACT scores take non-integer values. More students
take the SAT exam, producing spikes at integer values, as shown in Figure 9. The proba-
bility distribution γ(θ) for skill θ is, therefore, taken as normal distributed:

γ(θ) =
1

σ
√

2π
exp

[
− (θ − µ)2

2σ2

]
(14)

where µ = 1160 and σ = 175, consistent with Figure 9. The distribution is naturally
trimmed at θmin = 400 (minimum SAT score) to θmax = 1600 (maximum SAT score).

Rejection Function, λ(θ; αi). Rejection follows a power law function decreasing from
1 to λmin, as θ increases from θmin = 400 (minimum SAT) to θmax = 1600 (maximum):

λi(θ; αi) = 1− (1− λmin)

(
θ − θmin

θmax − θmin

)αi

. (15)

29Data comes from the Higher Education Research Institute public-use file of college freshman, 1985
- 2000. ACT scores are converted to their SAT-equivalent values following Chade et al. (2014), with a
maximum score of 1600.
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Figure 9: SAT Score Density
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Figure 10: Household Income vs. (Re-centered) SAT Score
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Figure 11: Estimates of Harvard Rejection Function, 1996 - 2015
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λmin is the “minimum” rejection rate for θmax type students, which recognizes that even
students with perfect SAT scores are rejected from elite colleges (Pérez-Peña, 2014). The
value of αi is an endogenous operator chosen by college i as its admission policy.31 The
power law specification appears to be a very good approximation for elite college rejec-
tion by skill type. Normally, such a function form is hard to validate because colleges do
not typically release admit data based on a student skill metric that weights test scores,
high school GPA, and other factors. However, as described in more detail in Appendix F,
Harvard released such data as part of its recent litigation against Students for Fair Admis-
sions. Harvard gives each applicant an aggregate score between 100 and 240.32 Naturally,
low scoring students are much more likely to be rejected than students with higher scores.
However, even a majority of students with perfect scores of 240 will be rejected. Figure
11 indicates a very close fit between a calibrated power-law function and Harvard data.

Costs, ci and ki. The marginal cost of college i, ci, in each year is estimated using
the data and the procedure described in Appendix E. The data includes expenditures on

31We set θmin at µ + 1.0 · σ since HPSY colleges do not admit students with scores below the national
average. Despite the detailed Harvard legal data discussed in text, we typically only observed the admit
rate across all applicant skill levels by college, which requires picking a single parameter, namely, the shape
value αi, for calibration. However, the exact choice of θmin does not seem that important in the simulations.

32Technically, the score starts as low as 60. However, the released data starts at 100 since 99.99 percent of
applicants between 100 - 193.5 where rejected.
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instruction and student services for colleges with sufficiently high SAT scores and min-
imum enrollment. The estimation procedure computes a cost elasticity controlling for
fixed effects and potential endogeneity using instrumental variables. The cost of appli-
cation ki(θ) is not type specific and is treated as constant across colleges within a peer
group, ki(θ) = ki = k.33

Willingness to pay, ∆i(θ). The willingness-to-pay by student θ for college i is propor-
tional to the returns to college functional form estimated by Dale and Krueger (2011):

∆i(θ) = ωieβi(θ−µ) (16)

where ωi is the average starting wage of college i. Notice that d∆i(θ)/dθ > 0, implying
that higher skill students get a higher return to college i. Moreover, willingness-to-pay is
supermodular in ability and college quality ( ∂2∆i

∂θ∂ωi
> 0). As a result, a higher skill student

has a higher willingness-to-pay for an elite college but, of course, by an amount that is
less than the total return to the elite college, given potential substitutes. We discuss the
corresponding calibration of βi in the next subsection.

5.2 Moment Targets and Latent Parameters

In the baseline simulation, latent model parameters are calibrated so that the model “ex-
actly” matches three key moments for each college at the Nash equilibrium fixed point in
each year: the price cap (“sticker price), admit rate, matriculates.

Beta, βi. Similar to Epple et al. (2006), the deep preference parameter for willingness
to pay (here, βi) is chosen so that ∆i(θ = 1) is consistent with college i’s price cap (“tu-
ition”). Unlike Epple et al. (2006), our willingness-to-pay measure only considers student
skill (SAT) and not parental income. However, Figure 10 shows that there is strong em-
pirical correlation between parental income and SAT scores; with perfect correlation, βi is
a sufficient statistic across these two dimensions.

Prestige, Ri and Si. For any simulation, Ri (prestige weight on relative admit) or Si

(prestige weight on relative skill) must be fixed to avoid over-identification.34 To avoid
over-fitting, we simply set Ri = 0 and calibrate Si so that college i’s admit rate (through
its choice of αi) in Nash equilibrium equals its empirical value in a given year.35 This
choice is consistent with the focus in Hoxby (2009) on SAT test scores as an indicator of

33The value k = $90 by 2015, around the average for HPSY colleges plus score submissions. In prac-
tice, some elite colleges offer fee waivers or reductions to lower-income households. These households,
however, are also more likely to have lower skill applicants.

34Specifically, a loci of points in [Ri, Si] space can target the same calibrated admit rate.
35Simulations exercises indicate that setting Si = 0 and calibrating Ri yield similar results.
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college selectivity.
Potential Number of Applicants, Mi. The total number of potential applicants Mi to

college i is latent when application costs are positive, k > 0. It can be calibrated by match-
ing the model’s number of applications Qi for college i in Nash equilibrium to its observ-
able empirical value, or by matching the model’s matriculates qi against actual data. We
target matriculates because it has a longer history in the IPEDS data set, although similar
results emerge with targeting applications.

5.3 Discussion: Dynamics

In sum, we calibrate βi, Si and Mi in each year so that the model produces an “exact”
match for college i’s price cap, admit rate, and the number of matriculates in Nash equi-
librium equal to their observable empirical values. Other model moments, described in
Section 6, are reported as over-identifications relative to their empirical values, where
available. This approach allows Si and willingness-to-pay to grow adaptively over time
without imposing an explicit structure on their relationship, thereby cleanly isolating the
effects of prestige in our counter-factual simulations.

An alternative approach would model colleges solving an infinite-horizon discounted-
utility repeated game. However, a non-arbitrary way is then needed to select a single
Nash equilibrium out of an infinite number. Alternatively, we could specify a reduced-
form relationship between a “prestige investment” today (e.g., small qi) and a future pay-
off (i.e., higher future willingness to pay).36 GMM could then be used to calibrate latent
parameters by matching model moments to available data. However, unlike the other
functional forms discussed above, the relationship between a “prestige investment” to-
day and future willingness to pay can’t be directly estimated, reducing this appeal.

Moreover, inter-temporal supply-side strategic action implies that HPSY colleges would
likely reduce matriculates to lower admit rates by an amount that is more than required by
increased demand alone. Historically, however, the number of elite college matriculates
kept pace with population growth prior to the modern ratings era (Appendix B), leveling
off thereafter. HPSY colleges never appreciably reduced matriculates even with the rise
of ratings. Instead, prestige appears to evolve adaptively over time, driven by demand.
Elite colleges influence the demand side by encouraging more applications, including from
candidates with little chance of being accepted (see footnote 23).

36Recall that we took that approach for the simplified model presented in Section 3 with an extension to
dynamics discussed in Appendix C).
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6 Simulations

We now report simulation results of how competition over prestige impacted equilibrium
enrollments, admit rates, applications, and the level of skill of applicants and matriculates
for HSPY colleges between 1990 and 1995. To isolate the effects of prestige competition,
we run the simulation model twice. First, we run the model with latent variables cali-
brated as described in Section 5 with the concomitant results reported in figures below as
the “Prestige” model. Second, we run a counter-factual simulation with prestige turned
off (i.e., Ri = Si = 0) but all other latent parameters held at their original calibrated
values, reported in figures below as the “No prestige” model. This two-step approach
ensures that any differences between the simulated and counter-factual values are com-
pletely due to the prestige effect.

6.1 Admit Rates and Number of Matriculates

Figures 12 and 13 report the weighted mean admit rates and weighted mean number of
new matriculates (freshman) across HPSY colleges for the “Prestige” and “No Prestige”
models. These figures also show empirical values (“Data”) from the IPEDS.37 As dis-
cussed in Section 5, the admit rate and the number of matriculates are targets of calibration,
and so the values from the “Prestige” model match the data in each year by construction.
Figure 12 shows that the counter-factual “No Prestige” model produces a much larger ad-
mit rate, in fact, up to its maximum limit under first-degree price discrimination.38 Figure
13 shows that the number of matriculates in the “No prestige” model also increases rela-
tive much faster over time, indicating how a concern for prestige suppresses enrollment
growth over time.

6.2 Matriculate Skills

Unlike the admit rate and the number of matriculates reported above that are calibrated
to the data, the mean simulated skill of matriculates of HPSY colleges is an endogenous
outcome of the model, shown in Figure 14. With prestige, the simulated skill level does a
fairly good job at tracking the increase in selectivity found in the IPEDS data since 1997

37The proportion of matriculates from a given HPSY college forms the weight that is used to calculating
the shown weighted mean. For the simulations (“Prestige” and “No Prestige”), matriculate count equals
the respective simulated value. For “Data,” the matriculate count is empirical.

38We cap the admit rate at 50 percent to allow for easier visual comparison against the Prestige model,
and to reduce computational costs. A cap of 50 percent is more-than adequate for demonstrating the
contrast of the counter-factual scenario. In the counter-factual scenario, this cap might bind over time if
marginal costs do not increase faster than demand.
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Figure 12: Mean Admit Rate
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Figure 13: Mean Number of Matriculates
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Figure 14: Mean Skill of Matriculates
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for HPSY colleges. (IPEDS started collecting SAT data in 1997.) In sharp contrast, the
counter-factual simulation without prestige produces no increase in selectivity, consistent
with the large and persistent counter-factual admit rate reported in Figure 12.

6.3 Applicants and their Skills

Figure 15 shows (solid line) the simulated weighted mean number of applicants to HPSY
colleges, an endogenous outcome of the model. As admits fall, highly-skilled students
typically apply to even more HPSY colleges, thereby mechanically lowering admit rates
even more, a ”knock-on effect” identified by Bound et al. (2009).

Notice that the simulated number of applicants with “Prestige” follows the data fairly
closely. In contrast, the simulated number of applicants under the “No Prestige” counter-
factual simulation grows substantially faster over time.

As shown earlier in Figure 12, an absence of prestige generates a higher admit rate,
and so applying to college is relatively less competitive. At first blush, it, therefore, seems
counter-intuitive that the number of applicants would have grown faster over time in
Figure 15 in the counter-factual case with no prestige. The explanation is due to strategic
application decisions captured by the model. As elite colleges who care about prestige
become more selective over time, the average skill of matriculates increase. However, so
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does the average skill of applicants, as shown in Figure 16, an effect of application costs
previously considered by Chade et al. (2014). In particular, greater selectivity over time
shifts rightward the skill distribution of students who are willing to absorb the fix cost k
of applying.

Figure 17 compares the skill of applicants and matriculates under the “Prestige“ simu-
lation. Notice that they follow a parallel trend over time. Naturally, simulated applicants
have a lower relative mean skill than matriculates. In effect, HPSY colleges represent
“stretch colleges” for applicants with “moderately strong” skills who face a lower chance
of admission but a chance that is still high enough to absorb the application costs.

Recall that Figure 15 showed that the absolute number of applicants grows slower
with “Prestige” than without. However, Figure 18 shows that mean number of applicants
relative to actual positions available (that is, relative to the number of matriculates) increases
substantially over time with “Prestige,” consistent with the data for HPSY colleges. In
contrast, this ratio remains flat in the “No Prestige” counter-factual simulation. The in-
creasing gap between the “Prestige” and “No Prestige” ratio lines is consistent with the
“knock-on” (secondary) effect argued in Bound et al. (2009): A fall in admit rates over
time with prestige generates even more applications per position available, which de-
creases the admit rate even more.

Figure 16 does not report the empirical mean skill of applicants to HPSY colleges, since
that data is generally unavailable.39 However, indirect but striking evidence of strate-
gic application decisions can be found using the annual HERI survey of freshman which
asks students how their actual college of matriculation ranked within their own personal
full choice ranking of colleges to which they previously applied. Figure 19 reports the
results for “top private” colleges that, as defined by Chade et al. (2014), had a mean SAT
score of 1340 or higher. In 1986, notice that students admitted to their first through fourth
top choices had similar SAT scores. However, by the year 2006, SAT scores started to
diverge by choice, with students admitted to their highest choice of colleges having rel-
atively lower SAT scores. This pattern is consistent with strategic application decisions
by students. Students with higher SAT scores are more likely to apply to the very best
of the elite colleges. But these colleges also have the lowest admit rates, decreasing even
more over time; indeed, as noted earlier, even students with perfect SAT scores are now
routinely rejected from top colleges. In contrast, students with relatively weaker SAT
scores, while still applying to strong colleges, often skip applying to the very elite col-
leges, a trend that has increased over time as the very elite colleges have become more
competitive.

39The College Board suspended collecting this data many years ago.
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Figure 15: Mean Number of Applicants
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Figure 16: Mean Skill of Applicants
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Figure 17: Mean Skill of Applicants and Matriculates
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Figure 18: Mean Ratio of Applications to Positions
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Figure 19: Matriculation by Personal Rank of Top Private College (Mean)
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Explanation: Following Chade et al. (2014), “top private” colleges have a mean SAT score of 1340 or
higher. For top private college matriculates, the figure shows the mean personal rank of the actual
matriculated college of out of all colleges to which they applied. ACT scores were converted to their SAT
equivalent values using the method footnoted earlier.

6.4 Loss in Peer-Group Producer Surplus

With first-degree price discrimination, producer surplus is given by the “profits” term
in equation (9). Figure 20 shows the weighted mean ratio of producer surplus in the
counter-factual simulation without prestige relative to with prestige. Of course, the ratio
in 1990 exceeds the value of unity, since the prestige externality is socially inefficient.
More importantly, the ratio grew over time, tripling in value by 2015, thereby indicating a
sizable increase in the relative loss of social surplus due to the prestige externality. HPSY
colleges would be better off if they could legally coordinate their admissions policies,
thereby internalizing some of of the prestige externality to expanding admissions.40 To

40HPSY colleges might still care about their prestige as a group relative to elite but less competitive
colleges. However, this concern still leaves considerable room to increase producer surplus from collusion
among HPSY colleges since other colleges are not perfect substitutes, as shown in Appendix A.
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Figure 20: Producer Surplus Without Prestige Relative to With Prestige
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Explanation: Figure shows the ratio of producer surplus in the counter-factual simulation without prestige
(R = S = 0) relative to producer surplus with prestige, normalized to a value of 1 in 1990.

be sure, the assumption of first-degree price discrimination simplifies many real-world
complexities. Appendix A presents an alternative surplus calculation based on Avery
et al. (2012) method and data using student preferences. In both cases, the potential loss
in surplus from prestige competition is quite large. More generally, a reduction in prestige
competition would improve the welfare of both colleges and students, consistent with a
Pareto improvement.

7 Conclusion

Total U.S. college enrollment has doubled over the past half century. However, enroll-
ment at elite colleges has barely increased. Even as the quality of students seeking ad-
mission has improved markedly over time, elite colleges have instead allowed their ad-
mit rates to plummet, often rejecting students that are essentially indistinguishable from
admits. Admit rates at HPSY (Harvard, Princeton, Stanford and Yale) colleges—four col-
leges that regularly rotate the top ranked position in the ubiquitous annual U.S. News
college ranking—are today around 5 percent or one-quarter of their 1990 values. Simi-
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larly, admit rates at The University of Chicago and Penn, which exceeded 40 percent as
late as 1990, stand at less than 10 percent today. In contrast, admit rates among non-elite
colleges have increased over time. Falling admit rates is unique to elite colleges.

In Appendix B, we show that seemingly obvious explanations—physical constraints,
maintaining student and professor quality, knock-on effects and “look and feel”—don’t
explain the dramatic trend differences in enrollments between elite and non-elite colleges.
Of course, elite colleges value metrics such as their selectivity or admit rate. But, we prove
(Section 3) that if colleges only care about the absolute value of these metrics, admits rates
would have had counter-factually increased with demand at elite colleges.

Instead, falling admit rates require that colleges also care about prestige which is inher-
ently measured relative to peers. Specifically, we show that the decisions of elite colleges
is consistent with a model where colleges value prestige, which is measured either as
their selectivity (e.g., average SAT score) relative to that of their peer group or by their
relative admit rates. When a college’s weight on prestige is above a critical value, an in-
crease in demand decreases the admit rate, consistent with the experience for elite colleges.
Conversely, when a college’s weight on prestige is below this critical value, an increase
in demand increases the admit rate, consistent with the evidence observed with non-elite
colleges. Using HPSY colleges as a case study, a calibrated version of the model closely
replicates the empirical evidence (including admit rates, matriculates, skills, and applica-
tions), while counter-factual simulations, with prestige turned off, fail.

An important consequence of elite college’s preferences over prestige is the under-
provision of spaces due to a non-pecuniary prestige externality. As discussed in Section
1, this externality is internalized in several European, Scandinavian and other countries
where the government picks the total enrollment for each elite college. In the United
States, elite colleges could internalize the externality if they could coordinate their ad-
mission decisions, even if just at the aggregate level (e.g., the top 200 colleges commit
to a minimum admit rate rather than agree on which students to admit). This type of
coordination, however, is currently illegal on antitrust grounds under the Sherman Act
(Depalma, 1992).

34



References
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A Illustrative Lower-Bound Consumer Surplus Loss

Avery et al. (2012) use micro-data on the application, admission and matriculation deci-
sions of 3,240 randomly selected high achieving students from schools with a history of
placing multiple students in selective colleges. In their empirical model, the indirect util-
ity uij of student i choosing college j is a function of the subjective mean quality of college
(θj) as well as ten other factors (xi,j), including sticker tuition price, features of the finan-
cial aid offer (cash grants offered, loans offered, amount of work study offered), familial
connections to the university (whether father, mother or sibling is an alum of the college),
and location (whether the college is in the home state or home region and the distance of
the college from the student’s home):

uij = θj +
10

∑
k=1

xijkδik + εij (17)

Figure 21 reports the enrollment-weighted value of θj estimated by Avery et al. (2012)
for HPSY colleges as well as the “Next 2%” of colleges with the highest θ. For complete-
ness, Figure 21 also reports the θ values for other colleges as well, including the next 8%,
the next 10% and, finally, the average remainder of other colleges.

Figure 21: Avery et al. (2012) θ,
Weighted mean within percentile by enrollment
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For the purposes of our back-of-the envelope calculation, we consider the average
utility drop off from HPSY to the “Next 2%” top colleges, which is about 2.5 utility (θ)
points. This estimate conservatively assumes that a student who is rejected from a HPSY
college is accepted with certainty at a “Next 2%” top college.

The Avery et al. (2012) analysis allows us to “dollarize” this drop in θ by asking: how
much reduction in financial aid would an average student rejected from a HPSY college
be willing to forfeit (or, more generally, pay out-of-pocket if greater than total possible
financial aid) to obtain the same utility as attending a HPSY college? Totally differentiate
equation (17) and set to zero to get

duij = 0 =
∂uij

∂θj
dθj +

∂uij

∂x̃ij
dxij2

= dθj + δidxij2,

where xij2 is the value of cash grants offered to student i by college j. Hence:

dxij2 = − 1
δi2

dθj (18)

Table 4 of Avery et al. (2012) provides a point estimate of δ2 = 0.087, averaged across
students, with a standard error of = 0.007, per $1, 000 of grants per year. Combining with
dθj = −2.5, the dollar-equivalent loss in consumer (student) surplus of being rejected
from a HPSY college is

dxij2 =
1

0.087
× 2.5× 4$1, 000 = $114, 942 (19)

with a standard error of $9,248.41 The 95% confidence interval is [$96, 816, $133, 068].
Larger losses would emerge if we also included that a student rejected from a HPSY col-
lege is not accepted to a “Next 2%” college with certainty. Even so, this calculated loss
in consumer surplus is comparable to 140% of the mean total tuition over four years of
college in the Avery et al. (2012) sample. It is also of the same order of magnitude as
illegal payments to coaches by parents for the purpose of getting their students into elite
universities.42

41Given ∆U(δ2) = A
δ2

, where δ2 is the conversion factor and A is the constant of proportionality. The

standard error on se(∆U(δ2)) =
√

var(δ2)[∆U′(δ2)]2 = σδ2 ×
∆U(δ2)

δ2
= 0.007 × 114,942

0.087 = 9, 248.
42For example, former Stanford sailing coach, John Vandemoer, was paid $270,000 to classify two stu-

dents as prospective sailors in order to boost their admissions chances. Both were denied admission. An
unnamed family paid Rick Singer, the mastermind behind the college admissions fraud, $1.2M to have their
daughter classified as a women’s soccer recruit at Yale. She was admitted.
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B Potential Alternative Explanations

Before presenting our prestige-based model, we consider potential competing explana-
tions of supply constraints at elite colleges that are not based on prestige.

B.1 Costs

Fixed physical constraints are an unlikely explanation for why elite colleges have differ-
entially failed to expand. Colleges like Stanford and Duke have plenty of land and have
added significant building capacity over the past decade. Even colleges with less land
within their traditional boundaries have added substantial physical capacity, what The
New York Times (Martin, 2012) referred to as a “decade-long spending binge.” Brown,
Princeton, Penn, and MIT have added numerous new buildings within their existing foot-
prints. Harvard, Yale, Columbia, and Cornell added new campuses.

As we show later (Section 4), marginal costs, however, have risen over time. Still, the
demand for admission has increased by substantially more. If there were no concern for
prestige, we show that admit rates at even elite research-based colleges would be much
higher today even with rising marginal costs over time (Section 4).

In fact, our estimates of rising marginal costs embellish their true costs in a counter-
factual where prestige were not important. Elite research colleges could rely on addi-
tional, inexpensive adjunct faculty for their teaching needs while still remaining compet-
itive with less elite colleges. Nationwide, less than 40 percent of students are now taught
by tenured or tenure-track professors, down from over 75 percent several decades ago
(Carey, 2012). In fact, Figlio et al. (2015) find that students, especially average and less-
qualified ones, learn relatively more from non-tenure track professors in their introductory
courses at Northwestern. Our own experience is that undergraduates rarely understand
the difference between adjunct and tenure-track faculty; they also do not seem to care
upon learning the distinction. Additional students could, therefore, be easily priced in ex-
cess of marginal costs for universities who really cared about research instead of prestige.
However, such a shift in teaching responsibilities would lead to a penalty in rankings.43

Hurricane Katrina provided a natural experiment in 2005. In response to displaced
students from universities like Tulane, Ivy Plus colleges accommodated several hundred

43In the ubiquitous US News and World Report college rating, for example, two factors—faculty salaries
and the proportion of faculty who have obtained the highest degree in their field—compose 10 percent
of the total score received by a college. Since top rankings are often separated by small differences, this
weighting creates substantial pressure to have research faculty teach core courses, despite evidence that
non-tenure track teachers often make better teachers (Figlio et al., 2015). In contrast, the student-faculty
ratio, a metric that tends to favor using more adjuncts, counts only 1 percent.
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additional students (Associated Press, 2015). Students could stay until graduation.

B.2 Maintaining Student Quality

Are elite colleges slow to expand because they are simply “holding the line” in student
quality? Hoxby (2009), however, shows that re-centered SAT and ACT scores actually
significantly increased at elite colleges over time, which are now admitting students close
to the maximum scores. From 1970 - 2000, the number of applicants to Stanford with Math
scores exceeding 700 increased by a factor of 2.3 (Hennessy, 2007). By 2016, just 12, 8 and
13 percent of students with perfect scores on their SAT reading, math and writing exams,
respectively, where admitted to Stanford, as were only 6 percent with 4.0+ high school
GPA’s.44 At Yale College, the inter-quartile range of the SAT Math of admitted students
increased from 620-730 (1975) to 710-790 (2014) and likewise for SAT Verbal from 670-780
(1975) to 710-800 (2014).45 If elite colleges were simply maintain student quality, their
total enrollments would have doubled or tripled since just 1990.

B.3 “Knock-On” Effects

Many elite colleges, with the notable exception of University of Chicago, started accept-
ing the Common Application in the 1980’s, thereby reducing the effective cost of applying
to elite colleges.46 As Bound et al. (2009) nicely shows, this primary increase in applica-
tions has a secondary effect—a “knock-on effect”— of increasing applications per student
even more due to the falling admit rates from the primary effect. Our extended model,
presented later, captures the knock-on effect. As we show, the knock-on effect would not
have existed if elite colleges simply increased available slots in proportion to the increase
in the number of high-quality students (as opposed to applications). Instead, as discussed
above, the average student quality increased substantially at elite colleges.

44http://admission.stanford.edu/apply/selection/profile16.html
45These statistics account for the re-centering of the SAT in 1995.
46Most of the colleges shown in Section 1 started accepting the Common Application a decade or more

before the data period shown. One exception is The University of Chicago, which, in the middle 1990’s,
also deviated from the decreasing admit trend, largely because it resisted driving up its application count
(Hoover, 2010). As its admission dean from 1989 to 2009, Theodore A. O’Neill, said: “It is important to
signal something true and meaningful about yourself. The more signals, the more honest you’re being, and
doing that does limit the applications.” Later leadership, however, emphasized increasing applications,
including accepting the Common Application.
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Figure 22: Change in number of Verbal and Math SAT scores in 700 800 Range, 1996 -
2015
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Figure 23: Change in number of ACT scores equal to 36, 1997 - 2017
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Figure 24: Doctorates, College Enrollment, Population Ratios (1960 = 1), 1960 - 2015
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B.4 Maintaining Research Quality

Maybe elite institutions are instead “holding the line” on professor quality, including
research potential. There are several problems, however, with this theory as well.

First, as Figure 24 shows, the quantity of doctoral degrees awarded have largely kept
up with college enrollment, both of which have risen much faster than general population
growth. Moreover, quality of doctoral students has also increased over time. Using data
collected from U.S. News World Report for various graduate programs over the past
two decades, we find that average test (GMAT, GRE and MCAT) scores of matriculates
generally increased within the top 10 programs ranked in 1994, the first year in which
U.S. News World Report started tracking this data for select fields.

Second, enrollments at elite but less-research intensive liberal arts colleges increased
by only 14.7% between 1990 - 2015—in fact, slightly less than the “Top 2%” colleges shown
earlier in Figure 2—thereby producing falling acceptance rates.47 If research were the
binding constraint rather than prestige, we would expect these enrollments to have in-
creased with the national average.

47For this calculation, we selected the 10 highest ranked liberal arts colleges in the 2018 Best National
Liberal Arts Colleges, U.S. News and World Report: Williams, Amherst, Swarthmore, Wellesley, Middle-
bury, Pomona, Carleton, Claremont McKenna, Davidson, and Washington and Lee.
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Third, empirically, it appears that “size matters” empirically for maximizing research,
as the largest universities produce the most research. Only two Ivy League universities
rank within the top 10 universities by total spending on research and development. Large,
public universities comprise half of the top 10 as well as two-thirds of the top 50 (National
Science Foundation, 2018). To be sure, research per faculty member might be higher at more
elite colleges. But, not only is this relationship obviously endogenous (the best colleges
attract the best researchers), it is unclear why any school would want to maximize its re-
ported research per faculty member, unless it were for prestige, potentially including the
ability to influence grant-writing organizations in the presence of imperfect information.
Maximizing research per faculty member is almost certainly globally (socially) inefficient.
It might even be inefficient locally (for the competing peer college group) as well.

Indeed, faculty members at elite research colleges routinely argue with college admin-
istrators for more faculty research slots. Resistance usually comes from college adminis-
trators who cite limited teaching needs based on student body size.

B.5 “Look and Feel”

Another possible explanation is that colleges have settled in on the “look and feel” of their
current campuses. Section 1 already discusses this issue in some detail. This subsection
provides some additional details.

Interestingly, before the modern college ratings era begin in earnest in the 1970’s, elite
colleges readily expanded their enrollment. Between 1920 and 1970, both Yale and Stan-
ford increased enrollment by over 250 percent. Indeed, since its start in 1701 and 1970,
Yale increased its enrollment by about two percent per year on average, slightly faster
than the general population growth rate (Pierson, 1983). Before the Civil War, Harvard
and Yale actually competed to be the largest colleges in the nation (ibid). In other words,
the slowdown in enrollments at elite colleges is a fairly modern phenomenon.

Moreover, even since just 1990, the “look and feel” of campuses have changed dra-
matically, including with the rise in apartment-like dormitories, luxury recreational and
dining facilities (e.g., Duke recently spent $90 million updating its West Union dining
hall), and, more generally, a growing appearance of shifting from traditional loco parentis
toward “students as customers” (The New York Times Editors, 2010). Moreover, MBA
programs at elite colleges, including Harvard and Wharton, have also doubled in size
since 1990, even as the size of their undergraduate programs have flat-lined.48

48The primary measure of desirability to MBA students and used in many MBA ratings—the average
starting wage upon graduation—appears to have been largely unaffected by growth in MBA enrollment at
top programs. In contrast, average starting wage is not a common metric used to measure undergraduate
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C Extensions to Base Model Presented in Section 3

Adding Dynamics

We now extend the base model to accommodate dynamics. According to the Higher
Education Research Institute, the top reason high school seniors pick a college is due to
its academic reputation HERI (2013). Reputation is especially important for elite colleges.
To capture this feature of student preferences, we now allow a student’s willingness-to-
pay for a college to be a function of its prestige. We also allow for a college’s prestige
weight to increase in its demand, reflected in the growth of its applications.

Consider a two-period model in which a college chooses the number of students to
admit in both periods, qt and qt+1, to maximize its two period utility:

U = ri,t

(
1− ai,t

1− a−i,t

)
+ (P0,i,t − bi,tqi,t)qi,t − ci,tqi,t︸ ︷︷ ︸
Period t Utility

+ β

[
ri,t+1

(
1− ai,t+1

1− a−i,t+1

)
+ (P0,i,t+1 − bi,t+1qi,t+1)qi,t+1 − ci,t+1qi,t+1

]
︸ ︷︷ ︸

Period t + 1 Utility

(20)

where the prestige scaling parameter takes the familiar form for both periods:

ri,t = ρi,t

[
(P0,i,t − ci,t)

2

2bi,t

]
. (21)

The maximum willingness to pay in period t + 1, P0,i,t+1, is given by:

P0,i,t+1 = (1 + g)P0,i,t︸ ︷︷ ︸
Secular Growth

+ εP0,i,t

(
1− ai,t

1− a−i,t
− 1
)

︸ ︷︷ ︸
Prestige

, (22)

where g is the secular growth rate (potentially zero) of demand common to all colleges in
the peer group, arising, for example, from population growth or an increasing skill pre-
mium. The second term in equation (22) shows that willingness to pay is also increasing
in a college’s selectivity relative to its peers. For consistency, we measure selectivity us-
ing the college’s relative acceptance rate, but a college’s selectivity could just as easily be

institutions since starting salaries differ substantially with the choice of major. For example, colleges outside
of the Ivy League, typically with strong engineering and nursing programs, dominate the top-25 ranking
of highest starting salaries (PayScale, 2017).
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measured by the average skill of its students (Section 4). A one percentage point increase
in relative selectivity shifts demand out by 100× ε percent.

The prestige weight ρt+1 of college i changes over time:

ρt+1 = ρt + ν(Qi,t+1 −Qi,t), (23)

where (Qi,t+1 − Qi,t) is the difference in the number of applicants between period t and
period t + 1, which grows by the gradient ν. Intuitively, prestige increases in the change
in demand. Since colleges observe applications before making admissions decisions, ρt+1

is a function of contemporaneous demand, without loss of generality.
For a given prestige weight ρt+1, the comparative statics are qualitatively identical to

the static model discussed above:

Definition 4. Let ρd
i,t ≡ ρi

(
1 + εβP0,i,tqi,t+1

ri,t

)
be the dynamic prestige weight.

Theorem 4. For N identical colleges with prestige ρt+1 > 0 and ρd
t > 0, there is a unique feasible

Nash equilibrium of the two-period dynamic game (at, at+1) that is also Pareto inefficient (as in
Theorem 1). Moreover, ∃ ρd

t
∗ ∈ [0, 1

āt
] such that ∀ ρd

t ∈ [0, ρd
t
∗) dat

dP0
> 0, and ∀ ρd

t ∈ (ρd∗
t , 1

āt
]

dat
dP0

< 0.

However, the presence of dynamics allows for the prestige weight to change over time,
which reduces the admit rate by even more than predicted by the previous static model
where students were not willing to pay more for a more prestigious college (ε = 0):

Theorem 5. The equilibrium admit rate at is decreasing in ε > 0, i.e. dat
dε < 0. In words,

if the willingness to pay by students is increasing in prestige, colleges admit fewer students in
equilibrium.

Heterogeneous Colleges

The base model presented in Section 3 also assumed that schools were homogeneous
(ρi = ρ, P0,i = P0, and ci = c). For succinctness, we present results for the simple case of
N=2 schools. The utility function for college 1 is given by:

U1 = r1

[(
1− a1

1− a2

)
− 1
]

︸ ︷︷ ︸
Prestige

+ (P0,1 − b1q1)q1 − c1q1︸ ︷︷ ︸
“Profit”

. (24)

and the utility function for college 2 is given by:
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U2 = r2

[(
1− a2

1− a1

)
− 1
]

︸ ︷︷ ︸
Prestige

+ (P0,2 − b2q2)q2 − c2q2︸ ︷︷ ︸
“Profit”

. (25)

The following two theorems are similar to those provided earlier for homogeneous
schools:

Theorem 6. For ρ1 > 0, and ρ2 > 0, there exists a unique feasible Nash equilibrium (a∗1 , a∗2).
Moreover a∗i < ai for i = 1, 2, i.e., the admit rates with prestige are smaller than their correspond-
ing values without prestige.

Theorem 7. An increase in P0,i decreases the equilibrium admit rate ai,L, i.e. dai
dP0,i

< 0, if and
only if:

ρi >
1− a∗−i

2ai
. (26)

The following two theorems are more unique to the case with heterogeneous colleges,
in essence showing the “cross-partial” derivatives associated with competition.

Theorem 8. For ρi > 0 and ρ−i > 0, dai
dρi

< 0 and dai
dρ−i

< 0.

Theorem 9. Increases in demand for competitor school is proportional to increases in own de-
mand:

dai

dP0,−i
= −(ai − ai)

dai

dP0,i
. (27)

D Proofs

Lemma 1

Consider the admit rate that is chosen when each school fully internalizes the effect of its
supply decision on the supply decision of its competitors:

UFB ≡
N

∑
i=1

[
ri

(
1− ai

1− a−i

)
+ (P0,i − biqi)qi − ciqi

]
. (28)

College j chooses an amount qj to maximize its utility. This generates the following FOC:

Marginal Prestige︷ ︸︸ ︷
−rj

Qj(1− a−j)︸ ︷︷ ︸
Direct Effect

+∑
i 6=j

[
ri

1− ai

(1− a−i)2
1

(N − 1)Qj

]
︸ ︷︷ ︸

Indirect Effect

+

Marginal Profit︷ ︸︸ ︷
(P0,j − 2bjqj)− cj = 0. (29)
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Increasing the number of students qj has a direct effect on relative prestige – it lowers
relative prestige by lowering college j’s rejection rate. The indirect effect of increasing the
quantity supplied by college j is that it results in other institutions being relatively more
selective than college j, which increases the utility for each of j’s peers. When colleges are
identical, in equilibrium ai = a−i = aj ∀i and the direct and indirect effect of increasing
quantity exactly cancel. The resulting FOC is the standard profit condition of marginal
revenue equals marginal cost, which produces the monopoly quantity for colleges and
hence the monopoly admit rate, ā = P0−c

2bQ

Theorem 1

Solving for Nash Equilibria

The first order condition for school i is:

− ri

(
1

(1− a−i)Q

)
+ P0,i − ci − 2biqi = 0. (30)

=⇒ P0,i − 2biqi︸ ︷︷ ︸
Marginal Revenue

= ci + ri

(
1

(1− a−i)Q

)
︸ ︷︷ ︸

Marginal Cost + Marginal Prestige

(31)

From this first order condition we generate the following best response function:

ai(a−i) = ai −
ρia2

i
1− a−i

(32)

where:
ai ≡

P0,i − ci

2biQ
(33)

and ρi is the prestige weight defined in equation (2). Since the N peer colleges are iden-
tical, we consider the case of a symmetric Nash equilibrium in which ai = a−i ≡ a. Any
such Nash equilibria must satisfy the following quadratic equation:

a2 − a(1 + a)− a(ρa− 1) = 0. (34)

The two solutions that solve the Nash condition are:

aL =
(1 + a)−

√
(1 + a)2 + 4a(ρa− 1)

2
(35)
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and:

aH =
(1 + a) +

√
(1 + a)2 + 4a(ρa− 1)

2
(36)

We prove that 0 < a∗L < a is the unique feasible equilibrium using a proof by contradic-
tion. First we show that aH < 1 implies that ρ < 0, which is also a contradiction; hence
aH is not feasible. Using equation (36), the condition aH < 1 requires:

(1 + a) +
√
(1 + a)2 + 4a(ρa− 1) < 2. (37)

Rearranging this expression we obtain:√
(1 + a)2 + 4a(ρa− 1) < 1− a (38)

(1 + a)2 + 4a(ρa− 1) < (1− a)2 (39)

4ρa2 < 0 (40)

=⇒ ρ < 0. (41)

Second, we show that aL is feasible by showing that it is less than the monopoly admit
rate a, which is by construction feasible. To prove this part of the proposition, we show
that aL > a implies that ρ < 0, which is a contradiction; hence aL < a. From equation
(35), the condition of aL > a requires:

(1 + a)−
√
(1 + a)2 + 4a(ρa− 1) > 2a. (42)

Rearranging this expression:

(1− a) >
√
(1 + a)2 + 4a(ρa− 1) (43)

(1− a)2 > (1 + a)2 + 4a(ρa− 1) (44)

0 > 4ρa2 (45)

=⇒ ρ < 0. (46)
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Finally, we show that aL > 0 is consistent with ρ > 0. From equation (35), the condition
aL > 0 requires:

(1 + a) >
√
(1 + a)2 + 4a(ρa− 1) (47)

0 > 4a(ρa− 1) (48)

0 > ρa− 1 (49)

=⇒ ρ <
1
a

. (50)

Since a > 0, the condition ρ < 1
a is consistent with ρ > 0.

Lemma 2

For an equilibrium quantity q, or equivalently an admit rate a = q
Q , the consumer surplus

is the area between the inverse demand curve and the equilibrium price:

CS(a) ≡ 1
2
[P0 − P(q)]q (51)

=
1
2
[P0 − P(Qa)]Qa (52)

=
1
2
(P0 − P0 + bQa)Qa. (53)

=
P2

0 a2

2b
, (54)

where Q = P0
b because of zero application cost. The producer surplus at this quantity the

area between the equilibrium price and the marginal cost curve:

PS(a) = [P(q)− c]q (55)

= [P(Qa)− c](Qa) (56)

= [P0 − c− bq]Qa (57)

=

[
P0 − c

bQ
− a
]

bQ2a (58)

= (2ā− a)
P2

0
b

a (59)

=
P2

0
b

(2a− a) a (60)

where, recall, a is the no-prestige (ρ = 0) admit rate.
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Theorem 2

The total social surplus at the equilibrium admit rate a is the sum of the consumer surplus
of equation (54) and the producer surplus of equation (60):

SS(a) =
P2

0
2b

(4a− a)a. (61)

The standard dead weight loss (DWL) is the difference between the social surplus at the
ρ = 0 competitive admit rate 2ā and the ρ = 0 monopoly admit rate ā:

DWL = SS(2ā)− SS(ā) =
P2

0
2b

. (62)

The prestige dead weight loss (PDWL) is the difference between the social surplus gener-
ated from the admit rate ā with ρ = 0 and the ρ > 0 equilibrium admit rate a∗ < ā:

PDWL = SS(ā)− SS(a) =
P2

0
2b

(a− a∗)(3a− a∗). (63)

The condition PDWL > DWL =⇒ PDWL− DWL > 0:

P2
0

2b
(a− a∗)(3a− a∗)︸ ︷︷ ︸

PDWL

−
P2

0 a2

2b︸ ︷︷ ︸
DWL

> 0. (64)

This inequality simplifies to:

a∗2 − 4a∗a + 2a2 > 0 =⇒ (2a− a∗)2 > 2a2. (65)

Hence a∗ < a(2−
√

2) or a∗ < a(2+
√

2). Because a∗ < a holds, then a∗ < a(2−
√

2) will
certainly bind for all a∗ ∈ [0, a].

Lemma 3

The low admission equilibrium in equation (35) is parametrized by the prestige ratio ρ.
Taking the derivative of aL with respect to ρ we find:

daL

dρ
= − 2a2√

(1 + a)2 + 4a(ρa− 1)
< 0. (66)
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Theorem 3

The derivative of the equilibrium admit rate aL with respect to P0 is given by:

da
dP0

=
1
2

da
dP0

g(ρ), (67)

where:

g(ρ) ≡
(

1− 2(1 + a) + 8ρa− 4√
(1 + a)2 + 4a(ρa− 1)

)
(68)

Since dā
dP0

> 0, to show ∃ ρ∗ ∈ [0, 1
ā ] such that ∀ ρ ∈ [0, ρ∗) da

dP0
> 0, and ∀ ρ ∈ (ρ∗, 1

ā ]
da

dP0
< 0, it suffices to show:

1. g(ρ) is continuous on interval ρ ∈ [0, 1
ā ],

2. limρ→0 g(ρ) > 0,

3. limρ→ 1
ā

g(ρ) < 0, and

4. g(ρ) is a monotonic decreasing function on interval ρ ∈ [0, 1
ā ], i.e. g′(ρ) < 0.

The first three conditions, by the Intermediate Value Theorem, guarantee the existence
of at least one value of ρ∗ such that g(ρ∗) = 0. The fourth property of monontonicity
guarantees uniqueness of ρ∗ and gives us that da

dP0
> 0 for ρ ∈ [0, ρ∗) and da

dP0
< 0 for

ρ ∈ (ρ∗, 1
ā ].

The first condition, continuity of g(ρ) follows trivially. The limiting behavior of g(ρ) at
the end of the interval follows from the following calculations:

limρ→0

(
1− 2(1 + a) + 8ρa− 4√

(1 + a)2 + 4a(ρa− 1)

)
=

(
1− 2(a− 1)√

(1− ā)2

)
=

(
1 +

2(1− ā)
(1− ā)

)
> 0

(69)

limρ→ 1
ā

(
1− 2(1 + a) + 8ρa− 4√

(1 + a)2 + 4a(ρa− 1)

)
=

(
1− 2(1 + ā) + 4

(1 + ā)

)
=

(
−1− 4

(1 + ā)

)
< 0

(70)
To check that g(ρ) in monotone decreasing we show g′(ρ) < 0:
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dg
dρ

=
d

dρ

(
1− 2(1 + a) + 8ρa− 4√

(1 + a)2 + 4a(ρa− 1)

)
(71)

=
(−8ā)

√
(1 + a)2 + 4a(ρa− 1) + (2(1 + a) + 8ρa− 4) 2ā2√

(1+a)2+4a(ρa−1)

(1 + a)2 + 4a(ρa− 1)
(72)

=

[
4
[
(1 + a)2 + 4a(ρa− 1)

]
− ā(2(1 + a) + 8ρa− 4)

] −2ā√
(1+a)2+4a(ρa−1)

(1 + a)2 + 4a(ρa− 1)
(73)

=

[
4
[
(1− a)2 + 4a2ρ

]
− ā(2(a− 1) + 8ρa)

] −2ā√
(1−a)2+4a2ρ

(1− a)2 + 4a2ρ
(74)

=

[
4(1− a)2 + 16a2ρ + 2ā(1− a)− 8a2ρ

] −2ā√
(1−a)2+4a2ρ

(1− a)2 + 4a2ρ
(75)

=

[
4(1− a)2 + 8a2ρ + 2ā(1− a)

] −2ā√
(1−a)2+4a2ρ

(1− a)2 + 4a2ρ
< 0 (76)

The last inequality to sign g′(ρ) follows from feasiblity constraint on the monopoly admis-
sions rate 0 < ā < 1 and the conditions on prestige weight for a unique Nash equilibrium
in Theorem 1, i.e. ρ ∈ [0, 1

ā ].

Theorem 4

We solve this problem using backwards induction. Starting in the last period, t + 1, the
first order condition of college i is given by:

dU
dqt+1

= −
(

ri,t+1

Qt+1(1− a−i,t+1)

)
+ P0,i,t+1 − ci,t+1 − 2bi,t+1qi,t+1 = 0. (77)

This results in a best response function:

ai,t+1 =
P0,i,t+1 − ci,t+1

2bi,t+1Qi,t+1
−
(

ri,t+1

2bi,t+1Q2
i,t+1(1− a−i,t+1)

)
(78)

After simplifying, the best response function becomes:

ai,t+1 = ai,t+1 −
ρi,t+1a2

i,t+1

1− ai,t+1
, (79)
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where:
ai,t+1 =

P0,i,t+1 − ci,t+1

2bi,t+1Qt+1
(80)

For the case of identical colleges, ai,t+1 = at+1 and ρi,t+1 = ρt+1 ∀i; hence the equilibrium
admit rate in t + 1 is given by:

at+1 =
(1 + at+1)±

√
(1 + at+1)2 + 4at+1(ρt+1at+1 − 1)

2
. (81)

This is identical to the result for the static case (equations (35) and (36), with the replace-
ment of ai,t+1 for a. From Theorem 1, we know that:

at+1 =
(1 + at+1)−

√
(1 + at+1)2 + 4at+1(ρt+1at+1 − 1)

2
, (82)

is the unique feasible Nash equilibrium for ρt+1 > 0. Moreover, we also know from
Theorem 1 that at+1 < āt+1. Further it follows from Theorem (3) that ∃ ρ∗ ∈ [0, 1

āt+1
] such

that ∀ ρ ∈ [0, ρ∗) dat+1
dP0

> 0, and ∀ ρ ∈ (ρ∗, 1
āt+1

] dat+1
dP0

< 0.
Continuing with the first period t, the first order condition of college i is given by:

dU
dqi,t

= −
(

ri,t

Qi,t(1− a−i,t)

)
+ P0,i,t − ci,t − 2bi,tqi,t − β

[(
εP0,i,tqi,t+1

Qi,t(1− a−i,t)

)]
= 0. (83)

This results in the following period t best response function:

at =
P0,i,t − ci,t

2bi,tQi,t
−
(

ri,t + εβP0,i,tqi,t+1

2bi,tQ2
i,t(1− a−i,t)

)
(84)

at = ai,t −
ρia2

i,t

1− a−i,t

(
1 +

εβP0,i,tqi,t+1

ri,t

)
(85)

where:
ai,t =

P0,i,t − ci,t

2bi,tQi,t
. (86)

To express the period t best response function of equation (85) in the standard form, we
define a dynamic prestige weight:

ρd
i,t ≡ ρi

(
1 +

εβP0,i,tqi,t+1

ri,t

)
, (87)

where we use at+1 from equation (90) to define qi,t+1 = at+1Qt+1 = at+1

(
P0(1+g)

bt+1

)
. With
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this simplification we obtain the following period 1 best response function:

ai,t = ai,t −
ρd

i,ta
2
i,t

1− a−i,t
. (88)

For the case of identical colleges, ai,t = at and ρd
i,t = ρd

t ∀i; hence the equilibrium admit
rate in t is given by:

ai,t =
(1 + ai,t)±

√
(1 + ai,t)2 + 4at(ρd

t at − 1)

2
. (89)

This is identical to the result for the static case (equations (35) and (36), with the replace-
ment of at for a. From Theorem 1, we know that:

at =
(1 + at)−

√
(1 + at)2 + 4at(ρd

t at − 1)

2
, (90)

is the unique feasible Nash equilibrium for ρd
t > 0. Moreover, it follows from Theorem 1

that at < āt. Further it follows from Theorem (3) that ∃ ρ∗ ∈ [0, 1
āt
] such that ∀ ρ ∈ [0, ρ∗)

dat
dP0

> 0, and ∀ ρ ∈ (ρ∗, 1
āt
] dat

dP0
< 0.

Theorem 5

Equation (87) guarantees ε > 0 =⇒ ρd > ρ.49 According to Lemma 3 the admit rate
is decreasing in the prestige weight, hence ρd > ρ =⇒ the admit rate is lower in the
dynamic model than in the static model.

Theorem 6

The best response for college 1 is given by:

a1(a2) = a1 −
ρ1a2

1
1− a2

(91)

The best response for college 2 is given by:

a2(a1) = a2 −
ρ2a2

2
1− a1

(92)

49This assumes that β, P0, r, qt+1 > 0, which are necessarily true given that the discount factor, the maxi-
mum WTP, the prestige scaling factor, and the expected future number of admits are positive.
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To solve for a1 as a function of the parameters, we insert the best response function for
college 2 into the best response function for college 1:

a1 = a1 −
ρ1a2

1

1−
(

a2 −
ρ2a2

2
1−a1

) (93)

The Nash equilibria of this game must satisfy the following quadratic equation:

a2
1 − a1

[
1 + a1 +

ρ2a2
2 − ρ1a2

1
1− a2

]
+

ρ2a2
2a1 − ρ1a2

1
1− a2

+ a1 = 0. (94)

The two values of a1 that satisfy the Nash equilibrium condition are:

a1,L =

[
1 + a1 +

ρ2a2
2−ρ1a2

1
1−a2

]
−
√[

1 + a1 +
ρ2a2

2−ρ1a2
1

1−a2

]2
− 4

(
ρ2a2

2a1−ρ1a2
1

1−a2
+ a1

)
2

(95)

a1,H =

[
1 + a1 +

ρ2a2
2−ρ1a2

1
1−a2

]
+

√[
1 + a1 +

ρ2a2
2−ρ1a2

1
1−a2

]2
− 4

(
ρ2a2

2a1−ρ1a2
1

1−a2
+ a1

)
2

(96)

By symmetry, the solution for college 2 is identical to the solution for college 1, with the
interchange of the index 1 for 2:

a2,L =

[
1 + a2 +

ρ1a2
1−ρ2a2

2
1−a1

]
−
√[

1 + a2 +
ρ1a2

1−ρ2a2
2

1−a1

]2
− 4

(
ρ1a2

1a2−ρ2a2
2

1−a1
+ a2

)
2

(97)

a2,H =

[
1 + a2 +

ρ1a2
1−ρ2a2

2
1−a1

]
+

√[
1 + a2 +

ρ1a2
1−ρ2a2

2
1−a1

]2
− 4

(
ρ1a2

1a2−ρ2a2
2

1−a1
+ a2

)
2

(98)

We prove that 0 < a∗i,L < ai is the unique feasible equilibrium using a proof by contradic-
tion. First we show that ai,H < 1 implies that ρ−i < 0, which is also a contradiction; hence
ai,H is not feasible. With out loss of generality we prove this for i = 1 and −i = 2 and by
symmetry it must hold for i = 2 and −i = 1. Using equation: (98), the condition a1,H < 1
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requires:

(1 + a1 + ψ1,2) +
√
(1 + a1 + ψ1,2)2 − 4(υ1 + a1) < 2. (99)

where we have made the following definitions:

ψ1,2 ≡
ρ2a2

2 − ρ1a2
1

1− a2
, (100)

and

υ1,2 ≡
ρ2a2

2a1 − ρ1a2
1

1− a2
(101)

Rearranging the expression in equation (99) we obtain:√
(1 + a1 + ψ1,2)2 − 4(υ1,2 + a1) < 1− a− ψ1,2 (102)

(1 + a1 + ψ1,2)
2 − 4(υ1,2 + a1) < (1− a1 − ψ1,2)

2 (103)

4(a1 + ψ1,2) < 4(υ1,2 + a1) (104)

=⇒ ψ1,2 ≤ υ1,2. (105)

=⇒ ρ2a2
2 − ρ1a2

1
1− a2

<
ρ2a2

2a1 − ρ1a2
1

1− a2
(106)

=⇒ ρ2a2(1− a1) < 0 (107)

=⇒ ρ2 < 0. (108)

Second, we show that ai,L is feasible by showing that it is less than the monopoly admit
rate ai, which is by construction feasible. To prove this part of the proposition, we show
that ai,L > ai implies that ρi < 0, which is a contradiction; hence ai,L < ai. Without loss
of generality, we show this for i = 1 and−i = 2. From equation (95), the condition of
a1,L > a1 requires:

(1 + a1 + ψ1,2)−
√
(1 + a1 + ψ1,2)2 − 4(υ1,2 + a1) > 2a1. (109)

Rearranging this expression in equation (109):

(1− a1 + ψ1,2)
2 > (1 + a1 + ψ1,2)

2 − 4(υ1,2 + a1) (110)

=⇒ υ1,2 > a1ψ1,2 (111)

=⇒ ρ1a2
1(a1 − 1) > 0 =⇒ ρ1 < 0. (112)
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Finally, we show that a1,L > 0 requires an upper bound on ρ1 <
1−a2+ρ2a2

2
a1

. From equation
(95), the condition a1,L > 0 requires:

(1 + a + ψ1,2)
2 > (1 + a + ψ1,2)

2 − 4(υ1,2 + a1) (113)

=⇒ a1 > −υ1,2 (114)

=⇒ a1 >
ρ1a2

1 − ρ2a2
2a1

1− a2
(115)

=⇒ ρ1 <
1− a2 + ρ2a2

2
a1

. (116)

This upper bound is also greater than 0 because a2 < 1 and ρ2 > 0 =⇒ 1− a2 + ρ2a2
2 > 0.

Therefore ρ1 > 0 is consistent with a1,L as the feasible unique equilibrium.

Theorem 7

We show the result for college 1. By symmetry the result for college 2 is the same as that
for college 1 with the interchange of the indices 1 to 2. The admissions rate for college 1
is given by:

a1 =
(1 + a1 + ψ1,2)−

√
(1 + a1 + ψ1,2)2 − 4(υ1 + a1)

2
. (117)

where we have made the following definitions:

ψ1,2 ≡
ρ2a2

2 − ρ1a2
1

1− a2
, (118)

and

υ1,2 ≡
ρ2a2

2a1 − ρ1a2
1

1− a2
(119)

The derivative of the equilibrium admit rate a1 with respect to P0,1 is given by:

da1

dP0,1
=

1
2

(
da1

dP0,1

)
g(~ρ,~̄a), (120)

where:

g(~ρ,~̄a) ≡
(
(1 + φ1,2)−

2(1 + φ1,2)(1 + a1 + ψ1,2)− 4(1 + η1,2)√
(1 + a1 + ψ1,2)2 − 4(υ1,2 + a1)

)
(121)

Since dā1
dP0,1

> 0, to show ∃ ρ∗1 ∈
[
0, 1−ā2+ρ2 ā2

2
ā1

]
such that ∀ ρ1 ∈ [0, ρ∗1)

da
dP0

> 0, and ∀

ρ1 ∈
(

ρ∗1 , 1−ā2+ρ2 ā2
2

ā1

]
da1

dP0,1: < 0, it suffices to show:
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1. g(~ρ,~a) is continuous on interval ρ1 ∈
[
0, 1−ā2+ρ2 ā2

2
ā1

]
2. limρ1→0 g(~ρ,~a) > 0,

3. lim
ρ1→

1−ā2+ρ2 ā2
2

ā1

g(~ρ,~a) < 0, and

4. g(~ρ,~a) is a monotonic decreasing function of ρ1 on interval ρ1 ∈
[
0, 1−ā2+ρ2 ā2

2
ā1

]
ρ1 ∈ [0, 1

ā ], i.e. ∂g
∂ρ1

(~ρ,~a) < 0.

The first three conditions, by the Intermediate Value Theorem, guarantee the existence of
at least one value of ρ∗1 such that g(ρ1 = ρ∗1) = 0. The fourth property of monotonicity
guarantees uniqueness of ρ∗! and gives us that da1

dP0,1
> 0 for ρ1 ∈ [0, ρ∗1) and da1

dP0,1
< 0 for

ρ1 ∈
(

ρ∗1 , 1−ā2+ρ2 ā2
2

ā1

]
. The first condition, continuity of g(·) follows trivially. The limiting

behavior of g(·) at the ends of the interval follows from the following calculations:

limρ→0

(
1− 2(1 + a) + 8ρa− 4√

(1 + a)2 + 4a(ρa− 1)

)
=

(
1− 2(a− 1)√

(1− ā)2

)
=

(
1 +

2(1− ā)
(1− ā)

)
> 0

(122)

limρ→ 1
ā

(
1− 2(1 + a) + 8ρa− 4√

(1 + a)2 + 4a(ρa− 1)

)
=

(
1− 2(1 + ā) + 4

(1 + ā)

)
=

(
−1− 4

(1 + ā)

)
< 0

(123)
To check that g(ρ) in monotone decreasing we show g′(ρ) < 0:
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dg
dρ

=
d

dρ

(
1− 2(1 + a) + 8ρa− 4√

(1 + a)2 + 4a(ρa− 1)

)
(124)

=
(−8ā)

√
(1 + a)2 + 4a(ρa− 1) + (2(1 + a) + 8ρa− 4) 2ā2√

(1+a)2+4a(ρa−1)

(1 + a)2 + 4a(ρa− 1)
(125)

=

[
4
[
(1 + a)2 + 4a(ρa− 1)

]
− ā(2(1 + a) + 8ρa− 4)

] −2ā√
(1+a)2+4a(ρa−1)

(1 + a)2 + 4a(ρa− 1)
(126)

=

[
4
[
(1− a)2 + 4a2ρ

]
− ā(2(a− 1) + 8ρa)

] −2ā√
(1−a)2+4a2ρ

(1− a)2 + 4a2ρ
(127)

=

[
4(1− a)2 + 16a2ρ + 2ā(1− a)− 8a2ρ

] −2ā√
(1−a)2+4a2ρ

(1− a)2 + 4a2ρ
(128)

=

[
4(1− a)2 + 8a2ρ + 2ā(1− a)

] −2ā√
(1−a)2+4a2ρ

(1− a)2 + 4a2ρ
< 0 (129)

The last inequality to sign g′(ρ) follows from feasiblity constraint on the monopoly admis-
sions rate 0 < ā < 1 and the conditions on prestige weight for a unique Nash equilibrium
in Theorem 1, i.e. ρ ∈ [0, 1

ā ].

Theorem 8

With out loss of generality we consider the comparative static for i = 1 since the case
for i = 2 is identical under the exchange of indices. From equation (95), we compute the
following derivative:

da1

dρ1
= −

(
a1

1−a2

)
[
1 + (a1−a1)(a2−a2)

(1−a1)(1−a2)

] . (130)

Since ai ≤ ai ≤ 0.5, it follows that da1
dρ1

< 0. Moreover, by symmetry of interchanging i = 1

and i = 2, we have da2
dρ2

< 0.

We compute da2
dρ1

from equation (92):

da2

dρ1
=

ρ2a2
2

(1− a2)2
da1

dρ1
. (131)

Since da1
dρ1

< 0 from equation (130), it follows that da2
dρ1

< 0. Moreover, by symmetry da1
dρ2

< 0.
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Theorem 9

The best response function of college i is given by (see equation (91) & (92)):

ai = ai −
ρia2

i
(1− a−i)

(132)

Taking the derivative of equation (132) with respect to competitors demand:

dai

dP0,i
=

ρia2
i

(1− ai)2
dai

dP0,−i
(133)

We then use the best-response function in equation (132) to simplify the expression in

equation (134) ρia2
i

(1−ai)2 with ai−ai
(1−ai)

:

dai

dP0,i
=

ai − ai

(1− ai)

dai

dP0,−i
. (134)

E Estimating Marginal Cost

We use the variation in total costs in the IPEDS data across elite colleges and across time
to estimate a cost function for this group that depends on the number of enrolled un-
dergraduate students and other observable attributes. We then infer the marginal cost of
each school in the sample by evaluating the derivative of the cost function at the number
of enrolled undergraduate students.

E.1 Constructing the Data

Because elite colleges might have a distinct cost structure relative to non-elite colleges, we
restrict our sample to colleges with: (i) more than 400 full-time undergraduate students
(i.e., an average entering freshmen class of 100 students or more); (ii) an SAT Math 25th

percentile score that exceeds 650 during at least one year during our time frame and (iii)
an average SAT Math 25th percentile score that is in excess of 600 over the time frame with
test data (2002 - 2015).50,51 Table 1 reports the colleges in our sample and their maximum
SAT Math 25th percentile score during the sample period 1987 - 2015.

The two important variable costs in our data are expenditures on instruction and ex-
penditures on student services. To obtain total variable costs, we take the sum of expen-

50The time frame in which with test data is available is shorter than the time frame with cost data used
in the estimation. But we use the shorter time frame with test data to help select the colleges included in
the cost analysis using the longer time panel.

51Recall that for the data presented in Section 4, we followed Chade et al. (2014) and defined a “top
private” school has having a mean SAT score of 1340 or higher, using the HERI data set. However, the
IPEDS data set does not track average or combined SAT scores. Instead, IPEDS tracks scores at the 25th and
75th percentiles, at the subject level. The restrictions noted in the text appear to produce a similar quality of
colleges, although IPEDS contains more colleges in total in its data set.
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ditures on student services and a weighted measure of expenditure on instruction. We
weight the expenditure on instruction to account for the fact that instructional expendi-
ture in the IPEDS data captures faculty salaries paid for both teaching and research. Since
undergraduate instruction is primarily a teaching endeavor, we use the ratio of net tu-
ition revenue52 divided by the sum of total revenue from net tuition plus revenue from
research, as our teaching weight. By this measure, colleges which have no research revenue
have a teaching weight of one, whereas colleges with research revenue and no revenue
from net tuition have a teaching weight of zero. Colleges with a mix of both research and
tuition revenue have a teaching weight that is between zero and one. Finally, we adjust
this total variable cost by the fraction of a college’s (or university’s) full-time undergrad-
uate population, computed by dividing the number of full-time undergraduates by the
total number of full-time students plus one half times the number of part-time students.

Table 1: Colleges in the Sample

College Max SAT Math (25%)
California Institute of Technology 780
Massachusetts Institute of Technology 750
Rice University 750
Harvey Mudd College 740
Cornell University 720
University of Chicago 720
Vanderbilt University 720
Washington University in St Louis 720
Harvard University 710
Princeton University 710
Yale University 710
Carnegie Mellon University 700
Columbia University in the City of New York 700
Duke University 700
Northwestern University 700
Pomona College 700
Stanford University 700
Claremont McKenna College 690
Dartmouth College 690
Johns Hopkins University 690
Tufts University 690
University of Pennsylvania 690
Amherst College 680
Bowdoin College 680
Brown University 680

52According to the IPEDS variable glossary: “net tuition revenue is the amount of money the institution
takes in from students after institutional grant aid is provided.” This number is not the same as the net
tuition number available in IPEDS that is net of all discounts and allowances applied to tuition and fees.
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Colleges in the Sample, Continued
College Max SAT Math (25%)
Carleton College 680
Georgia Institute of Technology-Main Campus 680
Lehigh University 680
Middlebury College 680
Northeastern University 680
Rensselaer Polytechnic Institute 680
Swarthmore College 680
University of Notre Dame 680
Case Western Reserve University 670
Emory University 670
University of Southern California 670
Williams College 670
Oberlin College 664
Brandeis University 660
Georgetown University 660
Grinnell College 660
Hamilton College 660
Haverford College 660
Stevens Institute of Technology 660
University of Michigan-Ann Arbor 660
Washington and Lee University 660
Wesleyan University 660
Bates College 650
Boston College 650
Colgate University 650
Colorado School of Mines 650
Cooper Union for the Advancement of Science and Art 650
Polytechnic Institute of New York University 650
Tulane University of Louisiana 650
University of California-Berkeley 650
University of Rochester 650
Vassar College 650
Wellesley College 650

E.2 Estimating the Cost Function

Figure 25 plots the histogram of the log of total undergraduate educational costs for the
schools in our restricted sample over-laid with a normal pdf.53 Since total costs appear to

53The corresponding IPEDS variables are shown in italics: (1) total full-time undergraduate students:
total full time undergraduates; (2) total part-time students: total part time; (3) net tuition: nettuition01; (4)
expenditure on instruction: instruction01; (5) expenditure on student services: studserv01; (6) revenue from
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Figure 25: Log of Education Costs
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follow a log-normal distribution, we estimate our total cost function in logs:

log(ci,t) = α0 + α1log(Qugrad
i,t ) + α2log(Qgrad

i,t ) + θZi + ρt + εi,t, (135)

where: ci,t is total cost of college i at time t, as constructed in Section E.1; Qugrad
i,t is the

quantity of full-time undergraduate students enrolled in college i at time t; Qgrad
i,t is the

quantity of full-time graduate students; Zi is a time-invariant vector of college i attributes;
t is a time trend variable; and, εi,t captures idiosyncratic college cost variation. The at-
tributes in vector Zi are: (i) a dummy variable that equals 1 for flagship state colleges; (ii)
a dummy variable that equals 1 for private colleges; and, (iii) the maximum SAT Math
25th percentile score of the university between 2002 -2015.54 The corresponding marginal

research: research01; (7) total full-time graduate students: total full time-total postbacc
54As noted in Section E.1, IPEDS does not track SAT scores prior to 2002. Including annual SAT math

scores in our actual cost estimation, therefore, would decrease our sample size by half. Including the maxi-
mum 25th percentile math SAT score, computed over the time period 2002 - 2015, as a time-invariant control
variable, therefore, preserves the sample size.
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cost is then given by

MCi,t =

[
∂ci,t

∂Qugrad

]
= α1

ci,t

Qugrad
i,t

, (136)

where α1 is the elasticity of cost with respect to the number of undergraduate students.
Table 2 reports the estimates of α1 from three different regression specifications. Col-

umn 1 reports the results from the simple ordinary-least squares (OLS) regression shown
in equation (135). For robustness, the fixed effects (FE) model of Column 2 then adds
U.S. state dummy variables to control for a college’s state location, as there is heterogene-
ity in the cost of living across states. In additional to state-level dummy variables, Col-
umn 3 then uses the GMM procedure to estimate an instrumental variables (IV) model,
where the number of undergraduate students in the current period is instrumented by
the number of undergraduate students from the prior period; similarly, for the number
of graduate students. This IV procedure controls for the potential for simultaneity bias
arising from the fact that both the total cost and number of students are determined in the
same year. The identifying assumption is that the previous year’s number of students is
predetermined and exogenous to the current period’s number of students.

Table 2: Estimation of Undergraduate Cost Function

(OLS) (FE) (IV+FE)

Log Full-time Undergraduates 0.897 0.936 0.948
(0.023)** (0.021)** (0.032)**

Log Full-time Graduate Students 0.032 0.015 0.003
(0.021) (0.018) (0.032)

Flagship University 0.684 1.158 1.173
(0.062)** (0.090)** (0.060)**

Private Non-Profit Institution 1.147 1.683 1.694
(0.043)** (0.067)** (0.041)**

Max SAT Math 25(%) 0.001 0.001 0.001
(0.000)** (0.000)* (0.000)

Time Trend 0.050 0.050 0.049
(0.001)** (0.001)** (0.001)**

Constant 7.462 7.070 7.237
(0.236)** (0.274)** (0.346)**

R2 0.88 0.92 0.92
N 1,260 1,260 1,204

* p < 0.05; ** p < 0.01
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Table 2 indicates that the value of the cost elasticity, α1, ranges from 0.90 to 0.95. The
signs on all of the control variables are as expected: Flagship public colleges and private
colleges have a higher total cost than public non-flagship schools; schools with higher
quality, as measured by SAT Math scores, spend more educating their students; and,
the cost of education is increasing over time (by an average of 5% per year). We also
find a small positive but insignificant relationship between the number of graduate stu-
dents and the total cost of educating undergraduate students. Given the expression for
marginal cost in equation (136), our regression results suggest that the marginal cost for
the colleges in our sample is between 90% to 95% of each college’s average variable cost.
Our preferred estimate is α1 = 0.949 from column (3), because it controls for state fixed-
effects and addresses the potential for simultaneity.

F Harvard Admissions Data

On November 17, 2014 Students for Fair Admissions sued Harvard on the grounds Har-
vard discriminates against Asian-American students in its admissions process. During
the discovery phase of this lawsuit, Harvard released individual application and admis-
sions data for students who applied for admissions in 2010-2015 as well as aggregate
admissions data covering students admitted in 1996-2015. This data included the applica-
tion files of 150,701 students and details on Harvard’s internal scoring of the applications
along several dimensions that are relevant to admissions.

“Exhibit X” from the Plaintiff’s brief reports the admissions rate for applicants to Har-
vard College by ”academic index” (AI) decile. The AI is constructed by Harvard as part of
its admissions process and is a weighted combination of the students highest SAT I/ACT
score, highest 2 SAT II scores and the class rank/GPA. Table 3 report the upper limit and
lower limit of the academic index by decile.55 We define skill θ by decile as the average
of the lower and upper limit of the decile’s shown AI score. We choose λmin and α to fit
the rejection function (15) to the rejection rates shown in Table 3, assuming differences
between predicted and data are i.i.d. noise (Figure 11).56

55Technically, the AI score starts as low as 60. However, the released data starts at 100 since 99.99 percent
of applicants between 100 - 193.5 where rejected.

56Both OLS estimation and MLE produce similar results. The show fit uses OLS. The shown data for all
races.
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Table 3: Data from “Exhibit X” in Arcidiacono (2019)

Academic Index (AI) AI Lower AI Upper Reject
Decile Limit Limit Rate

1 100.0 193.5 99.99
2 193.8 205.5 99.61
3 205.8 213.0 98.55
4 213.3 218.5 97.17
5 218.8 223 96.09
6 223.3 226.5 95.21
7 226.8 229.5 94.38
8 229.8 232.5 93.15
9 232.8 235.8 91.23

10 236.0 240.0 88.30
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