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ABSTRACT

In many regions of the world, sparse data on key economic outcomes inhibits the development, targeting, and
evaluation of public policy. We demonstrate how advancements in satellite imagery and machine learning can
help ameliorate these data and inference challenges. In the context of an expansion of the electrical grid across
Uganda, we show how a combination of satellite imagery and computer vision can be used to develop local-level
livelihood measurements appropriate for inferring the causal impact of electricity access on livelihoods. We then
show how ML-based inference techniques deliver more reliable estimates of the causal impact of electrification
than traditional alternatives when applied to these data. We estimate that grid access improves village-level asset
wealth in rural Uganda by 0.17 standard deviations, more than doubling the growth rate over our study period
relative to untreated areas. Our results provide country-scale evidence on the impact of a key infrastructure
investment, and provide a low-cost, generalizable approach to future policy evaluation in data sparse environments.

Introduction

Accurate public policy evaluation requires data on outcomes of interest that are likely to be shaped by a given policy,

and an ability to isolate the impact of the policy from other correlated changes that might also affect these outcomes.

Sparse data on key livelihood outcomes across much of the world continues to hinder such evaluations1. In many

countries, existing data provide only an intermittent or aggregate snapshot of well-being, and the near absence of

granular and reliable livelihood data over time makes it challenging to both measure changes in well-being and

to correctly attribute them to policy interventions. Left unaddressed, this data shortage will continue to impede

understanding of what interventions best improve livelihoods in some of the most impoverished regions of the world.

The combination of recent advancements in computer vision and a growing abundance of satellite imagery have

recently shown promise in improving the measurement of livelihoods in data-sparse environments1–5. Deep learning

models trained on daytime satellite imagery and nighttime lights have been shown capable of predicting up to 75%

of the variation in local-level economic data on which the model was not trained2, 5, 6. But, with few exceptions (eg

refs7, 8), these new approaches have yet to be deployed in the evaluation of policies or interventions designed to

improve livelihoods1.

Successfully deploying such approaches to measure policy impact involves surmounting at least four challenges.

First, as most policy interventions are not randomized, reliable measurement of policy impact typically requires

*We thank seminar participants at Stanford and AtlasAI for helpful comments, and colleagues in Uganda for their help in locating and
verifying the electricity grid maps. N.R thanks the TomKat Center for Sustainable Energy at Stanford for financial support.



observation of both treated and untreated units (e.g. individuals or locations) before and after the policy was

instituted. Generating such longitudinal data from a remote sensing and deep learning pipeline, particularly at a scale

and resolution necessary to evaluate a policy’s causal effect, is challenging and has not been the focus of previous

work1. A second concern is that image-derived proxies for a dependent variable of interest could themselves include

the policy intervention of interest, undermining inference. For example, poverty predictions from a satellite-based

model cannot reliably be used to study the impact of new road construction on poverty if there is a chance that the

model looks for a road to decide whether a location is poor. Third, for continuous outcomes, the distribution of

predicted outcomes from both simple linear models and more complex deep learning models tend to have lower

variance than the distribution of observed outcomes. Models seeking to predict economic well-being, for example,

often overpredict for poorer individuals and underpredict for wealthier ones. If interventions are targeted at certain

parts of the outcome distribution (e.g. at the poorest) or have heterogeneous effects across it, then this bias in

outcome measurement could bias estimates of treatment effects, as we show herein. Finally, and relatedly, recipients

of interventions often have outcomes that are evolving differentially relative to untargeted populations – for instance,

road improvement projects could be targeted to areas with rapid economic growth. As a result, benchmark research

designs, such as difference-in-differences (DD), will likely struggle to recover reliable treatment effect estimates

when outcomes – even when reliably measured – trend differentially across treated and untreated groups in the

pre-treatment period9, 10.

Here, we develop methods to overcome these multiple data and inference challenges and apply them to estimate

the causal impact of rural electrification expansion on livelihoods at the country scale in Uganda. Nearly 1b people

globally and 600m in Sub Saharan Africa (SSA) lack access to modern electricity (Fig. 1a)11, 12, and the roughly

$20b invested annually in expanding electricity access in SSA in recent years is only a fraction of the estimated

$45-100b needed annually over the next 20 years to secure continent-wide access12. The likely impact of this past

expansion is debated, and the benefits of future expansion uncertain. While some research finds positive effects

of electrification on livelihoods13, recent experimental work finds limited impacts14, 15, and other studies note the

lack of consistent evidence16. Understanding where and under what conditions expanded electricity access is most

beneficial will be critical for guiding the proposed $1-2.5T investment in SSA electrification efforts in coming

decades12.

To study the effect of electrification on livelihoods in Uganda, we combine georeferenced data on the multi-year

expansion of the electricity distribution grid throughout the country (Fig. 1b) with satellite-based predictions of

asset wealth from a machine learning (ML) model trained on data from 27k villages across SSA (Fig. 1c). We then

use two ML-based econometric approaches to isolate the average treatment effect (ATE) of grid expansion on asset

wealth in the largely rural and peri-urban areas that received grid access during our study period.

Specifically, we construct data on grid expansion by combining publicly available data from the Uganda

government, the World Bank and partners, and academic papers17–19 (see Appendix). Our harmonized data on grid

locations covers the years 2005, 06, 10, 13-18. To estimate livelihood impacts, we focus on locations that received

grid access in 2011 or 2012, a period of rapid grid expansion where we can observe outcomes for many years both

before and after expansion. We define “treated” communities as those that were within 2km of new distribution lines

in 2011 or 2012. Control communities are defined as those that did not receive grid access by 2016, the most recent

year for which Ugandan DHS survey data is available (see Appendix).

We measure outcomes using data on household-level asset wealth, a reliable and commonly used indicator
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of economic well-being20 that is consistently measured in many georeferenced nationally-representative surveys

conducted in SSA. Unfortunately, such surveys – in particular the Demographic and Health Surveys (DHS) – do

not revisit the same households or locations across survey waves, making it difficult to construct the repeated

local-level measurements on which many causal inference techniques depend. However, recent studies have shown

that convolutional neural networks (CNNs) can be trained to accurately predict asset wealth at the village or

neighborhood level from satellite imagery2, 4, and that such predictions can be used to fill in data gaps in both space

and time. This gap filling can enable subsequent application of causal inference approaches that require longitudinal

data.

Building on this work, we assemble survey-based household asset wealth data from DHS surveys of 641,621

households in 27,174 enumeration areas (EA) across 25 countries in SSA over 14 years (Fig. 1c, Appendix Fig. A1).

Following prior studies2, 20, we use principal components analysis (PCA) to construct an asset wealth index (WI)

from household’s survey responses to questions about ownership of specific assets (see Appendix, Appendix Fig.

A2), using data from all households in the sample to construct one common index. We then create a mean WI for

each “cluster" or EA (akin to a town or village) by averaging household-level WIs within each cluster. We focus on

asset wealth rather than other livelihood measurements (e.g. consumption expenditure) as asset wealth is considered

a less-noisy measure of households’ longer-run economic well-being, is a common component of multi-dimensional

livelihood measures used around the world21, 22, and is well measured in our survey data.

We then train a CNN to predict wealth index values at the cluster level from temporally and spatially matched

multispectral satellite images. We use a ResNet-18 architecture23 with the input layer modified to include additional

satellite bands to supplement RGB imagery, and the final layer modified to provide a single scalar estimate of

the wealth composite. We split data into disjoint training (60%), validation (20%), and test sets (20%), with the

model evaluated on the held-out test data (see Appendix). We evaluate CNN models trained with and without data

from Uganda in the training and validation set; the latter setting replicates a common real-world situation in which

ground-truth data from a target geography of interest may not exist.

To overcome the concern that visual indicators of the independent variable of interest (electricity distribution

grid) could be used by the CNN in its construction of the wealth index and thus generate a mechanical relationship

between grid expansion and asset wealth, we take two steps. First, departing from past work, we exclude measures of

self-reported household electrification from the construction of the WI; this had only minor effects on WI estimates

(Appendix Fig. A3). Second, we used only daytime satellite imagery rather than nighttime lights imagery as input

to the CNN, as nighttime imagery directly can pick up the presence of local electrification, and the coarse (30m)

daytime imagery that we use is unlikely to directly detect electrification infrastructure.

In our setting, the use of standard mean squared error loss functions in CNNs (or in simpler linear models)

generates a distribution of model-predicted values that is lower variance than the true distribution (Appendix Fig.

A4a), with the model over-predicting wealth at the lower end of the wealth distribution and underpredicting in

wealthier regions. We show mathematically and through simulation that this bias is consequential for downstream

inference tasks, attenuating (biasing towards zero) treatment effect estimates that use these predictions to measure

outcomes (see Appendix, Appendix Fig. A6, c). To mitigate these biases, we modify the standard MSE loss

function with an additional term that penalizes bias in each quintile of the wealth distribution (see Appendix). This

loss function generates wealth predictions that do not lead to attenuated estimates in downstream inference tasks

(Appendix Fig. A4), but at the cost of somewhat lower predictive performance as measured by standard test statistics
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(e.g. r2, a common test statistic of interest in this setting1, 2). This result highlights that the common practice of

maximizing average predictive performance across the output distribution (e.g. for a regression problem, maximizing

the r2 between predicted and observed values in a test set) could actually worsen performance on key downstream

tasks.

Our custom loss function helps ensure that bias in outcome prediction will not lead to bias in estimated treatment

effects. But accurate outcome data alone do not solve the separate, more conventional inference problem in which a

given unit is only observed in either a treated or untreated state, and the unobserved counterfactual state must be

inferred to estimate the effect of treatment. To solve this inference task, we exploit two recent ML-based causal

inference approaches, matrix completion (MC) and synthetic controls with elastic net (SC-EN) which have been

shown to be more robust in the face of common threats to inference such as non-parallel trends in pre-treatment

outcomes24, 25. MC works by treating counterfactual untreated observations in the treatment group as missing

values in a matrix, with these values imputed through a regularized process that penalizes matrix complexity24

(see Appendix). MC’s main identifying assumption is that predicted values (in the matrix of outcomes values) are

uncorrelated with treatment24, 26. SC-EN uses a flexible approach to matching treated units with a weighted average

of control units who were trending similarly pre-treatment25. For causal identification, SC requires that only treated

units are affected by the intervention and only post-treatment, and that a weighted combination of untreated units can

approximate a treated unit’s outcome absent treatment27. We use simulation and cross-validation to show that MC

and SC-EN are less biased in the presence of time-trending unobservables and capably predict held-out observations

in control locations or pre-treatment observations in treated areas (see Appendix, Appendix Fig. A6,a, Appendix Fig.

A7).

We then estimate causal impacts in three separate scenarios. In our base case ("with-Uganda"), DHS data from

Uganda contribute to the training and validation data used to train the CNN, mimicking a setting where some local

data are available to train models. In our "without-Uganda" case, we train on DHS data from African countries other

than Uganda, mimicking a setting where no local data are available for model development in the target geography.

Predictions in these locations are made for all study years 2006-16. In the third ("full country") case, instead of

filling in missing years for the available DHS locations we use the CNN to predict wealth at 1km over all Uganda

and all study years (Fig. 3), masking out unpopulated areas using data on inhabited locations28. Of these ∼6,900

village locations, 3,235 are unelectrified by 2016 and are used as controls and 209 receive electrification during the

2011-2012 period and are used as treated units, resulting in a total of 3,444 observations in the full country analysis.

This third case replicates a likely deployment scenario in which a model is trained on any available data and then

used to predict values for all locations and years that are unobserved.

Results

CNN Predictive Performance

Our CNN model’s performance across SSA consistently achieved r2 values above 0.6 with a max of 0.69, thus

explaining roughly 2/3rds of the variation in held-out village-level DHS survey measurements. Performance on

this wealth prediction task is comparable to recent literature, which reports r2 values between 0.6 and 0.75 and

typically uses additional inputs (e.g. nighttime lights) that we did not use1, 2. Our preferred CNN model with

our bias correction penalty had a combined r2 of 0.63 over all of SSA and a 0.63 r2 for Uganda clusters. In the

without-Uganda setting we found slightly lower r2 values when predicting on held-out Ugandan data, with an r2 of
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0.61 across SSA and 0.50 within Uganda.

"Full-country" predictions are shown in Fig. 2a,b, and changes in wealth during the study period for populated

areas are shown in Fig. 2c. Wealth estimates indicate the North and East of the country remain the poorest parts of

the country, consistent with World Bank analyses29. Our model predictions also indicate substantial wealth growth

in central Uganda, in particular the peri-urban areas near the capital city of Kampala, and slower growth in northern

regions with a recent legacy of conflict, consistent with recent studies30. On average, our village WI’s increased by

0.19 units between 2006 and 2016, equal to a 0.15 sd increase relative to the pooled Ugandan wealth distribution

between 2006 and 2016.

Estimated impacts of electrification

MC and SC-EN estimate similar, statistically significant effects of electrification on wealth across our three data

imputation settings (Fig. 3). In the with-Uganda setting MC estimates a 0.22 [95% CI 0.08, 0.37] unit improvement

in asset-based wealth for treated communities, equal to a 0.17 sd increase relative to the observed Ugandan wealth

distribution. Results are robust to alternate inclusion buffers (Appendix Fig. A8), and as expected point estimates are

attenuated when CNN prediction bias at different parts of the wealth distribution is less heavily penalized, producing

a larger Berkson-type error (Appendix Fig. A9). Treatment effects appear to increase over time (Fig. 3b), consistent

with a commonly held hypothesis that it may take time for electricity’s impact to be realized13, 31.

Estimates from a model that did not use Uganda data in training are nearly identical to the with-Uganda case,

and using wealth predictions across all of Uganda yields a modestly lower but much more precisely estimated

effect [0.19 , 95% CI 0.11,0.26]. The substantially narrower confidence interval in this latter setting reflects the

larger amount of data available when all populated locations and years are used to estimate treatment effects. Both

results suggest that treatment effects can be accurately estimated even absent training or validation data in the target

geography.

We compare our main results with two DD estimates that could have been implemented absent our satellite-

derived data: a ‘two-unit’ DD where outcomes for each treatment group and period are constructed as the simple

average of wealth values across any treated or control unit observed in that period’s survey (recall that the same

locations are not observed across survey rounds), or an “inverse-distance-weighted" (IDW) DD that imputes wealth

values in missing location-years as the relevant inverse-distance-weighted average of nearby treated or control

surveyed locations in that year. Given the moderate failure of DD on the pre-treatment placebo test described above,

in neither case is unbiasedness guaranteed. In the two-unit case, the treatment effect point estimate is similar to our

main estimate but with a wide confidence interval that contains zero. In the IDW case, the treatment effect estimate

is similar in both magnitude and statistical significance to our main estimate.

We also compare our main results to output from a CNN model with a typical mean squared error loss function

(i.e. without the additional bias penalty); recall this prediction model had a higher overall prediction r2. Using

predictions from this model, we estimate a 0.13 [95% CI -0.04,0.24] effect of electrification for the with Uganda

case (Appendix Fig. A9), or roughly 50% smaller than our preferred estimate and not statistically significant

at conventional levels. This result again highlights the importance of optimizing the prediction model for the

downstream task.
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Discussion

Across multiple approaches to generating wealth estimates (with-Uganda, without-Uganda, full country) and multiple

machine learning-based estimators, our results suggest that villages who gain electricity grid access enjoy increases

in asset wealth as compared to non-electrified communities. Our with-Uganda estimates suggest that treated

communities grew more than twice as fast during the post-treatment period compared to unconnected communities.

Our broader, full country data setting suggests similar and more precisely estimated impacts on asset wealth. These

accelerated growth rates for communities with new access to electricity are particularly notable in the communities

that we study, which at baseline are some of the least wealthy on the African continent. Our results suggest that, at

least in our Ugandan setting, access to electrification can generate meaningful improvements in economic wellbeing.

Our findings stand somewhat in contrast to recent experimental work in nearby Kenya that found limited impact

of household-level electrification on livelihoods14, 32. One possible explanation for this difference is that we study,

in effect, the household impact of community-level electrification, whereas the Kenya work examined the impact

of individual households gaining grid access. Community-level electrification could unlock a range of economic

benefits and positive local labor-market spillovers that might not be observed in a household-level intervention14.

Our findings, with some exceptions31, are more in keeping with other quasi-experimental work that found positive

effects of community-level grid expansion, including studies in South Africa13, the Philippines33, and Brazil34.

Our results do not provide clear insight on the many potential mechanisms through which expansion of the

electricity grid could improve household asset wealth. Indeed, our univariate prediction framework is not well

positioned on its own to provide such insight. Such insight could potentially come by combining our comprehensive

outcome data with information on key mediating variables (e.g. labor force participation, agricultural incomes, etc).

More broadly, our findings illustrate that careful combination of satellite imagery and deep learning can generate

data appropriate for use in downstream causal inference tasks, including program evaluation. We believe our

two-stage machine learning strategy – combining imagery and deep learning to generate outcome measurements, and

applying new ML-based causal inference estimators to these data to estimate program treatment effects – represents

a scalable, generalizable and relatively low-cost strategy for expanding policy evaluation in data sparse environments,

especially where such evaluation was previously cost-prohibitive or infeasible. We show that our strategy performs

well even in a challenging setting in which no data from the target country of interest are available for model training.

Estimates from our approach can be updated with relative ease as new satellite imagery and grid data become

available.

Our multi-tiered methodology could likely be further improved by additional ground truth surveys and/or

additional inputs, such as higher resolution or more frequent satellite imagery. However, we believe the current

availability of satellite imagery and state of deep learning methods is more than adequate for making progress on

a series of challenging questions related to the causes or consequences of infrastructure development, agriculture

productivity improvements, public health interventions, and broad-scale environmental change, and that their

combination represents a new frontier for policy evaluation. Finally, our results point to the importance of carefully

considering “downstream" causal inference tasks when selecting an “upstream" model that will feed data to those

tasks. In the setting considered here, customary approaches to optimizing prediction performance can substantially

worsen bias in the causal estimate of interest, a dynamic we expect exists in many related applications.
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Figure 1. Electricity access rates, grid extensions in Uganda and DHS survey locations. a, Nearly 600m
people in Sub Saharan Africa lacked access to modern electricity in 2018. Countries are colored by the number of
people lacking access to central grid-based power. Uganda, with roughly 24m without power in 2018, is highlighted
by a red border. b, The electricity grid has expanded rapidly in Uganda in recent years, including to new regions of
the country. Black dots illustrate the 641 enumeration areas from the 2016 DHS survey. c, Wealth indexes for
27,174 DHS enumeration areas are colored from low asset wealth to high asset wealth. Our training data covers 25
countries over 14 years and represents 641,621 household surveys.
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Figure 2. CNN-based wealth predictions over time in Uganda. a, b, Asset-based wealth index values predicted
via CNN across Uganda in 2006 and 2016, the first and last years of our analysis. c, Shows the change in asset
wealth between 2006 and 2016 for 6,900 villages and neighborhoods. Across all observed locations, asset-based
wealth increased by an average of 11% over the period.
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Figure 3. Electricity access increases household wealth when compared to households in unelectrified
communities. a, Average asset wealth in control (gray) and treated (red) locations, bands represent the standard
error of the mean. Counterfactuals predicted by matrix completion and synthetic controls with elastic net are shown
by dotted lines. b, Estimated causal effect of electrification on wealth at the end of the sample (2016). Error bars
represent 95% confidence intervals. Confidence intervals for each of ML estimates are based on 100 bootstrapped
model runs. We find similar statistically significant positive impacts in each of our three ML-based estimates (with
Uganda, without Uganda, and full-country). ’2-unit’ represents a repeated cross-section difference-in-difference
(DD) run using only DHS survey estimates. ’IDW’ reflects DD results from a inverse distance weighting approach.
The four numbered lines at right represent the causal estimates in the 3rd - 6th years (2013 - 2016) after the initial
treatment year.
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Appendix

1 Dataset construction

1.1 Creating an asset-based wealth index
The Demographic and Health Surveys (DHS) are a set of nationally-representative household surveys conducted

periodically in many low and middle-income countries around the world. Among other things, the DHS ask a

relatively consistent set of questions of household asset ownership and related housing characteristics, including

questions on water supply, ownership of assets like a car, and floor, roof and wall materials. Variables such as

floor type are converted from descriptions of the asset to a 1–5 score indicating the quality of the asset. We then

construct an asset wealth index (WI) at the household level from the first principal component of survey responses to

a consistent set of 13 questions (Extended Data Fig. A2). Such an index is a standard approach in development

economics to measuring longer-term well-being20, 21 and is meant to capture household asset ownership as a single

dimension, rather than act as a direct measure of consumption poverty. By construction, the WI has a mean equal to

0 and standard deviation of 1 across all households.

Included DHS data come from 25 countries in Sub Saharan Africa (SSA) between 2005 and 2017, totalling

641,621 households in 27,174 enumeration areas (EAs, roughly villages in rural areas or neighborhoods in urban

areas) (Extended Data Fig. A1). In Uganda, we use five DHS surveys (2006, 2009, 2011, 2014, 2016), amounting to

1,798 EAs. EAs are geolocated in DHS surveys; however, each reported location includes random jitter (spatial

offset) to protect anonymity. Urban clusters include up to 2km displacement, and rural areas commonly up to 5km

and sometimes 10km, which introduces random noise into our data setting but does not substantially effect predictive

quality35. Before using the DHS data in model training or causal inference, we average household wealth indexes at

the EA level.

Because of our focus on measuring the impact of electricity access, we do not include DHS’s binary “has

electricity" (HV206) survey question in our PCA. We withhold this variable to avoid mechanically embedding our

independent variable of interest in our dependent variable. However, because ownership of individual household

assets and housing characteristics tend to be highly correlated, excluding this input variable does not meaningfully

change our WI. We compare our base WI to an index that includes the electricity variable, an index that has the

binary electricity variable but not the electrical appliances and an index that has neither the electricity variable nor

electrical appliances (Extended Data Fig. A3). We find high correlation between the WI we use and these alternative

indexes, with r2s of .99, .97 and .96 respectively.

1.2 Constructing the electric grid time series
To create the electricity grid time series, we collected data from a variety of publicly available sources, including

published government documents, academic studies, and aid agency reports that mapped Ugandan’s electrical

distribution system. In total we collect grid data for the years 2005, 2006, 2010, and 2013 to 2018, and explicitly

use data from 2010, 2013 and 201617–19. To verify accuracy of these maps we conducted in person interviews in

Kampala with utility professionals and aid agencies and contacted report authors.

Data from 2016 and later was made available in digital format from the Ugandan government, in collaboration

with the World Bank and GIZ. Older grid data is extracted from non-digitized maps via map rectification. We

accomplish this task by uploading static images to ArcGIS, extracting grid lines and converting them to a digital

latitude and longitude format. To further confirm the accuracy of the earlier, non-digitized maps, we develop a ‘back
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casting’ strategy where, under the assumption that once the grid is built it rarely disappears, we map the most recent

years first and then use these maps to inform grid locations in earlier years. For example, with the 2016 grid mapped,

we could overlay an earlier year and have the primary aim of tracking were the grid stopped in that year, rather

than mapping that entire earlier year by itself. To our knowledge our resulting grid expansion data set is the first

national-level time series of an electric grid’s evolution in SSA.

1.3 Identifying treatment and control groups

We denote communities (either DHS EA locations or villages from across Uganda) as "treated" if they received

distribution grid access between 2011 and 2012. Our treatment does not claim that all homes or businesses received

and used grid-based electricity. Rather, our treatment assumes the community received grid access. To identify our

treatment and control groups, we apply a 2km buffer to our electricity grid lines. (We test results when using a 3km

or 4km buffer (Extended Data Fig. A8) and find similar treatment effects). Using the time series of grid development

we create a list of EAs (or villages in the full country setting) that were connected pre-2011, during 2011 and 2012,

or post 2012. Locations that received grid access between 2011 and 2012 comprise our treatment group. We also

identify sites that were not connected by 2016. These never-connected villages are our control group.

In the full country setting where we apply the CNN across Uganda rather than just in DHS locations, we modestly

update our treatment selection methodology. First, because there is no random jitter in village coordinates, we shrink

our treatment range to 1km on either side of the grid line. Second, as many villages are tightly clustered in this data

setting, we add a 1km buffer outside of the 1km treatment range, meaning that all control units are still beyond 2km

from the grid line. Finally, we add a population density layer to our village map36, and drop any village where the

population density layer is equal to zero (n = 4). We also drop the highest 1% of villages by population density from

our treatment group (n = 31), as these are above three standard deviations from the mean and we consider these

observations to be potential outliers. In this setting, we end up with 209 treated villages and 3,235 control villages,

each being predicted annually from 2006 to 2016.

2 Wealth prediction

2.1 Satellite-based wealth estimation in the context of downstream inference tasks

We wish to infer the impact of electrification on livelihoods, using data on livelihoods predicted by a model. For

continuous outcomes, the distribution of predicted outcomes from both simple linear models and more complex

deep learning models tend to have lower variance than the distribution of observed outcomes. This is mechanically

true for linear regression models, and is empirically true for deep learning models in our setting (Extended Data

Fig. A4a). In practice, this means that predicted wealth is overstated for poorer segments of the population and

understated for wealthier segments of the population, meaning prediction bias is a function of underlying wealth.

We explore whether this so-called Berkson error can be consequential for downstream causal inference tasks

in our setting. Consider a standard two period difference-in-difference (DD) estimation, with true wealth values y

measured in both periods for treatment and control units, and predicted (potentially biased) wealth values y′ in the

same units and periods. Assume that predicted wealth is a linear transformation of true wealth, i.e. y′ = α +φy,

where in general we expect α > 0 and 0 < φ < 1. Predicted wealth is too high at low wealth levels and too low at

high wealth levels.

For notational simplicity, we label period and group-specific true and observed wealth values as (e.g.) T1 and T ′1
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for true and predicted wealth in the treatment group in the treated period, and do not take expectations1. The "true"

DD estimate is given by:

β = (T1−T0)− (C1−C0) (1)

The DD estimated on predicted data is:

β
′ = (T ′1−T ′0)− (C′1−C′0) (2)

Using the mapping from true to predicted wealth, we can then write the DD bias as:

β
′−β = [(T ′1−T ′0)− (C′1−C′0)]− [(T1−T0)− (C1−C0)]

= [((α +φT ′1)− (α +φT ′0))− ((α +φC′1)− (α +φC′0))]− [(T1−T0)− (C1−C0)]

= [φ(T1−T0)−φ(C1−C0)]− [(T1−T0)− (C1−C0)]

= (φ −1)β (3)

Bias is only a function of the slope parameter φ and not intercept α (any level bias nets out in DD). Because we

expect 0 < φ < 1, then our DD estimate will be attenuated: downward biased if true effect is positive, and upward

biased if true effect is negative in our two period setting. We thus seek model predictions where φ is nearest to 1 as

possible, i.e. where Berkson error is eliminated.

2.2 Wealth estimation with a convolutional neural net.
We seek a prediction model that can accurately predict local-level wealth using inputs that are available compre-

hensively across space and time, and who’s predictions do not suffer from the Berkson-type error described above.

Coarse-resolution public satellite imagery from Landsat and other sensors is one such available input, and prior work

has shown that a convolutional neural network (CNN) can be trained to accurately predict local-level asset wealth

using Landsat as input1, 2. However, the use of standard CNN loss functions that minimize MSE across the entire

output distribution tend to generate wealth predictions with the Berkson-type error described above.

We thus develop and embed a custom loss function in a ResNet-18 CNN architecture that is able to generate

wealth predictions from satellite inputs without Berkson error. Our basic approach is to additionally penalize bias at

separate quintiles of wealth distribution. This reduced bias comes at the expense of overall predictive performance

(e.g. as measured by r2), and, generally speaking, the best models on r2 grounds tend to also produce the largest

Berkson error. This suggests that researchers wishing to use data generated from CNN and other machine learning

architectures should tailor their loss function according to their desired downstream inference task.

We use a ResNet-18 architecture23 with a modified input layer to accommodate our multi-spectral input data

(224x224x6) and a modified final layer to produce a single continuous estimate instead of predictions for multiple

classes. The model is trained from scratch using an Adam optimizer37 with a learning rate decay of 0.96 per epoch.

We split our data into 5 equally sized subsets and set up five different random folds in which 3 of the subsets (60%)

are assigned to the training set and one subset (20%) is assigned to the validation and test sets each. The validation

1We use this simplified notation for the sake of clarity. Strictly speaking, T1 refers to the expected value of treated units in the post-
treatment period observed without error, i.e. T1 = E[y|D = 1,T = 2]. Likewise, T ′1 is the same quantity yet observed with measurement error:
T ′1 = E[y′|D = 1,T = 2].
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data is used to tune the model while final performance statistics are calculated using the test set. We ensure that all

five subsets are used as the validation or test set exactly once.

2.3 Custom loss function

Define the 5 quintiles of the survey-derived wealth distribution as Q1 to Q5, with Q1 being the lowest quintile of

wealth. Consider a mini-batch (a subset of the data used in each training step) with K training data points Xi with

wealth labels yi. The CNN at this current step can be defined as f̂ and the predicted wealth given by ŷ = f̂ (Xi).

We seek to compute the bias B of the estimator f̂ with respect to each quintile of wealth, and then penalize some

aggregation of this bias. Ideally we would measure B1( f̂ ) ... B5( f̂ ) as the bias that ( f̂ ) generates over all the data

points in Q1 . . .Q5.

However, in practice we are constrained to using the data in each minibatch, and instead compute the sample

bias B̂1( f̂ ), . . . , B̂5( f̂ ) for each quintile as follows:

B̂ j( f̂ ) = E[ f̂ (Xi)− yi|yi ∈ Q j] (4)

Using these quintile-specific bias estimates, we then define our custom loss function:

Êb = max
j
(B̂ j( f̂ )2) (5)

with B̂ j( f̂ ) the estimate of the true bias of the CNN on the jth quintile B j( f̂ ). This estimation of the bias will hence

have an error associated with it that grows smaller as the number of samples fed to it (the yi and f̂ (Xi) ) increases.

This is why we increase the batch size to 90, to allow for an average of 18 samples per quintile. Equation 5 forces

the model to minimize the maximum quintile-specific bias.

We then combine this quintile-specific loss function with the standard MSE loss and regularization loss. We

write the total loss equation for a given minibatch as:

L = MSE +λrL2 +λbÊb (6)

where L2 represents the L2 norm of the CNN weights (a standard practice to avoid overfitting). Finding the optimal

value of λb requires a different approach since it seeks to lower a specific type of bias at the cost of overall MSE,

so any search based simply on the standard MSE metric would have returned λb = 0. Instead, we choose λb

empirically to yield a φ (the slope of the regression of true on predicted wealth) as close to 1 as possible. Extended

Data Figure A4 demonstrates the impact of using no quintile-specific bias (λb = 0) versus increasingly weighting

the quintile-specific bias term (λb up to 7.5). Empirically we find λb = 5 to yield predictions with φ closest to 1

(Extended Data Fig. A4d), and so we choose this penalty as our primary model. We again note that this reduced

bias comes at the cost of an overall reduction in prediction r2 (Extended Data Fig. A4f), relative to a model with a

standard loss function (λb = 0).

Our final CNN parameters are an initial learning rate of .0001, a regularization term of .0001, and a bias penalty

term of 5. Using these model parameters we produce five disjoint splits that estimate a WI for every DHS location

or grid cell in Uganda on an annual basis from 2006 to 2016. With five splits, this means that every year-unit

observation will have five independent estimates.
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2.4 Imagery inputs

Earlier efforts to predict local-level well-being from imagery typically have used a combination of daytime and

nighttime imagery2, 3. In our analysis, we use only daytime imagery from Landsat as input, as we are concerned that

nighttime light imagery was likely a direct proxy for electrification and thus its inclusion (much like the inclusion of

household electrification in the asset index) could mechanically embed our independent variable of interested into

our dependent variable of interest.

We utilize 6 bands in Landsat: the standard three RGB visual bands, one near-infrared band and two shortwave

infrared bands. All of the bands have a native resolution of 30 meters per pixel and so our standard CNN input

patch size of 224 pixels means that each input image approximately covered a 6.72x6.72 square kilometer area. Our

goal is to obtain data for each pixel in each year. As LANDSAT has many images at a given location for a year we

generated a composite by taking the median pixel value over all non-cloudy images falling within the year span.

Taking a composite in such a way enables us to operate on a single image (as opposed to the more complex case

of a sequence of images) and conceptually removes confounding seasonal weather effects or other scene-specific

artifacts. Compositing was done in Google Earth Engine.

2.5 Training with and without Uganda

While our target geography is Uganda, we have wealth data from dozens of other African countries on which

to train our CNN. Past studies have suggested models trained in one African country tend to perform well in

nearby countries2, 3, and that – for daytime-imagery-based models in particular – having many training observations

improves model performance2.

We thus train our CNN using data from countries outside Uganda. In our core “with-Uganda" scenario, we

also allow observed DHS clusters from Uganda to be randomly selected into the CNN training and validation sets,

which intuitively could increase performance in our target geography of interest. We also create a “without Uganda"

setting where we do not allow the CNN to see any Uganda data in the training and validation sets. This is designed

to replicate a challenging but common real world situation in which target geographies may have no data for training

or validation. Our preferred bias-corrected CNN models in the with-Uganda case has an average r2 of 0.63 across

SSA, the without-Uganda case is 0.61.

In our “full country" setting we use the same CNN parameters as our base with-Uganda case (initial learning rate

of .0001, a regularization term of .0001, and a bias penalty term of 5) and allow the CNN to train on Ugandan DHS

clusters. We then impute WIs across all of Uganda from 2006 to 2016 (Fig. 2a,b). Next, we utilize a geolocated

dataframe of Ugandan villages and neighborhoods36 and extract wealth indexes for each village on an annual basis.

We ultimately end up with ∼6,900 village estimates per year (Fig. 2c).

3 Causal inference

We explore the use of three different causal inference techniques, the well-known difference-in-differences (DD)

estimator, and two machine learning (ML) approaches - matrix completion (MC) and synthetic controls with elastic

net (SC-EN)24, 25. We evaluate their appropriateness in various data settings. For example, at one end of the spectrum

we test a two unit (treatment and control), repeated cross-section (t = 5) case based solely on observed DHS data (n

= 1,798) (Fig. 3). At the other end of the spectrum we explore test appropriateness across eleven years with 3,444

village estimates per year (Fig. 2, Fig. 3).
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Difference in difference

DD estimates the impact of a treatment by subtracting changes in outcomes in an untreated group from changes in

outcomes from a newly-treated group. Most DD estimators are used in a panel setting in which both control and

(eventually) treated groups are repeatedly observed. In the DHS survey data, the sampling frame changes between

survey rounds, meaning that the same villages are not observed in separate surveys. However, absent panel data, DD

could still be implemented in two ways on these survey data, and provide a relevant benchmark against which to

understand other estimators and results. First, we can simply compute the DD estimator over the observed villages

in each round, defining in each period the control villages that were never treated and the treated villages that were

eventually treated, and computing mean outcomes over each group. We then stack the control and treated averages

across periods and implement DD as a two-way fixed effects regression:

Yit = βτit +ui + vt + εit (7)

where Yit is the cluster level WI, τ is a binary indicator for whether the grid was present, u are unit fixed effects, v are

time fixed effects, and ε captures the remaining error. Reported estimates of β are shown as "2-unit DD" in Fig. 3b.

A second approach is to interpolate survey observations and use interpolated values to create a village-level panel.

To implement this approach, we take all 1,798 clusters locations that were observed in any of the 5 DHS surveys in

Uganda (2006, 2009, 2011, 2014, 2016), and in survey years in which that location was unobserved, we impute the

wealth value in that location-year as the inverse-distance-weighted average of wealth values in nearby villages, using

all observations within 10km of the location in the average; locations without observations within 10km are dropped.

We then run our standard two-way fixed effect DD regression and report bootstrapped standard errors ("IDW DD" in

Fig. 3b). We note that our DD setting does not have staggered adoption and only has never-treated units as controls,

and thus avoids the issues associated with DD highlighted by a number of recent papers38, 39.

Testing parallel trends

Causal identification in DD requires a parallel trends assumption, i.e. that outcomes in control and treatment groups

would have trended similarly absent treatment9, 10. A standard check on this assumption is to evaluate whether

outcomes were evolving similarly prior to treatment. In these tests we use panel data imputed by our CNN model,

not observed DHS survey data. We conduct each test by re-labeling treated units in 2010, our last pre-treatment year,

as being treated in that year and run the above DD regression. If the DD estimator is statistically different from zero

(p-value < .05 at 95% CI), we reject parallel pre-trends. We conduct this parallel trends test on a series of different

iterations of our data, including randomized CNN split values, as we use in the final causal analysis. The pre-trends

tests failed slightly more than would be expected by chance in the setting where Uganda data were used in training,

and substantially more than would be expected where Uganda data were not used in training (Extended Data Fig.

A5).

Synthetic controls with elastic net and matrix completion

Synthetic Controls with Elastic Net (SC-EN)25 is a regularized form of the synthetic control method40 which uses

elastic net (a combination of LASSO and ridge penalties) to limit overfitting when matching treated units to control

units. In general, SC-EN is a more flexible model than traditional synthetic controls because it allows weights to be
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negative and does not require them to sum to zero: Formally, SC-EN estimates the unit specific counterfactual as:

Ŷj,T (0) = µ̂
en( j;α,λ )+∑ ω̂

en
i ( j;α,λ )∗Y obs

i,T . (8)

Ŷ is the counterfactual being predicted. µ̂ is an intercept. α is how much weight to put on the LASSO or ridge

components of the elastic net estimator, which we fix at .5, λ weights the penalty function and is determined via

cross validation, where we find the tuning parameter, λ , that minimizes the error in cross validation tests25, and ω is

a weight for each control observation, Y obs
i,T . In words, SC-EN predicts the counterfactual, Yc f ,post , by weighting each

post-period control variable with ωi, noting that zero weights are common. These weights are determined via panel

like regression within the pre-treatment period, where we are regressing a single treated unit on the full panel of

control units. In this setting the control weights are updated for each treated unit.

In our setting we have fewer time periods (T) than we do units/villages (N), so we run a transposed or

perpendicular version of SC-EN following ref24. Thus, we are regressing individual post treatment control years

on the panel of pre-treatment controls and estimating year weights, rather than unit weights. We apply these year

weights to each pre-treatment treated-unit time series to estimate each unit’s year specific counterfactual.

As in SC-EN, matrix completion24 attempts to impute (unobserved) untreated outcome values for treated units,

but uses a matrix decomposition approach for imputation.

L̂ = argminL

[
∑

(i,t)∈ϑ

(Yit −Lit)
2

|ϑ |
+λ ||L||∗

]
(9)

Yit is a matrix (i.e. panel) of observed values (N x T), in our case local wealth indexes in Uganda. It includes both

control and treated units pre and post-treatment. Our goal is to find L̂, a regularized estimate of the outcome matrix Y .

We want to estimate a penalized version of Y to avoid overfitting, and ultimately predict counterfactuals. λ ||L|| is the

penalty term. As an example, consider a square N x T matrix where only the bottom right cell is ‘treated’. First, we

set our single treated cell in Y to 0, keeping all the other values as they were observed. Then, MC decomposes this

matrix via singular value decomposition, where YNxT = SNxN ∗ΣNxT ∗Rt
T xT , and where Σ is the diagonal of singular

values. These singular values are penalized by λ in a similar fashion as a regularized regression, which forces the

singular values closer to zero. Each new, penalized matrix, Lit , is reconstructed by multiplying S∗Σpenalized ∗R. The

optimal L̂ is identified by the minimal root mean squared error between Yit and Lit . We then use the estimated bottom

right cell of L̂ as our counterfactual untreated observation for the treated unit.

Whereas DD requires that treated and control units be trending similarly absent treatment, and is thus biased in

the presence of time-trending unobservables, both MC and SC-EN only require that some subset of control units be

trending similarly to a given treated unit. These newer estimators are thus in principle more robust to pre-trends

violations, and have been demonstrated to perform well in a range of prediction settings24 (Extended Data Fig. A6).

Estimator validation

We perform a series of tests on SC-EN and MC to evaluate their performance in our setting. First, we use k-fold cross

validation to evaluate the precision of the SC-EN and MC models and their performance against DD in predicting

held-out post-treatment values in the control set. We accomplish this by splitting the Uganda control villages into
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ten equally sized partitions, repeatedly holding out one fold, setting post-2010 values to missing for villages in

this fold, and using the remaining 90% of control observations to impute these missing values using SC-EN, MC

or DD for prediction. Every fold is used as a test set one time and in the training set k− 1 times, resulting in a

unique yearly estimate for each control unit in the post-treatment period. We then compare each observed control

unit value (yc
it) to each predicted control unit (ŷc

it) and compute the RMSE. We also compare the annual observed

mean to the annual imputed mean, which reflects average model accuracy, our primary goal. We find that across

all post-treatment years the mean difference is 0.002 for DD, MC and SC-EN. RMSE’s are 0.36, 0.45, and 0.44,

respectively. Cross-validation results are shown in Extended Data Fig. A7.

Second, and relatedly, we assess how well DD, MC and SC-EN predict outcomes for treated units in 2010, the

last pre-treatment year. If outcomes were trending differentially between treated and control groups prior to treatment,

then an ability to accurately predict outcomes in the control group (our first test above) would not guarantee an

ability to predict counterfactual outcomes in the treated group. To evaluate this latter ability, we randomly select

control and treatment units, with replacement, into a sample data set. To assess DD, we run a standard pre-trends test

and record the mean difference from zero (i.e. the DD coefficient). To assess MC and SC-EN, we predict outcome

values for treated units in 2010 and compare predicted to observed. We run this analysis 100 times on a random

selection of control and treated units and average the results. We find that MC performs similarly to DD in terms of

average prediction error (-0.035 to -0.033) and SC-EN performs modestly better (0.027), despite already limited set

of pre-treatment years upon which it predicts.

Finally, we explore the impact of parallel trends violations on our different estimators. Non-parallel pre-trends

are a plausible concern in our data – for example, the concern that electrification is targeted to locations that were

already growing most quickly – and as shown in above DD tests is perhaps a practical concern as well. We explore a

simulated multi-year setting where treatment has a positive effect (equal to 1) but where treated units pre-treatment

are on average trending positively relative to control units (i.e. parallel trends is violated). We then estimate treatment

effects using DD and MC, varying the number of years in the sample (t = 4-20), where treatment can occur at

the earliest in (t/2+1)) varying the magnitude of pre-trends violation. We find that MC outperforms DD in most

scenarios (Extended Data Fig. A6), particularly as pre-trends violations increase or the sample exceeds a few years.

Overall, we find MC to be better estimator than DD in two of our robustness checks and does similarly well in

cross validation, where DD should perform well. Recognizing the other literature highlighting MC’s performance24,

we select MC as our preferred causal estimator. We also report SC-EN in our results because it performs quite well

in the most common cross validation test.

Estimating the average treatment effect
To calculate average treatment effects and their uncertainty, we use a common bootstrap procedure where we

randomly select control and treated units with replacement into a sample data set, before executing our causal models

(MC, SC-EN, or DD). However, to capture imputation uncertainty, every bootstrap run starts by randomly selecting

a single unit-year WI for each of our control and treatment units (recall that our CNN procedure splits our training

data into five folds and thus produces five unit-year estimates for each location). Using our base 2km setup as an

example, we then randomly select 888 control and 76 treated units to create a run-specific sample data set. Next,

we execute our MC and SC-EN procedures, recording each estimated counterfactual for treated units from 2011

to 2016. As MC re-estimates the entire sample data set, we get all of the estimated counterfactuals in one matrix.

For SC-EN we run our algorithm separately for each post-treatment year. Then, to estimate the year-unit specific
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treatment effect we subtract the estimated counterfactual from the observed value. To estimate annual ATEs, we

average the within-year estimates. We repeat this analysis on 100 distinct data sets and report bootstrap standard

errors at the 95% level of confidence for both MC and SC-EN (Fig. 3).

Our core results - for both the with and without Uganda cases - are based on a 2km buffer around the grid line

and use a penalty term of 5. We also report 3km and 4km buffer results using the same penalty term of 5 and find

similar results (Extended Data Fig. A8). And, we estimate results when the penalty term is set at 0, 1, 3 and 7.5

(Extended Data Fig. A9). We find similar effects in all of these cases, consistent with our main results.

Research related carbon emissions
We recognize deep learning requires large amounts of computational power and energy, typically resulting in CO2e

emissions from energy use. At the same time, ML can save emissions if it offsets more consumptive data aggregation

strategies. While the artificial intelligence community should be keenly aware of its consumption and emissions,

we argue that in our setting there is likely a net benefit to generating asset data using ML algorithms, as machine

learning-based predictions offset in person data solicitation, as is done in DHS surveys. For example, the Ugandan

DHS surveys we use include 1,798 EAs across five years, whereas our imputed data fills in gaps to produce a net of

19,778 EA across 11 years, more than 10 times as much data. Thus, assuming some reasonable level of additional

in-person-based surveys would be required to conduct a similar analysis (without using ML), it is likely that our ML

approach will produce lower emissions. In our setting, as the heaviest computational work was done on the cloud

via Google’s data centers, our total emissions profile benefits from Google’s progressive clean energy commitments,

as well as Stanford University’s. Increasing clean energy penetration will further this advantage and reduce the ML

community’s ecological footprint.

Data Availability.
Data and R code to replicate our results figures can be found on GitHub at https://github.com/nwrat?tab=repositories.
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Appendix figures

Figure A1. 61 DHS surveys from Sub Saharan Africa are used in this study. DHS survey years run from
2005 - 2017. We use asset-based wealth estimates from 27,174 villages, representing data from over 640k
households, to train our CNN models.
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Figure A2. DHS variables used in creation of asset wealth index.

Figure A3. Alternate approaches to constructing the village-level wealth index generate highly correlated
indices. a, Compares the base wealth index constructed from the variables listed in ED Fig A2 to an index that
additionally includes DHS’s ‘has electricity’ variable. The r2, intercept and coefficient from regressing the
alternative index on the base index are shown. b, Compares the base index to the base index plus the electricity
variable but minus three electrical appliances (TV, refrigerator, and phone). c, Compares the base index to the base
index minus three electrical appliances.
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Figure A4. Our custom loss function corrects for prediction biases at different points in the wealth
distribution, but modestly reduces overall predictive performance (r2) in held-out Uganda data. a-e DHS
observed wealth index values in Uganda on the x axis (n = 1,798) and CNN-predicted values on the y axis. The red
line is a 45 degree line, the black is the line of best fit from regressing predicted on observed; slope coefficient and
regression r2 are shown in the lower right corner of each subplot. Higher penalties on quintile-specific bias leads to
slope coefficients closer to 1 and slight reductions in r2. However, when the penalty term gets too large, as in the 7.5
case, we see the regression coefficient begin to deviate from 1 again. f, Relationship between the slope coefficient
and r2 for each subplot. The results from the entire Sub Saharan data set are shown in gold.

Figure A5. Rejection rate for difference-in-difference estimator in pre-trends test. Percent of runs in which a
difference-in-difference estimator rejected a null hypothesis of no pre-trends at either 95% or 90% confidence.
"With Uganda" and "Without Uganda" reference whether or not Uganda was used in the training and validation
steps. "Penalty" indicates the quintile-bias penalty term (λb) used in each model run.
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Figure A6. Matrix completion (MC) has smaller prediction error than difference-in-differences (DD) when
pre-trend bias is present, and both estimators are equally attenuated under Berkson-type measurement
error. a, We simulate a setting where a treatment has a true positive effect equal to 1, but where units are trending
differently absent treatment and can have unit-specific trends that are correlated with treatment. We test this
situation across multiple time periods (4 to 22 years, where treatment can start in T/2 + 1) and varying growth rates
of upward trending units being selected into the treated group (.1 to .25). We then compare DD and MC causal
estimates and find that MC is less affected by time-trending unobservables. b, We create a sample of ’observed’ data
that has a smaller variance than the true distribution, representing a common challenge in data imputation. c, Using
our ’observed’ sample data, we again simulate a setting that has a positive effect equal to 1 but no pre-trend bias.
Under this Berkson-type error, DD and MC are similarly attenuated, underscoring the importance of bias reduction
across the outcome distribution in the CNN training process.
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Figure A7. Cross validation shows that matrix completion and synthetic controls with elastic net can
estimate the average of observed control values with high precision. We split the control sample into 10 equally
sized, random folds, and use matrix completion (MC), synthetic controls with elastic net (SC-EN) and
difference-in-differences (DD) to predict cluster-specific wealth values in the held-out test fold for each year,
2011-2016. Using each fold as a test set one time and in the training set nine times. The mean average difference
across all years are .002, .002, and .002 respectively, signifying that MC and SC-EN can predict the average control
value with high accuracy.
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Figure A8. Using larger inclusion buffers around grid locations to identify treatment and control samples
returns similar causal effect estimates. We use a 2km buffer around the grid lines as our preferred range to
identify treatment and control units as a 2km buffer limits false positives when compared to larger ranges. We also
run our causal models using 3km and 4km buffers for comparative purposes. We find a similar but slightly larger
effect at 3km, and similar results for 4km as well. These results suggest our treatment effect interpretation is robust
to buffer range selection.
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Figure A9. The estimated treatment effect of electrification is higher when quintile-specific bias in wealth
predictions is penalized more heavily. Each estimate represents a separate estimate from MC or SC-EN using
output from a model with varying quintile-specific bias, from λb = 0 up to λb = 7.5, as in ED Fig A4.
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