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ABSTRACT
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greater resilience and intensify production in seasons following a shock. Our findings showcase 
important complementarities between these risk mitigating technologies and the crucial role 
learning plays in tapping their benefits to small farmers.
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1 Introduction

Economic resilience can be defined as a household’s ability to absorb a shock with

minimal damage to current and future economic well-being. This paper reports the re-

sults of a multi-year, spatially diversified randomized controlled trial of a novel bundle

of genetic and financial technologies designed to boost the productivity and resilience

of small holder farm households. Drawing on earlier conceptual work that proposed

bundling complementary financial and genetic technologies to cost-effectively enhance

the resilience of small farm households (Lybbert and Carter, 2015), this paper is the

first to estimate the impact of such a bundle on farmer resilience and productivity.

We find that these technologies–index insurance and drought tolerant seeds–not only

boost households’ economic resilience, but also generate a resilience dividend in the

form of intensified agricultural investment that occurs after farmers experience the

technologies in action. Consistent with other work on technologies that generate

stochastic benefits (Cai et al., 2020), we also find that the unfortunate flip side of

this experiential learning is that farmers who do not directly experience the benefit

of these technologies begin almost immediately to dis-adopt them.

In addition to identifying the state-contingent impact of these technologies on

adopting households, our unique research design allows us to gauge the short and

medium term impact of shocks on the study’s control group households. These control

households are anything but resilient. The econometric analysis shows that shocks

damage their current farm income; that even moderate shocks have persistent ef-

fects, reducing future income as farm households become decapitalized as they cope

with the income reduction; and, that severe shocks overwhelm households’ consump-

tion smoothing capacity and compromise both future productivity and food security.

Unsurprisingly, the agricultural productivity of control group households is low, con-

sistent with the hypothesis that their vulnerability to shocks inhibits investment in

technologies that could increase household income in most, but not all, years.1

1The productivity-depressing effect of uninsured risk on productivity and investment by small-
holder farmers is well-established in the literature. For example, see Morduch (1995); Rosenzweig
and Binswanger (1992); Carter and Lybbert (2012).



The biological insurance embedded in the genetic technology of stress tolerant

seeds and the financial insurance of index-based insurance technologies can indepen-

dently mitigate shocks and crowd-in additional investment. At the same time, each

technology has acknowledged but distinct limitations. The bundle we design and test

aims to exploit complementarities between the two technologies that emerge from

their respective strengths and limitations.

Stress tolerant seed varieties bred to withstand abiotic weather shocks like drought

or flood are among the new genetic technologies that potentially improve the re-

silience of smallholder farmers. Emerick et al. (2016) provides encouraging evidence

that highlights this potential. The authors find that flood tolerant rice varieties

not only provided Indian farmers significant protection against yield loss from this

weather shock, but also gave them confidence to intensify investment in productivity-

enhancing practices and inputs.2 Stress tolerant varieties are a particularly attractive

innovation because of their low marginal cost. While breeding these varieties de-

mands substantial upfront investments in lab work and field trials, once tolerant

varieties are developed they can be multiplied and distributed to farmers with little

or no additional cost relative to improved, non-stress tolerant varieties.3 Farmers may

consequently pay little or no price premium to access these stress tolerant varieties

compared to purchasing non-tolerant but otherwise comparable improved varieties.4

Yet, these promising varieties offer farmers protection against only a limited range of

production shocks. The flood tolerant rice variety studied by Emerick et al. (2016)

provides protection against flood events that last no more than 15 days (Dar et al.

2013), but succumbs like other rice varieties to longer periods of flooding.5 Similarly,
2In a study of drought tolerant maize varieties in Ugansa, Simtowe et al. (2019) find that those

who use drought tolerant seeds enjoy higher and more stable yields and appear to invest more in
maize at both extensive and intensive margins.

3In the specific case of the drought tolerant maize varieties studied here, the cost of varietal
development were paid by philanthropic capital that financed the multi-year, CIMMYT-led Drought
Tolerant Maize for Africa initiative.

4However, for farmers that usually plant unimproved local seed varieties (which is the majority
of farmers in our sample), the shift to an improved, stress tolerant variety represents a substantial
increase in up-front investment.

5In the first year of the Emerick et al. (2016) impact evaluation, approximately 40% of sample
farmers experienced flooding, with an average length of submerged fields of roughly 5.5 days. While
the authors do not provide information on the full distribution of flood length, they note that 24% of
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the drought tolerant (DT) maize varieties studied here protect against moderate mid-

season drought, but remain vulnerable to severe mid-season drought as well as early

and late season drought and the other biotic and abiotic stresses that can, in the

extreme, drop maize yields to zero.

The limited protection–effectively, single peril coverage–of stress tolerant varieties

reflects the simple fact that plant breeders face biological constraints that limit how

much and what types of stress these new varieties can withstand. In contrast, insur-

ance contracts can be flexibly engineered to cover extreme shocks that overwhelm the

stress tolerance that can be bred into seeds. The last decade has seen numerous ef-

forts to develop index insurance contracts that offer reliable protection to smallholder

farmers without the necessity of costly individual yield loss measurement and verifi-

cation. Similar to the Emerick et al. (2016) study, the impact evaluation literature

shows that index insurance can both protect farmers from the worst consequences of

drought and other shocks and can induce them to increase investment at both the

intensive and extensive margins.6 This work also reveals significant limitations to

index insurance. Unless carefully designed, index insurance is prone to failure. It also

tends to be expensive (often sold at prices that are more than 150% of the actuarially

fair price), and, consequently, smallholder farmers are often reluctant to purchase

it unless it is either heavily subsidized, or can be financed as part of a value chain

finance package.7

For this study, we bundled single peril, drought tolerant maize seeds with a “fail-

safe” index insurance contract that protects farmers against the severe loss events that

treatment households did not re-plant the flood tolerant variety in the second year of the evaluation
and that the primary reason was harvest failure due to flooding for longer than 14 days.

6A handful of studies have established that insurance coverage increases on-farm investment for a
variety of crops and across different countries, usually in the range of 15-30% compared to uninsured,
control households (see Cai, 2016, Elabed and Carter, 2018, Hill et al., 2019, Jensen et al., 2017,
Karlan et al., 2014, Mobarak and Rosenzweig, 2013, and, Stoeffler et al., 2021). In the wake of
shocks, index insurance has been shown to protect households, reducing reliance on costly coping
strategies (Janzen and Carter, 2018 and Jensen et al. 2017) and avoiding decapitalization of farm
activities (Bertram-Huemmer and Kraehnert, 2017; Hill et al., 2019; Stoeffler et al., 2021).

7Casaburi and Willis (2018), Elabed and Carter (2018) and Stoeffler et al. (2021) study instances
in which insurance has been successfully marketed through tightly integrated value chains for sugar
cane and cotton. Outside of value chains, Karlan et al. (2014) and McIntosh et al. (2020) find little
insurance take-up without insurance subsidies.
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are likely to overwhelm the protection provided by drought tolerant seeds. Limiting

the insurance coverage to those extreme, tail end events holds in check the cost of

insurance protection. Providing additional protection via the bundling of insurance

with improved, stress-tolerant seeds may be especially important to incentivize farm-

ers to adopt improved seeds in lieu of the local seed varieties retained from previous

harvests that most plant. Because of the significantly higher cost of improved seeds,

this transition from local to improved seeds exposes the farmer to greater financial

risk; the single peril protection of DT seeds alone may be insufficient to induce this

increased investment.8 To explore the efficacy of this bundle, we carried out a multi-

year randomized controlled trial that offered farmers the opportunity to purchase

drought tolerant (DT) maize varieties, either as seeds alone, or as seeds bundled with

an index insurance contract that protected farmers’ investment in the DT varieties.9

The RCT itself was spatially diversified (within and across countries) in order to in-

crease the likelihood of observing different types of shocks during the study period.

Nature cooperated with the study as 58% and 18% of the observations across the three

years of the study experienced mid-season drought events and more severe, covariate

yield shocks, respectively.

Several findings emerge from our analysis. First, the resilience of control house-

holds is significantly undermined by the two types of shocks we study. Mid-season

drought and more severe yield shocks reduce within-season maize yields by 25% and

50%, respectively. The effects of these shocks persist and prevent farmers in the con-

trol group from returning to pre-shock yield levels in the year following the shock. A

mid-season drought reduces average yields in the following year by roughly the same

magnitude as the within-season impact; while the delayed impact of a severe yield
8Most farmers in our sample do not purchase complementary inputs such as fertilizers or pesti-

cides. Seeds thus represent the primary on-farm investment. The transition from local to improved
varieties would require at least a five- to ten-fold increase in input expenditures per hectare planted
(from about 13 USD per-hectare when local seeds are used to 63 - 100 USD when improved seeds
are used).

9We chose not to offer an insurance-only arm for two reasons. First, the insurance provider
did not have a cost-effective mechanism to indemnify insured households. Second, and relatedly,
evidence cited above shows that take-up of index insurance among low income, small-holder farmers
who do not participate in a structured value chain, such as those in our study population, tends to
be very low.
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shock is roughly one-third of the within-season impact. Second, we find that DT va-

rieties provide significant protection against mid-season drought as they completely

mitigate both the within-season and lagged yield losses associated with mid-season

drought events. Third, the addition of index insurance significantly strengthens farm-

ers’ resilience, including food security in the face of yield shocks. Bundling index

insurance with the DT varieties raised yields in the year following a covariate yield

shock by 60%, more than offsetting the adverse contemporaneous impact of this se-

vere shock. Fourth, we provide evidence that this excess mitigation effect is driven by

treated farmers who experience the protection provided by DT seeds and insurance

subsequently intensified their investment in productive inputs. Finally, we find that

treated farmers who did not experience a shock were more likely to scale back their

investment in the following year.

The remainder of this paper is organized as follows. Section 2 provides an overview

of the two technologies that feature in this analysis, drought tolerant seeds and the

index insurance contract. Section 3 describes the research design created by the

randomized controlled trial and the vagaries of growing conditions across the study

areas. The section analyzes some baseline imbalance problems in detail and motivates

the paper’s reliance on both ANCOVA and difference-in-differences estimation meth-

ods. Section 4 presents the key econometric results, beginning with the analysis of

the impact of the experimental and natural treatments (lagged and contemporaneous

shocks) on maize yields. To help decipher the revealed pattern of excess yield loss mit-

igation, the section goes on to analyze the impact of the treatments and lagged shocks

on the allocation of resources to maize production (input expenditures and land). A

similar analysis is applied to household food insecurity. In Section 5, we discuss our

results from the perspective of learning and explore alternative explanations. Finally,

Section 6 concludes with reflections on the specific challenge of learning about risk

management technologies, which by definition only occasionally reveal their benefits

to farmers.
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2 The Risk Mitigation Technologies

The two risk mitigation technologies that lie at the heart of this study are DT maize

varieties and a complementary index insurance contract designed to protect farmer

investment in the event of severe yield loss. While several commercial partners have

bundled index insurance and seeds,10 Bulte et al. (2020) is the only study we know

that examines the impact of bundling seed with insurance. In contrast to the Bulte

et al. (2020) study, which finds that free insurance enhances the adoption of certified

seeds, this study offered a bundle of drought tolerant seeds and insurance that was

intended to leverage the risk management complementarities between the genetic and

financial technologies in a way that would result in a commercially viable product.

Mid-season drought stress disrupts pollination and grain formation, and thus rep-

resents a significant risk to maize producers. Paul (2021) uses farmer field trial

data from the International Maize and Wheat Improvement Center (CIMMYT) to

show that even moderate mid-season drought stress can decrease yields by 20% for

non-DT, improved maize varieties. To reduce this risk, plant breeders in the Drought-

Tolerant Maize for Africa (DTMA) program used conventional (non-GMO) breeding

techniques to select for varieties less susceptible to mid-season drought (CIMMYT,

2012). Using observational data and a variety of econometric strategies, Gebre et

al. (2021), Wossen et al. (2017) and Simtowe et al. (2019) find risk reduction effects

similar to Paul’s for farmers who use DT seeds in Tanzania, Nigeria and Uganda.

Additional detail on DT varieties is given in Appendix 1.

The second component of this study risk mitigation package is index insurance.

By basing payouts on an index that is correlated with farmers’ yield losses but can-

not be influenced by individual farmer behavior, index insurance avoids the pitfalls

of conventional indemnity insurance, including moral hazard, adverse selection and
10In 2010, the Syngenta Foundation for Sustainable Agriculture, in partnership with UAP Insur-

ance and Safaricom, launched a microinsurance program called Kilimo Salama, which offered farmers
the option to insure their seeds against drought. Also in Kenya, the multinational seed company
SeedCo offered their drought tolerant seed variety with a similar replacement guarantee. Farmers
who activated the SeedCo guarantee received a mobile money reimbursement when a rainfall index
indicated early season drought. While unstudied, the seeming success of these programs informed
our decision to bundle seed with insurance.
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costly loss verification.11 The contract designed for this study was intended to com-

plement the partial protection provided DT seeds and was based on two indices. The

first is an early-season rainfall deficit index based on estimated rainfall during the

40-day plant germination and establishment phase,12 with a payout being triggered if

there was less than 70-100 mm of rainfall during this period, with the specific level de-

pending on the insurance zone. The second is a multi-peril, satellite-based area-yield

index based on a calibrated model that used a combination of a satellite-measured

vegetative growth (Normalized Difference Vegetation Index, NDVI) and estimated

full-season rainfall to predict area yields.13 Payments were triggered by this index

when predicted area-yield dropped below 60% of the historical average.

The early-season rainfall deficit trigger was included in the contract in part to ease

communication to farmers about the risks, like early season drought, not covered by

DT seeds. The satellite-based area yield index was intended to be the workhorse for

the insurance contract, covering the array of risks not covered by the single peril DT

seeds.

Despite its advantages, many index insurance contracts have failed to reliably

detect and cover losses incurred by farmers, what has come to be known as the basis

risk problem.14 In an effort to further reduce basis risk, the contract developed for

this project included the conditional or “fail-safe” audit proposed by Flatnes and

Carter (2016). Under the audit clause of the contract, insured farmers were invited

to submit a complaint if the contract did not trigger, but they believed it should have.
11Hazell (1992) offers several striking examples of conventional loss-adjusted contracts where the

insurance provider cannot cost-effectively verify losses, with national insurance programs from the
1980s paying out 2-5 times the premiums collected.

12Rainfall was estimated using Climate Hazards Group InfraRed Precipitation with Station
(CHIRPS) data (Funk et al., 2015). A separate estimate was created for each household based
on its GPS location and its reported planting date.

13The model was calibrated to annual average zone-level yields reported by farmers. Given the lack
of preexisting data on farmer yields, the project solicited historical yield data going back up to 10
years from 1,852 farmers in Tanzania and 1,348 farmers in Mozambique. These data were aggregated
to a zone-year level, yielding a total of 223 zone-year combination in Tanzania and 90 zone-year
combinations in Mozambique. A variety of candidate remote sensing measures were explored, with
the combination rainfall and NDVI chosen as giving the best statistical yield prediction.

14For further discussion of the basis risk problem, see Clarke (2016), Carter et al. (2017) and Jensen
and Barrett (2017). Benami and Carter (2021) define and decompose basis risk into idiosyncratic
and design risk.
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If more than 30% of farmers registered a complaint, a crop-cut audit was conducted

using novel imaging software (Makanza et al., 2018), with replacement seeds issued

if average yield as estimated by the crop-cut was indeed below the trigger. The data

summarized in Figures 5 and 6 in Appendix 2 were used to evaluate the expected

additional payments that audits might trigger, and that additional cost was rolled

into the premium for the commercial insurance contract.15

For purposes of implementation, study villages (see Section 3) were divided into

insurance zones (35 in Tanzania and 13 in Mozambique), which were determined

based on size and agro-ecological features, and typically included 2-3 neighboring

study villages. To address the challenge of low demand for stand-alone index insur-

ance observed in many index insurance programs, we chose to bundle the insurance

with DT seed and did not offer a standalone insurance product (see footnote 10).

Households in the insurance treatment group were offered a bundle of DT seeds and

insurance. Insurance payouts took the form of replacement seeds delivered in the next

planting season.16 In principle, the multi-peril contract could have have been set to

cover the cost of other inputs or even the full value of the lost harvest. However, to

keep the cost of the insurance low, the project offered only this basic level of cover-

age. On average, the insurance increased the price of seed by 20%, reflecting both

the relatively high level of risk and the commercial loadings added to the actuarially

fair price of the insurance.
15The sense of the research team was that farmers were reluctant in general to report exceptions

to the satellite estimate, even though efforts were made to make reporting as simple as possible (e.g.,
in Mozambique, a toll-free SMS line was established that farmers could use to report exceptions to
the satellite readings). In the second year, government extension agents were asked to check the
satellite estimate. While several insurance payouts were triggered based on audits, additional work
is required to make the audit process work better.

16The total sum insured for a farmer planting maize at the recommended seeding rate, was thus
about 75-100 USD. While this sum is perhaps modest, many study farmers traditionally planted
only local seeds, meaning the shift to the improved DT varieties represented a large increase in their
agricultural investment at risk.
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3 Research Design

Learning about technologies that can only display their benefits during infrequent,

bad years is challenging for both farmers and researchers (Cai et al., 2020 and Lybbert

and Bell, 2010). To increase the probability of observing mid-season droughts and

other shocks that could be used to test the risk mitigation effects of the DT seeds

and the DT-II bundle, we designed a geographically diversified study that spanned

two countries and multiple regions within each country. We focussed on regions that

were likely to benefit from the DT technology in that maize was a dominant crop

and farmers were exposed to moderate to severe drought risk. We then utilized the

Princeton University African Drought and Flood Monitor to assess the correlation

in weather outcomes between regions, selecting regions that tended to be drought-

affected in different years.17 As shown in Section 3, when we pool the data across

countries and districts, this research strategy was successful in the sense that across

the study’s three years, we were able to observe mid-season droughts and severe yield

losses across both countries.

3.1 The Randomized Control Trial

The maps in Figure 1 display the randomization strategy that was implemented in

all study districts in both countries.18 After identifying a set of study communities in

each district in each country, communities were matched into triplets based on having
17In Tanzania, the provinces of Singida, Iramba, Kongwa, Kiteto, Morogoro and Mvomero were

identified as suitable for the project. In Mozambique, three districts in the provinces of Manica
(Machaze district, Tambara district) and Zambezia (Morrumbala district) were initially chosen.
Because of civil unrest, travel to Zambezia and Northern Manica became unsafe, and we had to
drop both Morrumbla and Tambara districts form the study, replacing htem with Nhamatanda
district in Sofala province.

18After the initial district selection, the research team visited each district and worked with ex-
tension agents, local farmers, and village leaders to understand the culture and practices of maize
production in the areas. Using maps of the areas and local knowledge, a set of feasible communities
was identified. For the purpose of this study, feasible meant that a community was located in a
maize growing area of the district, the community was accessible (though perhaps with difficulty)
even during the rainy season, and the community was as insulated as possible from other study com-
munities in the district in order to minimize the risk of informational spillovers between treatment
and control communities. The set of communities also had to be acceptable to the projects’ local
partners – particularly the seed companies and organizations involved in the marketing treatment.
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Figure 1: Geographic Diversification and Matched Triplet Randomization

(a) Mozambique (b) Tanzania

Base map and data are from OpenStreetMap and OpenStreetMap Foundation.

similar agro-ecological (e.g., being located in a river valley) and economic characteris-

tics (access to roads and proximity to larger urban centers). One community of each

matched triplet was then assigned to one of the three experimental groups: control,

DT seeds only or the DT-II bundle. Within each study community, a random sample

of 20 maize-growing households was selected from a community list.

In Mozambique, assignment was carried out randomly, with one member of each

triplet allocated to control and the two treatments. In Tanzania, various logisti-

cal constraints led to a more complex implementation process. In that country, we

initially decided to offer DT seeds and the DT-II bundle through village-based agricul-

tural input dealers (VBAs) established by an international NGO. While this strategy

was attractive to insurance and seed company partners (who lacked a presence in the

study areas for engaging directly with farmers), we discovered that NGO’s expansion

plan in the study area was less robust than expected, and that we would be unable to

randomize new communities between control and VBA-mediated treatment status.

Instead, for treatment communities we ultimately had to rely on a predetermined

set of communities where VBAs had been introduced in the year proceeding the be-

ginning of the study. While we cannot fully rule out that NGO may have selected

VBA communities based on characteristics unobservable to us that correlate with

10



productivity, the NGO assured us that they did not rely on any such selection crite-

ria (see Section 3.3 for more on these concerns). In order to identify suitable control

communities in Tanzania, we used matching methods based on soil quality,19 climate

conditions and market access to create triplets, each consisting of one non-VBA and

two VBA communities. Starting with a feasible non-VBA community (control), the

two best-matched VBA communities were selected, ensuring that the resulting triplet

was unique. With the triplets created, the two VBA communities were randomly

allocated across the DT seed and the bundled DT seed-insurance treatments.

Figure 2 displays the stages of the RCT as implemented in both countries. Prior

to the 2015/16 agricultural season, training sessions in all treatment communities

were organized in cooperation with CIMMYT, local seed and insurance company

partners and local government agricultural extension officers.20 Study households

were individually invited to the training sessions, and other community members

were also welcome to participate. Training sessions provided information on the DT

trait, as well as information on the recommended planting density and fertilization

for the different varieties. Study households were given a trial seed packet (1 kg

in Mozambique and 2 kg in Tanzania).21 Non-study households who attended the

training were given smaller (100-250 gram) packets. Communities were sufficiently

isolated to prevent DT seeds spreading into control areas.

In communities assigned to the bundled DT-II treatment, participants were also

given information on the insurance contract prior to the 2016-17 season. The infor-

mation covered the group nature of the payout decision, the possibility of positive and

negative basis risk events, and the nature, timing, and documentation requirements

of payouts. Seeds offered for sale in these villages came only bundled with the index
19The soil data was taken from the Africa Soils Information Service.
20In Tanzania, the project worked with three seed companies (Iffa Seed Company, Suba Agro and

Meru Agro) that produced hybrid DT varieties. Only one company was assigned to sell seeds in
each treatment village. In Mozambique, the project worked with Phoenix Seeds, which produces
DT open pollinated varieties (OPVs), and Klein Karoo, which produces hybrid DT varieties. Seeds
from both companies were offered for sale in all treatment villages. The price of the hybrid varieties
was roughly triple that of the OPV variety.

21At standard planting densities, the free packets would have allowed the farmer to plant 0.04 to
0.08 hectares. The average farmer planted a total of 2 hectares of maize at baseline.
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Figure 2: Timeline for RCT & Natural Experiment

insurance. The insurance, which was not subsidized, raised the price of the seeds by

approximately 20%.22 Insurance premiums collected from the sale of insured seeds

were paid directly by the seed companies to the insurance companies. In the case that

the insurance was triggered, the seed company partners would replace insured seed

(for planting in the next season), with the insurance company in turn compensating

the seed company for the value of the seeds provided.

As shown in Figure 2, the first survey was administered after the 2015/16 trial

seed packet year. Unfortunately, resource and time constraints did not allow us the

luxury of a pure baseline year followed by a pure learning year.23 We therefore treat

the learning or trial pack year as a quasi-baseline. We recognize that the seed packets

given to treatment farmers could slightly unbalance the sample across treatment and

control groups. We calculate that the amount of seed given away in trial packets

could have generated no more than a 12% yield differential between treatment and
22In Tanzania, the index insurance contract described above was underwritten and sold by UAP In-

surance Tanzania, whereas Hollard Moçambique Companhia de Seguros sold the product in Mozam-
bique. Both companies worked with SwissRe as a reinsurance partner.

23Based on their experience, the seed company partners indicated that uptake of a new seed would
be minimal until farmers had the opportunity to experiment at small scale and learn about the new
variety for one season.
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controls during the trial pack year.24

Following the quasi-baseline year and at the initiation of the 2016/17 (midline) and

2017/18 (endline) seasons, training sessions were again held in treatment communities

(see the Figure 2 timeline). While no further trial packets were distributed, seeds

were made available for purchase in the treatment villages. In the Tanzania sites,

administrative complications with the VBA program in 2016/17 prompted our seed

company partners to establish their own network of local sales agents as a preferred

distribution alternative for the remainder of the project.

Follow-up surveys were administered after the two treatment seasons, 2016/17

and 2017/18. In both countries, the research team trained local enumerators in the

use of tablets and participated in field testing the survey instrument prior to its

launch. The same survey instrument was used in both countries in order to facilitate

comparisons across the two countries, and contained modules on agricultural practices

and outcomes, household asset ownership, credit access, food security, household

expenditures, and attitudes toward risk.

3.2 Natural Weather Experiment

Like all research that hinges importantly on stochasticity that is outside the control

of researchers (see Rosenzweig and Udry, 2020), this RCT about the value of risk

mitigation was itself risky. While we could randomize the offer of DT seeds and

the DT-II bundle across villages and control other key dimensions of the design as

described in this section, the realization of the shocks that are central to our research

question was entirely out of our control. In what follows, we will focus on two kinds

of shocks. The first are the mid-season drought events that DT varieties were bred to

mitigate. We will say that a mid-season drought event occurs when cumulative rainfall

(as estimated by the CHIRPS data described in note 12) is less than 200 millimeters

during the time period 40 and 80 days after planting (200 mm is the amount of water
24The average farmer in our sample uses just over 25 kg of maize seed a year, mostly comprised of

low yielding local seeds. Assuming that (i) the 2 kg seed packet of the improved DT seeds replaced
2 kg of the local seeds; and, (ii) that the improved seeds yield 250% of the amount of the local seed,
then we would expect the seed packet to boost trial year yields of the control group by 12%.
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that conventional maize needs during the mid-season stage for healthy growth and

development). Each farmer reported their own maize planting date, and the drought

measure was calculated for each farmer using this reported planting date and their

GPS location.

The second kind of shock we study are yield losses that are sufficiently severe

that they would trigger an indemnity payment under the index insurance contract

described in Section 2. As mentioned in that section, yields estimated by the satellite

model to be 60% or less of the long term average for the insurance zone triggered

payment. In the discussions to follow, we will simply refer to such a triggering event

as a “yield shock,” keeping in mind that this term means a severe yield loss likely

caused by stresses beyond mid-season drought. Note that these shocks are determined

at the level of the insurance zone (roughly a 3 village area).

Table 2 reports the frequency with which nature delivered these shocks across the

different seasons of the study. The quasi-baseline season was disastrous across most

of the Mozambique study sites, with many farmers losing their entire crop. In the two

subsequent seasons, between 5 and 12% of farmers suffered severe yield losses. Mid-

season droughts afflicted 38% to 51% of farmers in these two seasons, respectively.

Figure 2 records the seasons and locations in which these shocks primarily occurred.

The bottom panel of Table 1 shows that this natural experiment resulted in balanced

exposure to shocks across the different treatment groups, with the exception that

the DT seed only treatment group was 6 percentage points more likely to experience

a mid-season drought than the control group. Given that we are able to control

for these events in the regression models to follow, we are not concerned by this

imbalance in weather outcomes, which is unlikely to be related to any other farm or

farmer characteristics, especially given the matched triplet randomization strategy

described above.

3.3 Experimental Balance

In order to gauge the balance of trial packet year characteristics across the different

RCT groups, we run the following regression for quasi-baseline characteristic c for
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household i in in randomization cluster s:

cis = αs + α1Sis + α2Iis + εis

where αs is a vector of randomization cluster or triad fixed effect, and Sis and Iis are,

respectively, binary indicators of treatment assignment to DT seed (whether insured

or not) and to the DT-II bundle treatment. The latter variable thus picks up any

additional imbalance associated with the insurance treatment above and beyond that

associated with the seed treatment. For the estimation, we clustered standard errors

at the village level. Only observations included in the final regression sample for the

analysis in Section 4 are included in this analysis.25

Table 1 displays the results from this balance analysis. Particularly noteworthy is

the baseline imbalance in yields between the control and the treatment groups, with

the treatment groups averaging a statistically significant 159 additional kilograms of

production per-hectare compared to the control group.26 This gap is slightly smaller

for households that also received the insurance treatment (14 kg/hectare), but this

difference between the two treatment groups is not statistically, or otherwise, signifi-

cant. This 145-159 kg yield gap is larger than what we would expect from the yield

packets alone (see footnote 24). We also see that treatment households appear to

be better off economically as judged by their food security and poverty probability

scores, although other wealth indicators (area planted) show no differences. Expen-

ditures on maize seeds (including the approximately $3 value of trial seed packets in

the quasi-baseline year), fertilizer and other inputs are only insignificantly larger in

the seed treatment groups.27

25We eliminated all observations that were missing any data needed for the later ANCOVA or
difference in differences regressions. The resulting data set is not a balanced panel in that in a
few cases, a household might be missing, say, midline data, perhaps because the household did not
cultivate maize in the midline year. The panel is also partially unbalanced because of attrition which
was approximately 4.5% between each survey round and is balanced across treatment assignment.

26Yields were winsorized at the 99th percentile. These winsorized yields are used here and through-
out the econometric analysis.

27A fixed set of local prices were used to value seed and other inputs that were purchased. Retained
seeds were valued at the average consumer price for maize. Local currency values were converted
to $US using PPP exchange rates. The expenditure aggregate is thus a fixed-price, quantity index.
To eliminate the undue influence of outliers, we transformed total input expenditures into a per-

15



Table 1: Regression Analysis of Baseline Balance by Experimental Treatment

Baseline Offered DT Seed, Sivt Offered Insurance, Iivt
Dependent Variable Control Mean Coef. (Std. Err.) Coeff. (Std. Err.)
Maize Cultivation
Maize Yield (kg/hectare, winsorized) 399 159 (40) -14 (39)
Seed Fertilizer Expend ($US PPP, winsorized) 39.9 1.5 (3.3) 1.6 (3)
Maize Area Planted (hectares) 2.1 -0.03 (0.1) -0.02 (0.1)

Demographics & Wealth
Education of Farmer (years) 2.3 0.10 (0.054) 0.06 (0.06)
Area Cultivated (hectares) 4.2 -0.03 (0.3) -0.5 (0.26)
Poverty Probability Score (%) 58.7 -4.6 (1.4) 0.9 (1.3)
Food Insecurity Score 25.0 -4.8 (1.4) 2.9 (1.58)

Drought & Yield Shocks
Mid-season Drought (%) 74.3 0.06 (0.03) 0.02 (0.03)
Yield Shock (%) 39.8 -0.02 (0.03) 0.03 (0.022)

Observations 1047 978 949

As with the regressions reported in Tables 3 and 4, these
regressions include cluster fixed effects and the additional control variables listed in those tables.

The source of this baseline yield imbalance can be traced to two of the six districts

within Tanzania (Singida and Iramba). The Mozambique 2015/16 crop year suffered

extreme drought, which would have been expected to suppress any trial packet effect

as many farmers in both treatment and control groups reported zero maize output

for that year. The imbalance in Tanzania in excess of what could be expected from

the trial seed packs could reflect a mix of differences in agricultural potential between

treatment and control areas, especially if the VBA program had been endogenously

placed in higher potential areas. It could also reflect the impact of the VBA program

itself, and/or differential baseline weather in the treatment versus control areas.28

To better understand the source of this imbalance, we utilized the same NDVI-

based biomass growth information used for the insurance yield index over the 2002-

2018 period to gauge the long-term agricultural potential of treatment and control

areas. In no case are the long-term average NDVI measures statistically different

between treatment and control areas.29 As mentioned earlier, treated households

hectare measure. The per-hectare measure was then winsorized at the the 99th percentile. The
winsorized per-hectare measures were then transformed back into total expenditures by multiplying
each observation by reported maize area.

28While in Mozambique matched treatment and control areas were always quite close to each other
geographically, in Tanzania greater variability in terrain as well presence of the pre-existing VBA
program sometimes meant that matched pairs were some distance apart, making it more likely that
weather differences could occur.

29Specifically, we measure cumulative NDVI over the maize growing season. Across all areas in
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do not devote more area to maize (or other crops), as might be expected if they

were located in higher potential areas. Next, we restricted our focus to treatment

areas30 and measured maize yields based on farmer recall for the decade preceding

the intervention. In the problematic Iramba and Singida districts, mean yields in

the quasi-baseline year were 117-121% of normal, suggesting that these two areas

experienced relatively favorable conditions. Other districts in Tanzania had close

to average yields during the quasi-baseline period. Finally, we examined the NDVI

measures for 2016 specifically. In the case of the Iramba district, the cumulative NDVI

measure was higher in treatment than in control areas (with the difference being

significant at the 11% level), suggesting that treatment areas may have experienced

relatively good weather in 2016. There is, however, no difference in NDVI between

treatment and control areas in Singida district, suggesting that perhaps the trial packs

and VBA interventions were driving the yield imbalance.

While this analysis is not entirely satisfying, it does suggest that there are unlikely

to be large differences in agricultural potential between treatment and control areas.

Much less clear is whether the imbalance observed in the 2016 quasi-baseline was the

result of random variation in growing conditions, or if it reflected an impact of the

trial packets and/or the VBA agents. Because the seed companies shifted to their

own in-house seed sales representatives after the quasi-baseline year due to concerns

with the viability of the FIPS VBAs, we consider it unlikely that the VBA program

per se gave treatment villages an advantage that increased over time. More likely, any

direct advantages of the VBA program that are evident in the baseline would have

dissipated over time. On the other hand, if the quasi-baseline yield imbalance reflects

the impact of endogenous placement of the VBA program in higher productivity

areas, then we would expect the yield difference to persist, but not grow, over time.

In the econometric analysis to follow, we will take a two-pronged approach, es-

timating both ANCOVA and Difference-in-Differences (DiD) models. To the extent

Tanzania, the mean NDVI measure is 67.8 for control and 66.0 for treatment areas (p-value for
difference is 0.49). For the Singida district the difference is 1.8 (favoring the control areas), whereas
in Iramba the difference in NDVI measures is 3.9, favoring the treatment areas (p-values for both
differences are about 0.30).

30Unfortunately, we do not have the same recall yield measures for control villages.
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that the yield imbalance in the quasi-baseline year was the short-lived result of either

the trial packs themselves, better weather in control areas or of the VBA sales agents,

then the DiD will over-correct and lead to conservative estimates of program impacts.

In this case, the ANCOVA results would be the preferred, lower variance estimator.

On the other hand, if the imbalance reflects a permanent and persistent feature of

the control areas, then the DiD estimates would be preferred as the ANCOVA impact

estimates would be upwardly biased. As we shall see, with one important exception,

the results are consistent across the two estimation approaches.

4 Regression Model and Results

In this section, we present the specifications we use to estimate the impact of access

to DT seeds and the DT-II bundle on various farm and household outcomes. As a

precursor, we first summarize in Table 2 dimensions in the data that are particularly

relevant to these specifications, including experimental compliance, shock exposure

and changes in key outcome indicators. Net compliance for both treatments hovered

around 50% at midline, but fell to 42% and 44% by endline for the DT and DT-II

treatments, respectively. Although the experimental treatments were implemented

uniformly, how farmers actually experienced these treatments likely varied accord-

ing to their exposure to shocks during the study, introducing a source of treatment

heterogeneity within treatment groups. At endline, 41%-50% of households had expe-

rienced a mid-season drought in the preceding year. Exposure to lagged yield shocks

at endline ranged between 6% and 12%. Experimentally treated households that were

also treated by nature with these shocks at midline had an opportunity to observe

the risk management technologies in action and learn about them. Foreshadowing

later discussion in Section 5, note that conditional on receiving a shock in the midline

year, endline compliance rates are higher by about 10 percentage points.

Table 2 also reports the fractions of households that experienced contemporaneous

mid-season drought and severe yield shocks. Nature in effect complied with the

study’s diversified strategy, generating ample variation to observe the efficacy of the

18



Table 2: Compliance and Key Outcome Variables by Experimental Treatment

Experimental Assignment

Control DT DT &
Seeds Insurance

Midline
Compliance & Shocks

Technology Adoption (%) 3.6 54.3 48.2
Mid-season Drought (%) 38.5 40.7 41.6
Yield Shock (%) 12.1 8.5 6.0
Lagged (baseline) Mid-drought (%) 74.5 77.6 80.4
Lagged (baseline)Yield Shock (%) 40.4 34.8 37.5

Outcome Variables
Maize Yield (kg/hectare) 535 776 756
Seed fertilizer Expend ($USPPP) 42.1 72.5 75.5
Maize Area Planted (hectares) 2.0 1.8 2.3
Food Insecurity Score 25.6 22.8 22.8

Midline Observations 996 917 902

Endline
Compliance & Shocks

Technology adoption (%) 5.3 49.5 41.9
Adoption Conditional on Lagged Mid-drought (%) 6.0 56.0 50.0
Adoption Conditional on Lagged Yield Shock (%) 4.2 54.8 48.9
Mid-season Drought (%) 51.5 51.2 48.7
Yield Shock (%) 4.9 10.3 3.8
Lagged (midline) Mid-drought (%) 41.2 50.2 48.5
Lagged (midline)Yield Shock (%) 12.3 8.0 6.1

Outcome Variables
Maize Yield (kg/hectare) 544 719 706
Seed fertilizer Expend ($USPPP) 38.1 93.4 77.3
Maize Area Planted (hectares) 2.0 2.1 2.1
Food Insecurity Score 10.3 8.3 8.8

Endline Observations 964 914 864
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DT seeds in farmers’ fields. Finally, the table also illustrates the mean levels of the

four key outcome variables that this section examines. Given the heterogeneity in

treatment generated by the variable exposure to natural shocks, the unconditional

means shown in the table are not necessarily that informative. In the econometric

analysis that follows, we will first explore the impact of the shocks on maize yields

and the ability of the two experimental treatments to mitigate their immediate and

lagged effects. We will then dig deeper and look at how shocks and treatments

interact to influence farmers’ allocation of resources (cash spent on maize inputs and

area devoted to maize production). Finally, the last part of this section explores the

impact of these same things on household food security, giving us a deeper look into

household coping and risk management strategies.

4.1 Yield Effects

Our primary ANCOVA ITT specification for maize yields at the farm level is as

follows:

(1)

yist = [β1dist + β2zist] +
[
β3dis(t−1) + β4

(
dis(t−1) × Eist

)
+ β5zis(t−1) + β6

(
zis(t−1) × Eist

)]
+

Sis

[
δ0 + δtEist + δ1dist + δ2 (dist × Eist) + δ3

(
dis(t−1) × Eist

)]
+

Iis
[
γ0 + γtEist + γ1

(
zis(t−1) × Eist

)]
+

[α0yis0 + αEEist + α′1xis0 + νs] + εit

where yist measures maize yields for household i in randomization triad s in year t, and

dist is a binary indicator for mid-season drought, zist is the same for severe yield shocks

and Eist is a time dummy variable taking on the value of 1 for the endline time period.

The first two terms in the first row of equation 1 capture the contemporaneous impact

of shocks, while the second set of terms in that row capture any lingering effects of

prior shocks (e.g., if prior year shocks decapitalize the farmer and reduce their ability

to invest in maize inputs). Because lagged shocks can only shape treatment effects at
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endline, we include additional interactions between lagged shocks and the indicator

for the endline period (Eist) rather than imposing the restriction that the lagged

effects are the same in both midline and endline years.

The terms in the second row capture the ITT effects of being offered DT seeds

in both normal years as well as in mitigating the impact of contemporaneous and

lagged mid-season drought shocks.31 Because compliance rates and adoption intensity

changed from midline to endline (Table 2), we allow the impact of the treatments to

differ by year. Differences in farmer response to treatment could be evident at both

extensive and intensive margins, an issue to which we return below.

The third row in equation 1 captures the additional effect of insurance on yields

in normal years as well its ability to mitigate any lingering effect of prior year yield

shocks. We would expect γ0 to be positive if insurance crowded in more intensive

input use than the DT seeds alone. That same term could be negative if the higher

cost of insured seeds led to a less intensive use of DT seeds by liquidity-constrained

farmers who were only offered the more expensive insured DT seeds. Finally, the

fourth row contains baseline yields, time effects and variables that were unbalanced

at baseline between treatment and control groups (see Table 1). The term νs is a

randomization cluster fixed effect.

Table 3 reports the estimates of this ANCOVA regression model and an analo-

gous difference in differences version.32 Figure 3 displays the 95% confidence interval

estimates for the ANCOVA results on shocks and the mitigating impacts of the risk

management treatments.33 We will focus primarily on the ANCOVA results and
31In principle, we do not expect the DT seeds by themselves to mitigate yield shocks once we

control for their impact on mid-season drought. In results available from the authors, we include
a full set of interactions between the DT seed treatment and severe yield shocks. With a single
exception, none of the many estimated coefficients are close to being statistically significant and
their inclusion has virtually no effect on the estimated coefficients of the other included variables.

32As can be gleaned from Table 3, we write the DiD model using treatment assisgnment to control
for baseline differences and the interaction between treatment assignment and a post-treatment
dummy variable to identify impacts.

33The mitigation effect of a treatment is defined as the difference in expected yields between a
treated and a non-treated household given a shock. Using the notation in equation 1, the mitigation
effects are defined as follows:

• Contemporaneous mitigation effects of DT on a drought shock at midline: δ1 + δ0

• Contemporaneous mitigation effects of DT on a drought shock at endline: δ1 + δ2 + δ0 + δt
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Table 3: Maize Yields

ANCOVA DiD
Explanatory Variables [for DiD] Coef. Std. Err. Coef. Std. Err.
Impact of Shocks
Mid-season Drought, dist -134.0 35.0 -78.6 32.0
Yield Shock, zist -281.2 74.1 -183.5 46.4
Lagged Mid-season Drought, dis(t−1) -155.6 40.3 -159.8 41.0
dis(t−1)× Endline, Eist 48.5 77.1 -75.0 78.8
Lagged Yield Shock, zis(t−1) -132.6 45.1 -55.5 34.3
zis(t−1) × Eist 38.0 117.2 -53.4 101.5

Mitigation Impacts of DT Seed Treatment, Sit

Sis [Sis × post] 77.0 40.4 33.3 64.9
Sis × Eist -97.5 54.0 -137.3 55.8
Sis × dist [Sis × dist × postt] 181.7 56.8 93.1 62.4
Sis × dist × Eist -46.9 62.3 -27.0 64.1
Sis × dis(t−1) × Eist 162.0 71.2 227.2 75.8

Mitigation Impacts of Insurance Treatment, Iit
Iis [Iis × postt] -13.1 44.7 -23.9 70.0
Iis × Eist -51.4 64.8 -37.8 65.2
Iis × zis(t−1) × Eist 417.7 94.8 358.2 115.3

Control for Baseline Differences
Sis – – 121.1 47.8
Iist – – 6.9 51.5

Intercepts & Control Variables
Baseline Yields 0.22 0.02 – –
Midline time effect (postt) – – 90.5 48.6
Endline time effect, Eist -108.3 53.5 64.8 47.8
Cluster fixed effects Included Included
Other controls Included Included
Number of Observations 5568 8542

Other controls: Household Head Age and Education, Poverty Prob. & Intercropping
Standard errors clustered at the village level
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Figure 3: Yield Shocks and Mitigation Impacts (ANCOVA Estimates)

discuss DiD results where they tell a different story.

The coefficients in the top portion of Table 3 display the impact of drought and

yield shocks on farmers, unmitigated by DT seeds or insurance. Both types of shocks

have substantial impacts on maize yields, contemporaneously and in future years.

Yields for the control group average around 550 kg/hectare, implying that the con-

temporaneous impact of drought and yield shocks amount to yield losses of 25% and

50%, respectively. As is clearly visible in the table and figure, both kinds of shocks

have lagged impacts on future yields. The one-year lagged impact of yield shocks is

between 33% and 46% the level of the contemporaneous impact, whereas the point

estimate of the lagged impact of drought shocks indicate continuing strong, negative

impacts.34 The lingering yield effects indicate that absent risk management tools,

• Mitigation effect of DT on lagged drought at endline: δ3 + δ0 + δt

• Mitigation effect of insurance on lagged yield shock at endline: γ1 + δ0 + δt + γ0 + γt

34The magnitude of the lagged effect of drought shocks appear surprisingly large, although the
interval estimates contain many values that are more in line with the expected range.
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maize farmers are not resilient and that their yields fail to return to pre-shock yield

levels, even a year after the shock.

The second block of coefficients in Table 3 combine to identify the mitigating effect

of the DT seed technology (see footnote 33). As can be seen in Figure 3, the coeffi-

cients on the seed treatment indicate that the DT technology effectively mitigates the

yield loss otherwise brought on by a mid-season drought.35 The estimated mitigation

effects are modestly smaller for the endline year, but still quite substantial relative

to the impact of the shock. We also see that the DT seed treatment eliminates the

lingering effects of drought in future years, as would be expected given that the seeds

mitigate the initial impact of a drought shock.

The third block of Table 3 allows us to identify the additional impact of the insur-

ance treatment on maize yields. The estimates indicate that the insurance treatment

has a negative but statistically insignificant effect on contemporaneous yields, but

mitigates the lingering effects of lagged yield shocks by a substantial and statistically

significant 333 kg/ha. This point estimate is three times larger than the estimated

impact of lagged yield shocks. For now, we refer to this as “excess mitigation.” We

explore possible mechanisms responsible for this empirical pattern in Section 5 below.

Finally, the seed treatment variable (Sis) by itself identifies the normal year (no

shocks) effects of the DT seed treatment. Under the ANCOVA specification, this

impact is a marginally significant 77 kg/ha yield bump (about a 15% yield increase).

This yield bump is in line with the findings of Paul (2021) discussed in Section 2 above,

but well-below expectation from seed breeders’ experiment station trials. Indeed,

that normal year yield bump disappears in endline as shown by the coefficient of

the interaction term between treatment and the endline dummy variable. The next

section discusses changes in input use at the extensive and intensive margins to help

understand this endline difference.

As discussed in Section 3.3, quasi-baseline yields are unbalanced between treat-

ment and control groups. While there is some evidence that this may simply be the
35Note that nature’s treatment (weather shocks) have full compliance whereas compliance for our

marketing treatments is roughly 50%. The mitigation effects presented here are intent to treat and
thus understate the mitigation effect on adopters.
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result of bad luck rather than systematic differences, we cannot rule out systematic

differences between treatment and control groups. The DiD estimates in Table 3

are arguably preferable given this uncertainty. The primary difference between the

DiD and ANCOVA estimates is that the former reveal smaller impacts of the DT seed

treatment. Mechanically, this is not surprising given that the DiD estimation requires

impacts above and beyond the baseline imbalance in order to register an impact (note

that the estimated coefficient of the seed treatment in baseline is 121 kg/ha). As can

be seen in the table, the DiD results cast doubt on whether or not the DT seeds have

a normal-year yield effect (the point estimate drops from 77 kg/ha to a statistically

insignificant 33 kg/ha). The estimated contemporaneous drought mitigation effects

of the DT seed treatment also diminish in magnitude and lose statistical significance.

Interestingly, the DiD estimates continue to indicate that the DT seeds mitigate the

lagged effects of mid-season droughts. The other results, including the impact of

shocks and the mitigation effects of the insurance treatment are largely unaffected by

the shift to the DiD estimation method.

4.2 Resource Allocation Effects: Inputs and Land

In an effort to further unpack the impacts of the seed and insurance treatments,

this section explores the impacts of these treatments on households’ ex ante resource

allocation decisions, namely their investment in maize inputs (seeds and fertilizers)

and area cultivated in maize. Note that these are decisions taken prior to current

year’s shock and thus cannot be influenced by contemporaneous shocks that occurred

during the growing season. We thus adapt regression model 1 and estimate the

following ANCOVA ITT specification:

(2)

rist =
[
θ1dis(t−1) + θ2

(
dis(t−1) × Eist

)
+ θ3zis(t−1) + θ4

(
zis(t−1) × Eist

)]
+

Sis

[
λ0 + λtEist + λ1

(
dis(t−1) × Eist

)]
+

Iis
[
ρ0 + ρtEist + ρ2

(
zis(t−1) × Eist

)]
+

[τ0ris0 + τtEist + τ ′1xis0 + νs] + εit
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Table 4: Maize Input Expenditures & Area Cultivated

Maize Input Expenditures Maize Area
Explanatory Variables Coef. Std. Err. Coef. Std. Err.
Impact of Shocks
Lagged Mid-season Drought, dis(t−1) -2.2 9.5 0.0 0.1
dis(t−1)× Endline, Eist -36.7 13.3 -0.12 0.15
Lagged Yield Shock, zis(t−1) 9.2 10.9 -0.07 0.17
zis(t−1) × Eist -63.8 38.0 -0.56 0.32

Mitigation Impacts of DT Seed Treatment, Sis

Sis 23.9 7.3 -0.21 0.12
Sis × Eist -11.7 11.0 0.34 0.17
Sis × dis(t−1) × Eist 78.2 18.9 -0.07 0.17

Mitigation Impacts of Insurance Treatment, Iis
Iis 1.6 6.9 0.55 0.16
Iis × Eist -28.1 18.6 -0.62 0.20
Iis × zis(t−1) × Eist 146.3 78.4 1.47 0.46

Intercepts & Control Variables
Baseline Dependent Variable 0.42 0.14 0.42 0.10
Eist 19.4 9.1 0.09 0.12
Cluster fixed effects Included Included
Other controls Included Included
Number of Observations 5568 5568

Other controls: Household Head Age and Education, Predicted Poverty Prob. & and Intercropping Indicator
Standard errors clustered at the village levels.

The resource allocation outcome variable rist will either be total (not per-hectare)

expenditures on maize inputs (measured in $US PPP; see footnote 27) or hectares

planted to maize. Note that the total expenditure variable will reflect changes at

both the intensive and extensive margins of cultivation. The explanatory variables

are a subset of those employed in the yield regression 1 and include only lagged shock

terms that can affect current year resource allocation decisions. DiD estimates are

shown in Appendix Table A1.

Table 4 displays the results from specification 2.36 Consistent with the impact of

lagged shocks on yields discussed in Section 4.1, Table 4 and Figure 4 show that lagged
36We focus only on the ANCOVA results as expenditure and area cultivated variables were well-

balanced at baseline. Appendix Table A1 reports the results from running a difference-in-differences
specification on equation (2). As can be seen, the results are extremely similar to the ANCOVA
results.
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drought and severe, covariate yield shocks dampen the allocation of inputs to maize,

especially in the endline period.37 Mitigation effects, which can only be measured at

endline, show that both the DT seed and the insurance treatment exhibit the same

excess mitigation pattern noted above.38 Midline drought shocks are estimated to

reduce input expenditures by $38, whereas the DT treatment following a midline

yield shock boosts expenditures by more than double that amount ($90). Similar

excess mitigation is revealed with yield shocks and exposure to insurance: Midline

yield shocks reduce endline expenditures by an estimated $54, whereas the insurance

treatment following that shock boosts spending by $132. Because the measure is total

expenditures on maize seeds and fertilizer, it is possible that this increase in spending

could reflect changes at the intensive margin (inputs per-hectare) or at the extensive

margin (area planted).

Further clues into this pattern can be gleaned by looking at the coefficients on

the treatments in the endline period (Table 4). In the midline period, households

receiving the DT treatment boosted expenditures by $24, whereas those receiving the

combined seed-insurance treatment increases input spending by almost an identical

amount ($26). However, farmers who did not experience midline shocks are estimated

to retreat from the novel risk management technologies and reduce their expenditures.

In contrast, households that experienced shocks in the midline substantially boosted

their expenditures on seeds and fertilizers.

The results on area planted to maize parallel these findings on input spending.

While drought shocks seem to have little impact on area planted to maize, severe,

covariate yield shocks in the midline are estimated to have reduced maize cultivation

by 0.63 hectares, a drop of just over 25% given that control group farmers on average

plant 2 hectares of maize. Severe yield shocks not only reduce future yield as discussed
37Baseline shocks, which occurred primarily in Mozambique, were so severe that many farmers

produced nothing, forcing many to enter the market the following season to purchase seeds.
38The mitigation effects of the treatment are defined analogously to those describe in footnote 33.

Using the notation in equation 2, the mitigation effects are:

• Mitigation effect of DT on lagged drought at endline: λ1 + λ0 + λt

• Mitigation effect of insurance on lagged yield shock at endline: ρ2 + λ0 + λt + ρ0 + ρt
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Figure 4: Shocks and Resource Allocation (ANCOVA Estimates)

above, they also reduce area planted. The insurance treatment has an estimated

mitigation effect of 1.41 hectares, more than offsetting the decrease in area. This

additional mitigation implies that following a shock and demonstration of the benefits

of insurance, farmers boosted maize cultivation by about 35%. While large, this

increase is in line with the literature on the impact of insurance on ex ante investment

behavior (see footnote 6 above). However, at endline, farmers who did not experience

midline yield shocks dial back the area expansion, whereas those who did experience

shocks continue with expanded maize area.

4.3 Food Insecurity

To test the effect of the risk management technologies on household welfare, we exam-

ine their impact on food consumption of households using the continuous Household

Food Insecurity Access Scale (HFIAS) measure.39 Because of the reference periods
39To construct the continuous HFIAS, households were asked about the frequency and severity

of food insecurity coping strategies that they employed during a typical week during the hungry
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used in the survey (see Figure 2), food insecurity information solicited in the midline

(endline) refers to consumption that was potentially driven by yield shocks in the

baseline (midline) production period. To explore the impact of shocks on food inse-

curity and the efficacy of insurance and DT seeds, we thus employ regression model 2

as it explores the connection between currently reported data on lagged yield shocks.

Table 5 again presents results from both an ANCOVA specification and a DiD

specification. As Table 1 reveals, baseline food insecurity was higher in control than

in treatment areas, making the DiD estimates the more conservative choice. There

is little evidence that mid-season drought shocks affect food security. Given earlier

estimates that mid-season droughts reduce yields by some 25%, and that these yield

reductions spillover into reduced investment in maize the following season, the lack of

an impact on food insecurity is consistent with a model of consumption smoothing in

which households hit by mid-season drought managed to protect their consumption

levels after the drought and spread the costs into future years.

In contrast, severe covariate yield shocks increase food insecurity, at least for

shocks that took place during the midline year and are reflected in the endline data.

These larger shocks seem to overwhelm household’s ability to smooth consumption.

The pattern of larger effects visible in the endline year is consistent with the pattern

on input spending in which we see that it was midline shocks that had the largest

effect on next season’s spending on maize input. Calculations akin to those that

underlie Figure 4 show that midline yield shocks increased food insecurity by 5.78

points (95% interval estimate is 0.9-10.7), whereas the insurance treatment mitigation

effect is -7.98 (-15.4 - -0.6). In other words, insurance seems to almost exactly offset

the negative impact of yield shocks of consumption without inducing the additional

mitigation seen in the case of inputs and yields.

season. The index itself is defined as 1*(# days less preferred foods) + 2*(# days limit variety)
+3*(# days reduce meals for children + # days reduce meals for women + # days reduce meals for
men) + 4*(# days no food in house + # days no food for 24 hours). The measure runs from 0 (no
food insecurity) to a maximum value of 146 (see Coates et al. 2007 for details).
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Table 5: Food Insecurity

ANCOVA DiD
Explanatory Variables Coef Std Err Coef. Std. Err.
Impact of Shocks

Lagged Mid-season Drought, dis(t−1) -0.17 1.82 0.87 1.36
dis(t−1)× Endline, Eist 0.88 2.23 2.31 2.11
Lagged Yield Shock, zis(t−1) -0.04 1.94 -3.26 1.31
zis(t−1) × Eist 5.82 3.22 8.16 2.05

Mitigation DT Seed Treatment, Sis

Sis × Postist -1.81 1.74 2.19 2.66
Sis × Eist -0.39 2.16 0.17 2.11
Sis × dis(t−1) × Eist 1.98 1.57 0.80 1.59

Mitigation Impacts of Insurance Treatment, Iis
Iis × Post -0.13 1.71 -2.69 2.65
Iis × Eist 1.45 2.13 1.33 2.13
Iis × zis(t−1) × Eist -7.10 3.77 -6.95 2.71

Control for Baseline Differences
Sis -4.04 1.67
Iis 2.83 1.70

Intercepts & Control Variables
Baseline Dependent Variable 0.10 0.01
Mid-line Time Effect 1.03 1.93
End-line Time Effect,Eist -16.4 1.92 -16.9 1.94
Cluster fixed effects Included
Other controls Included
Number of Observations 5568 8542

Other controls: Household Head Age and Education, Predicted Poverty Prob. & and Intercropping Indicator
Standard errors clustered at the village levels.
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5 Excess Mitigation and Resilience Plus

Section 4.2 shows that treated farmers who experienced shocks and therefore wit-

nessed the two risk reduction technologies in action subsequently deepened their in-

vestment in them, while other treated farmers began turning away from them. This is

evident in differential “excess mitigation” among treated farmers who, after a midline

shock, increase their maize yield, input use and area planted beyond pre-shock levels.

It is further evident in differential endline compliance visible in Table 2. Similar to

results from an insurance program in China (Cai et al., 2020), endline compliance

with treatment assignment was about 10 percentage points higher for treated farmers

that experience mid-season droughts and severe yield shocks, a differential largely

driven by the increasing non-compliance by farmers who did not experience shocks.

A plausible interpretation of these results is that farmers used the realization of

shocks to learn about the key mitigation parameters in equation 1, δ1 and γ1. If

farmers began with the sort of technology skepticism exhibited by the Mozambican

farmers studied by Carter et al. (2021), experiencing first-hand protection in the wake

of shocks would naturally lead them to update their perception of these parameters.

Thus, what we observe empirically as excess mitigation in the results above could

reflect farmers learning about these new risk mitigating technologies and then, with

new-found confidence, increasing on-farm investments. In this sense, excess mitiga-

tion may be a manifestation of what some authors label as “positive moral hazard,”

meaning that risk reduction induces further investment and risk-taking (Ikegami et

al., 2019). Alternatively, if resilience is the ability of households to recover from a

shock and return to pre-shock levels of production and well-being, such an expla-

nation for excess mitigation might be labelled “resilience-plus,” as it seems to imply

that once they learn that the technologies generate resilience, farmers further intensify

investments and reap a productivity boost as a result.

We cannot, however, entirely rule out other explanations to learning. One alter-

native explanation is that the shock realizations made information on shocks more

salient or “available” (to use the term of Kahneman, 2011), leading them to increase
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their subjective probabilities that shocks occur. While this availability or salience

argument is most typically applied to low frequency natural disasters (see the Gal-

lagher (2014) analysis of the purchase of flood insurance), we can test for salience

effects for the relatively high frequency shocks relevant to our study. Specifically, we

can test if a shock in the quasi-baseline year encouraged mid-line adoption of the

drought tolerant seeds and insurance technologies by modifying regression model 2 to

see if treatment group farmers in midline purchased more inputs or cultivated more

area in response to baseline (pre-treatment) shocks.

In Appendix Table A2, we show that inclusion of these terms has no explanatory

power, suggesting that risk salience was not operative in explaining midline resource

allocation patterns. This finding, which mirrors those in Cai et al. (2020), cannot

fully rule out salience effects in the endline since farmers in the mid-line were likely

more liquidity constrained than endline farmers and perhaps unable to act upon their

updated perceptions of the probability of shocks. Nonetheless, given that mid-season

droughts occur once every 2-3 years, and that severe yield shocks are 1-in 5-year

events (as opposed to the 1-in-50-year flood events studied by Gallagher (2014)), it

seems unlikely that the finding of excess mitigation is explained by an availability

bias or salience effect. Even if learning about the key parameters δ1 and γ1 explains

the estimated excess mitigation, we might still wonder if this learning is durable, or

if decays over time without frequent reenforcement. Unfortunately, the duration of

this study does not permit an answer to this question.

As another alternative explanation for the excess mitigation we observe, one spe-

cific feature of the insurance we bundled with DT seeds may have amplified farmers’

excess mitigation response. Specifically, in the wake of a triggering event the seed-

insurance bundle delivered free replacement seed to farmers prior to planting in the

next maize season. In contrast to cash payouts made at harvest time, this delivery

mechanism may have solved a commitment problem for farmers and thereby increased

the investment of (timely) insurance proceeds into productive inputs (Duflo et al.,

2011). Such a payout timing effect is distinct from resilience plus as defined above.

While our study is unable to test whether at-harvest cash payouts would have dimin-
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ished the extent of excess mitigation, we can conclude with confidence that payout

timing does not entirely explain the excess mitigation pattern we observe. Specifi-

cally, farmers with access only to DT seeds, which effectively payout their biological

indemnities at harvest, show nearly the same degree of excess mitigation with input

expenditures as farmers in the insurance treatment.

Our multi-year, spatially-diversified experimental design generates a host of in-

sights related to experience and learning in the context of risk mitigating technologies

with stochastic benefits. At least part of the excess mitigation we see in our results

seems to emerge from farmers learning and responding to greater protection with

increase investment. In this paper, we see empirical glimmers of this resilience-plus

and hints of the learning dynamics on which it is based. Both deserve deeper and

dedicated research.

6 Conclusion

This study reinforces the growing body of evidence that documents how uninsured

risk can expose individuals and households to shocks with persistent effects that can

reverberate for years after the shock has passed. We find that production shocks that

occurred across our multi-year, multi-country study areas reduced both the current

and future well-being of control households. In coping with losses that reduced their

primary income source by 25% to 50%, these households reduced future spending

on agricultural inputs and, in the case of severe yield shocks, experienced significant

increases in hunger as well.

Against this dreary backdrop, our results provide hope that thoughtfully-designed

and appropriate risk management tools can reduce the risk burden in synergistic

ways. Specifically, our results suggest that a genetic technology (drought-tolerant

maize seeds) bundled with a financial technology (fail-safe index insurance) effec-

tively mitigated both the immediate and longer term consequences of the shocks they

were designed to offset.40 Strikingly, after farmers experienced the benefits of these
40Despite some imbalances created by imperfections in the study’s randomization scenario, the
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technologies in the wake of what could have been a painful welfare shock, they in-

tensified their investment, leading to further gains, exhibiting what might be termed

resilience-plus. That is, not only did the risk management technology mitigate the

impact of the shocks, but farmers’ experiential learning gave them the confidence to

subsequently intensify their investments.

Unfortunately, experiential learning cuts both ways. Farmers who did not experi-

ence the efficacy of the risk management technologies backed away from using them in

the following season. This finding parallels results in Cai et al. (2020), where experi-

ential learning about index insurance was the sine qua non for its continued purchase,

and Emerick et al. (2016), which found farmers who did not experience floods backed

off the purchase of flood tolerant rice seeds, but those who did, intensified their use of

the seeds. These findings about the adoption fragility of technologies that offer only

occasional, or stochastic, benefits stands in marked contrast to the finding reported in

Carter et al. (2021) that a once off subsidy for improved seeds and fertilizer sparked a

rapid and continued uptake of that technology which spread across the communities

of those who received the subsidies. Subsidy schemes or other tools to promote the

sustained adoption of technologies that offer infrequent, stochastic benefits have yet

to be developed.

Stepping back, this study illustrates the potential of risk management technolo-

gies designed to create resilience and improved standards of living in smallholder

farmer communities. The distinct complementarities between genetic and financial

technologies provide a compelling logic for bundling the two, and the results of this

analysis provide evidence that such a bundle offers a new generation of cost-effective

risk management products that target those who now suffer from frequent uninsured

shocks and the persistent welfare penalties they can trigger. This study’s evidence of

resilience-plus effects encouragingly suggests it may be possible to replace the weighty

dynamic burden of risk with productivity- and welfare-enhancing risk management

tools.

primary results concerning mitigation of shocks survives a statistically more conservative difference-
in-differences estimation method. Unclear is whether drought tolerant seeds offer a yield benefit in
years with normal weather patterns.
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Appendix 1: Drought Tolerant Maize Varieties

The development of improved stress tolerant crops (e.g., flood tolerant rice and

drought tolerant maize) has been a major focus of international organizations seeking

to increase yields and decrease agricultural risk around the world. As part of the

Drought-Tolerant Maize for Africa (DTMA) program, the International Maize and

Wheat Improvement Center (CIMMYT) developed over 100 drought tolerant maize

varieties (CIMMYT, 2012). To create these improved varieties, breeders selected for

synchronized maize plant silking and tasseling, thereby reducing the problem of mid-

season drought stress disrupting pollination and grain formation. Genetic selection

and breeding took place through experiment station trials which were conducted dur-

ing dry seasons of the year using irrigation. Withholding irrigation water allowed

breeders to simulate real world, mid-season drought stress.

To isolate varieties able to maintain productivity in the presence of mid-season

drought, breeders induced mid-season drought stress by limiting irrigation imme-

diately before and during the pollination period (Zaman-Allah et al. (2016)) while

maintaining optimal irrigation levels during all other phases of plant growth. In

these managed drought trials, the DT varieties exhibited up to a 137% yield advan-

tage relative to comparable non-DT, improved varieties (Fisher et al. (2015)). Under

non-drought conditions, DT varieties maintained a more modest 10% yield advantage

over the non-DT comparison varieties (Rovere et al. (2014)).

To further test the value of the DT varieties, CIMMYT implemented farmer field

trials in East, West and Southern Africa to see if the benefits displayed by DT varieties

under highly controlled experiment station conditions carried over to farmers’ fields

and uncontrolled weather conditions. Farmers participating in the field trials were

typically commercial farmers who used agronomist-recommended levels of inputs, like

fertilizer. These farmers then ran comparison tests in their own fields of DT against

non-DT, improved varieties. In a recent analysis that combined the field trial data
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with satellite-based estimates of rainfall patterns in the test area, Paul (2021) finds

that on average, DT varieties boost yields by 7% under normal rainfall conditions

and by 15% under moderate, mid-season drought pressure. This first figure is similar

to the experiment station findings, but the latter is much more modest, perhaps

reflecting the fact that nature rarely deals up a mid-season drought in isolation from

other problems.41 The field trials do nonetheless signal that the varieties produced

and released42 by the DTMA breeding program offer farmers protection against the

specific peril of mid-season drought.

While these results are encouraging, whether or not the DT protection observed

in the controlled conditions of experiment station trials and on the uncontrolled field

trials with commercial farmers translates into protection for Africa’s many small-

scale, semi-subsistence farmers, who use little or no complementary inputs, remains

an open question. Learning how much of this DT yield protection transfers from

these trials to the less favorable conditions that prevail throughout the agricultural

sector throughout Sub Saharan Africa is important. Filling this knowledge gap is one

aim of our analysis.

Appendix 2: Fail-safe Index Insurance for Drought

Tolerant Maize

As discussed in Section 2, the basis risk problem is the Achilles heal of index insurance.

When basis risk is high, index insurance contracts are essentially lottery tickets that

provide little or no protection against the risks the insurance is intended to cover.

Making matters worse, the payment of the insurance premium adds to losses in an
41Paul (2021) summarizes other studies that have examined this same field trial data. While these

studies vary widely in terms of whether and how they control for weather conditions, they generally
point to yield gains on farmer fields that are substantially more modest than the experiment station
results. Using conditional quantile estimation, Paul also shows that the impacts are similar in
percentage terms for lower producing observations found in the lower quantiles of the conditional
yield distribution.

42CIMMYT provided the starting or foundation seed stock to local companies across the continent.
The companies then multiply the starting stock on their own farms, and then package, seek regulatory
certification, and market the seeds under their own brands.
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uncovered year, leaving vulnerable populations worse off with insurance than they

would be without insurance.

While basis risk can never be completely eliminated (see the risk decomposition in

Benami and Carter, 2021, estimating and minimizing the basis risk associated with

candidate indices is a critical step in the design of a high quality index insurance

contract. This estimation can be a difficult and expensive exercise, however, because

the requisite farmer or field-level yield data with sufficient cross-sectional and time

series dimensions are rare, especially in Sub Saharan Africa. In order to address

this challenge, we asked farmers in our sample to recall maize yields for the 10 years

prior to the baseline survey. While farmer self-reported yield recall data is unreliable

(Lobell et al. (2020)), averaging across all farmers in an insurance area eliminates

some of the noise and allowed us to estimate the level of basis risk associated with a

number of alternative, satellite-based indices.

Figure 5 uses the recall data to backcast the performance of the two indices in

Mozambique (Figure 6 displays the analogue graph for Tanzania). Each marker on

the graph represents actual zone-year average yields, as reported by farmers, plotted

against the early-season rainfall index (x -axis) and the end-of-season yield index (y-

axis). Trigger levels (the index value below which the contradct issues a payment) for

the two insurance indices are superimposed as straight lines. Negative basis risk events

(when farmers experienced insurable losses but would not have been compensated by

the contract) are signaled by (red) triangles in the northeast quadrant of the space.

Payouts would have been triggered in any of the other 3 quadrants. The contract

classifies almost all good years (actual zone-year yields greater than 80% of normal)

correctly, with the contract triggering a payout in only 2 zone-years with good yields,

both of which are in Tanzania. Moreover, the model does a good job classifying bad

years (actual zone-year yields lower than 60% of normal) in Mozambique, with only 3

out of 14 bad years being misclassified. However, in the Figure 6 graph for Tanzania,

only 15 out of 35 bad years would have triggered a payout. This 57% failure rate

of the core satellite-based index highlights the continuing imperfection of even this

multi-index insurance contract.
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Figure 5: The Accuracy of the Fail-safe Index Insurance Contracts

Figure 6: Tanzania
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Appendix 3: Tables and Figures

Table A1: DiD Estimates for Spending, Area and Food Security

Maize Input Expenditures Maize Area
Explanatory Variables Coef. Std. Err. Coef. Std. Err.
Impact of Shocks
Lagged Mid-season Drought, dis(t−1) 12.5 4.4 0.02 0.08
dis(t−1)× Endline, Eist -36.8 10.0 0.02 0.16
Lagged Yield Shock, zis(t−1) -20.4 5.6 -0.22 0.09
zis(t−1) × Eist -17.7 19.2 -0.43 0.28

Mitigation DT Seed Treatment, Sist

Sist × Postist 24.8 7.2 -0.09 0.11
Sist × Eist -10.0 10.9 0.36 0.17
Sist × dis(t−1) × Eist 76.2 18.0 -0.14 0.19

Mitigation Impacts of Insurance Treatment, Iist
Iist × Post 0.9 8.4 0.52 0.19
Iist × Eist -27.3 18.4 -0.64 0.22
Iist × dis(t−1) × Eist 142.3 83.3 2.11 0.71

Control for Baseline Differences
Sist -0.9 5.1 -0.08 0.12
Iist 1.8 5.2 -0.01 0.13

Intercepts & Control Variables
Mid-line Time Effect 6.2 4.1 -0.12 0.08
End-line Time Effect,Eist 16.9 6.5 -0.14 0.10
Cluster fixed effects Included Included
Other controls Included Included
Number of Observations 8542 8542

Other controls: Household head age and education; Predicted poverty probability;
and Intercropping Indicator. Standard errors clustered at the village levels
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Table A2: Testing for Risk Salience Effects of Shocks on Maize Input Expenditures

Maize Input Expenditures
Explanatory Variables Coef. Std. Err.
Impact of Shocks
Lagged Mid-season Drought, dis(t−1) -3.4 13.1
dis(t−1)× Endline, Eist -35.7 16.1
Lagged Yield Shock, zis(t−1) 19.0 12.2
zis(t−1) × Eist -73.8 39.4

Risk Salience Effects
Sist × dis(t−1) 0.583 13.7
Iist × zis(t−1) -29.8 11.7

Mitigation Impacts of DT Seed Treatment, Sist

Sist 23.9 12.0
Sist × Eist -12.16 15.5
Sist × dis(t−1) × Eist 78.1 22.5

Mitigation Impacts of Insurance Treatment, Iist
Iist 12.1 10.1
Iist × Eist -39.1 20.8
Iist × zis(t−1) × Eist 176.6 81.7

Intercepts & Control Variables
Baseline Dependent Variable 0.42 0.14
Eist 22.5 11.5
Cluster fixed effects Included
Other controls Included
Number of Observations 5568

Other controls: Household head age and education, predicted
poverty probability, and intercropping indicator.
Standard errors clustered at the village levels.
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