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ABSTRACT

Official statistics on deaths in India during the COVID pandemic are either incomplete or are 
reported with a delay.  To overcome this shortcoming, we estimate excess deaths in India using 
the household roster from a large panel data set, the Consumer Pyramids Household Survey, 
which reports attrition from death.  We address the problem that the exact timing of death is not 
reported in two ways, via a moving average and differencing monthly deaths.  We estimate 
roughly 4.5 million (95% CI: 2.8M to 6.2M) excess deaths over 16 months during the pandemic 
in India.  While we cannot demonstrate causality between COVID and excess deaths, the pattern 
of excess deaths is consistent with COVID-associated mortality.  Excess deaths peaked roughly 
during the two COVID waves in India; the age structure of excess deaths is right skewed relative 
to baseline, consistent with COVID infection fatality rates; and excess deaths are positively 
correlated with reported infections.  Finally, we find that the incidence of excess deaths was 
disproportionately among the highest tercile of income-earners and was negatively associated 
with district-level mobility.

Anup Malani
University of Chicago Law School
1111 E. 60th Street
Chicago, IL 60637
and NBER
amalani@uchicago.edu

Sabareesh Ramachandran
Department of Economics
UC San Diego
saramach@ucsd.edu



COVID is the largest pandemic since the 1918 flu. According to official reports, over 195

million people have been infected and 4 million have died. India is one of the hardest hit countries.

Officially, India is ranked second globally in number of infections with over 30 million and third in

deaths with over 400 thousand.

However, even these remarkable numbers may be an undercount. Serological surveys suggest

that 20-100 times more people have been infected and have antibodies than have been tested

and counted in official reports (e.g., Malani et al., 2020; Mohanan et al., 2021). Likewise, there are

concerns that deaths may be underreported. There have been reports of deaths being underreported

due to lack of capacity to test and register the dead and to avoid blame directed at government

officials (e.g., S, 2021). In order to both determine the full impact of the pandemic and to accurately

determine the efficacy of policy interventions such as lockdowns and medical interventions such as

vaccines, we need to more accurately estimate outcome such as infections and deaths.

We use data from the household rosters of a large, panel data set to estimate all-cause mortality

in India during the pandemic. The data set is the Centre for Monitoring Indian Economy’s Con-

sumer Pyramids Household Survey (CPHS). Its nationally-representative sample includes roughly

174,000 households with roughly 870,000 current members. The survey is conducted on the same

households every 4 months, with a representative quarter of the sample surveyed each month. The

survey keeps a roster of all current and past household members and provides reasons for attrition,

including death. We count these deaths before COVID to estimate a baseline death rate, and dur-

ing COVID to calculate excess deaths during the pandemic. An important feature of our data is

that it is private and measures death incidentally. This means it is immune to political censorship

and is unlikely to have investigator-side bias with respect to death reporting.

In our preferred estimates, the COVID pandemic is associated with 4.5 million excess deaths,

roughly 13 times the number of COVID deaths reported1. Excess deaths peak in the same months

as infections peaked during the two waves that struck India (September 2020 for wave I and April-

May 2021 for wave II). Moreover, we find that the second wave experienced significantly greater

deaths than the first wave. Although we do not find statistically significant differences in mortality

by sex or urban location, we do find that the age-pattern of deaths is COVID-like: deaths rise

significant relative to baseline for those over 60, but decline somewhat for those under 40. We also

find a significant correlation between excess deaths in a district and confirmed cases in that district.

1The officially reported number of deaths till May 31 was 3,31,911. Following that there was a reconciliation in
the number of deaths and additional deaths were added on June 9-13, on July 12, and on July 20. These total to
about 13,000 additional deaths that we add to the tally as of May 31 to get 3,44,911 deaths.
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Incidentally, the excess deaths are higher in families with a higher per capita income.

This use of a household roster in a survey to estimate health-related demographic parameters is

possible because the data set we employ is representative, large, and repeatedly surveys the same

households. However, the use of rosters in this manner has shortcomings that we must address.

The main problem is that the survey measures whether a death occurred since the last time

the household was surveyed, but does not measure exactly when the death occurred.2 We address

this in two ways. Primarily, we restrict the sample to individuals who are observed in consecutive

rounds and attribute deaths to the median month between the current and last completed survey.

This interprets death rate reported in month t as a moving average of death rates from months

t− 3 to t. Second, as a robustness test, we estimate death rate in month t by asking, what would

the change in actual death rate would have to be to generate the change in reported death rate

that we observe?

We compare our estimates with estimates of excess deaths using the Civil Registry System

(CRS) data from 14 states that such data is available for. Our estimates of excess deaths is about

twice the estimate from CRS data. This may be due to limitations in capacity of states to register

all deaths (Deshmukh et al., 2021). We also compare our estimates to those from the US. Whereas

we report a 24% increase in death rates during the pandemic, the US reports a roughly 22% increase

in excess deaths. Even our higher end estimates of deaths are in the range of US estimates.

Our main contribution is to provide novel estimates from India to a growing literature on excess

deaths from COVID. Unlike studies from countries that have reliable death registries (Rossen et al.,

2020; Woolf et al., 2021; Kontopantelis et al., 2021), it examines a country with unreliable registries.

To address the problem of incomplete registries, we employ a large, representative survey (CPHS)

that is independent of political influence and allows estimation of hetergeneity in death rates.

Alternatives estimates from India employ data on registered deaths but scale them up based on

their degree of undercounting (Anand et al., 2021; Deshmukh et al., 2021). However, these estimates

are only available for 14 of 28 states. Deshmukh et al. (2021) also provides national estimates using

other representative surveys. The main advantage of using CPHS over these other surveys is that

CPHS has better temporal coverage and tremendous detail on the deceased, providing opportunities

to explore whether excess deaths have “COVID-like” features and heterogeneity in death rates. A

third approach is to apply estimates of infection fatality rates outside of India to estimates of

2It does not measure why the death occurred either. Therefore, it only allows us to measure excess deaths. In
a separate project, we are conducting verbal autopsies on all reported deaths in the survey during 2019-2021 to
determine which deaths were plausibly due to COVID.
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infection rates in India Anand et al. (2021). The problem with this approach is that India may not

have the same infection fatality rates as other countries, just as it does not have the same rates of

death from other diseases. Moreover, there are conflicting estimate of seroprevalence in the same

place due to antibody decline and many locations lack any seroprevalence estimates. So infection

rates have wide confidence bars. One other, contemporaneous paper employs CPHS to estimate

excess deaths (Anand et al., 2021). We explore some of the data problems with CPHS a bit more

than that paper. To be fair, our estimates are not out of line with available excess death estimates

from other sources.

A second contribution is to show how best to use the CPHS roster to measure items, like death,

migration and marriage, that are implicitly measured by household rosters, in India. To some

extent, the problems associated with using CPHS to measure roster-events, especially the timing of

these events, are also problem for measuring roster-events in surveys other than CPHS and outside

India. Thus, our methods for addressing that may be relevant for counting roster-events from other

surveys.

Our analysis has limitations. First, it does not estimate deaths from COVID: it estimates excess

deaths during COVID relative to the number of deaths during a control period (e.g., 2019), before

COVID. The deaths could be due to policies cause by COVID, such as lockdowns, or behavior

responses to COVID. Second, not only do we not provide deaths for which COVID is a proximate

cause, it is unclear that we provide estimates that are even a but-for cause, i.e., deaths that would

not happen without COVID. To provide causal estimates, we need to get the control group right.

With a stable population, this requires a valid control group. There are no groups untouched by

COVID in 2020-21, so we use 2019 as a control period. But death rates may have a trend even

without COVID, and we do not estimate that. Moreover, there was a jump in deaths in 2019. We

do not believe this is a pre-trend because the age profile of deaths in 2020 is right-skewed in age

relative to pre-2020 deaths. However, using a longer baseline from 2015-2019 lead to implausibly

large estimates of death.

Section 1 provides some background on mortality rates in India and India’s COVID pandemic.

Section 2 presents the CPHS data, discusses our approach to addressing the challenges of using that

data, and describes how we estimate both excess deaths and heterogeneous death rates. Section 3

presents our estimates of excess deaths during COVID from CPHS, shows how those estimates vary

by time, demographics and infections, and compares our results to estimates from other sources.

Finally, section 4 examines the policy implications of our findings and some of the limitations of
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our analysis.

1 Background

According to data from the Global Burden of Disease project, reproduced in Figure 1, India had a

death rate of roughly 0.7%, or 7 deaths per 1000 persons per year, in 2019. This implies a loss of

approximately 9.5 million persons our of a population of almost 1.4 billion (Vos et al., 2020). Note

that there was a slight uptick in the death rate in 2019, a pattern we will revisit in the CPHS data

examined in this paper.

SARS-CoV-2 hit India in two waves (Figure 2). The first confirmed cases were reported on

January 27, 2020, in Kerala state amongst students returning from Wuhan University (Andrews

et al., 2020). The first wave peaked in late September 2020, with almost 100,000 daily confirmed

cases and 1,000 daily deaths. The second wave peaked in April 2021, with roughly 400,000 daily

confirmed cases and 4,000 daily deaths (www.covid19india.org, 2021).

One should be cautious in interpreting these official numbers. Confirmed cases undercount

actual infections, and at different rates over time. One reason is that perhaps 90% of cases, at

least in 2020 with the original variant, were asymptomatic and asymptomatic cases are less likely

to lead to testing. Another reason is that per capita testing rates in India were low relative to

developed countries. Moreover, they increased dramatically from wave I to II, meaning that some

of the higher case counts may be due to testing rather than cases.

As mentioned earlier, serological data suggests that confirmed cases may undercount infections

by up to 2 orders of magnitude. Early studies suggested that perhaps 45% of the population was

infected during the first wave. A serological survey in Mumbai found that, by July 2020, COVID

seroprevalence3 was 58% in slums (versus 17% in non-slums) (Malani et al., 2020) and slums

account for roughly 40% of Mumbai’s population. By end of August another study estimated that

seroprevalence was 46% of the entire state of Karnataka (Mohanan et al., 2021). A nationwide

survey by ICMR found that 67.6% of sampled individuals were seropositive after India’s second

wave (Sharma, 2021). With a population of roughly 1.35 billion, this implies almost 600 million

infections after wave 1 and 900 million after wave 2. Contrast that to roughly 10 million cases

confirmed after wave 1 and 30 million after wave 2.

Reported COVID death rates may also be lower than true death rates. First, not all deaths in

3COVID seroprevalence is the fraction of individuals with antibodies to COVID.
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Figure 1: Death rate and total deaths in India over time.

Source: ghdx.healthdata.org/gbd-results-tool.

Figure 2: Confirmed COVID cases and deaths over time.

Source: www.covid19india.org.
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India are officially recorded. Deaths that do not occur in hospitals may not be recorded in official

systems. Second, not all individuals dying of COVID are tested for COVID and such deaths are

missed in the official counts. Further, even individuals dying after a positive COVID death are

sometimes recorded as a non-COVID death because they have some co-morbidities that could have

been the cause of death. While all such deaths are not recorded as COVID deaths, some of them

may have to be attributed to COVID and are missed.

Because many deaths attributable to COVID may, therefore, not be labeled as COVID deaths,

researchers have examined all-cause mortality to gauge the impact of the pandemic. Usually this

is done by comparing the level of deaths prior to the pandemic against the level of deaths during

the pandemic. In India, all-cause mortality is recorded by each state via the Civil Registry System

(CRS). The main alternative is the Sample Registration System (SRS), which calculates death rates

based on a representive, 1% sample of the population.

However, each source has its problems. The CRS has three problems. One, not all deaths are

registered. For example, in 2017, among big states, the reporting rate was 63.5% in Jammu &

Kashmir and 76.4% in Bihar (Rao and Gupta, 2020). Two, while reporting rates are improving

over time, this trend complicates estimation. An increase in death rates could be due to better

reporting or to an actual increase in death rates. Three, CRS reports with some delay Ravi (2021a).

For example, only 14 (of 28) states have CRS data currently available (S, 2021).

The SRS also has problems. While the CRS is delayed a few months, the SRS is typically

delayed 2 years. So, we may not get estimates of COVID-period deaths until 2023. Moreover, even

the SRS is estimated to miss about 12% of deaths Gerland (2014). Indeed, CRS and SRS can

diverge. In 2017, the ratio of CRS to SRS deaths range from 38% in Uttar Pradesh to 124% in

Tamil Nadu Rao and Gupta (2020). The CRS number can be higher than the SRS number not

only because SRS may be an underestimate, but because CRS will report the death of a resident

of one state in another state if they went to that other state for medical care and died there Ravi

(2021a).

Even if one can measure excess deaths, however, they may not all be linked to COVID. The

death rate due to COVID is typically captured in two epidemiological parameters. One is the case

fatality rate (CFR), defined as the number of confirmed deaths divided by the number of confirmed

COVID cases. This is not a tremendously useful statistic because both numerator and denominator

are undercounted. In any case, CFR may reflect testing rates and selection into testing as much

as the harm from the disease. A better alternative is the infection fatality rate (IFR), defined
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as death divided by all COVID infections, rather than just confirmed infections. Initial efforts to

calculate the IFR used serological studies to estimate the denominator. However, they used official

death counts as the numerator. Because those counts are also underestimates, correcting only the

denominator likely led to an underestimate of the IFR Malani et al. (2020); Mohanan et al. (2021);

Malani et al. (2021). We will not be able to correct that in this paper, as all-cause excess deaths

may include deaths not directly related to COVID. However, it does provide some insight into how

off prior IFR estimates might be.

One final background fact to keep in mind when interpreting the monthly time series of excess

deaths is that India imposed a national lockdown towards the beginning of the pandemic in 2020.

That lockdown because March 24 and ended June 1. After that date, lockdowns were local and

driven by states. But by the peak of wave 1, mobility had returned to about 15% below 2019

levels (from an apogee of 40%) below those levels. Thus India’s most severe lockdown occurred

well before the peak of the first wave. There was a decline in mobility and local lockdowns during

wave 2, but it was not as severe as during the first wave.

2 Methods

2.1 Data

2.1.1 Consumer Pyramids Household Survey

Our primary source of data is the Centre for Monitoring the Indian Economy’s Consumer Pyramids

Household Survey (CPHS). This is a large, representative, panel survey of Indian households. The

survey sample presently includes roughly 174,000 households with 870,000 million current members.

The sample, which is based off the 2011 Indian Census, is representative at the level of homogeneous

regions, defined as a cluster of similar districts within a state, and at the national level.4 Sample

households are visited every 4 months, with each 4 month period called a round. However, a

nationally representative sample of the households are sampled each month, so the study can be

nationally representative at the monthly level as well. CPHS started in January 2014 and the

4The country is divided into 99 of these regions. Within each region, rural and urban strata are defined. In the
rural strata, 2011 Census villages are randomly selected. Within each village 16 households are selected by randomly
picking a cluster of homes and then conducting systematic sampling. In the urban strata, towns are divided into
strata based on population. Within each size strata towns are randomly selected. Within towns, census enumeration
blocks are randomly selected. In each CEB 16 households are selected.
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latest data we are able to access are from July 2021.5 The CPHS is available to the public for a

subscription fee.

Although the purpose of the CPHS is to measure income and consumption of a household

and its members, it also maintains a meticulous household roster. This roster tracks attrition of

members and the reason for attrition. A common reason for attrition is emigration away, e.g., for

marriage or work. But another reason may be death, our primary outcome. The roster measures

whether there is a death in the household since the last time a household was surveyed, typically

4 months earlier.

CPHS also provides data on the demographics and income of each household member. It also

provides location at the district level and, within district, whether the household resides in a rural

area, defined as a village in the 2011 Indian Census. We use these data to explore heterogeneity of

death rates.

2.1.2 State Civil Registration System Data

A secondary data source is counts of deaths from States’ Civil Registration System (CRS). We

obtain these data from the Development Data Lab and a newspaper article (Ramani, 2021). As

of this writing, CRS data are available for 14 states (See Figure 9). We will use these data to

benchmark our estimates from CPHS.

2.1.3 COVID cases and mobility data

We obtain district x day level data on confirmed cases from www.covid19india.org. We obtain

estimates of daily infections by scaling up confirmed case curves with estimates from a serological

survey, as we explain in Appendix Section A.

We obtain mobility data from Google’s Community Mobility Reports Google (2021). The units

for Google’s measure of mobility are percent relative to a baseline that is the median value for the

corresponding day of week during the 5-week period Jan 3–Feb 6, 2020. Google reports 6 measures

of mobility based on location; we take an average of the 5 measures other than mobility at home

because home mobility rises during the pandemic.

Because our death data are reported at the monthly level, we also average daily cases, infections

and mobility over each month. We do not have case and mobility data prior to February 2020.

5CPHS started with roughly 165,000 households in 2014 and built up the sample over time. Whereas data through
April 2021 are in the People of India file of the CPHS, the May and June 2021 roster is obtained from January and
February 2021 income file, which is released in May and June 2021.
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Figure 3: CPHS non-execution and non-response rates during 2020.
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Notes: Red line indicates first month of phone surveys. Green line indicates month that in-person surveys resumed.
The sample includes all households. “Could not be executed” (non-execution) includes both CMIE’s decision not to
contact a household and it’s inability to speak to a household member because, e.g., no one answered the door
(“door-lock”). “Household not found” means CMIE attempted to contact the household but surveyors were unable
to locate the household.

Therefore, we assume cases and infections are 0 and that mobility is 100% before that date.

2.2 Issues with CPHS mortality data

Using survey data rather than death registration to measure mortality rates raises a number of

data cleaning problems. First, survey response rates fell during the pandemic, particularly during

India’s lockdown. Second, there may be selection bias in non-response. Specifically, non-response

may be a function of whether a household experienced a death. Third, there appears to be a level

jump in the death rate in 2019, prior to the pandemic. Fourth, there CPHS has been criticized

for not being representative of poor populations (Dreze and Somanchi, 2021). We address these

concerns in turn.

2.2.1 Low response rate during lockdown

The CPHS experienced a sharp decline in response rates during the lockdown in India. CPHS

is ordinarily an in-person survey and the typical per-round, household response rate (responding

households/sample households) prior to the pandemic was roughly 85%. However, when India’s
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central government declared a lockdown on March 24, 2020, in person surveys had to cease. CPHS

made two changes. First, they switched to a phone survey. Second, surveyors’ managers, rather than

surveyors, conducted the survey to keep the quality of phone surveys high. Because there are fewer

managers than surveyors, CPHS decided not to call half the households in each strata (defined

above). As a result, response rates fell. Figure 3 shows that the response rate of the subset of

households that were contacted fell to roughly 60% and responding households constituted roughly

35% of the full sample at the height of the lockdown in April and May 2020. When CPHS finished

its second round in August 202, it returned to in-person surveys. However, the response rate only

rose to 75%. There was also a drop in response rates during wave 2, but there was no switch to

telephone interviews and the dip was not as severe as during the lockdown.

The low response rates are partly addressed by using the responding sample as the denominator

in our estimate of teh excess death rate. (We address non-random response in the next section)

Moreover, one can obtain obtain information about deaths in non-responding households in later

rounds. Many households who do not respond in a current round respond in later rounds, during

which they report deaths since the last survey they answered. (We will address the timing of of

those deaths in a few sections.)

2.2.2 Non-random response during COVID

It is possible that households that respond to the CPHS are not representative of the CPHS sample

or that the nature of non-random response changed during COVID. The former affects our estimates

of baseline death rates unless CPHS’s weights make non-responding households representative even

with non-random response.6 Even if this the former is not true, the latter affects our estimate of

the excess death rate during COVID.

We have mixed evidence about the representativeness of the responding sample. The optimistic

view comes from a simple exercise in the vein of Altonji et al. (2005). CPHS has hundreds of

variables on each household, including current and lagged responses to income, time use and con-

sumption questions. We estimated a regression of survey response on covariates (other than death)

selected via LASSO prior in 2019 and then in 2020. Our estimated R2 was < 0.01. Of course

it could be that survey response is a function of unobservables even conditioned on observables.

But given how many observables we have, this seems unlikely. If we make the assumption in, e.g.,

6The former may not affect our estimate of excess deaths during COVID if non-random response is such that
the trend of deaths in responding households is similar to the trend in non-responding households, though this is an
optimistic assumption.
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Table 1: Fit (R2) from LASSO-generated prediction model for CPHS non-execution and/or non-
response in 2019 and 2020 using observables (other than death).

March-June Sept-Dec
2019 2020 2019 2020

Non-execution & non-response .004 .008 .007 .007
Non-execution .005 .009 .010 .008
Non-execution or response .003 .008 .003 .003

Notes. The sample includes all households in the time period indicated in the column header. The table reports the
fit (R2) from a regression of an indicator for the action in the row label on (a) strata fixed effects (homogeneous
region x community type) and (b) covariates selected by LASSO from the set of all variables (excluding death) on
the household and its members for the same time period. Observations are at the household level. No weights are
included.

Figure 4: Annualized death rates for households that responded in round t+ 1 and those that did
not.

Notes: The sample includes households that responded in round t and t + 2. Some of these households also
responded in t + 1 (the t + 1 “respondent” group) and some did not (the “non-respondent” group). This figure plots
the annualized death rate in the respondent and non-respondent groups by month of the t + 1 survey.

Altonji et al. (2005) that unobservables have the same explanatory power as observables, then our

low bound on the the R2 from observables implied low R2 for unobservables.

On the other hand, we do have some evidence that the fact of death affects response rates. This

comes from the following exercise. First, we took the set of households that responded in round t

and t+ 2, about 64% of the sample. (Since rounds are 4 months long, this means 8 months apart.)

Some of these households also responded in t + 1 (the t + 1 “respondent” group) and some did

not (the “non-respondent” group). (Respondents are 83% of the CPHS subsample that responds
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at t and t + 8.) Second, we compare the number of deaths that occurred between t and t + 2 in

the respondent group and the non-respondent group. Recall that, even if a household does not

respond at t + 1, they eventually report their deaths in t + 2, so we see all deaths in this period

for both groups. Figure 4 plots the annualized death rate in the respondent and non-respondent

groups by month of the t + 1 survey. Respondent households have slightly more deaths prior to

COVID, though in some months non-respondent death rates rise above response ones. But in

2020, the gap widens and the respondent groups death rates almost always appear to be above

non-respondent group rates. A regression of death rates on a pandemic indicator, a respondent

household indicator and the interaction of the two indicators reveals that respondent death rates

are 0.276 percentage points higher per annum before the pandemic, and rise 0.182% percentage

points further above non-respondents during the pandemic, with each difference being statistically

significant (Appendix Table A1). Our finding that, of households that respond at t and t + 8,

households with a death are more likely to respond to a survey does not imply that is true for the

full sample. Indeed, the bias is different for the remainder of CPHS that does not repond at t and

t+ 8. So the important take-away is that there could be non-random survey response.

There is a solution to non-random response, but it has separate problems. Non-random response

can be addressed by using both respondent and non-respondent households in estimate excess

deaths. After all, non-respondents at t + 1 typically respond at t + 2 and this fills in holes in

the death data. However, there is loss of precision about the timing of deaths when t + 1 non-

respondents are included in the analysis: their deaths have to be allocated over 8 months rather

than just 4 months.

Because we believe that the timing problem is greater than the non-random response problem,

we highlight results using consecutive observations, and report estimates using even non-consecutive

observations in the appendix.

2.2.3 Rise in deaths in 2019

The annualized death rate calculated from the CPHS rises in 2019, a year before the pandemic

(Figure 5). This is consistent with what is observed in the Global Burden of Disease data, though

the magnitude is larger in the CPHS. This raises two questions. One, is there a pre-trend that

begins in 2019? Perhaps the death rate during COVID is actually caused by something else started

in 2019. Two, what years are the appropriate benchmarks against which excess deaths during the

pandemic should be calculated?
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Figure 5: Annualized death rates by month from January 2015 - June 2021.

Notes: The sample includes t+1 respondent and non-respondent households. Deaths reported in month t are
allocated to month t− 2, for reasons explained later. The red line demarcates the start of the pandemic in February
2020.

We do not think that the jump in 2019 is a pre-trend unrelated to COVID that continues into

2020. As Figure 8 will show, the age-wise death rate in 2019 is significantly higher than the death

rate that for 2015-2018 for both the elderly (age 60+) and for youth (0-17). By contrast, the age-

wise death rate during the pandemic is significantly higher than during 2019 for only the elderly

(60+). The jump in 2019 is not consistent with the age profile of COVID deaths, while the jump

in 2020 is.

We use both 2019 and 2015-2019 as a baseline for the purposes of calculating excess deaths

during the pandemic. The argument for using 2019 is that the implied excess deaths seem less

outlandish and thus more plausible, though the excess deaths estimates remains 8 times the reported

number of COVID deaths. The argument against using 2019 as a baseline is that it implies a baseline

death rate of 1.07%, which is much higher than the death rate reported in the Global Burden of

Disease. By contrast, the death rate implied by the 2015-2019 baseline (7.9%) is closer to the GBD

baseline. Because the purpose of this paper is to estimate excess deaths and not the baseline death

rate, we prefer employing the 2019 baseline, even though we report results from both baselines.

A natural question is whether the CPHS is to be believed given how high the baseline is in

2019. Our main answer is that, just because the baseline is high does not mean the change from

2019 to 2020-21 is incorrect. Indeed, out estimates of excess deaths from CPHS will be in line with
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the median estimate of excess deaths from the 10 states that have reported CRS data thus far.

2.2.4 Timing of deaths

The date on which deaths are “observed” in CPHS is not necessarily the date the death occurred.

Sample households do not report deaths to the CPHS when those deaths occur. Instead those

deaths are reported some time later when the household is surveyed. Nor does CPHS ask when

deaths occurred. Thus, if a household answered two surveys in a row 4 months apart and reported

a death in the last survey, all we know is that the death occurred sometime in the intervening 4

months. If the household skipped n survey in between surveys they answered, then a death reported

in the last survey occurred sometime in the 4(n+ 1) months in between responses.

The problem is illustrated with the example in Table 2. Suppose the true death rates over

a 10 month period are 7 per 1000 for each month except month 4, where it jumps to 9 (row 1).

Moreover, assume one quarter of households are surveyed each month and all households respond

to surveys, which are 4 months apart. Because only a quarter of households are interviewed each

month, those extra 2 deaths will, statistically, be distributed over 4 months after the death (row

2). The problem we face is how to back out the jump to 9 in row 1.

We offer 2 solutions, each of which has pros and cons. Our preferred solution is to reallocate

death to the midpoint between answered surveys. So if there is a gap of k months between surveys

the household answered, then a death reported on month t is re-allocated to month t− (k/2). This

solution, which is illustrated in row 3, is akin to treating the reported number at t as a moving

average of the true death rate for t− (k/2) (row 4). We implement this solution with a regression

of the form,

di,t,t−k = δ + β · I(t− (k/2) ∈ pandemic) + εit (1)

where di,t,t−k is an indicator for whether an individual was last reported alive in month t− k and

reported dead in month t and I(t − (k/2) ∈ pandemic) is an indicator for whether the month

to which the death is reassigned was during the pandemic. Standard errors are clustered at the

village/ward × month level to account for correlation in reporting of deaths within a locality.

The advantage of the first solution is that it is simple. The disadvantage is that it gets the

timing of deaths a bit off in the way a moving average would because it smooths out the jump in

rates, in part to periods before and in part to periods after the jump.
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Table 2: Timing of CPHS observation of deaths and correction for that timing

Annualized death rate (deaths/1000) in each month

Formula 1 2 3 4 5 6 7 8 9 10 11 12

1. Truth (d) 7 7 7 7 9 7 7 7 7 7 7 7
2. Observed (y) yt = (dt + dt−1 + dt−2 + dt−3)/4 7 7 7 7 7.5 7.5 7.5 7.5 7 7 7 7

3. Solution 1 (z) zt = yt−2 7 7 7.5 7.5 7.5 7.5 7 7 7 7 7 7
4. Moving average of d mt = (dt−1 + . . . + yt+2)/4 7 7 7.5 7.5 7.5 7.5 7 7 7 7 7 7
5. Solution 2 rt = (4yt)− (rt−1 + rt−2 + rt−3) 7 7 7 7 9 7 7 7 7 7 7 7

The second solution is to estimate the death rate by asking the question: how much would the

true death rate have to have changed for the observed death rate to have changed as much as it

did since the last month. The formula that provides the answer is in row 5. We implement this

solution with a regression of the form

di,t,t−k =
∑

k=4,8,...

δk · I(k) +
∑

m∈pandemic

βm · I(t− k ≤ m ≤ t) + εist (2)

where I(k) is an indicator for whether the gap between the current survey and the one to which she

last responded is k months, and I(t − k ≤ m ≤ t) is an indicator whether the intervening period

between surveys was during the pandemic. Standard errors are clustered at the village/ward ×

month level to account for correlation in reporting of deaths within a locality.

The coefficient δk estimates a pre-COVID death rate for observations that are k months apart

and our parameter of interest βm captures the increment in true death rate implied by the increment

in observed death rate in each month during COVID. The coefficient γi nets out seasonality in

deaths.

The advantage of the second solution is that it can, in some cases, back out the true death rate.

But there are two problems. First, death rates need to be stable for a period otherwise one cannot

solve the formula because it uses prior value of estimated rates to measure current rates. Second,

if observed deaths have some error unrelated to timing, this solution magnifies those errors. The

solution recognizes that the actual changes have to be larger than observed changes because the

survey process smooths out changes over few months (row 2). But if there are errors in observed

data, then the errors are also magnified. This can increase variability of results from solution 2,

which we will demonstrate.

Because we think there could be errors in CPHS rosters, our preferred measure is the first one,

but we also report the second measure in Appredix D.
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2.2.5 Representativeness of CPHS

Dreze and Somanchi (2021) argues that CPHS undersamples the poor based on evidence that it

yields both higher levels of literacy and faster improvement in literacy than government surveys.

Dreze and Somanchi’s criticism is a problem for us if the poor have a different death rate during

COVID. The problem gets worse if the CPHS sample becomes less representative over time. It is

possible that the poor have a lower death rate, as we show in Section 3.2.2; this would to lower our

estimate of excess deaths from COVID if the overall number overweights the rich. However, we do

not believe that the problem gets worse over time as the gape between our control period (2019)

and treatment period (2020-May 2021) is quite short. Moreover, experience from a serological

survey conducted by one of us in Mumbai suggests that sampling the wealthy is more difficult than

sampling the poor during lockdown (Malani et al., 2020).

Of course, the fact of difference between CPHS and government surveys of literacy is not

dispositive of whether CPHS is biased since it is possible that the government surveys are the

ones that are off. After all, the government has taken steps to suppress data (e.g., the 2017-18

consumption survey by the National Statistical Survey Office) that it finds unflattering. Moreover,

government surveys are known to give different estimates of items like slums populations, with the

differences driven by the policy aim of the survey.7 Dreze and Somanchi suggest that CPHS is the

one likely to be wrong because its frame samples more from the main streets of villages than from

outskirts, where the poor tend to live. CMIE has responded that its sampling does get to outskirts

and that the bias has not changed over time because that sampling frame is largely fixed and that

it method for selection (of new households) has been constant (Vyas, 2021).

2.3 Definition of pandemic period

We define the pandemic period as starting in February 2020 and persisting to the present. India’s

first confirmed cases are on January 31, 2020. We define the first wave as lasting from February

- December 2020 and the second wave as from January 2021 - the present. The CPHS data are

coded at the monthly level, so we cannot more finely define the start of the pandemic or waves.

However, in robustness exercises, we vary the start and stop dates +/- 2 months for our preferred

estimation strategy.

7For example, public health officials in Mumbai in private conversations have noted that surveys of slum popula-
tions by the public health department tend to generate higher estimates of slum population because higher numbers
in slums are more likely to generate large appropriations for the department.
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Figure 6: Sample size and households reporting a death from January 2015 - June 2021.

Notes: The sample includes households regardless of how frequently they respond to a survey. Deaths reported in
month t are not allocated to a prior month. The y-axis is Panel B is the death rate over 4 months (i.e., since the
prior survey of that household). The data are not weighted to be representative. The red line demarcates the start
of the pandemic in February 2020.

3 Results

Raw data from CPHS at the national level suggests a jump in the death rate during the COVID

pandemic. Panel A of Figure 6 shows the sample size between January 2015 and June 2021 and

Panel B presents death rate as of the date the deaths are reported (not the date they occurred).

There is a large rise during Wave 1 and the beginning of a rise in Wave 2. This is consistent with a

pandemic-associated rise in deaths, but is implausibly high: 4-month death rates death rates from

0.4% to 0.8% of households reporting a death.

3.1 Main estimates

When we clean the data based on our first (and preferred) solution to the timing-of-death problem

and re-weight the data, we obtain a time series that shows a more moderate increase in death rates

duing COVID. Specifically, we focus on the sample that includes only households that respond in

consecutive rounds, so as to reduce imprecision from reassigning the date of death (i.e., keep the

moving average at 4 months rather than 8 or longer). We time shift observed deaths back to month

t − (k/2) = t − 2 for k = 2. We estimate a version of the regression in (1) where we replace the
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pandemic indicator with month fixed effects. Finally, we weight observations to make responding

households nationally representative.8

A plot of the resulting monthly fixed effects (Figure 7) shows that death rates drop in April

and May 2020, around the time of the national lockdown, but are at or above the 2019 average

in other months of the pandemic. There are three spikes during the pandemic. One spike is June

2020, when lockdown is released, another is September 2020, which wave 1 peaks, and the last is

in March - May 2021, when wave 2 peaked. These spikes are significantly greater than adjacent

months and all but one 2019 month. The Wave 1 and 2 spikes are greater than even the highest

2019 peak.

The estimate excess death rate during the pandemic depends on our baseline. To estimate a

single annualised excess death rate for the pandemic, we replace the month fixed effects in our

last analysis with a baseline indicator and a pandemic indicator (Table 3). When we define the

baseline as the period 2015-2019 (column 1), our baseline death rate is 0.787%, not far off from the

Global Burden of disease estimate. But excess death rates during the pandemic are 0.501%, which

represents a hard-to-believe increase of over 50%. When we use only 2019 as the baseline (column

2), the baseline death rate rises to 1.038%, which is implausibly high. However, our estimate of

the excess death rate during the pandemic is 0.250%, a relative increase that is in line with the

relative increase in excess deaths from the US. Our estimate of the excess death rate falls a bit to

0.229% or 0.235% (columns 3 and 4) if we include fixed effects for homogeneous region or district,

respectively. Critically (from a policy perspective), the death rate is significantly greater during

the second wave than the first wave (column 5).

If we include in our estimation of (1) not just households that respond in consecutive rounds of

the survey (roughly 82% of the sample), but also ones that skip rounds, we obtain somewhat higher

estimates of excess mortality during COVID (0.251 with responders that skip up to 1 round, 0.301

if up to 2 rounds, Appendix Table A2). This seems inconsistent with the nature of non-response

bias we discussed in Section 2.2.2. Recall, however, the sample in which responders had higher

death rates was restricted to those who responded in round t and t+8, about 64% of the sample.

If we include those that did not respond at both those times, the consecutive responders actually

have lower death rates.

We obtain similar estimates of excess deaths in the pandemic when we use our second solution to

8This means we use both the weight that makes the sample representative and the non-response factor that makes
responding households representative of the sample.
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Figure 7: Time series of death rates from month fixed effects, January 2019 - April 2021.

Notes: The sample includes households that respond in consecutive rounds. Observations on individuals are
weighted to be nationally representative even with non-response. Each point is the coefficient and each whisker is
the 95% confidence interval on month fixed effects in the regression in (1), where we replace the pandemic indicator
with month fixed effects. The red line demarcates the start of the pandemic in February 2020.
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Table 3: COVID death rate prior to the pandemic and the excess death rate during the pandemic

Annualised death rates (%)
(1) (2) (3) (4) (5)

During Pandemic 0.501∗∗∗ 0.250∗∗∗ 0.229∗∗∗ 0.235∗∗∗

(0.0400) (0.0478) (0.0467) (0.0455)

Baseline 0.787∗∗∗ 1.038∗∗∗ 2.527∗∗∗ 2.182∗∗ 1.038∗∗∗

(0.0118) (0.0286) (0.385) (0.751) (0.0286)

Wave 1 0.153∗∗

(0.0554)

Wave 2 0.427∗∗∗

(0.0699)

Controls None None HR FE District FE None
Data used 2015-21 2019-21 2019-21 2019-21 2019-21
N 7837848 2816368 2816368 2816368 2816368

Notes. The sample includes households that respond in consecutive rounds. Observations on individuals are
weighted to be nationally representative even with non-response. The regression model is (1). HR FE means fixed
effects for homogeneous region, a cluster of similar districts within a state; district FE means district fixed effects.
Standard errors clustered at the village/ward × month level are reported in parentheses. In the column 2, if we
instead cluster standard errors at the homogeneous region × month level, the standard error is 0.078 and the effect
remains significant. */**/** indicates p < 0.05/0.01/0.001.

the timing-of-death problem, though our monthly estimates of excess deaths is highly variable and

is sensitive to the definition of when the pandemic starts. We explore this less-preferred solution

in Appendix Section D.

Our estimate of excess deaths falls if we move forward our estimated start date for the pandemic,

possibly because it is counting months before any confirmed cases as pandemic months (Table A3).

It rises as we move the start date back 2 months, in part because deaths fall during the lockdown,

which occurs in April and May 2020, and pushing back the start date moves the low death rate

months out of the pandemic period.

3.2 Heterogeneity of death rates

We first explore heterogeneity in excess deaths along lines that would help gauge whether our

estimates are credibly picking up the effect of COVID. We then look at other factors that are

policy-relevant.
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3.2.1 COVID-related factors

Age. Excess deaths follow a COVID-like pattern with respect to age (Figure 8 below and Table

A5 in the Appendix). Excess deaths are significantly positive for higher ages, and insignificant and

close to zero for lower ones. This right-skew is somewhat greater in wave 2 than in wave 1.

Gender and location. We do not see COVID-like patterns, however, with respect to gender

or location. Estimated CFR and IFR is greater among males (Green et al., 2021; Pastor-Barriuso

et al., 2020), but we do not find significantly greater excess deaths among males. Likewise, prior

studies have shown greater infection rates in urban areas Mohanan et al. (2020); Malani et al.

(2021), but we do not find significantly greater excess death in cities during the pandemic.

Infections. Excess deaths are positively correlated with confirmed cases and with infection.

Table 5 reports the results of an individual-level regression based on (1), except that we replace

the pandemic indicator with confirmed cases or infections. Cases and infections are reported as

monthly averages at the district level. Infections are the same as cases but scaled by seroprevalence

estimates. We find that deaths are significantly correlated with cases or infections, even when we

add controls for monthly average mobility at the district level. This finding increases the credibility

of the claim that excess deaths during the pandemic picks up the effect of COVID. However, one

should not interpret the coefficients as case fatality rates (CFR) or infection fatality rates (IFRs)

as they may capture COVID deaths that were not included in case or infection counts and include

non-COVID deaths.
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Figure 8: Age pattern of death rates during the pandemic

Panel A: Pandemic overall Panel B: Pandemic waves

Notes. Estimates are from a regression model based on 1, with some modification. In Panel A,
we use data from 2015 onwards and add a indicator for 2019. In Panel B, we use data from 2019
onwards. In each row of a figure we present coefficients from a regression that includes data on
members in the indicated age group only.

23



Table 4: Annualised death rates by gender and urban status

Panel A: Gender

Annualised death rates(%)
(1) (2)

Pandemic 0.244∗∗∗

(0.0557)

Wave 1 0.142∗

(0.0638)

Wave 2 0.432∗∗∗

(0.0830)

Pandemic × Female 0.0111
(0.0664)

Wave 1 × Female 0.0235
(0.0782)

Wave 2 × Female -0.0123
(0.0978)

Female -0.000111 -0.000111
(0.000126) (0.000126)

2019 mean 1.054∗∗∗ 1.054∗∗∗

(0.0340) (0.0340)

N 2816368 2816368

Panel B: Urban/rural

Annualised death rates(%)
(1) (2)

Pandemic 0.212∗∗∗

(0.0593)

Wave 1 0.176∗

(0.0717)

Wave 2 0.278∗∗∗

(0.0779)

Pandemic × Urban 0.118
(0.0996)

Wave 1 × Urban -0.0691
(0.109)

Wave 2 × Urban 0.453∗∗

(0.158)

Urban -0.000105 -0.000105
(0.000194) (0.000194)

2019 mean 1.048∗∗∗ 1.048∗∗∗

(0.0362) (0.0362)

N 2816368 2816368

Notes. Estimates are from a regression model based on 1, with the addition of a gender (urban)
indicator and gender (urban) indicator interacted with the pandemic or wave indicator. Sample
includes only consecutive observations and excludes emigrants. Standard errors clustered at the
village/ward × month level are reported in parentheses. p < 0.05/0.01/0.001.
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Table 5: Correlation of death rates with cases, infections, and mobility

Annualised death rates (%)
(1) (2) (3) (4) (5)

Infections (sero scaled) 0.0286∗∗∗ 0.0276∗∗∗

(0.00421) (0.00426)

Cases 0.00000118∗∗∗ 0.000000969∗∗

(0.000000351) (0.000000362)

Mobility -0.000264 -0.000387∗ -0.000599∗∗∗

(0.000158) (0.000161) (0.000153)

2019 mean 1.074∗∗∗ 1.058∗∗∗ 1.134∗∗∗ 1.104∗∗∗ 1.112∗∗∗

(0.0260) (0.0267) (0.0253) (0.0260) (0.0258)

N 2648617 2610715 2638509 2638509 2638509

Notes. Estimates in columns 1 and 2 are from a regression of death rates against sero scaled
infections from an SIR model. Estimates in columns 3 and 4 are from a regression of death rates
against officially reported COVID cases. We control for mobility in columns 2 and 4. Estimates in
column 5 are from a regression of death rates against google mobility. Standard errors clustered
at the village/ward × month level are reported in parentheses. p < 0.05/0.01/0.001.
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3.2.2 Policy-relevant factors

Mobility. One of the concerns with using excess mortality to measure the harm from the pandemic

is that it picks up both the direct effect of COVID infections as well as indirect effect of association

behavioral or policy response. For example, it is possible that the pandemic deterred people from

hospitals for fear of getting infected and triggered a lockdown that reduced traffic accidents. We

find mixed evidence on the indirect effects of the pandemic.

On the one hand, Figure 7, which shows a sharp drop in death rates in April and May 2020,

suggests that India’s national lockdown (March 24 - June 1, 2020) was associated with a sharp

reduction in deaths. One should be cautious, however, in interpreting this figure because of the

timing of death problem. Because we employ our first solution to this problem, the death rate

attributed to, say, April are actually reported in June.

On the other hand, deaths are negatively correlated with Google mobility. Table 5 also reports

the results of an individual-level regression based on (1), except that we replace the pandemic indi-

cator with Google’s mobility index. Our estimated coefficient in column 5 is that a 10% reduction

in mobility was associated with a 0.5% increase in the death rate.

Income. Because CPHS has information on income, we can also compare excess deaths by

income. Serological surveys suggest that, in cities, slums were more affected in wave 1 (Malani

et al., 2020). News reports suggest that wave 2 disproportionately affected resident that did not

live in slums (Khandekar, 2021). To validate these claims, we add indicators of income terciles and

the interaction of those income terciles and pandemic or wave indicators to the regression in (1).

This evidence suggests that pandemic had a bigger mortality impact on the top tercile (column

1), but that this imbalance was more pronounced in wave 2 (column 2). The first wave affected

the middle and highest tercile more than the lowest. The second wave affected only the top tercile

more than the bottom tercile.
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Table 6: Annualised death rates by income groups

Annualised death rates(%)
(1) (2) (3) (4) (5) (6)

Pandemic 0.113 0.237 0.0823
(0.0689) (0.122) (0.0801)

Pandemic × 2nd tercile 0.132 -0.0223 0.177
(0.0867) (0.121) (0.109)

Pandemic × 3rd tercile 0.357∗∗∗ 0.235 0.387∗∗

(0.0986) (0.129) (0.146)

Wave 1 -0.0247 0.0416 -0.0411
(0.0767) (0.135) (0.0893)

Wave 1 × 2nd tercile 0.239∗ -0.00842 0.338∗∗

(0.102) (0.141) (0.129)

Wave 1 × 3rd tercile 0.367∗∗ 0.154 0.569∗∗

(0.114) (0.149) (0.181)

Wave 2 0.371∗∗∗ 0.591∗∗ 0.315∗∗

(0.102) (0.190) (0.118)

Wave 2 × 2nd tercile -0.0682 -0.0459 -0.124
(0.122) (0.174) (0.151)

Wave 2 × 3rd tercile 0.328∗ 0.372 0.0501
(0.147) (0.194) (0.193)

2019 mean 1.160∗∗∗ 1.160∗∗∗ 1.170∗∗∗ 1.170∗∗∗ 1.158∗∗∗ 1.158∗∗∗

(0.0463) (0.0463) (0.0746) (0.0746) (0.0541) (0.0541)

2nd tercile -0.172∗∗ -0.172∗∗ -0.150∗ -0.150∗ -0.184∗∗ -0.184∗∗

(0.0540) (0.0540) (0.0715) (0.0715) (0.0671) (0.0671)

3rd tercile -0.232∗∗∗ -0.232∗∗∗ -0.232∗∗ -0.232∗∗ -0.242∗∗ -0.242∗∗

(0.0567) (0.0567) (0.0726) (0.0726) (0.0795) (0.0795)

Sample All All Urban Urban Rural Rural
N 2816368 2816368 1852668 1852668 963700 963700

Notes. Estimates are from a regression model based on 1, with the addition of a income tercile
indicator and income tercile indicator interacted with the pandemic or wave indicator. For each
individual we calculate the income per capita in 2018. We compute the household’s income
percentile in their homogeneous region and region type (urban/rural). Households between 33
and 67 percentile are in income tercile 2 and households between 67 and 100 percentile are in
income tercile 3. Columns 1 and 2 includes all data, columns 3 and 4 include only urban regions
and columns 5 and 6 include only rural regions. Sample includes only consecutive observations
and is weighted to be nationally representative. Standard errors clustered at the village/ward ×
month level are reported in parentheses. p < 0.05/0.01/0.001.
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4 Discussion

Our preferred estimates imply that there were 4.5 million excess deaths in India during the pan-

demic, 1.9 million during wave 1 and 2.4 million during wave II. These estimates only include

consecutive responders and are similar to estimates if we include households that skip up to one

round of surveys.

Our preferred estimate of death is roughly 13x as large as the official number of COVID deaths.

This does not prove that COVID caused 13x more deaths, but it does suggest official numbers may

be a substantial undercount. It is true that all-cause deaths include non-COVID deaths. But these

are excess deaths during the pandemic, so it is likely that COVID directly or indirectly (via policy

or behavioral change) is related to these deaths. Of course, we cannot demonstrate causation as

we do not have a strictly exogenous introduction of COVID or variation in infections.

We benchmark our findings against estimates from the CRS, the official registry of deaths. Due

to power considerations in the CPHS data, we do not compare deaths at the state-level amongst the

14 states for which CRS data is presently available. Instead we compare the sum of deaths across

the 14 stats. CRS data imply 1.7 million excess deaths across the 14 states from February 2020

- May 2021. The estimate using CPHS data in the same states and period is 3.4 million. While

our estimates are substantially higher, it is well known that CRS substantially undercounts deaths

(Ravi, 2021a). Moreover, our estimates of excess deaths are closer to what estimates that correct

for undercounting in the CRS or that look at surveys other than CPHS find (Anand et al., 2021;

Deshmukh et al., 2021). Our preferred estimate is somewhat higher than the highlighted estimates

in those papers, but are within their range of estimates from those papers. Moreover, our estimate

implies an percentage increase in the death rate that is in line with the percentage increase found

in the US.

Ravi (2021b) has criticized CPHS as being inappropriate for measuring. (She has also criticized

the CRS for being incomplete.) She prefers that SRS be used to measure excess deaths because it

checks each death twice and has a sample size 10 times larger than CPHS.9 Checking deaths twice

will tend to reduce sampling error, but if this error is mean zero, it should have small effects given

our sample size of nearly 850,000 persons. Moreover, the precision benefits from sample size are

diminishing with sample size. So 8.5 million observations may not yield a much better estimate

than 850 thousand. An even better argument for considering CPHS is that SRS will not be made

9Ravi also notes that CPHS has an unexplaned spike in 2019. This spike is also in GPD estimates, but is smaller.
We addressed the 2019 spike in Section 2.2.3.
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Figure 9: Excess Deaths from CRS data

Notes. The excess deaths from CRS is calculated by subtracting the number of deaths per month in or after Feb
2020 from the number of deaths per month in 2018 and 2019. The data for Maharashtra, Punjab, West Bengal,
Haryana, Himachal Pradesh, and Kerala are obtained from Ramani (2021). The data for Karnataka, Madhya
Pradesh, Assam, Rajasthan, Chhattisgarh, Tamil Nadu, Bihar, and Andhra Pradesh were accessed through
Development Data Lab (http://www.devdatalab.org/).

available for 2 years. Moreover, because it is a government survey, it may be met with skepticism

about whether it is manipulated. No data set is perfect for measuring excess deaths from COVID,

but CPHS provides a reasonable, timely estimate.

If our measure of excess deaths is assumed to be due to COVID, that disease easily becomes

the leading cause of death in India. Prior to the pandemic, the leading causes of death were non-

communicable diseases: cardiovascular disease (2.57 million death annually), chronic respiratory

diseases (1.16 million annually) and neoplasms or cancers (0.93 million annually). The leading cause

of death from communicable disease was respirator illness and tuberculosis (0.86 million annually).

There are three reasons to believe our estimates are in part picking up the direct effect of

COVID. First, excess deaths follow a COVID-like age pattern. Second, excess deaths peak when

India’s two waves peak. Third, pandemic period deaths are correlated with the amount of infection

in a district.

Our analysis certainly has limitations. First, we do not know the cause of death. Therefore, it

is difficult to provide whether official COVID death counts are correct or not. We will attempt to

address this in follow-on work that will conduct verbal autopsies on the deaths in CPHS households
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since 2019.

Second, our data show a big jump in death rates in 2019. This might cast doubt on the validity

of our data or suggest that pre-trend that accounts for the mortality increase we observe. The fact

that our estimates of excess pandemic-related deaths are consistent with those from other sources

in India, suggests that our use of 2019 as a benchmark is valid for estimating that excess deaths.

The fact that there was a change in the age pattern of deaths from 2019 to 2020, but not from 2018

to 2019, suggests that changes in 2020 are not a pre-trend.

Third, we have to impute the timing of death because deaths are sometimes reported months

after they occur. We offer two solutions to the problem and they produce roughly similar results.

Moreover, alternatives such as the CRS have their own problems. CRS and SRS are undercounted.

CRS has a measurement error problem: death a reported where they occur not where people live;

so, in years past, death counts in some states were 100% what the SRS estimated.

Finally, one might be concerned about non-random response by households. However, unless

one includes households that did not respond for 12 months, our estimates of excess deaths do not

change substantially even though our sample comprise 95% of our sample.
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Appendix

A Estimating infections

We estimate infections in three steps. First, we obtain data from a population-representative

seroprevalence survey by the state of Tamil Nadu. The survey was conducted on 26,140 persons

from 15 October - 30 November 2020. The sample included individuals aged 18 and above who

provided informed consent. Details on the study and its estimate of seroprevalence are available

from Malani et al. (2021). The survey was designed to be representative for urban and rural areas

of districts and for demographic groups defined by age and gender.

Second, we extrapolate seroprevalence rates from this study to districts on 30 November 2020

based on the urban versus rural share of districts because urban share predicts more variability in

seroprevalence than demographics and demographics do not vary much across districts.

Third, we take the curve that describes each district’s new confirmed case over time (from

www.covid19india.org) and scale it vertically up so that the total sum of scaled cases until 30

November equals the districts population times its estimated seroprevalence on that date. The

resulting curve estimates the number of new individuals in a district infected with COVID on each

day.

We had lots of choices for serological studies to use for our scaling. We could not use them

all because they would yield inconsistent curves. Nor was there a clear way to combine them in a

meta-analysis sense. We chose to use only the Tamil Nadu study for several reasons. First, it has a

large sample size relative to other studies, e.g., the Karnataka study by Mohanan et al. (2021). It

was one of a few state-wide or bigger serological surveys. Second, the study provided district-wise

estimates unlike the national studies by the Indian Council for Medical Research Sharma (2021).

While the Tamil Nadu study generates estimates of infection that are larger than the ICMR’s first

3 rounds of serological surveys, it generates estimates that are in line with ICMR’s fourth survey,

which was conducted after wave 2. Third, we worked on the Tamil Nadu study, we knew the design

and could vouch for its quality. We also had access to the data from that study so could better

extrapolate from it to other districts.
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Table A1: Death rate by consecutive survey response status

Annualised death rates(%)

[1em] Pandemic -0.0265
(0.0547)

Respondent 0.267***
(0.0463)

Pandemic × Respondent 0.182**
(0.0638)

2019 Non-respondent mean 0.780***
(0.0426)

N 1907785

Notes. This table reports the results from regressing an indicator for whether an individual died against an indicator
for the duration of the pandemic, an indicator for the response status and the interaction of these two. The sample
includes individuals who are observed in month t and month t+8, about 64% of the entire sample. The dependent
variable for an individual in month t is whether their death status was reported by month t+8. Respondent is an
indicator for whether the individual also responded in month t+4, whether or not they were alive that month.
Observations on individuals are weighted to be nationally representative even with non-response. Standard errors
clustered at the village/ward × month level are reported in parentheses. */**/** indicates p < 0.05/0.01/0.001.

Table A2: Excess death rates for different samples of responders

Annualised death rates(%)
(1) (2) (3) (4)

Pandemic 0.250∗∗∗ 0.251∗∗∗ 0.301∗∗∗ 0.323∗∗∗

(0.0330) (0.0311) (0.0309) (0.0308)

2019 mean 1.038∗∗∗ 1.075∗∗∗ 1.083∗∗∗ 1.097∗∗∗

(0.0189) (0.0185) (0.0185) (0.0187)

Sample composition Responses Responses Responses All
4 mo apart 4/8 mo apart 4/8/12 mo apart

% of full sample 83 % 95 % 99 % 100 %
N 2816368 3214238 3334706 3382762

This table reports the results of the main regression where we regress deaths against a pandemic indicator. All deaths
are assigned to the month in the middle of the period when the individual was last surveyed and when they were
reported to be dead. The pandemic indicator is set to 1 iff the middle month is after Jan 2020. In the first column we
only include household responses in those months for which they responded again in the next round. In the second
and third columns we include response if the household responded in at least one of the next two and three rounds
respectively. In the fourth column, we include the entire sample. Standard errors clustered at the village/ward ×
month level are reported in parentheses. */**/** indicates p < 0.05/0.01/0.001
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B Non-random response

Table A1 provides estimates of the sort of bias one would get if one focused only on households

responding in consecutive rounds as opposed to on households that at least responded in round t

and t+2. The latter are about 64% of the sample. Table A2 present estimates of baseline death

rate in 2019 and excess deaths during the pandemic as we vary the sample to include more or less

non-consecutive respondents. The first column is our main sample of consecutive responders. The

second and third allow into the sample households that skip at most 1 and at most 2 rounds of the

survey, respectively. The last column includes all households. Adding non-responders increases our

estimates of baseline mortality and excess deaths during COVID. The estimates rise rather than

fall because none of the columns in Table A2 have the same sample as that in Table A1.

C Comparing different pandemic definitions

Table A3 presents a matrix of estimates of the baseline and excess death rate as we vary the

definition of the baseline period (columns) and the pandemic period (rows).

Table A3: Robustness of excess death rates to pandemic definition

Nov 2018 Dec 2018 Jan 2019 Feb 2019 Mar 2019

Dec 2019 0.25 0.22 0.20 0.19 0.16
0.99 1.02 1.05 1.06 1.08

Jan 2020 0.28 0.26 0.23 0.22 0.20
0.99 1.02 1.04 1.05 1.07

Feb 2020 0.30 0.27 0.25 0.24 0.22
0.99 1.02 1.04 1.05 1.06

Mar 2020 0.29 0.27 0.25 0.24 0.22
1.00 1.02 1.04 1.05 1.07

Apr 2020 0.33 0.30 0.28 0.28 0.26
0.99 1.01 1.03 1.04 1.06

Notes. This table presents a matrix of estimates of the baseline and excess death rate as we vary the definition of
the baseline period (columns) and the pandemic period (rows). The columns refer to the start date of the baseline.
The rows refer to the start date of the pandemic. Each cell contains an estimate of the annualized excess death rate
(top) and baseline death rate (bottom) based on (1).
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D Second solution to the timing-of-death problem

Our second solution to the timing-of-death problem produces implausibly variable and/or high

estimates of excess deaths from the pandemic.

Excess variability is illustrated in Figure A1 Panel A, which plots monthly excess death rates

(relative to 2019 rates) based on (a) estimating (2), but with month fixed effects instead of a

pandemic period indicator, and (b) using, importantly, observations only from households that

answer consecutive surveys. This solution produces a strong saw-tooth pattern with spikes every 4

months in the excess death rate. The reason for this pattern is that the second solution is premised

on the idea that a jump in month t is reallocated evenly across months t to t+3. The solution

corrects that by reallocating deaths from months 2-4 back to month 1. But a jump on observed

error may reflect a true increase in death rates, or an error in the roster. If the jump were a true

jump in death rates, that correction would be correct. But if it a positive error in month t, then

months t+1 to t+3 are inappropriately suppressed. The suppression ends disappears in month t+4

so month t+4 is higher than t+3. If there happens to be another positive shock in t+4, the pattern

repeats. We believe that is what was happening in Figure A1.

Including observations from households that may not answer consecutive surveys mitigates the

saw-tooth pattern (Figure A1 Panel B). Consecutive surveys are 4 months apart and, so, solution

2 reallocates positive jumps in deaths only over 4 months. When that is relaxed, some of the jump

is allocated over 4 months, some over 8 months, and so on. This dampens the 4-month cycles our

second solution generates from responders to consecutive surveys.

Estimates of excess deaths during the pandemic are higher when we use our second solution

than in our first solution. Table A4 reports our estimate of excess deaths using solution 2 for

various definitions of the pandemic period. If we only use observations from households that

answer consecutive observations, our estimate of the annualized pandemic period excess death rate

is 1.763 and significant if we use our preferred pandemic start date (February 2020). It falls to

0.497 and insignificant if we use all observations. The latter is partly due to the fact that deaths in

households that do not answer the last round of 2020 or the first round of 2021 are included but we

have not captured deaths in those households yet; they may report these deaths in future rounds.

As with our first solution, the excess death rate under the second solution falls as we move up the

start date and rises as we move it back.
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Table A4: Excess death rates under the second timing solution for different pandemic definitions

Panel A: Consecutive observations

Pandemic start Excess death rates Standard
month (Annualised rate (%)) error

Dec 2019 1.271 (0.611)
Jan 2020 1.150 (0.642)
Feb 2020 1.763 (0.625)
Mar 2020 1.897 (0.665)
Apr 2020 1.953 (0.711)
May 2020 2.275 (0.764)

Panel B: All observations

Pandemic start Excess death rates Standard
month (Annualised rate (%)) error

Dec 2019 0.453 (0.525)
Jan 2020 0.255 (0.552)
Feb 2020 0.497 (0.510)
Mar 2020 0.778 (0.542)
Apr 2020 0.928 (0.579)
May 2020 1.358 (0.622)

Notes. This table reports the excess death rates computed using the specification in equation 2.
The different rows represent different start dates for the pandemic period. The excess deaths
rates are the mean of the monthly death rates multiplied by 12. The table on the left only uses
observations from households that answer consecutive surveys. The table on the right uses all
observations.

Figure A1: Monthly death rates from second solution

Panel A: Consecutive observations Panel B: All observations

Notes. This figure plots monthly death rates for each month. The coefficients from regression 2
are plotted here. The indicator for month t is 1 for an observation if the month t is between the
month in which the individual was surveyed (including month of survey) and the month in which
the individual is next surveyed in (excluding the month of survey). The regression is weighted
using the individual’s weights. Results in Panel A use only responses from households that answer
consecutive surveys. Results in Panel B use responses from all households.
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E Age-wise deaths

Table A5 reports estimates of a regression based on (1), but on samples in different age bins.

It shows that the excess death rate during the pandemic is larger and significant in older ages.

Moreover, this age skew was more pronounced in the second wave.

Table A5: Excess death rate during the pandemic and its waves in different age groups

Panel A: Pandemic overall

(1) (2) (3) (4) (5) (6) (7)
0-17 18-29 30-39 40-49 50-59 60-69 70+

During Pandemic -0.0475 -0.0287 -0.0330 0.0223 0.195 1.542∗∗∗ 5.540∗∗∗

(0.0590) (0.0421) (0.0534) (0.0508) (0.117) (0.344) (0.938)

2019 mean 0.355∗∗∗ 0.318∗∗∗ 0.319∗∗∗ 0.405∗∗∗ 1.229∗∗∗ 4.175∗∗∗ 12.98∗∗∗

(0.0420) (0.0323) (0.0388) (0.0334) (0.0742) (0.189) (0.488)

N 585655 571141 350753 455934 347423 164896 78370

Panel B: By waves

(1) (2) (3) (4) (5) (6) (7)
0-17 18-29 30-39 40-49 50-59 60-69 70+

Wave 1 -0.0176 0.00249 -0.0467 0.0302 0.207 1.277∗∗ 2.162∗∗

(0.0710) (0.0488) (0.0566) (0.0585) (0.140) (0.423) (0.824)

Wave 2 -0.103 -0.0863 -0.00670 0.00806 0.172 2.007∗∗∗ 11.79∗∗∗

(0.0669) (0.0487) (0.0818) (0.0716) (0.157) (0.471) (1.077)

2019 mean 0.355∗∗∗ 0.318∗∗∗ 0.319∗∗∗ 0.405∗∗∗ 1.229∗∗∗ 4.175∗∗∗ 12.98∗∗∗

(0.0420) (0.0323) (0.0388) (0.0334) (0.0742) (0.189) (0.393)

N 585655 571141 350753 455934 347423 164896 78370

Notes. The sample includes households that respond in consecutive rounds. Observations on individuals are
weighted to be nationally representative even with non-response. The regression model in Panel A is (1); the model
in Panel B replaces the pandemic indicator in (1) with wave indicators. Each column reports estimates from a
different regression. Regressions for each category are run by restricting the sample to those in that age category
alone. Standard errors clustered at the village/ward × month level are reported in parentheses. */**/** indicates
p < 0.05/0.01/0.001.
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