
NBER WORKING PAPER SERIES

THE GEOGRAPHY OF REMOTE WORK

Lukas Althoff
Fabian Eckert

Sharat Ganapati
Conor Walsh

Working Paper 29181
http://www.nber.org/papers/w29181

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2021, Revised January 2022

An earlier version of this paper was circulated as “The City Paradox: Skilled Services and 
Remote Work.” We thank Milena Almagro, Nick Bloom, Joshua Coven, Don Davis, Jonathan 
Dingel, Ed Glaeser, Caitlin Gorback, Arpit Gupta, Tommaso Porzio, and Steve Redding for early 
comments and help with various data sources. We also thank the editor Gabriel Ahlfeldt and two 
anonymous referees for excellent comments that substantially improved the paper. The views 
expressed herein are those of the authors and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2021 by Lukas Althoff, Fabian Eckert, Sharat Ganapati, and Conor Walsh. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



The Geography of Remote Work
Lukas Althoff, Fabian Eckert, Sharat Ganapati, and Conor Walsh 
NBER Working Paper No. 29181
August 2021, Revised January 2022
JEL No. O33,R11,R12

ABSTRACT

Big city economies specialize in business service industries whose workers’ local spending in 
turn supports a large local consumer service industry. Business service jobs have a high remote 
work potential. If remote work becomes more prevalent, many business service workers may 
leave expensive cities and work from elsewhere withdrawing spending from the local non-
tradable service industries dependent on their demand. We use the recent COVID-19-induced 
increase in remote work to test for the strength of this mechanism and find it to be strong. As a 
result, low-skill service workers in big cities bore most of the pandemic’s economic impact. Our 
findings have broader implications for the distributional consequences of the US economy’s 
transition to more remote work.
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INTRODUCTION

The economies of big cities in the United States are dominated by service industries.
Their workforce is split into highly educated workers specialising in business services
and less educated workers in non-tradable consumer service industries (see Eckert,
Ganapati, and Walsh, 2020). The consumer service industry depends on the demand of
business service workers for service offerings like restaurants, haircuts, and childcare
(see Glaeser, Kolko, and Saiz, 2001). The relationship between these two groups of
workers is unbalanced: the livelihood of consumer service workers depends directly
on the local spending of high-skill business service workers, while the converse is not
true.

With improvements in technology and high-speed internet, many business service
jobs can now be done remotely, so that big cities’ specialization in business services
has translated into a specialization in remote work jobs. Until recently, this elevated
potential for remote work was inconsequential, since the vast majority of workers did
not make use of it (see Bloom, Liang, Roberts, and Ying, 2015). However, the recent
COVID-19 pandemic has accelerated the transition to actual remote work practices.

Such a transition is likely to affect business and consumer service workers differently
due to the differences in markets served. As high-skill service workers transition to
remote work, they become more mobile, and may leave big city centers with high
rents for regions with lower cost of living or different amenities. When they depart big
cities, they take their demand for consumer services with them. As a result, through
this ”mechanism,” the transition to remote work is likely to hurt consumer service
workers in big cities the most.

In this paper, we use the sudden rise in remote work during the COVID-19 pandemic
to study the strength of this mechanism in three steps.

First, we show that a large fraction of business services can be done remotely, and that
these jobs are concentrated in big, expensive cities. Together, these patterns generate
a positive relationship between population density and remote work potential. Me-
chanically, consumer services industries in large expensive cities are more exposed to
a rise in remote work from the location of business service workers. We show that this
relationship is active throughout the pandemic: cities with high population density
saw more than twice the share of its workforce work remotely than less dense cities.
Business service industries account for this gradient: more than 50% of their work-
force worked remotely during the first months of the pandemic, almost twice as much
as any other industry.

Second, we provide evidence that business service workers left their big city resi-
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dences during the COVID pandemic to work from elsewhere as remote work became
more prevalent. Cell phone data shows that ZIP codes with a higher share of busi-
ness service workers among their residents saw larger outflows of workers, and that
these workers relocated to places with lower population density. Corroborating these
findings, we also show that rents declined more the higher the pre-pandemic share
of business service workers in a ZIP code, and that proxies for work-from-home also
increased more in the same locations.

Third, we study the impact of the change of business service workers’ location deci-
sions on the consumer service industries they leave behind. Consumer service spend-
ing declined most in locations within cities that had a larger share of business service
workers among their residents at the start of the pandemic, with larger population
outflows. The same locations also saw larger declines in visits to consumer service
establishments of any kind. Worker-level data shows that consumer service workers
in big cities saw their hours decline more than consumer service workers in smaller
cities that were less reliant on business service industries. Simultaneously, hours of
business service workers show similar dynamics in both big and small cities, reflect-
ing that these workers do not depend on local demand. Overall, we show that non-
tradable service workers in big cities lost more hours of work during the pandemic
than their peers in smaller cities, or business service workers anywhere; they bore the
brunt of the pandemic economic impact.

Our findings highlight a one-way dependence of non-tradable service workers on the
local spending of workers in high-education business industries, and have implica-
tions for the transition to remote work more generally. For the longest time, workplace
proximity was central to workers’ residential decisions, keeping them in big cities de-
spite high costs of living. However, the transition to more remote work will affect
regions and workers differently depending on their remote work potential. With re-
cent pandemic as a guide, high-education service workers will benefit from increased
spatial flexibility and make use of remote work. Less-educated service workers will
suffer from their dependence on local demand, especially as they face greater mobility
constraints (Notowidigdo, 2020).

Big cities themselves face a dual threat: they may not only lose their increasingly mo-
bile high-skill workers but also the local consumer service economies these workers
support. As a result, such cities may shrink in size unless they manage to provide
advantages that justify the costs of urban density when residential choices are set free
from proximity-to-workplace considerations.

Related Literature. Our work contributes to an emerging literature on the nature and
implications of increased remote work in the US economy.

A set of recent papers have constructed occupation-based measures for remote work
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potential (see Dingel and Neiman (2020) and Mongey, Pilossoph, and Weinberg (2021)).
Many others papers validate these measure of remote work potential by compar-
ing them to actual work work from home percentages during the pandemic (Bar-
rero, Bloom, and Davis, 2021; Brynjolfsson, Horton, Ozimek, Rock, Sharma, and TuYe,
2020; DeFilippis, Impink, Singell, Polzer, and Sadun, 2020; Bick, Blandin, and Mertens,
2020). Our paper uses these occupation-based measures to show the strong relation-
ship between city population density and remote work potential in the cross-section of
all US cities, and validate it with actual remote work measures during the pandemic.
We also establish that industrial structure is the central determinant of this relation-
ship: a city’s business service employment share predicts its remote work potential
almost perfectly.

A related literature discusses the implications of the COVID-19 pandemic on the US
economy. A first set of papers focus on the heterogeneous impact on different types
of workers, e.g., Mongey et al. (2021), Chetty, Friedman, Hendren, and Stepner (2020),
Alon, Doepke, Olmstead-Rumsey, and Tertilt (2020), and Glaeser, Gorback, and Red-
ding (2020). A second set of papers focuses on the impact of remote work on city-level
outcomes, e.g., the location of residence (Ramani and Bloom (2021)), residential rents
and house prices (Liu and Su (2021)), and migration flows (Coven, Gupta, and Yao
(2020)).1 Our paper adds to this literature by highlighting two important determi-
nants of exposure to remote work not previously discussed. First, we provide direct
evidence for the difference in exposure of business and non-tradable service workers,
and offer a concrete economic mechanism explaining this difference. Second, our work
suggests that cities stand to be affected differently by the transition to remote work as
a result of their industrial specialization. 2

Our paper also relates to prior work documenting that big cities offer special returns
to skills and education, and increasingly less opportunity to more low-skill or low-
education workers, including Autor (2019), Eeckhout, Pinheiro, and Schmidheiny (2014),
and Davis, Mengus, and Michalski (2021a). Our work presents a concrete mechanisms
through which the transition to remote work hurts less educated consumer service
workers and benefits highly educated business service workers, further exacerbating
existing inequalities between these groups.

1Other papers have emerged documenting the reallocation of workers away from dense and expen-
sive locations, e.g., Couture, Dingel, Green, Handbury, and Williams (2021), Haslag and Weagley (2021),
and Florida and Ozimek (2021). De Fraja, Matheson, and Rockey (2021) extend our analysis to the UK
where they look at the incidence of work-from-home across neighborhoods.

2Theoretically, several papers trace out the general equilibrium implications of more remote work
for the allocation of workers within (see Delventhal, Kwon, and Parkhomenko (2021)) and across cities
(Delventhal and Parkhomenko (2020)). Generally these papers imply that residents that can work re-
motely reallocate away from initially expensive areas within cities, underscoring the core premise of
the mechanism we highlight.
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I. THE MECHANISM

In this section, we outline an extension of the classic Rosen-Roback model to formalize
our mechanism. Appendix C provides the equations underlying the results presented
here.

Setup. Consider an economy that consists of a set of locations. In each location, there
is a tradable and a non-tradable sector. We refer to the workers in the tradable sec-
tor as business service workers; workers cannot change sector but freely choose their
location. Locations differ in amenities and productivity for business service workers.
The productivity and amenities for non-tradable service workers are identical across
locations. We assume that the more tradable service workers are in a location, the
more congested are its amenities. This serves as a reduced form for the increased cost
of living.

Spatial Equilibrium. In equilibrium, the size of a city’s business service sector de-
pends only on the underlying productivity of a location and the amenities offered to
its workers. The size of the non-tradable service sector in a location is proportional to
the size of the local business service sector: non-tradable service workers depend on
the demand generated by the local business service sector. Business service workers
choose locations without regard to the size of the local market for their services, while
the location choices for non-tradable service workers are solely driven by market size.

A Remote Work Technology. We model the arrival of a remote work technology as a
sudden equalization of locations’ productivity for business service workers. This is a
stylized way of capturing that workers’ locations are less relevant to the productivity
of their work if remote work is feasible.

We are interested in the immediate impact of the arrival for a remote work technology
rather than a new steady state featuring it. Consequently, we assume that business
service workers can relocate in response to a remote work shock, while non-tradable
workers cannot.3

Predictions. The model predicts that business service workers leave formerly produc-
tive cities and move to less congested ones in response to a remote work shock. As a
result, the immobile consumer service workers see their wages decline most in the for-
merly most productive and attractive cities as the business service workers withdraw
their demand for local non-tradables.

A large literature documents that big cities are more attractive places to live (e.g., Di-
amond (2016), Eckert et al. (2020) ) and are more productive (e.g., Roca and Puga

3Notowidigdo (2020) provides direct evidence that low-skill workers move much less in response
to wage changes than high-skill workers. Our results continue to hold as long as relocation costs are
relatively higher for non-tradable compared to business service workers.
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(2017)). Given that, our theory hence makes the following testable predictions for the
direct effect of a remote work shock:

1. Big cities should see larger outflows of business service workers as remote work
becomes possible compared to smaller cities.

2. Average wages of non-tradable service workers in big cities should fall more
compared to non-tradable service workers in smaller cities.

The COVID-19 pandemic presented a remote work shock as it made such work possi-
ble and necessary for large parts of the US workforce. It gives an opportunity to test
the two predictions of our above theory.4

Before testing for our mechanism using data on the relocation of workers across ZIP
codes and local consumer service spending, we first document two empirical regular-
ities necessary for our mechanism to be operational. Business service workers were
actually much more likely to work remotely during the pandemic than other types of
workers, and that business service workers are disproportionately concentrated in big
expensive cities, so that they have an incentive to relocate once remote work allows
them to.

II. THE GEOGRAPHY OF REMOTE WORK

In this section, we show that business service workers have by far the highest remote
work potential, and are very concentrated in the largest US cities. Since dense cities
are expensive places to live, these facts implies that increases in actual remote work
may induce location changes of business service workers in line with our mechanism.
We also show that the increase in remote work during the recent pandemic followed
these patterns, making it a useful setting to test our mechanism.

II.1 Remote Work Potential Across Industries and Cities

We start by documenting that business services have substantially higher remote work
potential than other industries, and that they are concentrated in large and expensive
cities. We use the occupation-based work-from-home classification introduced by Din-
gel and Neiman (2020) and merge it onto micro-data from the American Community
Survey.5 We follow Eckert et al. (2020) and define business services as the following set

4The pandemic likely had another affect that interferes with these predictions. The pandemic forced
workers to stay at home, further equalizing amenities across locations. Such an additional equalization
of amenities generates interesting additional predictions which we discuss in Appendix C.

5We use the five-year American Community Survey files for 2014-2018.
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TABLE 1: AVERAGE EARNINGS AND REMOTE WORK POTENTIAL
BY INDUSTRY IN 2018

Industry Annual Income Remote Work
(USD) Potential (%)

Skilled Scalable Services (SSS) 84,000 79.6
Other Industries

Resources + Construction 54,900 19.7
Manufacturing 60,900 32.1
Trade + Transport 40,300 22.5
Education + Medical 48,500 50.6
Arts + Hospitality 22,600 14.4
Other Services 39,400 33.9

Notes: We use 2018 employment and income data from the pooled American Community Survey from
2014-2018. SSS includes NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020).
Resources + Construction includes NAICS industries 21, 22, and 23; Manufacturing includes 31, 32, and
33; Trade + Transport includes 42, 44, 45, 48, and 49; Education + Medical includes 61 and 62; Arts +
Hospitality includes 71 and 72; and Other Services includes 53, 56, and 81. We exclude the remaining
NAICS industries, 11 (agriculture, forestry, fishing and hunting) and 92 (public administration), from
our analysis. Annual income is computed as the average over an industry’s workers with non-zero
wage income measured in 2018-USD. Figures are rounded to hundreds. For remote work potential, we
use the occupation-specific “work-at-home” classification by Dingel and Neiman (2020). We drop data
for Alaska, Hawaii, and Washington, D.C., from our sample.

of 2-digit NAICS codes: 51 (Information), 52 (Finance and Insurance), 54 (Professional
Services), and 55 (Management of Companies), and as in that paper refer to them as
”Skilled Scalable Services,” or SSS for shorthand.

Table 1 shows the fraction of workers in each sector that could work from home ac-
cording to the Dingel and Neiman (2020) measure. SSS industries have the highest
potential for remote work: almost 80% of workers in the these industries could work
from home in theory. In addition, SSS workers also earn by far the highest average
incomes , making them an important source of demand for local consumer services
in their locations of residence. Figure A.1 in the Appendix shows that SSS industries
are overwhelmingly located in cities with high population density, generally also lo-
cations with a high cost of living.

Since most SSS jobs can be done remotely and are concentrated in big cities, big cities
inherit these services’ potential for remote work. The left panel of Figure 1 plots the
share of jobs that can be done remotely against commuting zone population density.6

6Following Glaeser and Kahn (2004), we compute the population density of a commuting zone as a
population-weighted average of the population density of its ZIP codes to take into account the spatial
distribution of residents within them.

6



FIGURE 1: REMOTE WORK POTENTIAL ACROSS CITIES
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Notes: We use occupation-level employment data from the pooled American Community Survey from
2014-2018. We use the occupation-specific “work-at-home” classification by Dingel and Neiman (2020).
To derive commuting zone population density, we follow Glaeser and Kahn (2004) in computing the
population-weighted average of the population density across commuting zones’ ZIP codes. We use
ZIP code total population from the 2015-2019 American Community Survey. The sample contains 722
commuting zones as defined by Tolbert and Sizer (1996) covering the entire territory of the states in the
sample. We drop data for Alaska, Hawaii, and Washington, D.C., from our sample.

The relationship is striking: the higher a city’s population density, the greater its po-
tential for remote work. In America’s densest cities, around 45 percent of local jobs
have the potential to be done remotely, corresponding to about 65 percent of the local
payroll. The difference between the remote work potential in terms of jobs and payroll
reveals that jobs that can be done from anywhere also pay higher wages on average.
In Section B.1 in the Appendix, we confirm that the share of business service work-
ers among the local workforce accounts for the the lion’s share of the elevated remote
work potential of denser cities.

In summary, business service industries have a very high remote work potential and
dominate big expensive cities in the US economy. These findings provide the initial
conditions for our mechanism: as remote work becomes more possible for these work-
ers, some of them are likely to leave big cities and withdraw demand from their local
service workers.

II.2 Remote Work during the COVID-19 Pandemic

The recent pandemic drastically lowered the relative cost of remote work and led
large parts of the US economy to start working remotely almost overnight (see Bar-

7



FIGURE 2: REMOTE WORK DURING THE PANDEMIC
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Notes: We use data on the fraction of people working remotely in each industry from the CPS’s sup-
plemental COVID-19 measures. The variable “covidtelew,” reflects whether or not a person has done
telework or work-from-home in the last four weeks because of the COVID-19 pandemic. In the right
panel, we order commuting zones by their population density and then split them into ten groups of in-
creasing density, each accounting for about one tenth of the US population. To derive commuting zone
population density, we follow Glaeser and Kahn (2004) in computing the population-weighted average
of the population density across commuting zones’ ZIP codes. We use ZIP code total population from
the 2015-2019 American Community Survey. We drop data for Alaska, Hawaii, and Washington, D.C.,
from our sample.

tik, Bertrand, Cullen, Glaeser, Luca, and Stanton, 2020; Bick, Blandin, and Mertens,
2020).7 In order to use the COVID-19 pandemic to study our mechanism of interest,
we now show that the pandemic-induced remote work in line with the ”potential for
remote work” predicitions above.

In May 2020, the US Current Population Survey (CPS) began to include monthly ques-
tions about remote work. The CPS reported a remote work rate of about 40 percent
for May 2020, in line with numbers from others surveys (see, e.g., Bick et al., 2020).8

A convenient feature of the CPS is the breadth of other individual-level information
contained in the data set, such as the initial location of residence and the industry of
the respondent.9

7Glaeser, Gorback, and Redding (2020) show that commuting to work substantially increased work-
ers’ risk of contracting COVID-19. Prior to the pandemic only 2.4 percent of Americans worked re-
motely – less than 1-in-15 of the 37 percent who could do so in theory – the remote work potential of
big cities had no tangible impact on city economies (see Mateyka, Rapino, and Landivar, 2012; Dingel
and Neiman, 2020).

8Bick et al. (2020) report about 31% of workers working remotely in May, with an additional 13%
working remotely part of the week. Brynjolfsson et al. (2020) report a number of 50% of workers work-
ing from home early on in the pandemic. The CPS reports the following percentages of remote work
from May through to December: 40%, 36%, 32%, 28%, 27%, 25%, 25%, and 28%.

9The location of residence is recorded in the first interview. Since the CPS operates in waves, most
of the respondents in the survey registered with their pre-pandemic address. We explain below how
pandemic-induced migration of CPS respondents affects our statistics.
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We use the CPS data to document the rise of remote work across cities and industries
during the pandemic. The left panel of Figure 2 shows the fraction of workers doing
remote work across industries. The fraction of SSS workers doing remote work is
more than twice as high as that of the rest of the US economy. At the same time, the
SSS employment share in the densest cities is more than double that of the least dense
cities (see Figure A.1 in the Appendix).

The right panel of Figure 2 shows the fraction of workers who worked remotely in var-
ious months of the pandemic for each of these ten commuting zone bins. To construct
the bins, we group commuting zones into ten bins of increasing density, each account-
ing for 10 percent of the US population.10 The pandemic-induced rise in remote work
was strikingly density-biased. In May 2020, more than 50 percent of workers in the
densest cities worked remotely, compared to only 23 percent of workers in the least
dense cities. The range of actual remote work shares is very close to that of the poten-
tial remote work shares shown in the left panel of Figure 1.

Figure A.3 in the Appendix replicates Figure 2, but controls for COVID-19 cases in
each industry and month (left panel) and commuting zone and month (right panel).
Controlling for COVID cases leaves the patterns qualitatively and quantitatively un-
changed: remote work in is not higher for SSS workers or big-city workers because
such workers are more exposed to COVID.11

While the overall level of remote work changes over the course of the pandemic the
urban-bias in remote work remains intact. The time variation for both panels seems
to only shift the overall level of remote work in the economy throughout the period.
Although the time series is short, the level of SSS workers continuing to work remotely
remains very high two years on (up from essentially nothing before the pandemic),
and is suggestive of a more permanent change in the structure of work.

In summary, the pandemic-induced remote work follows the prediction of the remote
work potential measure from Dingel and Neiman (2020): business services show the
highest level of actual remote work, and big, expensive cities have the largest fraction
of local workers working remotely precisely, because they are home to so many busi-
ness service workers. These findings suggest that we can use the pandemic to provide
evidence for our mechanism of interest.

10We follow Glaeser and Kahn (2004) in computing the population-weighted average of the popu-
lation density of the ZIP codes contained in a given commuting zone to derive commuting zone pop-
ulation density numbers. We use ZIP code total population numbers from the 2015-2019 American
Community Survey files.

11Figure A.4 in the Appendix plots the share of potential remote work shares against the actual remote
work shares for these ten commuting zone groups: in May 2020 the commuting zones lie along the 45
degree line suggesting that during the pandemic cities reached the full remote work potential predicted
by the Dingel and Neiman (2020) measure.
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III. THE MECHANISM IN THE DATA

In this section, we use the COVID-19-induced remote work shock to study the impact
of a transition to more work on business and non-tradable service workers.

III.1 Research Design

We document the impact of the pandemic-induced rise of remote work in two steps.
First, we show that business service workers are much more likely to leave their origi-
nal location of residence. Second, we show that consumer service workers dependent
on these business service workers are hurt in economic terms by the change in their
location choices. Our approach is designed to overcome two challenges.

A first challenge is that none of our outcome data (migration flows and measures of
consumer service spending) contain any individual characteristics. As a result, we use
cross-neighborhood variation in the share of local residents employed in the business
service industries at the beginning of the pandemic for our analysis. We show that
neighborhoods with a larger share of business service residents saw greater outflows
and a greater decline in demand for consumer services.

A second challenge is that urban density itself played a significant role in the prop-
agation of the COVID-19 pandemic: larger cities were hit earliest and hardest (see
Carozzi, Provenzano, and Roth, 2020; Coven et al., 2020). In response, many of these
cities imposed lock-downs that forced workers to work remotely and consumer ser-
vice establishments to close. Since population density and SSS employment shares
are highly correlated in the cross-section of cities, such policies create a correlation
between SSS employment shares, the rise of remote work, and declines in consumer
service demand across cities. To overcome this challenge, we define all outcome vari-
ables at the ZIP code or county level and control for city-level policies and disease
dynamics using month-city fixed effects.

We standardize all outcome variables by their standard deviation in that month. We
can thus interpret the coefficient on ”SSS employment share among local residents”
in a given regressions as “the increase in the number of standard deviations of the
outcome variable for a 1 percentage point increase in the local SSS employment share
among residents.”

III.2 The Mechanism in The Data

We first first provide evidence that ZIP codes that were home to more business service
workers pre-pandemic saw a larger outflows of workers to other locations. We then
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show the impact of these changes on the local consumer service industry in these ZIP
codes. Finally, we present additional city-level evidence for an aggregate implication
of our mechanism: the average consumer service worker in larger cities lost more
hours of work than their more rural counterparts. In Appendix A, we detail all data
used in this section.

Impact on Location of Work of SSS Workers. First, we show that within a given city,
the more a ZIP code’s residents work in SSS, the higher the losses in population and
the larger the increase in work-from-home. We use cellphone data from SafeGraph
to study a ZIP code’s cumulative change in local population relative to January 2020.
The first column of Table 2 shows that ZIP codes with a larger SSS employment share
among their residents saw larger population outflows.12 We control for commuting-
zone-month fixed effects and use only within commuting zone and month variation
to identify these effects.

In Figure A.2 in the Appendix, we also graph commuting zones’ population growth
against their population density: the rise of remote work led to a distinct reallocation
of workers from high- to low-density commuting zones. High-density commuting
zones saw almost a 10 percent decline in their local population by the fall of 2020,
whereas low-density commuting zones saw a more than 5 percent increase in the local
population.13 Together with the regression in Column 1 of Table 2, this suggests that
SSS workers were making use of their ability to work remotely, disproportionately
leaving their initial locations of residence.14

We provide two additional pieces of evidence that ZIP codes with more business ser-
vice workers saw higher remote work rates than other ZIP codes.

First, Column 2 of Table 2 shows the impact of the outflow of SSS workers on the local
rental market. The higher the local SSS share among residents, the larger the decline
in rental prices. The decline in rental prices continued throughout the entire year
and into January 2021, in line with the population outflow data (see Figure A.2 in the
Appendix).15 These findings suggest that business service workers left their locations
of residence at higher rates than other types of workers increasing the housing supply
in their former locations of residence.

Second, we consider a direct measure for staying at home provided by Facebook that
is available at the county-day level. It classifies someone as staying at home if they are

12Employment shares are expressed as fractions, i.e., they are bounded between zero and one.
13Davis, Ghent, and Gregory (2021b), Delventhal and Parkhomenko (2020), and Delventhal et al.

(2021) provide theoretical models of telecommuting in response to the pandemic whose predictions are
consistent with the empirical evidence we provide.

14Liu and Su (2021) provide a more comprehensive analysis of the effect of COVID-19-induced mi-
gration on housing prices throughout the United States. Cho, Lee, and Winters (2021) document early
evidence that employment effects of the pandemic are much larger in larger MSAs.

15Rosenthal, Strange, and Urrego (2021) provide similar results for commercial rents.

11



TABLE 2: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS

Growth in

Population Rental Prices Stay at Home Foot Traffic Consumer Spending
(SafeGraph) (Zillow) (Facebook) (SafeGraph) (Affinity)

SSS Employment Share ×
February 2020 -0.472∗∗∗ -0.485∗∗∗ 0.006 0.087

(0.058) (0.039) (0.009) (0.395)
March 2020 -0.158∗∗ -0.972∗∗∗ 15.418∗∗∗ -0.151∗∗∗ -1.838∗∗∗

(0.065) (0.078) (2.478) (0.012) (0.443)
May 2020 -0.640∗∗∗ -2.050∗∗∗ 15.392∗∗∗ -0.328∗∗∗ -6.195∗∗∗

(0.095) (0.181) (2.332) (0.023) (0.807)
September 2020 -0.346∗∗∗ -4.397∗∗∗ 8.241∗∗∗ -0.223∗∗∗ -3.870∗∗∗

(0.096) (0.401) (1.119) (0.023) (0.800)
January 2021 -0.198∗∗ -5.641∗∗∗ 8.903∗∗∗ -0.159∗∗∗ -4.758∗∗∗

(0.083) (0.551) (1.142) (0.021) (1.002)
May 2021 -0.313∗∗∗ -5.516∗∗∗ 4.440∗∗∗ -0.319∗∗∗ -2.960∗∗

(0.116) (0.820) (0.934) (0.046) (1.227)
September 2021 -1.234∗∗∗ -5.195∗∗∗ 1.686∗∗ -0.367∗∗∗ -2.965∗∗

(0.134) (1.128) (0.794) (0.061) (1.264)

CZ×Month-FE Yes Yes Yes Yes Yes
State-FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.082 0.823 0.944 0.018 0.758
Level of Observation ZIP ZIP County ZIP County
Observations 774,501 41,791 46,082 659,102 35,421

Notes: We combine the data sets of SafeGraph, Zillow, Facebook, and Affinity to measure local outcomes
at the ZIP- or county-level (see Appendix A). The dependent variable of all regressions is a standard
deviation in each outcome’s monthly percent growth over its January 2020 baseline (February 2020
if the data is unavailable prior to that). Appendix Table A.2 presents the same results in their non-
standardized version. We present estimates on the interaction of the local SSS employment shares and
time dummies. All regressions are population-weighted and control for commuting zone × time fixed
effects and state fixed effects. SSS employment share is the fraction of local employment in a commuting
zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We use ZIP code
total population from the 2015-2019 American Community Survey. We drop data for Alaska, Hawaii,
and Washington, D.C., from our sample. Standard errors are clustered at the commuting zone-level
and stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level, *
significant at the 10 percent level.
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not observed leaving an area of approximately 600× 600 meters around their home
address on a given day. We compute a county-level measure that captures the monthly
average likelihood of workers staying at home on a weekday. The “home” address is
assigned to users based on the location they usually stay in overnight.16 The third
column of Table 2 shows the increase in staying from home relative to March 2020 as
a function of the initial SSS employment share among residents. It shows that staying
at home increased particularly strongly in counties with a larger SSS share among
residents. The fact that work-from-home was more prevalent in ZIP codes with a lot of
SSS workers provides additional evidence that remote work may also have been more
prevalent in such ZIP codes, further supporting the findings from the population data
in Column 1.

Overall, within cities, out-migration was biased towards ZIP codes and counties with
disproportionate amounts of high-income, business service workers. For these SSS
workers, an essential part of what makes dense cities attractive are the opportunities
for local service consumption they offer (see Glaeser et al., 2001). As these workers
leave their original big city neighborhoods they take their expenditure on local con-
sumer services with them.

Impact on Consumer Service Industry. Next, we document the effect of SSS workers’
departure on the local economies of their resident ZIP codes. Using cellphone data
from SafeGraph, we compute changes in the visits to local consumer service establish-
ments, such as hotels, restaurants, coffee shops, bars, and barbers, for each ZIP code
in the United States.17 The change in such visits serves as a proxy measure for the
changes in demand for local services in these ZIP codes in a given month.

Column 3 of Table 2 shows the decline in visits to consumer service establishments
in each ZIP code as a function of the SSS employment share among its residents. The
decline in foot traffic into local service establishments tracks the population change
data closely. Within cities, ZIP codes with a larger share of SSS residents saw their
local consumer service visit decline significantly more.18 Of course, workers do not
only consume local consumer services in their ZIP code of residence.19 In Appendix
Table A.4, we replicate the regression in Column 4 of Table 2 but interact the month
with the SSS employment share among all workers in a given ZIP code. We find a qual-

16The Facebook measure could be interpreted as work-from-home measure if non-employed and
employed Facebook users behave similarly and people working from home are limiting their out-of-
home activities like shopping to a 600 meters by 600 meters area around their home.

17See the Appendix for the full list of establishment types we label consumer services in the Safe-
Graph data.

18This accords with the findings by Chetty et al. (2020) that low-skill consumer services workers were
hit hardest, particular in the richest ZIP codes of the United States. We document the mechanism behind
these findings: the changes in the geography of consumption of high-skill service workers.

19Work by Davis, Dingel, Monras, and Morales (2019) and others suggests that location of residence
is an important determinant of the location of consumption of consumer services such as restaurants.
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FIGURE 3: SSS RESIDENTS AND THE DECLINE IN CONSUMER SPENDING IN NEW
YORK CITY

-23% to -20%
-25% to -23%
-30% to -25%
-35% to -30%
-45% to -35%
-65% to -45%

Notes: The Figure shows the decline in consumer service establishment visits across New York City ZIP
codes in April 2020 relative to January 2020 as predicted by the share of SSS workers among the ZIP
codes’ residents combined with the estimated coefficients from Table 2. The commuting zone-month
fixed effect for April is implies a 38% decline in visits to consumer service establishments in the NYC
commuting zone relative to January 2020, compared to some reference commuting zone, for a ZIP code
without any SSS workers among its residents.

itatively similar but less strong effect consistent with evidence that much of workers’
consumption takes place around their homes (see Davis et al., 2019).

Data from Chetty, Friedman, Hendren, and Stepner (2020) further allows us to mea-
sure consumer spending directly but only on the county not the ZIP code level. The
consumer spending data provides total spending on consumer services by a county’s
residents.20 Column 5 of Table 2 shows the decline in consumer spending in each ZIP
code as a function of the SSS employment share among its residents. These results

20The spending is not necessarily only local in nature: workers may also spend around their work-
place and in other venues in the city. We only observe these data by county of residence and can hence
not analyse change in spending around work locations since we do not know where individual workers
work.
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corroborate the evidence from the cellphone data in Column 4: spending on consumer
services declined significantly more in locations home to more SSS workers.

The estimates in Table 2 are economically meaningful. As an example, consider visits
to consumer service establishments. In Figure 3, we color each New York City ZIP
code according to the decline in visits to consumer service establishments between
January 2020 and April 2020 implied by the SSS share among local residents combined
with our estimates from Table 2. For comparison, the NYC commuting zone fixed
effect for the month of April 2020 is −38%, which is the decline in consumer service
visits in a New York City ZIP code with no SSS workers among their residents relative
to some reference commuting zone. Affluent areas in Manhattan and Brooklyn, home
to many SSS workers, saw visits to local consumer service establishments decline by
twice as much as ZIP codes in parts of the Bronx and Brooklyn with less SSS workers
among their residents. Consumer service establishments in a hypothetical NYC ZIP
code without SSS residents would have seen a decline in visits of about 38% in April
whereas those in, say, the Upper West Side would have seen a decline of at least 80%
due to the many SSS workers among its residents.

We do not claim to obtain precise causal estimates of the impact of remote work on
local spending. It is not possible to control for all confounding unobservables at the
micro level without knowledge of what these may be. Nevertheless, our evidence
strongly suggests that the mechanism outlined in Section I is active and economically
important.

All conclusions drawn in the following analysis are robust to a number of additional
robustness checks we present next, including direct controls for neighborhood popu-
lation density and COVID-19 incidence.

Robustness Exercises. Our analysis uses commuting-zone-month fixed effects to con-
trol for variations in the incidence of the pandemic across commuting zones and for
commuting-zone-specific policies and restrictions. Of course, there is the possibility
that some of our economic outcomes are also affected by restrictions or COVID inci-
dence that vary across neighborhoods within the same city. If the incidence of COVID
cases or restrictions is correlated with the fraction of SSS workers, this could bias our
coefficient on the local SSS employment share. We conduct a set of checks to ensure
that such neighborhood level differences do not drive our results. We do not have sys-
tematic data on ZIP code level restrictions to directly control for such highly-localized
policies. Instead, we add controls for factors that are likely related to whether or not
a policymaker would put in place such restrictions, in particular the local incidence of
COVID cases.

Note that all our robustness checks replicate the regressions from Table 2 on different
samples but without normalizing the outcome variables by their standard deviation.
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For comparability, Table A.2 replicates Table 2 without normalizing each outcome vari-
able by its standard deviation.

Appendix Table A.5 shows that controlling directly for county-month level COVID in-
cidence leaves our estimates unchanged, suggesting they are not driven by, for exam-
ple, higher incidence in ZIP codes in which more SSS workers reside. Unfortunately,
we do not have data on COVID cases for all ZIP codes of the United States. In Ta-
ble A.9, we repeat our regressions but restricting ourselves to the cities for which we
have ZIP code level data: New York, Chicago, San Francisco, and Santa Clara. The
first three columns repeat the regressions for changes in population, rental prices, and
foot traffic for this subset of cities. The second three columns then add in ZIP code
level COVID cases per capita. Comparing the leftmost three columns to the rightmost
three columns shows that controlling explicitly for local COVID incidence does not
meaningfully change the estimated coefficients.

Additionally, we can proxy ZIP code level COVID incidence with ZIP code level pop-
ulation density since denser locations tended to have a higher incidence of COVID to
start with. In Table A.6, we repeat the regressions in Table 2 but control for local popu-
lation density on the ZIP code or county (depending on the regression). Doing so has
no meaningful effect on the regression coefficient estimates.

Finally, as an additional robustness check, we show that our findings are not driven by
the commuting zones in the top decile of population densities. We repeat the analysis
in Table 2 on a sample that excludes the New York City and San Francisco commuting
zones and find similar results.21

Cross-city Implications. Our mechanism suggests that since business service workers
were concentrated in large expensive cities prior to the pandemic, these cities should
see the largest outflows of such workers and the largest decline in demand for con-
sumer services during the pandemic.

We use the data from the Consumer Population Survey (CPS) to provide empirical
evidence for this implication. The CPS provides a direct measure of employment out-
comes for consumer service workers, weekly hours worked. Unfortunately, the CPS
data is not available for counties or ZIP codes, so that we cannot include it in our
analysis in Table 2.

The left panel of Figure 4 shows the decline in hours in SSS and non-SSS jobs in
high- and low-density commuting zones. We define dense commuting zones as the
most dense commuting zones that can jointly account for 50% of US employment in
2015. Strikingly, SSS workers were similarly affected regardless of where they worked,

21The top density decile in Figure 2 consists of New York and San Francisco only, since together
they account for 10 percent of US employment. Our regression in the Appendix highlight that the
relationship between work-from-home and density is similarly strong when they are excluded.
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showing how the ability to work remotely insulates workers from shocks to their local
labor market. The pandemic presented a much more severe shock to the hours of non-
SSS workers, including consumer service workers. Importantly, as predicted by our
mechanism, non-SSS workers in big cities are much harder hit than their counterparts
in small cities.

Together with the evidence in Table 2, the left panel of Figure 4 suggests that con-
sumer service workers in big cities see a larger demand shock than their small city
counterparts. The fact that the average SSS workers sees the same decline in hours in
both types of cities suggests that their economic shock was similar across cities. While
Figure 4 does not establish a causal relationship, it supports our narrative.

The right panel of Figure 4 provides further evidence that the difference between non-
SSS workers’ economic outcomes in big and small cities is related to differences in the
decline of consumer service demand between big and small cities. The figure shows
the time series of expenditure on consumer services and visits (”foot traffic”) to con-
sumer service establishments. Both time series show a steep decline between March
and April, abut a slower recovery in big cities. The two time series follow those for
non-SSS losses in weekly hours remarkably well. Alongside the evidence in Table 2
this suggests that demand for consumer services declined more in big cities as the SSS
workers that account for a large part of local consumption changed their consumption
habits, or worked from elsewhere.

The CPS data also reveals that by January 2021, non-SSS workers in the densest com-
muting zones accounted for almost 60% of all hours lost in the US economy in that
month relative to the previous year. At the same time these workers accounted for only
around 41.1% of all US workers, and 49.41% of non-SSS workers. In other words, non-
SSS workers in high-density commuting zones have borne a disproportionate share of
the pandemic’s economic fallout.

LOOKING AHEAD

The recent pandemic provides some insights into what a transition towards more re-
mote work may look like.

First, if the COVID-19 experience serves as a guide, the transition will be most disrup-
tive in the densest US cities. These cities employ the largest shares of workers able to
work remotely, but at the same time are the most expensive places to live. As work-
place proximity considerations become less important to residential decisions, these
cities stand to lose part of their workforce.

Second, the worker-level impact of the transition will be heterogeneous. High-skill
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FIGURE 4: EMPLOYMENT OUTCOMES DURING THE PANDEMIC
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Notes: The data on hours worked by industry comes from the Current Population Survey. SSS employ-
ment share is the fraction of local employment in a commuting zone in NAICS industries 51, 52, 54, or
55 (see Eckert, Ganapati, and Walsh, 2020). The left panel shows changes in weekly hours worked across
high- and low-density metropolitan areas and industry groups throughout the pandemic. Changes are
measured relative to the average worker in January 2020. The right panel shows the time series of
foot traffic into local consumer service establishment relative to January 2020 using the SafeGraph foot
traffic data. The right panel also shows the time series of consumer spending relative to January 2020
using the Affinity data. Dense locations are defined as metropolitan areas above-median population
density as well as unidentified places in states where commuting zones with above-median density do
not exist. We drop data for Alaska, Hawaii, and Washington, D.C., from our sample.

service workers gain flexibility in their residential choices. Such changes in residential
choices of high-income earners endanger the economic livelihood of low-skill service
workers in big cities who depend on local consumer services demand.22 As a result,
big cities may not only lose their high-skill service workers, but also the local consumer
service economies these workers support.

A more hopeful implication is that the transition to remote work could alleviate the
pressure on big cities’ housing markets (see Couture, Gaubert, Handbury, and Hurst,
2019). During the pandemic, SSS workers demonstrated a high willingness and ability
to relocate and big cities’ rents have declined substantially. Encouraging some of these
workers to move more permanently could help reduce rents in city centers.

The future geography of work and residence will depend on whether the advantages
of modern cities are primarily productive or in the quality of life they provide. In the
former, we could expect the prominence of large cities to diminish as remote work be-
comes feasible, whereas in the latter, large and consumption-rich cities like New York

22Almagro and Orane-Hutchinson (2020) and Almagro, Coven, Gupta, and Orane-Hutchinson (2021)
have pointed to another set of additional vulnerabilities of low-skill service workers in big cities: that
their face-to-face jobs have implied disproportionate contracting of the COVID-19 virus itself. Gath-
ergood and Guttman-Kenney (2021) is another paper focusing on changes in consumer spending in
response to COVID-related lockdowns in the UK. Lee, Park, and Shin (2021) show that beyond the dif-
ferential impact of the pandemic driven by industry of employment, gender, race and ethnicity, age,
and education level are important determinants of its impact on individuals.
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are likely to continue to thrive. The recent pandemic provides an interesting impetus
for further study on these questions. Using the continued aftermath of the COVID-
induced remote work shock to distinguish between the drivers of urban concentration
provides an interesting avenue for future research.
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APPENDIX

A. DATA SOURCES AND CONSTRUCTION

In this Appendix, we discuss our data sources, data construction, and sample selec-
tion. We use the following sources of data.

American Community Survey We use the American Community Survey (ACS) public-
use files provided by Ruggles, Sobek, Alexander, Fitch, Goeken, Hall, King, and Ron-
nander (2015). We use the classification of occupations into those that can be done from
home and those that cannot from Dingel and Neiman (2020). We apply their classifi-
cation to occupations in the ACS data to compute the fraction of jobs and the fraction
of payroll in occupations that can be done from home in each commuting zone. We
use the commuting zone classification by Tolbert and Sizer (1996) popularized in the
economics literature by Autor and Dorn (2013). We use the crosswalks provided by
Autor and Dorn (2013) to map Public-use Microdata Area (PUMA) identifiers in the
ACS data to commuting zones. We exclude the states of Alaska, Hawaii, and D.C. and
the agricultural and public sectors from our analysis.

Current Population Survey We draw on the Current Population Survey (CPS), a
monthly, nationally representative labor market survey conducted by the US Census
Bureau and provided by Ruggles et al. (2015).

We use data on weekly hours worked from the 2019-2020 CPS Monthly Basic (CPS-
Basic), a survey of approximately 60,000 households in the US. Each household is in-
cluded four consecutive months, then excluded for eight months, and is then included
for another consecutive four months. Data on earnings is drawn from the CPS Outgo-
ing Rotation Group (CPS-ORG). The CPS-ORG covers only households in the fourth
and eighth sample months and includes additional information not contained in the
CPS-Basic, such as earnings.

We exclude the states of Alaska, Hawaii, and D.C. and the agricultural and public sec-
tors from our analysis. While typically around 50,000 households respond to the CPS
each month, with the onset of the COVID-19 pandemic, response rates have dropped,
reducing the number to around 40,000.23

Facebook Work From Home Data We use county-level data on the fraction of resi-
dents who stay in a small area surrounding their home throughout a given day from

23For a detailed discussion, see https://cps.ipums.org/cps/covid19.shtml.
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Facebook’s Movement Range Maps. Every smartphone user who does not leave their
approximately 600 meters by 600 meters large home-tile is classified as somebody who
stays at home. Home-tiles are assigned to users based on the location they stay in
overnight. We only include weekdays in our analysis.

We assume that the fraction of people staying at home is a proxy for a fraction of
people working from home. Figure A.2 confirms that this proxy reflects the main
patterns in the fraction of people working from home measured by survey data, while
broadly underestimating the fraction in levels.

Only users of Facebook’s mobile application who opt into location history and back-
ground location collection are included. People whose location is not observed for a
meaningful period of the day are excluded before computing county-wide measures.24

For some counties the Facebook data is missing, we simply drop these counties from
our sample. All our graphs compute averages within density or SSS employment bins
over non-missing observations. As long as dropped counties are not very different
from other counties with similar population density or SSS employment, dropping
counties with missing data should not meaningfully affect our results.

The New York Times COVID Data We use data on the number of COVID cases
recorded by county from the New York Times. We first transform cumulative case
counts into absolute case counts. We then aggregate them from daily to monthly levels.
Lastly, we divide the number of new COVID cases by the county’s population.25

SafeGraph Data We use data on foot traffic by commercial point of interest (POI)
from SafeGraph. Each commercial POI corresponds to one of around six million
unique business locations in the US. SafeGraph provides the number of smartphone
users that each POI is visited by throughout the day. We use information on a busi-
ness’s industry to limit our analysis to consumer POIs. We then aggregate the total
number of visits to the industry-by-ZIP code level. We normalize the number of visits
by the total number of devices observed in the SafeGraph dataset in each month.

We define consumer service establishments to include the following categories as de-
fined by SafeGraph: Amusement Parks and Arcades; Beer, Wine, and Liquor Stores;
Book Stores and News Dealers; Clothing Stores; Department Stores; Drinking Places
(Alcoholic Beverages); Drycleaning and Laundry Services; Electronics and Appliances
Stores; Florists; Furniture Stores; Gambling Industries; General Merchandise Stores,
including Warehouse Clubs and Supercenters; Grocery Stores; Health and Personal

24For more information on the Facebook data, see https://research.fb.com/blog/2020/06/

protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/
25For more information on the New York Times data, see https://github.com/nytimes/

covid-19-data
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Care Stores; Home Furnishings Stores; Jewelry, Luggage, and Leather Goods Stores;
Lawn and Garden Equipment and Supplies Stores; Other Miscellaneous Store Retail-
ers; Other Motor Vehicle Dealers; Personal Services; Performing Arts Companies; Per-
sonal Care Services; RV (Recreational Vehicle) Parks and Recreational Camps; Restau-
rants and Other Eating Places; Shoe Stores; Specialty Food Stores; Spectator Sports;
Sporting Goods, Hobby, and Musical Instrument Stores; Traveler Accommodation;
and Used Merchandise Stores.

SafeGraph collects geolocation data from smartphone users though specific apps. The
data used in this paper is anonymized.

Ramani and Bloom (2021) find that workers moved from more dense to less dense,
more remote ZIP codes within Metropolitan Statistical Areas (MSAs) using USPS data
on individuals’ registered home addresses. Our findings of large outflows of dense
ZIP codes (and dense commuting zones) are consistent with their findings. Two fac-
tors contribute to the rate of cross commuting zone migration being larger in our data
than theirs. First, the commuting zones used in our paper are smaller than MSAs,
e.g., the New York MSA contains two commuting zones, one of which is much less
dense than the other. As a result, some of the relocation we observe across commuting
zones occurs within their MSAs. Second, our cell-phone data also captures tempo-
rary moves, while the USPS data only captures permanent moves which individuals
register with the Postal Service.

SafeGraph Population Data We use data on the number of smartphone users re-
siding in each ZIP code by SafeGraph. The data is derived from anonymized, aggre-
gated smartphone movement data. We normalize the monthly count of devices in
each county with the monthly growth of devices contained in the national data set.
The normalized monthly growth in devices by county is used as a proxy for popula-
tion growth. All our graphs compute averages within density or SSS employment bins
over non-missing observations.

We have successfully reproduced the migration patterns using other data sources,
such as PlaceIQ (provided by Couture et al., 2021), VenPath (e.g., used in Coven et al.,
2020), and DescartesLabs.

Couture et al. (2021) discuss the unique value that smartphone data creates by allow-
ing researchers to study movement and social contact of people in real-time. They
show that typically, these data cover a significant fraction of the US population and
that the samples represent the US population well. They show that estimating county
population using smartphone data captures 95 percent of the true variation in popula-
tion across counties as reported in the Census. The authors also provide evidence that
these data remained reliable throughout the COVID-19 pandemic.
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While we do not have access to USPS data on address changes ourselves, we use sec-
ondary sources to compare the migration patterns suggested by that data to our esti-
mates. The USPS data records address changes reported to USPS directly. Appendix
Figure A.6 replicates a study on local population changes based on the USPS data
by MyMove.26 The two data sets suggest similar magnitudes in population changes
across states. There are some discrepancies that may arise by the fact that our data cap-
tures moves of any kind while the USPS data only captures permanent moves reported
as address changes. The comparison study also computes a ranking of the cities with
the highest gains or losses in population. While we cannot compute relative changes
for their data, we can compare their ranking to ours. Their top-5 cities in population
gains consists of New York (NY), Brooklyn (NY), Chicago (IL), San Francisco (CA), and
Los Angeles (CA). The ranking suggested by our data (consisting of 17,057 cities as de-
fined by USPS) is Los Angeles (CA), Chicago (IL), New York (NY), Brooklyn (NY), and
Houston (TX). San Francisco (CA) ranks 7 in our data, and Houston (TX) ranks 8 in
theirs.

Track the Recovery Data We use data on daily consumer spending by county from
Affinity Solutions, provided by Chetty et al. (2020). The data consists of aggregated
and anonymized purchase data from consumer credit and debit card spending. Spend-
ing is reported based on the ZIP code where the cardholder lives, not the ZIP code
where transactions occurred. We use the 7-day moving average of seasonally adjusted
credit/debit card spending relative to January 4-31, 2020 in all merchant categories.27

USDA Natural Amenities Data We use the natural amenities scale provided by the
US Department of Agriculture. This scale “is a measure of the physical characteristics
of a county area that enhance the location as a place to live.” The measure is con-
structed as a composite of local temperatures, hours of sun, humidity, topography,
and water area. We aggregate the measure to the CZ-level by taking the population-
weighted average over a CZ’s counties.

Various COVID Case Data We use data on monthly COVID cases by ZIP codes
for Atlanta, Boston, Chicago, New York City, Philadelphia, San Francisco, and Santa
Clara. Only few cities provide a history of COVID cases at the ZIP code level. As
a robustness check, we use this limited sub-sample to show that our results are not

26https://www.mymove.com/moving/covid-19/coronavirus-moving-trends/
27“The Economic Impacts of COVID-19: Evidence from a New Public Database Built Using Private

Sector Data”, by Raj Chetty, John Friedman, Nathaniel Hendren, Michael Stepner, and the Opportu-
nity Insights Team. November 2020. Available at: https://opportunityinsights.org/wp-content/
uploads/2020/05/tracker_paper.pdf
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driven by differential exposure to COVID infections of ZIP codes within cities. We
thank Caitlin Gorback and Steve Redding for generously sharing their replication data
(Glaeser et al., 2020).

Zillow Data We use monthly data on ZIP-Code-level average rental rates for apart-
ments. The Zillow Observed Rent Index (ZORI) is a smoothed measure of the typically
observed market rental rate across ZIP Codes. Only listed rents that fall into the 40th
to 60th percentile range for all homes and apartments in a given region are included.28

We compute the average change in the ZORI index relative to January 2020 for all ZIP
Codes within a county.

28For more details on the methodology employed by Zillow, see https://www.zillow.com/

research/methodology-zori-repeat-rent-27092/.
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B. ADDITIONAL EXHIBITS

B.1 Remote Work Potential and Population Density:

The Role of Industrial Structure

Table A.1 shows that the relationship between remote work potential and population
density in the cross-section of commuting zones is almost entirely due to differences
in the fraction of local workers employed in tradable service industries.

Column 1 quantifies the relationship between commuting zone density and remote
work potential. This relationship becomes an order of magnitude weaker once we
control for the local SSS employment share (Column 2). Furthermore, the R-squared
rises from 0.2 to 0.8: most of big cities’ remote work potential is accounted for by their
specialization in SSS industries. Column 3 shows that controlling for the employment
share of all 2-digit NAICS industries improves the fit somewhat, by going from 1 to 19
industry shares. The fraction of college workers in the local labor force also adds little
explanatory power (see Column 4). Including the college share lowers the coefficient
on the SSS employment share somewhat, reflecting the fact that SSS industries are
skill-intensive by construction. In Column 5, we separately interact the local SSS em-
ployment share with local population density. The coefficient on the interaction term
is small and insignificant. Since the underlying remote work measure by Dingel and
Neiman (2020) is based on occupations, this suggests that the composition of occupa-
tions within SSS industries is similar across cities of different population density.29

SSS jobs tend to be done by highly-skilled workers (see Eckert et al., 2020). In Table
A.8, we replicate Table A.1 but replace SSS employment share with the college share of
employment. The college share alone also explains a high fraction of the remote work
potential, as the SSS share and the college share are highly correlated at the local level.
However, it is the nature of the job itself which fundamentally determines whether
the job can be done remotely, not the college status of the person doing the job. For
example, Dingel and Neiman (2020) find that only 5% of healthcare practitioners, a
highly-skilled worker group, can work from home. Indeed, in Figure A.5, we show
that throughout this period, both college and non-college workers in SSS saw higher
rates of working from home than college workers outside SSS. For these reasons, we
focus on the industrial determinants of remote work throughout the paper.30

29In other words, occupational composition is almost completely accounted for by variation in indus-
trial composition. The within-industry spatial variation in occupations (at least in terms of scope for
remote work) is very small.

30In addition, policy makers may find it easier to target industrial structure if they want to make big
cities more resilient to remote work shocks.
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TABLE A.1: REMOTE WORK POTENTIAL AND INDUSTRIAL STRUCTURE

Share of Local Jobs
That Can Be Done Remotely

(1) (2) (3) (4) (5)

Log Population Density 0.020∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.001 0.002
(0.002) (0.001) (0.001) (0.001) (0.004)

SSS Employment Share 1.293∗∗∗ 0.645∗∗∗ 1.284∗∗∗

(0.039) (0.059) (0.068)
Log Population Density × 0.011

SSS Employment Share (0.047)
College Employment Share 0.391∗∗∗

(0.033)

NAICS2 Employment Shares No No Yes No No
Adjusted R-squared 0.215 0.798 0.915 0.887 0.797
Observations 722 722 722 722 722

Notes: We use occupation-level employment data from the pooled American Community Survey from
2014-2018. We classify workers according to the occupation-specific “work-from-home” measure by
Dingel and Neiman (2020). The table shows the output of five regressions run for 722 commuting zones
(see Tolbert and Sizer, 1996) covering the entire territory of the United States. We drop Hawaii, Alaska,
and Washington, D.C., from the sample. SSS employment share is the fraction of local employment in a
commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). College
employment share is the fraction of workers with at least a college degree in a given commuting zone.
Log population density is standardized to have zero mean and unit variance. To derive commuting
zone population density, we follow Glaeser and Kahn (2004) in computing the population-weighted
average of the population density across commuting zones’ ZIP codes. We use ZIP code total popula-
tion from the 2015-2019 American Community Survey. Robust standard errors are stated in parentheses.
*** significant at the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent
level.

A - 7



FIGURE A.1: INDUSTRY EMPLOYMENT ACROSS CITIES
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Notes: We use industry employment data from the pooled American Community Survey from 2014-
2018. SSS employment share is the fraction of local employment in a commuting zone in NAICS in-
dustries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We order commuting zones by their
population density and then split them into ten groups of increasing density, each accounting for about
one tenth of the US population. To derive commuting zone population density, we follow Glaeser and
Kahn (2004) in computing the population-weighted average of the population density across commut-
ing zones’ ZIP codes. We use ZIP code total population from the 2015-2019 American Community
Survey. We drop data for Alaska, Hawaii, and Washington, D.C., from our sample.

FIGURE A.2: POPULATION GROWTH AND RENTAL HOME PRICES
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Notes: For the left panel, we use data from SafeGraph to construct a measure of local population growth
relative to January 2020 on the commuting zone level. For the right panel, we use ZIP-level data pro-
vided by Zillow on the price growth among rental homes. The series display changes in the population-
weighted average of rental prices relative to January 2020 in each commuting zone net of the national
median of price changes. To isolate price increases above and beyond national rental price inflation, we
then subtract the monthly national median change in the ZORI, i.e., the unweighted median increase
over all counties, from each county’s change. We order commuting zones by their population density
and then split them into ten groups of increasing density, each accounting for about one tenth of the
US population. To derive commuting zone population density, we follow Glaeser and Kahn (2004) in
computing the population-weighted average of the population density across commuting zones’ ZIP
codes. We use ZIP code total population from the 2015-2019 American Community Survey. We drop
data for Alaska, Hawaii, and Washington, D.C., from our sample.
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TABLE A.2: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS

Growth in

Population Rental Prices Stay at Home Foot Traffic Consumer Spending
(SafeGraph) (Zillow) (Facebook) (SafeGraph) (Affinity)

SSS Employment Share ×
February 2020 -32.579∗∗∗ -3.342∗∗∗ 3.139 1.616∗∗∗

(3.974) (0.271) (4.762) (0.000)
March 2020 -10.892∗∗ -6.700∗∗∗ 390.778∗∗∗ -77.824∗∗∗ -34.220∗∗∗

(4.492) (0.538) (62.819) (6.435) (0.000)
May 2020 -44.223∗∗∗ -14.136∗∗∗ 390.113∗∗∗ -169.835∗∗∗ -115.319∗∗∗

(6.592) (1.245) (59.098) (11.685) (0.000)
September 2020 -23.900∗∗∗ -30.322∗∗∗ 208.872∗∗∗ -115.389∗∗∗ -72.047∗∗∗

(6.617) (2.764) (28.369) (11.828) (0.000)
January 2021 -13.655∗∗ -38.905∗∗∗ 225.662∗∗∗ -82.291∗∗∗ -88.565∗∗∗

(5.707) (3.798) (28.956) (10.607) (0.000)
May 2021 -21.648∗∗∗ -38.039∗∗∗ 112.539∗∗∗ -165.150∗∗∗ -55.100∗∗∗

(8.034) (5.655) (23.662) (23.772) (0.000)
September 2021 -85.231∗∗∗ -35.824∗∗∗ 42.727∗∗ -189.984∗∗∗ -55.201∗∗∗

(9.270) (7.777) (20.119) (31.363) (0.000)

CZ×Month-FE Yes Yes Yes Yes Yes
State-FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.082 0.823 0.944 0.018 0.758
Level of Observation ZIP ZIP County ZIP County
Observations 774,501 41,791 46,082 659,102 35,421

Notes: We combine the data sets of SafeGraph, Zillow, Facebook, and Affinity to measure local out-
comes at the ZIP- or county-level (see Appendix A). The dependent variable of all regressions is each
outcome’s monthly percent growth over its January 2020 baseline (February 2020 if the data is unavail-
able prior to that). We present estimates on the interaction of the local SSS employment shares and time
dummies. All regressions are population-weighted and control for commuting zone × time fixed ef-
fects and state fixed effects. SSS employment share is the fraction of local employment in a commuting
zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We use ZIP code
total population from the 2015-2019 American Community Survey. We drop data for Alaska, Hawaii,
and Washington, D.C., from our sample. Standard errors are clustered at the commuting zone-level
and stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level, *
significant at the 10 percent level.
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TABLE A.3: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS
EXCLUDING NEW YORK CITY AND SAN FRANCISCO

Percentage Growth Since January 2020

Population Rental Prices Stay at Home Foot Traffic Consumer Spending
(SafeGraph) (Zillow) (Facebook) (SafeGraph) (Affinity)

SSS Employment Share ×
February 2020 -30.250∗∗∗ -3.212∗∗∗ 0.966 -2.369

(3.971) (0.317) (5.579) (8.133)
March 2020 -10.632∗∗ -6.440∗∗∗ 449.558∗∗∗ -84.276∗∗∗ -29.022∗∗∗

(5.056) (0.621) (47.803) (6.839) (9.920)
May 2020 -39.100∗∗∗ -13.480∗∗∗ 444.302∗∗∗ -182.663∗∗∗ -106.459∗∗∗

(5.931) (1.470) (44.384) (11.541) (15.672)
September 2020 -21.720∗∗∗ -28.641∗∗∗ 226.128∗∗∗ -123.488∗∗∗ -62.340∗∗∗

(6.583) (3.282) (30.947) (10.738) (16.390)
January 2021 -12.595∗∗ -37.630∗∗∗ 248.077∗∗∗ -87.039∗∗∗ -76.473∗∗∗

(6.097) (4.463) (33.283) (8.728) (19.131)
May 2021 -18.471∗∗ -38.040∗∗∗ 125.899∗∗∗ -184.382∗∗∗ -68.191∗∗∗

(8.264) (6.285) (28.649) (22.302) (21.571)
September 2021 -83.334∗∗∗ -37.115∗∗∗ 52.129∗∗ -225.702∗∗∗ -51.535∗∗

(9.948) (8.239) (25.455) (25.833) (26.150)

CZ×Month-FE Yes Yes Yes Yes Yes
State-FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.070 0.826 0.945 0.017 0.753
Level of Observation ZIP ZIP County ZIP County
Observations 752,871 38,285 45,502 638,523 34,863

Notes: This Table replicates Table 2, but excludes the top-decile of commuting zones in terms of popu-
lation density. We combine the data sets of SafeGraph, Zillow, Facebook, and Affinity to measure local
outcomes at the ZIP- or county-level (see Appendix A). The dependent variable of all regressions is
each outcome’s monthly percent growth over its January 2020 baseline (February 2020 if the data is un-
available prior to that). We present estimates on the interaction of the local SSS employment shares and
time dummies. All regressions are population-weighted and control for commuting zone × time fixed
effects and state fixed effects. SSS employment share is the fraction of local employment in a commut-
ing zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We use ZIP code
total population from the 2015-2019 American Community Survey. We drop data for Alaska, Hawaii,
and Washington, D.C., from our sample. Standard errors are clustered at the commuting zone-level
and stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level, *
significant at the 10 percent level.
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TABLE A.4: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS
MEASURING SSS EMPLOYMENT SHARES BY PLACE OF WORK

Percentage Growth in Foot Traffic Since Jan 2020
(SafeGraph)

SSS Employment Share ×
February 2020 3.431∗∗

(1.604)
March 2020 -25.145∗∗∗

(2.031)
May 2020 -45.063∗∗∗

(4.437)
September 2020 -43.928∗∗∗

(8.632)
January 2021 -33.419∗∗∗

(2.930)
May 2021 -53.334∗∗∗

(6.037)
September 2021 -30.768

(29.087)

CZ×Month-FE Yes
State-FE Yes
Adjusted R-squared 0.021
Level of Observation ZIP
Observations 542,929

Notes: This Table replicates Table 2, but measures the SSS employment share by place of work, rather
than place of residence. We combine the data sets of SafeGraph, Zillow, Facebook, and Affinity to
measure local outcomes at the ZIP- or county-level (see Appendix A). The dependent variable of all re-
gressions is each outcome’s monthly percent growth over its January 2020 baseline (February 2020 if the
data is unavailable prior to that). We present estimates on the interaction of the local SSS employment
shares and time dummies. All regressions are population-weighted and control for commuting zone ×
time fixed effects and state fixed effects. SSS employment share is the fraction of local employment in a
commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We use
ZIP code total population from the 2015-2019 American Community Survey. We drop data for Alaska,
Hawaii, and Washington, D.C., from our sample. Standard errors are clustered at the commuting zone-
level and stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.
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TABLE A.5: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS
INCLUDING CONTROL FOR LOCAL COVID CASES

Percentage Growth Since January 2020

Population Rental Prices Stay at Home Foot Traffic Consumer Spending
(SafeGraph) (Zillow) (Facebook) (SafeGraph) (Affinity)

SSS Employment Share ×
February 2020 -53.741∗∗∗ -3.260∗∗∗ 9.863 12.428∗∗∗

(8.192) (0.259) (9.137) (0.000)
March 2020 -11.571∗∗ -6.525∗∗∗ 389.916∗∗∗ -70.455∗∗∗ -34.157∗∗∗

(4.545) (0.570) (65.168) (6.730) (0.000)
May 2020 -45.612∗∗∗ -13.978∗∗∗ 394.125∗∗∗ -164.337∗∗∗ -115.176∗∗∗

(6.263) (1.253) (60.601) (11.419) (0.000)
September 2020 -25.126∗∗∗ -30.143∗∗∗ 213.192∗∗∗ -110.427∗∗∗ -71.540∗∗∗

(6.177) (2.737) (28.181) (12.683) (0.000)
January 2021 -13.754∗∗ -37.440∗∗∗ 235.258∗∗∗ -76.275∗∗∗ -83.761∗∗∗

(5.541) (3.775) (30.492) (12.003) (0.000)
May 2021 -22.841∗∗∗ -37.684∗∗∗ 117.274∗∗∗ -159.982∗∗∗ -54.311∗∗∗

(7.828) (5.677) (23.394) (24.484) (0.000)
September 2021 -84.914∗∗∗ -34.707∗∗∗ 54.641∗∗ -183.034∗∗∗ -48.554∗∗∗

(9.074) (7.813) (21.825) (32.178) (0.000)

Per-capita COVID cases Yes Yes Yes Yes Yes
CZ×Month-FE Yes Yes Yes Yes Yes
State-FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.083 0.817 0.937 0.018 0.760
Level of Observation ZIP ZIP County ZIP County
Observations 692,502 38,732 42,845 590,994 31,711

Notes: This Table replicates Table 2, but includes monthly COVID cases per capita on the county-level
as an additional control. The COVID data comes from Johns Hopkins Corona Virus Resource Cen-
ter (https://coronavirus.jhu.edu/). We combine the data sets of SafeGraph, Zillow, Facebook, and
Affinity to measure local outcomes at the ZIP- or county-level (see Appendix A). The dependent vari-
able of all regressions is each outcome’s monthly percent growth over its January 2020 baseline (Febru-
ary 2020 if the data is unavailable prior to that). We present estimates on the interaction of the local
SSS employment shares and time dummies. All regressions are population-weighted and control for
commuting zone × time fixed effects and state fixed effects. SSS employment share is the fraction of
local employment in a commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and
Walsh, 2020). We use ZIP code total population from the 2015-2019 American Community Survey. We
drop data for Alaska, Hawaii, and Washington, D.C., from our sample. Standard errors are clustered at
the commuting zone-level and stated in parentheses. *** significant at the 1 percent level, ** significant
at the 5 percent level, * significant at the 10 percent level.
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TABLE A.6: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS
INCLUDING CONTROL FOR NEIGHBORHOOD POPULATION DENSITY

Percentage Growth Since January 2020

Population Rental Prices Stay at Home Foot Traffic Consumer Spending
(SafeGraph) (Zillow) (Facebook) (SafeGraph) (Affinity)

SSS Employment Share ×
February 2020 -32.579∗∗∗ -3.323∗∗∗ 3.156 19.734

(3.974) (0.282) (4.764) (19.305)
March 2020 -10.892∗∗ -6.689∗∗∗ 357.117∗∗∗ -77.808∗∗∗ -30.039∗∗

(4.492) (0.544) (60.363) (6.434) (11.728)
May 2020 -44.223∗∗∗ -14.141∗∗∗ 361.047∗∗∗ -169.864∗∗∗ -111.176∗∗∗

(6.592) (1.245) (55.687) (11.703) (17.722)
September 2020 -23.900∗∗∗ -30.283∗∗∗ 179.936∗∗∗ -115.486∗∗∗ -67.946∗∗∗

(6.617) (2.760) (25.776) (11.806) (16.541)
January 2021 -13.655∗∗ -38.838∗∗∗ 196.663∗∗∗ -82.307∗∗∗ -84.464∗∗∗

(5.707) (3.807) (25.325) (10.617) (21.406)
May 2021 -21.648∗∗∗ -37.997∗∗∗ 83.464∗∗∗ -165.163∗∗∗ -50.999∗

(8.034) (5.643) (22.041) (23.780) (28.679)
September 2021 -85.231∗∗∗ -35.834∗∗∗ 13.589 -189.980∗∗∗ -52.150∗∗

(9.270) (7.748) (19.121) (31.367) (24.428)

Population Density Yes Yes Yes Yes Yes
CZ×Month-FE Yes Yes Yes Yes Yes
State-FE Yes Yes Yes Yes Yes
Adjusted R-squared 0.086 0.839 0.938 0.019 0.760
Level of Observation ZIP ZIP County ZIP County
Observations 774,501 41,791 42,845 659,102 31,711

Notes: This Table replicates Table 2, but includes county/ZIP code-level population density as an ad-
ditional control. We combine the data sets of SafeGraph, Zillow, Facebook, and Affinity to measure
local outcomes at the ZIP- or county-level (see Appendix A). The dependent variable of all regressions
is each outcome’s monthly percent growth over its January 2020 baseline (February 2020 if the data is
unavailable prior to that). We present estimates on the interaction of the local SSS employment shares
and time dummies. All regressions are population-weighted and control for commuting zone × time
fixed effects and state fixed effects. SSS employment share is the fraction of local employment in a
commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We use
ZIP code total population from the 2015-2019 American Community Survey. We drop data for Alaska,
Hawaii, and Washington, D.C., from our sample. Standard errors are clustered at the commuting zone-
level and stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.
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TABLE A.7: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS
INCLUDING CONTROLS FOR NEIGHBORHOOD POPULATION DENSITY

Percentage Growth Since January 2020

Population Rental Prices Foot Traffic
(SafeGraph) (Zillow) (SafeGraph)

SSS Employment Share ×
February 2020 -19.327∗∗ -11.356∗ 2.334

(8.689) (5.940) (26.581)
March 2020 9.587 4.188 -145.655∗∗∗

(21.078) (21.225) (26.199)
May 2020 -26.623∗∗∗ -9.809 -352.143∗∗∗

(9.820) (15.055) (63.910)
September 2020 -35.974∗∗∗ -50.962∗∗∗ -255.511∗∗∗

(7.507) (11.808) (47.511)
January 2021 -33.999∗∗∗ -71.979∗∗∗ -191.901∗∗∗

(8.279) (15.230) (31.276)
May 2021 -41.566∗∗∗ -96.599∗∗∗ -481.672∗∗∗

(12.355) (19.428) (97.759)
September 2021 -98.352∗∗∗ -67.935∗ 258.588

(9.019) (37.595) (667.729)

CZ×Month-FE Yes Yes Yes
State-FE Yes Yes Yes
Adjusted R-squared 0.528 0.456 0.098
Level of Observation County County County
Observations 175,791 5,875 178,316

Notes: This Table replicates Table 2, but aggregates ZIP code-level outcomes to the county-level. We
combine the data sets of SafeGraph and Zillow to measure local outcomes at the county-level (see Ap-
pendix A). The dependent variable of all regressions is each outcome’s monthly percent growth over its
January 2020 baseline (February 2020 if the data is unavailable prior to that). We present estimates on
the interaction of the local SSS employment shares and time dummies. All regressions are population-
weighted and control for commuting zone × time fixed effects and state fixed effects. SSS employment
share is the fraction of local employment in a commuting zone in NAICS industries 51, 52, 54, or 55 (see
Eckert, Ganapati, and Walsh, 2020). We use ZIP code total population from the 2015-2019 American
Community Survey. We drop data for Alaska, Hawaii, and Washington, D.C., from our sample. Stan-
dard errors are clustered at the commuting zone-level and stated in parentheses. *** significant at the 1
percent level, ** significant at the 5 percent level, * significant at the 10 percent level.
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FIGURE A.3: REMOTE WORK DURING THE PANDEMIC
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Notes: This Figure replicates Figure 2, but residualizes remote work with average per-capita COVID
cases within each month and density decile or industry. We use data on COVID cases by county from
the New York Times. We use data on the fraction of people working remotely in each industry from the
CPS’s supplemental COVID-19 measures. The variable “covidtelew,” reflects whether or not a person
has done telework or work-from-home in the last four weeks because of the COVID-19 pandemic. In
the right panel, we order commuting zones by their population density and then split them into ten
groups of increasing density, each accounting for about one tenth of the US population. To derive
commuting zone population density, we follow Glaeser and Kahn (2004) in computing the population-
weighted average of the population density across commuting zones’ ZIP codes. We use ZIP code total
population from the 2015-2019 American Community Survey. We drop data for Alaska, Hawaii, and
Washington, D.C., from our sample.
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FIGURE A.4: REMOTE WORK DURING THE PANDEMIC
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Notes: This figure relates commuting zones’ remote work potential to actual remote work. Each dot rep-
resents a CZ population density decile in a given month. For remote work potential, we use occupation-
level employment data from the pooled American Community Survey from 2014-2018. We use the
occupation-specific “work-at-home” classification by Dingel and Neiman (2020). For actual remote
work, we use data on the fraction of people working remotely in each industry from the CPS’s sup-
plemental COVID-19 measures. The variable “covidtelew,” reflects whether or not a person has done
telework or work-from-home in the last four weeks because of the COVID-19 pandemic. To derive
commuting zone population density, we follow Glaeser and Kahn (2004) in computing the population-
weighted average of the population density across commuting zones’ ZIP codes. We use ZIP code total
population from the 2015-2019 American Community Survey. The sample contains 722 commuting
zones as defined by Tolbert and Sizer (1996) covering the entire territory of the states in the sample. We
drop data for Alaska, Hawaii, and Washington, D.C., from our sample.
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FIGURE A.5: REMOTE WORK DURING THE PANDEMIC
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Notes: This Figure replicates the right panel of Figure 2, but splits workers into SSS and non-SSS workers
with and without at least a college degree. We use data on the fraction of people working remotely in
each industry from the CPS’s supplemental COVID-19 measures. The variable “covidtelew,” reflects
whether or not a person has done telework or work-from-home in the last four weeks because of the
COVID-19 pandemic. We drop data for Alaska, Hawaii, and Washington, D.C., from our sample.

FIGURE A.6: POPULATION CHANGE BY STATE
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Notes: This Figure computes the change in states’ population from February 2020 to August 2020. We
compute population changes based on data from SafeGraph and compare our estimates to those ob-
tained from USPS data on address changes (compare to the map in https://www.mymove.com/moving/

covid-19/coronavirus-moving-trends/). While the SafeGraph data captures both temporary and
permanent moves, the USPS data only captures reported permanent moves. Despite the different na-
tures of the data sets, the patterns are broadly consistent. We drop data for Alaska, Hawaii, and Wash-
ington, D.C., from our sample.
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TABLE A.8: REMOTE WORK POTENTIAL AND COLLEGE SHARES

Share of Local Jobs
That Can Be Done Remotely

(1) (2) (3)

Log Population Density 0.001∗∗∗ -0.008∗∗∗ 0.000
(0.000) (0.002) (0.000)

College Employment Share 0.632∗∗∗ 0.454∗∗∗ 0.464∗∗∗

(0.022) (0.055) (0.037)
Log Population Density × 0.036∗∗∗

College Employment Share (0.009)
SSS Employment Share 0.905∗∗∗

(0.095)
College Employment Share × -0.797∗∗∗

SSS Employment Share (0.192)

Adjusted R-squared 0.832 0.842 0.889
Observations 722 722 722

Notes: This Table replicates Table A.1, showing additional results for college employment shares. We
use occupation-level employment data from the pooled American Community Survey from 2014-2018.
We classify workers according to the occupation-specific “work-from-home” measure by Dingel and
Neiman (2020). The table shows the output of five regressions run for 722 commuting zones (see Tol-
bert and Sizer, 1996) covering the entire territory of the United States. We drop Hawaii, Alaska, and
Washington, D.C., from the sample. SSS employment share is the fraction of local employment in a
commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). College
employment share is the fraction of workers with at least a college degree in a given commuting zone.
To derive commuting zone population density, we follow Glaeser and Kahn (2004) in computing the
population-weighted average of the population density across commuting zones’ ZIP codes. We use
ZIP code total population from the 2015-2019 American Community Survey. Robust standard errors
are stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level, *
significant at the 10 percent level.
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TABLE A.9: THE IMPACT OF THE REMOTE WORK SHOCK ON CITY NEIGHBORHOODS
INCLUDING CONTROL FOR NEIGHBORHOOD COVID CASES

Growth in

Population Rental Prices Foot Traffic Population Rental Prices Foot Traffic
(SafeGraph) (Zillow) (SafeGraph) (SafeGraph) (Zillow) (SafeGraph)

SSS Employment Share ×
May 2020 -56.064 8.761 -168.917∗∗∗ -41.615 11.649 -168.744∗∗∗

(54.181) (10.753) (40.333) (53.271) (9.355) (41.507)
September 2020 13.549 -9.271 -131.207∗∗∗ 15.324 -8.871 -131.177∗∗∗

(46.805) (10.066) (29.502) (47.605) (9.349) (29.785)
January 2021 27.765 -15.001∗ -100.814∗∗ 69.088 -8.998 -100.400∗∗

(65.270) (7.804) (41.075) (95.303) (5.582) (45.668)
May 2021 14.152 -8.439∗∗ -105.274∗∗∗ 20.491 -6.522∗∗ -105.188∗∗∗

(46.064) (4.207) (15.697) (50.403) (3.135) (16.223)
August 2021 7.292∗∗ -2.397∗∗ -73.877∗ 8.251∗∗∗ -2.561∗∗∗ -73.869∗

(3.275) (1.017) (40.676) (2.373) (0.887) (40.590)

Per-capita COVID cases No No No Yes Yes Yes
CZ×Month-FE Yes Yes Yes Yes Yes Yes
State-FE Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.050 0.658 0.080 0.053 0.828 0.080
Level of Observation ZIP ZIP ZIP ZIP ZIP ZIP
Observations 5,543 2,468 5,494 5,543 2,468 5,494

Notes: This Table replicates Table 2, but controls for monthly COVID cases per capita at the ZIP code
level. We obtain data on COVID cases from the local government websites by New York, Chicago, San
Francisco, and Santa Clara between May 2020 and August 2021. For other cities, we were not able to
obtain panel data on COVID cases at the ZIP code-level. We combine the data sets of SafeGraph and
Zillow to measure local outcomes at the ZIP-level (see Appendix A). The dependent variable of all re-
gressions is each outcome’s monthly percent growth over its January 2020 baseline (February 2020 if the
data is unavailable prior to that). We present estimates on the interaction of the local SSS employment
shares and time dummies. All regressions are population-weighted and control for commuting zone ×
time fixed effects and state fixed effects. SSS employment share is the fraction of local employment in a
commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati, and Walsh, 2020). We use
ZIP code total population from the 2015-2019 American Community Survey. We drop data for Alaska,
Hawaii, and Washington, D.C., from our sample. Standard errors are clustered at the commuting zone-
level and stated in parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.
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C. A SIMPLE THEORETICAL FRAMEWORK

In this section, we modify the classic Rosen-Roback model in urban economics to for-
malize our mechanism.

Setup The economy consists of a discrete set of locations indexed by r = 1, ..., R. In
each location there are two sectors. Sector A employs workers who produce a homo-
geneous, traded good whose price serves as the numeraire. Sector B employs workers
who produce a non-tradable good with price pr. Both sectors have linear production
technologies that only use labor. Locations differ in their productivity for sector A, Zr;
productivity in sector B is the same for all locations.

Workers cannot choose their sector so that we refer to workers of type A and workers
of type B. We denote the number of workers of type A and B in location r by LrA and
LrB, respectively, and their total number in the economy by L̄A and L̄B. Locations differ
in amenities for traded good workers: Ar = ĀL−ρ

rA ; amenities for consumer service
workers are the same in all locations. All workers spend a fraction α on the local good
and the rest on the tradable good. Workers in both sectors are freely mobile.

Equilibrium In spatial equilibrium, the fraction of tradable workers in each location
is given by:

LrA =
[ĀrZr/pr]1/ρ

∑r[ĀrZr/pr]1/ρ
L̄A ≡ Z1/ρ

r Ā1/ρ
r L̄AΩA,

where we used the fact that wages of type A workers are equal to their marginal prod-
uct (Zr), and that pr = wrB = w̄B in spatial equilibrium. ΩA is a general equilibrium
object.

The total payroll, i.e., economic size, of the local consumer service sector then is:

wrBLrB = α [wrALrA + wrBLrB]

We can rewrite this as

wrBLrB =
α

(1− α)
wrALrA ⇒ LrB = Z1+1/ρ

r Ār
1/ρ L̄BΩB

where we used the fact that wages of type A workers are equal to their marginal prod-
uct (Zr), and that pr = wrB = w̄B in spatial equilibrium. ΩA is a general equilibrium
object.

In summary, in equilibrium, type A workers choose locations in which productivity
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and amenity for type A workers are high. Since their output is tradable, the size of
the local market for their good is irrelevant. Type B workers on the other hand choose
locations in which overall spending of type A workers is high, i.e., locations in which
in which productivity and amenity for type A workers are high. The reason type B
workers seek out such location is because the market for their non-tradable services is
large in these locations. This shows the sense in which, within a location, non-tradable
service workers depend on tradable sector workers for their livelihood.

A Remote Work Shock in the Model We think about a remote work shock as an
equalization of tradable good productivity across locations so that in a remote work
world Z′r = Z̄ > 0: it is no longer necessary to be in a certain location to access
the local production technology. Comparing the pre-shock and post-shock period, we
obtain d log Zr = log Z̄− log Zr.31

We are interested in the direct effect of a remote work shock, prior to adjustment to a
new steady state. Since our model is not dynamic, we need to make ad-hoc assump-
tions about the adjustments workers can make to a sudden shock. We assume that type
A workers can move in response to a remote work shock, whereas type B workers can-
not, to capture that fact that low-skill, consumer service workers are less responsive to
wage changes (see (Notowidigdo, 2020)). It is easy to amend our framework to allow
both types of workers to change location at different speeds.

We now establish the effect of a sudden remote work shock in our model.

Proposition 1. If tradable worker productivity is equalized across regions, relative non-tradable
worker wages of two regions r and r′ change as follows:

d log wrB/wr′B = (1 + 1/ρ) log Zr′/Zr

The proposition shows that for any two regions, the region with the higher initial wage
for tradable service workers sees a larger decline in demand for non-tradable service
workers, and a larger decline in their wages. Since big cities pay higher wages than
small cities, an empirical version of our model makes two testable predictions:

1. Big cities should see outflows of tradable service workers as remote work be-
comes possible and much less outflows of non-tradable service workers com-
pared to smaller cities.

2. Average wages of non-tradable service workers in big cities should fall more
compared to non-tradable service workers in smaller cities.

31For our mechanism it is irrelevant whether all locations inherit the productivity of the most or least
productive location in a remote work world.
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The Pandemic in the Model During the recent pandemic, going to work became
dangerous (Glaeser et al. (2020)) so that workers who could started working from
home. As such, the pandemic provided a remote-work shock, an equalization of pro-
ductivities across locations: suddenly New York workers no longer had to be in New
York to access New York productivity. Consequently, the pandemic allows us to test
the two predictions of our model for the immediate impact of remote work.

Many authors have argued that the pandemic had an additional effect: as workers
started to stay inside their homes and stopped interacting with local amenities it was
as if amenities across locations were equalized. We can hence think of the pandemic
as additionally reducing tradable sector workers’ amenities, so that Ar = Ā > 0, so
that they become more similar to other locations. But then the pandemic induces the
following shock to location r tradable worker productivity: d log Ar = log Ā− log Ar.

The following proposition establishes the effect of an equalization of amenities across
locations.

Proposition 2. If tradable worker amenities are equalized across regions, relative non-tradable
worker wages of two regions r and r′ change as follows:

d log wrB/wr′B = (1/ρ) log Ar′/Ar

The proposition suggests that an equalization of amenities has a similar effect of an
equalization of productivities: it makes tradable service workers leave location with
high amenities. Since in the cross-section of US cities, the largest cities are also gen-
erally the most attractive, the propositions imply that the pandemic lowers wages for
consumer service workers in big cities. Importantly, workers are only able to leave
locations due to amenity equalization if they can work remotely. As a result some of
the outflows we observed are only indirectly due to remote work and should reverse
once big city amenities can again be used.

Hence out model generates an additional prediction for a remote work shock during
a pandemic which forces people to stay at home and forgo amenity use: controlling
for the initial share of tradable workers, higher amenities should beget even larger
outflows of tradable service workers and larger reductions of non-tradable service
workers’ wages.

3. All else equal, effects (1.) and (2.) above should be stronger in cities with higher
pre-pandemic amenities.

Note that non-tradable workers are more affected by the equalization of productivities.
With only productivities equalized, non-tradable service worker wages are hurt both
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due to relative declines in big city tradable worker wages and a reduction in their
numbers. With only amenities equalized, non-tradable service worker wages are hurt
only due to a reduction in tradable service workers numbers, but not their wages.
Since the direct effect only works through labor supply in this case, the coefficient on
amenity changes is smaller than that in front of productivity changes.

A Suggestive Test of Prediction 3 We can conduct a simple test of Prediction 3.
above by taking this simple framework to the data on employment and wages across
space during this period.

We first need to calibrate a structural parameter, the disamenity term ρ. This parameter
controls how utility diminishes the greater the local population. It directly maps into
the local elasticity of employment with respect to wages, holding all other wages and
amenity terms constant, which is given by 1/ρ. We choose this to match the labor
supply elasticity of those with college degree in Diamond (2016), which is 5.5.

We next map the model to the data by assuming that workers in the A sector corre-
spond to workers in the SSS sectors (NAICS 51,52, 54 and 55). We use the American
Community Survey (ACS) for local headcount in these sectors at the commuting zone
level, giving us measures of Lr,SSS and Lr,Non-SSS.

We can then solve for the amenities (up to scale) by solving for Ar from

LrA = w1/ρ
r,SSS Ā1/ρ

r ,

Note that in this simple exercise, initial amenities will be highly correlated with total
population size, and so the results must be interpreted with caution.

Table A.10 presents the results of regressing commuting zone population growth be-
tween January 2020 and August 2021 on our derived amenity score and their pre-
pandemic SSS employment share. Throughout all specifications the coefficient on the
SSS employment share of a commuting zone is negative reflecting our mechanism: as
SSS workers move to remote work, they left their original cities of residence.

As predicted by the model the coefficient on the amenity score is negative, too: con-
ditional on an initial SSS employment share, cities with higher amenities saw even
more negative population growth. This finding is robust to controlling for an inter-
action (Column 3), to separately controlling for population density (Column 4), and
controlling for outflows in the initial phase of the pandemic (January to June 2020).

In Column 4, we use an alternative amenity score provided by the United States De-
partment of Agriculture. The ”USDA Natural Amenities Data” is an index of natural
amenities across US cities. We discuss this data in more detail in Appendix A. Reas-
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suringly the coefficient on the natural amenity score is also negative, again confirming
the prediction of the model: if workers value amenities less because ”being outside”
entails the risk of infection, locations with high initial amenities should see larger out-
flows.

If the pandemic recedes, it will be interesting to see whether workers return to high
amenity locations at a faster rate, too. In an recent paper, Ahlfeldt, Bald, Roth, and
Seidel (2020) show how to infer such quality of life residuals in a more rigorous way,
taking into account dynamic decisions of workers and not assuming a steady state.
Studying population growth across cities in the aftermath of COVID-19 using more
rigorously-derived quality of life residuals is an interesting avenue for future research.

TABLE A.10: POPULATION GROWTH AND AMENITIES

Population Growth
January 2020 to August 2021

(1) (2) (3) (4) (5)

Amenity Score -0.876 -14.844 8.630∗∗∗ -1.279
(4.561) (9.084) (3.138) (2.111)

SSS Employment Share -163.651∗∗∗ 242.284 -68.425∗∗∗ -153.453∗∗∗ -102.754∗∗∗

(20.031) (334.258) (18.413) (16.365) (12.695)
Amenity Score × 105.384

SSS Employment Share (86.736)
Log Population Density -5.231∗∗∗

(0.588)
Natural Amenity Score -1.180∗∗∗

(0.222)
Cumulative Population Outflow (%) 0.655∗∗∗

from January to June 2020 (0.067)

Adjusted R-squared 0.419 0.423 0.596 0.528 0.650
Observations 722 722 722 722 722

Notes: This Table shows how population growth (%) between January 2020 and August 2021 differed
across Commuting Zones (CZs) and their amenity scores. As the outcome, we use data from SafeGraph
to construct a measure of local population growth on the CZ-level. Amenity scores reflect the log-
transformed parameter Ar. We use data on the population, employment, and wages by sector and
CZ from the 2015-2019 American Community Survey (ACS). SSS employment share is the fraction of
local employment in a commuting zone in NAICS industries 51, 52, 54, or 55 (see Eckert, Ganapati,
and Walsh, 2020). To derive commuting zone population density, we follow Glaeser and Kahn (2004)
in computing the population-weighted average of the population density across commuting zones’
ZIP codes. Natural amenity scores are a composite measure determined by local temperatures, hours of
sun, humidity, topographic variation, and water area. from the US Department of Agriculture. We drop
data for Alaska, Hawaii, and Washington, D.C., from our sample. Robust standard errors are stated in
parentheses. *** significant at the 1 percent level, ** significant at the 5 percent level, * significant at the
10 percent level.
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