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caused by road damage. These impacts imply significant increases in social costs attributable to 
road damage.

Margaret Bock
Department of Economics 
Goucher College
1021 Dulaney Valley Road 
Baltimore, MD 21204 
margaret.bock@goucher.edu

Alexander Cardazzi 
Department of Economics 
West Virginia University 
1601 University Avenue 
Morgantown, WV 26506-6025 
alex.cardazzi@gmail.com

Brad R. Humphreys
Department of Economics
West Virginia University
1601 University Avenue, P.O. Box 6025 
Morgantown, WV 26506-6025
brhumphreys@mail.wvu.edu



1 Introduction

Highway safety represents a major concern to motorists and all levels of government. Sub-
stantial resources go toward ensuring its provision. For example, highway maintenance, a
form of transportation infrastructure investment which includes highway resurfacing, pothole
filling, guardrail replacement, and other actions that improve damaged pavement, accounted
for $51.4 billion in spending by all levels of government in 2017. This included $5.5 billion in
maintenance spending on the Interstate Highway System, and $16.3 billion in maintenance
spending on the larger Federal-Aid Highway System that includes US Highways and Minor
Arterial, Urban Collector, and Rural Major Collector Highway systems. 2017 expenditure
on new lanes and roads totaled $104 billion. States spend heavily on road maintenance. For
example, in 2018-19, the California Department of Transportation (“Caltrans”) increased
annual spending on road maintenance from $421 million to $576 million and spending on
road rehabilitation from $424 million to $994 million.

This level of government spending raises important questions about the relationship
between road quality and travel. Travel speed represents a key component of overall travel
costs (Couture et al., 2018), and rougher roads might reduce travel speeds, leading to longer
trips for personal and commercial vehicles and diminished response times for emergency and
commercial vehicles, generating deadweight loss. Maintaining smooth roads may lead to
increased traffic speeds and decreased crash rates.

Road quality represents a choice variable for government transportation agencies (Small
and Winston, 1988) and road damage can be repaired by maintenance. A few papers em-
pirically analyze specific road maintenance projects in terms of cost functions (Link, 2014)
and from a cost-benefit analysis perspective (Alqadhi et al., 2018). This literature generally
ignores any external social costs of road damage in terms of traffic safety and travel speed.

A large body of economic research analyzes highway safety but none focused on the
impact of road damage on safety and speed. Newbery (1988) investigated the economics
of road damage from a theoretical perspective, highlighting the fundamental importance of
road damage, but little subsequent empirical research addressed it. Duranton et al. (2020)
recently surveyed the state of US transportation infrastructure and economic research on
this topic. They identified research on the impact of road quality in terms of roughness as
an important area needing more attention. The lack of economic evidence on the impact of
road damage on traffic outcomes limits our understanding of the importance of road quality
in the context of transportation infrastructure investment policy (Winston, 2020).

We address this lack of evidence by empirically analyzing the relationship between high-
way roughness and traffic outcomes using spatially and temporally disaggregated data from
Federal-Aid Highway System (FAHS) roads in California over the period 2011-2019 to esti-
mate reduced form empirical models. Geospatial matching of pavement quality data from
the Caltrans Automated Pavement Condition Survey (APCS), traffic conditions and crash
data from the Performance Measurement System (PeMS) generated a comprehensive data
set for about 16,000 miles of FAHS highways in California at the one mile/one month level.

Results from an instrumental variables approach using proxy variables for distance to
groundwater under road segments reveal a substantial impact of road damage on both vehicle
crash rates and average speed. A one standard deviation increase in road roughness, as
measured by the International Roughness Index (IRI), causes an 11% decrease in average
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speed, holding other factors affecting speed like precipitation and temperature constant. A
one standard deviation increase in IRI causes an increase in vehicle crashes large enough
to move a safe road segment with no crashes in an average month to about 0.5 standard
deviations above the average crash rate over the sample period, a substantial decrease in
traffic safety. These results imply that road damage generates substantial social costs in
terms of higher vehicle operating costs, longer travel times, and less traffic safety.

2 Empirical Analysis

Three seminal papers on the economics of highway infrastructure investment motivate our
empirical analysis of the effect of road quality on vehicle crashes and speed. Road roughness
represents a measurable factor that can be improved by maintenance spending. Vickrey
(1969) identified traffic congestion, an externality, as an important driver of road investment
spending and also identified vehicle crashes as an important component of congestion costs.
Vickrey (1969) pointed out the lack of evidence that road quality affected traffic outcomes.
Developing evidence that road quality affects vehicle crashes and speed addresses this dearth
of evidence.

Vickrey (1969) motivated economic research on transportation infrastructure by identi-
fying vehicle crashes as a key source of congestion costs and analyzing the impact of trans-
portation infrastructure investment projects on congestion. Vickrey (1969) primarily focused
on congestion due to bottlenecks generated by limited capacity on specific road segments
and a comparison of toll-based solutions to construction of additional lanes on existing roads
to address congestion. Subsequent research on transportation infrastructure also focused on
the impact of adding additional lanes to existing highways to address congestion (Duranton
and Turner, 2011).

Newbery (1988) identified another important externality, damage to pavement quality
caused by vehicles using roads, that affects road investment spending. This paper explicitly
modeled the process through which roads become rougher with use and directly linked road
roughness to vehicle operating costs. Speed effects the rate at which vehicles burn fuel,
an important component of vehicle operating costs. Repair or vehicle replacement due to
crashes represents another important vehicle operating cost component.

Small and Winston (1988) pointed out that the rate at which pavement becomes rougher
over time reflects design decisions with important economic components and applied eco-
nomic methods to determine optimal pavement durability. This paper also identified key dif-
ferences between rigid and flexible pavement in terms of road deterioration. Small and Win-
ston (1988) paper estimated the costs of road deterioration and concluded that widespread
underinvestment in pavement durability exists. Evidence on the impact of rougher roads on
vehicle crashes and speed can help to understand the broader implications of underinvest-
ment in pavement durability.

These papers generally emphasized the importance of road maintenance expenditure
aimed at improving pavement quality, how to price the impact of road use to finance mainte-
nance, and how to inform optimal road construction and maintenance policies. Our analysis
extends this literature by focusing on the underlying relationship between road quality, which
reflects both construction/maintenance spending and past vehicle use, and traffic outcomes
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that reflect both social congestion costs and vehicle operation costs. This relationship is fun-
damental to economic models that inform optimal highway construction and maintenance
policies.

Duranton et al. (2020) pointed out the lack of empirical research on pavement roughness
and traffic outcomes in economics. The existing literature generally focuses on highway
spending and traffic volume (vehicle miles traveled), but not on crashes or speed. Two
papers investigated the relationship between road infrastructure spending and congestion
cost estimates based on traffic volume. Winston and Langer (2006) analyzed the relationship
between annual state level highway spending and congestion costs, proxied by a formula
accounting for delay time, fuel costs, and the value of passengers’ time. Lewis and Bajari
(2011) analyzed the relationship between individual highway maintenance projects and social
costs of delay proxied by a function of traffic volume, ad hoc estimates of delay times, and
delay costs per hour using data from California highways over the period 2003-2008. Koh
and Lee (2020) analyzed the impact of bridge closures in Pennsylvania on a similar measure
of social costs of delay. Kim (2020) found that speed increased on freeways in California
following maintenance-related lane closures, but the impact lasted for only about one year.

None of these papers analyze data on pavement quality, and none focus on crash rates
or speed. While traffic volume clearly affects congestion costs, a complex relationship exists
between between traffic volume and average speed, speed directly impacts vehicle operating
costs, and recent research points out the importance of vehicle speed independent of traffic
volume (Couture et al., 2018; Bento et al., 2020).

A few papers in the traffic engineering literature examine the relationship between mea-
sured International Roughness Index (IRI) on road segments and both vehicle speed and
crash rates. Wang et al. (2014) investigated the relationship between free-flow vehicle speed
and IRI in a linear regression model using data from California freeways over the period
2000 to 2011. The paper found a weak negative association between IRI and free-flow speed;
an increase of 63 inches/mile in IRI only decreased free flow speed by 0.3 mph across all
California freeways. Results from subsamples for northern, central and southern California
revealed decidedly mixed results, including a positive and statistically significant relation-
ship between IRI and free-flow speed in northern California, a negative and statistically
significant relationship in southern California, and no relationship in central California.

Yu and Lu (2014) analyzed IRI and average vehicle speed data for 32 separate, randomly
selected one mile segments of interstate highway in California for the first week of July and
the first week in September in various years over the period 2000 to 2006 using a fixed
effects regression model. The analysis found a small, negative, and statistically significant
association between IRI and speed. The results indicated that a IRI increase of 1 inch/mile
reduced average speed bu 0.008 MPH. Based on the 63 inch/mile increase reported by Wang
et al. (2014), that parameter estimate implies a 0.5 mph decrease in speed. Both papers
reported very weak associations between IRI and speed.

The evidence on association between IRI and crash rates in the traffic engineering liter-
ature is even thinner. Li and Huang (2014) and Mamlouk et al. (2018) undertook simple
analyses of the IRI/crash relationship. Li and Huang (2014) collected IRI and crash data
from 14,000 highway segments in Texas in 2008 and 2009. Segments were grouped into three
IRI quality bins (good, fair, poor). Simple difference in means tests showed higher crash
rates per 100 million VMT on road segments in the poor quality group compared to the other
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two. Mamlouk et al. (2018) collected IRI and crash rate data for one mile/one year highway
segments in Arizona, North Carolina and Maryland for various years from 2013 to 2015.
Fitted value plots from a sigmoidal function showed an increasing, nonlinear relationship
between IRI and crash rates that only increased at IRI values higher than 150 in/mi.

This limited evidence provides no clear consensus on the association between IRI and
speed, and the unconditional nature of the evidence on the IRI-crash rate relationship reduces
its usefulness. This literature makes no use of causal inference methods, a limitation we
address in this paper.

This paper focuses on Interstate Highways and US Routes in California in the Federal-
Aid Highway System. The California Department of Transportation maintains 60,756 lane
miles of Interstate Highway and 158,000 lane miles of Federal-Aid Highways, which includes
Interstate Highway and US Route lane miles.

California represents an interesting setting in terms of empirical research on pavement
quality because of the state’s expansive highway system and statewide variation in climate
and terrain. According to the Federal Highway Association, California has almost 400,000
road miles in total, behind only Texas (680,000 miles) and ahead of Illinois (300,000 miles).
Further, California is the most populous state by about 10 million people. California, unlike
Texas and Illinois, contains a variety of climate types which might age pavement differently.
Climate zones have this effect by way of humidity, precipitation, and temperature. California
has an environment conducive to studying highway conditions on a large scale, as well as
exploring the impacts of environmental factors on highway quality.

A 2018 report by the nonprofit organization TRIP, which researches surface transporta-
tion issues, assessed the condition of roads in California. The TRIP report reviewed the
state’s roads and bridges and evaluated congestion, safety, and pavement condition (TRIP,
2018). The TRIP report noted that 68% of major roads and highways are of poor or mediocre
condition. TRIP estimated that California’s road quality cost drivers over $22 billion dollars
in total, or $843 per driver, each year in additional vehicle operating costs using the Highway
Development and Management Model. This places a dollar value on one component of road
damage externalities.

The TRIP report also estimated the annual economic costs of traffic fatalities where
roadway features were a contributing factor, which represented about 1/3 of all fatalities, at
almost $10 billion. Clearly, road conditions have large effects on California drivers. These
costs also justify our focus on California highways.

2.1 Data Description

We assemble an analysis data set from multiple sources in Caltrans reflecting conditions on
FAHS road segments in the state over the period 2011-2019. The final data set spatially and
temporally merges data on road quality, traffic conditions, crashes, weather, and geographical
features of the terrain below and around road segments. In general, the merging occurs at
low levels of temporal and spatial aggregation using both latitude and longitude and highway
post mile to match data from different sources.

Spatial matching uses a master geo-location file from Caltrans, the SHN Postmile 0.1
mile interval file, referred to as the Postmile file. This file identifies each segment of road in
California by latitude and longitude, generally for 0.1 mile segments. This comprehensive
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road catalog serves as a crosswalk between traffic outcomes like vehicle speed, miles traveled,
crashes, and pavement quality data.

2.1.1 Traffic Outcomes

Data on traffic outcomes, including crashes, come from the Caltrans Performance Measure-
ment System (PeMS). PeMS collects and reports traffic conditions based on input from over
39,000 individual induction loop sensors on highways in California. Induction loop sensors,
oval or rectangular shaped wire arrays embedded in roadways with current running through
them, detect the presence of individual vehicles and the time each vehicle spends over the
sensor because the metal in vehicles interrupts the current flowing through the sensors. Cal-
trans converts traffic flow data from induction loop sensors into several traffic flow variables
at different levels of spatial and temporal aggregation for roads in the state through an
imputation process.

PeMS provides integrated real-time traffic conditions and access to archived traffic condi-
tions data through an Archived Data User Service (ADUS) containing more than ten years of
historical traffic conditions data. The PeMS ADUS provides detailed information on several
traffic flow measures, incidents on roads, and lane closures at user-selected temporal and
spatial levels.

The PeMS ADUS provides access to historical data on Vehicle Miles Traveled (VMT)
and Vehicle Hours Traveled (VHT) for all vehicles. We extract these variables for one mile
road segments averaged over one month time periods, our primary unit of analysis in the
empirical work. Extracting data at this spatial and temporal frequency provides us with
relatively disaggregated data that minimizes missing observations and facilitates matching
to data from other sources.

VMT reflects the total number of miles driven on a road segment by all types of vehicles.
For example, a VMT value of 100 over a one mile road segment over a month can reflect
100 vehicles traveling on this one mile road segment each day of the month or 200 vehicles
traveling on 15 days out of the (30 day) month and no vehicles traveling through on the
other 15 days of the month. Since we collect VMT data for one-mile road segments, VMT
also reflects the total number of vehicles that drove over the one mile segment on average
on each day in a month.

VHT reflects the number of hours spent on the road segment by all vehicles. For a given
VMT on a road segment, a higher VHT implies slower speeds on average, since more time
is spent on the segment. A high VMT and low VHT on a segment suggests a lot of cars
traveled over the segment and spent little time on it, suggesting faster speeds. Therefore,
these two measures can be used to generate average speed estimates over road segments
weighted by vehicle miles. VMT and VHT are tracked for total vehicles. PeMS also imputes
truck VMT and VHT for road segments.

The PeMS database also contains records for all traffic incidents that occurred on high-
ways in the state. The underlying data come from the California Highway Patrol and PeMS
integrates incident data into the ADUS. The PeMS traffic incident data contain information
on the date and time of each incident, a basic description code for the incident, and spa-
tial identification information for each incident such as district, county, freeway, direction of
travel, post mile marker, and latitude/longitude.
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PeMS traffic incidents include a wide variety of events including lane closures, weather
and congestion advisories, reports of debris in roadways, and crashes, among many others.
We focus only on incidents linked to vehicle crashes by limiting the incidents analyzes to
those with descriptions including words like “collision,” “hit-and-run,” and other similar
words and phrases.

2.1.2 Pavement Quality

An analysis of pavement quality requires information about the actual condition of road
surfaces. Our data on road surface conditions come from the Caltrans Automated Pavement
Condition Survey (APCS). The APCS employs customized vehicles equipped with sensing
equipment on roads at highway speeds. These vehicles collect continuous data on pavement
quality in the form of longitudinal and transverse profiles. We obtained detailed data from
the APCS through a direct request to Caltrans.1 The APCS data spans California’s entire
highway system and contains observations collected in three separate scan waves: Wave 1
(2011-12), Wave 2 (2015-16), and Wave 3 (2018-19).

Caltrans transforms continuous APCS road quality data to one-tenth of a mile (0.1
mile or 528 feet) road segments, called data collection segments (DCS). APCS road quality
data at the DCS level include International Roughness Index (IRI), other pavement quality
measurements like Alligator cracking, mean profile depth, rutting, information about the
surface type, and detailed location of each DCS segment’s start and end points.

IRI represents a commonly used measure of pavement quality. IRI reflects the number
of inches of vertical suspension travel experienced by a typical car traveling over one mile
of road (Duranton et al., 2020, pg. 6). A large IRI value for a road segment signals poor
overall pavement quality. Increasing IRI reflects rougher roads. Specific pavement defects
like dips, ruts, and potholes all increase a segment’s IRI.

Figure 1 shows the timing of road segment scans across the three APCS waves in the
context of the traffic conditions data described above. Each bar represents one month in our
sample period. Orange bars show highway segments with complete vehicle mile traveled and
vehicle hour traveled for that month from PeMS. Green bars show highway segments with
both IRI scans and highway conditions data. The overall sample contains monthly PeMS
data on traffic conditions for almost two million one mile highway segments. About 131,000
of these segments contain APCS scans in the corresponding month. The three separate
waves of APCS scans can be seen clearly on Figure 1. Wave 3 of APCS scans did not during
the winter of 2018-19.

Figure 2 shows the temporal and spatial distribution of APCS scans in the sample. No
systematic patterns appear in terms of specific areas always being scanned in the same month
of the year. In general, APCS scans of highway segments in the southern part of California
occurred in earlier months of the year (late winter and spring) and more northern highway
segments in the summer and fall months. This will be discussed in more detail in a later
section.

1These data are only available by request.
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Figure 1: Number of Observations with VMT/VHT and IRI Data

Note: Orange bars reflect the number of 0.1 mile highway segments with VMT/VHT observations in each

month of the sample. The green bars reflect the number of 0.1 mile highway segments with both IRI and

VMT/VHT observations.
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Figure 2: Automated Pavement Condition Survey Scan Timing: 2011-2019

Panel A: 2011 Scan Wave Panel B: 2012 Scan Wave

Panel C: 2015 Scan Wave Panel D: 2016 Scan Wave

Panel E: 2018 Scan Wave Panel F: 2019 Scan Wave

Note: Figures show Automated Pavement Condition Survey (APCS) scan timing and location by wave.

The APCS data also contain information about the surface material of scanned highway
segments. In general, highway pavement can be classified as either flexible or rigid. Flexible
and rigid pavements differ substantially on many margins, including construction and main-
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tenance costs, durability, and smoothness. In general, rigid pavement costs more per mile
and lasts longer, and has lower annual maintenance costs. The APCS generically identifies
segments surface type as either asphalt (flexible), concrete (rigid), or bridge, although these
terms refer to many different surface types. Caltrans defines asphalt pavement as

Pavement that has a surface consisting of an asphalt-bound layer, including but
not limited to hot-mix asphalt (HMA), rubberized HMA (RHMA), open-graded
mixes, chip seals, and other asphalt-bound surface treatments. Asphalt pavement
can be flexible, semi-rigid and composite pavement structure.

and concrete pavement as

A concrete pavement type that is made of concrete with continuous longitudi-
nal steel reinforcement and no intermediate transverse expansion or contraction
joints. There is one type of concrete surface but three types of concrete pave-
ments: jointed plain concrete pavement (JPCP), precast pavement, and contin-
uously reinforced concrete pavement (CRCP). Precast pavements are rated the
same way as JPCP.

We will refer to all flexible pavement as “asphalt” and all rigid pavement as “concrete” for
the sake of clarity, recognizing the heterogeneity of actual pavement types represented by
these terms.

Pavement type represents a design choice made by highway departments. Small and
Winston (1988) investigated the impact of different pavement types on pavement durability
and found substantial differences. Figure 3 shows pavement types for the analysis sample
of FAHS highways. Southern California, and to a lesser extent the Bay and Capital areas,
contains mostly concrete pavement in the urban, coastal areas. Segments in less populated
areas tend to be asphalt.

We drop all bridge segments from the data used in the empirical analysis. Given the many
differences in the characteristics of asphalt and concrete pavement, we estimate regression
models using pooled asphalt and concrete segments with an indicator variable for pavement
type, and separate regression models for each pavement type.

The APCS manual mentions the presence of mixed lanes (“It is possible that two surface
material types coexist in the same data collection segment, or that one lane includes a
longitudinal joint between JPCP slabs, or strips of CRCP. This often reflects road widening
when new lanes use a different surface material than existing lanes. APCS identifies these
segments as “mixed lanes.”) We also drop all mixed lane segments from the analysis sample,
since no clear method to empirically address this surface heterogeneity exist. Mixed lanes
represent 274 one mile segments, or about 1.7% of the sample.

The sample data contain substantially more highway segments with traffic conditions
data than segments with traffic conditions and matched contemporaneous IRI data. IRI
scan data can be matched to about 6% of the segments with PeMS traffic conditions data.
However, expanding the sample to include segments with no contemporaneous IRI scan data
would require interpolation of the IRI data to periods between scans. While road roughness
generally deteriorates with truck VMT (Small and Winston, 1986; Newbery, 1988), we lack
information on truck VMT and resurfacing projects. This complicates interpolation of IRI
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Figure 3: Pavement Types

Note: Map shows the spatial distribution of pavement types for California FAHS segments.
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for highway segments between IRI scans. The next section addresses the major issues of
pavement deterioration over time and interpolation.

Changes in Pavement Quality over Time Standard economic models of pavement con-
struction and maintenance assume that road segments deteriorate over time as vehicles pass
over them (Newbery, 1988; Small and Winston, 1988). This assumption rests on accelerated
pavement wear experiments conducted by the American Association of State Highway Offi-
cials (AASHO) in the early 1960s. These experiments repeatedly drove trucks with variable
load weights over test track road segments to simulate pavement wear. The experiments
concluded that only truck traffic generated significant declines in the smoothness of road
segments and that the deterioration increased with the fourth power of the truck axle load-
ings, expressed in in terms equivalent single axle loads (ESALS), defined in units of 18,000
pounds per axle. Small and Winston (1988) discussed this experiment and described it as
“badly flawed.” This remains the primary source of information about the impact of traffic
on pavement quality.

Small and Winston (1988) and Newbery (1988) developed models of optimal road dura-
bility and pricing to generate funds to repair roads under general conditions. While both
models provide considerable insight into economic decisions faced by road policy makers,
these models address economic issues beyond the basic idea of the depreciation of roads
due to use and weathering. A simple model of pavement deterioration based on standard
economic models of capital investment and depreciation can help to understand observed
changes in pavement quality over time in our data.

Let IRIs,t represent the quality of pavement segment s in period t as captured by an IRI
scan in period t and IRIs,t−k represent the quality of a pavement segment scanned k periods
in the past. In this notation ∆IRIs,t,t−k = IRIs,t − IRIs,t−k represents the observed change
in pavement quality for pavement segment s from period t−k to period t. Pavement quality
can deteriorate over time (∆IRIs,t,t−k > 0) because of the number of ESALs, primarily from
trucks, that pass over the segment between period t−k and period t and because of weather-
ing occurring during this period. Pavement quality can increase over time (∆IRIs,t,t−k < 0)
because some pavement maintenance or repavement occurred between period t−k and period
t.

A simple expression for the observed quality of pavement segment s in period t that
reflects these factors can be written

IRIs,t = δV Ls,t,t−k × IRIs,t−k + ρRs,t−k (1)

where V Ls,t,t−k reflects total vehicle loadings traveled over segment s from t− k to t. Rs,t−k

reflects any maintenance performed on segment s from t−k to t. δ (> 0) captures the depre-
ciation rate of segment s due to both use and weathering. ρ (< 0) captures the effectiveness
of maintenance or repavement projects in improving pavement quality.

The parameter δ provides important information about pavement deterioration over time.
Small and Winston (1988) emphasized that δ depends on design features of road segments
and that choices about these design features affect the size of δ. In principal, Equation (1)
could be substituted into the expression for ∆IRIs,t,t−k to generate a regression model that
could be used to estimate δ. However, data limitations make that approach problematic
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Figure 4: Scatter Plots of IRIs,t−k versus IRIs,t

for Individual Road Segments

Note: These figures show IRI measurements for segment in consecutive scans depending on the length of

time between scans. According to Figure A2, the most common lengths of elapsed time are 1-2 months, 9-12

months, and 22-26 months.

in our case. We lack detailed information about repavement and maintenance captured by
Rs,t−k.

2 We also lack accurate information on truck vehicle miles traveled for road segments.
PeMS reports only estimates of total vehicle miles traveled for highway segments. Again, the
AASHO experiments conducted in the early 1960s found that only truck ESALS damaged
pavement.

We observe both ∆IRIs,t,t−k and k for a large number of 0.1 mile road segments. We
develop stylized facts about ∆IRIs,t,t−k from this novel data source, abstracting from the
impact of vehicle loadings on segment IRI (in other words we assume V Ls,t,t−k is constant
across time periods and normalize this to 1). From Equation (1), the smaller k, the less
likely a pavement maintenance project occurred on a segment between period t − k and t.
Our assumption about the impact of V Ls,t,t−k on δ also becomes more realistic for smaller
values of k.

We first examine actual changes in IRI between scans for different ranges of values for

2PeMS contains information about the timing and location of lane closures for specific road segments.
However, these data contain limited information about what activities occurred during these lane closures.
Lane closures could reflect mowing, guardrail repair, shoulder work, lighting repair, or other activities not
related to pavement maintenance. Kim (2020) analyzes the impact of lane closures identified in PeMS on
subsequent traffic volume and speed under the assumption that lane closures represent road work.
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k. Appendix Figure A2 shows the distribution of number of months that elapsed between
APCS scans (k) for each pavement segment in the sample. A number of notable features
appear on this figure. First, from the left end of the figure, the data contain a relatively
large number of segments scanned one to two months apart. The next most common time
period between IRI scans is roughly 9 to 12 months. This will be useful for comparing APCS
data to Highway Performance Management System (HPMS) pavement quality data, which
we undertake below. Another smaller peak occurs at roughly 24 months.

Figure 4 shows a scatter plot of IRI measurements for individual 0.1 mile pavement
segments at time t − k and t where k is 1 to 2 months on the left panel, 9 to 12 months
(roughly 1 year) on the center panel, and 22 to 26 months (roughly 2 years) on the right
panel. These groups of time intervals roughly match the distribution of time between scans
on Appendix Figure A2 .

The black dashed 45o line on Figure 4 identifies segments with no change in IRI from
period t − k to period t (segments where ∆IRIs,t,t−k = 0). Points above this line identify
pavement segments with higher IRI (rougher pavement segments) in the current scan rel-
ative to the previous scan. Points below this line identify pavement segments with lower
IRI (smoother pavement segments) in the current scan relative to the previous scan. The
red line represents the fitted values from an OLS regression model where IRIs,t is the de-
pendent variable and IRIs,t−k is the explanatory variable. The slope parameter is a rough,
unconditional estimate of δ.

The left panel of Figure 4 reveals substantial noise in segment IRI scan values with very
short periods (1 to 2 months) between scans. Conversations with Caltrans traffic engineers
confirmed that IRI scans contain substantial noise. These observed IRI differences reflect
relatively limited effects of ESALS and weathering, since only 30 to 60 days of loadings
occurred between the two scans. Pavement surface maintenance projects likely affect few
segments over this short a time period. Rougher segments, located farther to the right on
the left panel of Figure 4, would be more likely to undergo some sort of maintenance than
smoother segments located further to the left if Caltrans targets extremely rough segments
for maintenance of some form.

The slope of the OLS regression line for the left panel of Figure 4 is 0.63, implying
that relatively smooth segments tend to get rougher and relatively rough road segments
tend to get smoother. The fitted values from the OLS regression model cuts the 45o line
at IRI 98. Segments with IRI greater than 98 were, on average, smoother in the next
scan. This roughly corresponds with an IRI of 95, the APCS Manual cutoff level between
low and medium roughness segments and probably reflects pavement maintenance projects
undertaken because of this cutoff.

The regression parameter estimates for k = 1, 2 suggest that a smooth pavement segment
with IRI of 50 in t − k would have, on average, an IRI of 68 for the next scan, an increase
of about 36% over 1-2 months. This increase in pavement roughness seems quite large.
However, as we discuss below, this may reflect important differences in traffic loadings on
segments scanned every 1-2 months relative to other segments.

The middle panel of Figure 4 uses IRI data from pavement segments scanned roughly 12
months apart. This represents an interesting subsample since the time elapsed between these
scans roughly matches the reported values in the HPMS, a key source of pavement quality
data. The difference in IRI across scans exhibits less variability than in the subsample using
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scans one to two months apart shown on the left panel. Again, segments in this subsample
are more likely to have undergone some pavement maintenance between scans relative to the
segments in the left panel.

The OLS model parameter estimates predict that a segment with IRI of 50 in the first
scan would have, on average, an IRI of 57 in the second scan, an increase of 14%. This
reflects a net impact of some segments in this subsample becoming rougher due to traffic
loadings and weathering and other segments becoming smoother because of maintenance
between the two scans.

The right panel of Figure 4 uses IRI data from pavement segments scanned roughly 24
months apart. Pavement segments in this subsample experience more deterioration from
traffic loadings and weathering between scans as well as an increased likelihood of pavement
maintenance occurring between scans. The OLS model parameter estimates predict that a
segment with IRI of 50 in the first scan would have, on average, an IRI of 58 in the second
scan, an increase of 16%, similar to the increase in the subsample of scans occurring roughly
24 months apart.

Figure 5 provides a more complete picture of average ∆IRIs,t,t−k for all values of k

along with the 95% confidence interval for each average shown as whiskers. From Appendix
Figure A2, the sample contains many observations for some values of k and relatively few
observations for others. For bins with no visible whiskers, the width of the dot is the 95%
confidence interval. These bins have many observations. The black dots on Figure 5 identify
the values of k that make up the ranges of k depicted on Figure 4: 1-2 months between
scans, 9-12 months, and 22-26 months.

Figure 5 highlights the variability of the IRI scan data in the sample. At the left end of
the figure, segments scanned one month apart were, on average, significantly rougher for the
second scan than for the initial scan but road segments scanned two months apart were, on
average, significantly smoother for the second scan than for the first scan. At first glance,
this pattern appears to be at odds with the simple model of changes in pavement quality
embodied by Equation 1. Road segment quality deteriorates because of axle loadings and
weathering. Road segments scanned two months apart experience twice the axle loadings as
road segments scanned one month apart, based on our assumption of identical VMT across
months for each pavement segment, so they would be expected to be rougher on the second
scan compared to the initial scan, absent any road maintenance performed in the period
between scans. Road segments scanned between 3 and 5 months apart are also, on average,
significantly smoother on the second scan than on the initial scan.

Similar variability can be seen for the road segments scanned between 9 and 12 months
apart. Segments scanned nine months apart are significantly smoother on the second scan,
segments scanned 10 and 12 months apart are equally as smooth as for the initial scan, and
segments scanned 11 months apart are significantly rougher than for the initial scan. Only
segments scanned between 22 and 26 months apart, the right most group of solid circles,
show unambiguous improvements in pavement quality between scans. One explanation for
these patterns is that the inherent noise in APCS scans is large enough to obscure the actual
impact of ESALS and weathering on pavement smoothness when the time between scans is
one year or less. It is also possible that there are significant differences in ESALS passing
over pavement segments with different elapsed times between scans.

The key point revealed by these graphs is that, absent detailed information about the
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Figure 5: Average ∆IRIs,t,t−k By Months Between Scans

Note: This Figure depicts the average ∆IRIs,t,t−k across road segments for each integer value of months

elapsed between scans.
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timing and location of pavement maintenance projects and repaving, imputing the month-
to-month change in IRI for individual road segments between scans would be a difficult
task that could systematically distort the actual change in pavement quality. Consider the
differences between segments scanned one month apart and segments scanned two months
apart. Segments scanned one month apart got rougher but segments scanned two months
apart got smoother. From Equation 1, the increased smoothness should be attributable to
pavement maintenance or repaving. But the short period of time that elapsed between these
scans reduces the likelihood that some sort of maintenance occurred, unless the results of the
initial scan triggered the pavement maintenance. Since we lack information on maintenance,
we restrict the empirical analysis to only include outcomes for road segments in the month
they were scanned.

Figure 6 displays the distributions of ∆IRIs,t,t−k, the change in IRI, for the three ranges
of k values. Table 1 contains summary statistics for theses three subsamples. The orange
line on Figure 6 reflects road segments with 1-2 months between scans, the purple line 9-12
months between scans, and the blue line 22-26 months between scans. Again, the distribution
of ∆IRIs,t,t−k for road segments scanned between one and two months apart appears to differ
substantially from the distribution of the other two.

The variance is largest for for the segments with k ∈ {1, 2} which is consistent with the
scatter plots on Figure 4. From Table 1, the standard deviation for this subsample exceeds
the other two. This is somewhat surprising, since little time passed between these scans.
Again, this likely reflects, in part, high variability in IRI values for the same segment due
to the way the data are collected. In addition, the distribution of ∆IRIs,t,t−k for k ∈ {1, 2}
has a larger probability mass for positive values than the other two subsamples, indicating
right skew in the distribution. The road segments scanned 1 to 2 months apart indicate
deterioration in pavement quality over short time periods.

The distribution of ∆IRIs,t,t−k for the subsample of road segments scanned 9-12 months
apart exhibits less variation than the other two subsamples. The mean and median of
this distribution are quite close to zero; on average, the quality of these road segments
does not change between scans. Again, this reflects the net effect of axle loadings and
weathering increasing segment roughness and pavement maintenance reducing roughness.
For the subsample of road segments scanned between 22 and 26 months apart, identified
by the purple line on Figure 6, the distribution lies between the other two. The mean of
this distribution is -8.4 suggesting that these segments, on average, got smoother in the
approximately 2 year period between scans. This likely reflects a relatively large number of
repaving or maintenance projects occurring in the period between scans.

Table 1: Summary Statistics, Distributions of ∆IRIs,t,t−k for Ranges of k

Statistic N Mean St. Dev. Pctl(25) Median Pctl(75)

Months Apart (k) ∈ {1, 2} 48,144 1.289 39.197 −13.019 1.849 17.102
Months Apart (k) ∈ {9, 10, 11, 12} 48,372 0.018 30.809 −8.325 0.101 6.969
Months Apart (k) ∈ {22, 23, 24, 25, 26} 25,435 −8.461 35.563 −15.614 −1.734 6.041

Note: This table displays key summary statistics of the distributions of changes in IRI from one scan to the next for
scans occurring within 1-2 months, 9-12 months, and 22-26 months.
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Figure 6: Distributions of ∆IRIs,t,t−k for Ranges of k

Note: This Figure shows the distributions of changes in IRI between consecutive scans of 0.1 mile road

segments for scans occurring 1-2 months apart (orange line), 9-12 months apart (purple line), and 22-26

months apart (blue line).

While IRI increases with time as pavement deteriorates because of increasing axle load-
ings, so does the probability of maintenance or resurfacing, which could dramatically decrease
IRI. Equation (1) shows the general relationship between pavement quality at time t, wear,
and pavement maintenance, absent specific information about the exact time maintenance
occurs, we cannot easily distinguish how much wear from traffic and weathering and pave-
ment maintenance individually contribute to observed ∆IRIs,t,t−k.

Figure 7 visually displays information about ∆IRIs,t,t−k in a different way. Figure 7
averages all values of ∆IRIs,t,t−k for each initial segment IRI value across the three sub-
samples identified by time between scans. Again, orange circles identify road segments with
1-2 months between scans, purple circles segments with 9-12 months between scans, and the
blue circles with 22-26 months between scans. Each circle is the average change in IRI for
all segments with the the same IRIt−k.

The rougher the pavement on the initial scan, circles farther to the right on Figure 7, the
more likely it becomes that some pavement maintenance occurred between scans, no matter
how much time elapsed between scans. All of these very rough road segments saw substantial
increases in quality on the second scan. Patterns in ∆IRIi,t,t−k on Figure 7 appear generally
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Figure 7: Average ∆IRIs,t,t−k By Initial IRI (IRIt−k) and Months Between Scans

Note: This Figure depicts the average ∆IRIs,t,t−k for each integer initial IRI value broken down by three

subsamples of months elapsed between scans.
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consistent with this idea.
The patterns of average values for the orange, purple and blue circles for initial IRI

below about IRIt−k = 100 run counter to expectations. If these road segments received no
maintenance, and experienced the same ESAL volume over time, the purple and blue lines
should lie above the orange line, since more time elapsed, and more axle loadings occurred,
between scans for the purple and blue circles. Instead, the orange circles generally lie above
the purple and blue circles. One possible explanation is that segments scanned 1-2 months
apart are high traffic volume/ESAL segments, whereas segments scanned 1-2 years apart are
subject to low traffic volume/ESAL segments.

Table 2 contains averages of certain variables reflecting spatial and temporal characteris-
tics of road segments. The first variable, percent of urban cover, is the average urban cover
in the county where each road segment is located. Urban cover should be associated with
higher axle loadings, since traffic is heavier in more urbanized areas. Segments scanned 1-2
months apart are more likely to be located in counties with a larger percent of urban cover
relative to road segments scanned 9-12 and 22-26 months apart. This could be a reason for
the substantial increase in roughness for segments scanned 1-2 months apart, especially for
segments with low initial IRI values. In addition, the segments scanned 1-2 months apart
also have a higher probability of being made of concrete, which ages more quickly than
asphalt.

Table 2: Heterogeneity in Scan Group Characteristics

Characteristic k ∈ {1, 2} k ∈ {9− 12} k ∈ {22− 26}
% Urban Cover 23.4 17.8 16.5
% Asphalt 54.1 61.2 65.0
Months from June, month t− k 3.1 3.0 2.4
Months from June, month t 2.4 2.3 2.7

Note: This table displays spatial and temporal heterogeneity of segment characteristics
for road segments scanned 1-2 months, 9-12 months, and 22-26 months apart.

Second, it’s possible that the timing of scans in terms of month of the year when the scan
occurred could play a role, since more weathering would take place during cold and/or rainy
months than during dry and/or warm months. We calculated the average absolute number
of months elapsed between the month each segment was scanned and June, a generally
temperate and dry month in California. The absolute time from the scan and June decreases
on average from 3.1 months for the t−k scan to to 2.4 months for the t scan for the group of
road segments scanned 1-2 months apart. This indicates that the first scan occurred in the
winter or spring. Conversely, even though distance to June for the 9-12 group also decreases
from t− k to t, this has a different interpretation. This suggests that the first scan in t− k

occurred in autumn, since 9-12 months later the second scan will be closer to June.
Finally, we examine changes in pavement quality between IRI scans by pavement type. In

general, wearing differs by pavement type. As discussed above, APCS identifies the surface
of all road segments as either flexible (generally asphalt) or rigid (generally concrete). Figure
8 shows the average change in IRI from t−k to t for flexible and rigid surfaces at each initial
IRI value. Hollow circles identify rigid segments and dark circles identify flexible segments.
Panel A uses the subsample of road segments scanned between 1 and 2 months apart, Panel
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B those scanned between 9 and 12 months apart, and Panel C those scanned between 22
and 26 months apart.

As expected, some systematic differences in changes in pavement quality over time
between pavement types appear. For relatively smooth pavement segments, those with
IRIs,t−k < 100 at the left end of the figures, the next scan generally finds rigid segments
to be rougher than flexible segments for all three subsamples. The difference is especially
pronounced for segments scanned between 1 and 2 months apart, shown in Panel A. This
likely reflects the fact that most rigid road segments are in urban areas that experience a
large number of axle loadings (see Figure 3) so the pavement quality deteriorated more on
those segments.

Figure 8: ∆IRIs,t,t−k by Initial IRI for Flexible and Rigid Surfaces

Panel A: ∆IRIs,t,t−k for k ∈ {1, 2} Panel B: ∆IRIs,t,t−k for k ∈ {9, ..., 12}

Panel C: ∆IRIs,t,t−k for k ∈ {22, ..., 26}

Note: These figures show the average change in IRI between scans (∆IRIs,t,t−k) for each initial IRIs,t−k

by surface type: flexible (asphalt) or rigid (concrete) for the three subsamples for road segments scanned 1-2

months, 9-12 months, and 22-26 months apart.

For relatively rough pavement segments, those with IRIs,t−k > 100 found at the left end
of the panels, the next scan generally finds similar improvements in pavement quality for
rigid and flexible segments. Smooth flexible segments on Panels B and C show little change
in pavement quality between scans.
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These differences in pavement quality across pavement types, coupled with the spatial
distribution of pavement types, indicates that there may be systematic differences in other
traffic outcomes by pavement type. We estimate separate regression models in the empirical
analysis described below for each pavement type.

Comparing APCS and HPMS Pavement Quality Data

Our pavement quality data differs from the standard source of pavement quality data, the
Highway Performance Monitoring System (HPMS) operated by the U. S. Department of
Transportation. The detailed pavement quality obtained from APCS presents a novel and
useful context for assessing the nature and quality of pavement smoothness data available
in the HPMS. In order to undertake this comparison, we collected HPMS annual data files
for California beginning in 1980 from the NBER transportation data archive and the HPMS
web site.

While we focus on HPMS road segment quality data from 2011 onward, which matches
our APCS data, we also examined all available annual HPMS data from California over
the period 1980-2015. In general, the HPMS files contain data on 0.1 mile road segments
for all Interstate Highway System roads in the state. State DOTs are only required to
submit pavement condition data for Interstate Highway System road segments. Future
researchers may be interested in assembling a panel data set from HPMS over a long period
of time to analyze log-run changes in pavement quality and the effectiveness of pavement
maintenance. Our examination of the annual HPMS data files reveals some challenges to
such an undertaking, as the quality and availability of HPMS pavement condition data varies
substantially over time in terms of data availability and quality.

The annual HPMS files from 1980 to 1988 for California contain no IRI data. The
pavement quality variable in these files reflects the current Present Serviceability Rating
(PSR) for road segments. PSR is a subjective 0.0 to 5.0 scale developed by AASHTO where
0.0 represents unpaved or failed road segments and 4.0 to 5.0 new or recently repaved road
segments in excellent condition. HPMS annual data files over the 1980 to 1988 period contain
no information about pavement resurfacing or maintenance projects carried out in each year.

The annual HPMS files from 1988 to 1998 contain variables capturing IRI, PSR, the
year of the last pavement improvement project, and the type of improvement project un-
dertaken for road segments. The existence of information about the most recent pavement
improvement project makes this period a good candidate for empirical research on pavement
maintenance and road segment surface quality.

The annual HPMS data files from 1998 to 2008 contain variables reflecting IRI and PSR,
but no information on road segment improvement projects. These older data can be found
at the NBER data repository maintained by the NBER.3 These data may not be comparable
to later data, since the FHA switched to a GIS based segment identification system in 2011
from a relatively simple system using only mile posts to identify segments.

Little or no HPMS road segment data are available for 2009 or 2010. The annual HPMS
data files from 2011 on contain a variable for road segment IRI only. The year the currently
reported IRI scan occurred for each road segment is available only in the 2011 data file.

3https://www.nber.org/research/data/transportation-economics-21st-century-highway-data
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Figure 9: Year IRI Scan Occurred, 2011 HPMS Annual Data File

Note: Figure shows the frequency of reported IRI scan years in the 2011 California HPMS data. Only

30.4% of the road segments in the 2011 California data file were scanned in 2011.

Figure 9 summarizes the year in which each scan reported in the 2011 HPMS data file
took place. From Figure 9, only 30% of the highway segment IRI data in the HPMS data
file actually came from scans conducted in 2011. 70% of the observations came from other
years, including a substantial number of scans from 2012. About 12% of the IRI values in
the file were from scans that occurred 10 years earlier. More than 30% of the observations
came from scans occurring between 2007 and 2010. Given this temporal disconnect, the
reported pavement quality in the annual HPMS data files may not reflect the actual quality
of the pavement in that year. Unfortunately, this is the only HPMS annual data file that
identifies the year in which the reported scan occurred, so the extent to which these temporal
disconnects between annual HPMS pavement quality variable values and the actual condition
of those pavement segments cannot be determined.

The 2011 onward data files contain no variable for PSR and no information on surface
improvement projects. 2016 HPMS data is missing for California. In the comparison below,
we use HPMS data files for FAHS highway segments in California from 2011 to 2015. These
are generally available for 0.1 mile road segments.

First, consider the distributions of road segment IRI values from the HPMS and APCS.
Figure 10 contains histograms for each integer IRI value in the two samples. Orange bars
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represent observations from HPMS and blue bars observations from the APCS. The tall
vertical lines represent the sample means. On average, HPMS road segments are rougher
than APCS segments.

Figure 10: HPMS and APCS Road Segment IRI Histograms

Note: This Figure displays the relative frequency of IRI values for FAHS road segments from the HPMS

and APCS datasets.

Figure 10 reveals several other interesting features. First, the shapes of the distributions
differ substantially. The distribution for HPMS segments is flatter, and has a fatter right tail
than the APCS segments. This can also be seen by the difference in the sample variances for
the two data sources. Second, the HMPS data contain more relatively rough road segments,
and the APCS data contain relatively more smooth road segments. Both contain relatively
long right tails.

We next compare scatter plots of individual road segment IRI values in period t − k

and t from the two data sources. The right panel of Figure 11 duplicates the middle panel
of Figure 4 above, using APSC data for road segments scanned between 9 and 12 months
apart. The right panel shows the scatter plot for HPMS road segments. Again, the red
lines represent the fitted values for an OLS regression with dependent variable IRIt and
explanatory variable IRIt−k.

Two notable features stand out on Figure 11. First, the dark thick 45o line for the HPMS
data reflects the fact that many road segments in the HPMS data have identical IRI values
in consecutive years. More than one in four road segments (27.2%) in the HPMS data have
identical year to year IRI values. This is not the case in the APCS data, where only 4.7% of
the road segments have the same IRI value from one scan to the next when rounding to the
nearest integer. The HPMS Manual instructs transportation agencies to fill in missing IRI
scan data with the value from the previous scan when no current IRI data exist. While this
may reflect the underlying pavement quality for road segments with low axle loadings and

24



Figure 11: Scatter Plot of IRIt−k and IRIt, Annual HPMS and APCS Data

Note: The figure contains scatter plots of IRIt−k and IRIt for the HPMS data 2011-2017 (left panel) and

APCS data for scans occurring between 9 and 12 months apart (right panel). Red lines represent fitted

values from OLS regression models: IRIs,t = bo + b1IRIs,t−k + est.

little weathering, this practice also reduces the variation in IRI values, which will impact
any empirical analysis using these data in two ways. First, reducing the variability of a key
variable will reduce the estimated standard errors in any regression model. Second, for road
segments with large numbers of axle loadings and weathering, replacing missing IRI data
with the IRI from the previous year introduces systematic, non-classical measurement error
into this variable since these road segments are not randomly distributed across the sample.

The parameter estimates of the regression lines estimated using data from HPMS and
APCS also differ. The intercept and slope of the regression line from the HPMS data are
27.456 and 0.696. For the APCS data, the parameter estimates are 15.25 and 0.829.4 Both
the intercepts and, more importantly, slopes are significantly different from one another.
The difference in estimated slope parameters implies that pavement quality declines more
rapidly over time in the APCS data relative to the estimates from the HPMS data.

In addition, variation in IRIs,t−k explains more of the variation in observed IRIs,t−k in
the APCS data. R2 for the model estimated with HMPS data is about 0.455 compared to
0.581 for the model estimated with APCS data.

We finally compare average change in segment pavement quality (∆IRIs,t,t−k) at each
initial IRI value in the HPMS data to the averages in the APCS data, which appears in
Figure 7 above. Figure 12 shows average ∆IRIs,t,t−k for each IRIs,t−k value. In addition to

4These estimates are relatively stable across the three subsamples identified by months between scans,
although the slope estimates are slightly larger for the 10 and 11 months between scan subsample by about
.02 and .04, respectively.
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plotting the average values from the APCS, we also plot average values from the HPMS data
from California. The most analogous group in the APCS data to the HPMS data would be
the subset of APCS data with 9 to 12 months between scans, identified by purple circles on
Figure 12.

Figure 12: Average ∆IRIs,t,t−k for APCS and HPMS Segments by IRIs,t−k

Note: This figure adds average ∆IRIs,t,t−k for HPMS Road Segments to Figure 7. HPMS segment averages

appear as an “x.” HPMS reports IRI annually but contains no information about the actual timing of scans.

The average change in IRI across years in the HPMS data generally resembles the changes
in the APCS data, especially for relatively smooth road segments between about IRI=75 and
IRI=125 which constitute a substantial part of total observations in both samples (40% of
HPMS observations and 36% of APCS observations). Average ∆IRIs,t,t−k for relatively
smooth HPMS road segments, at the left end of Figure 12, tend to be larger than the
averages in the APCS for the subsample of scans occurring 9-12 and 22-26 months apart and
smaller than the averages for the APCS subsample scanned 1-2 months apart. In general,
this comparison indicates that HPMS pavement quality data generally resemble the detailed
APCS pavement quality data analyzed in this paper.

However, several caveats apply. The large number of observations in the HPMS data
lying on the 45o line on Figure 11 raises some concerns in terms of empirical analysis of
pavement quality. Nearly a third of the IRI observations in the HPMS are identical across
years. The middle panel of Figure 11 indicates that is not the case in the APCS data. This
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substantially reduces the variability of observed IRI in the HPMS. As discussed above, this
likely reflects non-classical measurement error in the HPMS generated by the practice of
replacing missing IRI data with the IRI value for that segment in the HPMS in the previous
year. The HPMS contains less variation in pavement segment quality.

Another limitation of the HPMS pavement quality data is a lack of any information about
the exact timing of the pavement segment scans. USDOT instructions for state agencies to
collect data over the course of a calendar year and submit data from that year in April
of the following year. HPMS contains no information on exactly when pavement segment
scans occurred. So, for example, IRI for a road segment scanned in July of 2012 and 2013
would represent the impact of 12 months of axle loadings and weathering. IRI for a segment
scanned in January of 2012 and in December of 2013 would actually reflect 23 months of axle
loadings and weathering despite appearing in two consecutive annual HPMS data files. IRI
for a segment scanned in December 2012 and again in February of 2013 would reflect only
two months of axle loadings and weathering. The heterogeneity of changes in IRI by number
of months elapsed between scans shown on Figure 5 suggests that interpreting HPMS IRI
scans across years as homogeneous may not match the actual pavement conditions.

2.1.3 Weather and Geographic Features

Both weather and the geographic characteristics of road segments can affect pavement qual-
ity and traffic outcomes. Weather data come from the National Oceanic and Atmospheric
Administration (NOAA), and include average monthly temperature and total monthly pre-
cipitation by county. Weather can influence traffic outcomes in a myriad of ways, so con-
trolling for these channels is important to our analysis. APCS contains the elevation of each
road segment in feet above sea level.

Groundwater can affect pavement quality by damaging the road base and sub-base. We
collected data on groundwater from the United States Geological Survey (USGS) National
Water Information System (NWIS). The groundwater database consists of more than 850,000
records of wells, springs, test holes, tunnels, drains, and excavations in the United States
and indicates the distance from the surface to groundwater in feet. Appendix Figure A3
shows the location of all groundwater measurement wells in California. Nearby NWIS data
exist for only about 5% of the road segments in the sample. Most of these wells exist far
from road segments in the sample, so road segments are matched to the closest observation
well based on straight-line distance.

As an alternative to groundwater data, we obtained geo-referenced shape files defining
the boundaries of all aquifers in California from the USGS. Aquifers contain layers of rock
that easily transmit water. The increased ability of aquifers to transmit water could impact
pavement quality through impacts on the road’s base and sub-base layers. Burchfield et al.
(2006) pointed out the influence of aquifers on urban form. Duranton and Turner (2018) use
the presence of aquifers as an instrument to predict urban density in an empirical analysis
of driving behavior.

Figure 16 shows the locations of all six California aquifers based on 2003 USGS maps and
highways in the sample. Figure 16 reveals substantial variation in the presence and absence
of aquifers under highways in the sample. While continuous stretches of highway run over the
Central Valley aquifer, highways in the northeast and southeast parts of the state, and along
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the central coast, run over aquifers with many non-contiguous section, providing substantial
variation across highway segments. About 80% of the analysis sample (N = 12,745 one mile
segments) are located above an aquifer.

2.2 Analysis Sample Construction

We empirically analyze the relationship between pavement quality and both vehicle crashes
and vehicle speed. APCS contains extensive information on pavement conditions on roads
in California. PeMS contains extensive information on traffic conditions and crashes. We
merge data from these two sources, augmented with data from other sources like weather
conditions and geological characteristics, to construct an analysis data set.

Again, APCS contains road quality measures for 0.1 mile pavement segments at a point in
time while the PeMS ADUS interface provides traffic outcome measures at user determined
levels of spatial and temporal aggregation through imputation. We initially extract PeMS
data for 1 mile segments over a one month period to facilitate matching with APCS pavement
quality data and the Postmile file. PeMS identifies these road segments by route and post
miles identified at 1 mile intervals. In cases where highway segments identified in APCS
and PeMS do not align exactly with 0.1 mile highway segments in the Postmile file, we use
weighed averaging to spatially merge the data. The weights reflect the distance in each
APCS 0.1 mile segment and PeMS 1 mile segment that overlaps with 0.1 mile segments in
the Postmile file. Appendix section A1.6 contains details on the matching process.

While 0.1 mile highway segments facilitate spatial matching, this represents a less than
ideal distance in terms of a unit of analysis in regression models. A vehicle traveling 60
mph takes just 6 seconds to travel 0.1 miles. The impact of pavement roughness on traffic
outcomes may not be reflected in road segments this short. In general, we could construct
a data set at virtually any level of spatial and temporal aggregation. We use data for one
mile road segments over one month as the basic unit of analysis. We also limit the sample
to one mile road segments with an APCS scan in that month. This reduces the sample to
those segments in green on Figure 1.

This choice reflects several important factors. The shorter the temporal dimension, the
more zeros appear in the vehicle crash rate variable. For a one mile, one day sample, more
than 70% of the vehicle crash/rate cells contain zeros. This level of temporal aggregation
would require count data models to estimate, and preliminary calculations show that the
Poisson model requirement of equal mean and variance would not hold. Also, monthly
precipitation and average temperature data by county are readily available but daily precip-
itation and temperature data must be obtained from individual weather monitoring stations.
These stations would need to be matched to highway segments and many of these segments
have no nearby monitoring stations. Controlling for these factors would be difficult at a
daily frequency.

Restricting the sample to months when pavement scans occurred reduces measurement
error in the pavement quality estimates. Over time, weathering and road use increase mea-
sured IRI (Newbery, 1988). Expanding the sample to include months when no pavement
scans occurred means that the actual road quality differs from the measured road quality.
While IRI in non-scanned months could be imputed, this approach risks adding system-
atic measurement error to the IRI variable. Restricting the sample to only months when
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pavement scans occurred provides the cleanest possible measure of pavement quality.
We focus on highway segments from either the Interstate Highway System (IHS) or the

United States Numbered Highway System (USNHS), which primarily consists of surface-level
trunk roads. The FAHS includes both types of highway. APCS and PeMS also contain data
on state routes, but we do not include these highways in the analysis because of differences
in maintenance responsibility and spotty pavement quality data. The state maintains IHS
road segments; both state and local governments maintain USNHS road segments.

These two different types of highways use different design standards and may need to be
treated differently in the empirical analysis. IHS highways in the dataset include: I10, I110,
I15, I205, I210, I215, I280, I380, I405, I5, I580, I605, I680, I710, I780, I8, I80, I805, I880,
I905, and I980. USNHS highways include: US101 and US50.

Figure 13 provides a basic overview of the key variables in the analysis data set. The
unit of observation is a one mile segment of road over a one month period. To construct the
final analysis data set we dropped all one mile segments with IRI values less than 20 and
greater than 300, and all segments with estimated average monthly speed greater than 90
mph. These represented a very small number of one mile road segments. We also drop road
segments located above 2000 feet in elevation from the sample for reasons discussed in the
identification section below. This represents less than 5% of the sample segments.

Figure 13 shows average IRI, vehicle crash rates, and speed over all highway segments
and months in each calendar year in the sample. VMT is aggregated over all segments
and months. The IRI values reported on Figure 13 are interpolated in 2013-2014 and 2017
because no APCS scans occurred in those years. The annual values for crash rates in 2013
were interpolated because of missing crash data in that year.

Several clear patterns emerge from Figure 13 in terms of road quality and traffic outcomes
in California over the sample period. From Panel A, road quality on FAHS highways generally
improved over the period, for both concrete and asphalt segments. Duranton et al. (2020)
reported a similar pattern in national data over the period 1980-2006 and note that this runs
against the widely held belief of “crumbling” US infrastructure. Concrete segments generally
were rougher than asphalt segments. From Panel B, vehicle crash rates per 100,000 VMT
generally decreased over the sample period, suggesting an overall improvement in traffic
safety.

From Panel C, highway use increased over the sample period overall, and on asphalt and
concrete road segments, although vehicle miles traveled on asphalt segments fell slightly after
2015. Duranton et al. (2020) documented a similar upward trend in national data. From
Figure 3, asphalt highway segments primarily exist in rural parts of the state.

From Panel D, average speeds generally declined over the sample period on both types of
pavement. This is consistent with the increasing traffic volume shown on Panel C. Duranton
et al. (2020) also found similar trends in average speeds and volume nationwide over a longer
period of time.

Figure 14 shows density plots for vehicle crash rates, speed, IRI, and elevation. The crash
rate variable shows censoring at zero. About 4,000 of the one mile/one month segments
experienced zero accidents on average. Average speed on these one mile/one month road
FAHS highway segments is just under 60 mph. The speed histogram reveals some left skew
in the distribution because of some urban one mile/one month road segments with very
low average speeds. Average road segment IRI is 94 with a long right tail. Again, this
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Figure 13: California Pavement and Traffic Outcomes

Panel A: IRI Panel B: Crash Rate per 100,000 VMT

Panel C: VMT Panel D: Speed (MPH)

Note: Panels A-D are based on APCS and PeMs traffic data. Panel A: annual average IRI. Values for

2013-2014 and 2017 represent linear interpolation due to no APCS scans in those years. Panel B: crash

rate =
Crash County
VMTy/100,000

. 2013 dropped due to some missing data; line is interpolated between 2012 and 2014.

Panel C: sum of VMT. Panel D: average speed (MPH). In Panels A-B and D, solid black lines show the

state average; in Panel C, solid black lines show the state total. Dashed blue lines show statistics for asphalt

segments and orange dashed lines concrete segments.
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value lies at approximately the standard threshold separating good quality road segments
from acceptable. The elevation distribution contains a long right tail reflecting a few road
segments at very high altitude in the western part of the state.

Figure 14: Pavement and Traffic Density Plots and Histograms

Panel A: Crash Rate Panel B: Traffic Speed

Panel C: IRI Panel D: Road Segment Elevation

Note: Panels A-D are density plots and histograms using APCS and PeMs road segment and traffic data

for one mile/one month road segments.

Table 3 shows summary statistics for the full analysis sample as well as for asphalt and
concrete road segments separately. The full sample IRI average, 94, falls just below the
standard threshold separating good (IRI < 95) from acceptable (IRI ≥ 95) pavement
quality. Rigid (concrete) segments tend to be rougher than flexible (asphalt) segments and
traffic tends to be slightly slower on rigid segments. Roughly 80% of the road segments in
the sample lie over aquifers.

2.3 Empirical Strategy

We first undertake a reduced form analysis of the effect of pavement quality, measured by
IRI, on vehicle crash rates and speed. The basic reduced form regression model takes the
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Table 3: Summary Statistics - Pavement Quality and Traffic Outcomes

Mean S.D. Min. Max.

Panel A: Full Sample, N=16,002

IRI 94.18 36.64 27.2 284.6
Crash Rate 0.255 0.321 0.0 9.421
VMT (100,000s) 29.4 14.8 7695 193.0
VHT 51197 28371 130.1 310000
Speed (mph) 59.4 6.753 21.98 76.25
Elevation (ft) 661.9 972.3 -26.0 7406.2
Over Aquifer 0.796 0.403 0 1

Panel B: Asphalt Segments, N=7,581

IRI 80.4 30.3 27.2 265.8
Crash Rate 0.201 0.283 0.000 5.289
VMT (100,000s) 27.9 15.5 7695 193.0
VHT 47732 28197 130.1 310000
Speed (mph) 60.0 6.27 27.24 76.25
Elevation (ft) 655.7 1109.8 -26.0 7406.2
Over Aquifer 0.770 0.421 0 1

Panel C: Concrete Segments, N=8,421

IRI 106.6 37.4 31.1 284.6
Crash Rate 0.304 0.344 0.0 9.421
VMT (100,000s) 30.8 14.0 21018 162.0
VHT 54315 28166 350.3 249000
Speed (mph) 58.89 7.12 21.99 75.16
Elevation (ft) 667.4 829.2 -24.2 6640
Over Aquifer 0.821 0.384 0 1

Note: Summary statistics for 1 mile/1 month FAHS segments over the 2011-2019
sample period. Panel A contains all California road segments; Panels B and C split
the sample into asphalt and concrete segments respectively. IRI = international
roughness index; VMT = vehicle miles traveled; VHT = vehicle hours traveled.
Crash rate is crashes per 100,000 VMT.
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form

TOi
smy = αf + α1IRIsmy + α2precipsmy + α3tempsmy + ǫsmy, (2)

where TOi
smy is one of two traffic outcomes, either vehicle crash rate (i = 1) or vehicle speed

(i = 2) on California FAHS road segment s in month m in year y. IRIsmy reflects pavement
quality of road segment s based on a scan that occurred in month m of year y. ǫsmy, a mean
zero, possibly heteroscedastic random variable, captures all other time varying factors that
affect traffic outcomes on road segment s in month m in year y.

αf represents a vector of fixed effects indicator variables to control for unobserved hetero-
geneity in factors affecting traffic outcomes on each highway segment. This vector contains
indicator variables for month of year, year, route, county, and pavement type (asphalt of
concrete). α1 represents the parameter of interest capturing the impact of pavement quality
of traffic outcomes. We control for the effects of weather on the traffic outcomes by including
the average monthly temperature and average monthly inches of precipitation for each one
mile highway segment.

We also estimate causal effects of road quality on traffic outcomes. Naive OLS estimates
of Equation (2) cannot credibly deliver plausibly causal estimates of the relationship because
of the existence of unobserved, time varying factors that affect both pavement quality and
traffic outcomes. These factors will be captured by the error term, ǫsmy, and their presence
means that the OLS estimate of α1 cannot be interpreted as causal.

2.3.1 Identification

We use an instrumental variables (IV) approach to estimate the causal impact of pavement
roughness on crash rates and speed. Implementing IV requires one or more variables corre-
lated with observable pavement roughness and uncorrelated with unobservable, time varying
factors that affect vehicle crash rates and speed.

Pavement quality could be influenced by the presence of groundwater (Christopher et al.,
2006; Titus-Glover et al., 2019). If a road segment is relatively close to ground water, the
segment has a higher risk of water seeping into the pavement’s base or sub-base. In cold
weather environments, these segments could also be susceptible to frost heave which creates
potholes. Water penetrating the roadbed can lead to internal damage which reduces the
structural integrity of the road segment. Both Christopher et al. (2006) and Titus-Glover
et al. (2019) contain substantial evidence of reduced pavement quality associated with road
segments built over shallow ground water.

Distance to groundwater is excludable to traffic outcomes such as crashes and traffic
speed. The depth of groundwater under a road segment should not be correlated with
unobservable factors affecting the number of vehicle crashes on that segment since ground
water levels cannot be observed by drivers. It is plausible that the only reason that distance
to groundwater affects crashes or travel speeds is through its strong relationship to road
quality.

Unfortunately, of the over 5.5 million road segments in APCS, only about 5 percent (N =
284,096) are within 0.5 miles of a groundwater measurement well. Again, Appendix Figure
A3 shows the road segments in our sample and the location of all groundwater measurement
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wells in California. No nearby groundwater measurement wells exist for a substantial number
of sample road segments. Matching segments to the nearest groundwater measurement well
would lead to either a significantly restricted sample or a weak instrument because of this
lack of proximity.

While distance to ground water appears to be an ideal instrument, we lack access to
adequate data on this outcome. Instead, we use an instruments known to be related to the
water table, the road segment’s elevation and an indicator variable for the presence of an
aquifer under road segments.

Elevation APCS contains information on the elevation of each scanned road segment. The
geology literature contains evidence on the association between elevation and the depth of the
water table (Chen et al., 2010; Condon and Maxwell, 2015). Given this strong association,
elevation represents a possible instrument for pavement quality. Road segment elevation
should not be correlated with traffic outcomes. However, elevation could be correlated with
other factors that affect traffic outcomes, most notably weather.

We include variables capturing the average monthly precipitation and temperature for
the county where each segment exists in all regression models in order to control for this
potential limitation in our instrument.

Figure 15 shows sample road segments and elevation contours for feet above sea level
in California. The state contains substantial variation in elevation. Coastal areas, and the
Central Valley, are low elevation areas. The eastern part of the state contains many highway
segments at high elevation, mostly in the Sierra Nevada mountain range. This variability
should provide a strong instrument for predicting pavement roughness, holding precipitation
and temperature constant.

Aquifers In some cases, elevation may not fully reflect distance to groundwater. Very high
elevation represents one possible case where this holds. Table 3 and Figure 15 show some
sample road segments at very high elevations, in excess of 6,000 feet. Most of these segments
are in the Sierra Nevada mountains in eastern California. Because of this, we drop road
segments above 3000 feet in elevation from the sample. This constitutes less than 5% of the
sample segments. The results presented below are robust to this exclusion, but including
these segments affects instrument strength.

A lack of any groundwater represents a second reason that elevation may not capture
distance to groundwater. To address this limitation, we obtained a map of California aquifers
from the USGS. Using this map, we identified all road segments existing over an aquifer
(coded as one) and all road segments not over an aquifer (coded as zero). Over 70% of the
road segments in the analysis sample exist over an aquifer. We posit that these segments
could be rougher than segments not over aquifers because of the increased likelihood that
ground water seeped into the road bed under these segments.

Figure 16 shows the sample California road segments and the aquifers in the state. The
sample contains substantial spatial variation in the presence of aquifers under road segments,
including in the south west part of the state over the Basin and Range aquifers (in red), in
the north west part of the state, over the Pacific Northwest aquifers (in green and blue),
and along the coast, under the California Coastal Basin aquifers (in orange). This variation
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Figure 15: California Elevation Contours

Note: Map shows the elevation levels in California (feet above sea level).
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Figure 16: California Aquifers

Note: Map shows the location of all California aquifers and FAHS highways in the sample. Aquifer data

come from the U.S. Geological Survey in 2003.

occurs at relatively small spatial levels and many contiguous road segments will not be
above an aquifer. While some long stretches of road exist over aquifers, most notably for
the Central Valley aquifer, this should also provide enough variation to make this a strong
instrument for predicting road roughness.

The use of these geographic variables as instruments follows a growing literature making
use of similar or identical instruments. Bleakley and Lin (2012) used distance to the fall
line on rivers as instrument for portage sites in an analysis of factors causing increases in
population density in cities. Feyrer and Sacerdote (2009) used wind speed as instrument
for colonial rule in an analysis of how colonial rule caused changes in current income in
countries. Dinkelman (2011) used elevation as instrument for electrification in South Africa
in an analysis of how electrification caused employment growth in Africa.

Burchfield et al. (2006) found that the presence of aquifers affected urban form, in terms
of population density. Other research used aquifers as instruments or explanatory variables.
Duranton and Turner (2018) used an aquifer map as an instrument predicting urban popula-
tion density. The basic idea behind these papers is that the presence of an aquifer facilitates
residential construction by limiting the need for construction of water systems.

36



Figure 17: Relationship between VMT and Road Segment Elevation x Aquifer Presence

Note: Figure shows the binned scatter plot for the instrument of choice, elevation x aquifer, and VMT for

1 mile/1 month FAHS highway segments in the sample.

One potential violation of the IV exclusion restriction would occur if our instrument for
pavement roughness, elevation of road segments located over an aquifer, is correlated with
unobservable factors that affect traffic outcomes. Traffic outcomes, such as the number of
miles driven (VMT), may be associated with underlying geographic characteristics if these
characteristics are related to the “urban form” of an area. Also, urban location and sprawl
may be directly impacted by elevation or aquifer presence, which, in turn, could influence
how much individuals drive and, therefore, any resulting traffic outcomes.

Figure 17 plots a binned scatter plot relationship between our preferred instrument (el-
evation x aquifer location) and VMT on one mile/one month highway segments. Figure 17
shows no relationship between the two variables. No significant correlation (ρ = 0.0048)
exists between our instrument and VMT on California FAHS road segments. This mitigates
any concerns that the exclusion restriction is violated through this channel.

2.3.2 Instrumental Variables Model

We use the instrumental variables (IV) approach to estimate the causal impact of pavement
quality on highway outcomes. The first stage relationship in our IV approach explains

37



observed pavement roughness. This regression model takes the form

IRIsmy = γf + γ1Zsmy + γ2precipsmy + γ3tempsmy + εsmy, (3)

where the dependent variable IRIsmy is the International Roughness Index for road segment
s scanned in month m in year y. Like in Equation (2) above, γf is a vector of indicator
variables to control for unobserved heterogeneity in factors affecting pavement roughness
for each highway segment. This vector contains indicator variables for month of year, year,
route, county, and pavement type (asphalt of concrete). precipsmy is total precipitation and
tempsmy is the average temperature in monthm and year y in the county where road segment
s is located. The error term, εsmy, a mean zero, possibly heteroscedastic random variable,
captures all other time varying factors that affect pavement roughness on road segment s in
month m in year y.

Zsmy contains one or more instruments that identify exogenous variation in pavement
roughness. We have two possible instruments: the elevation of road segment s and an
indicator variable equal to 1 if segment s is over an aquifer. Both these variables have
been linked to distance to ground water. We estimate an overidentified model containing
both variables separately and a just identified model using these two variables interacted.
This variable is simply segment elevation for all segments over aquifers and zero for other
segments.

The second stage in our IV model uses the fitted values from Equation (3) in place of
actual IRI for each segment, the standard 2SLS estimator. The second stage regression
model takes the form

TOi
smy = βf + β1ÎRIsmy + β2precipsmy + β3tempsmy + usmy, (4)

where TOi
smy is again one of two traffic outcomes, either vehicle crash rate (i = 1) or vehicle

speed (i = 2) on California FAHS road segment s in month m in year y. precipsmy is total
precipitation and tempsmy is the average temperature in month m and year y in the county
where road segment s is located. usmy represents a mean zero, possibly heteroscedastic
random variable capturing all other time varying factors that affect traffic outcomes on road
segment s in month m in year y.

βf again represents a vector of fixed effects indicator variables to control for unobserved
heterogeneity in factors affecting traffic outcomes on each highway segment. This vector
contains indicator variables for month of year, year, route, county, and pavement type (as-
phalt of concrete). β1 represents the parameter of interest capturing the impact of pavement
quality of traffic outcomes.

β1, the parameter of interest, reflects the causal impact of pavement roughness on crash
rates and speed on California roads. β̂1 reflects a causal effect if the usual IV exclusion
restrictions hold. These require the instrument to be correlated with observed pavement
roughness and uncorrelated with unobservable factors affecting traffic outcomes.
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2.4 Results

2.4.1 Naive OLS and Nonparametric Relationships

We first establish basic patterns in our data using a naive OLS model, Equation (2), and basic
graphical depictions using average values for the key variables sorted into bins (binscatter).

Table 4 contains estimates from a naive OLS model using the full 1 mile/month analysis
sample. The top panel defines the crash rate, in terms of average monthly crashes per 100,000
VMT on each segment, as the dependent variable. The bottom panel defines average speed
in MPH as the dependent variable. Both models contain indicator variables for month of
year, year, route, county, and pavement type (asphalt of concrete).

Note that these results could be interpreted as causal if the location and timing of scans
of road segments were randomly assigned. APCS scans cover relatively long continuous
sections of highway each day, and the vehicles performing the scans generally stay in the
same area for several months, based on patterns apparent in Figure 2. But the APCS scans
also do not follow obvious patterns in terms of when areas are scanned in terms of months
of the year.

The results on Table 4 indicate a positive relationship between road roughness and crash
rates and a negative relationship between road roughness and speed. Rougher road segments
experience more vehicle crashes, and vehicle speeds decrease on rougher road segments. Both
results indicate that rougher road segments impose costs on motorists, in terms of reduced
traffic safety (more crashes) and increased delay.

The parameter estimates appear small because they represent the effect of a one inch
change in IRI over a one mile road segment. From Table 3, the average IRI in the sample
is about 95 inches. Based on the parameter estimates on Table 3, a one standard deviation
change in IRI, about 36.5 inches rougher over a one mile segment, would increase the crash
rate on that segment by 0.02, or about 8.5%, and decrease average speed by about 0.85
mph, or about 1%. These effect sizes are similar to those reported in the traffic engineering
literature discussed above.

From Figure 14, the crash rate variable is left censored at zero. OLS may not be an
appropriate estimator with censored dependent variables. We re-estimated Equation (2)
using the Tobit estimator to correct for this right censoring. The parameter estimate on the
IRI variable was 0.0008, which translates to an 11% increase in crash rates. It appears that
the right censoring of the crash rate variable has little impact on the OLS estimates.

We next show that our identification approach approximately holds, in unconditional
terms, in the data. We partition the IRI, crash rate, and speed data into bins and take the
average of values in each bin. We then generate scatter plots and simple regression lines, for
these bins. This approach is a flexible, nonparametric method for examining relationships
between pairs of related variables.

We focus on three specific relationships that form the basis for our IV estimates: the re-
duced form, which shows the relationship between the instrument and the outcome variable,
the first stage which shows the relationship between the instrument and the endogenous
explanatory variable, and the second stage, which shows the relationship between the en-
dogenous explanatory variable and the outcome variable.

Figures 18 and 19 visually depict the reduced form, first stage, and second stage rela-
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Table 4: Näıve OLS Estimates of IRI Association
with Traffic Outcomes

Panel A: Crash Rate

IRI 0.00064***
(0.00010)

Precipitation 0.00279***
(0.00026)

Temperature 0.00381***
(0.00092)

Observations 16,002
R2 0.1498

Panel B: Speed

IRI -0.02327***
(0.00165)

Precipitation -0.00909*
(0.00504)

Temperature -0.04863***
(0.01532)

Observations 16,002
R2 0.3451

Notes: * p<0.1, ** p<0.05, *** p<0.01. Depen-

dent variable is aggregated to the 1 mile/monthly

level. Segments with average IRI values < 20 or

> 300 are dropped from the sample. Segments

with average speeds greater than 90 MPH are also

dropped. Panel A dependent variable: vehicle

crash rate per month per 100,000 VMT. Panel B

dependent variable: average speed in MPH. Sep-

arate month, year, route, county, and pavement

type fixed effects are included. Controls for average

precipitation and temperature are also included.

Heteroskedastic-robust standard errors are used in

every panel.
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Figure 18: Relationships between Key Variables: Elevation, IRI, and Crash Rate

Panel A: Reduced Form: Elevation x Aquifer
and Crash Rate

Panel B: First Stage: Elevation x Aquifer and
IRI

Panel C: Second Stage: IRI and Crash Rate

tionships detailed in Equations 3 and 4 for the traffic outcomes of interest: crash rates and
average speed.

Figure 18 summarizes the relationship between our preferred instrument, road segment
elevation interacted with an indicator variable for segments located over aquifers, road rough-
ness, and average crash rates. Panel A shows a negative relationship between the instrument
and crash rates. Panel B shows a negative first stage relationship between the instrument
and the endogenous explanatory variable, road segment roughness. Panel C shows a positive
relationship between the endogenous explanatory variable, road roughness, and crash rates,
the traffic outcome variable of interest.

Figure 19 summarizes the relationship between our preferred instrument, road roughness,
and average vehicle speed. Panel A shows a positive relationship between the instrument and
average speed. Panel B shows a negative first stage relationship between the instrument and
the endogenous explanatory variable, road segment roughness. Note that this is identical
to Panel B on Figure 18. Panel C shows a negative relationship between the endogenous
explanatory variable, road roughness, and average speed, the second traffic outcome variable
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Figure 19: Relationships between Key Variables: Elevation, IRI, and Speed

Panel A: Reduced Form: Elevation x Aquifer
and Speed

Panel B: First Stage: Elevation x Aquifer and
IRI

Panel C: Second Stage: IRI and Speed
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of interest.

2.4.2 IV Results

We next estimate the causal impact of road roughness on crash rates and average speed for
the entire sample of road segments in California. We use the 2SLS approach with a first
stage regression model defined by Equation (3) and a second stage regression model defined
by Equation (4). If the exclusion restrictions hold for the instrument Z, then the parameter

estimate β̂1 from Equation (4) reflects the causal impact of changes in road roughness on
traffic outcomes.

Table 5 contains IV results for the full sample using our preferred instrument, road
segment elevation interacted with an indicator variable identifying segments over aquifers,
a proxy for distance to groundwater for each segment. Both Equation (3) and Equation
(4) contain variables reflecting average monthly precipitation and temperature in the county
where each segment exists and the full set of fixed effects. The top panel on Table 5 defines
crash rates per 100,000 VMT as the dependent variable and the bottom panel defines average
speed as the dependent variable.

The key IV results appear in Column (3) of both panels. The first stage regression F
statistic (Kleibergen-Paap F) indicates sufficient instrument strength to identify a causal
effect. The basic relationship between road roughness and the two traffic outcomes found in
the OLS results and bin scatter analysis hold up in the IV analysis. Rougher roads cause
more traffic accidents and cause vehicles to drive more slowly, other things equal. Allowing
pavement to deteriorate imposes costs on motorists.

The IV parameter estimates are larger in absolute value than the OLS estimates on Table
4. The second stage parameter for the model using average speed as the dependent variable
implies that a one standard deviation (36 inch) increase in IRI on a road segment reduces
average speed on that segment by 6.4 MPH, about an 11% decrease.

The distribution of the crash rate variable has a fair number of one mile/one month
road segments with zero crashes per month on average and a relatively long right tail.
This somewhat complicates characterization of the effect size. The second stage parameter
estimate for the model using average vehicle crash rate as the dependent variable implies
that a one standard deviation increase in IRI would move a road segment with an average
of zero crashes per month to an average crash rate about 0.6 standard deviations above the
overall sample average monthly crash rate. In other words, this increase in IRI would change
a safe stretch of road where no crashes occur to a stretch of road with an above average
crash rate.

Alternative IV models that use the segment elevation and aquifer identifier variables
separately, in other words an overidentified IV model, generate similar results, in terms of
parameter signs and statistical significance, but the Kleibergen-Paap F statistics are smaller.
Alternative IV models using the Tobit estimator for the second stage generate similar results
for the crash rate model. The parameter estimate on the IRI variable in the second stage IV
Tobit model was 0.02 and statistically significant at the 1% level. The results for the causal
impact of road damage on crash rates remain robust to correcting for left censoring of the
crash rate variable.

These results have important implications for traffic safety, vehicle operating costs, and
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Table 5: IV Estimates of Causal Effect of IRI on Traffic Outcomes

(1) (2) (3)
Reduced Form 1st Stage 2nd Stage

Panel A: Crash Rate

Instrument: Elevation x Aquifer -0.00004*** -0.00331***
(0.00001) (0.00058)

ÎRI 0.01287***
(0.00217)

Observations 16,002 16,002 16,002
Kleibergen-Paap F 33.089

Panel B: Speed

Instrument: Elevation x Aquifer 0.00058*** -0.00331***
(0.00010) (0.00058)

ÎRI -0.17646***
(0.03526)

Observations 16,002 16,002 16,002
Kleibergen-Paap F 33.089

Notes: * p<0.1, ** p<0.05, *** p<0.01. Dependent variables aggregated to the 1 mile/1

month level. Segments with average IRI values < 20 or > 300 are dropped from the sample.

Segments with average speeds greater than 90 MPH are also dropped. Column 1 shows reduced

form results (elevation x aquifer on the traffic outcome), Column 2 shows first stage results

(elevation x aquifer on IRI), and Column 3 shows second stage results (ÎRI on each traffic

outcome). Panel A dependent variable is the crash rate per 100,000 total VMT. Panel B

dependent variable is average speed in miles per hour. Separate month, year, route, and

county fixed effects and controls for average precipitation and temperature are also included.

Heteroskedastic-robust standard errors are reported in every column and panel.
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consumer welfare. IRI increases because of vehicle use and weathering. Transportation
departments can reduce IRI through maintenance projects. Delaying maintenance aimed
at reducing IRI means rough road segments will experience continued IRI increases. This
will cause increases in crash rates on those segments, reducing traffic safety and increasing
vehicle operation costs for all motorists using those road segments. The increased roughness
will also reduce vehicle speed, generating welfare loss from increased travel times (Couture
et al., 2018) and increased vehicle operating costs because vehicles traveling at lower speeds
burn more fuel.

2.5 IV Results by Pavement Type

Small and Winston (1988), and the traffic engineering literature, point out differences in
roughness and rate of deterioration for flexible (asphalt) and rigid (concrete) pavements.
Figure 13 shows some systematic differences for the two pavement types in terms of rough-
ness, crash rates, and speed. This suggests the possibility of different relationships between
road segment roughness and traffic outcomes for these two pavement types. The APCS data
identify surface type for all road segments.

Figure 3 shows the spatial distribution of pavement types in the sample. From Figure 3,
long contiguous stretches of asphalt road segments exist outside metropolitan areas in Cali-
fornia, particularly in the northern and eastern part of the state. In urban areas, particularly
in southern California, the Bay Area, and around Sacramento, pavement types vary at small
spatial scales. Splitting the sample into subsamples by pavement type will only generate
long contiguous heterogeneous stretches of road for those asphalt road segments outside the
urban centers in the state. This could affect the estimates.

In addition, splitting the sample by pavement type could affect instrument strength.
Taken together, Figure 3, Figure 16, and Figure 15 show clear spatial patterns in the distri-
bution of pavement types and aquifers by elevation. We find this to be the case.

Appendix Table A1 shows the results from separate IV models estimated for the asphalt
and concrete road segment subsamples. Columns (1) - (3) contain results for asphalt road
segments and Columns (4) - (6) results for concrete segments. Kleibergen-Paap F statistics
decline substantially in both subsamples, and we lose instrument strength in the concrete
subsample. The first stage parameter estimates across both models changes completely
relative to those for the full sample on Table 5.

Further reducing the sample to include only road segments at relatively lower altitude
clearly shows the role played by altitude in terms of instrument strength. Table 6 shows
IV separate results for asphalt and concrete when the sample is restricted to include only
road segments at 2000 feet or lower. Splitting the sample at 2000 feet roughly divides the
state in half east-west. Note that this restriction does not reduce the sample sizes by much.
The number of asphalt road segments declines to 6,733 from the full sample asphalt segment
count of 7,581. The number of concrete road segments falls to 7,820 from 8,421 full sample
concrete road segments.

The results on Table 6 strongly resemble the full sample results on Table 5 in terms of
parameter estimate sign and significance. The Kleibergen-Paap F statistics increase relative
to those on Table 5. The size of the second stage parameters generally match those for the
full sample. Rougher pavement causes a relatively larger decline in average speed on asphalt
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Table 6: IV Estimates of Causal Effect of IRI on Traffic Outcomes at Lower Elevations

(1) (2) (3)
Reduced Form 1st Stage 2nd Stage

Panel A: Crash Rate

Instrument: Elevation x Aquifer -0.00010*** -0.00868***
(0.00001) (0.00131)

ÎRI 0.01031***
(0.00178)

Observations 14,553 14,553 14,553
Kleibergen-Paap F 44.000

Panel B: Speed

Instrument: Elevation x Aquifer 0.00320*** -0.00868***
(0.00021) (0.00131)

ÎRI -0.36820***
(0.05676)

Observations 14,553 14,553 14,553
Kleibergen-Paap F 44.000

Notes: * p<0.1, ** p<0.05, *** p<0.01. Dependent variable is aggregated to the 1

mile/monthly level. Segments with average IRI values < 20 or > 300 are dropped from

the sample. Segments with average speeds greater than 90 MPH are also dropped. Column

1 shows reduced form results (elevation x aquifer on the traffic outcome), Column 2 shows

first stage results (elevation x aquifer on IRI), and Column 3 shows second stage results (ÎRI

on the traffic outcome). Panel A examines the crash rate per 100,000 total VMT. Panel B

examines average speed. Separate month, year, route, and county fixed effects are used in

every panel. Controls for average precipitation and temperature are also included. Segments

with an average elevation above 2000 ft. are dropped. Heteroskedastic-robust standard errors

are used in every column and panel.
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segments. Rougher pavement causes a relatively larger increase in crash rates on concrete
segments.

In general, the full sample results are robust to pavement type, as long as the analysis
focuses on road segments at an elevation of 2000 feet or less, which only removes a small
number of road segments from the sample. For completeness, Appendix Table A2 shows IV
results for the pooled asphalt and concrete segments for the subsample of road segments at
2000 feet or less. These results also closely resemble the IV results on Table 5.

Note the larger Kleibergen-Paap F statistics on Appendix Table A2 compared to those on
Appendix Table A1. Our preferred instrument is stronger at lower altitudes and deteriorates
at higher altitudes, controlling for precipitation and temperature differences across these
areas. This likely reflects a deterioration in the relationship between altitude and distance
to ground water at high altitudes.

3 Conclusions

We develop evidence that rougher roads cause increases in vehicle crash rates and decreases
in average vehicle speed on Federal Aid Highway System roads in California. Results from
Instrumental Variables models using the interaction of road segment elevation with an indi-
cator variable identifying road segments over aquifers indicate that a one standard deviation
increase in a road segment’s International Roughness Index, an increase of about 36 inches
in vertical motion over a one mile road segment, decreases average vehicle speed by 11%,
a substantial reduction. A one standard deviation increase in IRI also causes a substantial
increase in vehicle crash rates. This increase would move a one mile road segment with
an average of zero crashes per month, a very safe road segment, to an average crash rate
approximately 0.6 standard deviations above the average crash rate in the sample. The
deterioration of road surface quality generates substantial negative impacts on drivers and
passengers.

To our knowledge, our results represent the first causal estimates of the impact of road
damage on traffic outcomes. This paper begins to fill the sizable gap in the transportation
literature identified by Duranton et al. (2020) by addressing the fundamental relationship
between deteriorating pavement and both vehicle crashes and speed. The limited evidence
in the transportation engineering literature made no use of causal inference methods and
found a weak relationship between these variables. The OLS results in this paper also
indicate a small impact of road damage on traffic outcomes. The larger IV estimates provide
important new evidence on the extent to which road damage affects traffic safety, vehicle
operating costs, and travel time.

These results have important implications for transportation infrastructure policies. Win-
ston (1991) pointed out that efficient transportation infrastructure policy requires appropri-
ate pricing of user fees and optimal investment, including new lanes and roads and road
maintenance. Efficient user fees reflect the full marginal cost of transportation infrastruc-
ture use, including the cost of damage inflicted on roads due to use. Optimal transportation
infrastructure investment trades off construction costs with future maintenance costs, so un-
derstanding the consequences of failure to maintain roads, resulting in rougher road surfaces,
represents an important part of this puzzle. The results developed here suggest a larger full
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marginal cost of road use than previously thought, implying a need for more transportation
infrastructure investment, especially for road maintenance.

Small and Winston (1988) showed that pavement design practice leads to underinvest-
ment in pavement durability. In practical terms, this means rougher existing roads than
would have existed across the entire highway network under different pavement durability
decisions. The results in this paper represent an important extension of our understanding of
the consequences of this underinvestment. In addition to the increased direct maintenance
costs, the results here reveal significant social costs, in the form of reduced traffic safety,
increased vehicle operating costs, and longer travel times. These costs impact individu-
als and firms, and underscore the need for changes in current transportation infrastructure
investment policies.

The detailed pavement quality data from APCS collected for this research allow for a
novel assessment of the pavement quality data in the U. S. Department of Transportation’s
widely used Highway Performance Monitoring System. While the IRI data in the HPMS
generally resemble the APCS data, our comparison reveals several potential limitations in
the HPMS. The time elapsed between pavement scans in the HPMS pavement quality data
cannot be determined, which complicates empirical analysis of changes in pavement quality
over time. Also, the practice of filling in missing annual IRI values with the values reported
in previous years reduces the variation in IRI data in HPMS which also impacts empirical
analysis of these data.

Finally, the analysis of changes in road segment IRI over time highlights the importance of
information about highway maintenance and repavement projects for understanding changes
in road segment quality over time. Pavement deterioration negatively affects traffic safety and
speed, highlighting the importance of improving the quality of rough road segments through
maintenance or repaving. The observed changes in IRI analyzed here represent the impact
of both axle loadings reducing pavement quality and unobserved maintenance that improves
pavement quality. Older HPMS data contain information on both pavement quality and the
time of the most recent maintenance, but the maintenance timing variable disappeared from
the HPMS data files years ago. Development of data that contain both pavement quality
and maintenance information should be a priority for transportation agencies.
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Appendix

A1.1 Elevation, Pavement Type, and Instrument Strength

Table A1 shows full sample IV results for the asphalt and concrete subsamples.

Table A1: IV Estimates of Causal Effect of IRI on Traffic Outcomes by Pavement Type

(1) (2) (3) (4) (5) (6)
Asphalt Asphalt Asphalt Concrete Concrete Concrete

RF 1st Stage 2nd Stage RF 1st Stage 2nd Stage

Panel A: Crash Rate

Elevation x Aquifer -0.00001*** 0.00230*** -0.00005*** 0.00051
(0.00000) (0.00073) (0.00000) (0.00069)

ÎRI -0.00590*** -0.10642
(0.00186) (0.15229)

Observations 7,581 7,581 7,581 8,421 8,421 8,421
Kleibergen-Paap F 15.929 0.495

Panel B: Speed

Elevation x Aquifer -0.00017 0.00230*** 0.00144*** 0.00051
(0.00013) (0.00073) (0.00010) (0.00069)

ÎRI -0.07254 2.80568
(0.05732) (3.99944)

Observations 7,581 7,581 7,581 8,421 8,421 8,421
Kleibergen-Paap F 15.929 0.495

Notes: * p<0.1, ** p<0.05, *** p<0.01. Dependent variable is aggregated to the 1 mile/monthly level.
Segments with average IRI values < 20 or > 300 are dropped from the sample. Segments with average
speeds greater than 90 MPH are also dropped. Panel A examines crash rate per 100,000 total VMT. Panel
B examines speed. Column 1 shows reduced form (RF) results (elevation x aquifer on the traffic outcome),
Column 2 shows first stage results (elevation x aquifer on IRI), and Column 3 shows second stage results

(ÎRI on the traffic outcome) for asphalt road segments. Columns 4 - 6 show the same for concrete. Separate
month, year, route, and county fixed effects are used in every panel. Controls for average precipitation and
temperature are also included. Heteroskedaskic-robust standard errors are used in every panel and column.
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Table A2: IV Estimates of Causal Effect of IRI on Traffic Outcomes at Lower Elevations
by Pavement Type

(1) (2) (3) (4) (5) (6)
Asphalt Asphalt Asphalt Concrete Concrete Concrete

RF 1st Stage 2nd Stage RF 1st Stage 2nd Stage

Panel A: Crash Rate

Elevation x Aquifer -0.00008*** -0.00658*** -0.00007*** -0.00284
(0.00001) (0.00178) (0.00001) (0.00161)

ÎRI 0.01196*** 0.02616
(0.00386) (0.01611)

Observations 6,733 6,733 6,733 7,820 7,820 7,820
Kleibergen-Paap F 14.958 2.602

Panel B: Speed

Elevation x Aquifer 0.00406*** -0.00658*** 0.00285*** -0.00284
(0.00027) (0.00178) (0.00026) (0.00161)

ÎRI -0.61683*** -1.00290*
(0.16260) (0.60555)

Observations 6,733 6,733 6,733 7,820 7,820 7,820
Kleibergen-Paap F 14.958 2.602

Notes: * p<0.1, ** p<0.05, *** p<0.01. Dependent variable is aggregated to the 1 mile/monthly level.
Segments with average IRI values < 20 or > 300 are dropped from the sample. Segments with average speeds
greater than 90 MPH are also dropped. Panel A examines crash rate per 100,000 total VMT. Panel B examines
speed. Column 1 shows reduced form (RF) results (elevation on the traffic outcome), Column 2 shows first

stage results (elevation on IRI), and Column 3 shows second stage results (ÎRI on the traffic outcome) for
asphalt road segments. Columns 4 - 6 show the same for concrete. Separate month, year, route, and county
fixed effects are used in every panel. Controls for average precipitation and temperature are also included.
Segments with an average elevation above 2000 ft. are dropped. Heteroskedaskic-robust standard errors are
used in every panel and column.
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A1.2 Supplemental Information: Scans and Road Quality

Figure A1 shows the average number of times one mile highway segments were scanned over
the sample period.

Figure A1: Distribution of Number of Scans for Each .1 Mile Segment

Note: This is a distribution of the number of unique months a segment was scanned. In reality, a segment

could be scanned a handful of times within a month, but we average across those scans and only count it as

1. There should be very little, if any, variation within months.

Figure A2 shows the distribution of the observed time between APCS scans for each
pavement segment in the sample. The distribution shows three distinct peaks at 1-2 months
between scans, 9-12 months between scans, and 22-26 months between scans.
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Figure A2: Distribution of Number of Months between IRI Scans

Note: Distribution of the number of months elapsing between APCS scans for individual segments. APCS

scans some segments several times over a short period. It is possible that a segment is scanned two times in

a week, but those two days are part of different months. Three distinct peaks can be seen at 1-2 months,

9-12 months, and 22-26 month intervals.
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A1.3 Supplemental Information: Pavement Types

Table A3 shows distribution of pavement types in the sample.

Table A3: Frequency of Route and Pavement Types

Asphalt Concrete Total

Interstate 5210 (32.6%) 7631 (47.7%) 12841 (80.2%)
U.S. Route 2371 (14.8%) 790 (4.9%) 3161 (19.8%)

Total 7581 (47.4%) 8421 (52.6%) 16002 (100.0%)

Note: Frequency of route-pavement type combinations for 1 mile segments shown
above.
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A1.4 Supplemental Information: Location of Groundwater Mea-
surement Wells in California

Figure A3: California Groundwater Measurement Wells

Note: Map depicts the 5836 groundwater measurement wells in California.

56



A1.5 Additional Sample Information: T-tests of Differences in
Means

Table A4 shows differences in means of all variables across pavement types.

Table A4: Differences in Means

(1) (2) (3)
Mean Mean Difference

Panel A Asphalt Concrete

IRI 80.383 106.617 -26.235***
Crash Rate 0.201 0.304 -0.103***
VMT 2.79e+06 3.08e+06 -2.91e+05***
VHT 47732.368 54315.487 -6583.119***
Speed (mph) 60.001 58.896 1.105***
Elevation (ft) 655.753 667.428 -11.675
Over Aquifer 0.770 0.821 -0.051***

Panel B IRI < 200 IRI ≥ 200

Crash Rate 0.254 0.309 -0.055***
VMT 2.93e+06 3.60e+06 -6.69e+05***
VHT 50874.881 72243.989 -2.14e+04***
Speed (mph) 59.511 53.493 6.018***
Elevation (ft) 662.743 606.519 56.224
Over Aquifer 0.795 0.863 -0.068**

Note: T-tests for difference in means is displayed above for different groups of the
1 mile - monthly data. Panel A compares asphalt roads to concrete roads. Panel B
compares segments with an observed IRI of less than 200 to those with an IRI of more
than 200. IRI = international roughness index; VMT = vehicle miles traveled and
VHT = vehicle hours traveled. Speed = VMT/VHT.
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A1.6 APCS-PeMS Matching Procedure

We matched APCS road segment data to PeMS road segment data using the following
method:

• APCS and PeMS data are collected by 0.1 mile road segments and month.

– Incidents are simply matched to the lowest 0.1 mile segment in the Postmile file.
Consider two incidents recorded at post mile (PM) 1.99 and 2.01 in the PeMS
data. These two incidents are matched to PM 1.9 and 2.0 respectively in the
Postmile file.

– APCS data are more nuanced since they are point estimates for an entire road
segment and while most DMS are 0.1 mile in length, some are longer or shorter.
DCS do not always begin exactly at 0.1 PM Postmile file values. Rather, there
is a distribution of DCS start positions relative to Postmile file values over the
sample. This requires a different spatial matching approach for APCS segment
locations to Postmile file values. There are three possible ways an APCS DCS
can overlap a 0.1 mile Postmile file segment.

1. The DCS lies completely within the 0.1 mile segment. For example, the DCS
runs from Postmile file values .21 to .29.

2. The DCS only partially overlaps the 0.1 mile segment. For example, the DCS
runs from .17 to .27.

3. The DCS completely overlaps the .1 mile Postmile file segment. For example,
the DCS runs from PM .17 to .37.

A weighted average is constructed for each DCS to estimate IRI for each .1 mile
segment in the Postmile file. The weights reflect the fraction of distance in each
DMS segment contained in the Postmile file 0.1 mile segment.

• Once the raw data is matched to .1 mile segments, data is then aggregated to 1 mile
segments.

• Some sections of highway have realigned postmiles. This is due to road alterations
that might change the length of a section of road. We drop road realignments since
they might not be consistent over time.
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