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1 Introduction

Innovation is at the core of many fundamental economic problems. The sustained invention and diffusion of
new technologies during the Industrial Revolution brought us from the Hobbesian life of man - “solitary, poor,
nasty, brutish, and short” - to the prosperity of the modern era. Innovation that replaces dirty technologies
will be a key tool for mitigating climate change. The spread of “Green Revolution” crops allowed poor
countries to grow without fear of famine. The world’s seven largest private companies as of December 2020
all produce products that had not been invented fifty years earlier.! Indeed, the growth potential of the
modern economy is itself an innovation problem: are we facing a future of stagnation (Gordon, 2017) or
is this angst merely a replay of historical worries that technological growth had come to an end (Mokyr,
Vickers, and Ziebarth, 2015)?

Innovation is the invention, development, and diffusion of new goods, services or production processes.’
That is, innovation is the study of how society expands its production possibilities frontier. Innovation is an
economic problem because it depends on the active choices of agents who respond to incentives. Nonetheless,
innovation was not always seen as a primarily economic concern. Prior to 1960, only 11 articles in the
American Economic Review, the Quarterly Journal of Economics and Econometrica combined had ever
featured “invention” or “innovation” in their title.> Although new ideas and their spread are a constant
feature of human history (Nisbet, 1980), their main driver was long thought to be psychological, sociological,
or simply the result of serendipity. For instance, sociologists in the early twentieth century were concerned
with the process by which new ideas - some of which are, as Emerson said, “in the air” - are adopted, spread,
and modified (Gilfillan, 1935; Ogburn, 1922). This literature was largely focused on investigating which social
structures were relatively more amenable or hostile to the adoption of new ideas.

The economic study of innovation was inspired by mid-century developments in industrial practice, govern-
ment policy, and economic theory. Prior to World War 11, large-scale industrial research laboratories became
an important source of new invention (e.g., Hounshell and Smith (1988)). Successful directed wartime science
led to Vannevar Bush’s “Science, The Endless Frontier” (Bush, 1945), focusing on the importance of basic
research and the role of government policy in its development. Finally, the dynamic economic theory of
Schumpeter (1942) argued that the creation and diffusion of new goods was a more fundamental economic
problem than the static Neoclassical welfare analysis which held the technological frontier constant.*

In response to these developments, a 1951 conference “Quantitative Description of Technological Change”
was held at Princeton and supported by the Social Science Research Council. The meeting convened around

60 people including economists, economic historians, sociologists and historians — among them Gerard Debreu,

'On the economic history of technical change during the Industrial Revolution, see Mokyr (2010). Acemoglu, Akcigit, Hanley,
and Kerr (2016) discusses the tradeoffs between tax-based and innovation-based climate change policies. Alston and Pardey (2014)
summarizes the evidence on the contribution of innovation to international agricultural development, and Gollin, Hansen, and
Wingender (2021) estimates that the Green Revolution contributed $83 trillion to world GDP since 1965. The seven largest private
companies by market capitalization as of December 2020 are Microsoft, Apple, Amazon, Alphabet (Google), Alibaba, Facebook,
and Tencent (Wechat).

2Many other definitions have been proposed, notably Schumpeter (1939): “we will simply define innovation as the setting up of
a new production function,” with even mergers included in this definition. This is surely too broad for our purposes.

3These are Epstein (1926) on whether invention is mainly driven by the profit-seeking motives of firms, Merton (1935) using
patent data to study the rise and fall of innovation by industry, Bloom (1946) on adoption of old technology versus new invention in
Hicks’ theory of induced innovation, Terborgh (1950) with a short note on socialist versus capitalist innovation, Maclaurin (1950)
on the history of the radio industry, Solo (1951) arguing that innovation is contra Schumpeter a normal business practice, Brozen
(1951) with a qualitative description of factors affecting R&D and imitation, Maclaurin (1953) describing different propensities to
do pure science, invent, or innovate over time and space, a short qualitative note by Duesenberry (1956) on how demand shifts
with new innovations in an industry, Brown (1957) with theory and evidence of an effect similar to Arrovian replacement driving
machine tool innovation, and Ruttan (1959) on the links between Usher and Schumpeter’s definition of innovation. There are of
course important papers on this topic in other journals (e.g., Plant (1934)) as well as articles on innovation and invention which
do not use those words in their title (e.g., Nelson (1959b)). See Nelson (1959a) for a survey of the literature at that time.

“See Stephan (2015b) for a discussion of the influence of Bush’s proposals. Linking all of these ideas was the work of Schumpeter’s
colleague Abbott Usher, an economic historian, particularly Usher (1954).



Simon Kuznets, Wassily Leontief, Rupert Maclaurin, Jacob Schmookler, and Abbott Usher.> Godin (2008)
argues that publication of the conference proceedings — while originally envisioned — was abandoned because

”

“the papers [were| in most cases of a very exploratory character.” At the time, data on government R&D
expenditures were close to nonexistent, very few papers had used information from patents to study corporate
innovation, and the link between these efforts and economic growth was unclear.

The urgency of making progress on unlocking the “black box” of innovation was clarified with Solow’s
blockbuster 1957 paper (Solow, 1957). Solow shows that the share of long-run economic growth unexplained
by changes in capital and labor inputs, referred to as total factor productivity (TFP), is as high as 85
percent. By construction, TFP is an unmeasured residual variation in output that cannot be explained
based on observable inputs. However, subsequent work adjusting for labor quality and capital utilization
suggested that much of this “Solow residual” reflects technological progress. Figure 1 presents a descriptive
plot of TFP and gross domestic product (GDP) over time, providing one illustration of their co-movement.
If much of economic growth is due to technological change, and if much of technological change is the result
of incentive-driven choices, the implication is immediate: we had better understand what factors affect those
choices.

1960 1980 2000 2020
year

——— 10-year smoothed average of annual TFP change
————— 10-year smoothed average of annual GDP change

Figure 1: Changes in total factor productivity and GDP over time in the US

Notes: This figure displays 10-year smoothed averages of annual changes in total factor productivity (TFP)
and gross domestic product (GDP). TFP here is the standard decomposition aside from adjusting for changes
in labor and capital utilization (e.g., “labor hoarding” with shorter hours during recessions). Source: Fernald
(2012).

Many questions immediately raise themselves. Why are certain inventions created when they are, where
they are, by particular inventors? How do inventors choose the rate and direction of the research investments
they pursue? How do inventors choose between improving existing products versus creating new ones? What
role do public-sector scientists, tinkerers, and lone inventors play in innovation? What affects the speed at
which these inventions flow to new consumers, new use cases, and new countries? What market structure
leads to high levels of innovation? Do high labor or high capital costs shift effort? How does demand for an
invention affect its production?® Is innovation optimally generated with laissez faire incentives, like normal
goods? If not, why not? How does imperfect information about the value and difficulty of inventions matter?

These core questions all appear in essays in the groundbreaking 1962 National Bureau of Economic Research

5The background in this paragraph is drawn from Godin (2008) and Godin (2012).
50n push versus pull theories of invention, see Scherer (1982).



(NBER) conference volume on the Rate and Direction of Inventive Activity (National Bureau of Economic
Research, 1962) and related papers published by the economists who attended the event (e.g., Machlup
(1962), Nelson (1959b), and Schmookler (1962, 1966)).

Despite the extensive research undertaken in the sixty years since the 1962 NBER Rate and Direction
conference, many of these questions remain open. From a theoretical perspective, optimal policy often involves
offsetting tradeoffs. Theory alone does not tell us whether innovation is under- or over-incentivized in laissez
faire, or whether monopolies or competitive markets are more innovative, raising the value of empirical work.
On the empirical side, measuring and valuing new ideas — the knowledge inventors build on, the goods which
incorporate that knowledge, and the value of those goods to both firms and consumers — is very difficult.
Moreover, isolating empirical variation which allows for the construction of compelling counterfactuals of how
innovation might have been different with a different set of incentives is quite challenging.

The aim of this chapter is to provide a concise summary of the core problems in the economics of
innovation. We begin with three fundamental concepts. First, what market failures exist in the production
and diffusion of new goods - that is, why do we need an “economics of innovation” when we do not need
an economics of cars or economics of apples? Second, how does inefficiency in the production of innovation
harm economic growth? Finally, what makes empirically analyzing innovation policy questions challenging,

and how have economists made progress in measurement and empirical analysis?

1.1 Market failures and innovation

The rate and direction of innovation responds to incentives (Schmookler, 1966; Schumpeter, 1942). This is of
course true of all economic objects, the production of most of which we simply leave to the market. However,
in an hugely influential article, Arrow (1962a) clarifies three fundamental market failures preventing laissez
faire efficiency in the production of new ideas.

Arrow begins with the general equilibrium welfare theorems. Market equilibria are Pareto efficient as
long as a set of well-known assumptions hold. Three of these assumptions are particularly important: the
production transformation set should be convex,” the value of the good should not involve externalities, and
production should be deterministic.

Production of the good called new knowledge - that is, innovation - violates all three of those assumptions.
The first unit of a piece of knowledge is costly to create and subsequent pieces of that knowledge are free to
replicate; ideas, as Thomas Jefferson noted, are like a flame being passed from candle to candle costlessly
once the first candle is lit.® Whether one person or a thousand use a newly created idea, the cost of creating
the idea remains the same, hence the production transformation set is not convex. This nonconvexity means
market prices will not incentivize the right amount of innovation. Intuitively, efficiency requires that price
equals the cost of the marginal unit of knowledge consumed, which is zero. But if the price of knowledge is
zero, who will pay the fixed cost to create it first? If the inventor is the only one allowed to sell the good, how
do we avoid the inefficiency of monopolies? That is, the fact that initial inventors incur unique fixed costs
means that innovation is either underappropriated or else the product of that innovation will be artificially
scarce.

Worse still for laissez faire efficiency, the social value of new ideas includes significant externalities. Ideas
today are inputs into inventions tomorrow. There is no patent strong enough to cover ideas only inspired by
the original invention, but the social value of the original invention surely ought to include that inspiration.
Employee mobility is one source of this spillover, since firms are often unable to prevent their trained workers
from leaving to new jobs. That is, invention creates spillovers whose value is not incorporated into market
prices.

The fact that research inputs only produce knowledge with uncertainty is also problematic. In general,

"Le., if I can produce 2 of good x using a of good y, then I need to be able to produce at least 1 of good x using .5a of good y.
8For an alternative historiography of the Jefferson analogy, arguing that his point was a natural rights and not an efficiency
argument, see Sheff (2020).



the theory of Arrow-Debreu securities says that uncertainty does not harm economic efficiency as long as
risks can be suitably hedged. With a market allowing proper hedging of risk, “the use of inputs, including
human talents, in their most productive mode is not inhibited by unwillingness or inability to bear risks”
(Arrow, 1962a). But Arrow, very much ahead of his time, noted that the uncertainty of research is partially
related to the fact that we cannot observe the effort of the researcher. If a researcher gets a constant payout
no matter whether she succeeds with her invention today or not, then surely she will shirk. The problem
is then how to balance the efficiency-improving desire to shift risk away from individuals with the incentive
problem of encouraging invention in the first place. Invention involves uncertainties which cannot be fully
hedged when they depend on unobservable effort by inventors.’

Fixed costs borne only by the initial inventor, spillovers, and unhedged uncertainty collectively suggest
that competitive markets will generate too little innovation. On the other hand, economic theory also suggests
that research investments are in some contexts too high, for two reasons. First, inventors do not account for
the fact that their R&D lowers the expected return of others trying to invent the same product (Loury, 1979;
Reinganum, 1985). “Races” to enter the market first therefore occur. Second, a new invention may simply
steal market share from other firms without generating any social benefit. For example, a new treatment for
heart disease that is only a small improvement relative to existing drugs being sold might capture nearly the
entire market even though the marginal social value of the new treatment could be relatively small. This is
similar to the usual intuition that product entry can be excessive (e.g., Mankiw and Whinston (1986)).

But in practice, empirical analyses have suggested that — even after accounting for racing and business
stealing effects — the social returns to R&D are much higher than the private returns, thus providing a
justification for government-supported innovation policy.!® Jones and Summers (forthcoming) notes that if
all growth is due to domestic R&D, a baseline average social return is GDP growth divided by the social
discount rate, over the share of GDP spent on R&D. The intuition is that a one-time investment in R&D today
generates an infinite stream of higher production in the future. Using standard discount rate assumptions and
historic US growth and R&D share figures, this baseline calculation suggests a social rate of return on R&D
of up to 67%. After attempting to adjust for capital-embodied growth, health benefits unmeasured in GDP,
and diffusion lags, among other factors, the average and marginal social returns of R&D nonetheless appear
to be at least 20%. Bloom, Schankerman, and Van Reenen (2013) takes a different tack, using technological
and market distance between firms to estimate the gross social returns to R&D. They likewise find large
social returns, which are at least twice as high as the private returns.

As we will discuss, estimating the magnitude of this inefficiency — the gap between private and social
returns — is incredibly challenging. Just as the magnitude of this inefficiency is difficult to estimate, many
of the other most important parameters in innovation policy are also very hard to credibly uncover. We will
discuss a number of modern empirical approaches that have made progress in pinning down these parameters

in Sections 2 to 5.

1.2 Innovation and growth

There are good theoretical reasons, as Arrow has shown, to believe innovations are underproduced by the
market. Worse yet are the consequences of this underproduction. Unlike many “standard” goods, innovations
play a cumulative and fundamental dynamic role in economic growth. When innovation policy is suboptimal,
growth is as well. This is true in exogenous growth models like Solow-Swan, in endogenous growth models,

and in Neoschumpeterian models.

9The role of uncertainty comes up in many ways in innovation policy: uncertainty complicates contracting for the production
of ideas when effort cannot be observed (Subsection 2.3), can cause holdup when there is uncertainty about opportunities for
sequential inventions (Subsection 3.2.2), and can complicate targeting tax subsidies when distinguishing which corporate spending
is actual R&D (Subsection 3.1). For a modern treatment of the importance of moral hazard, adverse selection, and private learning
in generating inefficient innovation, see Halac, Kartik, and Liu (2016).

198ee also Lucking, Bloom, and Van Reenen (2018) and Jones and Williams (1998).



Consider first the famous Solow-Swan model (Solow, 1956; Swan, 1956). Let the stock of labor grow
exogenously, the savings and depreciation rates be a fixed proportion of output each period, and output be a
Cobb-Douglas combination of capital, labor, and “technology” which scales up output for any level of capital
and labor. In the short run society can become richer via capital deepening. However, once steady state
capital per effective unit of labor has been reached, only technological growth can push the economy forward.
Empirically, in line with the model, growth in capital and labor alone do a poor job of explaining the growing
wealth of nations.

The Solow-Swan model assumes an exogenous rate of technological progress, in the sense of being inde-
pendent of economic forces. Essentially, the model is driven by a technological “black box” with no micro-
foundations for what factors drive technological change. The natural next step, then, is to microfound this
growth as the aggregated “endogenous” outcome of firm choice. Endogenous growth models where technol-
ogy depends on firm R&D effectively build on two core ideas, one dating to Alfred Marshall, one to Edward
Chamberlin.

The Marshallian idea is that ideas are nonrivalrous, so constant returns to scale technology for the firm
production function of new inventions has increasing returns to scale at the aggregate level (Marshall, 1890).
That is, one researcher may need a year to come up with a new product, but that new product can be
used and recombined by other researchers without bound. The more ideas there are in the world, the
more kindling there is for other inventors to spark (Weitzman, 1998).!1 The Chamberlin idea is that there
exist markets without perfect competition. The quasirents that can be earned by successful innovators in
imperfectly competitive markets can provide the incentive to do R&D (Chamberlin, 1962). Combining these
two general ideas into a growth model that is both analytically tractable and which has nontrivial implications
for innovation policy proved challenging.

The first successful attempt at incorporating increasing returns into a general equilibrium model comes
from Romer (1986). Romer proposes an externality when firms use capital. Each firm’s capital use increases
overall knowledge in society via a learning-by-doing effect not captured by the profits of individual firms.
This model, in the spirit of Marshall, generates a growth path with constant increases in capital, production,
and technological growth.'? This model’s focus on the fact that knowledge is non-rivalrous — in the sense of
being able to be used simultaneously by many economic actors — clarifies a key link between non-rivalry and
increasing returns to scale. However, the model does not explicitly model knowledge production.

R&D explicitly appears in Romer (1990). Assume society can produce research on new production inputs,
production of those inputs, or production of final consumption goods. Inventors of a production input have
an infinitely-lived patent allowing them to earn quasirents from selling that good, hence incentivizing R&D.
This model is canonical because it tractably allows analysis of how purposeful market invention can generate
growth that is neither infinite nor zero in the long run. It is less satisfying because the form of competition
among intermediate good producers (that is, inventors) is trivial: they are all monopolists with no strategic
interaction.

While Solow-Swan has exogenous technology as the main driver of economic growth, and Romer focuses on
the increasing returns to scale of non-rival technologies, the Neoschumpeterian models (Aghion and Howitt,
1992; Grossman and Helpman, 1991) focus attention on the competition between existing and new technolo-
gies. Invention today makes older varieties of the same technology less valuable. Therefore, whether a firm
invests depends on whether it is destroying its own varieties (Arrow’s “replacement effect”) or destroying rival
varieties. Further, the length of time a firm has market power for their inventions depends on the level of

inventive effort other firms exert trying to create an improvement. Note that in exogenous, endogenous, and

" The growth models described in this chapter do not feature “path dependence,” where random chance favoring inventions today
can lead to large differences in outcomes tomorrow by changing the value of consumer adoption of goods with network effects, the
ease of inventing follow-ons, and so on. See Subsection 4.2 for further discussion.

2There is a problem, however: the Romer model has a “scale effect” where population growth generates more capital use generates
higher growth rates, counterfactually implying that growth is ever-increasing in population, eventually reaching a growth rate of
infinity (Jones, 1999).



Neoschumpeterian models, economic growth is a function of the rate of innovation. In the latter two classes
of models, policy around appropriation, invention costs, intellectual property, and market structure affect
that innovation rate, and in turn affect economic growth.

These endogenous and Neoschumpeterian growth models make clear that long-run growth depends crit-
ically on the incentives for innovators. If the benefits of new goods are underappropriated, then we both
have fewer things to consume today and we have fewer ideas to recombine into even better goods tomorrow.
On the other hand, if inventors are given broad property rights over their inventions and their derivatives,
then licensing frictions prevent today’s silicon chips from becoming tomorrow’s smartphones. With growth
as the core long-run goal of innovation policy, a careful balance is needed between strong incentives today
and overly-controlled inputs for tomorrow’s inventors. Studying that balance has involved, as we will see,
ever-deeper attempts to open the “black box” of innovation. Solow-Swan modeled growth as the result of
technological change, Romer modeled technological change as the result of learning, and the models we ex-
amine later on in this chapter explicitly model the production function and strategic interaction inherent in
that learning.

The fundamental link between economic growth and microeconomic innovation is increasingly being used
to answer specific policy questions. For example, Aghion, Jones, and Jones (2019) discusses what needs to
be true for automation and artificial intelligence advancements to lead to explosive economic growth. When
human tasks are complements to automatable tasks, Baumol effects cause a growing share of the economy to
be constrained by slow growth in the “human” sectors even as automation drops the price of many tasks to
zero. Cavenaile, Celik, and Tian (2019) and Olmstead-Rumsey (2021) apply an endogenous quality ladder
approach to studying the decline in productivity in the 2000s. The latter suggests that declining patent
quality by laggard firms makes it harder to catch up to industry leaders, decreasing the laggard’s incentives

to invest in R&D, and causing market concentration to rise as productivity falls.

1.3 Empirical challenges

If innovation is inefficiently under-provided in private markets, there is a potential role for government policy
to improve efficiency. Since efficiency in this market is first-order for long-run growth, getting policy right
is critical. However, it is not enough for the policymaker to know that an inefficiency exists. Rather,
the magnitude of that inefficiency, and the responsiveness of various margins being targeted as potential
solutions, must be estimated.'® For instance, what is the relative efficacy of public support for research and
development as implemented through research grants versus tax subsidies? Are patents effective in inducing
research investments — making a case for longer or broader patents — or are current patent laws too strong
in the sense of hindering subsequent innovation? Would policies aimed at increasing competition, such as
strengthened antitrust policies, increase or decrease innovation?

Answering these types of questions empirically is challenging for two key reasons. First, measuring the
relevant economic phenomena in markets for innovation can be quite difficult.!* Second, isolating sources of

variation which identify compelling counterfactuals is particularly challenging.

1.3.1 Measurement challenges

Consider the problem of measuring knowledge spillovers. Knowledge spillovers are frequently cited as the

central market failure justifying government intervention in markets for innovation. Yet, somewhat strikingly,

3These are — at least in a rough sense — the same two questions Arrow (1962a) argues were the two key questions of innovation
policy: first, how shall the amount of public subsidies to R&D be determined? And second, how shall efficiency of their use be
encouraged?

'"The empirical literature on growth accounting led by Solow (1957) and others measures innovation by the share of long-run
economic growth that could not be explained by changes in capital and labor inputs. This “residual” approach was helpful in
highlighting the likely importance of technological change in driving economic growth, but left an important gap in terms of how
to directly measure the rate and direction of technological innovation.



evidence for the existence and magnitude of this market failure is quite thin — we think in large part because of
the challenge associated with measuring these spillovers. As Krugman (1991) argues, “knowledge flows...are
inwvisible; they leave no paper trail by which they may be measured and tracked.”

A key leader in developing direct measures to tackle this issue was Zvi Griliches. While the idea that
the rate and direction of technological innovation were influenced by economic incentives was not new, there
were essentially no quantitative estimates of those relationships at the time Griliches began his career. While
Griliches made a variety of important contributions, perhaps one of his most important efforts was working
systematically with a variety of collaborators over several decades to construct newly digitized data on patent
statistics — not out of an interest in the patent system per se, but rather out of an interest in the potential
role of patent data as an economic indicator of innovative activity.'® As articulated in his 1990 Journal of
Economic Literature paper (Griliches, 1990): “In this desert of data, patent statistics loom up as a mirage of
wonderful plentitude and objectivity. They are available; they are by definition related to inventiveness, and
they are based on what appears to be an objective and only slowly changing standard. No wonder that the
idea that something might be learned from such data tends to be rediscovered in each generation.”

Griliches (1990) details an intellectual history of the development of some of the key early patent-related
datasets, including the National Bureau of Economic Research (NBER) patent data (an effort that grew into
the work of Hall, Jaffe, and Trajtenberg (2002)), work by F.M. Scherer (such as Scherer (1965)), the Yale
and Carnegie Mellon groups (Levin et al. (1987) and the later work of Cohen, Nelson, and Walsh (2000)),
and the Science Policy Research Unit group at the University of Sussex. From a modern-day perspective,
these and related patent data efforts have in many ways been quite successful. For example, the Hall, Jaffe,
and Trajtenberg (2002) linkage between the Compustat data and granted US patents has garnered over 4,000
citations across a wide variety of fields including economics, finance, law, management, and strategy. The US
Patent and Trademark Office (USPTO) has greatly expanded access to their administrative data in recent
years,'® and independent researchers have also been developing novel techniques for digitizing more historical
USPTO records (see, e.g. Berkes (2016)).17

Yet Griliches himself was also one of the key critics of reliance on patent data. For example, at the 1962
NBER conference (Griliches, 1962) he noted: “/I/nventions may be the wrong unit of measurement. What we
are really interested in is the stock of useful knowledge or information and the factors that determine its rate
of growth. Inventions may represent only one aspect of that process and may be a misleading quantum at
that.” More specifically, measuring innovation using patent statistics has a number of important limitations.'®
As emphasized in the survey work undertaken by the Yale and Carnegie Mellon groups (Cohen, Nelson, and
Walsh, 2000; Levin et al., 1987), many inventions are not patented and — perhaps more concerningly —
the propensity to patent a given invention appears to vary tremendously across industries. Hence, while
researchers often see patents as having the advantage of being a standardized measure of innovation that is
relevant across industries, in fact the selection of which and what types of inventions are patented in different
industries is likely first-order. A related issue — as documented by Pakes (1986), Schankerman and Pakes
(1986), and others — is that patents vary tremendously in their quality or value. We will discuss measures of
patent quality that have been developed in Section 3.2, but simple counts of patents are in many contexts
not obviously a meaningful measure. Other issues can also arise with patents — for example, firms sometimes

explicitly tie incentive pay to patenting, again potentially changing the appropriate interpretation of patent

15Griliches is also credited with leading efforts to create linkages across key administrative datasets, and to make such data
available to researchers through the US Census Bureau’s regional census data centers.

16See, for example, https://www.patentsview.org and https://bulkdata.uspto.gov.

"For a recent overview of this and other large-scale historical patent data efforts, see Andrews (2021). The Innovation Information
Initiative is compiling a variety of patent-related data resources here: https://iii.pubpub.org.

8 A separate issue is that patent data themselves are often misused; see Lerner and Seru (2017). See also Hall, Jaffe, and
Trajtenberg (2002), which documents a number of best practices on how to normalize patent data by time and technological area
measures.
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counts.?

Patent statistics are hence a useful proxy for innovation but also have important limitations, naturally
raising the question of what alternative measures are available. Scientific publications are an alternative
source of publicly disclosed data documenting scientific advances. However, the decision of whether to
publish a given scientific finding critically depends on the norms and institutions in which that discovery is
made. As we discuss in Section 2, academics face strong incentives to publish in order to establish priority of
discovery and collect credit for their work. Discoveries made by non-academics, in contrast, are published less
often and more selectively.?’ One could alternatively consider R&D investments as a proxy for innovation.
Although fruitful in some contexts such as the work of Sakakibara and Branstetter (2001), firm-year aggregate
measures of R&D investments — even in cases where they are publicly reported — in most cases provide little
insight into the types and value of inventions being pursued by firms.?!

In recent decades, perhaps the most progress has been made in the context of measuring technological
innovation in health care markets, where direct measures of research investments — such as clinical trial
starts and new drug approvals — are available and can be directly linked to the patient populations relevant
to those technologies.??2 Of course, direct measurement of research investments in clinical trials does not
directly translate into statements about changes in welfare, which depend on how new innovations impact
prices and health outcomes, but opportunities to construct such direct linkages to welfare-relevant outcomes
are quite rare.?> Nonetheless, health care markets are a useful illustration of how the innovation process itself
(here, the process of clinical trials and drug approvals) can sometimes generate data that encodes information
which in many other domains would be challenging or impossible to observe directly; the data constructed
by Sampat and Williams (2019) and Hill and Stein (2020a,b) are two other illustrations of this idea.

This measurement problem is even more challenging for other innovation questions. Consider as an
example the problem of how to measure spillovers from new ideas. As articulated in Section 1.1, if one
firm creates something truly innovative, that invention may create spillovers in the sense that other firms or
individuals might either copy or learn something from the original research at less than the full R&D cost
and without compensating the original inventor.

Returning to the Krugman (1991) quote: “knowledge flows...are invisible; they leave no paper trail by
which they may be measured and tracked.”?* An inventor may know they used a given assay to help develop
a drug, but what written document would include the computer chip used to process the data? What of the
theoretical solid state physics that made the computer chip possible? While the thoughts in inventors’ heads
are of course unobserved by the econometrician, Jaffe, Trajtenberg, and Henderson (1993) argue knowledge
flows do sometimes leave a paper trail in the form of citations in patents — that is, acknowledgements of the

use of knowledge in subsequent patents as recorded in so-called front page patent citations. Patent citations

YPekari (1993) (in Finnish; see Toivanen and Véiindnen (2012) footnote 2 for a discussion in English) provides qualitative
evidence on this issue from case studies and interviews with sixteen actively patenting companies in Finland. In eleven of the sixteen
companies (and in all of the large companies that were interviewed), there were explicit rules for rewarding inventor employees. In
large companies, the reward structure is typically composed of three payments: one at the time of notice of invention, one at the
time of patent grant, and one later payment as the value of the invention is revealed over time. Our informal sense is that many
countries require by law that firms tie pay to patenting; for example, Lobel (2019) argues, “[aJn anomaly of the American legal
system is the complete absence of any requirement for businesses to compensate their employed inventors.”

29The work of Fiona Murray, Scott Stern, and others has highlighted that the process of publishing commercially valuable
discoveries is often closely coordinated with the timing of patent filings, e.g. Murray and Stern (2007).

21 As discussed in Section 3.1, concerns also arise with the level of reported R&D potentially being manipulated by firms due to
incentives provided by policies such as R&D tax credits.

22See, for example, Acemoglu and Linn (2004), Finkelstein (2004), Kyle and McGahan (2012), Blume-Kohout and Sood (2013),
Budish, Roin, and Williams (2015), Dubois, de Mouzon, Scott-Morton, and Seabright (2015), Sampat and Williams (2019), Yin
(2008), and Yin (2009) on clinical trials as well as Williams (2013), Galasso and Schankerman (2015), and Sampat and Williams
(2019) on medical diagnostic tests and other medical instruments.

23Budish, Roin, and Williams (2015) links technological innovation in cancer drugs directly to changes in health outcomes, but
is unable to do a full evaluation of welfare even within that narrow setting.

24 Although not directly relevant to our discussion in this section, Krugman (1991) continues, “...and there is nothing to prevent
the theorist from assuming anything about them that she likes.”
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serve a legal function, in the sense that applicants have a legal duty to disclose prior art when applying for a
patent. However, patent examiners can also add citations — which could have a different interpretation than
spillovers — and some citations may be internalized in the sense of being accompanied by a licensing payment,
which would almost always be unobserved but which would mean the word “spillover” is less appropriate.?®
On net, patent citations are thus helpful but are thought to almost certainly be an incomplete metric of
spillovers.26

If we want to look beyond direct patent citations, the trick as Griliches describes it is to define a dimension
along which spillovers are mediated. Economists have long analyzed input-output matrices — that is, records
of how industries trade with each other — as one way of parametrizing similarities and differences across
firms. Indeed, early studies such as Brown and Conrad (1967) use input-output tables to construct matrix
weights which assume spillovers are embodied in purchased inputs. However, it is unclear the extent to
which input-output tables are relevant to knowledge spillovers. In a similar vein, studies such as Bernstein
and Nadiri (1989) use the structure of industry codes (specifically, SIC codes) to construct assumptions about
how firms would benefit from R&D done by other firms in related industries. However, other than defining
“own industry” spillovers, SIC codes do not lend themselves to a natural ordering of which industries are
more versus less similar. Griliches (1992) articulates this problem by asking whether the industry code for
‘leather’ should be closer to that for food or that for textiles.

The literature has primarily focused more recently on two dimensions of spillovers: technological distance
and geographic distance. The classic reference on technological distance is Jaffe (1986), which uses an early
version of the NBER patent data to define the technological position of a firm based on the USPTO-assigned
technological classes in which the firm had previously patented. Given that parametrization, he defines a
firm’s “potential spillover pool” as a weighted sum of other firms’ R&D in that technology space. Bloom,
Schankerman, and Van Reenen (2013) builds on Jaffe’s work and develops a more flexible Mahalanobis
extension. The classic reference on geographic distance is Jaffe, Trajtenberg, and Henderson (1993), which
asks whether patent citations are geographically localized relative to a counterfactual geographic distribution
of citations. While the details of this approach were subject to debate (Henderson, Jaffe, and Trajtenberg,
2005; Thompson and Fox-Kean, 2005), the key idea behind this approach has been incredibly influential. One
central issue that arises in both approaches is the distinction between testing for the existence of spillovers
versus quantifying the magnitude of spillovers: by construction, defining a dimension along which to search
for spillovers will essentially always result in an underestimate given that total spillovers likely accumulate
on multiple dimensions. Bloom, Schankerman, and Van Reenen (2013) is perhaps the leading paper in this

literature, which tackles this issue in part by parameterizing connections across firms in multiple dimensions.

1.3.2 Inference challenges

As we have seen, measuring the relevant economic phenomena in markets for innovation can be quite chal-
lenging. Of course, in many cases researchers are interested not just in constructing measures of — say —

inventive activity, but rather in using such measures as an input in studies aimed at understanding how a

250n examiner-added citations, see Alcacer, Gittelman, and Sampat (2009). The authors motivate their analysis with this quote
from Gregory Aharonian, editor of the electronic newsletter PATNEWS: “...the economists who write about patent citation analysis
have little experience with patent searching, and don’t realize how worthless most patent citations are for measuring anything.
For example, many of them assume that the citations that appear on the front of the patent were all used and discovered by the
inventor. They then use that assumption to measure flows of information between companies and inventors.. What they don’t
realize is that many citations are found either by the examiner or by professional searchers .. so that such citations do not measure
anything about information flow or patent importance.” Empirically, Alcacer, Gittelman, and Sampat (2009) documents that
examiners added approximately 40% of all citations in US patents in 2001-2003. Bryan, Ozcan, and Sampat (2020) argues in-text
citations also appear to be less frequently added by examiners. On licensing payments, see Arque-Castells and Spulber (2019) which
documents that “spillovers” across firms are correlated with licensing in at least one dataset. Also related is the work of Roach and
Cohen (2013) which argues that patent citations reflect knowledge flows from public research, but appear to miss knowledge flows
that are more private and contract based in nature, as well as those flowing from privately-funded basic research.

26Gee also Jaffe, Trajtenberg, and Fogarty (2000), which draws a similar conclusion based on the results of a survey of inventors.
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given policy shaped inventive activity. While some aspects of this type of policy analysis are common to
empirical analyses in other fields, there are also unique challenges that arise in constructing counterfactuals
in innovation markets.

Consider, as an example, estimating the effects of changes in state-specific tax rates on the cross-state
mobility of US inventors. This type of question has frequently been analyzed in the public finance literature.
The outcome — inventor mobility — is observable. The choice of an inventor in California of whether to stay
in California, move to a lower-tax state, or move to a higher-tax state, can naturally be parametrized: the
set of potential states an inventor could move to are known, and the tax rates relevant in each jurisdiction
are observed. Moreover, the relevant behavioral elasticities can naturally be inferred by scaling the mobility
response to a given policy change by the difference in tax rates across states. For all of these reasons, it
is perhaps not surprising that cross-state and cross-country variation in tax rates have been leveraged very
successfully in service of estimating mobility responses to taxation.

In contrast, consider attempting to estimate how changes in the US patent term — say, a change from
17 years to 20 years — affects inventive activity. Inventors from anywhere in the world can choose to file for
a patent in the US market. Any “direct” change in inventive activity in response to this policy change would
in expectation generate knowledge spillovers that — although they may be disproportionately local — could
affect individuals globally as well. In such a setting, designing an empirical methodology that contrasts a
treated group with a control group is conceptually quite challenging. This difficulty is all the more important
given that measures of research investment vary across technologies over time for many reasons, some of
which — such as the cost or ease of different technological opportunities — are inherently unobservable to
the econometrician.

Unlike in the tax rate example in which the set of US states naturally provides a choice set of where
inventors might consider moving, it is rare to have a map of “potential inventions” which can be used to
directly estimate which inventions could have been developed but were not. Nagaraj and Stern (2020) makes
a version of this argument, relating the ex ante known structure of the human genome as analyzed in Williams
(2013) to a space onto which potential and actual inventions can be mapped.?” We will discuss analogous

challenges that arise in the various empirical contexts discussed throughout this chapter.

1.4 Overview of this chapter

We have seen that innovation involves substantial market failures, is fundamental to economic growth, and
yet is difficult to study empirically. In the remainder of the chapter, let us turn to specifics by discussing the
state of the literature and open questions. In Section 2, we consider how scientific norms and institutions
complement and interact with market incentives. In Section 3, we examine a number of market incentives
which either shift the payoff to inventors directly through tax or subsidy policies, change the nature of post-
invention competition through patents or antitrust intervention, or change the nature of invention inputs
through immigration or agglomeration policy. In Section 4, we discuss why inventions may diffuse slowly, how
this can be measured, and when policy can speed this diffusion. Finally, Section 5 discusses the bidirectional
link between inequality and innovation.

It is worth noting explicitly that this chapter focuses on public policy levers which can address specific
market failures. Recent methodological advances in economics, many of which were first developed outside
of innovation, are permitting particularly fruitful research in line with that focus. Nevertheless, the field of
innovation, or more broadly innovation and entrepreneurship, without question tackles problems of greater
scope that we can fully cover here. Indeed, the innovation chapter in a previous volume of this Handbook
(Cohen and Levin, 1989) largely examines the classic Schumpeterian hypotheses of how innovation varies with

firm size and market concentration, and the relation of these factors to markets for technology. It is therefore

2"Budish, Roin, and Williams (2015) provides another example, where the structure of cancer — which can affect different parts
of the body and be diagnosed at different stages of disease — provides a natural map onto which observed research investments
can be mapped, and from which “missing” research investments can be inferred.
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worth explicitly noting some topics we will not give their full due: markets for technology and the frictions
in them (Arora, Fosfuri, and Gambardella, 2001; Arora and Gambardella, 2010), firm-level heterogeneity in
innovative output and profitability (Cohen, 2010), creative works covered by copyright (Biasi and Moser,
forthcoming; Giorcelli and Moser, 2020; Li, MacGarvie, and Moser, 2018), entrepreneurship and innovation
finance (Gompers and Lerner, 1999; Hall and Lerner, 2010), innovation prizes (Kremer and Glennerster,
2004), evolutionary models of innovation (Dosi and Nelson, 2010; Nelson and Winter, 1985), user innovation
(von Hippel, 2010), within-firm considerations (Teece, 2010), general purpose technologies (Bresnahan, 2010),

and innovation systems (Soete, Verspagen, and ter Weel, 2010).

2 Science as a non-market incentive

Our primary focus in the remainder of this chapter will be on how the market failures articulated in Section
1.1 can be addressed via market-based policies which change prices (via taxes or subsidies) so as to improve
the alignment of market rewards with the first best (see Section 3). However, before turning to discuss these
policies, we first discuss one particularly important set of non-market incentives: namely, scientific norms
and institutions.

Scientific exploration occurs partly for reasons of pure curiosity and creativity; the economist Josiah
Stamp argued almost one hundred years ago that “[t]he sense of curiosity and the idea of fame play a greater
part than the economic reward” (Stamp, 1929). However, beyond pure curiosity, scientists are motivated by
academic tenure, scientific credit, or accolades like major prizes. And their ability to produce breakthroughs
is affected by a number of policy mechanisms, such as government funding of basic scientific research. We
will not here provide a comprehensive review of the economics of science literature (for recent reviews, see
Stephan (2010, 2015a)). Rather, we will focus on a few concrete examples of topics in the economics of
science which have seen recent advances and which seem ripe as topics for future work.

Two important caveats are needed. Science policy affects innovation in a much deeper way than just
the production of “basic research.” In the so-called linear model, basic research - defined by Bush (1945) as
that “performed without thought of practical ends [resulting]...in general knowledge and an understanding
of nature and its laws” - leads to applied research which is then iterated into commercial products. This
model is generally not now seen as accurate. Instead, science includes a Pasteur’s Quadrant, in the evocative
framing of Stokes (1997), where commercial opportunities inspire fundamental research just as much as the
reverse. Louis Pasteur’s research was, as Stokes notes, explicitly applied in its focus, but the methods he
pursued led to the field of microbiology. At the time of the Industrial Revolution, Britain was not a world
leader in pure science, but did have a culture where “technologically valuable knowledge had penetrated into
the productive layers of society” (Mokyr, 1999). Science policy is therefore not simply the production of
fundamental early-stage research by a university researcher.?® Instead, science policy affects the full gamut
of innovation from basic to applied via the incentives to create, publish, and promulgate new ideas and
inventions in the absence of profit from commercially-sold products.

A second caveat is that fundamental science can also be produced by private firms. For much of the
twentieth century, industrial R&D labs proved especially important: nine Nobel Prizes were awarded based
on research at Bell Labs alone. Rosenberg (1990) argues that firms perform pure science both because it
sometimes leads to useful products and also because it provides firms with a base from which to draw on
academic science. By 1940, the average number of forward citations to a scientific publication published
by an industrial researcher exceeded that of the average paper published by an academic researcher (Arora,
Belenzon, Patacconi, and Suh, 2019).

28Furthermore, science often draws on ideas that come from more applied research. This is both because science requires tools
developed elsewhere and because researcher ideas often come from users. On the former, see Furman and Teodoridis (2020) on
how the release of Microsoft Kinect motion sensing technology affected researcher trajectories. On the latter, von Hippel (1988)
describes this pattern of “user innovation” across a number of industries; users may be particularly important for helping radical
innovation in contexts where user demand is uncertain (Chatterji and Fabrizio, 2014).
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That said, industrial science in large firms has declined substantially since the era of the industrial research
laboratory in the early- and mid-20th century (Costa and Lamoreaux, 2011). Arora, Belenzon, and Patacconi
(2018) shows that research resulting in scientific publications authored by researchers based in large firms has
declined since 1980, across industries, in both the US and Europe. One striking illustration of this pattern is
that while 41% of R&D 100 awards went to Fortune 500 firms in 1971, only 6% went to those firms in 2006
(Block and Keller, 2009).

Nonetheless, the frequency with which large firms’ patents cite scientific research has not declined. Arora,
Belenzon, and Sheer (2021) suggests that these patterns are driven by the tradeoff between the use of science
in own-inventions and the spillovers of inventions to rivals. As firms become more specialized and shrink
their scope, they rely more on purchasing inventions created by small firms or on drawing from university
science. Even when large firms are not doing their own pure science, their reliance on science can be traced
through patent citation patterns. The majority of patents either cite scientific journals themselves or are
indirectly connected to scientific publications through the network of patent-to-patent citations (Ahmadpoor
and Jones, 2017). This is all to say that an important share of innovative activity is being performed by
researchers motivated by the norms and institutions, in many cases non-market, of science. To understand
innovation at large, we thus need to understand what affects the rate and direction of innovation produced

by these researchers.

2.1 What drives the rate and direction of scientific research?

What motivates scientists producing science outside of private firms? How do they choose which topics
to study? Sociologist Robert K. Merton?? was perhaps the first to convincingly articulate a description of
scientists being motivated by a desire to establish priority of discovery, as well as the key role of disclosure in
communicating new discoveries and garnering recognition by other scientists for making the discovery first
(Merton, 1957, 1968, 1969). In Merton’s framework, publication of scientific results plays two key roles: the
disclosure required to publish establishes priority, and citations to publications provide one, albeit imperfect,
metric of how important a given scientific contribution is. While other rewards such as naming of scientific
discoveries (e.g. Planck’s constant) and occasional prizes carrying either prestige or monetary rewards or
both (e.g. the Nobel Prize) may also accrue to scientists making new discoveries, in Merton’s framework the
importance of being first and thus establishing priority is the underlying incentive affecting behavior.
Stephan (2010) notes that science is sometimes described as a winner-take-all contest, meaning there are no
rewards for being second or third even when competing research teams solve problems near-simultaneously
(Bikard, 2020). Winning a priority race may benefit the victor over time by permitting easier access to
resources including funding, graduate students, and reputation. In this way, one may worry that the “rich
get richer” as those who publish early acquire the resources that lead to scientific production in the future.
Merton (1968), drawing on scientist interviews conducted by Harriet Zuckerman, refers to this hypothesis
as the “Matthew Effect.”? Dasgupta (1989) and Dasgupta and David (1987) argue this winner-take-all
feature may arise due to the difficulty of monitoring scientific effort. Hill and Stein (2020b) investigates the
extent to which a winner-take-all model looks empirically relevant in the scientific field of structural biology.
In surveys, scientists in this field estimate that being “scooped” by another team of scientists in a priority
race to solve the same problem would face a 59 percent penalty in citations compared to the hypothetical
winner. However, in a carefully constructed empirical test comparing winners and losers of priority races —
who appear ex ante similar on observable factors — Hill and Stein estimate that scooped teams in fact face

only a 20 percent penalty in citations. Taken together, these facts both reject a winner-take-all model in this

2%Notably for economists, Robert K. Merton was the father of Robert C. Merton, the Nobel Prize-winning economist.
30Merton has frequently noted, e.g. see footnote 2 in Merton (1988), that Merton (1968) should have been co-authored with
Zuckerman.
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field of science, and suggest that scientists may overestimate the costs of being scooped.?!

Bobtcheff, Bolte, and Mariotti (2016) theoretically investigates how the importance of priority affects
research investments. The authors analyze a general model of priority races, conceptualizing the reward
structure as winner-take-all, and explicitly incorporate the tension between letting a project mature for longer
(improving its quality) versus patenting or publishing to establish priority. Hill and Stein (2020a) presents
a related model which allows for endogenous entry across projects that vary in their ex-ante potential. High
potential projects are more attractive because they offer higher payoffs, so researchers invest more in trying
to enter those projects. This makes high potential projects more competitive, which in turn leads scientists
to prematurely publish their findings. Hence, in this framework high-potential projects — that is, projects
tackling research questions the scientific community has deemed most important — are the projects that will
be executed with the lowest quality. Hill and Stein then present a series of empirical tests, again leveraging
data from the field of structural biology, that provide evidence consistent with this model.

Priority is a fundamental feature of science, but so is autonomy. As articulated by Dasgupta and David
(1994) and Merton (1973), scientific researchers tend to be offered substantial freedom in choosing projects.
Stern (2004) takes this characterization of scientific research as a starting point for testing whether scientists
have a “taste” for science, in the sense that they are willing to accept a lower wage in exchange for choosing
their own research projects and participating in scientific communication. He analyzes data on job offers
made to postdoctoral students in biology, and in an individual fixed effects framework documents evidence
of a positive compensating differential. Plainly stated, scientists seem willing to pay to do science.??

This finding forms the starting point for the theoretical model of Aghion, Dewatripont, and Stein (2008),
which seeks to clarify the relative advantages and disadvantages of different stages of scientific research (early-
stage basic research versus later-stage applied research) being conducted at universities versus in the private
sector. In the model, academia and private sector research are separated by differences in creative control
(more prevalent in academia) and focus (more prevalent in private firms). If scientists value creative control
more than focus, they will have to be paid a wage premium to give it up, as suggested by the evidence in
Stern (2004).

The Aghion, Dewatripont, and Stein (2008) model points to tradeoffs in research funding faced by a social
planner. Academia may be a cheaper input to innovation production, given the compensating differential.
The incentives of academics, however, may not align with those of the social planner. Scientists may work on
projects they find personally interesting or prestige-enhancing, but which have little economic value. Giving
control rights to firms can direct scientists to work on more commercially valuable projects, but is more
expensive because scientists must be paid a wage premium. In the model, the resolution of the tradeoff
depends on how close to the point of commercialization the particular research stage is. The model also
suggests that stronger property rights — often cited as a solution to underinvestment in innovation effort
due to knowledge spillovers — may not be optimal. Murray, Aghion, Dewatripont, Kolev, and Stern (2016)
documents empirical evidence consistent with the predictions of the Aghion, Dewatripont, and Stein (2008)
model, in the context of research on genetically engineered mice.

Given the apparent value scientists place on research freedom, it is perhaps unsurprising that it appears

to be challenging to use policy levers to change the direction of scientific research effort. Goolsbee (1998)

310Of course, the question of how scientists agree on what has been proven or shown is itself interesting. Latour and Woolgar
(1986) describes how a Nobel-winning laboratory at the Salk Institute decides how internal or external research “counts” as a new
result instead of an error or anomaly. Shwed and Bearman (2010) uses the network of citations over time to investigate empirically
how scientific groups with contradictory results find consensus. Uzzi, Mukherjee, Stringer, and Jones (2013) investigates citations
in the universe of Web of Science, finding that highly-cited work tends to be slightly atypical in the combinations of knowledge it
draws on, but not very unusual. They argue that this is at least partly due to the fact that highly unusual new knowledge is very

difficult for outsiders to interpret.

32Indeed, as the pre-economic literature on innovation made clear, innovators have many motivations beyond pure financial
reward. For instance, when Wikipedia was blocked in mainland China, Chinese-language contributions to Wikipedia from Taiwan
and Hong Kong fell substantially (Zhang and Zhu, 2011). Even though no payment was made for writing Wikipedia articles, social

recognition among a large group of readers was an important inducement.
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argues that increases in defense R&D cause substantial increases in the wages of scientists working in targeted
sectors, with up to half the increased spending going to wages of those already working in the field. Myers
(2020) analyzes US National Institutes of Health (NTH) Requests for Applications, which attempt to solicit
research on particular topics in exchange for higher expected funding. He estimates that shifting one NIH
applicant toward a project which is a relatively small distance (in science space) away from their prior research
requires millions of dollars in higher funding.

While there is relatively limited research on precisely how scientists choose projects, Azoulay, Fons-Rosen,
and Graff Zivin (2019) argues — based on an analysis of surprise deaths of star scientists — that scientists are
hesitant to do work similar to that of prominent senior researchers (while the senior researchers are alive),
at least in part because these powerful “stars” act as a deterrent on research shifting the direction of their
field. To the extent that it is difficult to get scientists to change which project they work on, society may still
benefit if the high-value projects chosen by scientists in one field are more likely than not to have spillovers to
other areas. Such indirect spillovers appear to be empirically relevant: for example, Sampat (2015) estimates
“serendipitous” spillovers, documenting that half of drug patents citing NIH-funded research are in a different

disease area than that intended by the original grant.33

2.2 Knowledge production: The burden of knowledge hypothesis

Our focus in the previous subsection was on science as a static institution. However, the structure of
knowledge production in science has been substantially changing over time, and as science evolves presumably
so does optimal science policy (Jones, 2011). Jones (2009) presents two striking facts about changes in
scientific knowledge production over time. First, the age at which a scientist produces her “first” innovation
has increased steadily, from just over 30.5 in 1985 to around 31.4 in 1999. Second, the average number of
inventors named on a patent has risen, from 1.7 in 1975 to 2.3 in 1999. Given the increasing age of scientists
and the increasing size of teams, Jones asks whether these trends reflect incentives unrelated to productivity,
or whether these trends are instead the result of an increasing “burden of knowledge” necessary to make
scientific advances.

His argument starts with the observation that innovators are not born, but made, and that before inventing
they must receive enough education to reach the frontier of knowledge. As the total stock of knowledge grows
over time, reaching this frontier requires increasing quantities of effort. He highlights two potential effort
responses: first, learning more by increasing the time spent in training; and second, specializing more and
working more in teams.

Subsequent work has supported this burden of knowledge model, and has added additional granularity.
Wuchty, Jones, and Uzzi (2007) leverages data on the near-universe of academic papers and US patents to
show that work by teams is increasingly dominating — in frequency and quality — work by solo authors.
Jones (2010) uses the World Wars as an exogenous disruptor of many scientists’ education to show that the
rising age of achievement for scientists can be attributed to the rising educational burden, rather than other
factors such as changing demographics. Jones and Weinberg (2011) analyzes Nobel laureates in physics,
chemistry and medicine, contrasting the former with the latter two. While in all three fields discoveries in
early life have declined in frequency over time, this trajectory is less marked in physics. Jones and Weinberg
argue this cross-field difference can be attributed to the introduction of the field of quantum mechanics in
physics, which overturned much of the prior literature, thus reducing the burden of knowledge for physicists.
Agrawal, Goldfarb, and Teodoridis (2016) finds specialization and team size increase in mathematical fields
whose frontier expanded significantly with the arrival of Soviet mathematics in the West after the fall of
the Iron Curtain. Brendel and Schweitzer (2019) also documents evidence consistent with the burden of
knowledge hypothesis in the field of mathematics, and argues that researchers’ response is consistent with a

division of labor. Bloom, Jones, Van Reenen, and Webb (2020) shows evidence of declining productivity per

33 As discussed below, Azoulay, Graff Zivin, Li, and Sampat (2019) documents a similar result.
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researcher in semiconductors, agriculture, and biotechnology.?*

Jones (2011) articulates an argument about why this set of findings motivates a new set of policy chal-
lenges. First, entry into science may be reduced by, or selection may be skewed by, the burden placed on
young academics caused by the expanding knowledge frontier. Second, as research becomes more intricate
and specialized, the burden of knowledge on gatekeepers of quality — patent examiners, grant reviewers, and
so on — also increases. Finally, if policy and evaluation methods favor more specialized, narrow research
ostensibly performed by single researchers, the economy will systematically disincentivize broader and more
team-based research.

Expanded team research shows particular promise in mitigating the burden of knowledge, but also raises
new questions around incentives and organization. For example, even with repeated interaction, teams involve
fundamental inefficiency due to moral hazard with credit sharing (Che and Yoo, 2001). Attempts to reduce
this moral hazard by rewarding team effort in and of itself can cause inefficient team rather than individual
production when the summed credit given to team members exceeds unity (Valiki, Teodoridis, and Bikard,
2020). Large teams appear less likely to pursue highly-disruptive research, and hence both small and large
teams may play important complementary roles in novel ideas and development of those ideas (Wu, Wang,
and Evans, 2019). It remains an open question to separate how much of the increase in specialization and
team production among innovators is due to a real increase in the difficulty of reaching the frontier as opposed
to inefficient changes in scientific funding, credit allocation, and researcher training.

One final caveat to the burden of knowledge is that it is of course difficult to identify in the present
important general purpose technologies in the future. Jacob Schmookler, writing in 1954 about a decline in
inventiveness in that period, considered two new technologies which might permit growth to continue when
the “unused fund of technical knowledge is drained” (Schmookler, 1954). His technologies? Atomic research
and space travel. Despite the transistor having just been invented, the importance of the computer was not

mentioned, let alone the long-run medical consequences of the 1953 discovery of the double helix.

2.3 How should science be funded?

One of the most important ways in which the public sector supports innovation is through the direct funding
of research. Figure 2 shows that federally funded R&D used to be the primary component of total US
R&D spending, but that since about 1980 the private sector has grown to account for a higher share of US
R&D spending. In 2015, the US federal government accounted for around $120 billion — around a quarter
— of total US R&D by source of funds. This federal research support involved fifteen federal government
departments and a dozen other agencies (National Science Foundation (2018), Table 4-15), but by far the
largest two supporters were the Department of Defense (DOD) and the Department of Health and Human
Services (HHS, which includes the National Institutes of Health or NIH).

Federal funding consists of two distinct activities — conducting research directly and supporting external
research. The former involves, for example, federally funded research and development centers or FFRDCs
such as Los Alamos National Laboratory, while the latter includes, for instance, NIH grants to university
researchers. Figure 3 tabulates data on R&D spending and funding by sector, which illustrates one important
asymmetry: the federal government funds more external research than it spends internally, whereas higher
educational institutions spend more than they directly fund.

The natural question that arises with publicly funded research is the social value of this spending. How
different is the set of innovations society has access to because of public research support? For reasons we
discuss more below, systematic empirical analyses of these types of questions are challenging. The available

evidence from qualitative case studies suggests that many or most scientific discoveries can trace their roots to

34That the amount of invention, particularly after adjusting for increased R&D, is falling is an idea with a long history. Griliches
(1989) notes “the much more rapid rate of growth in national R&D expenditures than in total patenting and the implicit suggestion
of diminishing returns” during the 1970s and 1980s. In the early 1950s, Stafford (1952) notes that patents per capita, and the
number of new patent classes, had been falling since World War 1.
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Figure 2: US research and development as a share of GDP, by source of funds: 1953-2015

Notes: This figure shows US research and development (R&D) spending — total and by source — as a share
of GDP from 1953 to 2015. Source: Appendix Table 4-1 of National Science Foundation (2018).
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Figure 3: Spending on and funding of US R&D by sector: 2008-2015

Notes: This figure shows spending on and funding of US R&D by sector from 2008 to 2015. Source: Table
4-1 of National Science Foundation (2018).

both public research support and investment by private firms. For example, Chakravarthy, Cotter, DiMasi,
Milne, and Wendel (2016) attempts to trace the history of individual drugs identified by a survey of physicians
as the most transformative over the past twenty-five years, and argue that only four of the individual drugs
appear to have been researched and developed solely by one sector.

These types of qualitative case studies are invaluable in providing textured examples. However, given the
high level of public spending on research support, a central question of policy interest is what — quantitatively

— the return is to incremental dollars of public research funding. Consider as an example the so-called war
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on cancer. In 1971, then-US President Richard Nixon signed the National Cancer Act of 1971. This act gave
the National Cancer Institute (NCI, a branch of the NIH) special budgetary authority intended to allow the
NCT to more flexibly address the disease which at the time was the second leading cause of death in the US.
At the same time, Nixon requested an additional appropriation of $100 million for cancer research. Was this
war on cancer “worth it?” Several decades later, many have declared the war on cancer a failure. However,
rigorously assessing this question — or, more broadly, estimating the return to public funding of research —
requires addressing several challenges.

A first challenge is that we often lack a paper trail for measuring the impacts of research investments.
Say that the war on cancer funded investments into cell signaling that formed the basis for the develop-
ment of Gleevec, a leukemia treatment; what data would allow us to trace out that connection? In recent
years, researchers have made progress in several promising directions on this measurement challenge. Sampat
and Lichtenberg (2011) was a pioneering paper in this area, developing both direct and indirect measures
of whether drugs approved by the US Food and Drug Administration (FDA) built on publicly supported
research. In terms of direct support, the authors measure whether the patents linked to individual FDA-
approved drugs (as recorded in the FDA Orange Book)3® are assigned to government agencies as well as
whether they disclose a so-called government interest statement.?¢ In terms of indirect support, the authors
measure whether drug patents cite earlier patents assigned to government agencies or patents disclosing gov-
ernment interest statements, or cite published biomedical research articles that acknowledge public research
support. Based on these data, Sampat and Lichtenberg estimate that while only about 9% of new drugs
approved by the FDA between 1988-2005 directly benefited from public research support, nearly half (47.8%)
benefited indirectly.3” Constructing these types of linkages between public research support and new inven-
tions is important partly because public investments tend to generate benefits with long and variable lags,
and which are very diffuse and hard to predict in advance. Analogous to our discussion in Section 1.3.1, in
the absence of direct linkages it would be difficult to know where to “look” for the set of technologies which
benefited from public research support.?® Perhaps the best evidence on this point comes from Azoulay, Graff
Zivin, Li, and Sampat (2019) Table 9, which documents that NIH funding is as or more likely to generate
private-sector patenting in other scientific areas as it is in the scientific area targeted by the grant.

A second challenge is that in many contexts, we would expect public research funding to be targeted at
areas that are scientifically promising. This clarifies the need for a control group, particularly because any
shifts over time in the scientific potential of a given area would be expected to affect incentives for both
private research investments and public research investments. The potential interaction of private and public
research investments also raises the issue of crowd-out: if a dollar of public research crowds out a dollar
of private research, then public research investments could in theory have no real effect on total research
spending, much less on health outcomes or overall welfare (David, Hall, and Toole, 2000).

The key advances on these challenges in recent years have been made in the context of understanding
the impacts of NIH support for biomedical research in the US. Jacob and Lefgren (2011) analyzes data
on all applications (unsuccessful as well as successful) to the NIH from 1980 to 2000 for standard research

grants (known as ROl grants). Applications are assigned priority scores based on independent scientific

35Patents recorded in the FDA Orange Book are removed when they expire, so constructing a complete set of patents from the
Orange Book requires reconstructing a list from each annual version of the publication. One of us (Williams) digitized the historical
Orange Book patent and exclusivity tables for years 1985-2016 (no Orange Book was published in 1986), based on PDF versions
obtained via a Freedom of Information Act (FOIA) request; those data are available here: https://www.nber.org/research/data/
orange-book-patent-and-exclusivity-data-1985-2016.

36Section 202(c) of the US Bayh-Dole Act requires a statement in patent documents stating the existence of federal funding where
relevant, a requirement referred to as a government interest statement. See Rai and Sampat (2012) and de Rassenfosse, Jaffe, and
Raiteri (2019) for more detailed discussions of government interest statements, and Durvasula, Ouellette, and Williams (2021) and
Long (2019) for recent analyses of government interest statements for pharmaceuticals.

37TLooking even more broadly, Cleary, Beierlein, Khanuja, McNamee, and Ledley (2018) finds that every one of the 210 new drugs
approved by the FDA between 2010 and 2016 had publicly-funded prior research on the entity itself or on its molecular target.

38The main alternative to these linkages is to specify a lag structure and test how funding for a given disease affects outcomes
for that disease, as in Blume-Kohout (2012), Manton, Gu, Lowrimore, Ullian, and Tolley (2009), and Toole (2012).
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reviews, and the authors document a strong nonlinear relationship between a proposal’s priority score and
the likelihood that an application is funded. In essence, this is a regression discontinuity approach, where
grant applications just above and just below the priority score cutoff should be similar ex ante but differ ex
post in their probability of receiving funding. Combining these data and design, Jacob and Lefgren estimate
that receiving an NIH RO01 grant (roughly $1.7 million) leads to one additional publication over the subsequent
five years, about a 7% increase.

Azoulay, Graff Zivin, Li, and Sampat (2019) builds on the measurement approach developed by Sampat
and Lichtenberg (2011) and the empirical approach pioneered by Jacob and Lefgren (2011) to estimate the
impact of NIH funding on private-sector patenting by biopharmaceutical firms. Like Jacob and Lefgren
(2011), their empirical approach leverages application-level data (measuring both unsuccessful and successful
grant applications), but Azoulay, Graff Zivin, Li, and Sampat (2019) go beyond the regression discontinuity-
type variation and construct a comparison based on the structure of the scientific review process at the NIH.
The NIH is comprised of 21 institutes/centers (such as the National Cancer Institute), each of which receives
congressional appropriations. However, scientific evaluation of applications occurs in so-called study sections.
Study sections assign raw scores which are then normalized to ranks, and institutes/centers make funding
decisions by comparing ranks across study sections up to the payline (the same discontinuous threshold
analyzed by Jacob and Lefgren). This structure implies that grant applications judged by study sections to
be very similar in quality can experience different funding outcomes. Linking grants to papers and citing
patents, their baseline estimates suggest that $10 million in NIH funding leads to 2.7 additional patents.

Looking forward, we would highlight several areas as particularly promising for future work. First, much
of the recent progress on both measurement and developing credible empirical approaches for estimating the
return to public research spending has been in the health space, specifically leveraging data from the US NIH.
But as noted above, even just within the US, federal research support involves fifteen federal government
departments and a dozen other agencies. A good example is the work of Moretti, Steinwender, and Van
Reenen (2019), which analyzes how defense-related research spending affects private research spending. In
the longer run, Gross and Sampat (2020) uses World War II scientific funding to examine long-run shifts in
the rate, direction, and location of US technological development. Taking a global perspective, public funding
may be particularly important in more funding-constrained environments. Ganguli (2017) examines Soros
grants following the dissolution of the USSR, using a grant eligibility cutoff to establish causality. These
grants double publications for recipient scientists and make it much more likely that they remain working in
scientific fields.

Second, in recent years there has been increasing interest in how this funding should be structured. One
specific example has been the debate over whether public research support should be granted to people
or to projects. Traditional public research grant mechanisms such as NIH R01 grants are project-specific
grants, providing 3-5 years of funding intended to support researchers accomplishing a set of specific aims on
a particular project. In contrast, programs like the Howard Hughes Medical Institute (HHMI) Investigator
program provide funding over a longer period — five years, with an expectation of renewal — to a person who has
flexibility over how to use the funds over time.3® Theoretical work such as Manso (2011) articulates reasons
why the latter type of contracts may differ in what type of research they incentivize — in particular, NIH
RO1-style contracts may motivate incremental refinements on past discoveries whereas HHMI-style contracts
may provide researchers with more freedom to pursue radical and untested ideas. Azoulay, Graff Zivin, and
Manso (2011) provides empirical evidence which is consistent with Manso’s theoretical model. Ottaviani
(2020) evaluates common grantmaking rules at the project level which are meant to limit political meddling

or self-promotion by reviewers of work in their own field. Theoretically, there are a number of perverse

39Grants from the Rockefeller Foundation under Warren Weaver in the mid-20th century also emphasized funding the scientist
rather than the project (Barany, 2019).

20



incentives that arise when fields differ in how “noisy” their applications are.*® Optimal research contracting
seems ripe for both theoretical and empirical work.*!

Third, beyond interest in how funding should be structured, there has also been increasing interest
in how funding applications should be evaluated. Institutions such as the US NIH rely heavily on peer
review by field-specific experts. Li (2017) empirically analyzes the trade-off between such experts having an
informational advantage in distinguishing more and less promising applications on one hand, and the fact
that these individuals may also be most likely to have personal preference that impact — and potentially
bias — their objectivity. She documents that evaluators are both better informed and more biased about
the quality of projects closer to their own work, and estimates that on net the benefits of expertise weakly
dominate the costs of bias. In a related paper, Li and Agha (2015) documents that higher peer-review scores
are associated with better research outcomes, controlling for previous accomplishments of the applicants.*?

While this suggests that peer review generates information about the promise of individual grant appli-
cations that may not otherwise be available, this work cannot speak to the relative merits of peer review
compared to other allocation mechanisms. Peer review may disadvantage early career scholars and scholars
from diverse backgrounds who are less likely to have access to grant writing support. Peer review may also do
less well in evaluating the work of multidisciplinary teams (Jones, 2011). Moreover, peer review also imposes
large costs on both applicants and reviewers. Could alternatives to peer review reduce bias and/or achieve
the same outcomes at lower costs? Institutions such as the New Zealand Health Research Council and the
Volkswagen Foundation have been exploring lottery-based grant allocation mechanisms as one alternative
(Adam, 2019; Chawla, 2020), although ideally one could of course do better than a randomized allocation.
Beyond the probability of winning a grant, evaluation delays and grant preparation time may distort re-
searcher project choices. A funding program for Covid-19 research called Fast Grants, which promised to
evaluate applications and distribute money within two weeks, found in a follow-up survey that 78% of their
recipients would work on different projects if they were not constrained by funding, and that 44% would work
on projects where there is less existing scientific consensus (Collison, Cowen, and Hsu, 2021). Further studies
of the costs and benefits of grant-based, peer-reviewed scientific funding should prove valuable in helping us
understand the merits and limitations of the status quo.

Fourth, dating back at least several decades there has been tremendous academic and policy interest in
how best to encourage the development of innovations out of universities. A key policy in this area is the
1980 Bayh-Dole Act. Prior to Bayh-Dole, US federal agencies had inconsistent policies on their books about
whether recipients of federal research grants could take title to inventions that came from federally funded
research. Bayh-Dole sought to change that by allowing contractors such as universities receiving federal
grants to obtain patents on inventions created by that research.*? In Europe, the analogous policy change
was the elimination of the so-called professor’s privilege: under the professor’s privilege, university researchers

retained blanket rights to their inventions, and reforms generally shifted rights back to universities. Lach

400ptimal selection of applicants is a longstanding problem. The philosopher C.S. Peirce gave a marginal cost/marginal benefit
analysis of this question in the mid-1800s (Peirce, 1879). More recently, the question of how much leeway to give biased screeners
in selecting projects has been an active area of applied microeconomic theory research (e.g., Frankel (2021)).

418ee Azoulay and Li (forthcoming) for a detailed review particularly of the empirical literature in this area. Liu et al. (2018)
finds that peak scientific impact, like peak creative impact in the arts, tends to be concentrated in a very short period of a given
scientist’s career, that this period is hard to predict, and that productivity as measured by pure research output is no higher during
this “hot streak.” These facts collectively suggest that it may be difficult for funders to select high-value researchers purely based
on past output. On the theoretical side, a number of recent papers on strategic experimentation apply to the question of when and
why a funder may wish to force grantees to disclose successes or failures (e.g., Bonatti and Horner (2011), Curello (2021), Halac,
Kartik, and Liu (2017), and Keller, Rady, and Cripps (2005)). There has been very little empirical application of this theory to
innovation policy thus far.

“2Note that the NIH tends to use highly specialized panels. Gush, Jaffe, Larsen, and Laws (2015) looks at a New Zealand
public funder and finds no link between panel scores of research applications and subsequent outcomes. Newham and Midjord
(2018) considers a shift from sequential to simultaneous voting on project funding, finding substantial herding behavior in expert
evaluations.

438ee Hemel and Ouellette (2017) as well as Eisenberg (1996) and Mowery, Nelson, Sampat, and Ziedonis (2015) for insightful
discussions.
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and Schankerman (2008) is a classic paper in this literature, documenting evidence that in the US context
university licensing income was increasing in researcher’s royalty share; however, Ouellette and Tutt (2020)
argues this result is driven by errors in the coding of university policies, and that once corrected there is
no evidence that royalties impact outcomes at US universities.** Particularly given this exchange, more
recent attention has focused on what can be learned from the European experience. For example, Hvide
and Jones (2018) analyzes a 2003 policy change in Norway which shifted income from businesses and patents
towards universities and away from individual researchers at those universities, which they argue led to a
dramatic decline in start-ups and patenting among university researchers. Given the active debates around
how universities can best encourage and support innovative activity, this area is ripe for additional work.

Finally, just as public roads and bridges support private economic activity (Asher and Novosad, 2020;
Brooks and Donovan, 2020), large-scale scientific infrastructure investments may support other scientific
investment. In addition to funding research applications or scientific education, governments also fund large,
shared infrastructure such as the early internet, particle colliders like the CERN Large Hadron Collider (LHC),
and biological repositories. This infrastructure affects the geography of science: for example, Helmers and
Overman (2017) finds that a very expensive synchrotron diamond light source in the UK attracted scientific
activity, including related research which did not directly use the synchrotron. That said, measuring the
relative efficiency of infrastructure investments versus direct funding in the aggregate is challenging. In the
long-run, physical capital appears more replaceable than human capital. Waldinger (2016) finds no long-run
relationship between physical capital destruction during World War II and scientific output, whereas the
dismissal of elite scientists from their posts before the war led to permanent declines in science in a given
city.

Summing up, scientific norms and institutions play a complementary role to market incentives for the
creation of new ideas. The efficiency of science depends on concerns like priority and scientific taste that may
not perfectly align with social goals, may be getting more difficult necessitating larger teams and increased
specialization, and depends in subtle ways on the details of funding mechanisms and researcher autonomy.

Understanding and optimizing these non-market policies is critical for a well-functioning innovation system.

3 Theory and evidence on market-based innovation policies

Let us now turn away from science toward the role of market incentives on innovation. Dating back at
least to the work of Schmookler (1966), economists have focused on the idea that “invention is largely
an economic activity which, like other economic activities, is pursued for gain.” Yet, looking back at the
1962 NBER volume, policies that affect inventor behavior by changing prices or restructuring incentives are
notably absent (National Bureau of Economic Research, 1962). From today’s perspective, both intuition and
empirical evidence tell us that changing the costs and rewards facing firms can substantively change their
research investments.

Examples abound from both history and the present day of inventors responding to incentives. Daniel
Treadwell invented his screw machine in response to the embargo of 1807, and the engineer Richard Gatling,
known from his farming inventions until the 1860s, shifted to military implements during the US Civil War
when he invented his famous gun (Khan and Sokoloff, 1993). Textile inventions augmenting Indian cotton
rather than US cotton became more common during the supply disruptions of the US Civil War (Hanlon,
2015). In a more modern case, Acemoglu and Linn (2004) documents compelling evidence that as the US
population has aged that investments in drug development have shifted towards developing more drugs to
treat diseases common in older age groups.

This idea that research investments respond to incentives is such an intuitive idea that it is important to

clarify what view is rejected by the type of evidence documented by Acemoglu and Linn (2004). Qualitative

“Replication data for Ouellette and Tutt (2020) is available here: https://dataverse.harvard.edu/dataset.xhtml?persistentTd=doi:
10.7910/DVN/TTGFW2.
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historical accounts of important discoveries often characterize innovations as happening via fortunate acci-
dents, such as Archimedes’ Eureka moment.*® If most scientific advances were to happen via lucky accidents,
economics — and policy — would have little role to play. But economic theory clearly suggests incentives
should drive research investments, and the available data support that idea.

When market rewards matter, we need to consider the design of public policies which shift the rate and
direction of inventive activity. At a conceptual level, the government has two levers: reduce the costs of
research, or increase the expected revenues from research. Costs can be reduced through tax credits, direct
subsidies covering the costs of research, or labor market policies such as immigration changes that make it
easier for firms to hire specialized workers with expertise in specific technological areas. Expected revenues
can be increased by changes in antitrust policies or through awarding market power or payoffs directly via
the patent system or prizes. In this section, we review some of the key evidence and open questions on these
policy levers.

Note that our focus differs from many other reviews of the economics of innovation. In particular, we focus
much more on policy levers and institutions than on pure supply and demand factors like market size, firm
size, and appropriability. This focus is not because those factors are unimportant; rather, it reflects a shift
in the focus of the economics literature toward policy evaluation in addition to laissez faire firm behavior.
Cohen (2010) gives a detailed overview of the literature linking pure firm characteristics and demand factors

with innovation.

3.1 Taxes and innovation

Taking as given the idea that research investments in a market economy may be too low due to market
failures, tax-based subsidies are one natural response. As Hall (forthcoming) articulates, advantageous tax
treatment of research expenditures is a market-oriented response which leaves the choice and pursuit of
R&D investments with the private sector — in contrast with, e.g., direct public R&D spending, where the
government tends to play a larger role in choosing which projects are funded.

Several aspects of the US tax code are thought to significantly affect R&D expenditures.*® Since the mid-
1950s firms have had the option of fully deducting R&D in the year it occurs, in contrast with expenditures
on buildings or equipment which are deducted over a longer period, thus primarily reducing tax liabilities
further in the future. This distinction means that the basic structure of the tax code subsidizes current
R&D expenditures more than longer-term capital investments. In addition to this subsidy, many countries
choose to provide additional tax incentives for R&D investments, such as R&D tax credits. In 2015, 28 of
the 34 OECD countries as well as a number of non-OECD countries gave advantageous tax treatment to
business R&D expenditures (Appelt, Bajgar, Criscuolo, and Galindo-Rueda, 2016). Figure 4 provides one
characterization of the cross-country variation — as of 2017 — in tax support for business R&D, as measured
by forgone revenues and refunds. Some countries like Finland have very few tax incentives, whereas in the
Netherlands they comprise a very high share of total public R&D support.”

In the US, the federal R&D tax credit was first introduced in 1981 (US Department of the Treasury,
2016).*® For many years the federal R&D tax credit was a temporary policy; it was extended 16 times
between 1981 and 2015 before being made permanent as part of the Protecting Americans from Tax Hikes

45 As Schaffer (1994) notes, these Eurcka moments, from Archimedes to Kekulé’s famous discovery of the structure of benzene,
look far less serendipitous when examined ex-post by historians of thought rather than in the autobiographical tales of the scientist.

*6See the discussion in Mansfield (1982).

4THall and Van Reenen (2000) provides a clear and useful exposition of the many various dimensions on which the tax treatment
of R&D can differ. These include how R&D is defined for purposes of a tax credit, carryback and carryforward provisions, and

whether tax credits apply to levels of R&D or incremental changes compared to previous years.

48 Though this credit was not introduced until the 1980s, R&D tax policy was the first recommendation in Bush (1945) “Science,
the Endless Frontier”: “Government should provide suitable incentives to industry to conduct research, (a) by clarification of
present uncertainties in the Internal Revenue Code in regard to the deductibility of research and development expenditures as
current charges against net income, and (b) by strengthening the patent system so as to eliminate uncertainties which now bear

heavily on small industries and so as to prevent abuses which reflect discredit upon a basically sound system.”
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Figure 4: Direct government spending and government tax support for business R&D in 2017

Notes: Government tax support combines national and sub-national tax support for business R&D expen-
diture. Data on national tax support is not available in Israel. Data on sub-national tax support is not
available in the US and Spain. Source: Organization for Economic Co-operation and Development (2020).

Act of 2015 (National Science Foundation, 2018). From a tax expenditure perspective, the federal R&D tax
credit is estimated to cost the US federal government around $11 billion each year in foregone tax revenue
(National Science Foundation, 2018). Minnesota was the first state to introduce a state-level R&D tax credit
in 1982 (Miller and Richard, 2010). As illustrated in Figure 5 (which replicates Figure 1 from Wilson (2009)),
in recent decades state-level R&D tax credits have become both more common and more generous.*? Dating
back at least to the work of Mansfield (1986b) and Hall (1993), economists have attempted to use such
variation in R&D tax credit policies to try to shed light on the effectiveness of these policies.

Perhaps the most natural first question is whether R&D expenditures increase when the tax-adjusted
user cost of R&D falls. A number of papers have estimated this relationship in country-year or state-year
panel data. For example, Bloom, Griffith, and Van Reenen (2002) estimates the relationship between R&D
spending and the tax-adjusted user cost of R&D in a panel of nine OECD countries from 1979-1997. More
recent papers such as Dechezleprétre, Einio, Martin, Nguyen, and Van Reenen (2016) and Agrawal, Rosell,
and Simcoe (2020) are able to leverage within-jurisdiction variation by using administrative tax records to
analyze discontinuous firm size thresholds in the generosity of R&D tax credits. Looking across the available
macro- and micro-estimates, Bloom, Van Reenen, and Williams (2019) argues that a reasonable summary of
the estimated elasticities found in this literature is that a 10 percent fall in the tax price of R&D generates
at least a 10 percent increase in R&D in the long-run.

Two types of concerns have generally arisen with such studies. First, because they have tended to use
self-reported R&D expenditures as the outcome of interest, there has been a concern that measured R&D
responses to tax changes may reflect re-labeling of existing expenditures as research expenditures rather than
true changes in research investments. At a basic level, what expenditures should or should not be labeled as
R&D is difficult to define, and self-reported R&D investment figures thus a priori seem likely to be subject to
manipulation in response to incentives. Chen, Liu, Suarez Serrato, and Xu (2021) documents direct evidence

of such re-labeling in China: a Chinese policy that awards substantial tax cuts to firms with R&D investment

49Wilson (2009) constructs the data for this figure from a variety of sources, the primary of which was online state corporate tax
forms.
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Figure 5: Number and average value of state R&D tax credits in the US, 1981-2006

Notes: This graph replicates Figure 1 from Wilson (2009).

over a threshold results in a significant increase in reported R&D, around a quarter of which is driven by
firms relabeling expenses as R&D.

Dechezleprétre, Einio, Martin, Nguyen, and Van Reenen (2016) addresses this concern by looking not
just at R&D expenditures but also looking directly at “real” outcomes in UK data including patenting and
total factor productivity. They find that patenting, along the treated margin of relatively small firms, has an
elasticity of 2.6 with respect to tax-adjusted user cost, and further that this R&D spills over to technologically-
similar firms who do not directly receive the credit. In similar data, Pless (2021) investigates the relationship
between R&D grants and tax credits. Small firms are more likely to be liquidity-constrained, hence direct
grants are complementary to other R&D investments. For instance, small firms may use their grant to
hire researchers who work with expensive capital equipment that is subsidized by the tax credit. On the
other hand, larger firms tend to use the grants to pay for inframarginal investment, making the tax credit
a substitute rather than a complement. Drawing on recent advances in public finance, mechanism design
approaches to more precisely target R&D taxes and subsidies deserve further investigation (see Akcigit,
Hanley, and Stantcheva (2019) for a structural example).

A separate concern is that country- or state-level R&D tax credit policies may not raise aggregate R&D
but may rather simply incentivize the relocation of research investments to areas with more generous tax
incentives. Wilson (2009) documents evidence consistent with a firm mobility response: lower R&D tax rates
attract more R&D investment, but this appears to be offset by lower R&D spending in high tax rate states.
Three more recent papers have tested for evidence of relocation at the level of individual scientists/inventors:
Moretti and Wilson (2014) tests whether state-provided financial incentives for biotech companies raise the
number of biotech scientists in a state; Akcigit, Baslandze, and Stantcheva (2016) analyzes inventor mobility
in response to country-level top tax rates; and Moretti and Wilson (2017) analyzes mobility in response
to state-level tax rates within the US (both personal and corporate income taxes). Taken together, these
papers provide a compelling case that relocation is a relevant margin at least in some contexts. For example,
Akcigit, Baslandze, and Stantcheva (2016) documents that after the collapse of the USSR, Russian inventors
were far more likely to settle in countries with lower top marginal tax rates. From a research validity
perspective, the work of Moretti and Wilson (2014) and Moretti and Wilson (2017) finds, comfortingly, that

scientists/inventors seem to respond to tax incentives only when these policies apply to them (e.g. corporate
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tax changes have no effect on academic or government scientists).

Of course, this evidence of a relocation response does not imply that the aggregate effects of R&D tax
credits are zero. But quantifying the aggregate effects of R&D tax credits given evidence of relocation
responses is challenging. Analyzing the impact of corporate and personal taxes on innovation in the US
over the course of the twentieth century, Akcigit, Grigsby, Nicholas, and Stantcheva (2018) argues that
there is evidence for relocation but that the aggregate effects of tax incentives on innovation are nonetheless
substantial. Also related is a pair of recent papers, Bell, Chetty, Jaravel, Petkova, and Van Reenen (2019b)
and Jones (2019), which analyze at a more conceptual level whether top income tax rates should be expected
to have aggregate effects on R&D. In a similar vein, as best we are aware there is little work attempting to
relate the magnitude of these tax policy responses to the magnitude of the gap between social and private
returns to research investments, as estimated by Bloom, Schankerman, and Van Reenen (2013) and others.
Looking forward, these questions are promising areas for future work.

A related topic which we also expect to be a promising area for future work is patent box policies. First
introduced in FEurope in the 1970s, patent boxes apply a lower tax rate to revenues linked to patents; the
policy has since been implemented in many European countries, including France, Ireland, and the United
Kingdom. While the policy is often described as a way of incentivizing R&D, in practice patent boxes raise
the risk of inducing tax competition given that firms — particularly multinationals — often have flexibility in
deciding where to book the taxable income generated by patented products. Consistent with this concern,
Gaessler, Hall, and Harhoff (2018) and Alstadsseter, Barrios, Nicodeme, Skonieczna, and Vezzani (2018)
provide evidence of high-value patents being relocated to markets with patent boxes, and fail to find evidence
of either higher R&D expenditures in markets with patent boxes or aggregate increases in R&D investments.

At a conceptual level, Hall (forthcoming) provides an insightful comparison of R&D tax credits and patent
boxes: R&D tax credits target inputs (R&D spending), whereas patent boxes target an output (profits) and
(unlike R&D tax credits) only cover patentable innovations. Hall also points out that patent boxes effectively
subsidize patent assertion — given that the income of firms that specialize in patent litigation/enforcement
is patent income — and provide incentives to renew patents that would otherwise be abandoned. Bloom,
Van Reenen, and Williams (2019) argues that both logic and the available empirical evidence suggest patent
boxes are likely to be a harmful form of tax competition that should be discouraged, relative to well-designed
R&D tax credit policies.

A final area we would highlight is the direct public funding of research at private firms. Governments
routinely subsidize research investments at private firms, particularly small firms, yet until recently we had
very little evidence on the efficiency of these subsidies. In a classic paper, Lerner (1999) provides an empirical
analysis of the US Small Business Innovation Research (SBIR) program, arguing that program awardees grew
significantly faster than matched controls. Howell (2017) provides a more recent analysis of the same program,
leveraging administrative data in a regression discontinuity approach to document evidence that early-stage
SBIR awards have large, positive effects on firms’ probability of receiving venture capital support as well as
on firm patenting and revenue. Bronzini and Iachini (2014), Eini6 (2014) and Santoleri, Mina, Di Minin, and
Martelli (2020) provide evidence on similar programs in Europe, as does Le and Jaffe (2017) for New Zealand.
An important caveat to the benefit of direct funding comes from Bhattacharya (forthcoming): government
agencies may be maximizing objectives other than overall social welfare. He finds in a structural auction
model that Department of Defense SBIR contracts are inefficient, but that this may be in part because
the DoD is minimizing acquisition costs rather than maximizing overall surplus including that of inventors.
Several of these papers have undertaken extraordinary efforts to obtain access to administrative datasets that
enable novel and compelling empirical approaches, which we hope will pave the way for additional work in

this area.
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3.2 Intellectual property rights

Formal intellectual property (IP) is a set of government policies which grant special rights to exclude others
from producing, selling, licensing, or building on products, resulting in less competition than would be faced
in a free market. Unlike taxes and subsidies, which affect the cost of doing R&D, IP affects both the cost of
research by sometimes requiring inventors to license ideas they wish to build on, and the reward to research
by limiting ex-post competition. Though IP is a broad area, we will focus our attention in this subsection

on patents.??

3.2.1 Patents: A primer

Many of the key open questions about the patent system are easier to articulate against the background
of some basic facts about the system.?! To be concrete, we focus on the US Patent and Trademark Office
(USPTO), but we bring in details about the international dimensions of patenting at several points.

When filing a new patent application, inventors must submit a written description of their invention
which includes a discussion of so-called prior art — publicly available information relevant to the originality
of the invention being patented (such as might be codified in previously filed patent applications or scientific
publications). Patent applications also include a specific list of claims that the applicant seeks to assert
intellectual property rights over. Applicants pay filing fees that vary with the type of patent application
being submitted as well as whether the applicant qualifies as a small or micro entity (who are allowed to pay
lower fees).52 The full cost of filing a patent, inclusive of legal drafting, averages between $10,000 and $40,000
in the US, a nontrivial barrier particularly for startups and other small firms (Graham, Merges, Samuelson,
and Sichelman, 2009).%3

Once a patent application is submitted, it is assigned to a group of patent examiners with relevant
technological expertise (an art unit), and then assigned to a specific examiner for review. The examiner is
responsible for determining whether the patent application meets the standard for patentability — namely,
whether it is patent-eligible (Title 35, US Code §101), novel (Title 35, US Code §102), nonobvious (Title 35,
US Code §103), useful (Title 35, US Code §101 and §112), and whether the text of the application meets the
requirements for disclosure and claim definiteness (Title 35, US Code §112). Examiners can choose to issue a
first action allowance of the patent (that is, granting the patent based on the initially submitted application),
but this is relatively rare. More often, the initial decision is a rejection, after which applicants have the
option to submit a revised version of their application. For example, the examiner may reject specific claims
and explain their rationale; because claims can be altered or eliminated in response, this step is important
given that the number and content of patent claims is what determines the breadth or scope of a patent
(Marco, Myers, Graham, D’Agostino, and Apple, 2015). The patent application review process often involves
multiple rounds of rejection and revision. In practice, patent applications cannot be rejected by the USPTO,
only abandoned by applicants (Lemley and Sampat, 2008).

In patent reform debates, attention often focuses on whether the USPTO is granting “too many” or “too

590ther forms of IP available in some jurisdictions include trade secrets, copyrights, trade dress, geographical indications, trade-
marks, design rights, and database rights.

518ee Williams (2017) for more details.

52For more on the USPTO’s fee structure, see https : / / www . uspto . gov / learning-and-resources / fees-and-payment /
uspto-fee-schedule.

53Graham, Merges, Samuelson, and Sichelman (2009) derive this cost estimate from a survey of high-technology startup firms in
the US, and it is of course not necessarily representative of costs faced by e.g. independent inventors. In addition to this literature
that has estimated the total costs of filing, there is evidence that filing fees also help weed out low quality patents, reducing the
burden on the patent office. Nicholas (2011) examines an 84% reduction in filing fees in the United Kingdom which occurred after
the 1883 Patents Act, and finds that patenting increased substantially but that the number of important innovations created in
that country did not change. de Rassenfosse and Jaffe (2018) considers a fee increase in 1982 in the US, and finds a reduction in
the patent propensity of low-quality inventions, especially from firms with large portfolios.
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few” patents.”® These arguments are not new: see Machlup and Penrose (1950) for a discussion of the 19th
century patent abolition movement, and Polanvyi (1944) for conceptual arguments against patents from the
age of industrial research. Modern debates about patents in practice often draw on, e.g., the subjectivity of
the novelty requirement — if the USPTO is using too low of a bar for novelty, it may grant too many patents.
However, before we can empirically assess whether the patent grant rate is too high or too low, we need to
measure what the patent grant rate is, and it turns out that measurement exercise is itself quite challenging.

Basic data on patent applications and granted patents by year are widely available: Figure 6 tabulates
counts of USPTO applications and grants by year from 1963-2019. Until recently, data on unsuccessful patent
applications were not made public, complicating measurement of what share of filed patent applications
were granted patents. However, even in datasets where unsuccessful applications can be accounted for, the
structure of the patent examination process means there is not a well-defined time window during which a
final allowance or rejection decision will occur. Multiple rounds of rejection and revision common to most
applications can unfold quickly or slowly depending on the USPTO’s review lags and applicants’ timeliness in
resubmitting. Moreover, patent applications frequently produce new but closely related patent applications
such as continuations or divisionals. These should arguably be incorporated into a measure of whether the

ideas in the initial progenitor patent application were granted.
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Figure 6: USPTO patent applications and grants by year, 1963-2019

Notes: These totals include utility, design, and plant patents as well as patent reissues. Source: USPTO
Patent Technology Monitoring Team (2021), which tabulates data from USPTO submissions to World In-
tellectual Property Organization (WIPO), USPTO’s Technology Assessment and Forecast (TAF) database,
Statistical Abstracts, and Annual Index Patents.

Figure 7 replicates Figure 2 of Carley, Hegde, and Marco (2015), which uses non-publicly available

USPTO administrative data, including all applications successful or not, to attempt to overcome these

®Note that this concern masks two conceptually distinct issues. First is that the USPTO may have an implicit standard that is
either “too high” or “too low” by some normative judgement. Second is that the USPTO may be inconsistent in its application of
its own standard. de Rassenfosse, Jaffe, and Webster (2016) provides one attempt at distinguishing between these two alternatives,
estimating that the implicit threshold of the USPTO is modestly lower than that of peer patent offices in Europe and Japan, and
that the fraction of patents in the US that are granted inconsistently is relatively low (around 20 percent).
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challenges.?> Their analysis sample is constructed from so-called progenitor patent applications (roughly,
patent applications not derived from previous applications) filed with the USPTO from 1996 to 2005 and
examined before mid-2013. The first action allowance rate line shows what share of applications receive
a first-round acceptance. The progenitor allowance rate measures the share of patent applications that
are directly allowed. The family allowance rates incorporate patent grants that accrue to continuations
or divisionals derived from the 