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The Clean Water Act is a landmark, yet controversial, policy. The CWA caused signifi-

cant reductions in pollution, but improvements in surface water quality stemming from the

CWA have come at a high cost; projects funded through grants to wastewater treatment

facilities between 1960 and 2005 have cost about $870 billion over their lifetimes (in 2017

dollars) (Keiser and Shapiro, 2019b). In total, US government and industry have spent

over $1.9 trillion to abate surface water pollution (Keiser et al., 2019). Existing analyses of

the Clean Water Act estimate benefits that are lower than the Act’s costs (e.g. Lyon and

Farrow (1995); Freeman (2010); Keiser et al. (2019)), but these analyses have not generally

included improvements in health caused by the Clean Water Act because there has not been

a systematic ex-post measurement of the health benefits of the CWA. To our knowledge,

this paper is the first to estimate the effect of CWA grants on infant health.

Estimating the health benefits of CWA grants may matter for several reasons. Histori-

cally, policies targeting improvements in child health generate high returns to public funds

(Hendren and Sprung-Keyser, 2020), and previous economics literature shows that even

small differences in child and infant health can lead to large impacts on later life outcomes

(Behrman and Rosenzweig, 2004; Royer, 2009; Black et al., 2007; Figlio et al., 2014; Isen et

al., 2017; Black et al., 2019). Health benefits often account for a large portion of the total

benefits of environmental regulation, with health effects accounting for over 95 percent of all

benefits of air pollution regulation (Keiser et al., 2019).

Existing economics research estimates the benefits of improved surface water by measur-

ing the effect of CWA grants on nearby housing prices, but this hedonic analysis may not

fully capture any health effects of CWA grants. Comparing waters up and downstream from

wastewater treatment facilities, Keiser and Shapiro (2019a) find that CWA grants caused
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reductions in downstream pollution. These improvements in water quality were capitalized

into housing prices, but increases in home values were substantially smaller than the CWA’s

costs. By quantifying how residents value water quality, Keiser and Shapiro (2019a) improve

upon previous cost-benefit calculations, however, as noted in Keiser et al. (2019), hedonic

analysis assumes housing values reflect the implicit value that households place on the quality

of nearby surface water. If households are uninformed about nearby surface water quality

or do not understand the benefits of reduced surface water pollution, housing values will

not reflect the health benefits of the program. In this historic context, it is unlikely that

households fully understood the range and extent of any negative health effects of surface

water contamination, especially the negative impacts on developing fetuses in utero. By

directly estimating the health effects of the CWA, our results complement those in Keiser

and Shapiro (2019a) by quantifying one of the largest benefits of the CWA that hedonic

analysis is least likely to capture.

Using a difference-in-differences design, we compare infant health outcomes upstream and

downstream from wastewater treatment facilities before and after the facility receives a CWA

grant. Comparing up and downstream births addresses the endogenous distribution of grants

as well as any economic shocks caused by grant receipt, but estimates may still be biased if

individuals sort into downstream areas or if these areas experience differential trends relative

to upstream areas after grant receipt. To address this concern, we show that CWA grants

only caused improvements in surface water quality downstream from facilities that were

required to upgrade their treatment technology to comply with new treatment technology

standards imposed by the CWA. This finding motivates a triple difference design that uses

counties up and downstream from facilities where these treatment technology requirements
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were not binding as an additional control group. By using already compliant facilities that

receive grants as an additional control group, we can account for differential sorting into

downstream areas after grant receipt, so the health benefits we capture with this design are

likely caused by improvements in water quality.

Across specifications, we consistently find that CWA grants had a statistically significant

impact on downstream birth weight. Our results show that reductions in surface water

pollution from the CWA are associated with an 8 gram increase in average birth weight.

Our results contribute to a literature documenting the importance of effective sewerage

and clean water in protecting health historically in the US (Troesken, 2001, 2002; Cutler

and Miller, 2005; Ferrie and Troesken, 2008; Beach et al., 2016; Anderson et al., 2020), as

well as a literature on the complementarity of sewerage and clean water interventions. Ex-

amining water policy in early 20th century Massachusetts, Alsan and Goldin (2019) show

that mortality declines were driven by a combination of clean water initiatives and effective

sewerage. Watson (2006) shows that federal sanitation policies explain much of the con-

vergence in Native American and White infant mortality rates in the US since 1970. By

improving sewerage systems and reducing pollution of surface water throughout the US at

a time when most publicly provided drinking water had some treatment, the CWA provides

a new context to examine the effect of improved water quality on health in the late 20th

century, as well as the complementarity between sewerage infrastructure and clean water in

protecting health nationwide.
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1 Background

The Clean Water Act aimed to slow the flow of contaminants from point sources, such as

municipal waste treatment facilities and industrial pollution sources, into rivers and lakes.1

This paper focuses on CWA grants distributed to municipal wastewater treatment facilities.

Wastewater from homes, businesses, and industries, as well as surface runoff, is typically

collected through a system of sewers and delivered to a wastewater treatment facility for

treatment and discharge into local waterways (USEPA, 2004). To reduce surface water

contamination, the CWA addressed pollution from municipal waste treatment plants with

two complementary policies: grants to wastewater treatment facilities, and regulation of

wastewater treatment technology.2

1.1 Grants

From 1972 to 1988, the EPA distributed an estimated $153 billion (in 2014 dollars) in

grants to municipal governments for capital upgrades to wastewater treatment facilities. The

EPA allocated CWA grant money to states according to a formula based on total population,

forecast population, and wastewater treatment needs (Rubin, 1985). States then distributed

grants to municipalities according to priority lists based on the severity of nearby surface

water pollution, the size of the population affected, the need for conservation of the affected

1Although much of the contamination of US waterways comes from sources that cannot be traced back to a
specific facility, such as agricultural runoff, the Clean Water Act did not directly regulate these “non-point”
pollution sources. The CWA did not directly regulate drinking water supplies either. The Safe Drinking
Water Act sets minimum standards for drinking water quality for all public water systems in the US.

2In addition to regulating municipal waste treatment facilities, the CWA required all industrial polluters to
obtain a permit from the National Pollutant Discharge Elimination System (NPDES) before discharging
wastewater. Regulation through the NPDES led to reductions in both profits (Rassier and Earnhart, 2010)
and the number of environmental employees (Raff and Earnhart, 2019) at newly regulated polluters.
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waterway, and that waterway’s specific category of need (USEPA, 1980).

Since state governments wrote their own priority lists, grant placement may be correlated

with trends in infant health. Moreover, grants could cause increases in birth weight that

are unrelated to changes in pollution by improving economic conditions with an influx of

federal dollars. Instead of treating grant timing and location as exogenous, we compare the

difference in birth outcomes in areas up and downstream from a given wastewater treatment

facility before and after grant receipt between facilities that were required to make treatment

technology upgrades and all other facilities. To the extent that other policies were changing

during this time period, and that grants improved local economic conditions, these changes

were likely to affect upstream and downstream areas similarly.

1.2 Regulation

In 1972, about a quarter of all US municipal wastewater treatment facilities reported

using relatively inexpensive, but less effective, primary treatment (USEPA, 2000). This

process, depicted in Figure A1a, forces wastewater through a series of screens. While primary

treatment removes large detritus and heavy biosolids, it still discharges all but the heaviest

organic material into waterways (USEPA, 1998).

The Clean Water Act required all municipal treatment plants to upgrade to secondary

treatment. Plants use secondary treatment technology, shown in Figure A1b, in addition to

primary treatment. After screens filter out large debris, wastewater sits in an aeration tank

where bacteria in the water consume organic material, which ultimately reduces biochemical

oxygen demand (BOD).3

3Additionally, some states required facilities to meet more stringent treatment technology requirements than
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Municipal waste is almost entirely organic (Hines, 1966), and often contains both pathogenic

and nonpathogenic microorganisms harmful to human health. Pathogens harmful to human

health include enteric bacteria, viruses, protozoa, parastic worms, and their eggs. These

microorganisms from human sewage can cause a range of gastrointestinal illnesses and in-

fections (Reynolds et al., 2008; Chahal et al., 2016). Even today, estimates suggest that

up to 19.5 million cases of waterborne illnesses are associated with contaminated drinking

water each year in the US (Reynolds et al., 2008; Colford Jr et al., 2006). Table A1 reports

pathogens capable of causing waterborne or water-based disease. The potential health effects

from exposure to waterborne or water-based diseases include gastroenteric infections and dis-

eases, with symptoms such as nausea, vomiting, diarrhea, and stomach cramps. Exposure

to waterborne contaminants can result from recreational use of affected surface water or

from ingestion of contaminated public or private drinking water sources. Pregnant women

are considered a high-risk population, and infant health may be impacted either directly

through impacts on fetal development or indirectly through maternal illness that may result

in reduced nutritional intake, for example.

Through biological oxidation, secondary treatment can remove over 90 percent of harm-

ful pathogenic bacteria and viruses from sewage (Abdel-Raouf et al., 2012).4 While it is

not practical to monitor pathogens directly, regulators and researchers often use indicator

organisms, such as total or fecal coliforms, to monitor water quality. Keiser and Shapiro

(2019a) show that grants to wastewater treatment facilities improved key indicators of water

the CWA’s mandate, such as tertiary treatment, which is aimed at removing ammonium, nitrate, and
phosphate (USEPA, 2000).

4Suspended (e.g. activated sludge) growth reactors remove about 90 percent of viruses, but removal can be
more varied in film reactors, which provide less absorption (Abdel-Raouf et al., 2012).
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quality, including dissolved oxygen deficit, BOD, and fecal coliforms. As dissolved oxygen

deficit is the most consistently and widely monitored measure of water quality in our sample,

we focus on this measure.

The potential benefits of upgrading a facility’s treatment technology were well under-

stood, but waste treatment capital upgrades were expensive. Upgrading to secondary treat-

ment technology could increase a facility’s operating costs by up to 60 percent and require

capital investments of as much as 30 percent of the initial cost of the facility (National En-

vironmental Research Center, 1972). Because of these costs, many treatment plants had not

yet installed secondary treatment technology at the time of CWA federal mandate. Only

about 47 percent of plants were in already in compliance, because they had already in-

stalled secondary or more stringent treatment technology, typically due historical pressure

from downstream communities to reduce the flow of harmful pollutants and stronger state

regulation of surface water pollution (Stoddard et al., 2003).5 The remaining 53 percent of

plants, as measured in the 1972 Clean Watershed Needs Survey (CWNS), were not yet in

compliance with the relevant treatment technology mandates.6 Treatment plants that were

not already in compliance with both state and federal capital mandates in 1972, which we

refer to as “non-compliant” facilities, had a strong incentive to use CWA grants to offset the

costs of upgrading their treatment technology.7

Many facilities that were already in compliance with both state and federal mandates

still received CWA grants. While these facilities could make capital improvements, such as

5We show that outcomes in these compliant and non-compliant cities trend similarly prior to grant receipt
in our event study models.

6See Appendix Section C.3 for more discussion.

7Permits distributed to polluters through the NPDES required municipal treatment plants to satisfy the
treatment technology mandate, and violators could be fined up to $25,000 per day (Copeland, 2016).
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increasing capacity, they had less incentive to do so. Since the CWA did not mandate these

upgrades, there was no binding constraint requiring these facilities to spend grant money on

sewerage capital upgrades, and the municipalities that operated them faced pressure to use

grant money to offset the operating costs of their water and sewerage utilities in an attempt

to lower costs for consumers and become more competitive (Daigger, 1998).8

Since non-compliant facilities had a clear channel through which to improve surface water

quality and were more likely to spend CWA grant money on capital upgrades, we expect

the reductions in downstream pollution associated with CWA grants to be largest for non-

compliant facilities. This motivates a triple difference design that uses areas near facilities

that were not indicated as pre-CWA non-compliant in the 1972 CWNS as an additional

control group.

2 Data

CWA Grants and Municipal Wastewater Treatment Plants

We obtain data on all 33,429 grants that the EPA distributed to 14,285 wastewater

treatment plants from the EPA’s Grant Information Control System.9 Most facilities received

multiple grants, so we define a facility as “treated” after it receives its first CWA grant and

show the distribution of facility-level treatment timing in Figure A2.

8Flynn and Smith (2021) show that CWA grants to non-compliant municipalities led to a dollar for dollar
increase in sewerage capital spending, while grants to facilities already in compliance with state and federal
capital mandates crowded out funds that municipalities were already spending on sewerage capital rather
than causing an increase in sewerage capital spending.

9The 33,429 grants in our sample exclude grants that do not include a specific facility code, as it is unclear
to what extent these grants were precisely for wastewater treatment plants. Appendix Section C.3 provides
further discussion.
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Using a unique facility code, we merge this grant data with the Clean Watershed Needs

Survey, an assessment of the capital investment needed to meet the water quality goals of

the CWA. This linked data includes facility location, grant timing, and state and federal

treatment technology compliance status as of 1972.10

Spatial Data on Waterways

We define treatment in terms of the flow direction of waterways. We determine if a

waterway is up or downstream from a facility with the National Hydrography Data Set, an

electronic atlas that maps the location and flow direction of all US waterways. We follow

both the EPA and other researchers studying the Clean Water Act by focusing on areas

25 miles up and downstream from treatment facilities (Keiser and Shapiro, 2019a; USEPA,

2001). Table B1 shows that our results are robust to concentrating on areas 5 or 10 miles

downstream from treatment facilities.

We define a county as downstream if it contains any waterway that is within 25 miles

downstream of a treated facility. Therefore, we categorize counties with both up and down-

stream waterways as downstream. Figure 1 provides maps showing two examples of how

counties are classified based on upstream and downstream waterways. Waterways within

25 miles downstream of a treated facility are dark blue and waterways 25 miles upstream

are medium yellow. Figure 1a shows an example from a wastewater facility in Indiana,

where Shelby and Johnson counties would be classified as downstream because they con-

tain a waterway within 25 miles downstream of a treated facility. Hancock county, on the

10There are 1,930 facilities in our analysis sample that are missing data on pre-CWA treatment technology.
We assume that these facilities were already in compliance with state and federal treatment technology
requirements. Throughout the paper, we refer to the set of “compliant” facilities, which includes all
facilities that were not explicitly “non-compliant” in the 1972 CWNS. Our results are similar when we
exclude facilities with missing information on treatment technology.
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other hand, would be classified as an upstream county, because it contains only upstream

waterways. Figure 1b shows two wastewater treatment facilities in Georgia. One facility

is located in Clarke county. For this facility, downstream counties include Clarke, Oconee,

Oglethorpe, and Greene. In this case, Jackson is the only upstream county for this facility.

Although Madison county contains upstream waterways for the facility located in Clarke

county, it cannot be an upstream county because it contains downstream waterways for the

other wastewater treatment facility and therefore, is classified as a downstream county.

Water Pollution

Data on dissolved oxygen deficit comes from STORET legacy, which includes readings

from pollution monitoring stations across the US.11 We include readings from pollution

monitors on rivers and lakes located 25 miles up or downstream from any facility in the

CWNS data. We also follow the data cleaning steps laid out in the appendix of Keiser and

Shapiro (2019a).

Infant Health

We measure infant health with birth certificate data from the National Center for Health

Statistics (NCHS) from 1968 to 1988. These data contain information on birth weight, birth

order, mother’s age and race, and county of residence for each birth.12 Table A2 presents

summary statistics for individual-level births in 1970, two years before the first CWA grants

11Dissolved oxygen deficit is a continuous measure defined as 100 minus dissolved oxygen saturation (dissolved
oxygen level divided by water’s maximum oxygen level). It is one of the most common measures of omnibus
water pollution in research, and it responds to a wide variety of pollutants (Keiser and Shapiro, 2019a).

12Data before 1972 constitutes a 50 percent random sample of all births in the US. After 1972, some states
report data on all births. Six states had full sample data in 1972, and all states and the District of Columbia
had full sample data by 1985. Appendix C.1 provides additional information and shows our main results
are not driven by sampling changes.
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were distributed, from up and downstream counties.

While ideal data would contain exact addresses, these data are unavailable for most

states, and even when collected, addresses are typically not available until the after the

adoption of the 1989 US Standard Birth Certificate revision and the use of electronic birth

certificates, which is after our study period.

We collapse birth data to county means, calculating the average birth weight, the prob-

ability of low birth weight, the percent of non-white births, average mother’s age, and the

probability of being a mother’s first, second, third, or fourth or higher birth in each county

year.13 Although more recent birth records data contain far more variables of interest, such

as gestation, maternal education, and maternal risk factors, these variables are either un-

available or not reliably and consistently recorded in data from 1968 to 1988.

Population Density

We expect the health effects of improved surface water quality to be concentrated near

treated waterways. County-level exposure depends on the distribution of the population

within a county relative to the location of treated waterways. We use 1990 census block

population density data from the US Census Bureau to measure the percent of a county’s

population living within a mile of a treated waterway.14 Assuming a uniform population

distribution within census blocks, this provides a proxy for the probability that mothers

13We also calculate county means of one year mortality using data from NCHS (National Center for Health
Statistics, 1968-1988b). We find no significant effect of CWA grants on this outcome in Table A9, however
our estimates are imprecise.

14We use data from 1990 because it is the first census for which population density data is available at
the census block level. We also show similar but attenuated results if we define treatment with a binary
variable in Appendix B.3. We also show in Table A6 that the results are robust to dropping the largest
quartile of counties by geographic area, as these large counties may have more measurement error.
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within the county are exposed to treated waterways. Figure A3 shows the distribution of

this treatment measure. We discuss how this measure captures different exposure pathways

in section 4.3.

3 First Stage: Water Pollution

3.1 Methods

Before comparing birth outcomes up and downstream from wastewater treatment facil-

ities, we examine the first stage relationship between grant receipt and downstream water

quality with equation 1.

Qpdy = γgpy ∗ dd + βWpdy + αpy + αpd + εpdy (1)

Qpdy is a measure of dissolved oxygen deficit and gpy equals one after a facility receives its

first CWA grant. There are two observations for each treatment plant p for each year y, which

describe average dissolved oxygen deficit upstream (dd = 0) and downstream (dd = 1) from

that plant. Since dissolved oxygen deficit varies inversely with temperature, Wpdy measures

water temperature.

We include plant-by-downstream and plant-by-year fixed effects, αpd and αpy, respec-

tively. Plant-by-downstream fixed effects allow waters up and downstream from a given

wastewater treatment plant to have different mean levels of dissolved oxygen deficit, which

controls for pollution sources located up or downstream from a plant that are constant over

time. Plant-by-year fixed effects ensure that we are only comparing waters up and down-
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stream from the same facility, which controls for any yearly shocks that affect waters both up

and downstream from a facility. All standard errors in our pollution estimates are clustered

at the facility level.

We estimate equation 1 for the full sample and subsamples of compliant and non-

compliant facilites, as well as a fully interacted triple difference specification. These estimates

give us a sense of how grants and regulations worked together by testing whether pollution

evolved differently in waters downstream from non-compliant facilities and compliant facili-

ties after grant receipt.

3.2 Pollution Results

Table 1 estimates the effect of CWA grant receipt on downstream water quality. Columns

1-3 present estimates of equation 1 on the full sample, non-compliant facilities, and compliant

facilities, respectively. Column 4 presents coefficients from a triple difference specification.

As shown in column 2, dissolved oxygen deficit only decreased significantly in water down-

stream from non-compliant facilities. Since dissolved oxygen deficit is defined as 100 minus

dissolved oxygen saturation, this result show that, after grant receipt, dissolved oxygen satu-

ration increased by 1.6 percentage point in waters downstream from non-compliant facilities

relative to waters upstream from the same facility. The coefficient for waters downstream

from compliant facilities in column 3 is small and statistically insignificant. The reduction in

dissolved oxygen deficit downstream from non-compliant facilities is statistically larger than

the change downstream from compliant facilities, as shown by the significant negative triple

difference coefficient in column 4.
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Figure 2a presents results from the event study corresponding to the triple difference

in column 4. This figure shows that reductions in downstream pollution were significantly

larger in waters downstream from non-compliant facilities relative to waters downstream from

compliant facilities. In addition, there does not appear to be any trend in pollution prior

to grant receipt, which might have arisen from compliant facilities early adoption of more

advanced treatment technology. In the analysis of the impact of CWA grants on infant health

that follows, we leverage this comparison between non-compliant and compliant facilities in

a triple difference specification.

4 Infant Health

4.1 Methods

We begin our reduced-form analysis of the impact of CWA grants on infant health by

comparing birth outcomes in counties downstream from treated facilities to all other areas

with the following difference-in-differences specification

Ycy = γpctcy + βXcy + αc + αy + εcy (2)

Ycy is an average birth outcome in county c in year y, and pctcy is the percent of county c’s

population living within a mile of a treated waterway in year y.15 Controls in Xcy include

15By using the percent of a county’s population living within a mile of a treated waterway as a proxy for
the probability that mothers within the county are exposed to treated waterways, we employ a continuous
measure of treatment. To identify the ATE we must assume that, for all doses, the average change in
outcomes over time across all units if they had been assigned a particular dose is the same as the average
changes in outcomes over time for all units that did experience that dose (Callaway et al., 2021). This
assumption could be violated if treatment effects vary over time, or if there is selection into a given dose.
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the percent of births that were a mother’s first, second, third, or fourth, and county averages

of mother’s age and race. αc and αy are county and year fixed effects. Observations are at

the county-year level and standard errors are clustered at the county level. Since we collapse

birth weight data to county means, we weight our results by the total number of births that

occurred in a county-year.

The presence of local area trends specific to a facility’s location could mean that an

upstream county is only a good counterfactual for a county located downstream from the

same facility. We address this concern in our next specification by collapsing our data to

the facility rather than the county level. Our outcome variable is now ∆Ypy, which is equal

to the mean birth weight in all counties downstream from a facility minus the mean birth

weight in all counties upstream from the same facility in each year. We then estimate the

following specification

∆Ypy = γpctpy + βXpy + αp + αy + εpy (3)

where p indexes facilities, and pctpy measures the percent of downstream counties’ popula-

tions living within a mile of a treated waterway. We include facility and year fixed effects,

αp and αy, respectively.16 Standard errors are clustered at the facility level.

This specification requires us to assume that, in the absence of grant receipt, birth out-

comes would have evolved similarly in areas up and downstream from the same facility after

We address the dynamic treatment effects in appendices B.2 and B.3. As the dose in this setting is simply
a measure of what portion of births in a county are likely to be treated, we think the strong parallel trends
assumption is reasonable.

16Controls in facility-level specifications are averages from all births in up and downstream counties. Our
results are robust to controlling for the difference between average demographic characteristics in up and
downstream counties instead.
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grant receipt. This assumption would be violated if, for example, downstream areas were

experiencing differential sorting patterns or greater economic growth relative to upstream ar-

eas, even in the absence of CWA grants. For example, Keiser and Shapiro (2019a) show that

downstream housing prices increase after grant receipt, which may cause healthier mothers

to sort into downstream communities.

To address concerns regarding differential trends in infant health in downstream relative

to upstream areas caused by differences in economic growth or sorting of households into

downstream areas, we employ a triple difference design. We estimate the following equation

∆Ypy = γDD
0 pctpy + γDDDpctpy ∗ tp + βXpy + φXpy ∗ tp + αy ∗ tp + αp + αy + εpy (4)

where tp is an indicator that equals one for non-compliant facilities. In this specification,

the first difference comes from where and when CWA grants were distributed, the second

comes from if a birth occurred up or downstream from a wastewater treatment facility, and

the third comes from the facility’s compliance with the treatment technology mandate.

Even if individuals sort into downstream communities, so long as the sorting pattern

induced by grant receipt is similar for both compliant and non-compliant facilities, using

compliance as a third difference will capture unobserved changes to up and downstream

counties occurring contemporaneously with CWA grant receipt. We test this by explor-

ing how maternal characteristics evolve after grant receipt in upstream and downstream

areas across non-compliant and compliant facilities. Table 2 estimates equation 2 on demo-

graphic characteristics that are correlated with birth weight, such as race, age, and birth

order. Column 1 of Table 2 shows results for the subsample of non-compliant facilities and
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column 2 shows results for compliant facilities. Column 3 presents results from the asso-

ciated triple difference. Columns 1 and 2 show that areas downstream from facilities that

received CWA grants had smaller non-white populations, slightly older mothers, and fewer

higher order births, but changes in downstream demographic characteristics are very similar

across non-compliant and compliant facilities. The triple difference coefficients presented

in column 3 are small and statistically insignificant for all observed demographic outcomes,

indicating that there was no observable differential sorting into downstream areas across

non-compliant and compliant facilities after grant receipt. While we also control for these

observable demographic characteristics in all regressions, these results provide some evidence

that the identification assumption for the triple difference specification is likely to hold for

unobservable characteristics as well.

4.2 Infant Health Results

Panel A of Table 3 shows effects on birth weight that are robust across a variety of

specifications. Column 1 compares births in counties downstream from grant facilities to

those in any other county by estimating equation 2 using a sample of births from every

county in the contiguous US. Column 2 adds demographic controls to this specification.17

Since births occurring in counties that are not near wastewater treatment facilities might

not make a good control group, column 3 excludes counties that are not up or downstream

from any wastewater treatment facility. This compares births in a downstream county to

those in any upstream county. The results are similar to those from the full sample.

Counties upstream from the same facility are likely to make better counterfactuals for

17Figure A4 in the appendix shows the event study figures that correspond to the estimate in column 2.
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downstream counties than counties upstream from any facility. Column 4 estimates equation

3, which compares birth weight in counties up and downstream from the same facility. The

point estimate is slightly larger in magnitude with a smaller confidence interval.18,19

The impact of the CWA on birth weight may not be uniform across the distribution of

birth weight, so we also show results for low birth weight in Panel B of Table 3.20 The point

estimates are consistently negative, although not always significant, and range from -0.09 to

-0.29 percentage points. About 7 percent of births in our sample are low birth weight, so

this represents a change of 1 to 4 percent from the mean.

Finally, we estimate our triple difference specification on birth outcomes. Columns 5 and

6 of Table 3 present results from estimating equation 3 on sub-samples of non-compliant and

compliant facilities, respectively. Consistent with our water pollution results in Table 1, we

see a relatively large and statistically significant improvement in birth weight downstream

from non-compliant facilities. The effect in areas downstream from compliant facilities is also

positive, but smaller; improvements in infant health in areas downstream from compliant

facilities may be driven by demographic or economic changes that coincide with grant timing.

Since, as shown in Table 2, demographic changes were similar in areas downstream from

18Figure A5 shows the associated event study figures for column 4.

19These results are identified off of comparisons of newly treated facilities relative to never-treated facilities,
newly treated facilities relative to facilities that have not yet been treated, and newly treated facilities
relative to already-treated facilities (Goodman-Bacon, 2021). The third type of comparison can be wrong
signed. We show in the Appendix sections B.2 and B.3 that our results are robust to using a stacked
difference-in-difference design and Callaway and Sant’Anna (2021), which only rely on the first two types
of comparisons. Appendix B.2 also provides estimates that use only the never treated or not yet treated
counterfactual comparisons, which highlights the different comparisons made in our main estimates.

20Table A3 further explores the effect across the birth weight distribution. Replicating the specification
from column 2, we find reductions in low birth weight are driven by decreases in both extremely low birth
weight (ELBW is defined as below 1000 grams) and very low birth weight (VLBW is defined as below 1500
grams). We also observe an increase in births above 2,500 grams, which suggests that there is an upward
shift in the birth weight.
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non-compliant and complaint facilities, the difference between the effects downstream from

non-compliant and compliant facilities likely comes from the differences in surface water

quality shown in Table 1, rather than shifting demographics.

Figures 2b and 2c present the event studies that correspond to our triple difference

specification for birth weight and low birth weight, respectively.21 There is no evidence of

pre-treatment trends in infant health outcomes. For birth weight, there is a statistically sig-

nificant increase in downstream (relative to upstream) counties after a non-compliant facility

receives a grant (relative to other facilities).22 For low birth weight, the point estimates are

similar in shape but are less precise.

We summarize the effect of changes in surface water quality downstream from non-

compliant facilities on infant health by estimating equation 4 on the pooled sample, which

leverages all of our variation in one regression. Since equation 4 includes a full set of interac-

tions, our estimate of γDDD, reported in column 7 of Table 3, is equivalent to the difference

in the estimates in columns 5 and 6. As in our water pollution estimates, the improve-

ments in birth outcomes downstream from non-compliant facilities are statistically larger

than improvements downstream from compliant facilities.23 We show that this heterogene-

21Figure A6 shows the birth weight event study figures for compliant and non-compliant facilities separately.
Across both types of facilities, pre-treatment trends are very similar and the effect of treatment is much
larger for the non-compliant facilities in the post-treatment period, as expected.

22In all of our event studies, we report coefficients for four years before and eight years after grant receipt,
so that we only report balanced coefficients in our infant health specifications. These specifications also
includes bins for five or more years before the grant and nine or more years after the grant, but our results
are not sensitive to this choice of binning. While unbalanced event study coefficients should be interpreted
with caution, Figure B2 presents a version of Figure 2b with 16 years of post-treatment data. This figure
suggests that the effect of CWA grants on infant health flattens out by 10 years after treatment, consistent
with grant projects taking up to 10 years to complete (USEPA, 2002).

23It is important to note that the estimation equations for pollution and infant health are not identical
due to data limitations for the geography available in the infant health data, which only records county.
For completeness, we also provide estimates of our first stage impact on water quality using equation 4
in Table A4 of the appendix. We find these estimates are statistically indistinguishable and reassuringly
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ity in effects is not driven by differences in facility size, population served or non-treatment

technology upgrades in Table B4, which provides further evidence that improvements in

downstream infant health are driven by upgrades to treatment technology. In appendix

section A.3, we also explore heterogeneity of the main results by maternal race and grant

timing, but find no significant differences along these dimensions.

The results from this triple difference show that increasing the probability of exposure

to treated surface water from zero to 100 percent is associated with an 8.21 gram increase

in average birth weight in counties downstream from facilities that were required to make

upgrades to their treatment technology. In terms of magnitude, the effect on birth weight is

about half of the estimated effect of any exposure to Ramadan during pregnancy (Almond

and Mazumder, 2011), and about the same magnitude as the effect of stress in utero due

to nearby landmine explosions on birth weight (Camacho, 2008). Estimates of the effect on

the probability of low birth weight shown in Panel B of Table 3 are not significant, but they

do bound improvements above a 0.236 percentage point decrease, or about 3 percent from

the mean of low birth weight. This is slightly smaller than the estimated effect of drinking

water contamination in utero on low birth weight estimated in a modern context (Currie et

al., 2013).

4.3 Potential Mechanisms

There are several potential pathways through which surface water pollution could affect

health, including contamination of public drinking water sources, contamination of private

similar to our main specification. Figure A7 also shows that the associated event study reveals very similar
dynamics to the health event studies.
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groundwater sources, and exposure through recreation. First, improvements in surface water

quality from the CWA may affect infant health through a reduction in pollution in the

source water that public water systems draw from. Public water systems, including those

that draw from a surface water source, such as a lake or river, often violate health-based

water quality standards, and these violations impact infant and child health (Currie et al.,

2013; Grossman and Slusky, 2019; Marcus, 2021). A report by the US Geological Survey

(USGS) found that more than one in five source-water samples from public water systems

contained one or more contaminants at concentrations dangerous to human health. In an

analysis of matched water samples from 94 water sources and their associated public water

systems, the same organic contaminants detected in source water consistently appeared at

similar concentrations in drinking water after treatment (Toccalino and Hopple, 2010). In

1970, over 70 percent of community water system users received drinking water from a

surface water source (Dieter, 2018), so improvements in surface water quality from CWA

grants may have reduced exposure to harmful pollutants by improving public drinking water

quality. Second, reductions in surface water pollution could affect populations who get their

drinking water from private wells. Surface water quality can impact nearby groundwater

quality through seepage and runoff, so private groundwater well users may also benefit from

reduced pollution from wastewater treatment facilities. Since private wells are unregulated

and untreated, these households may be at greater risk for direct exposure through their

drinking water. Third, individuals could be exposed to surface water through recreation.

This channel could impact health directly through physical contact with, or ingestion of,

contaminated water, or indirectly through changes in activity and exercise, such as swimming

or walking along a waterway.
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Our measure of treatment, the percent of a county’s population that lives within one mile

of a treated waterway, is likely to capture all three of these potential mechanisms to a certain

extent. Impacts through private well contamination and through recreational exposure are

likely to be largest for households nearest to the treated waterway. While our main results

focus on the population within one mile of a treated waterway, it is not clear how far people

will travel for water recreation, or how far private wells may be impacted.24 With this in

mind, Table A5 shows that our results are robust to using other bandwidths around treated

waterways. We find a larger point estimate for a narrower bandwidth and a smaller yet still

significant estimate for a wider bandwidth.

If public water is a primary channel of exposure, distance is not the ideal measure.

Instead, a better measure of treatment would be the percent of the population served by a

public water system drawing water from a treated waterway. Unfortunately, data limitations

prevent us from creating this measure. Data on public and private water supply is very

limited, especially in this historic context. Spatial data on public water system’s service

supply areas are only available for more recent time periods in a handful of states, and

modern supply areas may not accurately reflect service areas in the 1970s and 1980s. In

addition, we have no information on the exact location from which public water systems

draw their water supply. There is also no historic data on private well locations. While not

ideal, we still take advantage of the available spatial data on modern public water system’s

service areas from eight states for which this data is available (see Section C.2 for details

on these data). For these states, we calculate the percent of a county’s population living

24While distance is a factor in recreational use, accurately measuring recreational benefits is especially
difficult (Kuwayama et al., 2018). Unfortunately, we lack direct measures of water-related recreation
activities from this time period.

22



within a public water system’s service area.25 Table A7 shows that this measure, which is

based on public water supply areas, is highly correlated with our primary treatment measure,

which is based on distance. This suggests that our main results likely capture the public

water channel. We also note that, to the extent there is measurement error in our measure

of exposure, our estimates will be attenuated towards zero and could be interpreted as an

underestimate.

These three mechanisms are difficult to measure and disentangle with available data.

While these data limitations prevent us from definitively determining the main pathway of

exposure, we explore potential mechanisms in Appendix Section A.5. We take advantage

of country-wide data on the percent of a county’s population receiving public water from

groundwater or surface water sources in 1985. We find that our results are driven by counties

with water systems drawing from surface water sources, which provides suggestive evidence

that public drinking water sourced from surface waters is one channel through which reduc-

tions in surface water pollution can improve infant health.

5 Conclusion

The preceding evidence suggests that the Clean Water Act led to small but significant

improvements in infant health, with reductions in pollution associated with CWA grants

leading to an 8 gram increase in average birth weight in counties downstream from facilities

that were required to make treatment technology upgrades. These results are consistent

25If populations are receiving publicly provided drinking water sourced upstream from other counties, our
measure of treatment may not accurately describe the treated population. However, community water
systems generally serve areas smaller than counties (USEPA, 1997).
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with the significantly larger improvements in water quality we find downstream from these

facilities.

We note that our study has a number of important limitations. Data availability in this

historic period restricts our ability to determine precise residential locations and the location

of all drinking water sources and supply areas, as described in more detail in section 4.3. To

the extent that these data limitations generate measurement error in our estimates, the 8

gram increase in average birth weight may be understated.

Nevertheless, our estimates provide an important first step in understanding the effects

of the Clean Water Act on health. Incorporating the birth weight benefits from cleaner

surface water, as well as other infant, adolescent and adult health effects, is important for

a full accounting of the benefits of the CWA.26 More generally, this research documents the

importance of policies targeting cleaner water through sewage treatment in protecting health

and shows that the complementarity between clean drinking water and sewerage initiatives

for improving health holds well into the twentieth century.
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Figure 1: Defining Upstream and Downstream Counties

Notes: The figures show waterways within 25 miles downstream of a treated facility in dark blue and 25 miles upstream in
medium yellow. County boundaries are in dark grey and census block boundaries are in light gray.
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Figure 2: Pollution and Infant Health Event Studies

Notes: Sub-figure (a) plots the θt and ηt from estimating Qpdy =
∑−2

t=−5 θt1{y−y∗p = t}∗dd∗tp+
∑9

t=0 ηt1{y−
y∗p = t}∗dd∗tp+

∑−2
t=−5 πt1{y−y∗p = t}∗dd+

∑9
t=0 γt1{y−y∗p = t}∗dd+βWpdy+φWpdy∗tp+αpy+αpd+εpdy.

Qpdy measures dissolved oxygen deficit, dd is a dummy equaling one for observations downstream from a
facility, and tp is an indicator that equals one for non-compliant facilities. The model includes facility-by-
downstream fixed effects and facility-by-year fixed effects, αpd and αpy, as well as controls for temperature.

Sub-figures (b) and (c) plot the θt and ηt from estimating ∆Ypy =
∑−2

t=−5 θt1{y−y∗p = t}∗ tp +
∑9

t=0 ηt1{y−
y∗p = t}∗pctpy∗tp+

∑−2
t=−4 πt1{y−y∗p = t}+

∑9
t=0 γt1{y−y∗p = t}∗pctpy+βXpy+φXpy∗tp+αy∗tp+αp+αy+εpy.

pctpy is a continuous variable that takes values from zero to one, and indicates the percent of downstream
counties’ populations living within a mile of a treated waterway in year y. The model includes facility and
year fixed effects, αp and αy respectively, as well as demographic controls. tp is an indicator that equals
one for non-compliant facilities. The dependent variable is the difference in birth weight between up and
downstream counties in year y in sub-figure (b), and the difference in the probability of being born weighing
less than 2500 grams between up and downstream counties in year y in sub-figure (c).
Source: USEPA (1968-1988); National Center for Health Statistics (1968-1988a)
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Tables

Table 1: Effects on Surface Water Pollution

(1) (2) (3) (4)
full sample non-compliant compliant DDD

grant X downstream -0.974∗∗∗ -1.566∗∗∗ -0.371 -0.371
[-1.364,-0.584] [-2.125,-1.008] [-0.911,0.170] [-0.911,0.170]

grant X downstream X non-compliant -1.196∗∗∗

[-1.973,-0.419]
weather controls X X X X
facility by downstream fixed effects X X X X
facility by year fixed effects X X X X
N 114148 46968 67180 114148

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table describes the effects of Clean Water Act grants on downstream pollution. Columns 1, 2 and
3 estimate equation 1 for areas up and downstream from all facilities in our sample, non-compliant facilities,
and all other facilities respectively. Column 4 presents estimates from the associated triple difference: Qpdy =
γDD
0 gy∗dd+γDDDgy∗dd∗tp+βWpdy+φWpdy∗tp+αpy+αpd+εpdy where tp is a dummy variable equaling one for

observations from non-compliant facilities. Qpdy is dissolved oxygen deficit, gy is a dummy variable equaling
one after a facility receives a CWA grant, and dd is a dummy equaling one for observations downstream
from a facility. All regressions include controls for water temperature, as well as facility-by-downstream and
facility-by-year fixed effects, αpd and αpy.
Source: (USEPA, 1968-1988)
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Table 2: Effects on Demographic Changes

non-compliant compliant DDD
(1) (2) (3)

Panel A. percent non-white
pct downstream -0.0223∗∗∗ -0.0176∗∗∗ -0.0176∗∗∗

[-0.0281,-0.0165] [-0.0229,-0.0123] [-0.0229,-0.0123]

pct downstream X non-compliant -0.00471
[-0.0126,0.00313]

mean .116 .105 .11
Panel B. mother’s age
pct downstream 0.126∗∗∗ 0.0784∗∗ 0.0784∗∗

[0.0557,0.197] [0.0149,0.142] [0.0150,0.142]

pct downstream X non-compliant 0.0479
[-0.0470,0.143]

mean 24.563 24.569 24.566
Panel C. probability first or second birth
pct downstream -0.00210 0.00109 0.00109

[-0.00916,0.00496] [-0.00390,0.00608] [-0.00390,0.00608]

pct downstream X non-compliant -0.00319
[-0.0118,0.00545]

mean .653 .645 .648
Panel D. probability third or higher birth
pct downstream -0.0105∗∗∗ -0.00618∗∗∗ -0.00618∗∗∗

[-0.0145,-0.00646] [-0.00965,-0.00271] [-0.00964,-0.00271]

pct downstream X non-compliant -0.00429
[-0.00958,0.00100]

mean .338 .347 .343
unit and year fixed effects X X X
collapsed to facility level X X X
N 34188 48132 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: Columns 1 and 2 present results from estimating ∆xpy = γpctpy +αp+αy +εpy on subsamples of non-
compliant and compliant facilities. ∆xpy is a measure of the difference between demographic characteristic
in counties up and downstream from facility p in year y, and pctpy is a continuous variable that takes values
from zero to one, and indicates the percent of downstream counties’ populations living within a mile of a
treated waterway in year y. The model includes facility and year fixed effects, αp and αy. Column 3 presents
estimates of the associated triple difference, ∆xpy = γDD

0 pctpy+γDDDpctpy∗tp+αy∗tp+αp+αy+εpy, where
tp is an indicator that equals one for non-compliant facilities. Each panel represents a different demographic
variable. Means of each variable in 1970 from up and downstream counties are reported at the bottom of
each panel.
Source: National Center for Health Statistics (1968-1988a)
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A Appendix: Additional Results

A.1 Additional Figures

(a)

(b)

Figure A1: Primary vs Secondary Treatment Technology

Source: USEPA (1998)
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Figure A2: Timing of First Grant
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Figure A3: Percent of Population Living Within a Mile of a Treated Waterway in 1988
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Figure A4: Birth Outcomes Downstream from Grant Facilities

Notes: These figures plot the πt and γt from estimating Ycy =
∑−2

t=−5 πt1{y − y∗c = t}+
∑9

t=0 γt1{y − y∗c =
t} ∗ pctcy + βXcy + αc + αy + εcy. pctcy is a continuous variable that takes values from zero to one, and
indicates the percent of county c’s population living within a mile of a treated waterway in year y. The
model includes county and year fixed effects, αc and αy respectively, as well as controls for the percent of
a county’s births of a given birth order, and county averages of mother’s age and race and child gender.
The estimates are weighted by total number of births in a county-year. The dependent variable is the the
average birth weight in county c in year y in sub-figure (a), and the probability of being born weighing less
than 2500 grams in county c in year y in sub-figure (b).
Source: National Center for Health Statistics (1968-1988a)
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Figure A5: Difference in Birth Outcomes Up and Downstream from Grant Facilities

Notes: These figure plot the πt and γt from estimating ∆Ypy =
∑−2

t=−5 πt1{y− y∗p = t}+
∑9

t=0 γt1{y− y∗p =
t} ∗ pctpy + βXpy + αp + αy + εpy. pctpy is a continuous variable that takes values from zero to one, and
indicates the percent of downstream counties’ populations living within a mile of a treated waterway in year
y. The model includes facility and year fixed effects, αp and αy respectively, as well as controls for the
percent of up and downstream counties’ births of a given birth order, and averages of up and downstream
mother’s age and race and child gender. The estimates are weighted by total number of births in counties up
and downstream from facility p in year y. The dependent variable is the difference in birth weight between
up and downstream counties in year y in sub-figure (a), and the difference in the probability of being born
weighing less than 2500 grams between up and downstream counties in year y in sub-figure (b).
Source: National Center for Health Statistics (1968-1988a)
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Figure A6: Event Studies by Compliance

Notes: The figures plot the event study estimates from Figure 2b separately in panels (a) and (b) for
compliant and non-compliant facilities, tp. The model includes facility and year fixed effects, αp and αy

respectively, as well as demographic controls. The dependent variable is the difference in birth weight
between up and downstream counties in year y. Source: National Center for Health Statistics (1968-1988a)
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Figure A7: First Stage

A.2 Additional Tables

Table A1: Agents of Waterborne or Water-based Disease

Bacteria Protozoa Viruses
Vibrio cholerae Giardia lamblia Norovirus
Salmonella spp. Cryptosporidium parvum Sapprovirus
Shigella spp. Entamoeba histolitica Poliovirus
Toigenic Escherichia coli Cyclospora cayetanensis Coxsackievirus
Campylobacter spp. Isospora belli Echovirus
Yersinia enterocolitica Microsporidia Paraechovirus
Legionella Ballantidium coli Enteroviruses 69-91
Helicobacter pylori Toxoplasma gondii Reovirus

Naegleria fowleri Adenovirus
Hepatitis A & E
Rotavirus
Astrovirus
Picobirnavirus
Coronavirus

Source: Reynolds et al. (2008)
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Table A2: Summary Statistics

(1) (2) (3) (4) (5) (6) (7)
Full Sample Downstream Upstream Non-compliant Compliant Surface Ground

birth weight 3279.61 3277.83 3297.25 3279.70 3279.37 3275.67 3296.68
probability bw < 2500 .078 .079 .074 .078 .077 .078 .077
nonwhite .166 .170 .115 .155 .193 .161 .185
age of mother 24.58 24.58 24.62 24.66 24.39 24.63 24.40
education of mother 11.83 11.83 11.83 11.87 11.65 11.86 11.72
birth order 2.40 2.39 2.42 2.42 2.34 2.37 2.52
Observations 1788138 1571197 206017 1300614 487524 1452552 335586

Notes: This table presents the mean of birth weight, the probability of low birth weight, the percent of
non-white births, average age and education of mothers, and average birth order for all counties, births
in counties that were ever downstream from a facility that received a CWA grant, counties that were ever
upstream from a facility that received a CWA grant, counties up or downstream from non-compliant facilities,
counties up or downstream from compliant facilities, counties that had at least some public water systems
that drew from surface water, and counties that used exclusively ground water. These means are calculated
using individial birth data from 1970, two years before the CWA came into effect.
Source: National Center for Health Statistics (1968-1988a)

Table A3: Effect on Across the Birth Weight Distribution

(1) (2) (3) (4)
bw < 1000 bw < 1500 1500 < bw < 2500 bw > 2500

pct pop 1 mile -0.000320∗ -0.000496∗∗ -0.000378 0.000874∗

(0.000174) (0.000210) (0.000439) (0.000523)
Observations 64239 64239 64239 64239

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents re-estimates our difference-in-differences results from Column 2 of Table 3 on
different bins of birth weight. Column 1 shows the effect on Extremely Low Birth Weight (ELBW), defined
as births below 1,000 grams. Column 2 shows the effect on Very Low Birth Weight, defined as births below
1,500 grams. Column 3 shows the effect on births between 1,500 and 2,500 grams, which includes births
classified as Low Birth Weight but not VLBW or ELBW. Column 4 shows the effect on births above 2,500
grams.
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Table A4: First Stage

(1) (2) (3) (4) (5)
non-compliant compliant DDD DDD DDD

pct pop 1 mile -3.946∗∗∗ -0.132 -0.132 -0.271 0.659
(1.496) (1.908) (1.908) (0.767) (1.907)

pct pop 1 mile X non-compliant -3.814 -1.789∗ -3.704
(2.424) (1.078) (2.440)

demographic controls X X X X
unit fixed effects X X X X X
year fixed effects X X X X X
collapsed to facility level X X X X X
weighted X X X X
N 12201 11378 23579 23579 23579

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Table A5: Alternative Small Bandwidths

(1) (2)
25 miles downstream

.5 mile buffer
25 miles downstream

1.5 mile buffer
county average birth weight

pct pop .5 miles 10.70∗∗

[1.961,19.44]

pct pop 1.5 miles 6.621∗∗

[1.081,12.16]
demographic controls X X
unit and year fixed effects X X
collapsed to facility level X X
N 82320 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: ∆Ypy = γDD
0 pctpy + γDDDpctpy ∗

tp + βXpy +φXpy ∗ tp +αy ∗ tp +αp +αy + εpy. pctpy is a continuous variable that takes values from zero to
one, and indicates the proportion of downstream counties’ populations that lived within some bandwidth of
a treated waterway in a given year. In column 1, this bandwidth is .5 miles, and in column 2, it is 1.5 miles.
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Table A6: Drop Top Quartile of Land Area

(1)
pct pop 1 mile 5.429∗∗

(2.515)
demographic controls X
unit and year fixed effects X
collapsed to county level X
observations 48174

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table reproduces difference-in-difference estimates from Column 2 of Table 3 after dropping the
counties in the top quartile of land area (i.e. counties with the largest geographic area).

Table A7: Correlation of Treatment Variables

(1)
pct pop public water

pct downstream 0.927∗∗∗

(0.00944)
Observations 8463

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table shows the correlation between the percent of the population living in a treated public
water system’s service area and the percent of the population living within a mile of a treated waterway by
presenting estimates from the following model: pwscy = βpctcy where pwscy is a variable that takes values
between zero and one and indicates the proportion of county population population living in a treated public
water system’s service area.

A.3 Heterogeneity

We examine the heterogeneity of our estimates across race in Table A8 by estimating
equation 4 on sub-samples of white and non-white births from counties with sizable non-
white populations.27 The point estimates for both white and non-white births are similar
to the estimates of effects on average birth weight for any race, and results by race are not
statistically distinguishable.

Next, we look for heterogeneity by the timing of grant receipt. If states wrote their
priority lists to address the most severe pollution problems first, we would expect grants
from the first few years of the CWA to have the largest effect on infant health. This is

27The sample is restricted to counties where both the white and non-white average birth weight is calculated
from 5 or more births. This ensures that we are making comparisons that rely on the same set of counties,
in which there are sufficient individuals in both racial groups, rather than making comparisons between
majority white and majority non-white communities. Results are not sensitive to this sample restriction.
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especially true if we think there is a convex relationship between pollution and health.
We address this in columns 3 and 4 of Table A8. In column 3, we drop all observations

from facilities that received a grant after 1976 and re-estimate equation 3, and in column 4
we drop all observations from facilities that received a grant in or before 1976. The results
are similar, so there is little evidence of heterogeneous effects by grant timing.

Table A8: Heterogeneous Effects

(1) (2) (3) (4)
white nonwhite early grants later grants

pct downstream X non-compliant 11.37∗∗∗ 14.32 14.04∗∗ 11.95∗∗

[3.778,18.97] [-7.037,35.68] [1.241,26.84] [1.422,22.48]
demographic controls X X X X
unit and year fixed effects X X X X
collapsed to facility level X X X X
N 35406 35406 51639 31080
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the equation 4 on sub-samples of the population. Columns 1 and 2 divide
the sample by race and only include counties that had a sizeable nonwhite population, and columns 3 and
4 divide the sample by grant timing.
Source: National Center for Health Statistics (1968-1988a)

A.4 Mortality

Using data from National Center for Health Statistics (1968-1988b), we re-estimate equa-
tion 4 with mortality as the dependent variable in Table A9. Columns 1-6 presents estimates
from different age bins, and column 7 estimates the effect on mortality of child bearing age
women. While these estimates are noisy, we find no significant effect of treatment on mor-
tality for any group.

Table A9: Mortality Triple Difference

(1) (2) (3) (4) (5) (6) (7)
under 1 1-19 20-44 45-64 65-84 85+ women 15-44

pct downstream X non-compliant 0.389 10.11 -14.51 -3.723 -35.34 -19.66 1.607
[-19.65,20.43] [-10.01,30.23] [-63.08,34.06] [-43.27,35.82] [-119.9,49.17] [-68.25,28.93] [-8.503,11.72]

demographic controls X X X X X X X
unit and year fixed effects X X X X X X X
collapsed to facility level X X X X X X X
N 82320 82320 82320 82320 82320 82320 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: ∆Ypy = γpctpy + βXpy + αp +
αy + εpy . The dependent variable is the difference in mortality between counties up and downstream from
facility p in year y. Columns 1-6 presents estimates from different age bins, and column 7 estimates the
effect on mortality of child bearing age women.
Source: National Center for Health Statistics (1968-1988b); Solley et al. (1988)
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A.5 Public Water

If reductions in contaminated public drinking water are driving health improvements,
we would expect to find larger effects in areas that source public water from surface water
rather than groundwater, as CWA grants directly affected surface water quality. We use
USGS water use data from Solley et al. (1988) to divide our sample into counties that had
any public water system that drew from surface water in 1985, and counties whose public
water systems drew exclusively from ground water.28

We show that our results are driven by counties that had some public water systems
that drew from surface water sources in Table A10. Column 1 of Table A10 re-estimates
equation 4 on facilities whose downstream counties had some public water systems that drew
from surface water sources, while column 2 estimates the same specification on facilities
whose downstream counties’ public water systems drew from groundwater exclusively. CWA
grants significantly increased birth weight for counties where some drinking water is sourced
from surface water, but there is no significant effect among counties that provide drinking
water exclusively from groundwater sources. In fact, the point estimate is negative for these
counties.29

We disaggregate these results further in Table A11 by estimating a triple difference where
the first difference comes from where and when CWA grants were distributed, the second
difference comes from if a birth occurred up or downstream from a wastewater treatment
facility, and the third difference comes from whether downstream public water systems drew
from surface or groundwater. Panels A and B estimate this triple difference on a sample of
non-compliant facilities. We see strongly significant increases in birth weight and marginally
significant decreases in the probability of low birth weight in areas that drew from surface wa-
ter sources. Our estimates for areas that drew exclusively from groundwater are statistically
insignificant and wrong-signed, and the birth weight effect in areas that drew from surface
water is statistically greater than the effect in areas that only drew from groundwater. In
Panels C and D, we re-estimate these specifications on samples of compliant facilities. These
estimates can be thought of as a placebo test since these facilities experienced no improve-
ment in downstream water quality. We find no significant effects of treatment in areas whose
community water systems drew from either surface or ground water sources, as we would
have expected. This suggests that our results are almost completely driven by counties that
are downstream from non-compliant facilities in which some public water systems draw from
surface water.

We provide further evidence that the effect of CWA grants on birth weight is driven by
reduced contamination of publicly provided water in Table A12. Rather than defining the
treated population as the percent of a county’s population living within 1 mile of a treated
waterway, we instead leverage information on the location of community water system service
areas to define the treated population as the percent of the county’s population served by
a public drinking water system that is near a treated waterway. We calculate this using

28We use data from 1985 because it is the earliest year for which information on county level water usage is
available.

29Columns 6 and 7 of Table A2 suggest that communities served by surface and groundwater systems serve
similar populations.
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maps of public water supply areas from 8 states (see Section C.2 for details on this data).
This reduces the estimation sample by 86% (from 64,239 to 8,463 county-year observations).
Due to reduced sample size, our results from this specification are less precise than our
main results, however, the effects on both birth weight and probability of low birth weight
are right-signed, and the effect on birth weight is significant at the 10 percent level and
statistically indistinguishable from our main estimates.30 We showed that this treatment
measure is correlated with the percent of the population living within a mile of a treated
waterway for theses eight states in Table A7, which suggests that some of our main results
are driven by this public water channel.

Note that, if populations are receiving publicly provided drinking water from other coun-
ties, our county-level measure of treatment may not accurately describe treated populations.
We do not have data on the locations of public water system’s source wells, but, while water
service areas and county borders do not always perfectly align, community water systems
generally serve areas no larger than counties (USEPA, 1997).

Table A10: Effects by Public Water Source

Surface Water Ground Water
(1) (2)

Panel A county average birth weight
pct downstream X non-compliant 8.893∗∗ -5.137

[1.874,15.91] [-21.34,11.06]
Panel B probability birth weight < 2500 grams
pct downstream X non-compliant -0.000952 0.000132

[-0.00261,0.000705] [-0.00375,0.00401]
demographic controls X X
unit and year fixed effects X X
collapsed to facility level X X
N 67032 15288

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the specification in column 7 of Table 3 on sub-samples of counties that had
some public water systems that draw from surface water and counties whose public water systems only draw
from groundwater.
Source: National Center for Health Statistics (1968-1988a); Solley et al. (1988)

30While estimates in Table A12 are slightly smaller than those from the full sample, we re-estimate equation
2 on the sample of states that we have public water supply data for in Table A13 and find similar estimates
for this reduced sample with our main specification.
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Table A11: Public Water Source Triple Difference

Surface Ground DDD
(1) (2) (3)

Panel A. Non-compliant county average birth weight
pct downstream 10.15∗∗∗ -7.879 -7.879

[5.927,14.38] [-20.35,4.597] [-20.23,4.473]

pct downstream X surface 18.03∗∗∗

[4.976,31.09]
N 30009 4200 34209
Panel B. Non-compliant probability birth weight < 2500 grams
pct downstream -0.000872∗ 0.00103 0.00103

[-0.00182,0.0000796] [-0.00192,0.00399] [-0.00189,0.00396]

pct downstream X surface -0.00190
[-0.00498,0.00117]

N 30009 4200 34209
Panel C. Compliant county average birth weight
pct downstream 3.111 3.110 3.110

[-0.861,7.083] [-4.426,10.65] [-4.402,10.62]

pct downstream X surface 0.000404
[-8.497,8.498]

N 37023 11088 48111
Panel D. Compliant probability birth weight < 2500 grams
pct downstream -0.000333 -0.00183 -0.00183

[-0.00138,0.000714] [-0.00419,0.000522] [-0.00418,0.000515]

pct downstream X surface 0.00150
[-0.00107,0.00407]

N 37023 11088 48111
demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table describes the effects of Clean Water Act grants on birth outcomes depending on public
water source. Column 1 estimates ∆Ypy = γpctpy + βXpy + αp + αy + εpy for facilities whose downstream
counties had some public water systems that drew from surface water, and column 2 re-estimates this
specification for counties whose public water systems only drew from groundwater. Column 3 estimates the
associated triple difference: ∆Ypy = γDD

0 pctpy +γDDDpctpy ∗sp +βXpy +φXpy ∗sp +αy ∗spp+αp +αy + εpy
where sp is a dummy variable that equals one for facilities with downstream counties that drew at least
some drinking water from surface water sources. All regressions include demographic controls and unit and
year fixed effects. Panels A and B run this analysis for non-compliant facilities, and Panels C and D repeat
this analysis for compliant facilities as a robustness check. Average birth weight is the dependent variable
in Panels A and C, and probability of low birth weight is the dependent variable in Panels B and D.
Source: National Center for Health Statistics (1968-1988a); Solley et al. (1988)
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Table A12: Exposure Defined by Percent on Public Water Supply

(1) (2)
birth weight prob bw < 2500

pct pop public water 4.705∗ -0.000224
[-0.411,9.821] [-0.00210,0.00165]

demographic controls X X
unit and year fixed effects X X
collapsed to county level X X
N 8463 8463

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: In this table, we re-estimate the results in column 2 of Table 3 defining pctcy as the percent of the
population that is served by a public drinking water system that is near a treated waterway.
Source: National Center for Health Statistics (1968-1988a)

Table A13: Limit Sample to States with Public Water Supply Maps

(1) (2)
birth weight prob bw < 2500

pct downstream 2.242 -0.000626
[-4.038,8.522] [-0.00268,0.00143]

demographic controls X X
unit and year fixed effects X X
collapsed to county level X X
N 8463 8463

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: In this table, we re-estimate the results in column 2 of Table 3 on the eight states that we have public
water supply data for.
Source: National Center for Health Statistics (1968-1988a)

A.6 Quantifying the Benefits to Infant Health

Our estimates suggest that reductions in pollution associated with CWA grants leading
to an 8 gram increase in average birth weight in counties downstream from facilities that
were required to make treatment technology upgrades. We use this information to quantify
the benefits to one measure of health. We note that a full accounting of the health benefits
would include many other infant health measures that are often studied in the literature
(e.g., gestation length, SGA, neonatal mortality, maternal complications, etc.), as well as
child, adolescent, and adult health measures.

About 56.4 million births occurred in treated counties between 1972 and 1988, and we
estimate that about 32.1 million of those births occurred within a mile of a treated water-
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way. While our preferred triple difference specification does not show statistically significant
changes to the probability of low birth weight, it bounds improvements below a 0.263 per-
centage point reduction (Column 7 of Table 3). Given the measurement error that may be
incorporated into our estimates due to data constraints, we think it is most helpful to use
the upper bound of the confidence interval we estimate for low birth weight.

In terms of the costs associated with low birth weight, Almond et al. (2005) estimates
that low birth weight increases hospital costs by $8319 and increases 1 year mortality by 37
per 1000 births, and Bharadwaj et al. (2018) finds that low birth weight reduces permanent
labor income by 3.4 percent. We combine these estimates with the EPA’s value of a statistical
life (VSL) of $7.4 million and the census bureau’s work-life earnings estimate of $2.4 million
to calculate a rough back-of-the-envelope estimate.

While our estimates face measurement error that may attenuate the effects and a more
comprehensive calculation of the health benefits of the CWA would include other potentially
impacted health outcomes, we estimate that the upper-bound of the confidence interval
on the effects on low birth weight generates benefits of about $32 billion. This is about 21
percent of the amount needed to make the CWA cost effective.31 Future work should consider
the effect of the CWA on additional measures of health to provide a more comprehensive
cost-benefit analysis.

B Appendix: Robustness

B.1 Robustness to Distance Downstream

In the main text, we follow Keiser and Shapiro (2019a) and the EPA (USEPA, 2001) by
defining a waterway as treated if it is 25 miles downstream from a wastewater treatment
facility. We show that our results are not sensitive to this choice by re-estimating equation 4
defining treated waterways as those either 5 or 10 miles downstream from a treated facility
in Table B1. The results are similar to those presented in Section 4.

31In total, CWA grants to wastewater treatment facilities cost an estimated $153 billion (in 2014 dollars).
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Table B1: Other Distances Downstream

non-compliant compliant DDD
(1) (2) (3)

Panel A. 5 miles downstream county average birth weight
pct downstream 14.68∗∗∗ 6.358∗∗∗ 6.358∗∗∗

[9.192,20.18] [2.190,10.53] [2.191,10.52]

pct downstream X non-compliant 8.326∗∗

[1.435,15.22]
N 35973 50379 86352
Panel B. 10 miles downstream county average birth weight
pct downstream 14.44∗∗∗ 6.167∗∗∗ 6.167∗∗∗

[8.986,19.90] [2.023,10.31] [2.024,10.31]

pct downstream X non-compliant 8.278∗∗

[1.429,15.13]
N 35154 49413 84567
demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents (weighted) estimates from the following model: bwpy = γDD
0 pctpy + γDDDpctpy ∗

tp + βXpy + φXpy ∗ tp +αy ∗ tp +αp +αy + εpy. pctcy is a continuous variable that takes values from zero to
one, and indicates the proportion of downstream counties’ populations that lived within a mile of a treated
waterway in a given year. In Panel A, a waterway is considered treated if it is within 5 miles downstream
from a facility that received a Clean Water Act grant. In Panel B, a waterway is considered treated if it is
within 10 miles downstream from a facility that received a Clean Water Act grant.
Source: National Center for Health Statistics (1968-1988a)

B.2 Stacked Difference-in-Difference

Since we estimate two way fixed effects regressions, our results in the main text are an
average of comparisons of (1) newly treated facilities relative to never-treated facilities, (2)
newly treated facilities relative to facilities that have not yet been treated, and (3) newly
treated facilities relative to already-treated facilities. When treatment effects are dynamic,
the third type of comparison can be wrong signed (Goodman-Bacon, 2021). We can get
estimates that do not include comparisons of newly treated facilities relative to already-
treated facilities, and explore if our results are driven by comparisons of treated units to
not-yet-treated units or never-treated units by re-organizing our data into “stacks”.

A stack is defined by a treatment cohort, that is, a group of facilities that received their
first grants in a given year (e.g. every facility that received its first grant in 1974). Each
stack contains observations from every facility in a treatment cohort, which are labeled as
treated in that stack, and a set of controls that consist of either units that were treated
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at least eight years in the future, or all never-treated facilities. Note that 93 counties out
of 3,064 total counties were never-treated. We can then estimate the following stacked
difference-in-difference:

Ypy = γstackedpctpy + αps + αsy + εpsy (5)

p indexes facilities, y indexes years, and s indexes stacks. Facility-by-stack fixed effects,
αps, are analogous to a unit fixed effect in our regressions in the main text. Year-by-stack
fixed effects, αsy, ensure that we are only making comparisons within stacks, so our coefficient
will not be identified off of comparisons of newly treated facilities relative to already-treated
facilities.

We present estimates of equation 5 in Table B2. In column 1, the control group is not-
yet-treated facilities. In column 2, it is never-treated facilities. In column 3, both never
treated and not-yet-treated facilities are in the control group. We find significant effects on
birth weight and the probability of low birth weight regardless of which control group we
use. The effects are much larger when we compare treated units to never treated units, but
since there are fewer never treated facilities than treated facilities, and since our two way
fixed effect estimator averages these two effects together, our main results are closer to the
results in column 1 than those in column 2.

Table B2: Stacked Difference in Difference

(1) (2) (3)
not yet treated never treated both

Panel A county average birth weight
pct downstream 5.209∗∗ 26.96∗∗∗ 5.458∗∗

[0.247,10.17] [19.12,34.80] [0.509,10.41]
Panel B probability bw < 2500
pct downstream -0.00134∗∗ -0.00541∗∗∗ -0.00139∗∗

[-0.00243,-0.000255] [-0.00705,-0.00377] [-0.00247,-0.000308]
demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X
N 83580 63041 86088

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents results from estimating the following stacked difference in difference: Ypy =
γstackedpctpsy + αps + αsy + εpsy. In column 1, the control group is facilities that will be treated at least 9
years in the future. In column 2, the control group is facilities that never receive a CWA grant. In column
3, both never treated and not-yet-treated units are in the control group. The dependent variable is the
difference in birth weight between up and downstream counties in year y in Panel A, and the difference in
the probability of being born weighing less than 2500 grams between up and downstream counties in year y
in Panel B. Source: National Center for Health Statistics (1968-1988a)
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B.3 Binary Treatment

Our main results define treatment with a continuous measure, so our results are identified
in part off of comparisons between counties where a large proportion of the population is
treated relative to counties where a small proportion is treated. Since we expect birth
outcomes to improve homogeneously as more of the population becomes treated, there is
nothing wrong with using this variation (Callaway et al., 2021), however, we can also define
treatment in a binary way with a dummy variable that turns on after a county is downstream
from a treated facility.

We first estimate the following event study

Ycy =
−2∑

t=−5

πt1{y − y∗c = t}+
9∑

t=0

γt1{y − y∗c = t}+ βXcy + αc + αy + εcy (6)

We present estimates of equation 6 with average birth weight and the probability of low
birth weight in Figure B1. The shapes of these event studies are similar to those in the main
text.

When we define treatment with a dummy variable, we can deal with the problems caused
by dynamic treatment effects discussed in Section B.2 in a more sophisticated way. To
summarize these event studies, we use Callaway and Sant’Anna (2020) to estimate treatment
effects in Table B3.

Defining treatment in a binary way at the county level includes many untreated births,
so these estimates are somewhat smaller and less significant than those in the main text,
however, they are of the same sign as our main results, and the birth weight estimate is still
marginally significant despite this attenuation.
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Figure B1: Birth Outcomes Downstream from Grant Facilities (Binary Treatment)

Notes: These figures plot the πt and γt from estimating Ycy =
∑−2

t=−5 πt1{y − y∗c = t}+
∑9

t=0 γt1{y − y∗c =
t}+βXcy +αc +αy + εcy. Regressions are weighted by the total number of births in county c in year y. The
dependent variable is the the average birth weight in county c in year y in sub-figure (a), and the probability
of being born weighing less than 2500 grams in county c in year y in sub-figure (b).
Source: National Center for Health Statistics (1968-1988a)
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Table B3: Callaway and Sant’Anna (2020) Estimates

birth weight prob bw < 2500
(1) (2)

grant X downstream 4.85∗ -0.0018
(2.60) (0.0032)

N 64239 64239

standard errors in parenthesis
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table presents event study aggregations of group time average treatment effect estimates of the
effect of being downstream from a facility that received a CWA grant on birth outcomes.
Source: National Center for Health Statistics (1968-1988a)

B.4 Flow Rate, Population Served, and Non-Treatment Technol-
ogy Modifications

In our triple difference specification, we interact treatment with a variable that indicates
whether plants were compliant with new treatment technology standards when the CWA
came into effect. Compliance is strongly correlated with heterogeneity in the effect of grants,
but there could be other attributes correlated with grant effectiveness. To argue that the
difference in grant effectiveness is due to differences in compliance, we interact treatment
with measures of these other characteristics in Table B4 by estimating equation 7.

∆Ypy = γpctpy + ηpctpy ∗ tp + πpctpy ∗ Interactp + βXpy + αp + αy + εpy (7)

In column 1, the interaction term is the flow rate of the receiving facility measured in
millions of gallons per day. In column 2, it is the total population served by the facility. In
column 3, it is a dummy variable that equals one for facilities that indicated that they would
use grant money to pay for non-treatment technology related upgrades in the 1972 CWNS.
Column 4 includes all of these interactions in one equation.32 All other variables are defined
analogously to those in equation 3.

The coefficients on all three of the interaction terms are insignificant, and all three are
wrong signed in columns 1 through 3, showing that facility size, the size of the population
served, and non-treatment technology upgrades are not driving the heterogeneity in our
estimates. This is further evidence that improvements in downstream infant health are
driven by upgrades to treatment technology.

32We do not have data on these interaction terms for all facilities.
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Table B4: Other Interactions

(1) (2) (3) (4)
county average birth weight

pct downstream X non-compliant 6.464∗∗ 5.268∗∗ 5.389 6.736
[0.664,12.26] [0.143,10.39] [-2.149,12.93] [-2.078,15.55]

pct downstream 4.719∗ 7.304∗∗∗ 5.888 5.687
[-0.507,9.945] [2.763,11.84] [-1.797,13.57] [-2.950,14.32]

pct downstream X total flow -0.0263 0.0347
[-0.0652,0.0126] [-0.0314,0.101]

pct downstream X population served -0.00000700 -0.0000165
[-0.0000184,0.00000441] [-0.0000377,0.00000467]

pct downstream X other modification -0.903 -2.871
[-14.13,12.33] [-16.76,11.02]

demographic controls X X X X
unit and year fixed effects X X X X
collapsed to facility level X X X X
N 35049 45864 30597 24717

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table estimates ∆Ypy = γpctpy + ηpctpy ∗ tp + πpctpy ∗ Interactp + βXpy + αp + αy + εpy In
column 1, the interaction term is is the flow rate of the receiving facility measured in millions of gallons per
day. In column 2, it is the total population served by the facility. In column 3, it is a dummy variable that
equals one for facilities that indicated that they would use grant money to pay for non-treatment technology
related upgrades in the 1972 CWNS. Column four includes all of these interaction terms. All other variables
are defined analogously to those in equation 3.
Source: National Center for Health Statistics (1968-1988a)

B.5 Unbalanced Event Study

In the main text, we look at effects up to eight years after treatment. Since we bin
observations from greater than 8 years after treatment, we are only estimate balanced event
study coefficients. We look at a longer post period by re-estimating the results in Figure 2b
without binning these unbalanced endpoints in Figure B2. Since only early treated counties
contribute to later event study coefficients, they should be interpreted with caution, however,
these results suggest that the effect of CWA grants on infant health flattened out by 10 years
after treatment, consistent with projects taking up to 10 years from grant application to
project completion (USEPA, 2002).
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Figure B2: Birth Weight Triple Difference

Notes: These figures plot the θt and ηt from estimating ∆Ypy =
∑−2

t=−5 θt1{y−y∗p = t}∗tp+
∑16

t=0 ηt1{y−y∗p =

t}∗pctpy ∗tp+
∑−2

t=−4 πt1{y−y∗p = t}+
∑16

t=0 γt1{y−y∗p = t}∗pctpy+βXpy+φXpy ∗tp+αy ∗tp+αp+αy+εpy.
All variables are defined analogously to those in Figure 2. The dependent variable is the difference in birth
weight between up and downstream counties in year y.
Source: National Center for Health Statistics (1968-1988a)

C Appendix: Additional Data Details

C.1 Birth Data Details

C.1.1 County Changes

Births records in NCHS data contain information on birth location at the county level.
Several counties split or combined during our study period. Following Forstall (1995), we
re-combine all counties that split or merged between 1968 and 1988. Changes are noted in
Table C1.
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Table C1: County Code Changes

State fips New County fips Old County fips Year Note
4 12 27 1983 La Paz County, AZ split off from Yuma county
13 510 215 1971 The city of Columbus, GA became a consolidated city-county
29 186 193 N/A Ste. Genevieve county, MO changed codes
32 510 25 1968 Ormsby County became Carson City
35 6 61 1981 Cibola County, NM split off from Valencia County
46 71 131 1979 Washabaugh County was annexed to Jackson County
51 83 780 1995 South Boston City rejoins Halifax County
51 510 13 N/A Alexandria City/Arlington County
51 515 19 1968 Bedford City splits from Bedford County
51 520 191 N/A Bristol City/Washington County
51 530 163 N/A Buena Vista City/Rockbridge County
51 540 3 N/A Charlottesville City/Albemarle County
51 560 75 N/A Clifton Forge City/Alleghany County
51 590 143 N/A Danville City/Pittsylvania County
51 630 177 N/A Fredericksburg City/Spotsylvania County
51 660 165 N/A Harrisonburg City/Rockingham County
51 670 149 N/A Hopewell City/Prince George County
51 680 31 N/A Lynchburg City/Campbell County
51 683 153 1975 Manassas City splits from Prince William County
51 685 153 1975 Manassas Park City splits from Prince William County
51 690 89 N/A Martinsville City/Henry County
51 710 N/A Norfolk City came from Norfolk County, which was ultimately combined into Chesapeake City
51 730 53 N/A Petersburg City/Dinwiddie County
51 735 199 1975 Poquoson City splits from York County
51 740 N/A Portsmouth City came from Norfolk County before it was Chesapeake City
51 750 121 N/A Radford City/Montgomery County
51 770 161 N/A Roanoke City/Roanoke County
51 775 161 1968 Salem City splits from Roanoke County
51 790 15 N/A Staunton City//Augusta County
51 800 123 1974 Nansemond County merges into Suffolk City
51 840 69 N/A Winchester City//Frederick County

C.1.2 Changes in Reported Sample

Data in years prior to 1972 constitutes a 50 percent sample of all births in the US. Years
after 1972 contain information on every birth in the US from some states, and a 50 percent
sample from the remaining states. Six states had full sample data in 1972, and all States
and the District of Columbia had full sample data by 1985. Table C2 details the first year
in which each state reported full sample data.

Our main results are weighted by total number of births in a county. Total births for
observations from state-years reporting a 50 percent sample of births are defined as the
number of observations from that county-year multiplied by two.

Changes from half to full sample often occurred around the same time as treatment. To
be certain that our results are not driven by this change, we take a 50 percent sample of
births from state-years that reported full sample data and re-estimate the results in Figure
2b on this sample in Figure C1. We then re-estimate the results presented in Table 3 on this
sample and report the results in Table C3, which are similar to those reported in Section 4.
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Figure C1: Birth Weight Triple Difference: Random Sample

Notes: This Figure re-estimates the results in Figure 2b after taking a fifty percent random sample of births
that occurred in state-years that reported a full sample of births. The years that each state switched from
a 50 percent sample to a full sample of births are detailed in Table C2.
Soure: National Center for Health Statistics (1968-1988a)

Table C2: Sample Changes

State Name State NCHS Code State fips Code First Full Sample Year
Alabama 1 1 1976
Arizona 3 4 1985
Arkansas 4 5 1980
California 5 6 1985
Colorado 6 8 1973
Connecticut 7 9 1979
Delaware 8 10 1985
Washington DC 9 11 1984
Florida 10 12 1972
Georgia 11 13 1985
Idaho 13 16 1977
Illinois 14 17 1974
Indiana 15 18 1978
Iowa 16 19 1974
Kansas 17 20 1974
Kentucky 18 21 1976
Louisiana 19 22 1975
Maine 20 23 1972
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Maryland 21 24 1975
Massachusetts 22 25 1977
Michigan 23 26 1973
Minnesota 24 27 1976
Mississippi 25 28 1979
Missouri 26 29 1972
Montana 27 30 1974
Nebraska 28 31 1974
Nevada 29 32 1976
New Hampshire 30 33 1972
New Jersey 31 34 1979
New Mexico 32 35 1982
New York 33 36 1977
North Carolina 34 37 1975
North Dakota 35 38 1983
Ohio 36 39 1977
Oklahoma 37 40 1975
Oregon 38 41 1974
Pennsylvania 39 42 1979
Rhode Island 40 44 1972
South Carolina 41 45 1974
South Dakota 42 46 1980
Tennessee 43 47 1975
Texas 44 48 1976
Utah 45 49 1978
Vermont 46 50 1972
Virginia 47 51 1975
Washington 48 52 1978
West Virginia 49 53 1976
Wisconsin 50 55 1975
Wyoming 51 56 1979
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Table C3: Triple Difference: Random Sample

(1) (2) (3)
non-compliant compliant DDD

pct downstream 12.38∗∗∗ 4.448∗∗ 4.448∗∗

[7.015,17.74] [0.303,8.593] [0.304,8.592]

pct downstream X non-compliant 7.933∗∗

[1.157,14.71]
demographic controls X X X
unit and year fixed effects X X X
collapsed to facility level X X X
N 34188 48132 82320

95% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01

Notes: This table re-estimates the specifications in Columns 5-7 in Panel A of Table 3 after taking a fifty
percent random sample of births that occurred in state-years that reported a full sample of births.
Source: National Center for Health Statistics (1968-1988a)

C.2 Public Water Supply Data

Data from each state comes from different years and reflects different water sources. Data
from each state is described below.

Arkansas
Arkansas data is from the Arkansas GIS office, and is a comprehensive geographic

database of water utilities and services in the Arkansas public water system. A visual aid
of water system boundaries overlaid on current digital aerial photography, associated road
names, and landmarks, were verified by representatives of ADH to confirm the accuracy of
the boundaries. First published in 2013, these maps were last updated in 2019 (Arkansas
GIS Office, 2013).

Arizona
Arizona data is maintained by the Arizona Department of Water Resources (ADWR)

and reflects community water systems as of 2020. To determine the service area, ADWR
utilized primary data provided directly from the water system (i.e. PDF, shapefile, verbal
definition). If primary data was unavailable, secondary data (i.e. Certificate of Convenience
and Necessity (CCN), Census Designated Place shapefile from U.S Census Bureau) was
utilized to determine service area boundaries (Arizona Department of Water Resources,
2020).

Connecticut
Cennecticut public water supply maps are maintained by the Connecticut State Depart-

ment of Health (CT State Department of Public Health, 2020).
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Kansas
Kansas public water maps are maintained by the The Kansas Water Office (KWO) and

reflect public water supplies as of 2007 (Kansas Water Office, 2020).

New Jersey
New Jersey data comes from the Division of Science, Research, and Technology (DSRT)

at the New Jersey Department of Environmental Protection (NJDEP). The maps shows all
systems that piped water for human consumption to at least 15 service connections used
year-round, or regularly served at least 25 year-round residents in 1998 (NJDEP, 2004).

North Carolina
North Carolina data comes from the NC Dept. of Environmental Quality, Division of

Water Resources, Public Water Supply Section (PWSS), and contains maps of public water
supply from 2017 (NCDEQ, 2017).

Pennsylvania
Pennsylvania maps show all areas served by a community water supply system that serves

at least 15 service connections or 25 year-round residents, such as manufactured housing
communities, municipal water systems, personal care homes and housing developments.

The locations were digitized from maps submitted with Annual Water Supply Report for
2000, 2001, 2002 and 2003 (PASDA, 2015).

Texas
Texas maps, maintained by the Texas Commission on Environmental Quality, show ap-

proximate relative locations of public water supply areas current to 2020 (Texas Commission
on Environmental Quality, 2020).

C.3 Data on Wastewater Treatment Facilities

We begin with grant data from the EPA’s Grant Information Control System, which we
obtained through a Freedom of Information Act request. This data contains information
on the year that the EPA distributed each grant, which municipality received the grant,
the specific wastewater treatment facility the grant was designated for and the amount
distributed. Keiser and Shapiro (2019a) uses the same data, and Appendix Section B.4 of
Keiser and Shapiro (2019a) demonstrates its accuracy.

The 33,429 grants in our sample exclude grant records that do not include a specific
facility code, as it is unclear to what extent these grants were precisely for wastewater
treatment plants. We also drop grant records that are missing information on when they
were distributed, which further restricts our sample to 29,898 grants.

We define whether a facility was in compliance with the CWA’s capital mandate using the
1972 Clean Watershed Needs Survey, which we merge to our grant data with a unique facility
code. The CWNS is an assessment of the capital investment that publicly-owned wastewater
treatment facilities required to come into compliance with the Clean Water Act, and contains
information on which community the facility serves, the number of residents served, the
total wastewater flowing through the facility, the treatment technology currently in place,
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whether the facility needs to meet standards higher than the EPA’s secondary treatment
requirement, and whether they are currently in compliance with these requirements. This
data was provided to us by the EPA’s CWNS team, and is the same data that Jerch (2018)
uses to define compliance with the CWA’s capital mandate.

We use a facility’s answer to Question 21 on the CWNS questionnaire to define compli-
ance. Question 21b asks if a facility needs to meet treatment technology requirements that
are more stringent than the EPA’s secondary treatment requirement.33 Question 21c then
asks whether a facility is currently in compliance with both the EPAs secondary treatment
mandate and any higher mandates.34 We define facilities that answered “yes” on question
21c as “compliant”, and those that answer no as “non-compliant”. This defines facilities that
satisfied the CWA’s capital mandate when the CWA came into effect but did not satisfy more
stringent state standards as non-compliant. When we use counties up and downstream from
compliant facilities as an additional control group, we want to capture the effect of grants
that were not bound by any capital mandate, so we do not want to define facilities that were
still required to make upgrades as compliant, even if they are using secondary treatment.

Note that many facilities installed tertiary treatment after the CWA came into effect
(USEPA, 2000). This increase was likely driven by municipalities bound by state standards
or compelled by lawsuits to make upgrades beyond secondary treatment.

33In particular, it asks “What level of secondary treatment must the discharge of this pants meet by July
1, 1977? 1. Secondary treatment level as defined by the EPA, OR 2. Higher level of secondary treatment
required by State.”

34Question 21c asks “Does the discharge from this plant NOW meet the level of secondary treatment defined
in 21b? 1. Yes, 2. No.”
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