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1 Introduction
Whether mortgage lenders discriminate against minority borrowers is an important question
both in terms of academic research and in regard to its policy relevance.1 However, the
task of assessing whether lenders discriminate by offering minority borrowers worse prices is
complicated by the fact there are two dimensions to mortgage pricing in the US: the interest
rate and the upfront fees charged by the lender. In particular, borrowers can choose to pay
higher upfront fees (in the industry referred to as paying discount points) in return for lower
interest rates. Or, conversely, they can get the lender to pay some of their closing costs in
exchange for a higher interest rate. We show that the availability of this choice between
a higher upfront fee and a higher interest rate creates a “menu problem” that makes the
detection of lender discrimination nontrivial, with the methods implemented in the literature
susceptible to false and contradictory results. The menu problem is also broadly applicable to
empirical analyses of differences in opportunity under multi-dimensional choice. We propose
a novel identification argument and a new procedure for inference to deal with this menu
problem, and apply it to a new dataset on mortgage pricing by race.

Many studies find that minority consumers pay higher interest rates compared with ob-
servationally similar white consumers in the mortgage market.2 While this can be interpreted
as evidence that lenders systematically discriminated against minority borrowers by offering
them worse pricing on their mortgages, the existence of a rate-point trade-off leads to an al-
ternative explanation: minority consumers were offered the same menu of choices but ended
up with higher rate/lower point combinations because, for example, they could not afford
to pay points.3 Explaining rate gaps with offsetting point gaps does not rule out structural

1Since the financial crisis, the Department of Justice has reached settlements of well over $500 million with
lenders that overcharged Black and Hispanic borrowers in violation of the Fair Lending Act, as explained
in Bhutta and Hizmo (2020). These settlements include $335 million with Bank of America (on behalf
of Countrywide), $175 million with Wells Fargo, and $55 million with JP Morgan Chase. On June 12,
2019, Sen. Elizabeth Warren wrote on Twitter, “For generations, lenders have given African American &
Latino families fewer loans at worse terms than similar white borrowers. Tech alone won’t fix the problem.
A new analysis found that discrimination is hardwired into lending algorithms. I want answers.” https:
//twitter.com/senwarren/status/1138909674781237253.

2See, for example, Black and Schweitzer (1985), Boehm, Thistle, and Schlottmann (2006), Bocian, Ernst,
and Li (2008), Kau, Keenan, and Munneke (2012), Ghent, Hernández-Murillo, and Owyang (2014), Cheng,
Lin, and Liu (2015), Bartlett, Morse, Stanton, and Wallace (2021). Relatedly, Munnell, Tootell, Browne,
and McEneaney (1996) and Tootell (1996) find that minority borrowers are more likely to be rejected for
mortgages; Black, Boehm, and DeGennaro (2003) find that minority borrowers pay higher yield spreads
when refinancing their mortgage; and Ambrose, Conklin, and Lopez (2020) find that minority borrowers pay
more in broker fees particularly when faced with a white broker.

3The logic the different rates could reflect different options on the same menu was well understood in
the industry. Skanderson, Darius, and Butler (2014), for example, write that, “[v]arious interest rates are
available to any given borrower, at any given point in time, depending upon his or her needs and preferences
[regarding points and closing costs]. The fact that similar borrowers selected different rates on this basis does
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disparities between racial groups, but it has policy implications that are very different from
those of one in which the lenders themselves are systematically offering minority consumers
inferior menus of rates and discount point options. Given data on the borrowers’ chosen
mortgage rates and points (but not the menus borrowers faced, which are not typically ob-
servable), our objective is to examine whether lenders discriminated against Black borrowers
in the sense of offering them a distribution of menus that was worse than the one offered to
observationally similar white consumers, a practice we call discrimination in menus.

Our first contribution is to point out that there exists a nontrivial econometric prob-
lem involved with assessing differences in the distribution of menus offered to minority and
non-Hispanic white borrowers. Researchers might think we can address heterogeneity in pref-
erences over rates and discount points by racial group by simply controlling for the discount
points in their regressions. However, we show that the approach of controlling for rates and
discount points can lead to contradictory results. For example, it is sometimes observed that
controlling for rate, minority borrowers pay the same closing costs as white borrowers (so it
looks like there is no mortgage pricing differential by race), but controlling for closing costs,
minority borrowers pay a higher rate (so it looks like there is a mortgage pricing differential
by race). This is related to the “reverse regression” problem of Goldberger (1984) which
appears naturally in the menu setting. The menu problem also goes beyond this “reverse
regression” problem. Even when forward and reverse regressions are consistent, we show that
false positives in the sense of detecting discrimination when none exists and false negatives
in the sense of failing to detect discrimination when it does exist can still appear. Finally,
we show that even a seemingly foolproof comparisons of means—that is, checking if minority
consumers on average pay both a higher interest rate and more in lender fees—can still lead
to false positives and false negatives if interpreted as evidence of discrimination in menus.4

These issues emerge when minority and non-Hispanic white borrowers are likely to make
different decisions (that is, have different unobserved preferences) over menu items, which
is particularly relevant because the possibility of heterogeneity in preferences across racial
groups is usually the reason researchers would seek to control for the choices of discount
points in the first place.

The menu problem is important for the mortgage pricing discrimination literature. There
are two main methods by which a large literature assesses discrimination in mortgage pricing

not mean that they were treated differently in a sense that should be relevant for fair lending compliance.
Nevertheless, such differences in borrower choices can create the appearance of pricing disparities if they
happen to be correlated with a prohibited basis and are not captured in the data and accounted for in a fair
lending analysis.”

4It follows that adjusting by a known range of rate and lender fee trade-offs and then comparing means
can be similarly problematic.
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given the rate and discount point trade-off. First, Courchane and Nickerson (1997), Bhutta
and Hizmo (2020), and Bartlett et al. (2021) look at whether Black borrowers paid more in
points conditional on rate.5 Second, Woodward (2008) and Bartlett, Morse, Stanton, and
Wallace (November 2019) compare the interest rates of minority and white borrowers after
adjusting for points using a known range of rate-point trade-offs, and find that minorities
paid higher point-adjusted-rates for mortgages. As we discussed, both of the existing meth-
ods used in the literature, (1) controlling for rates and (2) comparing mean levels of rates
and discount points after adjusting by a known range of slopes, can lead to false positives
and false negatives and can contradict one another as an assessment of mortgage pricing
discrimination. Indeed, we show that in our FHA sample the choice of either (1) or (2) does
lead to apparently contradictory results on whether mortgage pricing discrimination exists.
Our robust solution to the menu problem would therefore allow researchers and regulators to
assess discrimination in mortgage markets in a more internally consistent and theoretically
sound way.

The menu problem also extends well beyond the mortgage setting. Generally speaking,
the problem is relevant whenever a researcher wishes to assess disparities in opportunity given
data on choices while allowing for heterogeneous preferences across groups. For example,
when workers make decisions that trade off wages and hours worked, researchers may wish to
assess the extent to which the gender gap in pay may be explained by the choice of hours, as
in the model of Goldin (2014). The menu problem implies that popular measures of gender
inequality, such as the gender pay gap conditional on hours or even the gender pay gap after
adjusting for all relevant average compensating differentials, are not necessarily informative
about whether the data on wages can be explained by heterogeneous preferences over hours
worked. Our robust metrics can also be useful for this type of problems depending on the
institutional details the researcher has access to. Therefore, the problems we point out and
the solution we propose may be of broad interest.6

As a solution to the menu problem, we propose (1) a new metric for detecting whether
5In samples of FHA mortgages, Courchane and Nickerson (1997) find a differential in points paid by race

conditional on rate, while Bhutta and Hizmo (2020) do not. One possible reason for this difference is that
Bhutta and Hizmo (2020) improved on the earlier literature by using a much larger sample and constructing
a more uniform sample of loans, which are improvements we largely adopt. Bhutta and Hizmo (2020)’s
study also includes an analysis of the mean levels of rates and points paid conditional on covariates, which is
similar in spirit to the second method we discuss. Finally, beyond comparing prices, they find that lenders
received more revenue from loans that were made to minorities once points and secondary marketing revenue
are added together.

6The labor literature has also analyzed differences in worker productivity and wage inequality within the
context of structurally specified models of labor supply (e.g. Hwang, Reed, and Hubbard (1992) and Bell
(2019)). Our illustrations highlight the role of seemingly innocuous assumptions, such as the restriction of
productivity differences to a single component of unobserved heterogeneity, that is typically used in these
models.
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there exists a difference in the distribution of menus offered to two groups and (2) a new
lower bound measure for assessing differences in menus (DIM) for the extent to which one
group of consumers would like to switch to another group’s menus. Both metrics are based
on pairwise dominance relationships in the data (that is, a mortgage with a lower rate
and paying fewer points dominates a mortgage with a higher rate and more points) that
can be supplemented by industry knowledge. Based on these pairwise relationships, we
ask the question of whether the data can be rationalized by a model of equality in menus
but heterogeneity in preferences, and if not, we compute an average difference in menus
perceived by one group of consumers when switching to another group’s menus. Unlike the
existing methodology used in the literature, our metrics are robust to any form of unobserved
differences in preferences across borrower groups.

The sample counterparts to both of our metrics can be computed as solutions to opti-
mal transport problems, which are computationally well understood and can be efficiently
computed through linear programming. As a technical contribution, we also derive a new
approach to uniformly valid inference for the value of optimal transport problems, which
we implement for our metrics to distinguish between statistical noise and actual differences
in menus. Conventional approaches to inference, such as bootstrapping, fail for optimal
transport problems, because the objective function can be non-differentiable (Fang and San-
tos, 2018). We prove that optimal transport problems are directionally differentiable in the
sense of Shapiro (1991) and Fang and Santos (2018). We then apply the asymptotic results of
Fang and Santos (2018), which we combine with a Bonferroni correction following Romano,
Shaikh, and Wolf (2014) and McCloskey (2017) to address sampling error in the directional
derivatives. We show that this approach leads to asymptotically uniformly valid size control
for hypothesis testing in the value of optimal transport problems, and test it in a Monte
Carlo simulation. Our new approach to inference in optimal transport may be useful for
other researchers who wish to conduct inference on the value of optimal transport problems,
many of which are described in Galichon (2016).

Empirically, we use our metrics to assess mortgage pricing discrimination in the 2018–
2019 Home Mortgage Disclosure Act (HMDA) data matched to Optimal Blue rate locks.
We show that we can detect a difference in menus offered by the same lender in the same
county and within narrow covariate groups for conforming mortgages for both Black and
Hispanic borrowers relative to non-Hispanic white borrowers. Furthermore, we show that
on average Black borrowers getting conforming mortgages would be willing to increase their
interest rate by at least 1.7 basis points in order to switch to the menus of non-Hispanic white
borrowers. Similarly, Hispanic borrowers are on average willing to pay 1.5 basis points more
in interest rate in order to switch menus with non-Hispanic white borrowers. Our finding that
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racial differences in lender pricing remains relevant for conforming mortgages is consistent
with Bartlett et al. (2021), although the amount of interest rate discrimination we detect
is smaller in magnitude. On the other hand, we do not detect interest rate discrimination
in FHA mortgages, which is consistent with Bhutta and Hizmo (2020). Within conforming
mortgages, the differences in menus we detect are particularly concentrated among borrowers
with lower loan-to-value (LTV) ratios and are not explained by multi-product discounts or
loan originator compensation.7 The fact that the mortgage pricing discrimination we detect
is concentrated among the more creditworthy conforming mortgage borrowers is consistent
with the less risky non-Hispanic white borrowers being more likely to be offered discounts
during the search and negotiation process.8

In our empirical application, we focus on the important and basic question of whether we
can detect differences in the rate and discount point menus faced by observably similar non-
Hispanic white and minority mortgage borrowers. The answer to this question is important
because one needs to ascertain whether there exists disparate treatment before considering its
causes. Our use of the word “discrimination” to refer to this disparate treatment conditional
on observables is in line with the recent literature and is justified by the unusual institutional
details and the regulatory framework developed around this market. First, as explained in
Bartlett et al. (2021), the US fair-lending law imposes a requirement of no pricing differentials
by race conditional on observables in our setting, so our results are naturally interesting
from a regulatory perspective. Second, for the types of mortgages we focus on, lenders are
insured from the risk of default by either the GSEs or the FHA, who compensate investors
for any losses of principal but allows them to benefit from the more favorable prepayment
risk of minorities. Therefore, in contrast to some stereotypes, mortgages from Black and
Hispanic borrowers are likely significantly more valuable than those of observably similar
white borrowers due to their lower prepayment risk, as shown in the simulations of Kau,
Fang, and Munneke (2019) and in analyses of the actual mortgage-backed securities prices
in Gerardi, Willen, and Zhang (2020). As a result, even if lenders did use unobservables that
are correlated with race to price for expected loan performance in a possibly illegal manner,

7Relatedly, Ambrose, Conklin, and Lopez (2020) find in a pre-2008 sample period that the more credit-
worthy minority borrowers pay higher broker fees than observationally similar non-Hispanic white borrowers,
even though their default risks are similar. Regulation Z of 2011 now forbids mortgage brokers from varying
the fees they charge across borrowers except as a function of the loan amount, shutting down this particular
channel of disparity, though similar forces may be play in the disparities we uncover.

8Negotiation in mortgage markets is common. Studies that look at the search and negotiation process
in mortgage markets include Allen, Clark, and Houde (2014), Allen, Clark, and Houde (2019), and Bhutta,
Fuster, and Hizmo (2019). A reason why minority borrowers may behave as if they have higher search
costs is in Agarwal, Grigsby, Hortaçsu, Matvos, Seru, and Yao (2020), where borrowers internalize a higher
probability of rejection. Price discrimination by such effective search costs would violate the US fair-lending
law, to the extent it results in disparate impact by race within lender, according to Bartlett et al. (2021).
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it would be unlikely to justify the unfavorable pricing to minorities we find.
The rest of this paper is structured as follows. Section 2 explains the motivation of our

paper by exploring why heuristic approaches to analyzing discrimination in menus may be
misleading. It also provides intuition for our approach. Section 3 formally defines our metrics
for assessing discrimination in menus. Section 4 describes a methodology for conducting
inference on our metrics. Section 5 shows our data and empirical results. Section 6 concludes.

2 The menu problem

2.1 Problem description

In this section we introduce the menu problem and discuss why intuitively appealing ap-
proaches for assessing discrimination in menus may be misleading. By way of background,
there are two dimensions of pricing for mortgages in the United States: an upfront fee/discount
points and the interest rate, where each point is customarily worth 1 percent of the loan
amount. Consumers can have the option of picking a particular rate and discount point com-
bination that best suits their preferences and financial constraints. We plot those choices
from an example rate sheet in Figure 1. We also present a screenshot illustrating this trade-
off from an online mortgage price comparison service in Appendix Figure A.1. In particular,
borrowers can pay discount points to reduce their interest rate or receive money from the
lender to help cover their closing costs by getting lender credit (paying negative points).
The sense in which we think about lender discrimination in menus, then, is for minority
borrowers to receive a worse rate-point schedule than white borrowers.
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Figure 1: An example set of menu items from a lender rate sheet.

Note: the data for this figure is taken from a Loan Sifter rate sheet for a $300k conforming, new purchase mortgage in the
Boston area with a loan-to-value ratio of 90% and a FICO score of 750.

In practice, the researcher often observes the distribution of borrower choices x but not
the underlying menus m where x ∈ m is chosen from. The menu problem then emerges
as the problem of inference on the extent to which a matched group of borrowers who are
by construction observationally similar in terms of covariates faced the same distributions
of menus. More specifically, testing for equality of menus can be written as testing the null
hypothesis H0 that the distributions of menus being offered to both groups are equal. That
is, suppose m1 ∼ M1 for borrowers in group 1 and m2 ∼ M2 for borrowers in group 2, the
menu problem is the hypothesis testing problem where:

H0 : M1 = M2, (1)
H1 : ¬H0. (2)

An important stated objective of the applied literature on mortgage pricing discrimi-
nation, and indeed the literature on differences in opportunity more broadly, is assessing
equality in menus as specified in Equation (1). Nevertheless, existing methodology used in
this literature tends to fall short of being able to credibly assess inequality in menus. We point
out a series of difficulties associated with using existing methodology to test H0 : M1 = M2,
which we call the “menu problem.”

One natural approach to assessing whether lenders offered minority and non-Hispanic
white borrowers different menus is to control for one dimension of the menu, that is, condi-
tional on the distribution of covariates, to estimate whether minority borrowers who received
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the same interest rate as white borrowers paid more in discount points. This approach was
used in Courchane and Nickerson (1997), Bhutta and Hizmo (2020), and Bartlett et al.
(2021). A problem with this approach, however, is that it can lead to contradictory es-
timates depending on whether the researcher chooses to control for rates or points.9 The
situation in Figure 2 shows that it is possible for a regression of points on rate to show no
discrimination against minorities while a regression of rate on points shows discrimination
with the same example data. In this figure, we represent example data from minority and
white borrowers using black and white dots, respectively; regression line by the dashed line;
and the difference to the regression line by the solid arrows. Figure 2a shows that a regres-
sion of points on rate and borrower race would show a zero coefficient for minorities, with
the two arrows balancing each other out. On the other hand, Figure 2b shows that, using
the same data, a regression of rate on points would instead give a positive coefficient for
minorities. This sort of contradiction is not particular to the linear regression case, and as
we show in Appendix Figure A.2, it can appear with general conditional expectations.

points

rate

data for minorities

data for whites

(a) Points on rates shows no discrimination

rate

points

data for minorities

data for whites

(b) With the same data, rates on points
(flipped axes) shows discrimination

Figure 2: How the choice of which menu dimension to control for can lead to contradictory
findings of discrimination

Note: Figures 2a and 2b illustrate example situations where the forward regression of rates on points and the reverse regression
of points on rate can lead to different results. The dashed lines represent the regression line, and the arrowed lines represent
the distance of minority borrowers’ choices to the regression line.

This possibility is not merely a theoretical curiosity. Figure 3a plots the predicted values
of discount points paid in a regression with race dummies interacted with levels of interest

9Bhutta and Hizmo (2020) also runs lender-specific regressions, and Bartlett et al. (2021) also controls
for lender-specific slopes in a robustness check. However, the problems identified here exists as long as there
are within-lender hetergeneity in menus, which we find is prevalent in Section 2.2.
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rate spread rounded to the nearest quarter of a percent for the FHA mortgages in our sample.
It shows that, conditional conditional on the rate paid, Black and white borrowers pay similar
numbers of points. On the other hand, using the same data, Figure 3b shows the predicted
values of interest rate paid in a regression with race dummies interacted with levels of
discount points rounded to the nearest half a point. It suggests that, conditional conditional
on the number of points paid, Black borrower pays higher rates than white borrowers. Thus,
the regression approach can give strikingly clear, though ultimately misleading, results.
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Figure 3: An empirical example for the choice of which menu dimension to control for can
lead to contradictory findings of discrimination

Note: Figure 3a plots the predicted values from forward regression of discount points on rates rounded to the nearest quarter
interacted with race, with 95% confidence intervals. Figure 3b plots the reverse regression of rate on discount points rounded to
the nearest one-half interacted with race, with 95% confidence intervals. The data used is our covariate matched FHA sample
as described in Section 5.

This situation in Figures 2 and 3 can be viewed as a version of the reverse regression
problem of Goldberger (1984). This problem emerge naturally in the menus setting, since
when borrowers are choosing from a menu of options it is in theory not clear which direction
the regression should be run. The problem with testing equality in menus goes beyond the
reverse regression problem, as there can be false positives and false negatives even when the
forward and reverse regressions are consistent (and even when a simple comparison of means
is consistent) which we will discuss in the rest of this section.

Figure 4 shows how even when forward and reverse regressions consistently detect dis-
crimination or no discrimination, the heuristic of controlling for one dimension of the menu
can lead to false positives and false negatives if interpreted as a test for equality in menus as
in Equation (1). In this figure, we represent example data from minority and white borrow-
ers using black and white dots, respectively, and menus by dotted lines where each dotted
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line is one potential menu from which a borrower may draw. The left panel of Figure 4a
shows a false positive situation in which minority borrowers paid more in rate, controlling for
points, and more points, controlling for rate, even though lenders offered both minority and
white consumers the same distribution of menus. The only difference in borrower behavior
by group is that minority consumers chose to pay fewer points on every menu. That is, even
though M1 = M2 in reality, as represented by a common set of dotted lines facing both
groups, it appears as if minorities are worse off controlling for either dimension of the menu.
In the right panel of Figure 4b, we illustrate a false negative situation in which minority
consumers paid the same rate conditional on points but faced a worse distribution of menus,
since the bottom menu (the most advantageous menu) was offered only to white borrowers
while the second-to-bottom menu was offered only to minority borrowers. Furthermore, Fig-
ure 4b can be constructed in a way such that the variance of the rate and discount points
paid are equal, such that forward and reverse regressions both give the same false nega-
tive but there does exist discrimination in menus. That is, in the situation of Figure 4b,
M1 ̸= M2 in reality, but controlling for either dimension of the menu the researcher would
find no difference between the two groups.

rate

discount points paid

data for minorities

data for whites

(a) False positive, minority borrowers
paid more in rate (points), controlling for
points (rate), but the menus were the same

rate

discount points paid

data for minorities

data for whites

(b) False negative, minority borrowers
paid the same average rate, controlling for
points, as white borrowers, but their menus
were worse

Figure 4: False positives and false negatives from controlling for one direction of the menu

Note: Figures 4a and 4b illustrate example situations where even when forward and reverse regressions are consistent, there
can still be false positive and false negative estimates of mortgage pricing differentials by race. Figure 4a represents a situation
where minority borrowers consistently choose to pay fewer points than white borrowers. A regression analysis would show that
minority borrowers paid more in rate controlling for points, and more in points conditional on rate. However, in this example
they faced the same distribution of menus as white borrowers. Figure 4b represents a situation where forward and reverse
regressions can both show no difference, but where one white borrower’s menu is better than one minority borrower’s.
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A second intuitively appealing approach for assessing discrimination in menus is to com-
pare means, thus avoiding the problem of having to estimate menu slopes from the data. In
other words, the researcher may wish to check if minority consumers paid more on average
in both rates and discount points, such that they are disadvantaged in both dimensions
compared with observationally similar white borrowers. A variation of this approach is to
take a pre-defined range of rate-point trade-offs as the slope estimated from external sources,
which is done in Woodward (2008) and Bartlett et al. (November 2019). While this avoids
the problem that regressions may incorrectly estimate menu slopes, it can still lead to false
positives and false negatives when slopes are not constant across menus, thus breaking the
assumption (1) that all menus share the same shape. This is a realistic problem, because
we know from rate sheet data that an unobserved heterogeneity in slopes does exist in the
mortgage setting, as the rate-point trade-offs do vary substantially across lenders and over
time (Figure 9). Figure 5a illustrates how, when slopes differ across menus, a false positive in
which minority consumers pay more on average in terms of both rates and points but faced
the same distribution of menus as white borrowers can occur (M1 = M2). And Figure 5b
illustrates a false negative possibility in which minority borrowers paid the same average
rates and points as white borrowers but did face worse menus (M1 ̸= M2).
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rate

discount points paid

data for minorities
data for whites

(a) False positive, minority con-
sumers paid more on average in both
rates and points, but their menus are
the same

rate

discount points paid

data for minorities
data for whites

(b) False negative, minority consumers
pay the same average rate and points as
white borrowers, but their menus were
worse

Figure 5: False positives and false negatives from checking if minority borrowers paid more
on average in both rates and points

Note: Figure 5a illustrates an example situation where minority borrowers pay more in mean rates and points compared to
white borrowers, but both groups of borrowers faced the same distributions of menus. Figure 5b illustrates an example situation
where minority borrowers pays the same mean rates and points compared to white borrowers, but faced worse menus than white
borrowers.

The mechanism for when a comparison of means would lead to false positives in the case
of Figure 5a is that in the example, minority borrowers respond less to differences in the
slopes of the rate-point menus compared with white borrowers. This possibility is empirically
relevant, because there are two directions in which constraints can drive borrower choices
of rates and closing costs. First, if borrowers are cash constrained when getting the loan,
they may need to get a lower closing cost mortgage (pay fewer discount points) regardless
of what rate-point trade-offs lenders offer. Second, if borrowers are debt-to-income (DTI)
constrained, they may need to pay more points to buy down the rate to increase their
borrowing limit.10 Therefore, the finding that minority borrowers on average pay more than
white borrowers may simply reflect the fact that minority borrowers are more constrained
in their choices, which is a form of “disadvantage” that is not necessarily due to lenders
discriminating against them by offering them different menus.

While simple in hindsight, the situation of Figure 5a also illustrates how a seemingly
innocuous assumption that differences in menus faced by different agents can be summarized
by a single monotonically additive term is actually a strong assumption when there are

10See, for example: https://www.thetruthaboutmortgage.com/dti-debt-to-income-ratio/.
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differences in both menu intercepts and slopes in reality. Perhaps due to tractability, such
an assumption is popular in models of labor productivity (e.g. Hwang, Reed, and Hubbard
(1992), Bell (2019)), where agents are assumed to face structurally defined menus of trade-
offs indexed by a single productivity term, and estimation proceeds by devising a method to
consistently estimate the distribution of that term. Our illustration implies that by ignoring
the multidimensional way unobserved heterogeneity in trade-offs can enter into the model
(for example, in terms of both levels and slopes), a researcher can be led to conclude that,
for example, one group of workers is more productive than another group when one group
is simply more flexible than another group in terms of their preferences over wage-amenities
trade-offs. Therefore, whether a single index assumption is reasonable or not depends on
how much of a concern the situation illustrated in our Figure 5a would be in the specific
empirical context in which they are applied.11

Fundamentally, the shortcomings of existing empirical methodologies, when applied to
the menu problem, can be summarized as a combination of omitted variables bias and mis-
specificiation bias. Roughly speaking, the assumptions underlying the heuristic approaches
of assessing discrimination in menus are that (1) all menus share the same shape, with
unobserved heterogeneity in menus being due to an additive error term, and (2) that this
shape can be correctly estimated/inferred from other data. The omitted variables problem
stems from the fact that the preferences of consumers, since they are unobserved, can lead
to bias when the slopes of menus are estimated from data by controlling for them, thus
breaking implicit assumption (2). This is the main problem with simply controlling for some
dimensions of the menu, as illustrated in Figures 2 and 4. While it is less recognized in
the mortgage pricing discrimination literature, much work in labor productivity estimation
is indeed aimed at estimating the slopes of trade-offs and addressing the omitted variables
problem in (2). A more subtle problem is that correctly estimating the average slopes
of trade-offs is not sufficient for assessing equality in menus. Models that assume away
heterogeneity in slopes and interpret residuals to average trade-offs as differences in menus
can generate a mis-specification error when heterogeneity in slopes does exist in reality, which
can lead to misleading inference by breaking assumption (1). This is the problem illustrated
in Figure 5.

11Another setting where a single (log-)additive productivity assumption is popular is in the production
function literature (e.g. Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg, Caves, and Frazer
(2015)). Therefore, while methods from the production estimation literature are useful for estimating average
returns to capital and labor, they are also problematic if applied as a test of equality in menus as in our
mortgage context.
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2.2 The relevancy of the “menu problem” in the mortgage setting

As we illustrated in Figure 3, the possibility for contradiction in regression estimates of
differences in menus is an empirically relevant problem in the mortgage discrimination setting
in the sense that it is present in our data. More fundamentally, the problems illustrated in
Section 2.1 depend on (1) the existence of unobserved heterogeneity in menus and (2) in the
differences in preferences between borrower racial groups. We argue that these issues are
first order in the mortgage setting.

Empirically, we find that there exists large unobserved heterogeneity in menus across
borrowers within narrow covariate groups and from the same lender, suggesting that existing
methods that condition on these observables cannot eliminate the problems we point out.
In particular, we use the data described in Section 5 to sample pairs of borrowers who got a
mortgage with the same lender, on the same day, with the same mortgage type (Conforming
or FHA) and the same loan-level price adjustment (LLPA) and loan amount group, and
compute the implied slopes given by their rate and point choices, which we plot in Figure A.3.
Within this sample and among borrowers whose rate and point choices were not identical,
51% of Conforming pairs and 52% of FHA pairs had choices that dominated one another.
Furthermore, Figure A.3 also shows that the implied exchange rate between them have large
dispersion. Finally, R2 of our regressions of points on rate in Tables A.3, as well as those
of the literature, are well below 1. These observations all imply that there exists large
unobserved heterogeneity in the menus, even conditional on narrow covariate and lender
groups.

The reason that researchers have emphasized the role of discount points in studies of
mortgage pricing discrimination is due to a presumption that Black borrowers has different
preferences over menus items compared to White borrowers, perhaps due to differences in
liquidity or borrowing constraints. Indeed, we observe Black and White borrowers making
different choices in the data. In particular, Table 3 of our empirical application shows that
Black borrowers pays more points than similar White borrowers for Conforming mortgages
and fewer points than similar White borrowers for FHA mortgages. However, as we point
out, there is a difficulty in attributing this difference in choices to a difference in the menus
presented to Black and White borrowers or the heterogeneity in preferences between the
racial groups. The advantage of our methodology is that it allows us to say that, under weak
assumptions about preferences and menus, some of the racial difference in choices can only
be rationalized by a difference in the distribution of menus facing Black and White borrowers
among Conforming mortgage borrowers.
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3 Robust Metrics for Assessing Discrimination in Menus
In this section, we define our robust metrics for assessing discrimination in menus. We
consider equality in menus to mean equality in the distribution of menus offered to Black and
non-Hispanic white borrowers, conditional on their observables. First, we present intuition
for our approach in Section 3.1. We then specify our model of borrower choice more formally
in Section 3.2. We keep our model fairly simple; menus are treated simply as a collection
of items. Then, we define a direct test metric for equality in menus in Section 3.3 and a
more welfare-relevant differences in menus metric for whether one group of consumers would
like to switch to another distribution of menus in Section 3.4. We discuss the power of our
identification results in Section 3.5. We leave inference on these metrics to Section 4. To
increase clarity, we focus our exposition on the mortgage setting with two choice dimensions.
Nevertheless, our general approach can be applied to contexts with more than two dimensions
and may be useful in other settings where similar restrictions can be made.

3.1 Intuition

Our metrics for assessing discrimination in menus are based on whether the data can be
rationalized by a model in which all groups of borrowers faced the same distribution of menus.
Ignoring for now sampling error to build intuition, the common thread in the false positive
situations of Figures 4a and 5a is that there does exists a possible common distribution of
menus that rationalizes the choice distributions of both minority and white borrowers, in
the sense of there being a possible one-to-one match between minority and white borrowers
where within each match both of the borrowers’ choices could have come from the same
menu. This is the criteria we use for assessing equality in menus.

By construction, our metrics are robust to false positives, since we will detect discrim-
ination in menus only when there is no way to rationalize the data under the assumption
of a common distribution of menus, regardless of the nature of any preference heterogene-
ity between the two groups of borrowers. Our methodology can also detect discrimination
in menus where the existing heuristic approaches to the menu problem fail to do so. In
particular, we illustrate in Figure 6 how the situation of Figures 4b, in which regressions
controlling for either rates or points, would show a false negative, but the data fail our
one-to-one matching condition under the assumption that borrowers with pairwise strictly
dominated choices (that is, paying more in terms of both rates and points) could not have
shared menus with one another. In other words, there is no way to construct a common
distribution of menus for minority and white borrowers that explains the data. Analogously,
the false negative example from comparing means in Figure 5b also fails our criterion.
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data for minorities

data for whites

No

(a) Possibility #1 for matching fails

rate

discount points paid

data for minorities

data for whites

No

(b) Possibility #2 for matching also fails

Figure 6: How data from Figure 4b fail a “perfect matching” condition

Note: Figure 6 shows how data from Figure 4b, which can produce false negatives in linear regressions, fails our “perfect
matching” condition that each minority borrower should be matchable to a white borrower one-to-one.

To summarize, we define new metrics based on whether a set of preferences can rationalize
the data under equality in menus, which are robust to the false positives. Furthermore, in
some situations, such as those in Figures 4b and 5b, our metrics can detect discrimination
when existing, heuristic approaches fail to do so. Nevertheless, a drawback of our approach
is that it still leaves some possibility for false negatives, because the mere existence of a set
of preferences that explains the data under equality in menus does not mean that it is the
true set of preferences. This is a weakness compared with experimental approaches that
may allow the researcher to directly observe menus, but the advantage of our approach is
that it requires only data on outcomes and few assumptions on the data-generating process.
Furthermore, our metrics are sharp in the partial identification sense that false negatives can
only occur when there exists a common distribution of menus rationalizing the data that
cannot be ruled out under the assumptions given.

3.2 Model

We now define our model more precisely. A menu item has values over k dimensions of
attributes,12 which we encode by x ∈ X ⊂ R

k. A menu m ⊆ X is a set of such menu
items that are presented to the borrowers. When borrower i is presented with a menu m,
we observe them making a choice that maximizes their utility over menu items ui(x). That

12In our context, the two dimensions of mortgage pricing are interest rates and discount points.
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is, we observe choices xi where:

xi ∈ argmax
x

{ui(x) : x ∈ m}. (3)

To keep the distribution of menus Lebesgue measurable and to implement the inference
procedure of Section 4, we make the simplifying assumption that the set of items available
to choose from is finite:

Assumption 1. (Finiteness) The set of possible menu items, X, is finite.

Under Assumption 1, we can consider a probability distribution over possible menus
m ∼ M. This setup is fairly general and follows from consumers having standard (that is,
complete and transitive) preferences over menu items.13

3.3 A robust test for inequality in menus

Suppose borrowers with a similar distribution of covariates in groups 1 and 2 face menus
m1 ∼ M1 for borrowers in group 1 and m2 ∼ M2 for borrowers in group 2. The researcher
wishes to compare the distribution menus across two groups of borrowers. More specifi-
cally, testing for equality of menus can be written as testing the null hypothesis that the
distributions of menus being offered to both groups are equal. That is:

H0 : M1 = M2, (4)
H1 : ¬H0. (5)

To go from data on choices to statements about menus, we place restrictions on the
choices that could have been plausibly made from the same menus in terms of borrower
preferences. For mortgages, it is plausible to assume that paying more in both interest rates
and discount points is a dominated choice (and indeed would not be offered as a choice by
the loan originator), which is the intuition we use in Figure 6 to reject equality in menus in
that situation. We formalize this as Assumption 2:

Assumption 2. (Dominance) Paying more in rates and points is dominated. More formally,
let x1 = [r1, y1], x2 = [r2, y2], where r1, r2 represents rates and y1, y2 represents points. Then
if r1 > r2, y1 ≥ y2, or r1 ≥ r2, y1 > y2, ui(x1) < ui(x2),∀i.

13Our Equation (3) that consumers maximize utility over menu items does rule out more behavioral
representations of preferences over menus, such as in Gul and Pesendorfer (2001) and Ellis and Masatlioglu
(2021) where the existence of some menu items may “tempt” consumers to change their rankings of other
menu items. In that case, our statistical test of inequality in menus would still be valid, but the interpretation
of our more welfare-relevant differences in menus (DIM) metric would be nuanced.
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We illustrate in Figure 7 the restrictions on the observed choices that may come from the
same menu under Assumption 2. The observed choice of the borrower, shown as the black
dot, implies that they did not have the lower-left dashed quadrant available on their menu,
since otherwise they would have chosen it. Similarly, any choice in the upper-right quadrant
could not have been from the same menu as the choice indicated, as that agent would have
an incentive to switch to that choice.

Note that while Assumption 2 is defined in the form of preferences of borrowers, it
could have been alternatively formulated in the sense of dominated choices being unlikely
to be offered to borrowers, which would have led to the same restrictions. Importantly,
this implies that our test of equality in menus would hold even if borrowers are behavioral
such that Assumption 2 fails, as long as lenders’ menus fall within the range we specify in
Assumption 3. The main purpose of Assumption 2 is to allow us to compute a welfare-
relevant metric for assessing differences in menus (DIM) later on.

rate

discount points paid

Figure 7: Restriction on what cannot lie on the same menus from dominance.

Note: this figure illustrates the impact of a restriction on what cannot lie on the same menus based on a assumption that
dominated choices are not taken/offered. The dashed region represents what could not have lied on the menu of the borrower
making the choice illustrated by the black dot.

While Assumption 2 is sufficient for rejecting equality in menus in the example situation
of Figure 6, in our empirical application it is too weak of a restriction to be informative by
itself. For our empirical analyses, we further adopt the industry rule of thumb of Bartlett
et al. (November 2019) that each point paid reduces the interest rate on a mortgage by one-
eighth to one-fourth for conforming mortgages, with an expanded range for FHA mortgages.
This is an assumption about menus rather than about preferences, which we formalize as
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Assumption 3:

Assumption 3. (Restriction on Menus) In menus, each point paid reduces the rate by
between [a, b]. More formally, x1 = [r1, y1], and x2 = [r2, y2] can lie on the same menu
{x1, x2} ⊆ m only if:

a ≤ r2 − r1
y2 − y1

≤ b or x1 = x2, (6)

where 0 ≤ a ≤ b ≤ ∞, and x1 = [r1, y1], x2 = [r2, y2], with r1, r2 representing rates and y1, y2
representing points.

We illustrate in Figure 8 the effect of defining a menu set based on Assumption 3. As
Figure 8 indicates, the range of possible choices that could have come from the same menu
as that of the consumer with the choice illustrated by the black dot is more restricted under
this assumption, compared with using only dominance relationships in terms of preferences
as in Assumption 2. Thus, this improves our ability to detect discrimination in menus.
Since Assumption 3 is weakly stricter than Assumption 2 for our test statistic for equality
in menus, the only place where Assumption 2 is used in our empirical application is to make
welfare comparisons of menu distributions.

rate

discount points paid

Figure 8: Restriction on what cannot lie on the same menus, from industry knowledge.

Note: this figure illustrates the impact of a restriction on menus from industry knowledge. The dashed region represents what
could not have lied on the menu of the borrower making the choice illustrated by the black dot.

Empirically, we find that the industry rule of thumb from Bartlett et al. (November
2019), which motivated Assumption 3, covers a vast majority of menus based on data from
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a sample of lender rate sheets that enumerates the rate and discount point menus. Using
the 2014 LoanSifter data from Fuster, Lo, and Willen (2019), we estimate slopes of menus
within their sample of 30-year purchase mortgages across seven different MSAs (Chicago,
Houston, Los Angeles, Miami, New York City, Seattle, and San Francisco) and a range of
loan amounts, FICO scores, and LTVs. The sample construction is discussed in more detail
in Fuster, Lo, and Willen (2019). We estimate the slopes of the rate-point trade-off by taking
the difference in the interpolated rate from 0 points to 2 points and dividing by 2. In this
sample, the rule of thumb that each point paid is worth 1/8 to 1/4 of a point covers 94.4
percent of all rate sheet observations for conforming mortgages. For FHA mortgages, we use
an expanded rule that each point is worth 1/32 to 1/4 in rate, which covers 97.6 percent of
all observations. We illustrate this in Figure 9. Thus, we believe that our Assumption 3 is
reasonable.
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Figure 9: Rate sheet evidence for our menu slopes Assumption 3.
Note: these figures are constructed using 2014 LoanSifter rate sheet data from Fuster, Lo, and Willen (2019) for conforming
and FHA mortgages. The slope of the rate-point trade-off is estimated by taking the interpolated rate from 0 to 2 points and
dividing by 2. The red lines in Figure 9a represent 1/8 and 1/4, and the red lines in Figure 9b represent 1/32 and 1/4.

In addition, we see substantial heterogeneity between the menu slopes across lender-
weeks in Figure 9, perhaps reflecting market power or lender- and time-specific costs. As
we explained earlier, the existence of this heterogeneity interacted with possible differences
in preferences between the two groups makes an approach like ours necessary for computing
robust metrics of discrimination in menus.

Under Assumption 3, let x1 = [r1, y1], x2 = [r2, y2]. We define an indicator function for
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whether choices x1, x2 could have come from the same menu:

ϕ(x1, x2) =

1 , if a ≤ r2−r1
y2−y1

≤ b or x1 = x2

0 , otherwise.
(7)

After defining this function, we have the following identification result for when vectors
of choice probabilities p1 = [p1(x1), p1(x2), . . .],p2 = [p2(x1), p2(x2), . . .] from observationally
similar groups of borrowers can be rationalized under the null hypothesis of equality in the
distribution of menus H0 :M1 =M2:

Theorem 1. Under Assumptions 1 and 3, choice probabilities p1,p2 can be generated from
the same underlying distribution of menus M1 = M2 if and only if there exists a coupling
with probability mass function π(x1, x2) : X × X → [0, 1] with implied marginal densities∑

x2
π = p1,

∑
x1
π = p2 such that:

T ≡ 1− Eπϕ(x1, x2) = 0. (8)

Proof. See Appendix A.1.1.

Theorem 1 formalizes the intuition from Section 2 that equality in menus should imply
a way to “match” observations to one another such that each pair can come from the same
set of menus. In particular, π serves as a coupling or “matching function,” where each of its
entries π(x1, x2) represents the extent to which choice probabilities p1(x1) and p2(x2) came
from the same menu, and the requirement of Equation (8) is that this coupling should lie
entirely in the area where ϕ(x1, x2) = 1. Based on Theorem 1, we are ready to define a test
statistic that looks at the extent to which this matching is deficient:

Definition 1. Our test statistic for equality in menus, T̂ , given sample choice probabilities
p̂1, p̂2, is:

T̂ = min
π(x1,x2)

1− Eπϕ(x1, x2), s.t.
∑
x2

π = p̂1,
∑
x1

π = p̂2,π ≥ 0, (9)

where the extent to which T̂ > 0 indicates a failure of the perfect matching condition in
Theorem 1 in sample, which is evidence against equality in menus. It measures the fraction
of each sample that cannot be matched to one another. The statistic T̂ in Equation (9) is a
finite dimensional optimal transport objective that can be efficiently computed using a linear
program. To deal with sampling error inherent in T̂ , we discuss in Section 4 how hypothesis
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testing for T̂ from Equation (9), as an optimal transport objective, can be consistently
simulated.

3.4 Metric for assessing differences in menus

The direct test of inequality in the distribution of menus in Section 3.3, while indicative
of discrimination in menus, has the drawback that it may not be the object of interest for
researchers. The fact that the distribution of menus presented to one group is different
in some aspect from the distribution of menus presented to another group may not be of
welfare consequence, a problem that Abadie (2020) discusses in more detail. Rather, for
the purposes of comparing menus across two distributions, we want a metric for assessing
whether the distribution of menus from one group is meaningfully “better” than that of
another group. For this purpose, we ask the question: If Black consumers were instead
assigned white menus, how much better off would they be?

Conceptually, we consider the object of interest to be the change in welfare when Black
consumers were instead assigned white menus, under an assignment rule π(i, j) that maps
each consumer i ∈ I1 from group 1 to the menu of consumer j ∈ I2 from group 2. Giving
all consumers the same welfare weight, this objective can be represented by Equation (10):

∆WI1→I2,π =
∑

i∈I1,j∈I2

π(i, j)(ui(mj)− ui(mi)). (10)

To get at ∆WI1→I2,π, we proxy for the utility difference ui(mj)−ui(mi) through a metric
di→j(mi,mj) that measures the extent to which consumer i would be willing to increase the
interest rates on their loan in order to switch from menu mi to menu mj:

ui(mj)− ui(mi) = di→j(mi,mj) ≡ sup{δ ∈ R : ui({x+ δer, x ∈ mj}) ≥ ui(mi)}, (11)

where er represents a basis vector that is equal to 1 at the location indexing interest rates.
If consumers have constant marginal utility over interest rates such that utility can be
represented as ui(x = [r, y]) = r + f(y), then di→j(mi,mj) is directly proportional to the
utility change for consumer i after switching to menu j. Even if consumers do not have
constant marginal utility over interest rates, it is still meaningful as a “willingness to pay”
metric, since di→j(mi,mj) measures the extent to which consumer i would be willing to
increase the interest rates to switch from mi to mj. In the rest of this section we will show
how we can compute an informative lower bound for this metric given the data, di→j(xi, xj) ≤
di→j(mi,mj), xi ∈ mi, xj ∈ mj, which then leads our differences in menus measure.14

14We note that while we define our DIM1→2 over “willingness to pay” in terms of interest rates, we could
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To define our lower bound, we make an additional assumption that menus are complete
in points, such that all choices of points are available to borrowers, which we formalize as
Assumption 4. This is an approximation, since lenders may limit the choices of points to
certain decimals (for example, 0.134, 0.266, …) rather than literally the full range, but the
practical implications of such small gaps in menus are likely small. Furthermore, there may
be information constraints on the part of borrowers such that they do not “see” their full
choice set (that is, some borrowers may not know that they can pay/receive points). Our
metric is robust to this information constraints problem since as long as the subsets of choices
borrowers “see” are held constant, our lower bound metric would remain valid.

Assumption 4. (Completeness) The menus are complete in discount points. More specifi-
cally, ∀m,∀y′,∃x = [r, y′] ∈ m.

The effect of Assumption 4 is illustrated in Figure 10. Under the assumption that the
mortgage menus are complete in discount points, we can meaningfully say that the minority
borrower whose choice is represented by the black dot would have preferred the menu of the
white borrower whose choice is represented by the white dot, because there exists a level
of discount points such that all possible choices in the white borrower’s menu dominate the
minority borrower’s choice. Otherwise, the minority borrower might not have preferred the
white borrower’s menu because the white borrower’s menu could have been a singleton that
the minority borrower dislikes. Therefore, adding the assumption of menu completeness in
points sharpens the comparison of menus.

have also defined it using points. However, due to the possible existence of cash on hand constraints that
are likely binding for many consumers, constant marginal utility is very unlikely to hold for points, which
makes welfare aggregation less credible.
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Figure 10: Impact of assuming that menus are complete in either rates or points

Note: this figure illustrates the impact of an assumption on the completeness of menus. The dashed region represents what
could not have lied on the menu of the borrower represented by the white dot. While the black dot falls within the dashed
region, without assuming completeness it would be unknown if the borrower making the choice represented by the black dot
would have preferred the menu containing the white dot. Under completeness, we know that the borrower making the choice
represented by the black dot would have preferred the menu containing the white dot by revealed preference.

We illustrate in Figure 11 how we can construct a lower bound for the willingness to pay
in terms of interest rates di→j(xi, xj) under Assumption 4. There, borrower 1, who made a
choice x1 from an unobserved menu m1, has made a choice that is dominated (in terms of
paying a higher rate at the same level of points) by any possible menu of borrower 2, who
made a choice x2 from a menu m2. This implies that, by revealed preference of borrower
1, the menu that borrower 2 faced is better than borrower 1’s menu, or m2 ≻1 m1. For
borrower 1 to possibly become indifferent between m1 and m2, m2 needs to be shifted up by
at least the amount indicated in the figure in the dimension of interest rates. In other words,
a lower (sharp) lower bound for d1→2(m1,m2) is d1→2(x1, x2), in the sense that borrower
1 is willing to pay at least d1→2(x1, x2) more in interest rate in order to get borrower 2’s
menu. Similarly, the menu faced by borrower 2 would need to be shifted downward by at
most the negative d3→2 before it dominates x3’s choice. Therefore, borrower 3, with choice
x3, would need to pay at least −d3→2, or receive at most d3→2, before being willing to switch
to borrower 2’s menu.
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Figure 11: Lower bound for borrower 1’s willingness to pay a higher interest rate in order to
get borrower 2’s menu.

Note: this figure illustrates the computation of our lower bound measure on differences in menus. The borrower making the
choice x1 would pay at least d1→2 in additional interest rate in order to switch to x2’s menu. The borrower making the choice
x3 would require at most a reduction of −d3→2 in interest rate in order to switch to x2’s menu.

Formalizing the intuition from Figure 11, we define our lower bound for the willingness
of borrower 1 to switch to borrower 2’s menu under Assumptions 1 through 4 as follows:

d1→2(x1, x2) ≡ r1 − r2 + amax(y1 − y2, 0) + bmin(y1 − y2, 0) ≤ d1→2(x1, x2), (12)

where in the first line j indexes points, and in the second line we take it to the mortgage
setting and let x1 = [r1, y1], x2 = [r2, y2], where r1, r2 are rates and y1, y2 are points. The
lower bound for how much borrower 1 would be willing to pay to switch to the menus of
borrower 2, d1→2(x1, x2), then allows us to define our differences in menus (DIM) metric:

Theorem 2. Under Assumptions 1 through 4, choice probabilities p1,p2 implies a DIM
measure:

DIM1→2 = min
π(x1,x2)

Eπd1→2(x1, x2), s.t.
∑
x2

π = p1,
∑
x1

π = p2,π ≥ 0 (13)

where DIM1→2 serves as a lower bound for the average willingness to pay in terms of interest
rates for borrowers in group 1 to switch menus with borrowers in group 2. If borrowers have
constant marginal utility in interest rate, then:

DIM1→2 ≤ ∆WI1→I2,π (14)

where utility is measured in terms of interest rate paid.
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Proof. See Appendix A.1.2.

Theorem 2 shows that, when all consumers have the same constant marginal utility over
interest rates (normalized to 1), our DIM metric is as a lower bound for the change in welfare
for when consumers in group 1 are instead assigned menus from group 2 in an arbitrary way
∆WI1,1→2,π1→2 . If instead consumers do not have constant marginal utility over interest rates,
then the DIM1→2 metric could still be interpreted as the average increase in interest rates
consumers in group 1 would be willing to pay in order to switch to menus from group 2.
Furthermore, by Theorem 1, equality in menus would imply that DIM1→2 ≤ 0, so a finding
that DIM1→2 > 0 is also rejection of equality in menus in a welfare relevant way.

The sample analogue of the DIM metric follows immediately from Definition 2.

Definition 2. Our empirical differences in menus metric, ˆDIM1→2, given choice probabili-
ties p̂1, p̂2, is:

ˆDIM1→2 = min
π(x1,x2)

Eπd1→2(x1, x2), s.t.
∑
x2

π = p̂1,
∑
x1

π = p̂2,π ≥ 0 (15)

In terms of inference, the sample DIM metric in Definition 2 is also the value of a
finite dimensional optimal transport problem. We discuss hypothesis testing in this class of
problems in Section 4.

3.4.1 Extension: a “simple DIM”

An simple extension of our DIM metric is:15

DIM s
1→2 = Ex1∼f1(x1),x2∼f2(x2)d1→2(x1, x2) (16)

Where f1(x1) is the distribution of borrower choices in group 1, and f2(x2) is the distri-
bution of borrower choices in group 2.

The DIM s
1→2 metric as defined in Equation (16) has a straightforward interpretation: it

is a lower bound for the expected willingness to pay of borrowers in group 1 after switching
to random group 2 borrowers’ menus. This is compared to the worst-possible assignment as
in our Definition 2. The drawback of this metric is it requires an additional assumption to be
a valid test of differences in menus, such as random assignment of menus conditional on the
covariates groups within which it is computed. Such an assumption may be violated. For

15This section owes its existence to Daniel Ringo. The authors have omitted this possibility from the
initial version of the paper in favor of the more robust alternative as presented in Definition 2. Dr. Ringo
has independently arrived at this metric and used it to replicate our main results during his discussion of our
paper at the 2021 Federal Reserve Day-Ahead Conference on Financial Markets and Institutions. In doing
so, he illustrated the computational advantages of this simpler metric which may be useful in some contexts.
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example, if, for borrowers in both groups, the heterogeneity in menus is due to unobservables
that may be correlated with preferences, it is possible that theDIM s

1→2 metric would produce
a false positive. Our DIM metric in Definition 2, on the other hand, is robust to such a
violation.

Nevertheless, the “simple DIM” metric has the advantage of being easy to compute and
conduct inference on. Its sample counter-part is:

ˆDIM
s

1→2 = Ex1∼f̂1(x1),x2∼f̂2(x2)
d1→2(x1, x2) (17)

which may be computed by simply sampling random pairs of choices x1, x2, conditional
on covariates, and then averaging their d1→2(x1, x2) metric. Standard techniques such as
bootstrapping may then be used for inference.

In our empirical application, the “simple DIM” gives similar qualitative results to our
DIM metric. Thus, researchers may find such a metric useful for data exploration before
moving on to our more robust metric. Furthermore, if the researcher believes that random
assignment of menus conditional on the covariates groups is a valid assumption to make, the
“simple DIM” is also a valid metric for assessing difference in menus.

3.5 When does our method have power?

Our metrics for differences in menus are robust in the sense that they are immune to the
false positives problem from which the existing methods suffer, but they may still generate
false negatives in that there exist scenarios where the data are rationalizable under equality
in the distribution of menus, but in fact the distribution is different. Generally speaking, our
method has power only to the extent that the borrowers’ choices cannot be rationalized by
an equal distribution of menus under the restrictions on preferences and menus that we have
made. In this subsection, we give some examples of scenarios where this would or would
not occur. In our later empirical analysis, we show that our methodology does have enough
power to be useful in detecting discrimination in mortgage markets.

Figure 12 illustrates a scenario in which white and minority borrowers face the same
default menu, but some white borrowers are offered a discretionary discount in terms of
points. In the figure, the menu represented by the dashed line is shifted leftward for a white
borrower, but all minority borrowers face the original menu. This shift makes the bottom-
left choice by the white borrower not matchable to any of the minority borrowers’ choices,
so our one-to-one matching condition for equality in menus in Theorem 1 is broken. Our
Theorem 1 would therefore have power to detect a difference in the distribution of menus
offered to white and minority borrowers in this case. Furthermore, when the discretionary
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discount being given to white borrowers is large enough relative to the range of permissible
menus, our DIM metric defined in Theorem 2 would also show that minority borrowers would
be willing to pay to switch to the white borrowers’ menus.

rate

discount points paid

data for minorities

data for whites

Figure 12: Power to detect discrimination when discretionary discounts offered to only some
white borrowers make the data not rationalizable under equality in menus

Note: this figure illustrates how, if the loan originator offered only a white borrower a discount on points paid as represented
by a leftward shift of the dashed line, and the borrower maintained their choice of rate, our methodology would have power to
detect this pricing differential.

Figure 13 gives an example situation in which minority and white borrowers were pre-
sented with different menus as illustrated in the dotted lines, with white borrowers on average
paying less in both rates and points, but the data are rationalizable under equality in menus.
More specifically, while the data were generated by menus represented by the dotted lines
which differ in distribution between white and minority borrowers, the data can be rational-
ized with one minority and one white borrower both choosing from the hypothetical menu
represented by the dashed line and the other two borrowers choosing from the remaining
dotted line. In this scenario, we cannot rule out that the true distribution of menus is repre-
sented by the dashed line plus a dotted line rather than the two dotted lines, and therefore
our metrics from both Definition 1 and Definition 2 would fail to reject equality in menus.
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rate

discount points paid

data for minorities

data for whites

Figure 13: No power when the data can be rationalized by (incorrect but plausible) distri-
bution of menus that are equal across the racial groups

Note: this figure illustrates how, if the data is as illustrated in black and white dots, it would be unknown to the researcher
whether the true underlying distributions of menus are represented by the two dotted lines (in which case there would be an
inequality in the distribution of menus) or the dashed line and a dotted line (in which case there would be equality in the
distribution of menus).

While our approach cannot detect differences in menus in the situation of Figure 13,
there is a good reason for this: It is possible that the borrowers’ choices were truly generated
by the dashed line and the dotted line such that the racial groups did in fact face the same
distribution of menus. It is indeed impossible to rule out that possibility given the data
presented. This is the sense in which our metrics are sharp. Empirically in Section 5, we
show that we are able to reject equality in menus for conforming mortgages, which shows
that our method does have enough power to be useful in our mortgage setting.

4 Inference for Optimal Transport
In this section, we devise a new procedure for conducting hypothesis testing on the values
of optimal transport problems that includes our metrics derived in Section 3. This is needed
because the objective values of our model can be non-differentiable with respect to p1,p2

which implies that simple bootstrap methods may not be consistent (Fang and Santos, 2018).
While some existing methods in the literature can be applied in more general contexts,
they are either too conservative or converge too slowly based on our simulations, which we
discuss at the end of this section. Our new procedure may be of independent interest for
other researchers who wish to apply optimal transport methods to economics; some of those
applications are listed in Galichon (2016).

We consider hypothesis testing on the value φ of a finite dimensional optimal transport
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problem with cost function ϕ(x1, x2), x1, x2 ∈ X and marginal distributions p1,p2:

φ̂(p̂1, p̂2) = min
π(x1,x2)

Eπϕ s.t.
∑
x2

π = p̂1,
∑
x1

π = p̂2,π ≥ 0, (18)

where the hypothesis is in the form of the value of the optimal transport φ(p1,p2) as a
function of the true marginal distributions p1,p2 being less than or equal to some value φ0:

H0 : φ(p1,p2) ≤ φ0, (19)
Ha : φ(p1,p2) > φ0. (20)

The form of the null hypothesis in Equation (19) is especially relevant to us because both
our test of equality in menus (that is, whether T ≤ 0) and our lower bound DIM metric
(that is, whether DIM ≤ DIM0) can be expressed in terms of it. We provide a methodology
to conduct this hypothesis test by looking at the asymptotic distribution of φ̂ and finding
a critical value to compare the observed φ̂ to under H0. This can then be inverted into a
confidence interval for the true value of φ.

As an overview, we combine the directional derivatives approach of Fang and Santos
(2018) and Shapiro (1990) with a size correction of Romano, Shaikh, and Wolf (2014) and
McCloskey (2017), which allows us to conduct hypothesis testing for optimal transport with
uniform size control. To do so, we prove the directional differentiability for optimal transport
problems on finite domains, and show how the general approach can be implemented as a
linear program with complementarity constraints (LPCC).

We use the definition of Hadamard directional differentiation from Fang and Santos
(2018), with some notational differences tailored to the optimal transport setting. Here, the
value of an optimal transport represents a map φ : Dφ → R, where Dφ = PX × PX, PX is
the set of probability measures on X. Let D0 = {P1 − P2 : P1 ∈ PX, P2 ∈ PX} be the set of
possible differences in probability measures, and θ = {p1, p2} be the marginal distributions,
then:

Definition 3. (Fang and Santos, 2018) A map φ : Dφ → R is said to be Hadamard
directionally differentiable at θ ∈ Dφ tangentially to the set D0, if there is a continuous
linear map φ′

θ : D0 → R such that:

lim
n→∞

∥∥∥∥φ(θ + tnhn)− φ(θ)

tn
− φ′

θ(h)

∥∥∥∥ = 0 (21)

for all sequences {hn} ⊂ D0 and {tn} ⊂ R+, such that tn →+ 0,hn → h ∈ D0 as n → ∞
and θ + tnhn ∈ Dφ for all n.
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The main difference between the Hadamard directional differentiability and the typical
notion of differentiability is that tn approaches zero from the positive direction in Definition 3.
Loosely speaking, the directional derivatives represent the change in the value of the function
for a small change in its inputs “in the direction h” for each h.

We show in Theorem 3 that the value of all Monge-Kantorovich optimal transport prob-
lems with bounded cost functions on finite spaces is Hadamard directionally differentiable
in the sense of Definition 3. In particular, Theorem 3 is a generalization of Sommerfeld and
Munk (2018), which shows that the Wasserstein metric (the value of an optimal transport
problem with the cost function restricted to distance metrics) on finite spaces is directionally
differentiable.16

Theorem 3. The value φ of an optimal transport problem with cost function ϕ(x1, x2), x1, x2 ∈
X, where M = sup |ϕ| <∞ and dim(X) <∞, is Hadamard directionally differentiable, with
derivative equal to:

φ′
p1,p2

(h1,h2) = max
u,v∈Ψ∗(p1,p2)

hT
1 u+ hT

2 v (22)

where Ψ∗(p1,p2) = {u,v : pT
1 u + pT

2 v = φ(p1,p2), u(x1) + v(x2) ≤ ϕ(x1, x2)∀x1, x2} is the
set of dual solutions to the linear programming problem, for all {p1,p2} ∈ Dφ, tangentially
to the set D0.

Proof. See Appendix A.1.3.

Under i.i.d. sampling, we know that p̂1−p1 and p̂2−p2 approach a multivariate Normal
distribution:

p̂1 − p1 →d N

0,

p1,1(1− p1,1) −p1,1p1,2 . . .

−p1,2p1,1 p1,2(1− p1,2) . . .

. . . . . . . . .


 , (23)

and likewise for p̂2 − p2, such that by construction, Assumptions 2.1 and 2.2 of Fang and
Santos (2018) are satisfied. Then, Theorem 2.1 of Fang and Santos (2018) immediately
implies that:

rn[φ(p̂1, p̂2)− φ(p1,p2)] = φ′
p1,p2

(rn[(p̂1, p̂2)− (p1,p2)]) + op(1), (24)
16It is also related to Tameling, Sommerfeld, and Munk (2019), who prove that the Wasserstein distance on

countable metric spaces is directionally differentiable. Our Theorem 3 can be similarly extended to countable
metric spaces under the assumption that the cost function ϕ is continuous.
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such that the asymptotic distribution of φ({p̂1, p̂2}) can be obtained via the directional
Delta method. The remaining challenge for inference is that the true p1,p2 used in φ′

{p1,p2} in
Equation 24 are not known, and thus must be estimated. While we could have used the plug-
in analogue φ′

{p̂1,p̂2}, that would converge only pointwise and not uniformly, which is known in
the moment inequalities literature to be a poor approximation to the finite sample properties
of estimators for which there are discontinuities in the pointwise asymptotic distribution
(Andrews and Soares, 2010). We approach this problem following the logic of Romano,
Shaikh, and Wolf (2014) and McCloskey (2017). More specifically, we suppose there exists
confidence bands for [p1,p2] at level β such that:

lim sup
n→∞

Pr([p1,p2] ∈ P̂n,β) ≥ 1− β. (25)

Many uniform confidence bands satisfying Equation (25) are available, for example from
Montiel Olea and Plagborg-Møller (2019). Then, we take our estimate of the directional
derivative as the maximum directional derivative within this confidence band:

φ̂′
β(h1,h2) = max

u,v∈Ψ(p1,p2):[p1,p2]∈P̂β

hT
1 u+ hT

2 v, (26)

where Ψ = {u,v : pT
1 u + pT

2 v ≤ φ0, u(x1) + v(x2) ≤ ϕ(x1, x2)∀x1, x2} are the set of dual
solutions under the null hypothesis H0 : φ ≤ φ0.

Next, we define the critical value for φ by using our estimated maximum directional
derivative from Equation (26) at level 1− α + β:

ĉ1−α+β = inf{c ∈ R : Pr(φ̂′
β(h1,h2) ≤ c) ≥ 1− α + β}, (27)

where the distribution of h1,h2 is the asymptotic distribution of p̂1 − p1, p̂2 − p2. In the
following Corollary 1, we will prove uniform coverage for when the observed value φ̂ is less
than the critical value ĉ1−α+β, and suggest a computationally tractable version of it as a
linear program with complementarity constraints (LPCC).17

Corollary 1. Suppose we have uniform confidence bands for [p1,p2] ∈ P̂β that provide
uniform coverage as in Equation (25), then under H0 : φ ≤ φ0:

lim sup
n→∞

Pr(φ̂− φ0 ≥ ĉ1−α+β) ≤ α, (28)

17As explained in Hsieh, Shi, and Shum (2021), LPCCs are well un-
derstood computationally and are implemented in software such as Knitro:
https://www.artelys.com/docs/knitro/2_userGuide/complementarity.html.
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where ĉn,1−α+β is computed as in Equation (27).

Proof. See Appendix A.1.4.

Corollary 1 implies that uniformly valid hypothesis testing for the value of φ can be
conducted by first computing a set of uniform confidence bands [p1,p2] ∈ P̂β, and then
maximizing over all directional derivatives within these bands as in Equation (26). Directly
maximizing over the directional derivative defined in Equation (26) is computationally inten-
sive, because it involves optimizing over a nonlinear dual value constraint pT

1 u+ pT
2 v ≤ φ0.

To deal with this, we replace it with an equivalent complementary slackness formulation
πT s = 0,π ≥ 0, s ≥ 0 where u(x1) + v(x2) + s(x1, x2) = ϕ(x1, x2), which implies that
the elements of π and s cannot be positive simultaneously. Following the operations re-
search shorthand, we represent this constraint by π ≤ 0 ⊥ s ≥ 0. The derivation of this
equivalence can be found in standard texts on optimal transport/linear programming. In
particular, Hsieh, Shi, and Shum (2021) use a similar set of conditions for their projection
method. Based on this equivalency, the problem of finding critical values for the null hy-
pothesis H0 : φ ≤ φ0 versus the alternative Ha : φ > φ0 can be computed through the
following LPCC which we implement:

φ̂′
β(h1,h2) = max

u,v,p1,p2,s,π
hT
1 u+ hT

2 v, (29)∑
x2

π = p1, (30)∑
x1

π = p2, (31)

Eπϕ ≤ φ0, (32)
u(x1) + v(x2) + s(x1, x2) = ϕ(x1, x2), (33)

[p1,p2] ∈ P̂β, (34)
π, s ≥ 0, (35)

π ≤ 0 ⊥ s ≥ 0. (36)

To test our econometric approach, we conduct a Monte Carlo simulation with two pos-
sibilities for points {0, 1} and five possibilities for rate {3, 3.25, 3.5, 3.75, 4}. Furthermore,
Black and white borrowers choose each of the rate-point options with probability 1

10
such

that the null discrimination of no discrimination in menus is satisfied. We compute P̂β using
the plug-in sup-t band of Montiel Olea and Plagborg-Møller (2019). Let β = 1

10
α follow-

ing Romano, Shaikh, and Wolf (2014), and show the simulated probability that we reject
equality in menus H0 : φ0 = 0 at the α = 0.01, 0.025, 0.05, 0.1 levels in Table 1. As Table 1
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shows, our approach has the approximately correct size across a wide range of sample sizes
and significance levels.

Table 1: Control of our size-corrected directional derivative approaches to inference

Significance level
Sample size 1% 2.5% 5% 10%
n1 = n2 = 500 0.6 2.3 4.7 9.3
n1 = n2 = 1000 0.8 2.9 5.3 9.3
n1 = n2 = 5000 1.1 2.3 4.7 9.1
n1 = n2 = 10000 0.7 2.0 3.8 7.6
n1 = n2 = 50000 0.8 1.9 4.1 8.6

Note: Computed via 2000 sample draws and 500 draws of h1,h2 from the estimated asymptotic multivariate Normal distribution
for p1,p2 within each sample draw.

Compared with existing methodology that can be applied to the optimal transport con-
text, the advantage of our procedure is that it achieves uniform coverage without being overly
conservative. In particular, Hsieh, Shi, and Shum (2021) have a novel projection method
for parameter inference in mathematical programming problems, which is a broader set of
problems than optimal transport, but their approach is conservative. In our empirical con-
text, this conservativeness tends to make the confidence intervals uninformative. Another
approach that is theoretically valid in this setting is the general m-out-of-n subsampling
method of Politis and Romano (1994), but in addition to requiring the researcher to choose
a subsample size m, it can require very large samples for convergence.

We look at the control of these competing approaches at the 5 percent significance level
under our simulation setting in Appendix Table A.1. In that table, HSS (2021) refers to the
projection method of Hsieh, Shi, and Shum (2021), the m-out-of-n subsampling approach
refers to the method of Politis and Romano (1994), and in the final column, the size-corrected
directional derivatives approach is replicated from Table 1 for comparison. Table A.1 shows
that the HSS (2021) approach rejects the null with probability close to 0 percent, consistent
with its conservativeness. On the other hand, the m-out-of-n subsampling approach tends
to reject at rates greater than 5 percent for all values of m we tried, and appears to require
more than 50,000 observations in order to converge to the correct rejection rate, which is
significantly larger than our available sample size.18

18A method related to m-out-of-n subsampling is the numerical bootstrap of Hong and Li (2020), which
can be more data efficient than the subsampling method. But, we were not able to find a suitable choice of
ϵn that converges to the correct coverage in our simulations using that method.
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In Section 5, we also report one-sided confidence intervals from the inversion of our hy-
pothesis test. Nothing in our econometric theory precludes us from also testing the other
direction and reporting two-sided confidence intervals instead.19 However, since our eco-
nomic theory is focused on getting a lower bound for the existence and welfare effects of
discrimination, one-sided confidence intervals are particularly suitable for our purposes.

In summary, in this section we devised a new procedure for inference in optimal transport
that is uniformly valid and not overly conservative for our empirical context. Our empir-
ical analysis in Section 5 shows that we are able to strongly reject equality in menus for
conforming mortgages using our methodology.

5 Empirical Estimates of Mortgage Discrimination

5.1 Data

We apply our methodology to a new data set constructed via matching the 2018–2019 public
Home Mortgage Disclosure Act (HMDA) data to Optimal Blue rate locks. The public HDMA
data contains loan level information along with indicators for borrower race and ethnicity,
and we take the borrowers with an HMDA-derived race of “Black or African American” as our
sample of Black borrowers, borrowers with a derived ethnicity of “Hispanic or Latino” as our
sample of Hispanic borrowers, and borrowers with an HMDA-derived race of “White” along
with a HMDA derived ethnicity of “Not Hispanic or Latino” as our sample of non-Hispanic
white borrowers.

The HMDA data does not contain information on credit scores, and so we supplement it
using data from Optimal Blue. Optimal Blue is a rate locking platform used by lenders that
comprise of 40% of the US mortgage market, and has been used to study many questions
regarding mortgage pricing.20 The data construction process proceeds in two steps. First, we
use year, loan type, loan purpose, occupancy, loan amount, interest rate, LTV (allowing for
a 5% difference), and zip code to match each loan in Optimal Blue to originated loans in the
2018-2019 public HMDA data. For FHA mortgages, we further allow the mortgage insurance
premium to be added to the loan amount. Second, we use the output of the first step to
assign a de-identified set of lender IDs from HMDA to de-identified Optimal Blue lender IDs.
Overall, we were able to uniquely match 55.4% of Optimal Blue rate locks to HMDA, almost
all of which are unique. Our match rate is comparable to a 66% “lock pull-through rate,”

19The other direction may require more computational finesse, however, since it would involve taking the
minimum of a maximum.

20For example, Bhutta, Fuster, and Hizmo (2019), Bhutta and Hizmo (2020), Bhutta and Ringo (2021),
and Fuster, Hizmo, Lambie-Hanson, Vickery, and Willen (2021).
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which is the rate at which locks turn into originated loans, that we understand is reasonable
based on industry sources.

Starting from the uniquely matched HMDA-Optimal Blue matched data set, we further
restrict our analysis to standard 30-year, new-purchase, fixed-rate, first-lien mortgages on
owner-occupied, site-built properties without prepayment-penalties, balloon, interest-only,
negative-amortization, or non-amortizing features. Table 2 compares the HMDA data, which
include the complete set of mortgages originated in the United States with such characteris-
tics, to our matched sample. We find that our matched sample has very similar average loan
sizes, LTVs, rates, points, and the percentage composition of Black and Hispanic borrowers
compared with the HMDA data, as can be seen from Table 2. One known caveat to this
is that lenders using the Optimal Blue platform tend to be smaller lenders, with the larger
lenders being more likely to have their own platform for rate locking.

Table 2: Comparison of means between the 2018–2019 HMDA data and our HMDA-Optimal
Blue matched data

Loan Size LTV Rate Points % Black % Hispanic N

Panel A: Conforming mortgages
HMDA data $261,566 84.4 4.50 0.08 4.5 9.0 3,730,152
Matched sample $258,205 83.5 4.59 0.12 3.9 8.6 817,588
Panel B: FHA mortgages
HMDA data $215,144 96.1 4.57 0.07 14.1 19.7 1,437,088
Matched sample $220,031 95.7 4.63 0.13 13.7 18.8 360,202

Note: This table compares the 2018–2019 HMDA data and our HMDA-Optimal Blue matched sample for 30-year, new-purchase,
fixed-rate, first-lien mortgages on owner-occupied, site-built properties without prepayment-penalties, balloon, interest-only,
negative-amortization, or non-amortization features. Outliers for points above 4 and below –4 and outliers for rates below 2
and above 10.25 were excluded.

To control for the impact of lender and borrower characteristics within each loan pro-
gram, we exactly match observations from Black and non-Hispanic white borrowers without
replacement on groups of covariates, taking a random observation when multiple white bor-
rowers can be matched to a Black borrower. This creates a sample containing equal numbers
of Black and non-Hispanic white borrowers that are exactly matched on their covariates. If
lenders offered Black and non-Hispanic white borrowers the same distribution of menus
conditional on covariates, our covariate-matched sample of Black and non-Hispanic white
borrowers should then have faced the same distribution of menus. The covariates that we
used to match are lender, county, month of lock, four categories of loan amount, eight cat-
egories of FICO scores and nine categories of LTVs as defined in the GSE Loan-Level Price
Adjustment (LLPA) matrix. Thus, we control for the effects of the interactions of all these
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Table 3: Summary statistics on the covariate matched sample

Panel A: Black and Non-Hispanic White Covariate Matched Sample
Conforming FHA

Black White Difference Black White Difference
Raw
Rate Spread (bps) 36.2 31.4 4.8 48.3 45.4 2.9
Points (bps) 12.6 10.1 2.5 10.6 13.6 -3.0
De-meaned & rounded
Rate Spread (bps) 3.1 -1.7 4.8 2.2 -0.7 2.9
Points 1.5 -0.9 2.4 -1.6 1.6 -3.2
Sample size 6,398 6,398 4,711 4,711
Panel B: Hispanic and Non-Hispanic White Covariate Matched Sample

Conforming FHA
Hispanic White Difference Hispanic White Difference

Raw
Rate Spread (bps) 38.3 34.5 3.8 49.3 45.4 3.9
Points (bps) 15.6 11.8 3.8 13.5 13.3 -0.2
De-meaned & rounded
Rate Spread (bps) 2.5 -1.2 3.7 2.6 -1.2 3.8
Points 2.3 -1.3 3.6 -0.1 0.2 -0.3
Sample size 14,758 14,758 6,156 6,156

Note: This table lists the summary statistics for our Black and white as well as Hispanic and non-Hispanic white lender-county-
month and covariate matched sample of 30-year, new-purchase, fixed-rate, first-lien mortgages on owner-occupied, site-built
properties without prepayment-penalties, balloon, interest-only, negative-amortization, or non-amortization features. Outliers
for points above 4 and below –4 were dropped, and all rate spreads were between –1.25 and 3. De-meaned and rounded rates
and points were demeaned by lender-county-month and covariate group and then rounded into the nearest eighths for rate and
halves for points.

covariates in our assessment of equality in menus. This set of controls is similar to what is
used in Bartlett et al. (2021).

Summary statistics for our matched sample are in Table 3. Mortgage interest rates were
measured based on a spread to the Freddie Mac Weekly Survey rate during the week of the
rate lock. For our empirical analysis, we de-mean within each lender-county-month covariate
group and round rates to the nearest eighths and points to the nearest halves, and we show
in Table 3 that this step does not substantively change the mean differences in rates or
points.21

21Both the HMDA data and the Optimal Blue data contain information about discount points paid that
sometimes disagrees with one another. While the literature has used both data sources, we focus on the
HMDA information, because it is more precisely defined as the discount points to reduce the interest rate
in Line A.01 of the Closing Cost Details page of the Closing Disclosure, according to CFPB’s Regulation
C. Furthermore, we find, as shown in Appendix Table A.2, that regression of the HMDA information on
points on origination charges and total loan costs has a much stronger R2, with a coefficient closer to 1,
compared with the Optimal Blue information on points. In a regression controlling for the HMDA points,
the effect of Optimal Blue points has minimal additional explanatory power for origination charges and total
loan costs. We interpret this as suggestive evidence for there being more measurement error in the Optimal
Blue definition of points. Our results using the Optimal Blue data on points are qualitatively similar.
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As shown in Table 3, Black borrowers paid 4.8 basis points more in interest rate and
2.5 basis points more in points for conforming mortgages. On the other hand, they paid
only 2.9 basis points more in interest rate and –3.2 basis points fewer points for FHA mort-
gages. While this comparison of means cannot be interpreted as evidence for or against
discrimination in menus (as we noted in Section 2), it does show that the distribution of
data underlying conforming mortgages is different from the distribution of data for FHA
mortgages. Appendix A.3 shows that the choice of heuristic used in analysis can lead to
contradictory results in the FHA sample.

Note that because our data is limited to the set of mortgages that originated, our results
should be interpreted as assessing differences in menus faced by the set of borrowers who
took out a mortgage. The mortgage pricing discrimination literature including Bartlett et al.
(2021) and Bhutta and Hizmo (2020) has argued that the pricing difference conditional on
origination is policy relevant conditional on our observables. If borrowers that are offered
worse prices are more likely to not get a mortgage at all, the extent of mortgage pricing
differences at the application stage may be larger than what we detect at the origination
stage. Our general methodology could be used to compare differences in menus at both stages
if we had data on the chosen rates and points in the Loan Estimates and Closing Disclosures
as well as at origination. HMDA does not yet collect such data on non-originated mortgage
applications, and so we leave the assessment of mortgage pricing differences at the application
stage for future research.

5.2 Analysis of differences in menus using our metrics

In this section we present our assessment of whether lenders offered minority borrowers worse
menus of rates and points. Table 4 presents results from testing for equality between menus
for Black borrowers and menus for white borrowers using our Definition 1. We find, as shown
in columns (1) and (3), that our test statistic for inequality is positive and highly significant
for both Black and Hispanic borrowers for conforming mortgages. More specifically, for
conforming mortgages in the Black versus non-Hispanic white matched sample, our test
statistic in column (1) is T̂ = 2.69, which indicates that 2.69 percent of Black borrowers’
choices in the data could not have been matched to those of non-Hispanic white borrowers’
choices that could have been on the same menu. Using our inference approach described in
Section 4, we find that statistic is different from zero with p < 0.01. For Hispanic borrowers,
our test statistic is T̂ = 1.60 in column (3), with p < 0.05. For FHA mortgages, on the other
hand, we are unable to reject equality between the menus for Black and non-Hispanic white
borrowers, with a test statistic of T̂ = 0 in column (2), but we are able to reject it at the 10
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percent level for Hispanic and non-Hispanic white borrowers with a test statistic of T̂ = 1.90

in column (4).

Table 4: Results from our test of equality in menus (T̂ ).

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
(1) (2) (3) (4)

Conforming FHA Conforming FHA
Test statistic (T̂ ) 2.69∗∗∗ 0.00 1.60∗∗ 1.90∗

95% CI [0.67, ∞) [0.00, ∞) [0.21, ∞) [0.00, ∞)
N 12,796 9,422 29,516 12,312
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows results from our test for equality in menus based on our Definition 1, with T̂ in units of percentage points.
We use the Black and non-Hispanic white and Hispanic and non-Hispanic white lender-county-month and covariate-matched
samples of 30-year, new-purchase, fixed-rate, first-lien mortgages on owner-occupied, site-built properties without prepayment-
penalties, balloon, interest-only, negative-amortization, or non-amortization features. Outliers for points above 4 and below
–4 were excluded. Confidence intervals are computed through inversion of the hypothesis test as described in Section 4, using
2,000 draws from the asymptotic Normal distribution implied by p̂1, p̂2.

Table 5 presents our results for our differences in menus metric as in Definition 2. Col-
umn (1) shows that for conforming mortgages, Black borrowers on average are willing to pay
at least ˆDIM1→2 = 1.66 basis points more in interest rates in order to get the non-Hispanic
white borrowers’ menus for conforming mortgages. This again rejects equality in menus and
indicates that the distribution of menus faced by black borrowers is worse than that faced
by white borrowers. Similarly, Column (3) shows that Hispanic borrowers are willing to pay
at least ˆDIM1→2 = 1.46 basis points more in order to get the non-Hispanic white borrowers’
menus. Both of these statistics are significant at the 1% level. Our lower bound for how
much more in interest rates non-Hispanic white borrowers would be willing to pay to switch
to minority menus, on the other hand, are consistently negative. The magnitudes of these
point estimates are small, even a small difference in interest rate at origination leads to a
large difference in payments over the lifetime of the mortgage, as explained in Bartlett et al.
(November 2019).
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Table 5: Results for our lower bound for the average interest rate increase (bps) needed for
consumers to remain indifferent after switching to another group’s menus ( ˆDIM)

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
Conforming FHA Conforming FHA

(1) (2) (3) (4)
Minority to white ( ˆDIM1→2) 1.66∗∗∗ -1.83 1.46∗∗∗ -0.91
95% CI [1.09, ∞) [-2.60, ∞) [1.03, ∞) [-1.89, ∞)
White to minority ( ˆDIM2→1) -6.16 -7.03 -6.04 -7.57
95% CI [-6.82, ∞) [-7.85, ∞) [-6.40, ∞) [-8.24, ∞)
N 12,796 9,422 29,516 12,312
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows results for our metric for differences in menus (DIM) based on our Definition 2, with ˆDIM in units of
basis points. We use the Black and non-Hispanic white and Hispanic and non-Hispanic white lender-county-month and covariate
group matched samples of 30-year, new-purchase, fixed-rate, first-lien mortgages on owner-occupied, site-built properties without
prepayment-penalties, balloon, interest-only, negative-amortization, or non-amortization features. Outliers for points above 4
and below –4 were excluded. P-values were computed using 2,000 draws from the asymptotic Normal distribution implied by
p̂1, p̂2 using our procedure in Section 4, and confidence intervals are computed through inversion of the hypothesis test. The
sample sizes for the conforming and FHA Black versus non-Hispanic white matched samples are equal by coincidence.

In summary, we find that lenders offered Black and Hispanic borrowers a distribution of
menus that was different from the distribution they offered non-Hispanic white borrowers for
conforming mortgages. In particular, 2.69 percent of Black borrowers’ choices were unable
to be matched to non-Hispanic white borrowers based on column (1) of Table 4, and for
those unmatched Black borrowers their minimum willingness to pay to switch to unmatched
non-Hispanic white borrowers’ menus is at least 62 basis points (1.66/0.0269, combining
with information in column (1) of Table 5). Similarly, column (3) of Table 4 shows that 1.46
percent of Hispanic borrowers’ choices were unable to be matched to those of non-Hispanic
white borrowers, with an average willingness to pay to switch to unmatched non-Hispanic
white borrowers’ menus being at least 91 basis points among those borrowers (1.46/0.0160,
combining with information in column (3) of Table 5).

On the other hand, our results for FHA mortgages is more mixed: Column (2) of Table 4
shows that we cannot reject equality between the menus for Black and non-Hispanic white
borrowers for FHA mortgages, and while column (4) of Table 4 shows that we are able to do
so for Hispanic and non-Hispanic white borrowers at the 10 percent level, we are unable to
reject a zero DIM metric in column (4) of Table 5 in terms of the average increase in rate that
Hispanic borrowers would be willing to pay in order to receive the menus of non-Hispanic
white borrowers.
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5.3 Further analyses of differences in menus

To further explore where differences in menus occurs, we divide the sample into different
LTV and FICO buckets. We detect more discrimination among the conforming, lower LTV
and higher FICO (that is, more creditworthy) borrowers. In particular, focusing on the DIM
metric, columns (1) and (3) of Table 6 show that we detect large differences in menus for
conforming mortgages in the LTV under 75 and LTV of 75 to 80 categories, such that Black
and Hispanic borrowers would be willing to pay 6-7 basis points to switch to non-Hispanic
white menus. Over a 80 LTV, we can no longer say that Black and Hispanic borrowers would
be willing to switch to non-Hispanic white menus. The results by FICO shown in Table 7 is
more mixed, but suggests that our DIM metric is in general increasing in the FICO scores
of conforming Black and Hispanic borrowers.

An internally consistent explanation for the fact that we primarily detect mortgage pric-
ing discrimination among conforming, low-LTV borrowers is that lenders are more willing
to offer discretionary discounts to the creditworthy non-Hispanic white borrowers, and less
willing to do so for minority borrowers who are similarly creditworthy in terms of their un-
derwriting variables. In particular, as shown in Ambrose, Conklin, and Lopez (2020), racial
differences in default risk are very low among lower-LTV and higher-FICO borrowers, and
in any case they are insured. Furthermore, it seems unlikely given the strict regulatory en-
vironment surrounding the mortgage market that lenders would condition their rate sheets
and first offers based on race. Therefore, by process of elimination, we believe that the
search and negotiation process, particularly for the more creditworthy borrowers, may play
an important role in the within-lender disparate outcomes we find.
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Table 6: Analysis of differences in menus comparing borrowers across categories of loan-to-
value (LTV) ratio

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
(1) (2) (3) (4)

Conforming FHA Conforming FHA
Panel A: Test of Equality in Menus (T̂ )
LTV ≤ 75 (T̂ ) 11.01∗∗ - 8.26∗∗∗ -
95% CI [0.34, ∞) - [2.45, ∞) -
75 < LTV ≤ 80 (T̂ ) 7.82∗∗∗ - 7.30∗∗∗ -
95% CI [2.55, ∞) - [4.08, ∞) -
80 < LTV ≤ 90 (T̂ ) 1.52 - 0.67 -
95% CI [0, ∞) - [0, ∞) -
90 < LTV ≤ 95 (T̂ ) 0.93 - 0.80 -
95% CI [0, ∞) - [0, ∞) -
LTV > 95 (T̂ ) 1.82 0.17 0.90 1.77
95% CI [0, ∞) [0, ∞) [0, ∞) [0, ∞)
Panel B: Difference in Menus ( ˆDIM) Metric
LTV ≤ 75 (T̂ ) 7.37∗∗∗ - 5.80∗∗∗ -
95% CI [4.91, ∞) - [4.16, ∞) -
75 < LTV ≤ 80 ( ˆDIM1→2) 6.13∗∗∗ - 5.16∗∗∗ -
95% CI [4.54, ∞) - [4.33, ∞) -
80 < LTV ≤ 90 ( ˆDIM1→2) 0.18 - -1.30 -
95% CI [-1.04, ∞) - [-2.25, ∞) -
90 < LTV ≤ 95 ( ˆDIM1→2) -0.29 - 0.22 -
95% CI [-0.91, ∞) - [-0.32, ∞) -
LTV > 95 ( ˆDIM1→2) -0.53 -1.76 -2.19 -1.18
95% CI [-1.58, ∞) [-2.45, ∞) [-3.93, ∞) [-1.73, ∞)
NLTV≤75 840 0 3,142 0
N75<LTV≤80 3,002 0 8,492 0
N80<LTV≤90 1,714 0 3,988 88
N90<LTV≤95 4,844 86 9,742 162
NLTV>95 2,396 9,302 4,152 12,060
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Panel A shows results for our test of equality in menu (T̂ ) in units of percentage points based on our Definition 1, and
Panel B shows our metric for differences in menus ( ˆDIM) in units of basis points based on our Definition 2, with ˆDIM in
units of basis points. We match on lender-county-month and covariate groups for 30-year, new-purchase, fixed-rate, first-lien
mortgages on owner-occupied, site-built properties without prepayment-penalties, balloon, interest-only, negative-amortization,
or non-amortization features. Outliers for points above 4 and below –4 were excluded. Confidence intervals are computed
through inversion of the hypothesis test as described in Section 4, using 2,000 draws from the asymptotic Normal distribution
implied by p̂1, p̂2. Categories with under 500 observations are omitted.
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Table 7: Analysis of differences in menus comparing borrowers across categories of FICO
scores

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
(1) (2) (3) (4)

Conforming FHA Conforming FHA
Panel A: Test of Equality in Menus (T̂ )
FICO ≥ 740 (T̂ ) 3.08∗∗∗ 9.23 2.59∗∗∗ 1.78
95% CI [0.37, ∞) [0, ∞) [1.04, ∞) [0, ∞)
700 ≤ FICO < 740 (T̂ ) 3.15 7.79 0.91 9.35∗∗

95% CI [0, ∞) [0, ∞) [0, ∞) [0.87, ∞)
660 ≤ FICO < 700 (T̂ ) 4.38 2.22 3.99 6.53∗∗∗

95% CI [0, ∞) [0, ∞) [0, ∞) [1.93, ∞)
620 ≤ FICO < 660 (T̂ ) - 1.57 - 1.17
95% CI [0, ∞) [0, ∞)
FICO < 620 (T̂ ) - 1.67 - 0.17
95% CI [0, ∞) [0, ∞)
Panel B: Difference in Menus ( ˆDIM) Metric
FICO ≥ 740 ( ˆDIM1→2) 1.84∗∗∗ -0.59 2.16∗∗∗ -1.33
95% CI [1.10, ∞) [-3.13, ∞) [1.71, ∞) [-3.84, ∞)
700 ≤ FICO < 740 ( ˆDIM1→2) 2.19∗∗ -2.97 -0.74 -1.30
95% CI [0.90, ∞) [-5.22, ∞) [-1.64, ∞) [-2.83, ∞)
660 ≤ FICO < 700 ( ˆDIM1→2) 1.53 -2.09 1.16 0.72
95% CI [-0.70, ∞) [-3.30, ∞) [-1.31, ∞) [-0.23, ∞)
620 ≤ FICO < 660 ( ˆDIM1→2) - - - -1.06
95% CI [-2.36, ∞) [-2.14, ∞)
FICO < 620 ( ˆDIM1→2) - -2.82 - -5.66
95% CI [-3.89, ∞) [-7.81, ∞)
NFICO≥740 9,914 354 22,964 662
N700≤FICO<740 2,002 612 4,590 1,108
N660≤FICO<700 738 2,884 1,680 4,008
N620FICO<660 142 4,372 282 5,188
NFICO<620 0 1,200 0 1,346
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Panel A shows results for our test of equality in menu (T̂ ) in units of percentage points based on our Definition 1 and
Panel B shows our metric for differences in menus ( ˆDIM) in units of basis points based on our Definition 2, with ˆDIM in
units of basis points. We match on lender-county-month and covariate groups for 30-year, new-purchase, fixed-rate, first-lien
mortgages on owner-occupied, site-built properties without prepayment-penalties, balloon, interest-only, negative-amortization,
or non-amortization features. Outliers for points above 4 and below –4 were excluded. Confidence intervals are computed
through inversion of the hypothesis test as described in Section 4, using 2,000 draws from the asymptotic Normal distribution
implied by p̂1, p̂2. Categories with under 500 observations are omitted.
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5.4 Robustness

In Section 5.2 we showed that lenders offered Black and Hispanic borrowers a less advan-
tageous distribution of menus compared to observationally similar non-Hispanic white bor-
rowers for conforming mortgages. In this section we conduct a series of robustness checks
that rule out some explanations for this finding.

5.4.1 Multi-product discounts

One possible reason why minorities may receive worse menus of rates and points is that they
are less likely to be offered multi-product discounts set by banks. For example, banks may
offer discounts on rates and points based the amount of deposits a borrower hold with them.
To check whether this explains our findings, Table 8 replicates our analysis for a sample of
non-bank lenders. These are lenders that do not offer the depository services that banks do,
and focus primarily on mortgage lending. As Table 8 shows, our results are robust to this
sample restriction. Indeed, the point estimates for both our test of equality in menu (T̂ ) and
our differences in menus ( ˆDIM) increased under this specification. These results suggests
that multi-product discounts offered by banks is not an explanation for the racial differences
in menus.
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Table 8: Analysis of differences in menus after restricting to non-bank lenders

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
(1) (2) (3) (4)

Conforming FHA Conforming FHA
Panel A: Test of Equality in Menus (T̂ )
T̂ 2.38∗∗∗ 0.87 2.46∗∗∗ 1.84
95% CI [0.77, ∞) [0, ∞) [0.86, ∞) [0, ∞)
Panel B: Difference in Menus ( ˆDIM) Metric
Minority to white ( ˆDIM1→2) 2.04∗∗∗ -1.37 1.96∗∗ -1.34
95% CI [1.37, ∞) [-2.27, ∞) [1.37, ∞) [-2.03, ∞)
White to minority ( ˆDIM2→1) -6.57 -7.56 -6.67 -7.66
95% CI [-7.21, ∞) [-8.36, ∞) [-7.13, ∞) [-8.36, ∞)
N 10,128 8,106 24,358 10,852
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Panel A shows results for our test of equality in menu (T̂ ) in units of percentage points based on our Definition 1, and Panel
B shows our metric for differences in menus ( ˆDIM) in units of basis points based on our Definition 2, with ˆDIM in units of basis
points. We match on lender-county-month and covariate groups plus loan originator compensation for 30-year, new-purchase,
fixed-rate, first-lien mortgages on owner-occupied, site-built properties without prepayment-penalties, balloon, interest-only,
negative-amortization, or non-amortization features. The sample is further restricted to non-bank lenders as defined in the
HMDA lender file constructed by Robert Avery. Outliers for points above 4 and below –4 were excluded. Confidence intervals
are computed through inversion of the hypothesis test as described in Section 4, using 2,000 draws from the asymptotic Normal
distribution implied by p̂1, p̂2.

5.4.2 Loan originator compensation

Another possibility that may explain the differences in menus that we detect is that minority
borrowers may be more likely to get mortgages from loan originators that charge more for
their services. Within a mortgage bank, some loan originators may provide more services
in exchange for a higher compensation, and such differences in compensation would be
mechanically reflected in the menus they present to borrowers. Our Optimal Blue data
contains information on loan originator compensation for a subsample of lenders. To check
whether this explains our findings, we conduct a robustness check by matching on levels
of loan originator compensation, rounded to the nearest 1 percent of the loan amount, in
addition to our usual covariates. The results are shown in Table 9. In particular, Table 9
shows that while our T̂ results lost significance likely due to the impact of smaller samples, the
level and significance of our differences in menus ˆDIM results are qualitatively unchanged.
In particular, the point estimate for our minority-to-white ˆDIM1→2 measure for conforming
mortgages increased from 1.66 to 2.18 for Black borrowers and from 1.46 to 1.54 for Hispanic
borrowers. This suggests that differences in loan originator compensation does not explain
our results.
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Table 9: Analysis of differences in menus after further matching on loan originator compen-
sation

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
(1) (2) (3) (4)

Conforming FHA Conforming FHA
T̂ 4.62 3.48 2.13 4.83∗

95% CI [0, ∞) [0, ∞) [0, ∞) [0, ∞)
Minority to white ( ˆDIM1→2) 2.18∗∗∗ 0.49 1.54∗∗ -1.09
95% CI [0.81, ∞) [-0.94, ∞) [0.55, ∞) [-2.21, ∞)
White to minority ( ˆDIM2→1) -4.86 -8.28 -5.87 -7.56
95% CI [-6.11, ∞) [-9.90, ∞) [-6.83, ∞) [-8.51, ∞)
N 1,818 1,818 5,290 2,438
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Panel A shows results for our test of equality in menu (T̂ ) in units of percentage points based on our Definition 1, and
Panel B shows our metric for differences in menus ( ˆDIM) in units of basis points based on our Definition 2, with ˆDIM in
units of basis points. We match on lender-county-month and covariate groups plus loan originator compensation for 30-year,
new-purchase, fixed-rate, first-lien mortgages on owner-occupied, site-built properties without prepayment-penalties, balloon,
interest-only, negative-amortization, or non-amortization features. Outliers for points above 4 and below –4 were excluded.
Confidence intervals are computed through inversion of the hypothesis test as described in Section 4, using 2,000 draws from
the asymptotic Normal distribution implied by p̂1, p̂2.

5.4.3 Endogeneity of LTV

Finally, we explore the possibility that the borrower may simultaneously choose their loan-to-
value (LTV) ratio along with their rate/points choice. Our focus on the rate and points choice
takes as given a plausible setting in which borrowers make their mortgage size choice before
shopping for rates and points. Indeed, most price comparison websites require borrowers
to enter their property and loan amount information before showing offers with different
rate and points choices, which supports such an assumption. Nevertheless, it is possible
that some borrowers may be able to jointly optimize on points and LTV. To investigate this
possibility, we show in Table 10 the results of running our algorithm on only a sample of
borrowers with an LTV of exactly 80. These borrowers are more likely to be constrained
in their LTV choices. Results of Table 10 show that we detect large differences in menus
among this sub-population, with magnitudes that are consistent with the 75-80 LTV sample
in Table 6. Thus, we conclude that joint optimization of LTV and points is likely not a
driver of the racial differences in menus that we detect.
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Table 10: Analysis of differences in menus after restricting to borrowers with exactly 80 LTV

Black vs Non-Hispanic White Hispanic vs Non-Hispanic White
(1) (2) (3) (4)

Conforming FHA Conforming FHA
T̂ 8.27∗∗∗ - 9.08∗∗∗ -
95% CI [2.42, ∞) - [5.25, ∞) -
Minority to white ( ˆDIM1→2) 5.81∗∗∗ - 6.09∗∗∗ -
95% CI [4.21, ∞) - [5.13, ∞) -
White to minority ( ˆDIM2→1) -10.71 - -5.87 -
95% CI [-11.90, ∞) - [-11.70, ∞) -
N 2,600 - 7,318 -
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: Panel A shows results for our test of equality in menu (T̂ ) in units of percentage points based on our Definition 1, and
Panel B shows our metric for differences in menus ( ˆDIM) in units of basis points based on our Definition 2, with ˆDIM in
units of basis points. We match on lender-county-month and covariate groups for 30-year, new-purchase, fixed-rate, first-lien
mortgages on owner-occupied, site-built properties without prepayment-penalties, balloon, interest-only, negative-amortization,
or non-amortization features, and restrict our sample to borrowers with a loan-to-value ratio of exactly 80. Outliers for points
above 4 and below –4 were excluded. Confidence intervals are computed through inversion of the hypothesis test as described
in Section 4, using 2,000 draws from the asymptotic Normal distribution implied by p̂1, p̂2.

6 Discussion
We identify a “menu problem” that confounds the estimation of mortgage pricing discrim-
ination, which stems from potential unobserved preference heterogeneity across borrower
groups. We also devise a new methodology for assessing differences in menus that is robust
to such preference heterogeneity, and use it to produce new estimates of mortgage pricing
discrimination. Empirically, we find that mortgage pricing differentials by race still exists,
particularly among lower LTV conforming borrowers.

While the menu problem is broadly relevant, our specific methodology for addressing it
is unlikely to be the final word on the problem. The main benefit of our approach is that it
requires relatively few assumptions to be valid. One promising path for future methodological
research is the exploration of alternative avenues of identification for assessing differences in
menus.

Finally, the “menu problem” we identify suggests that the typical administrative data
on borrower choices falls short of ideal in terms of assessing discrimination in menus. As
such, collecting actual data on menus faced by borrowers of different races, perhaps in a
field-experiment/audit study setting, would be another valuable contribution.
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A.1 Proofs of results

A.1.1 Proof of Theorem 1

Proof. In the forward direction, if such a π(x1, x2) exists, then it is possible to construct a
series of menus m = {x1, x2} for each {x1, x2} such that ϕ(x1, x2) = 1, each appearing with
probability g1(m) = g2(m) = π(x1, x2), from which group 1 consumers chose x1 and group
2 consumers chose x2. Under this construction, the distributions of menus across the two
groups are equal such that M1 = M2, and the choice probabilities are rationalized. The
reverse direction follows from the fact that, denoting c(x1, x2|m) by the probability that
group 1 consumers choose x1 ∈ m and group 2 consumers choose x2 ∈ m given a menu
m, we can construct the required π(x1, x2) =

∑
m c(x1, x2|m)g(m) for any c(x1, x2|m), g(m)

where g(m) = g1(m) = g2(m).

A.1.2 Proof of Theorem 2

Proof. Under constant marginal utility in interest rate, Equations (11) and (12) imply that
ui(mj) − ui(mi) = βdi→j(mi,mj) ≥ βd1→2(x1, x2) for some constant β. Then, by property
of minimum we must have βDIM1→2 ≤ ∆WI1→I2,π,∀π, with β ≡ 1 if utility were measured
in terms of interest rate paid.

A.1.3 Proof of Theorem 3

Proof. First, we show that φ is Gâteaux directionally differentiable in the sense that the
limit:

φ′
p1,p2

(h1,h2) = lim
t→0+

φ(p1 + th1,p2 + th2)− φ(p1,p2)

t
(37)

exists for all and is equal to that given by Equation (22) for {p1,p2} ∈ Dφ and {h1,h2} ∈ D0.
To do this, without loss of generality letting ϕ∗ = ϕ+M,M = sup |ϕ| such that ϕ∗ ≥ 0 and
φ = φ∗ −M , we transform the problem to standard linear programming form:

φ∗ = min
π
Eπϕ

∗ s.t. Ex2π ≥ p1, Ex1π ≥ p2,π ≥ 0 (38)

and then use Theorem 3.1 of Gal and Greenberg (2012), who set out conditions for the
Gâteaux directional differentiability of standard linear programs with inequality constraints.
In particular, we need to check primal and dual stability in the sense that, if we let Π∗(p1, p2)

be the set of primal solutions to the linear programming problem in Equation (38), then the
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set of primal solutions reachable from perturbations in the direction {h1, h2} is non-empty,
such that:

Π∞({p1,p2}, {h1,h2}) = {π : {πk} → π for some {ϵk → 0+}, (39)
with πk ∈ Π∗(p1 + ϵkh1,p2 + ϵkh2)} ̸= ∅, (40)

and analogously for dual solutions. This can be done by referencing existing results:

1. Since {p1 + ϵkh1,p2 + ϵkh2} are a series of probability measures for ϵk ≤ 1, primal
stability in the sense of Equation (39) is guaranteed by Theorem 5.19 in Villani (2008).

2. Similarly, dual stability is guaranteed by Theorem 1.52 in Santambrogio (2015), in
particular by taking the sequence of c-concave Kantorovich potentials corresponding
to (p1 + ϵkh1,p2 + ϵkh2)}.

Therefore, φ∗ is Gâteaux differentiable. Second, we show that φ∗ is Lipschitz, such
that the Gâteaux directionally differentiability of φ∗ is equivalent to Hadamard direction-
ally differentiability following Shapiro (1990). For the l1 norm l1({p1,1,p1,2}, {p2,1,p2,2}) =∑

x |p1,1(x)− p1,2(x)|+ |p2,1(x)− p2,2(x)|, we will show that:

|φ∗(p1,1,p1,2)− φ∗(p2,1,p2,2)| ≤Ml1({p1,1,p1,2}, {p2,1,p2,2}) (41)

More specifically, let p−
1 = min{p1,1,p1,2},p+

1 = max{p1,1,p1,2}, and analogously for
p−
2 ,p

+
2 . By construction we know that φ∗(p−

1 ,p
−
2 ) ≤ φ∗(p1,1,p1,2), φ

∗(p2,1,p2,2) and φ∗(p+
1 ,p

+
2 ) ≥

φ∗(p1,1,p1,2), φ
∗(p2,1,p2,2), and therefore:

φ∗(p1,1,p1,2)− φ∗(p+
1 ,p

+
2 ) ≤ φ∗(p1,1,p1,2)− φ∗(p2,1,p2,2) ≤ φ∗(p1,1,p1,2)− φ∗(p−

1 ,p
−
2 )

(42)

Furthermore, we know that φ∗(p1,1,p1,2) − φ∗(p−
1 ,p

−
2 ) ≤ Ml1 since taking the optimal

plan from π− = φ∗({p−
1 ,p

−
2 }) and then constructing a plan π−,∗ = π− + (p1,1 − p−

1 )(p1,2 −
p−
2 ) yields an upper bound for the value value φ∗(p1,1,p1,2) ≤ Eπ−,∗ϕ = φ∗({p−

1 ,p
−
2 }) +

E(p1,1−p−
1 )(p1,2−p−

2 )ϕ ≤ φ∗({p−
1 ,p

−
2 }) +M

∑
(p1,1 − p−

1 )(p1,2 − p−
2 ) ≤ φ∗({p−

1 ,p
−
2 }) +Ml1.

Similarly, we have that φ∗(p1,1,p1,2)−φ∗(p+
1 ,p

+
2 ) ≥ −Ml1. Substituting into Equation (42)

yields:

−Ml1 ≤ φ∗(p1,1,p1,2)− φ∗(p2,1,p2,2) ≤Ml1 (43)

which implies Equation (41) and that the mapping φ∗ is Lipschitz.
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A.1.4 Proof of Corollary 1

Proof. Suppose we knew the true p1,p2. Then, the “oracle” analogue of the critical value
at level 1− α + β conditional on the true p1,p2 is:

ĉo1−α+β = inf{c ∈ R : Pr(ψ̂′
p1,p2

(h1,h2) ≤ c) ≥ 1− α + β} (44)

By construction, ĉ1−α+β ≥ ĉo1−α+β whenever [p1,p2] ∈ P̂β. Therefore, if we let the event
[p1,p2] ∈ P̂n,β be E and [p1,p2] /∈ P̂n,β be ¬E, it follows that:

Pr(ψ̂ ≥ ĉ1−α+β) = Pr(ψ̂ ≥ ĉ1−α+β|E) Pr(E) + Pr(ψ̂ ≥ ĉ1−α+β|¬E) Pr(¬E) (45)
≤ Pr(ψ̂ ≥ ĉo1−α+β) Pr(E) + Pr(ψ̂ ≥ ĉ1−α+β|¬E) Pr(¬E) (46)
≤ Pr(ψ̂ ≥ ĉo1−α+β) + Pr(¬E) (47)

By property of limsup, we know that:

lim sup
n→∞

Pr
p1,p2

(φ̂n ≥ ĉn,1−α+β) ≤ lim sup
n→∞

Pr(ψ̂n ≥ ĉon,1−α+β) + lim sup
n→∞

Pr([p1,p2] /∈ P̂n,β) (48)

By Equation (24) and the Portmanteau Theorem, we have:

lim sup
n→∞

Pr
p1,p2

((φ̂n ≥ ĉon,1−α+β)) ≤ α− β (49)

By Equation (25) for the uniform confidence band, we know that:

lim sup
n→∞

Pr
p1,p2

([p1,p2] /∈ P̂n,β) ≤ β (50)

Combining the two parts, we have:

lim sup
n→∞

Pr
p1,p2

(φ̂n ≥ ĉn,1−α+β) ≤ β + (α− β) = α (51)

as required.
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A.2 Additional Tables and Figures

Figure A.1: Screenshot of advertised rate and closing cost table

Note: This figure shows a screenshot obtained by the authors from Bankrate.com for a $300,000 refinancing mortgage with
baseline characteristics on December 19, 2020. It shows how a borrower may choose to pay 0 points for a 2.500% interest
rate mortgage, 0.67 points for a 2.375% interest rate mortgage, or 1.404 points for a 2.250% interest rate mortgage. Also,
lender review websites such as NerdWallet and MortgageWaldo evaluate lenders based on both interest rates and discount
points/closing costs.
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Figure A.2: How the choice of which menu dimension to condition on can yield contradictory
results

rate

discount points paid

data for minorities

data for whites

Note: This Figure shows that a “contradictory” assessment of discrimination can appear nonlinearly, and it complements the
linear regression case of Figure 2.

Figure A.3: Implied interest rate decrease per point paid, based on randomly sampled pairs
of borrowers

(a) Conforming mortgages
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(b) FHA mortgages
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Note: these figures are constructed using HMDA-Optimal Blue matched data discussed in Section 5. Pairs of borrowers are
sampled conditional on lender, lock date, type of mortgage, LLPA group, and loan amount group. The implied interest rate
decrease for each point paid is estimated by taking the pairs of borrower rate and point choices and computing − r2−r1

y2−y1
, where

r1, r2 are the interest rates paid by the borrowers and y1, y2 are the discount points paid by the borrowers. Values below -4
and above 4 are replaced with -4 and 4, respectively. The red lines in Figure A.3a represent 1/8 and 1/4, which is the plausible
range of menu slopes discussed in Bartlett et al. (November 2019). The red lines in Figure A.3b represent 1/32 and 1/4, which
is the plausible range of menu slopes we find based on rate sheet data, as shown in Figure 9b.
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Table A.1: Other approaches to inference in optimal transport, compared with our size-
corrected directional derivatives approach

HSS (2021) m out of n subsampling Size-corrected
m = n2/3 m = n1/2 m = n1/3 directional derivatives

n1 = n2 = 500 0.0 31.8 21.9 16.2 4.4
n1 = n2 = 1000 0.0 28.3 18.4 12.5 4.7
n1 = n2 = 5000 0.0 20.0 11.3 8.6 4.8
n1 = n2 = 10000 0.1 18.3 10.3 8.4 5.8
n1 = n2 = 50000 0.0 13.7 8.6 6.5 5.0

Note: Entries represent the probability of rejecting the null at the 5 [percent level. The control of the subsampling approach
is taken with subsample size m as indicated, with n = n1n2

n1+n2
= 1

2
n1. The control of our size-corrected directional derivatives

approach was computed via 2000 sample draws and 500 draws of h1, h2 from the estimated asymptotic multivariate Normal
distribution for p1, p2 within each sample draw.

Table A.2: Regressions of origination costs and total loan costs as a percentage of the loan
amount on HMDA’s information on points (hmda_points) versus Optimal Blue’s information
on points (ob_points)

Origination costs Total loan costs
(1) (2) (3) (4) (5) (6)

hmda_points 0.915∗∗∗ 0.902∗∗∗ 0.940∗∗∗ 0.941∗∗∗

(0.00277) (0.00308) (0.00372) (0.00463)

ob_points 0.469∗∗∗ 0.0200∗∗∗ 0.474∗∗∗ 0.00531
(0.00377) (0.00220) (0.00434) (0.00361)

_cons 0.580∗∗∗ 0.560∗∗∗ 0.575∗∗∗ 2.194∗∗∗ 2.174∗∗∗ 2.190∗∗∗

(0.000432) (0.00129) (0.000591) (0.000577) (0.00149) (0.000927)
N 1224911 1221338 1221208 1224417 1220921 1220715
R2 0.553 0.231 0.553 0.233 0.093 0.232
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The sample consists of the conforming and FHA purchase mortgages originated within the retail channel within our
2018–2019 HMDA-Optimal Blue matched sample. In each regression, we excluded observations with extreme outliers for points
(below –4 or above 4) and for origination costs and total loan costs as a percentage of the loan amount below –3 percent or
above 10 percent. All regressions include lender by county by year by product type fixed effects. Standard errors were also
clustered at the lender by county by year by product type level.
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Table A.3: Assessments of lender discrimination using two heuristic approaches in the Black
and non-Hispanic white matched sample

Heuristic 1 Heuristic 2 Alternate Heuristic 1
Conforming FHA Conforming FHA Conforming FHA

(1) (2) (3) (4) (5) (6) (7) (8)
points points rate_1/8 rate_1/4 rate_1/32 rate_1/4 rate rate

black 4.482∗∗∗ -0.908 2.905∗∗∗ 3.309∗∗∗ 3.032∗∗∗ 2.519∗∗∗ 2.627∗∗∗ 2.983∗∗∗

(0.994) (1.319) (0.327) (0.376) (0.436) (0.509) (0.322) (0.437)

Rate Decile FE Yes Yes No No No No No No
Points Decile FE No No No No No No Yes Yes
N 12278 9208 12278 12278 9208 9208 12278 9208
R2 0.041 0.025 0.006 0.006 0.005 0.003 0.023 0.025
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents heuristic analyses of data for our Black and non-Hispanic white lender-county-month and covariate-
matched sample of 30-year, new-purchase, fixed-rate, first-lien mortgages on owner-occupied, site-built properties with-
out prepayment-penalties, balloon, interest-only, negative-amortization, or non-amortization features. Outliers for points
above 4 and below –4 were excluded, and rate spreads below –55 basis points and above 90 basis points were excluded.
Columns (1) and (2) presents OLS regressions of points on a dummy variable indicating if a borrower is black along with deciles
of rate, for conforming and FHA mortgages. Columns (7) and (8) presents an alternative version of this heuristic by running
a OLS regression of rate on a dummy variable indicating if a borrower is black along with deciles of points. Columns (3)-(6)
shows results of OLS regressions on the “points-adjusted rate” where the adjustment factor is shown in the underscore.
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