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1 Introduction

Real house prices in the United States rose by nearly 80% between 1997 and 2006 and then

lost over two-thirds of their gain between 2006 and 2012. The boom-bust cycle was even

more dramatic in some cities, with the areas experiencing the most rapid price growth

during the boom also having the largest price declines during the bust. The sharpness of

this cycle and the role it played in triggering the Great Recession have made it among

the most consequential and studied asset price cycles in recent history. The predominant

view is that the boom-bust was the result of the emergence and popping of a house price

“bubble” that was not rooted in economic fundamentals and instead due to changes in

credit or sun-spot beliefs (Shiller, 2008; Charles et al., 2018; Kaplan et al., 2020).

We reevaluate the 2000s housing cycle from the perspective of 2020.1 National real

house prices grew steadily between 2012 and 2019, with the largest price growth in the

same areas that had the largest booms between 1997 and 2006 and busts between 2006

and 2012. As a result, the areas that had the largest booms also had higher long-run price

growth over the entire 1997-2019 period. With “2020 hindsight,” the 2000s housing cycle

is not a boom-bust but rather a boom-bust-rebound.

We argue that this pattern reflects a larger role for fundamentals than previously

thought. In a first step, we use a standard spatial equilibrium framework to motivate

several determinants of house prices. We find that these explain cross-city variation in

long-run house price growth in reduced-form and structural supply regressions as well

as the amplitude of the boom-bust-rebound across cities and severity of the foreclosure

crisis. In a second step, we introduce a “neo-Kindlbergererian” model of a fundamentally-

rooted house price cycle in which belief over-reaction amplifies the boom and a foreclosure

1We consider developments up to 2020 due to the COVID-19 Pandemic dramatically altering the economy
and housing market.

1



spiral exacerbates the bust, and discipline the model with our empirical moments. The

estimated model generates the boom-bust-rebound from a single fundamental shock and

quantitatively matches the cross-city patterns.

Our analysis starts in Section 2 by establishing the strong cross-sectional correlation

of price growth across the boom, bust, and rebound. We use the national time series

to break the cycle into a boom from 1997-2006, bust from 2006-2012, and rebound from

2012-2019. At the ZIP Code level, the boom correlates negatively with the bust but the

bust correlates negatively with the rebound, each with an R2 above 0.35. As a result, the

boom correlates strongly with price growth between 1997 and 2019, with an R2 of 0.62.

Section 3 introduces a simple spatial equilibrium empirical framework to shed light

on whether price growth over the boom-bust-rebound reflects fundamental forces. Build-

ing on the work of Saiz (2010), we derive a structurally-interpretable long-run supply

regression of house price growth as a function of population growth, the land share of

prices, regulation, and their interactions. In this framework, omitted variables such as

cost shocks that increase prices but deter population pose a threat to identification. We

follow Saiz (2010), Diamond (2016), and others in selecting excluded instruments, includ-

ing land unavailability, initial population density, shift-share predictors of local wages and

employment, amenities, and taste-based determinants of regulation.

Section 4 contains the empirical analysis of our framework. The excluded instruments,

which are all determined prior to the boom, strongly predict house price growth over

the boom-bust-rebound as well as the house price determinants of population growth,

land share, and regulation. In reduced form, they explain nearly 60% of the cross-city

variation in house price growth over 1997-2019. The structural IV relationship also has

strong explanatory power and the implied supply elasticities are in line with the existing

literature. We show extensive robustness to the measurement of prices and population,
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the excluded instrument set, included covariates, and specification.

We define a city’s long-run fundamental as the linear combination of excluded instru-

ments that is the second stage fitted value. Areas with higher fundamentals have larger

booms, deeper busts, stronger rebounds, and more severe foreclosure crises during the

bust. Importantly, our empirical approach in no way requires a correlation between fun-

damentals and the amplitude of the cycle or the magnitude of foreclosures.

We validate our measurement of fundamentals by examining whether increases in price-

rent ratios in the boom forecast subsequent rent growth or price declines, motivated by

the user cost approach in urban economics (Poterba, 1984) and the Campbell-Shiller de-

composition in asset pricing (Campbell and Shiller, 1988a,b). Unconditionally, areas with

higher price-rent growth in the boom have higher subsequent rent growth and relative price

declines in comparison to other areas. Strikingly, the part of price-rent growth correlated

with the long-run fundamental predicts only subsequent rent growth and no price decline,

consistent with our labeling this component a fundamental.

Section 5 contains our neo-Kindlebergerian interpretation of these new empirical facts.

Kindleberger (1978) presents a historical narrative of asset cycles that start with an im-

provement in an economic fundamental, boom as the result of over-optimism and credit

expansion, and crash when the optimism corrects and levered investors are forced to sell.

We formalize this narrative in a continuous time, dynamic model of a city in spatial equi-

librium. House prices clear a Walrasian market, with demand emanating from potential

entrants and supply coming from the the construction of new homes and foreclosures. An

endogenous boom-bust-rebound cycle occurs in response to a single change in the city’s

fundamental, an increase in the growth rate of the income and amenities or “dividend”

from living in the city.

Two model ingredients are instrumental to this result. First, both potential entrants
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and mortgage lenders learn about the true growth rate from observing the path of div-

idends, but, in line with survey evidence (Case et al., 2012), are over-optimistic, which

we obtain by assuming agents have diagnostic expectations (Bordalo et al., 2019). The

over-shooting of beliefs generates a boom in construction and prices as beliefs update.

Eventually, the over-optimism peaks and beliefs endogenously start to correct and ap-

proach the true long-run growth rate, triggering the bust phase of the cycle.

On their own, however, the turn in beliefs cannot generate a bust in which prices

fall below their full-information value or as steeply as in the data. This motivates the

model’s second key ingredient, mortgage borrowing and foreclosures. Consistent with the

empirical literature (Foote et al., 2008; Ganong and Noel, 2020), a foreclosure occurs when

an under-water homeowner experiences a liquidity shock. Foreclosures add to housing

supply, which further depresses prices, putting more owners under-water, and leading to

more foreclosures in a price-foreclosure spiral that pushes prices well below their long-run

level (Guren and McQuade, 2020). Finally, foreclosures recede, ongoing dividend growth

causes new buyers to enter, and prices rebound toward the new balanced growth path.

The model quantitatively matches the cross-section of boom-bust-rebounds in the data.

Exploiting the fact that it nests our empirical regression specification for long-run anal-

ysis, we form quartiles of CBSAs grouped by their empirical long-run fundamental. We

externally calibrate several parameters, including the long-run supply elasticity estimated

in Section 4 and the pre-boom house price growth rate in each quartile. We estimate the

remaining parameters — holding deep parameters related to learning and preferences fixed

across quartiles — to match the size of the boom, bust, and rebound, the peak foreclo-

sure rate in and speed of the bust, and the mortgage equity distribution in each quartile.

Despite being over-identified, the model fits these moments extremely well. We conduct

counterfactual exercises that turn off the role of over-optimism or foreclosures and conclude
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that both features are required to generate a fundamentally-rooted boom-bust-rebound.

Related literature. Our paper relates to literatures in macroeconomics, housing eco-

nomics, urban economics, and finance. Most directly, it builds on a literature on the

causes of the 2000s boom and bust which has predominantly focused on non-fundamental

determinants such as credit and sun-spot expectations and debated how to disentangle the

relative importance of these forces.2

The credit view of the boom focuses on a credit supply expansion driven by changes in

lending technology, securitization, and secular decline in interest rates (Justiniano et al.,

2017; Johnson, 2020; Foote et al., 2019). Favilukis et al. (2017), Justiniano et al. (2019),

Landvoigt et al. (2015), Greenwald (2018), and Greenwald and Guren (2021) quantify the

role of credit using applied macroeconomic models. A related empirical literature shows

that credit expansion differentially impacted house prices in cities based on their supply

elasticity (Mian and Sufi, 2009; Glaeser et al., 2008), while another strand studies the

impact of credit on house prices (Favara and Imbs, 2015; Loutskina and Strahan, 2015;

Di Maggio and Kermani, 2017).3

In the expectations view, the boom resulted from misplaced expectations about the

growth of future fundamentals and the crash occurred when such growth did not material-

ize (Piazzesi and Schneider, 2009; Burnside et al., 2016; Kaplan et al., 2020; Gennaioli and

2Glaeser and Nathanson (2015) survey the literature on housing bubbles. Charles et al. (2018) describe a
“consensus that much of the variation in housing prices during the boom and bust derived from a speculative
‘bubble’ and not from changes in standard determinants of housing values such as income, population, or
construction costs.” Similarly, Glaeser (2013) points out that the “ economy was not growing particularly
swiftly, nor was it obvious that there were any tectonic shifts in the geography of American enterprise” and
that “there were few obvious changes in economic fundamentals that set off the bust.” Sinai (2013) argues
that while high-frequency fundamentals are correlated with the recent housing cycle, they cannot explain
the magnitude or amplitude of fluctuations. Kaplan et al. (2020) and Greenwald and Guren (2021) calibrate
models in which sun-spot expectations fully explain the portion of the boom-bust unexplained by credit.

3A closely related literature focuses on speculation and particularly its role in the boom (Chinco and
Mayer, 2016; Nathanson and Zwick, 2018; Gao et al., 2020; Bayer et al., 2020; DeFusco et al., 2017; Mian
and Sufi, 2017). We discuss how this literature relates to our work in Appendix B.1.
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Shleifer, 2018). Case et al. (2012) and Soo (2018) provide measures of over-optimism in the

boom, and Kuchler and Zafar (2019) and Armona et al. (2019) analyze the formation of

expectations and their impact on house prices. Case et al. (2012) also document a gradual

decline in long-run optimism during the bust, a feature our quantitative model will match.

Glaeser and Nathanson (2017) microfound extrapolation in the housing market.

Our paper recognizes a role for both credit and expectations in the boom. However,

we emphasize fundamentals as triggering the over-optimism of expectations and credit ex-

pansion as endogenous to lenders’ expectations and important insofar as it allowed buyers

to obtain mortgages despite rising house prices. Our work also connects to literatures

focusing on the role of tightening financial constraints (Mian and Sufi, 2014; Garriga and

Hedlund, 2020) and foreclosures (Guren and McQuade, 2020; Mian et al., 2015; Hedlund,

2016) in the bust, with foreclosures the most important quantitatively in our model. In

contrast to the existing literature that requires a second exogenous change in expectations

or credit conditions to trigger the bust (Kaplan et al., 2020; Favilukis et al., 2017; Green-

wald and Guren, 2021), our model of learning about fundamentals instead generates this

turning-point and the transition from bust to rebound endogenously.

A few papers ascribe a role to fundamental factors in the 2000s cycle as we do. Writing

near the peak of the boom, Himmelberg et al. (2005) found “little evidence of a housing

bubble” because of fundamental growth, undervaluation in the 1990s, and low interest

rates. Ferreira and Gyourko (2018) estimate the timing of the boom across cities and

show that the beginning of the boom was “fundamentally based to a significant extent”

but that fundamentals revert in roughly three years. We similarly conclude that funda-

mentals played a significant role in the boom, but based on different methods that focus

on long-term fundamentals rather than short-term income growth. More recently, Howard

and Liebersohn (2021) propose an explanation for housing cycles based on divergence in
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regional income growth, in which fluctuations in fundamentals fully explain the cycle, and

Schubert (2021) identifies spillovers of fundamentals across cities via migration networks.

Our empirical analysis builds on an urban economics literature on the long-run deter-

minants of housing costs and location choice (Rosen, 1979; Roback, 1982). Our approach

most closely follows Saiz (2010), although we extend his framework to incorporate observed

land shares, relax constraints, and apply to a different period.4

Our theoretical framework builds on work in macroeconomics and finance that focuses

on the role of learning and behavioral expectations in financial markets and asset bub-

bles. Our emphasis on learning follows work in asset pricing pioneered in David (1997)

and Veronesi (1999) and in particular builds on the role of diagnostic expectations for-

malized in Bordalo et al. (2019, 2020). Kindermann et al. (2021) also study learning in

housing markets but emphasize heterogeneity by tenure status. Our model contains sev-

eral features that may prove useful in the study of housing dynamics and are required to

make it tractable to estimate, including a new characterization of the impulse response of

diagnostic beliefs and a Monte Carlo method for determining mortgage pricing.

Finally, our interpretation of the 2000s housing cycle echoes research on asset bubbles

and crashes beginning with the seminal work of Kindleberger (1978). For instance, Kindle-

berger writes that “virtually every economic mania is associated with a robust economic

expansion” and that “during...economic expansions investors become increasingly opti-

mistic...while lenders become less risk-averse. Rational exuberance morphs into irrational

exuberance.” As in Kindleberger, our focus on long-run fundamentals does not imply that

there was no “housing bubble,” nor does it refute any role for credit or expectations in the

4Related work focuses on estimating the role of housing supply constraints and supply elasticities in
determining house prices (Glaeser and Gyourko, 2018; Mayer and Somerville, 2000; Glaeser et al., 2005a,b;
Glaeser and Gyourko, 2005; Gyourko et al., 2013; Gyourko and Molloy, 2015; Baum-Snow and Han, 2020)
and on the construction cost and land share of house prices (Davis and Heathcote, 2007; Davis and Palumbo,
2008; Gyourko and Saiz, 2006; Larson et al., 2021; Albouy et al., 2018).
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boom or expectations, credit, and foreclosures in the bust. It does, however, suggest that

these forces were rooted in long-run fundamentals. Our work differs from Kindleberger in

emphasizing the rebound and its role in diagnosing the driving forces of the full cycle.

2 Boom, Bust, and Rebound

In this section we document the boom, bust, and rebound phases of the 2000s housing

cycle in both national and local data.

Figure 1 shows the national Case-Shiller house price index, deflated using the GDP

price index. After a period of zero real growth, the series begins to rise in the late 1990s,

peaks in 2006Q2, reaches a local trough in 2012Q1, and then grows again through the

end of our sample in 2019. In what follows, we measure the boom as house price growth

between 1997 and 2006, the bust as price growth between 2006 and 2012, and the rebound

as price growth between 2012 and 2019. We start the boom in 1997 because very few cities

have booms that start before that year.5

Figure 2 shows the correlation of the boom, bust, and rebound at the local level, using

ZIP Code house prices from FHFA. Each blue circle represents one ZIP Code. The overlaid

red circles show the mean value of the y-axis variable in each of 50 quantiles of the x-axis

variable (the so-called binned scatter plot). Panel (a) shows the correlation of price growth

in the boom and the bust. Each additional percentage point of house price appreciation

in the boom is associated with an additional decline of 0.51 percentage point in the bust

5Appendix Figure B.3 displays a histogram across cities in our sample of the first break in the house price
growth rate series between 1992:Q1 and 2006:Q2, based on the structural break test of Andrews (1993) and
Bai and Perron (1998, 2003) as implemented in Ditzen et al. (2021). While almost no areas have booms that
start before 1997, about 11% of cities (23% weighted by population) have breaks sometime in 1997. Ferreira
and Gyourko (2018) implement a similar procedure at the local level and also find fairly wide variation in
the timing of the boom start, but with essentially no areas with booms that start before 1997. Applying
the break test to the national time series identifies the national boom start as 1998Q2. We measure the
city-level boom from 1997 to capture the full price growth in all cities. Appendix Figure B.3 shows much
more uniformity in the timing of the price peak and trough across cities.
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Figure 1: National Boom, Bust, and Rebound
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Notes: The figure shows the national Case-Shiller index deflated by the GDP price index, normalized so
that 1997=100.

and the R2 of this relationship is 0.38. Mayer (2011) refers to this boom-bust cycle at the

local level as characteristic of a housing bubble.

Panel (b) reveals an equally strong correlation between the magnitude of the bust and

post-2012 price growth, with each additional percentage point decline during 2006-2012

associated with an additional 0.52 percentage point of growth during 2012-2019 and an

R2 of 0.37. Putting the bust and rebound together in Panel (c), house price growth in

the boom is nearly uncorrelated with total price growth after 2006. Panel (d) displays

the corrollary of this result: House price growth during the boom correlates strongly with

growth over the entire 1997-2019 period (BBR for short), with a slope coefficient of 0.81

and R2 of 0.62.

Although suggestive, examining house prices in isolation cannot answer whether growth

over the full BBR period reflects fundamentals. We thus turn next to a more rigorous

econometric investigation of the role of fundamentals.
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Figure 2: Zip Code Boom, Bust, and Rebound

(a) Boom versus Bust
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(b) Bust versus Rebound
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(c) Boom versus Bust-Rebound
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(d) Boom versus BBR
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Notes: Each blue circle represents one ZIP Code. The red circles show the mean of the y-axis variable for
50 bins of the x-axis variable. Data from FHFA deflated using the national GDP price index.

3 Role of Fundamentals: Framework

In this section we introduce a long-run supply-and-demand framework for house prices

and describe our data and measurement. The payoff to a structural regression model

is that we can associate each city with a housing fundamental and thereby relate the

boom-bust-rebound pattern to fundamental determinants of house prices.

3.1 Structural System

The supply framework starts with an additive decomposition of house prices into the value

of the structure and the land:

Pi,t = Ci,t + Li,t, (1)
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where Pi,t is the price of a house in area i at date t, Ci,t is the construction cost of the

structure, and Li,t is the land cost. Equation (1) is a housing supply equation that equates

the price of a home to the cost of the land and structure. Gyourko and Saiz (2006) argue

that the construction sector is sufficiently competitive to justify this assumption, at least

in the long run that we consider in this and the next section. The equation also assumes

away other costs such as broker fees that are proportional to the cost of a new home and

drop out when we take log changes below.

Both construction and land costs may increase with population in a city:

Ci,t = Ai,tH
αi
i,t , (2)

Li,t = Bi,tH
βi
i,t. (3)

Here, Hi,t is the total population in the city (H for houses), αi and βi are city-specific

elasticities, and Ai,t and Bi,t denote city-specific cost shifters. These isolastic cost functions

correspond to the long-run costs in the dynamic model in Section 5, as they omit any

short-run adjustment costs stemming from accelerating or decelerating population growth

that occur off the balanced growth path. Appendix A.1 provides a microfoundation of

equation (2) from the cost-minimization problem of a competitive construction sector.

Appendix A.2 provides a microfoundation of equation (3) as in Saiz (2010) from the

Alonso (1964), Muth (1969), and Mills (1967) intra-city spatial equilibrium condition,

wherein average land prices in a city grow with population because the premium to living

in the city center (or equivalently most desirable neighborhoods) must rise to induce new

housing in less desirable locations.

Taking logs of equation (1), differencing over time, and letting si,t = Li,t/Pi,t denote the

land share of prices and lower case p, c, `, a, b denote the log differences of their respective
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upper case letters, we obtain:

pi,t = (1− si,t) ci,t + si,t`i,t (4)

= ai,t + si,t (bi,t − ai,t) + (αi + si,t (βi − αi))hi,t. (5)

Equation (4) decomposes house price growth into a weighted average of the growth of

construction costs and land costs and appears for example in Davis and Palumbo (2008).

Equation (5) imposes the functional forms of construction and land costs.

Equation (5) has too many free parameters to estimate. We parameterize αi = α0 +

α1mi and βi = β0 + β1mi, where mi measures the regulatory burden of new construction

in city i relative to the cross-city mean and α0 and β0 are the average elasticities. This

parameterization allows construction costs and land costs to increase more steeply with

the number of houses in places with stricter land-use regulations. We also demean ai,t

and bi,t with respect to the cross-city average and let x̄t = Ei[xi,t] for any variable x,

x̂t ≡ xt − x̄t, and εi,t = âi,t + si,t

(
b̂i,t − âi,t

)
to obtain:

pi,t = āt + si,t
(
b̄t − āt

)
+ α0hi,t + (β0 − α0) si,thi,t

+ α1mihi,t + (β1 − α1)misi,thi,t + εi,t. (6)

We can identify the parameters in equation (6) using the regression equation:

pi,t = c0 + c1si + c2hi,t + c3 (si × hi,t) + c4 (mi × hi,t) + c5 (mi × si × hi,t) + ei,t, (7)

with c0 = āt, c1 = b̄t − āt, c2 = α0, c3 = β0 − α0, c4 = α1, c5 = β1 − α1.

Equation (7) is a long-run supply equation. It generalizes earlier work such as Saiz

(2010) by treating the land share as observable and by allowing for construction costs

to respond endogenously to population.6 The coefficient c1 identifies the average excess

6The Saiz (2010) model starts with equations (1) to (3) with αi = 0 ∀i. In our notation, the final
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secular (i.e. not driven by population growth) increase in land prices over construction

costs. The coefficient c2 identifies the average long-run elasticity of construction costs to

population. The coefficient c3 identifies the difference in the average long-run elasticities

of land costs and construction costs to population growth. The coefficient c4 identifies

the marginal increase in the construction cost elasticity from higher regulatory strictness.

The coefficient c5 identifies the difference in the marginal increases in the land cost and

construction cost elasticities. Finally, the supply inverse elasticity is c2 + c3 × si + c4 ×

mi + c5 × si ×mi.

As in Saiz (2010), the endogeneity of location choice (which impacts population growth),

land share, and regulatory strictness all pose a hurdle to consistent estimation of the

parameters. More specifically, the structural residual εi,t contains city-specific, secular

changes in land costs or construction costs. Such secular cost shocks increase house prices

but also affect land share, possibly induce new zoning regulation, and (in spatial equi-

librium) deter population growth. We therefore estimate equation (7) using instrumental

variables, as described next.

3.2 Data, Measurement, and Excluded Instruments

We estimate equation (7) across 308 metropolitan core-based statistical areas (CBSAs)

over the period 1997-2019.7

Outcome and endogenous variables. We measure CBSA house prices using the Fred-

die Mac house price indexes (HPIs) deflated by the national GDP price index and show

specification in Saiz (2010) is pi,t− ci,t = k1 (1− Λi)×hi,t +k2 lnHi,0× (1− Λi)×hi,t +k3×mi×hi,t + ei,t,
where Λi denotes the share of land available for development. Our approach instead follows the motivation
in Saiz (2010, p. 1264) in that we will treat Λi and lnHi,0 as excluded instruments that help to identify the
land share terms in the supply elasticity.

7CBSAs consist of a set of adjacent counties with economic and commuting ties and a population of at
least 50,000 and are the smallest geographic unit at which we can measure all of the variables in our analysis.
Appendix Figure B.4 replicates at the CBSA level the boom-bust-rebound correlations in Figure 2.
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robustness to using other HPIs below. We measure population growth by aggregating to

the CBSA level the Census intercensal county population estimates. We obtain data on

CBSA land share starting in 2012 from Larson et al. (2021). They use appraisal data that

separate house prices into land costs and construction costs, exactly as in equation (1). We

use the 2012 value in our regressions, making it important to treat land share as endoge-

nous rather than pre-determined at the start of the boom. We equate regulatory strictness

with the 2006 Wharton Residential Land Use Regulatory Index (WRLURI) developed in

Gyourko et al. (2008) and again recognize the endogeneity of the 2006 values by treating

the WRLURI as potentially endogenous to house price growth. The WRLURI is based on

15 questions on land use regulations at the town level and standardized to have zero mean

and unit variance; we map towns to 2018 CBSA delineations, average across towns within

a CBSA using population weights, and re-standardize to create a CBSA-level variable.

Table B.2 presents summary statistics.

Excluded instruments. Equation (7) contains three endogenous variables — popula-

tion growth, land share, and regulatory strictness — and their interactions. We heuristi-

cally group excluded instruments by which endogenous variable we expect them to predict

and then interact these groups as well to produce our final excluded instrument set.

We motivate excluded instruments for population growth by appealing to the Rosen

(1979) and Roback (1982) model of spatial equilibrium in population. In that framework,

households choose location to maximize their earning potential and amenity value net of

housing costs. Therefore, labor demand and amenities constitute valid demand shifters

to identify the long-run supply elasticity. We follow Saiz (2010) and use shift-share in-

struments for labor demand and climate variables for amenities. Specifically, we construct

shift-shares for the growth of employment and the average wage at the NAICS 4 digit
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level by aggregating data from the County Business Patterns (CBP) up to the CBSA

level as detailed in Appendix B.2. We obtain data on mean January temperature, mean

January sunlight, and mean July humidity from the Department of Agriculture. These

variables capture population movement toward areas with warmer January temperatures,

more winter sunlight, and less July humidity. We also use two amenity variables proposed

by Diamond (2016), the share of the population with a Bachelor’s degree, measured as of

1990 using Census data, and the density of restaurants, measured as of 1997 using CBP

restaurant employment relative to the population.

We also follow Saiz (2010) in choosing instruments relevant for land share and regula-

tory strictness. For land share, the Alonso (1964), Muth (1969), and Mills (1967) intra-city

spatial equilibrium microfoundation of equation (3) predicts that the average price of land

increases in the unbuildable share of an area (see equation (A.8) in Appendix A.2). We

use as an instrument the share of land available for development (not water or a slope

steeper than 15%) in a polygon containing the CBSA plus a 5% buffer (Lutz and Sand,

2019). Lutz and Sand argue that this measure improves on the land unavailability in Saiz

(2010), although we confirm robustness to using Saiz’s original measure. We also use as an

instrument population density in 1997, measured as the ratio of population to land area.

For the WRLURI index of regulatory strictness, we use as instruments the ratio of public

expenditure on protective inspection to total tax revenue as measured in the 1992 Census

of Governments and the share of Christians in nontraditional denominations as measured

in the 1990 Census. Saiz (2010) motivates protective expenditure as revealing an area’s

overall taste for regulation and the non-traditional Christian share because the ethos of

individualism in these denominations leads to reduced regulation.

It merits remarking that many of these instruments are either quite persistent or time

invariant. Indeed, we purposely follow Saiz (2010) in choosing many of the excluded in-
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struments, despite his using them to explain population and house price growth over 1970-

2000, almost entirely previous to our period of analysis. For now, we note that nothing in

the econometric setup precludes persistent instruments; we only require instruments that

shift population, land share, and regulatory strictness and are orthogonal to unobserved,

location-specific supply shifters during our period of study. Section 4.3 reports robustness

specifications that explicitly control for lagged population or house price growth and yield

very similar results. Finally, our calibrated model in Section 5 will appropriately account

for differences in pre-boom house price growth rates across CBSAs.

4 Role of Fundamentals: Results

This section contains our main empirical results. Section 4.1 presents first-stage and re-

duced form regressions that show that the excluded instruments strongly predict both

fundamental drivers of house prices and long-run house price growth over 1997-2019. Sec-

tion 4.2 reports the IV results. Section 4.3 conducts robustness exercises. Section 4.4

defines the long-run fundamental as a linear combination of the excluded instruments

and shows that a higher fundamental predicts a larger boom-bust-rebound in an area.

Section 4.5 relates the long-run fundamental to growth in rents and shows that the funda-

mental component of rising price-to-rent ratios in the boom predicts only subsequent rent

growth. Section 4.6 shows that areas with higher long-run fundamentals had more severe

foreclosure crises during the bust.

4.1 First-Stage and Reduced-Form Results

This section shows that the excluded instruments have strong explanatory power for the

endogenous variables and for long-run house price growth. Table 1 reports first-stage-type

regressions for each of the endogenous variables separately. For each variable, we show

16



the explanatory power using only the excluded instruments motivated by that variable

and also using the full set of uninteracted instruments. Let H,L, and M denote the sets

of instruments heuristically assigned to population growth, land share, and WRLURI,

respectively. The actual IV will also include H × L, H ×M, and H × L ×M, where ×

denotes element-wise cross-set multiplication. In that sense, Table 1 contains regressions

useful for establishing the explanatory power of the instruments without broaching many-

instrument asymptotics, a subject we address in the robustness section.

Column (1) shows that more land unavailability and higher initial population density

both predict higher land share, with an R2 of 0.37 and joint effective F-statistic of 64.5.8

Column (2) shows that their explanatory power persists after adding other excluded in-

struments. Columns (3) and (4) show predictors of population. Climate amenities —

higher January temperature, higher January sunlight, and lower July humidity — all pre-

dict higher population growth, as do greater restaurant density and a higher college share

of the population. Bartik-predicted employment and wage growth enter somewhat noisily,

although in unreported results these variables have stronger predictive power in a specifi-

cation without the amenity variables. Columns (5) and (6) show predictors of WRLURI.

Consistent with the results in Saiz (2010), a higher share of Christians in nontraditional

denominations negatively predicts regulation while a higher ratio of public expenditure on

protective inspection to total tax revenue positively predicts regulation.

The final column of Table 1 reports the reduced form for long-run house price growth,

using all of the uninteracted instruments. The instruments jointly explain 59% of the vari-

ation in house price growth. This column illustrates that fundamental drivers of location

choice, land share, and regulation, all measured prior to the start of the boom, explain a

substantial amount of the variation in house price growth over the entire BBR.

8Montiel Olea and Pflueger (2013) introduce the effective F -statistic as the proper metric of first stage
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Figure 3: Correlation with Long-run Fitted Value
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(d) Rebound: 2012-2019
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Notes: In each panel, each blue dot is the real house price growth in a CBSA over the period indicated on
the vertical axis plotted against the predicted real house price growth over the period 1997-2019 based on
column (7) of Table 1. CBSAs with more than 1 million persons in 1997 are labeled in red.
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Table 1: Pseudo First-stage and Reduced Form Regressions

Dep. var.: Land share Pop. growth WRULRI HPI

(1) (2) (3) (4) (5) (6) (7)
Unavailability 3.03∗∗ 2.83∗∗ −0.75 21.61∗∗ 10.07∗∗

(0.49) (0.50) (0.99) (4.50) (1.08)
Population density 4.81∗∗ 4.18∗∗ −2.33∗∗ 15.91∗∗ 2.17+

(0.51) (0.47) (0.61) (5.52) (1.13)
Bartik wage −0.20 0.92 0.65 −0.54 1.38

(0.46) (0.93) (0.92) (4.52) (1.00)
Bartik emp. −0.63 −0.46 0.74 5.41 1.53

(0.47) (0.89) (0.94) (4.42) (0.96)
January temp. 0.81 6.82∗∗ 5.53∗∗ 0.56 4.06∗∗

(0.59) (0.99) (1.54) (6.17) (1.55)
January sunlight 0.25 2.48∗ 2.64∗ 9.08+ 2.93∗

(0.46) (1.07) (1.11) (4.88) (1.18)
July humidity −0.23 −5.97∗∗ −4.57∗∗ −14.38∗∗ −6.76∗∗

(0.44) (0.95) (1.06) (4.84) (1.22)
Restaurants 1.19∗∗ 3.47∗∗ 2.18+ −7.77 −0.23

(0.42) (1.10) (1.24) (4.94) (0.98)
College share 2.51∗∗ 2.31∗ 3.21∗∗ 15.55∗∗ 6.25∗∗

(0.51) (1.00) (1.05) (5.63) (1.18)
Nontrad. Christian −1.15∗ 2.25+ −26.70∗∗ −23.11∗∗ −2.75∗∗

(0.56) (1.19) (4.34) (4.99) (1.05)
Inspection/tax 0.74 −0.24 21.87∗∗ 7.12∗ 3.41∗∗

(0.50) (0.94) (3.43) (3.54) (1.02)
Effective F 64.5 24.5 19.9 14.9 39.3 14.3
R2 0.366 0.475 0.344 0.377 0.179 0.361 0.586
Observations 308 308 308 308 308 308 308

Notes: Columns (1), (3), and (5) report regressions of an endogenous variable on the group of excluded
instruments associated with that variable. Columns (2), (4), and (6) report regressions of an endogenous
variable on all excluded instrument main effects. Column (7) reports the reduced form regression of house
price growth on all excluded instrument main effects. Heteroskedastic-robust standard errors in parentheses.
∗∗,∗ ,+ denote significance at the 1, 5, and 10 percent levels, respectively.

Figure 3 plots the fitted values from the reduced form regression in column 7 of Table 1

against actual house price growth in various sub-periods. Panel (a) shows a strong correla-

tion with price growth over the full BBR, consistent with the high R2 in column (7). The

figure labels in red CBSAs with more than 1 million persons in 1997; these larger CBSAs

strength with non-iid standard errors. See Andrews et al. (2019) for further discussion.
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have a reduced form fit similar to the full sample. Panels (b)-(d) show the correlation

with each sub-period. Higher predicted long-run growth correlates positively with higher

growth during the boom, negatively with growth during the bust, and positively with

growth during the rebound. Thus, the reduced-form evidence is consistent with long-run

fundamental growth producing a boom-bust-rebound cycle.

4.2 Structural Results

We now present the full IV results. These impose additional structure beyond the reduced

form by forcing the instruments to act through the endogenous variables in the model.

They also yield a structurally interpretable long-run housing supply elasticity that we will

use to calibrate the model in Section 5.

Table 2 presents the results from estimating equation (7). Column (1) shows OLS.

CBSAs with higher land share and faster population growth have higher house price growth

over the full BBR, and especially so in places with both high land share and high regulation.

Evaluated at the (unweighted) mean land share and regulatory burden, the long-run inverse

supply elasticity is 0.58 with a standard error of 0.06 using the delta method.

Column (2) reports the IV specification using all of the excluded instruments shown in

Table 1 as well as the interactions of each of the instrument groups. Several features merit

comment. The impact of population growth and the average inverse elasticity are slightly

larger in the IV specification, consistent with the expected bias of OLS due to area-specific

cost shifters. The coefficient on the main effect on land share maps to the average excess

secular (i.e. not driven by population growth) increase in land prices over construction

costs, which causes house prices to rise faster in areas where land is a larger share of the

overall price. The value of 107 log points over 1997-2019 reflects nationwide forces such

as a secular decline in interest rates and an increase in the premia to living in the more

20



Table 2: Main OLS and IV Results

Dep. var.: Log House Price Growth 1997-2019

(1) (2) (3)
Land Share 0.87∗∗ 1.07∗∗ 1.06∗∗

(0.23) (0.25) (0.17)
Pop. Growth 1997-2019 0.30 0.71+ 0.63∗∗

(0.29) (0.41) (0.08)
Land Share × Pop. Growth 1.02 −0.26

(1.08) (1.41)
WRLURI × Pop. Growth −0.23 −0.22

(0.16) (0.35)
Land Share × WRLURI × Pop. Growth 1.61∗∗ 2.63∗ 1.88∗∗

(0.57) (1.25) (0.27)
Constant −0.09 −0.16∗ −0.15∗∗

(0.06) (0.07) (0.05)
Estimator OLS 2SLS 2SLS
Elasticity at s̄j 0.58 0.63 0.63
Standard error of elasticity 0.06 0.08 0.08
R2 0.48 0.40 0.40
Observations 308 308 308

The table reports OLS (column 1) and IV (columns 2 and 3) regressions of real CBSA house price growth
over 1997-2019 on land share, population growth over 1997-2012, WRLURI, and interactions of these vari-
ables. The standard error of the elasticity at the mean of land share is computed using the delta method.
Heteroskedastic-robust standard errors in parentheses. ∗∗,∗ ,+ denote significance at the 1, 5, and 10 percent
levels, respectively.

expensive city center, the latter for example due to the widespread fall in crime rates in

the mid-1990s (Pope and Pope, 2012).9 Two coefficients, corresponding to the bivariate

interactions of land share × population growth and WRLURI × population growth, have

values close to zero and statistically insignificant.10

9Equation (A.9) illustrates how a reduction in interest rates, which increases the capitalization rate, or
increase in the city center premium, which increases the population-weighted land price, raises average land
prices in a city. Nichols (2019) uses prices of raw land transactions to also find a rising price of land over this
period, albeit a smaller increase than implied by Table 2. If the 2012 land share in each CBSA is a fraction
less than one of the 1997 land share due to over-shooting during the bust, then the land share coefficient in
Table 2 will overstate the contribution of rising land prices commensurately. Note however that the second
stage fitted value and elasticity would not change.

10The supply framework interprets zero coefficients on these variables as β0 = α0 and α1 = 0 in equa-
tion (6), that is, the intercepts of the elasticities of land and construction are the same and the elasticity of
construction costs does not vary with land-use regulation.
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Column (3) is our preferred specification. Relative to column (2), it omits the land

share × population growth and WRLURI × population growth variables. The remaining

coefficients remain relatively unchanged, but with much smaller standard errors. Perhaps

not surprisingly given the large number of interaction terms and instruments, the data ap-

pear unable to tightly identify each interaction in column (2). Imposing zero restrictions

alleviates this difficulty. Importantly, the overall fit as measured by the IV R2 and the

inverse supply elasticity both remain unchanged between columns (2) and (3), indicating

that both specifications fit the data equally well. The coefficient on the surviving interac-

tion term land share ×WRLURI × population growth indicates a larger inverse elasticity

(price growth more sensitive to population) in areas with both high land share and high

regulation. The R2 value of 0.40 reveals strong explanatory power of land share, popula-

tion growth, and WRLURI when imposing the IV coefficients. Thus, this column again

illustrates the central result that fundamentally-driven population growth, land share, and

heterogeneous long-run supply elasticities explain a substantial amount of the variation in

house price growth over the entire BBR.

4.3 Robustness

Table 3 collects several alternative specifications that address various potential concerns

with the baseline IV regression. Each row reports the coefficients and standard errors from

a separate specification. For convenience, the first row reproduces the baseline coefficients

from column (3) of Table 2.

Rows (2)-(4) show robustness to alternative house price indexes from FHFA, CoreLogic,

and Zillow. Although these indexes vary in their samples and methodologies, all yield

similar results.11 Row (5) replaces the land unavailability instrument with the measure

11Like Freddie Mac, FHFA uses a repeat-sales methodology in a sample of loans purchased by Fannie
Mae or Freddie Mac, but weights the sales differently. CoreLogic also uses a repeat sales methodology but
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Table 3: IV Robustness

Specification s h s×WRLURI × h Obs.

Coef. SE Coef. SE Coef. SE
1. Baseline 1.06 0.17 0.63 0.08 1.88 0.27 308
2. FHFA HPI 0.94 0.17 0.55 0.08 1.84 0.26 306
3. CoreLogic HPI 0.99 0.18 0.42 0.09 1.90 0.32 308
4. Zillow HPI 1.13 0.18 0.43 0.10 1.42 0.26 225
5. Saiz unavail. 1.13 0.17 0.71 0.08 1.57 0.27 260
6. Housing units 1.01 0.19 0.65 0.10 1.46 0.31 308
7. Pop. weighted 1.67 0.22 0.78 0.11 1.23 0.35 308
8. Drop pop.< 150K 1.01 0.19 0.64 0.09 1.60 0.24 219
9. Drop shrinking 1.13 0.18 0.54 0.09 1.75 0.26 277
10. GMM 1.10 0.12 0.66 0.06 1.74 0.21 308
11. Bias-adjusted 2SLS 0.88 0.26 0.62 0.12 3.05 0.69 308
12. JIVE 0.99 0.33 0.66 0.15 2.78 0.82 308
13. No climate instr. 0.96 0.19 0.67 0.11 2.34 0.39 308
14. No lifestyle instr. 1.15 0.19 0.67 0.10 1.98 0.33 308
15. No Bartik instr. 1.08 0.19 0.63 0.08 2.01 0.33 308
16. No land unavail. instr. 0.95 0.19 0.76 0.09 1.92 0.31 308
17. No pop. density instr. 1.12 0.20 0.58 0.09 2.15 0.34 308
18. Control lag pop. 1.02 0.17 0.47 0.16 1.88 0.29 308
19. Control lag HPI 1.01 0.18 0.62 0.08 1.92 0.27 308

Notes: Each row reports coefficients and standard errors from a separate modification of the specification
in column (3) of Table 2. Coefficients in bold font are statistically different from 0 at the 5% level.

from Saiz (2010). Because Saiz (2010) developed his measure for 1999 MSA definitions,

we lose 16% of the sample, but the coefficients change little. Row (6) replaces population

growth with the growth of housing units. In our model these variables will be equivalent;

in the data the growth rates are highly correlated such that the results change little.

Rows (7) to (9) explore robustness to the sample, in row (7) by weighting the regression

by population, in row (8) by excluding 89 CBSAs with 1997 population below 150,000, and

in row (9) by excluding CBSAs with declining population. The coefficients remain stable,

includes sales not associated with mortgages purchased by a GSE. Zillow combines sales and other data in
order to estimate the average price of a home in the middle tercile of each market regardless of whether it
transacts in a period. Row (4) contains all CBSAs with non-missing Zillow data in 1997.
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with the largest difference being that the weighted specification has a higher loading on

the main effect on land share and a smaller loading on the triple interaction term.12

Rows (10) to (12) explore robustness to the estimator, in row (10) by replacing two-

stage least squares with GMM, in row (11) with the JIVE estimator of Angrist et al.

(1999), and in row (12) with the biased-adjusted estimator of Donald and Newey (2001).

The JIVE and bias-adjusted estimators address a particular concern of bias due to the

many instruments arising from the interactions of the population growth, land share, and

WRLURI instrument sets.13 While these estimators produce somewhat larger standard

errors, the point estimates change little and remain highly statistically significant.

Rows (13)-(17) selectively exclude groups of excluded instruments. The estimation

does not critically depend on any particular set of instruments for population or land, with

similar results omitting the climate variables (row 13), college share and restaurants (row

14), shift-shares (row 15), land unavailability (row 16), and population density (row 17).

Finally, rows (18) and (19) show that despite any persistence in the excluded instruments

and endogenous variables, the results change little after controlling for the growth of

population or house prices over 1987-1997.

12This change largely reflects the influence of the two largest CBSAs, New York and Los Angeles, both
of which have high land shares and experienced high price growth despite below-median population growth.
A population-weighted regression excluding the New York and Los Angeles CBSAs yields a land share
coefficient of 1.23.

13As is well known (Bekker, 1994; Bound et al., 1995), with many weak instruments 2SLS will over-fit the
first stage, biasing the second stage estimates toward OLS. JIVE avoids the overfitting problem by obtaining
the fitted value for each observation using a first-stage coefficient vector estimated by excluding that obser-
vation from the sample. The Donald and Newey (2001) bias adjustment is a K-class estimator that exactly
corrects the IV bias when residuals are homoskedastic. One reason these alternative estimators produce
results similar to 2SLS is that unlike in the canonical many weak instrument case of Angrist and Krueger
(1991), Table 1 shows that the instruments are generally strong predictors of the endogenous variables. Also
different from the returns to education setting of Angrist and Krueger (1991), here economic theory suggests
that OLS is biased toward zero. We do not report LIML results in the table because of the difficulty of
interpretation when there is treatment heterogeneity (Kolesár, 2013), but find a somewhat smaller land share
coefficient and larger interaction term in that case.
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Figure 4: Fundamentals and House Prices Over Time
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Notes: The figure plots the coefficients {β1,h} and 95% confidence intervals from regressions at each horizon
h of house price growth between 1997 and 1997+h on the long-run fundamental using the specification
pi,t,t+h = β0,h + β1,hp̂i,t + νi,h, where p̂i,t denotes the second stage fitted value from column (3) of Table 2.

4.4 Long-Run Fundamental

We define the long-run fundamental as the second stage fitted value corresponding to

column (3) of Table 2. Associating the fundamental with the second stage fitted value

(i.e. using the fitted values of the endogenous variables from the first stage) has the

attractive property of making it a linear combination of the excluded instruments, none

of which depends on local characteristics that evolve after the start of the boom.

Figure 4 shows that areas with higher long-run fundamentals have more pronounced

booms, busts, and rebounds. Each point corresponds to the coefficient {β1,h} from a

cross-sectional regression of log real price growth between 1997 and 1997+h on the long-run

fundamental. The boom-bust-rebound cycle in these coefficients accentuates our emphasis

on a single, fundamental, driver of the whole cycle.14

14One would obtain very similar results defining the fundamental as the IV fitted value when estimating
equation (7), but the fundamental would then be based on some variables realized over the 1997-2019 period
rather than only pre-determined variables.
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4.5 Fundamentals, Rents, and Price-to-Rent Ratio

The behavior of rents relative to prices can help to validate our measurement of funda-

mentals. Indeed, the rise in the ratio of house prices to rents was perhaps the feature of

the boom most responsible for real-time diagnoses of bubble-like characteristics (see e.g.

Shiller, 2008). Here, we revisit the increase in price-rent ratios with the benefit of 2020

hindsight and show that the component associated with long-run fundamentals predicts

subsequent rent growth and not future price decline, consistent with our interpretation of

this component as fundamentally-based.

We start by characterizing the behavior of rents. Panel (a) of Figure 5 plots the

growth rate of real rents in each CBSA between the 2000 Census and the 2018 American

Community Survey (ACS) against the long-run fundamental, again measured as the second

stage fitted value from column (3) of Table 2. Areas with higher fundamentals experienced

larger rent growth over the BBR, with the relationship especially strong for larger CBSAs.

Panel (b) shows the timing of rent growth using BLS CPI rent data for the 22 CBSAs

with annual data since 1987, grouped into population-weighted quartiles of the long-run

fundamental. Rents rise fastest in areas with the highest fundamentals, and this growth

appears to represent a break from the pre-boom period.

Column (1) of Table 4 shows that CBSA-level price-rent increases in the boom correlate

positively with the long-run fundamental. We measure the log growth in the price-rent

ratio using 2000 Census and 2006 ACS mean rent and the same house price data as above.

The bivariate relationship has an R2 of 0.29.

Columns (2) and (5) report the correlation of price-rent growth in the boom with

subsequent rent and price growth over the 2006-18 period. This user-cost decomposition

(Poterba, 1984) closely resembles the Campbell and Shiller (1988b) exercise of decompos-

ing variation in the price-dividend ratio of a stock into future dividend growth and returns,
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Figure 5: Rent Growth and Long-run Fundamental
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Notes: The left panel plots the log change in rent in each CBSA as measured from the 2000 Census to
the 2018 ACS, deflated by the national GDP price index, against the second stage fitted value from column
(3) of Table 2, with CBSAs with more than 1 million persons in 1997 labeled in red. The right panel plots
an index of annual average rent, deflated by the national GDP price index, for 22 CBSAs with CPI rent
data available from 1987, grouped into quartiles based on the second stage fitted value from column (3) of
Table 2, with the quartiles defined using the full sample.

with rents replacing dividends as the cash-flow measure.15 Larger price-rent growth during

the boom forecasts both higher subsequent rent growth and future relative price declines.

Columns (3) and (6) restrict the variation in the price-rent ratio in the boom to the part

associated with the long-run fundamental. Specifically, these columns report regressions

of subsequent rent and price growth on the fitted value of the growth of the price-rent

ratio from column (1). Strikingly, the rise in price-rent ratios associated with long-run

fundamental growth predicts even faster subsequent rent growth than in column (2) and

no subsequent price decline, validating our labeling of this component as a fundamental.

Columns (4) and (7) show that the part of price-rent growth not explained by long-

run fundamentals predicts no subsequent rent growth and large subsequent price declines.

These columns make clear that our empirical evidence admits the possibility of aspects of

15This analogy is also recognized in Gallin (2008) and Campbell et al. (2009).
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Table 4: What Does Price-Rent in the Boom Forecast?

Dep. var.: Price-Rent 2000-06 Rent 2006-2018 HPI 2006-2018

(1) (2) (3) (4) (5) (6) (7)
Long-run fundamental 0.68∗∗

(0.08)
Price-rent 2000-2006 0.07∗∗ −0.40∗∗

(0.02) (0.05)
Predicted price-rent 0.20∗∗ 0.03

(0.06) (0.13)
Residual price-rent 0.01 −0.58∗∗

(0.03) (0.05)
R2 0.29 0.03 0.06 0.00 0.25 0.00 0.36
Observations 272 272 272 272 272 272 272

Notes: Column (1) regresses the log change in the ratio of prices (Freddie Mac) to mean rents (Census, ACS)
between 2000 and 2006 on the fitted value from column (3) of Table 2. Column (2) regresses rent growth
between 2006 and 2018 (ACS) on the log change in the price-rent ratio between 2000 and 2006. Columns
(3) and (4) regress rent growth between 2006 and 2018 on the fitted value and residual from column (1),
respectively. Columns (5)-(7) mirror columns (2)-(4) but replacing the dependent variable with house price
growth between 2006 and 2018. Heteroskedastic-robust standard errors in parentheses. In columns (3), (4),
(5), (6), standard errors computed by re-estimating column (3) of Table 2 and column (1) in 250 bootstrap
samples. ∗∗ denotes significance at the 1 percent levels.

the housing boom not associated with long-run fundamentals; in fact, the part of price-

rent increases not correlated with long-run fundamentals looks very bubble-like ex post.

Candidate forces behind this component include speculation (Chinco and Mayer, 2016;

Nathanson and Zwick, 2018; Gao et al., 2020; Bayer et al., 2020; DeFusco et al., 2017)

and belief contagion (Bailey et al., 2018; DeFusco et al., 2018). Instead, our objective is to

highlight the fundamental component and how it can give rise to a boom-bust-rebound.

4.6 Foreclosures

Our final empirical result concerns foreclosures, which play an important role in our theory.

We obtain proprietary data on completed foreclosures at the CBSA level over 2000-2019

from CoreLogic. Panel (a) of Figure 6 plots total foreclosures over 2007-2012, relative to the
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2006 housing stock, against the long-run fundamental.16 Areas with higher fundamentals

had larger foreclosure crises. The slope of the best fit line of 8.5 indicates that a one

standard deviation (0.16) higher fundamental implies additional foreclosures of 1.4% of

the housing stock, and the t-statistic of this relationship exceeds 4.5.17 Panel (b) shows

the time series of the annualized foreclosure rate in four population-weighted quartiles of

CBSAs grouped by their long-run fundamental. Foreclosures rose during the bust in all

quartiles. Notably, the size of the increase and the peak foreclosure rate both increase

monotonically in the long-run fundamental. The sharp rise in foreclosures and the cross-

sectional pattern inform our quantitative model, in which a price-foreclosure spiral explains

why house prices in the bust fell so drastically.

5 A Neo-Kindlebergerian View

Motivated by our empirical finding that areas with stronger long-run fundamental growth

experienced a larger boom-bust-rebound and a larger foreclosure crisis, we offer a “neo-

Kindlebergerian” interpretation of the boom-bust-rebound. As in Kindleberger’s cele-

brated Manias, Panics, and Crashes, a single change in the economy’s fundamentals sets

off a boom and bust. In our urban setting, this change takes the form of an increase in

the growth rate of the “dividend” from living in the city. Agents learn about the growth

rate by observing the history of dividends. However, they become overly optimistic, which

we formalize using diagnostic expectations as in Bordalo et al. (2019). Construction and

16The coverage of CoreLogic expands over time, with 90% of the population in our CBSA sample covered
in 2000 and more than 99% covered by 2006. In Panel (a), we include only CBSAs with foreclosure data
starting in 2007 or before. In Panel (b), within each quartile we extend backwards the rate in the sample of
CBSAs with data starting in 2006 using the ratio of the foreclosure rate in knot months when new CBSAs
enter the sample. The housing stock data also come from CoreLogic and we extend backward using the
growth rate of units from the Census.

17There is also variation around the trend, with the largest outlier being Las Vegas, which had roughly 30%
of its residential housing stock go through foreclosure. Our model in Section 5 accommodates this dispersion
as the result of transitory growth in fundamentals; in the case of Las Vegas and some other areas, it might
also reflect the role of speculation during the boom, which we discuss in greater detail in Appendix B.1.
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Figure 6: Foreclosures and Long-run Fundamental
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Notes: The left panel plots total foreclosures in each CBSA over the period 2007-2012 as a percent of the
2006 residential housing stock against the second stage fitted value from column (3) of Table 2, with CBSAs
with more than 1 million persons in 1997 labeled in red. The right panel plots the three-month moving
average annualized foreclosure rate in quartiles of CBSAs grouped by the second stage fitted value from
column (3) of Table 2.

prices boom as optimistic buyers enter the city. Eventually, beliefs correct, causing house

prices to fall. As prices fall, some under-water homeowners default, triggering a price-

foreclosure spiral in the bust. This “crash” causes prices to fall below their long-run level.

Finally, ongoing growth of the dividend causes new buyers to enter and prices to rebound

toward their new balanced growth path. Both over-optimism and credit with foreclosures

are necessary to generate a realistic boom-bust-rebound from the single change in the

economy’s fundamentals.

5.1 Environment

The model is set in continuous time. The economy consists of a single city with population

Ht and residual “hinterland.”

30



Dividend and beliefs. The driving force in the economy is the “dividend”, Dt, from

living in the city. This unidimensional object captures the combination of income prospects

and amenities from living in the city relative to the hinterland. The value of Dt evolves

as a geometric Brownian motion with stochastic drift:

dDt = µtDtdt+ σDDtdWD,t, (8)

where dWD,t is a standard Wiener process. The drift rate µt follows an Ornstein-Uhlenbeck

process:

dµt = θ (µ̄− µt) dt+ σµdWµ,t, (9)

where θ determines the rate of convergence to the unconditional mean µ̄ and dWµ,t is a

standard Wiener process uncorrelated with dWD,t.
18 Agents observe Dt but do not know

the instantaneous drift rate µt. The single realized shock in the model will be an increase

from µ̄ to µ0 > µ̄ at the start of the boom at date 0.

A rational Bayesian agent would form beliefs over µt from the path of observed div-

idends. Let Ft = σ {Ds : −∞ ≤ s ≤ t} denote the information set at time t. Applying

the Kalman-Bucy filter, the Bayesian agent’s posterior belief has a normal distribution,

ht (µt|Ft) ∼ N
(
mt, σ

2
m

)
, where the current mean belief, mt, follows the process:

dmt = θ (µ̄−mt) dt+KdBt, (10)

and where the surprise innovation dBt follows:

dBt = σ−1
D (dDt/Dt −mtdt) . (11)

A surprise dBt causes the rational agent to update her mean belief according to the Kalman

18For readers unfamiliar with continuous time stochastic calculus, equation (8) is the analog of a random-
walk with drift and equation (9) is the analog of an AR(1) process with mean µ̄.
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gain K = σ2
m/σD, where the gain is increasing in the signal-to-noise ratio.19

As we show below, generating a boom-bust-rebound in prices following an increase

from µ̄ to µ0 requires over-optimism relative to the fully rational process described by

equations (10) and (11). Bordalo et al. (2019) propose diagnostic expectations as one

such departure that formalizes the representativeness heuristic of Tversky and Kahneman

(1983). The representativeness heuristic causes agents to overweight the likelihood of a

trait in a class when that trait has a higher likelihood in the class than in a reference

population. Bordalo et al. (2018) give as an example peoples’ estimate of the share of

Irish with red hair: red hair is more prevalent among Irish than non-Irish, and as a result

people vastly overestimate the share of Irish with red hair. In the context of asset price

cycles, the reference population consists of the history of observed dividends and the class

consists of recently-observed dividends, with the inference over the current drift rate.

We implement diagnostic expectations as follows. For a “look-back” parameter k, the

background context at date t consists of information observed up to date t−k, Ft−k. The

diagnostic belief distribution of the drift rate is then:

hϕt (µt) = ht (µt|Ft)
[
ht (µt|Ft)
ht (µt|Ft−k)

]ϕ
. (12)

The diagnostic distribution over-weights states that have become relatively more likely in

light of recent dividend news, that is, where ht (µt|Ft) > ht (µt|Ft−k). This “kernel-of-

truth” property causes over-reaction to good news when the distribution of states satisfies

the monotone-likelihood property – as is the case with normally-distributed innovations –

because higher growth states become more likely following positive news. The parameter ϕ

controls the magnitude of departure from rational expectations and nests the rational case

when ϕ = 0. One can further show that the diagnostic distribution takes a particularly

19We assume the asymptotic variance in the posterior drift rate, which satisfies σ2
m = σ2

µ/
(
2θ +K/σD

)
.
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simple form, with the mean simply shifted from the rational case by a term ϕI:

hϕt (µt) ∼ N
(
mϕ
t , σ

2
m

)
, mϕ

t = mt + ϕIt, (13)

where:

It ≡ mt − Et−kmt = K

∫ t

t−k
e−θ(t−s)dBs (14)

is the information the diagnostic agent neglects in forming her background context.20

The expected present value of dividends will be the key driving force in the model.

Letting ρ denote the discount rate, we have:

P ∗ (Dt,m
ϕ
t ) =

∫ ∞
−∞

Et
[∫ ∞

t

e−ρ(s−t)Dsds|µt
]
hϕt (µt) dµt, (15)

where we show in Appendix C.1 that this integral depends only on Dt,m
ϕ
t = Eϕt [µt] =

mt + ϕI, and parameters.21

The present value P ∗ (Dt,m
ϕ
t ) encodes all of the relevant information coming from the

evolution of the dividend and of beliefs. Any belief process over the path of dividends that

produces the same path of P ∗ will produce the same results in our model. In this sense,

our model does not depend on diagnostic expectations in particular, but only requires

over-optimism that eventually recedes.22 As an example, in Appendix C.3 we provide an

20Equation (14) extends the Bordalo et al. (2019) implementation of “slow-moving” information to our
continuous time setting. Maxted (2021) proposes an alternative formulation that does not truncate at horizon
k and instead generalizes the decay parameter in equation (14) not to necessarily equal mean reversion θ.
We prefer the formulation in equation (14) because it has a direct interpretation in terms of the information
received over a recent horizon and because the parameter k controls the timing of the peak of mean beliefs.
While one can also choose the decay parameter to exactly time the length of the boom, this parameter also
impacts the length of the bust. Azeredo da Silveira et al. (2020) provide an alternative model of costly
information recall that also generates over-reaction to recent news.

21Convergence of this present value requires µ̄ + 1
2

σ2
µ

θ2 < ρ. We set σ2
µ to ensure this inequality holds and

verify that at the estimated parameters our results are not sensitive in the range of admissable values.
22We adopt diagnostic expectations both because it tractably models how over-optimism grows and sub-

sides and because it matches a key feature of the data: The length of the boom, bust, and rebound are
independent of their amplitude in the cross-section.
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alternative foundation for P ∗ based on a fully rational agent with an over-optimistic prior

over the new drift rate distribution.

To summarize, dividends follow a geometric Brownian motion with a drift rate that

follows an Ornstein-Ulhenbeck process. When dividends rise unexpectedly, diagnostic

agents over-weight the likelihood of high trend growth. Eventually, the positive surprises

fall out of the representativeness window and expected dividend growth starts to converge

towards the rational posterior.

Spatial equilibrium and housing demand. Each instant a mass gHHt of potential

entrants choose between purchasing in the city or in the hinterland. One may think of the

potential entrant growth rate of gH as reflecting births in the city or a “cumulative advan-

tage” tendency for migrants to consider potential destinations in proportion to their size.

We normalize to 0 the dividend and hence the house price from living in the hinterland.

The total cost of purchasing in the city sums the price of the house, Pt, and the cost of a

mortgage in up front origination fees or “points”, Wt.
23

The value to a potential entrant from purchasing in the city has a common component,

Vt, and an idiosyncratic component, ξ, which creates a downward-sloping demand curve.

The common component comprises the expected dividends received while living in the city,

Vt = P ∗ (Dt,m
ϕ
t ).24 The idiosyncratic component ξ is drawn from a Pareto distribution

with P (ξ > x) =
(
xm
x

)γ
.

In spatial equilibrium, a potential entrant purchases a house in the city if ξVt exceeds

the cost Pt + Wt. Substituting the distributional assumption on ξ, the total demand for

23We assume the lender charges borrowers up-front points rather than interest rate spreads in order to
economize on a state variable, much like Kaplan et al. (2020).

24We make the assumption that agents expect to live in the city forever for simplicity. More generally,
one can motivate Vt = P ∗ (Dt,m

ϕ
t ) as a 0th order approximation to the value incorporating the possibility

of selling and leaving the city, where the approximation is around the probability of moving, and potentially
consider higher order terms. In the data, the probability of moving across cities is approximately 2%.
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houses from new entrants, Qt, is given by:

Qt = gHHtP (ξ > (Pt +Wt) /Vt) = gHHtx
γ
m [Vt/ (Pt +Wt)]

γ . (16)

Thus, the Pareto coefficient γ governs the slope of the housing demand curve.

Construction. The cost of building an additional house, Ct, takes the form:

Ct =
[
AH

1/η
t

]
exp

(
It − Īt
χ

)
, (17)

where It ≡ Ḣt/Ht denotes the construction rate and Īt ≡ 1
δ

∫ t
t−δ Isds is the trailing moving

average of the construction rate. Equation (17) parallels the empirical specification for

housing costs given in equations (1) to (3), with two differences. First, for simplicity we

do not separately model the cost of land and construction and instead let η govern the

overall long-run elasticity of supply. Second, we introduce a short-run adjustment cost

exp
((
It − Īt

)
/χ
)
. We write it as a trailing moving average so that it disappears and we

recover our exact empirical specification at long horizons when It ≈ Īt, even though It

converges to different values depending on the value of µ.25 Economically, one may think

of the cost as reflecting deviations from the existing capacity of the construction sector,

which evolves over time with actual construction rates. The parameter χ is the short-run

(instantaneous) elasticity of supply of new construction.

Mortgages and foreclosures. A home-buyer at date t obtains a mortgage of Mt =

φPt, where the loan-to-value (LTV) φ is idiosyncratic for each buyer and drawn from a

distribution. Mortgages are interest-only, although this assumption can easily be relaxed.26

25We set δ to be 20 years.
26We consider interest-only mortgages in order to realistically capture the upper tail of the LTV distri-

bution, which is the part critical to the foreclosure decision. In practice, the vast majority of defaulters
took out a new loan (purchase or refinance) relatively recently, and principal pay-down is minimal at the
beginning of a 30-year amortizing loan.
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Mortgages end at the first date τ at which the mortgagee receives a “liquidity shock”

and either refinances or defaults. Liquidity shocks arrive with Poisson intensity ι. A cash-

out refinance occurs if the owner has positive equity, Mt ≤ RPτ , where R ∼ N(1, σ2
R) is

an idiosyncratic house price shock. In a refinance, the owner pays off the old mortgage

and obtains a new mortgage of Mτ = φPτ . A default occurs if the owner receives the

liquidity shock and has negative equity, Mt > RPτ . Thus, as in Guren and McQuade

(2020), the model features a “double trigger”, wherein both a liquidity shock and negative

equity must occur for an owner to default, consistent with empirical evidence in Foote

et al. (2008), Bhutta et al. (2017), Gerardi et al. (2018), and Ganong and Noel (2020).27

Foreclosed homes enter supply in the instant after the default occurs.28

Competitive, risk-neutral lenders provide mortgages. These lenders have the same

beliefs as buyers; namely, they observe the path of dividends Dt but do not know the true

drift rate µt.
29 They set points Wt, charged to buyers as an up-front fee at origination,

to make zero expected profits on each loan given that they only recover a fraction ψ of a

house’s value in a foreclosure:

Wt = Eϕt
[
e−ρ(τ−t) max {Mt − ψRPτ , 0}

]
, (18)

where τ denotes the first date at which the ι liquidity shock hits.

Finally, the mortgage balance measure density, g(M, t), evolves according to the Fokker-

27As in Greenwald et al. (2021), the idiosyncractic house price shock R smoothes the cliff function for
default probability as a function of LTV to be consistent with the data.

28Formally, a foreclosure at time t enters at time step t + ∆ where in the continuous time limit ∆ → 0.
This timing assumption eliminates multiple equilibria that can arise if foreclosures and prices are determined
jointly, since the dependence of foreclosures on prices can create a backward-bending supply curve.

29Consistent with this assumption, Gerardi et al. (2008) show that lenders during the boom understood
the consequences of falling house prices but put little weight on this possibility and Cheng et al. (2014) show
that mortgage lenders behaved similar to the rest of the population in their own housing choices. We discuss
below an alternative where lenders have perfect foresight over the path of dividends.
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Planck equation:

∂

∂t
g (M, t) = (It + ι)Htφ

(
M

Pt

)
/Pt︸ ︷︷ ︸

New originations

− ιg (M, t)︸ ︷︷ ︸
Refis/

foreclosures

. (19)

5.2 Equilibrium

An equilibrium consists of paths for the prospective home buyers’ common valuation Vt,

house price Pt, city size Ht, mortgage points Wt, and mortgage balance measure density

g(M, t) such that:

(i) Buyers’ common valuation reflects their beliefs:

Vt = P ∗ (Dt,m
ϕ
t ) , (20)

where P ∗ (Dt,m
ϕ
t ) satisfies equation (15).

(ii) Price equals the marginal cost of construction given by equation (17):

Pt =
[
AH

1/η
t

]
exp

(
It − Īt
χ

)
, (21)

where It = Ḣt/Ht.

(iii) Lenders make zero expected profits such that Wt satisfies equation (18).

(iv) Housing demand (equation (16)) equals new construction plus foreclosures:

gHHtx
γ
m [Vt/ (Pt +Wt)]

γ = Ḣt + ι

∫
ΦR (M/Pt−) g (M, t−) dM, (22)

where ΦR(.) denotes the cumulative density of a mean-one normal distribution with

standard deviation σR.

(v) The mortgage density distribution g(M, t) satisfies the Fokker-Planck equation (19).
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Figure 7: Supply and Demand Diagrammatic Treatment of Equilibrium
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Equations (21) and (22) are the equilibrium conditions not previously stated.

The five equilibrium conditions describe a supply-and-demand framework that deter-

mines the equilibrium house price at any instant, as illustrated in Figure 7. The demand

curve for housing as a function of price P slopes down with elasticity determined by γ

and shifts due to changes in beliefs about future dividends V or mortgage points W , as

indicated by the downward-sloping green line. The supply curve slopes up with elasticity

χ due to construction, as indicated by the dashed upward-sloping red line, and shifts out

due to foreclosures, as indicated by the shift from the dashed to solid red line. Over time

the supply curve shifts in as population grows, according to the long-run elasticity η.

We solve the model globally by collocation on a Smolyak grid, simulating the expec-

tation in equation (18) by Monte Carlo. Appendix D contains details of our solution

method. We compute impulse responses to a one-time innovation dWµ,0 that increases the

drift rate from µ̄ to µ0. Appendix C.2 derives a novel, closed-form expression for the mean

impulse response of beliefs mϕ
t to a one-time increase that we use to compute the path

of P ∗ (Dt,m
ϕ
t ). This expression allows the efficient calculation of impulse responses for
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prices, construction, and other key model outcomes that we use in our estimation routine.

5.3 Calibration

Our model is of homebuyers choosing whether to live in a single city or the hinterland.

Therefore, we choose city-level targets for our calibration. Since we compute impulse

responses of variables after averaging out the idiosyncratic Wiener shocks, we group the

CBSAs in our sample into four (population-weighted) quartiles based on their their long-

run fundamental from Section 4.4. We average house price growth and other variables

across the CBSAs within each quartile using 1997 population as weights.

We calibrate several parameters externally and set the remaining eight parameters for

each quartile by simulated method of moments (SMM). Table 5 lists the model parameters,

their calibrated values for each quartile of CBSAs, and the rationale for each parameter.

We discipline the calibration by fixing across quartiles deep parameters related to learning

or preferences as well as mortgage design, while allowing parameters related to fundamen-

tals such as the drift rate of dividends and the supply elasticity to vary across quartiles.

We first estimate all eight parameters using moments for the third quartile only, as this

quartile is representative of the national boom-bust-rebound in prices and the magnitude

of the foreclosure crisis. We then hold the deep parameters related to learning, preferences,

and mortgage design fixed and match the same moments letting the remaining parameters

vary across quartiles.

We begin by describing the externally-calibrated parameters relating to beliefs. The

market-clearing condition (22) and valuation function (C.1) together give that along a

balanced growth path with a fixed µ, constant rate of construction and foreclosures, and

constant ratio of points to price, prices grow at the rate µ. Accordingly, we set the long-run

mean drift rate µ̄ in each quartile to the annualized average log change in real house prices
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over the 1975:Q1-1996:Q4 period. We set the mean reversion rate θ to 0.005 so that the

increase in the drift rate at date 0 is highly persistent.30 We set the diagnostic window,

k, to 8 to achieve a boom length of 8 years.31

We next turn to externally-calibrated parameters relating to housing supply, mort-

gages, and foreclosures. We set the long-run supply elasticity, η, to the inverse of the

empirically-estimated value from Table 2 obtained by multiplying the column (3) pop-

ulation growth and triple interaction coefficients by the respective endogenous variables

and taking quartile averages. We set the distribution of LTVs at mortgage origination, φ,

to N(0.87, 0.09) based on evidence from Adelino et al. (2018).32 We set the foreclosure

recovery rate, ψ, to 64.5% as in Guren et al. (2021). We set the growth rate of potential

entrants, gH , to 8.0% annually; this parameter has no impact on the impulse responses.

We estimate the remaining eight parameters – the drift rate at date 0, µ0, the diagnostic

over-shooting parameter, ϕ, the Kalman gain relative to the dividend noise, K/σD, the

discount rate, ρ, the demand elasticity, γ, the short-run supply elasticity, χ, the liquidity

shock, ι, and the idiosyncratic house price shock, σ2
R – to match 10 moments summarized

in Table 6, with each moment computed separately for each quartile. We estimate the

learning parameters ϕ and K/σD, the preference parameters ρ and γ, and the house price

shock σ2
R as deep parameters and fix their values at the levels estimated using the moments

for the third quartile. We then estimate quartile-specific values of the new drift rate µ0,

the liquidity shock ι, and the short-run elasticity χ, giving three parameters to fit ten

quartile-specific moments in quartiles 1, 2, and 4.33

30Using equation (C.5), a value of 0.005 means that even 25 years after the boom start, µt has declined
only 1− e−.005×25 ≈ 12% of the distance from µ0 to µ̄.

31The Ditzen et al. (2021) break test procedure finds a boom of 8 years in quartiles 1 and 3 and of 8.25 in
quartiles 2 and 4. Since the value of k determines the boom length almost exactly and has minimal impact
on other parameters, we set k = 8 for all quartiles for parsimony.

32These values correspond to the national average over the period 1996-2012. Adelino et al. (2018) show
that the distribution of LTVs at origination remains extremely stable throughout the boom and bust.

33We constrain the short-run elasticity χ, for which we do not have an empirical counterpart, to have a
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Table 5: Model Parameterization

Symbol Description Quartile 1 Quartile 2 Quartile 3 Quartile 4 Rationale
Beliefs
µ̄ Pre-boom drift rate 0.28% 0.67% 1.07% 1.50% 1975-96 growth rate
µ0 New drift rate 1.7% 1.95% 2.4% 2.7% SMM by quartile
ϕ Diagnostic over-shooting 4.375 4.375 4.375 4.375 SMM in Q3
K/σD Normalized Kalman gain 0.14 0.14 0.14 0.14 SMM in Q3
k Diagnostic window 8 8 8 8 Boom length in Q3
θ Mean reversion in drift 0.005 0.005 0.005 0.005
Preferences
ρ Discount rate 7.0% 7.0% 7.0% 7.0% SMM in Q3
γ Demand elasticity 1.1 1.1 1.1 1.1 SMM in Q3
Construction and foreclosures
η Long-run supply elasticity 2.27 1.46 0.99 0.78 Empirical regressions
χ Short-run supply elasticity 0.079 0.034 0.031 0.023 SMM by quartile
gH Potential entrants 0.08 0.08 0.08 0.08 Normalization
ι Liquidity shock 5.78% 4.62% 5.0% 5.5% SMM by quartile
R House price shock N(1, 0.08) N(1, 0.08) N(1, 0.08) N(1, 0.08) SMM in Q3
φ New origination LTV N(0.87, 0.09) N(0.87, 0.09) N(0.87, 0.09) N(0.87, 0.09) Adelino et al. (2018)
ψ Foreclosure recovery rate 0.645 0.645 0.645 0.645 Guren et al. (2021)

Table 6: SMM Moments

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Moment Source Data Achieved Data Achieved Data Achieved Data Achieved
House price growth (log points unannualized)
1. Boom Freddie Mac 19.3 25.3 39.7 47.1 61.8 61.8 81.2 72
2. Bust Freddie Mac 24.7 20.2 36.1 38 40.1 41.1 51 49
3. Rebound Freddie Mac 17.9 10.4 24.7 22.4 25.7 26.1 42.8 34.9
Phase length (years)
4. Bust Freddie Mac 6 7.81 5.75 6.02 6 5.83 6 5.02
Role of foreclosures
5. Max Foreclosure Rate CoreLogic 1.21 1.5 1.48 1.65 1.67 1.7 2 1.97

(% of Housing Stock)
6. % Jan-07 Equity< 20% Beraja et al. (2019) 33.4 27.1 24.6 19.2 17.7 18.5 17.9 19.2
7. % Jan-07 Equity< 10% Beraja et al. (2019) 17.5 9.9 11.8 8.3 8.2 8.6 8.2 9.4
8. % Jan-07 Equity< 0% Beraja et al. (2019) 5.1 1.9 3 1.9 2.5 2.2 2.8 2.7
9. Bust Speed (log points) Freddie Mac -7.8 -3.4 -11.4 -11.2 -13 -12.5 -22.4 -22.9
10. Rebound Speed (log points) Freddie Mac 3.5 3.9 5.4 5.9 6.3 6.2 13 7.4
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The first three moments measure the size of the boom, bust, and rebound in house

prices. Heuristically, the size of the full boom-bust-rebound most directly informs µ0, ρ,

χ, and γ as it reflects the actual path of dividends and their impact on the price. The

over-shooting of the boom relative to the long-run informs the learning parameters ϕ and

K/σD. The size of the bust additionally depends on ι, χ, and γ, as these parameters

govern the magnitude of the price-foreclosure spiral.

The next moment is the length of the bust. In the model, the bust ends when beliefs be-

gin to stabilize and actual dividends have risen enough to offset the earlier over-optimism.

The speed of learning, K/σD, and the initial drift µ0 influence this timing.

The remaining moments characterize the role of foreclosures. The fifth moment is

the peak annualized foreclosure rate, as shown in Figure 6. The next three moments

describe the equity distribution near the start of the bust and come from the Beraja et al.

(2019) data set: the share of properties with equity less than 20%, 10%, and underwater

in January 2007. These moments all inform the liquidity shock ι, with the foreclosure

moment additionally informing the supply and demand curve parameters χ and γ. Finally,

we discipline the speed of the price-foreclosure spiral using as moments the maximum four-

quarter price decline in the bust and price increase in the rebound. In addition to χ and

γ, the idiosyncratic house price shock variance σ2
R impacts these speed moments.

We choose the set of parameters that minimizes the weighted sum of squared residuals

between the model and the data moments. We weight all moments equally except the three

equity distribution moments, to which we assign 1/3 of the weight of the other moments,

and the bust and rebound speed moments, to which we assign 1/2 of the weight of the

other moments. To calculate the model moments, we first solve the model and compute

the impulse response to a one-time increase from µ̄ to µ0, using the analytic mean path of

similar ratio across quartiles to the empirically-estimated long-run elasticity η.

42



beliefs. We define the boom as time zero to the price peak and the bust as the price peak

to the price trough. Because there is no natural end date for the rebound but our data end

in 2019, we define the rebound as the seven years following the price trough. We calculate

the log changes in house prices, the length of each phase, the maximum four-quarter price

decline in the bust and price rise in the rebound using a moving average of the price (to

mimic how HPIs time smooth), the moments of the home equity distribution 9 years after

the boom start, and the maximum annualized foreclosure rate.

5.4 Model Fit

Table 6 shows that the estimated model fits the moments extremely well. For the third

quartile for which we estimate all parameters, the model matches the sizes of the boom,

bust, and rebound to within one log point, the bust length almost exactly, all three points

of support of the January 2007 equity distribution to within one percentage point, the

maximum foreclosure rate almost exactly, and the maximum speed of the bust and rebound

to within one-half log point.

The model fits the remaining quartiles well despite the deep parameters being held

fixed in estimation, leading to many fewer degrees of freedom. Figure 8 compares the

price paths in model and data in each quartile. The quality of fit despite the strong over-

identification serves as a validation of the model. Most important, the model reproduces

the empirical pattern of a higher long-run fundamental (larger µ0, smaller η) producing a

larger boom, bust, and rebound and a more severe foreclosure crisis.

Several of the estimated parameters that deliver this fit merit comment. The estimated

drift rate µ0 rises monotonically across quartiles of fundamental growth. The value of

2.4% in the third quartile implies new annual trend growth 1.3p.p. per year higher than in

the pre-boom, not a radical departure. The estimated diagnostic parameter ϕ of 4.375 is
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Figure 8: Quartile Price Paths in Model and Data
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Notes: Each panel displays the path of house prices in the model following a change from µ0 to µ̄ and in
the data for a quartile of CBSAs, grouped by their their long-run fundamental from Section 4.4.

somewhat larger than the value of 1.9 that Bordalo et al. (2019) estimate for stock returns,

perhaps reflecting the difference between the households in our setting and the professional

forecasters in theirs. We show below that this value delivers expectations in line with

untargeted survey data. The estimated values of χ imply substantially steeper short-run

than long-run supply curves. The values of the liquidity shock ι in the neighborhood of 5%

accord remarkably well with evidence on mortgage pre-payment rates during the boom,

supporting our modeling of a single liquidity shock in both periods.34

The model also reproduces the empirical pattern shown in Table 4 that higher price-

dividend growth during the boom forecasts higher future dividend growth and not large

relative price declines.35 For this exercise, we collapse the model time series by year and

34Figure A-1 of Berger et al. (2021) shows the mortgage prepayment rate broken into interest rate re-
financings, cash out refinancings, and purchase prepayment using CRISM data. The authors project this
backwards using origination shares. They find that this series peaks at an annual rate of roughly 4.5% in
the boom when essentially everyone was above water.

35To formally justify equating dividends in the model with rents in the data, we can augment the model
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regress the log changes in dividends and price between model years corresponding to 2006

and 2019 on the log change in the price-dividend ratio during the boom. An additional

log point of growth in the price-dividend ratio in the boom predicts additional 0.41 log

point of dividend growth in the bust-rebound (compared to 0.20 in column (3) of Table 4)

and additional 0.03 log point of price growth (compared to 0.03 in column (6) of Table 4).

5.5 Unpacking the Mechanism

We now discuss the model features that generate a boom-bust-rebound. For parsimony,

we use the parameters estimated for the third quartile. Figure 9 shows the evolution of

prices, foreclosures, construction, and beliefs following a change from µ̄ to µ0. The solid

blue lines show the paths at the estimated parameter values, the dash-dot gold lines show

the paths without diagnostic expectations (ϕ = 0), and the dashed red lines show the

paths with no foreclosures (ι = 0), holding other parameters fixed.

The comparisons across lines in each panel illustrate the importance of both belief over-

shooting and foreclosures to generating a realistic boom-bust-rebound. Without diagnostic

learning, beliefs, prices, and construction all rise smoothly and monotonically. The steady

price appreciation reflects three forces: (i) the increase in the capitalization rate mt − ρ,

(ii) the increase over time in the dividend, and (iii) the decline in foreclosures relative to

the pre-boom period.

Diagnostic learning generates an over-shooting of beliefs about the drift rate µ, as

shown in Panel (d). These beliefs rise from their initial level of 1.1% up to above 5%

before nearly converging to the true value (shown by the thin dashed line) by the end of the

sample window. The turning point coincides with the peak of the boom. Unlike in models

with “Minsky” moments where beliefs and asset prices crash suddenly, with diagnostic

to include a measure 0 of renters who live in units that fully depreciate each instant. Such individuals are
willing to pay up to Dt in rent.
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Figure 9: Model Boom-Bust-Rebound
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Notes: This figure shows the simulated boom-bust-rebound in the model resulting from a single change
from µ̄ to µ0 at time t = 0. The solid blue line shows the baseline model with parameters estimated for the
third quartile of CBSAs. The dashed red line shows the model without foreclosures, that is with all of the
same parameters except ι = 0. The dash-dot gold line shows a parameterization with foreclosures but no
diagnostic expectations, that is with all of the same parameters as the baseline calibration except ϕ = 0.
Panel (a) shows the price index normalized to 1 in the instant before the drift rate changes to µ0. Panels
(b) and (c) show the foreclosure rate in annualized percent of the housing stock and the construction rate as
an annualized growth rate. Panel (d) shows beliefs, with the dashed black line showing the true drift rate.

expectations the convergence is gradual, consistent with the six-year length of the bust.

The over-shooting of diagnostic beliefs in the boom has a natural counterpart in survey

evidence on beliefs about house price growth. The best available evidence comes from Case

et al. (2012), who show a similar degree of over-optimism in surveys of homebuyers.36

Without foreclosures, however, the over-shooting of prices from diagnostic learning

alone generates a much smaller boom and bust than in the data. The attenuation of the

36Case et al. (2012) survey four counties (Alameda California, Milwaukee Wisconsin, Middlesex Mas-
sachusetts, and Orange California) from 2003 to 2012 and report 1-year and 10-year expectations of annual
house price growth. These measures do not map straightforwardly into beliefs over µ, both due to the nature
of the survey and because µ corresponds to price growth on the balanced growth path but not necessarily
to price growth at any point in the transition. Nonetheless, expectations of annualized price growth over a
10-year horizon exceed 10% in all four counties during the boom before falling gradually to between 3 and
5 percent by 2012, very much in the ballpark implied by the beliefs of diagnostic agents in our model.
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boom occurs for two reasons: (i) credit expands in the baseline case as lenders perceive a

decline in default risk, (ii) in the baseline path, the increase in prices causes foreclosures to

decline relative to the pre-boom period, contracting supply and further pushing up prices.

The boom length is nearly identical with and without foreclosures, reflecting the role of the

parameter k in determining the peak in beliefs and prices. The correction in beliefs on its

own generates a counterfactually-small price dip in the bust, as prices converge smoothly

toward their long-run path.

Foreclosures generate a much larger bust in prices, to below the level that would prevail

with rational learning.37 The over-shooting occurs because of a price-foreclosure spiral

(Guren and McQuade, 2020): foreclosures add to housing supply, which further depresses

prices, putting more owners under-water, leading to more foreclosures.38 Reflecting this

dynamic, the increase in foreclosures in Panel (b) and decline in construction in Panel (c)

reach local extrema near the trough of the bust in prices.

In sum, both elements — belief over-optimism and foreclosures — are required to

generate the boom-bust-rebound.

5.6 Comparison to Other Mechanisms

To clarify how our focus on over-optimism about fundamental determinants of house prices

compares to the existing literature, in this subsection we relate our analysis to narratives

37The price-foreclosure spiral in our model is quantitatively large: The bust size without foreclosures is
10.9 log points relative to 41.1 in the baseline model. The speed and magnitude of the bust and rebound
explain why our exercise requires a substantial impact of foreclosures to account for the overshooting during
the bust. For comparison, in a structural exercise with a bursting bubble but no rebound, Guren and
McQuade (2020) find that the supply-and-demand effects of foreclosures account for 32% of the bust. Their
model, however, also includes another channel whereby foreclosures cause losses on bank balance sheets.
Without that channel, they would infer a much larger role for supply-and-demand effects. Mian et al. (2015)
conduct an empirical analysis with foreclosures instrumented by judicial requirements; extrapolating their
local treatment effect elasticity to total foreclosures from 2007-2013 implies a 16 to 32 percentage-point
decline in house prices due to foreclosures compared to 30 log points in our model.

38This dynamic parallels more general fire sale episodes (Shleifer and Vishny, 2011), where the idiosyncratic
location preference ξ plays the role of reallocating capital to a second-best use, thereby depressing prices.
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that emphasize changes in credit supply or the role of speculators.

Credit. In our model, changes in mortgage costs, including credit spreads and fixed costs

of underwriting, have relatively small effects on prices. To see why, recall the demand

equation (16): ln
(
QD
t /Ht

)
= −γ ln (Pt +Wt) + γ (lnVt + lnxm) + ln gH . In the baseline

calibration, higher anticipated dividends shift the demand curve by γ∆ lnVt ≈ 140 log

points from date 0 to the peak of the boom. If the present value of mortgage costs, Wt, is

small relative to the price, Pt, then even large changes in Wt shift the demand curve by

only a small amount relative to the change in Vt.
39

Changes in credit that affect approval rates on the extensive margin offer greater po-

tential for credit to impact prices in our model. Consider an extension in which each

potential entrant first draws income y from a CDF G(y) and gets approved for a mortgage

only if y > ctPt. The cutoff parameter ct encompasses a variety of mechanisms including

down-payment constraints and payment-to-income constraints (Greenwald, 2018). With

this modification, the parameter gH becomes instead (1−G (ctPt)) gH . With some abuse

of notation, we can therefore accommodate such policies by replacing gH in equation (16)

with a time-varying potential buyer share gH,t. In fact, in the presence of an approval con-

straint y > ctPt that binds in at least part of the distribution of y prior to the boom, our

calibration with constant gH requires an expansion of credit on the extensive margin (or

a rightward shift in the distribution of y), as otherwise an increasing number of potential

buyers would get denied mortgage approval as Pt rises.40 On the other hand, the rise in

39 Figure C.1 confirms this intuition in a quantitative exercise where we replace lenders’ diagnostic beliefs
with perfect foresight, so that they perfectly anticipate the peak in buyers’ beliefs and hence in prices. In
this exercise, Wt/Pt rises by more than 8p.p., but the price path changes little. Why do perfect foresight
lenders not raise Wt by even more so as to choke off the boom-bust? With the double-trigger for default, the
estimated liquidity shock frequency of roughly 5% per year, and the empirical recovery rate of roughly 65%
on foreclosures, lenders receive substantial cash flows even on mortgages made just prior to a price peak.
The 8p.p. rise in Wt/Pt is exactly sufficient to compensate for the anticipated wave of foreclosures.

40In related work, Foote et al. (2021) argue that without extensive margin credit expansion, low income
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rents in high fundamental areas shown in Figure 5 militates against attributing the initial

shift out of the demand curve to easing credit.

Speculation. Appendix B.1 explores the relationship between the long-run fundamental

and speculative activity in the data. We make five observations: (i) speculative activity

appears potentially important to house price growth late in the boom in some places such

as Las Vegas; (ii) long-run fundamentals also explain price growth late in the boom; (iii)

speculative activity has much less explanatory power for price growth in the boom up to

2004 or for the full 1997-2019 period, especially compared with the explanatory power of

long-run fundamentals; (iv) speculators did not contribute disproportionately to selling

pressure during the bust; and (v) the degree of speculative activity in the late boom is

uncorrelated with the long-run fundamental in an area. These observations suggest forces

orthogonal to fundamentals that made some areas prone to speculation late in the boom,

rather than systematic price return chasers who reversed course and added to selling

pressure during the bust. In sum, speculation complements our focus on fundamentals as

a source of the late boom without impacting the quantitative analysis of our model.

6 Conclusion

We revisit the 2000s housing cycle with “2020 hindsight.” At the city level, the areas with

the largest price increases during the housing boom from 1997 to 2006 had the largest

busts from 2006 to 2012 but also the fastest growth after the trough, and as a result

borrowers would have been priced out of housing markets and the distribution of mortgage credit would
have counterfactually shifted toward high income groups. Appendix Figure B.5 shows that the long-run
fundamental is essentially uncorrelated with the change in subprime share during the boom. This pattern
suggests the role of other types of credit relaxation (including low interest rates that ease payment-to-income
constraints) and rising incomes (indeed, rising incomes are part of the fundamental) in keeping house prices
affordable in high fundamental areas. Note also that credit relaxation need not raise prices in areas without
growing fundamentals if credit constraints did not bind already in these areas, perhaps because the initial
house price level was lower.
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have had the largest price appreciation over the full cycle. We present a standard spatial

equilibrium framework of house price growth determined by local income, amenities, and

supply determinants and show this framework fits the cross-section of city house price

growth between 1997 and 2019. The implied long-run fundamental is correlated not only

with long-run price growth but also with a strong boom-bust-rebound pattern.

Our neo-Kindlbergererian interpretation emphasizes the role of economic fundamentals

in setting off this asset price cycle. In our model, the boom results from over-optimism

about an increase in the “dividend” growth rate, the bust ensues when beliefs of home buy-

ers and lenders correct, exacerbated by a price-foreclosure spiral that pushes prices below

their full-information level, and eventually a rebound emerges as the economy converges to

a price path commensurate with fundamental growth. We also acknowledge other features

of the episode, including changes in credit supply and speculation, but conclude that these

forces cannot substitute for the role of fundamentals as a driving force.

Our conclusion about the fundamentally-driven roots of the 2000s housing cycle is

important not only for understanding the cause of the cycle and asset bubbles more gen-

erally but also for macroprudential policy. If the 2000s cycle were only due to sunspot

expectations or changes in credit supply, a macroprudential policy maker might want to

aggressively stamp out any such boom. Our findings suggest that while policy may want

to temper over-optimism and aggressively mitigate foreclosures, it is also important not

to suffocate fundamentally-driven growth. Of course hindsight is 20-20; distinguishing

fundamental growth from over-optimism in real time rather than after observing a full

boom-bust-rebound poses a formidable task. Nonetheless, our findings imply that policy

makers should heed Kindleberger’s dictum that essentially all manias are to some degree

grounded in fundamentals.
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A Microfounding Construction and Land Costs

A.1 Construction

Assume a construction function for producing new houses out of materials Mi,t and labor

Ni,t:

Ḣi,t = Ãi,t
(
Mκ
i,t +N1−κ

i,t

)
H−αii,t . (A.1)

The term H−αii,t captures the possibility that construction becomes more difficult as easier-

to-develop plots get built first. Competitive construction firms obtain materials at a

price PM
t on the national market and hire labor at local wage Wi,t. The FOC for cost

minimization yields a cost-per-new-home Ci,t of:

Ci,t = Ai,tH
αi
i,t , (A.2)

where: Ai,t = (PM
t )κ(Wi,t)

1−κ/Ãi,t. (A.3)

The same result would arise if the local construction wage Wi,t depended on population,

with a re-definition of the exponent αi.

A.2 Land

As in Alonso (1964), Muth (1969), and Mills (1967) and Saiz (2010), consider a city with

population Hi,t laid out on a disk with radius Φi,t. A fraction Λi of the disk is buildable

land, giving:

Φi,t =

√
Hi,t

Λiπ
, (A.4)



where we have normalized lot size to 1. The rental cost of a plot of land νi,t depends on

its distance τ from the city center:

νi,t(τ) = κi,t
(
Φχi
i,t − τ

χi
)
. (A.5)

At the city’s edge (τ = Φ), the rental value of land equals 0, a normalization that reflects

a residual supply of unused land. The city-specific parameter κi,t > 0 shifts the value of

all plots of land in a city proportionally. The parameter χi > 0 is the elasticity of the

premium to living in the city center relative to living 1% of the city radius outside of the

center; denoting ν̂i,t (τ) ≡ νi,t(0)−νi,t(τ)
νi,t(0) =

(
τ

Φi,t

)χi
, χi = ∂ ln ν̂i,t(τ)

∂(τ/Φi,t)
. The term

(
Φχi
i,t − τχi

)
has the literal intepretation of offsetting the reduction in the cost of commuting to the city

center; more generally it reflects any gradient in the desirability of different neighborhoods.

As a city grows, the premium to living in the city-center rises to preserve intra-city spatial

equilibrium.

The price of a plot of land is the discounted future rents:

Li,t (τ) =

∫ ∞
t

e−ρ(s−t)κi,s
(
Φχi
i,s − τ

χi
)
ds. (A.6)

We consider a balanced growth path with κi,s = κi and population growth of Ii, giving

Φi,s =
√

Hi,s
Λiπ

=
√

eIi(s−t)Hi,t
Λiπ

= e
Ii
2

(s−t)Φi,t. Along this path, the price of a unit of land at

distance τ from the city center is:

Li,t (τ) =

∫ ∞
t

e−ρ(s−t)κi

(
e
Ii
2

(s−t)Φi,t − τ
)χi

ds

= κi

(
Φχi
i,t

ρ− χiIi/2
− τχi

ρ

)
. (A.7)

Note that while the rental value of land at the city boundary νi,t (Φi,t) is zero, with positive

population growth the price Li,t (Φi,t) is strictly positive, reflecting the capitalization of

future non-zero rents.

The average price of a plot of land in the city at time t integrates over the available

land at each distance τ :

Li,t =
1

Hi,t

∫ Φi,t

0

Li,t (τ) Λi2πτdτ

= κi

(
1

ρ− χiIi/2
− 1

ρ (χi/2 + 1)

)(
Hi,t

Λiπ

)χi
2

2



= Bi,tH
β
i,t, (A.8)

where: Bi,t = κi

(
1

ρ− χiIi/2
− 1

ρ (χi/2 + 1)

)(
1

Λiπ

)χi
2

, (A.9)

β = χi/2. (A.10)

Equation (A.8) extends equation (1) in Saiz (2010) to allow for non-zero population growth

(Ii > 0) and arbitrary city center premium (χi 6= 1), both of which feature in our empirical

analysis. It nonetheless retains the crucial and intuitive prediction that the average price

of land is higher in places with a smaller share Λi of land available for development.

B Empirical Appendix

B.1 Investors/Speculators

In this appendix we explain how our focus on long-run fundamental determinants of house

prices relates to work emphasizing the role of speculation in the boom. We make five

observations: (i) speculative activity appears potentially important to house price growth

late in the boom in some places such as Las Vegas; (ii) long-run fundamentals also explain

price growth late in the boom; (iii) speculative activity has much less explanatory power

for price growth in the boom up to 2004 or for the full 1997-2019 period, especially com-

pared with the explanatory power of long-run fundamentals; (iv) the degree of speculative

activity in the late boom is uncorrelated with the long-run fundamental in an area; and

(v) speculators did not contribute disproportionately to selling pressure during the bust.

These observations suggest forces orthogonal to fundamentals that made some areas prone

to speculation late in the boom, rather than systematic price return chasers who reversed

course and added to selling pressure during the bust.

We follow Gao et al. (2020) and use Home Mortgage Disclosure Act (HMDA) data to

measure the share of purchase mortgages to non-owner occupiers in each CBSA and year.

Chinco and Mayer (2016), Gao et al. (2020) and DeFusco et al. (2017) associate the non-

owner occupier share with speculative activity by investors. Gao et al. (2020) show that

the investor share in 2004-06 predicts house price growth in the same period, including

when instrumented with state tax treatment of capital gains, while Chinco and Mayer

(2016) focus on out-of-town buyers. Panel (a) of Figure B.1 replicates in our sample of

CBSAs the OLS result found in Gao et al. (2020) and shows a strong positive relationship.1

1For readability, the figure omits the seven CBSAs with pre-boom, 1994-1996 average share above 20%:
Barnstable Town, MA (Cape Cod, 28.3%); Cape Coral-Fort Myers, FL (26.6%); Daphne-Fairhope-Foley,

3



Figure B.1: Investors

(a) Investor Share and Late Boom
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(b) Fundamental and Late Boom
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(c) Investors and Fundamental Boom
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(d) Investors and Non-fundamental Boom
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Notes: Panel (a) plots the investor share of purchases averaged over 2004-2006 against house price growth
in 2004-2006. The investor share of purchase mortgages comes from HMDA. Panel (b) plots the long-run
fundamental against house price growth in 2004-2006. Panel (c) plots the investor share averaged over 2004-
2006 against the fitted value from a regression of 2004-2006 house price growth on the long-run fundamental.
Panel (d) plots the investor share averaged over 2004-2006 against the residual from a regression of 2004-2006
house price growth on the long-run fundamental. All panels exclude seven CBSAs with a 1994-96 share above
20%: Barnstable, Town, MA (Cape Cod, 28.3%); Cape Coral-Fort Myers, FL (26.6%); Daphne-Fairhope-
Foley, AL (25.6%); Hilton Head Island-Bluffton, SC (27.8%); Myrtle Beach-Conway-North Myrtle Beach,
SC-NC (37.6%); Napes-Marco Island, FL (34.4%); and Ocean City, NJ (45.1%). CBSAs with more than 1
million persons in 1997 are labeled in red.
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Panel (b) shows that house price growth during 2004-2006 also correlates strongly with

the long-run fundamental, measured as usual as the fitted value from the second stage

regression in column (3) of Table 2. Thus, even at the end of the boom when speculative

activity was plausibly most rampant, long-run fundamentals continue to explain house

price growth.

Table B.1 summarizes the relationship among investors, fundamentals, and house price

growth for several periods. Columns (1)-(2) reproduce the positive correlations shown in

panels (a) and (b) of Figure B.1 of investor share and fundamentals with 2004-2006 house

price growth. Column (3) shows that both variables contain predictive power when entered

into a joint regression. Consistent with speculative activity peaking in the late boom,

the investor share has much less explanatory power for 1997-2004 house price growth

(R2 = 0.03, column (4)), especially compared to the explanatory power of the long-

run fundamental for the early boom (R2 = 0.32, column (5)). The R2 of the long-run

fundamental for house price growth over the full 1997-2019 period of 0.48 (column (8))

substantially exceeds the R2 of 0.07 for the investor share (column (7)).

Panels (c) and (d) of Figure B.1 decompose the correlation from Panel (a) into the

correlation of investor share with the part of house price growth explained by long-run

fundamentals and a residual, respectively. We measure the part explained by fundamentals

as the fitted value from the relationship plotted in Panel (b) and the non-fundamental part

as the residual from this regression. Panel (c) displays a small positive correlation between

the investor share and the part of 2004-2006 price growth correlated with fundamentals,

but the explanatory power is weak (R2 = 0.02) and the positive sign does not survive

weighting by population, as can be seen by the downward slope of the CBSAs labeled in

red which contain more than 1 million persons. In other words, the 2004-2006 investor

share is essentially uncorrelated with the long-run fundamental that is the focus of our

paper. Las Vegas, which has received substantial attention for the role of speculation in

its housing boom (Chinco and Mayer, 2016; Nathanson and Zwick, 2018), provides an

example of a CBSA with a high investor share but a relatively low long-run fundamental

and hence a small predicted value for 2004-2006 house price growth.

Panel (d) plots the investor share against the non-fundamental component of house

price growth in 2004-2006. Areas with late price booms not explained by their long-

AL (25.6%); Hilton Head Island-Bluffton, SC (27.8%); Myrtle Beach-Conway-North Myrtle Beach, SC-NC
(37.6%); Napes-Marco Island, FL (34.4%); and Ocean City, NJ (45.1%). The investor share in 1994-1996
correlates strongly with the share in 2004-2006 (correlation coefficient of 0.81), reflecting persistence in tax
treatment of capital gains and that some areas have high non-owner occupier shares because they are common
vacation destinations, as suggested by the list of areas with the highest shares in 1994-1996. The patterns
shown in Figure B.1 and Table B.1 continue to hold if we replace the 2004-2006 level of the investor share
with the change in the share from 1994-1996.
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Table B.1: House Price Growth, Investors, and Fundamentals

House price growth: 2004-2006 1997-2004 1997-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Investor share 0.87∗∗ 0.80∗∗ 0.57∗∗ 0.32+ 0.92∗∗ 0.57∗∗

(0.10) (0.08) (0.16) (0.17) (0.16) (0.13)
Long-run fundamental 0.25∗∗ 0.20∗∗ 0.73∗∗ 0.71∗∗ 1.01∗∗ 0.97∗∗

(0.04) (0.03) (0.08) (0.08) (0.06) (0.06)
Standard deviation of explanatory variables:
Investor share 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
Fundamental (×100) 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
R2 0.330 0.159 0.432 0.034 0.318 0.328 0.068 0.477 0.503
Observations 301 301 301 301 301 301 301 301 301

The table reports the coefficients from regressions of real house price growth by CBSA on the investor share,
measured as the 2004-2006 average share of purchase mortgages to non-owner occupiers in HMDA, and the
long-run fundamental, measured as the fitted value of column (3) of Table 2. Robust standard errors in
parentheses. ∗∗,+ denote significance at the 1, and 10 percent levels, respectively.

run fundamental had higher investor shares of purchases, and this relationship explains

essentially all of the overall correlation shown in Panel (a). Las Vegas again provides a

leading example, with faster house price growth than its fundamental would predict and

a high investor share. Las Vegas also had a larger-than-predicted bust given the size of

its fundamental and a relatively muted rebound given the magnitude of the boom. This

pattern also is representative; a regression of 2006-2019 house price growth on the 2004-

2006 investor share indicates 5 percentage points lower growth for each 10 percentage

points higher investor share (Table B.1 column (7) less sum of columns (1) and (4)).

Finally, we show empirically that investors do not contribute to significant selling pres-

sure in the bust. To do so, we start with a merge of HMDA and the DataQuick deeds data

from Diamond et al. (2019). We use the same indicator for an investor from the HMDA

data as above. Using the deeds data, we identify the next arms-length transaction on a

property previously purchased by an investor. We match 87% of residential transactions

in the DataQuick deeds data from 1993 to 2009 to a HMDA record.

Figure B.2 shows the survival functions for continuing to own the property for investors

who purchased prior to the bust. The survival function flattens around 2006 for all cohorts.

This indicates that investors did not dump their properties en masse in the bust and in

fact became less likely to sell. In other words, a story in which investors who purchase in

the boom push down prices in the bust as they sell does not fit the data.

Overall, these results are consistent with speculation playing a role late in the house
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Figure B.2: Survival Function For Investors From Matched HMDA-DQ Data
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Notes: This figure shows survival functions for cohorts of investors in the matched HMDA-DataQuick data.
Investors are defined as non-owner-occupiers in the HMDA data. For each cohort of investors that purchased
in a given year, we compute the fraction of investors who have yet to sell at each year. The figure plots this
survival function for each cohort.

price boom in areas such as Las Vegas and echo the result from Table 4 that price-

rent growth in the boom not associated with long-run fundamentals strongly predicts

subsequent price decline. However, they also suggest that the role of investors was mostly

or wholly orthogonal to the role of fundamentals and less important to explaining the

entirety of the boom or the full 1997-2019 period, which are the focus of our paper.

B.2 Bartik Instrument Details

We combine the CBP files provided by the Census with the files from Eckert et al. (2020)

that optimally impute suppressed employment and wage cells and provide a consistent

correspondence to NAICS 2012. We use 1998 rather than 1997 as the initial year because

the NAICS version of the data start in that year. The final year of data available is

2018. We implement “leave-one-out” shift shares: defining Ei,j,0 as employment in area

i and industry j as a share of total date 0 employment in area i, g−i,j as the growth
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rate of employment in industry j in all other areas between dates 0 and 1, w−i,j,t as

the wage (payroll per employee) in industry j in all other areas at date t, and Êi,j,1 ≡
Ei,j,0×g−i,j/ [

∑
k Ei,k,0 × g−i,k] as the predicted date 1 area i employment share in industry

j, the shift-share for the growth of employment is
∑

j Ei,j,0g−i,j and the shift-share for the

growth of the average wage is
[∑

j Êi,j,1 × w−i,j,1
]
/
[∑

j Ei,j,0 × w−i,j,0
]
− 1, where date

0 is 1998 and date 1 is 2018.

B.3 Additional Empirical Results

Figure B.3 plots the timing of boom starts, peaks, and bust troughs across CBSAs. Fig-

ure B.4 plots correlations of house price growth during the boom, bust and rebound across

CBSAs. Table B.2 reports summary statistics. Figure B.5 displays the correlation of the

long-run fundamental with measures of non-prime lending.
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Figure B.3: Local Peak and Trough Timing
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(b) Peak quarter
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(c) Trough quarter
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Notes: Panel (a) reports a histogram across CBSAs in our final sample of the first quarter between 1992:Q1
and 2006:Q2 with a positive structural break in the growth rate of real house prices, using the procedure
in Ditzen et al. (2021). Areas without a break identified at the 95% confidence level are shown in the bar
labeled “None.” Panel (b) reports a histogram of the quarter with the peak in real house prices between
2003:Q2 and 2009:Q2. Areas without an interior peak in this period are shown in the bar labeled “None.”
Panel (c) reports a histogram of the quarter with the trough in real house prices between 2007:Q1 and
2015:Q4. Areas without an interior trough in this period are shown in the bar labeled “None.”
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Figure B.4: CBSA Boom, Bust, and Rebound
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Notes: Each blue circle represents one CBSA. The red circles show the mean value of the y-axis variable for
20 bins of the x-axis variable. CBSA house price data from Freddie Mac deflated using the national GDP
price index.
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Table B.2: Summary Statistics

Variable Mean SD P10 P50 P90 Obs.
House price growth 1997-2019 28.0 23.4 −0.6 25.5 59.9 308
House price growth 1997-2006 35.2 26.8 8.1 26.0 79.0 308
House price growth 2006-2012 −29.9 22.8 −65.9 −24.2 −5.8 308
House price growth 2012-2019 22.7 17.8 2.4 19.3 49.6 308
Census rent growth 2000-2018 54.3 8.5 41.7 54.4 64.8 272
Population growth 1997-2019 19.9 17.2 −0.1 17.7 42.3 308
Land share 28.0 9.4 17.8 26.2 40.8 308
WRLURI 2006 −11.8 81.9 −104.5 −23.0 89.7 308
Bartik employment 1998-2018 22.8 6.3 15.6 22.9 30.4 308
Bartik wage 1998-2018 84.5 9.1 71.5 85.4 94.1 308
January temperature 35.6 12.1 21.4 34.3 51.9 308
January sunlight hours 151.1 39.0 104.0 150.9 210.0 308
July humidity 56.4 16.4 26.0 60.3 73.6 308
Land unavailable 30.8 20.4 6.7 26.8 62.7 308
1997 population density 26.6 30.7 5.7 17.3 52.7 308
Non-traditional Christian share 41.5 23.0 10.4 39.5 73.8 308
Inspection/tax revenue 0.8 0.8 0.2 0.5 1.7 308
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Figure B.5: Non-Prime Credit and Fundamentals
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(b) Non-Agency
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Notes: Panel (a) plots the share of purchase mortgages originated by lenders flagged by the the Department
of Housing and Urban Development as subprime lenders against the long-run fundamental. Panel (b) plots
the share of purchase mortgages below the jumbo threshold and purchased by non-Agency institutions
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data include all first-lien purchase mortgages in HMDA not backed by manufactured housing or buildings
with more than four units. CBSAs with more than 1 million persons in 1997 are labeled in red.
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C Model Appendix

C.1 Present Value of Dividends

We restate equation (15) for convenience:

P ∗t =

∫ ∞
−∞

Et
[∫ ∞

t

e−ρ(s−t)Dsds|µt
]
hϕt (µt) dµt.

We want to prove that this integral depends only on Dt,m
ϕ
t , and parameters. We start

by fixing µt and Dt. Using the property that Dt is a geometric Brownian motion, we

have e−ρ(s−t)Ds = Dt exp
(
−ρ (s− t)− 1

2σ
2
D (s− t) +

∫ s
t µτdτ + σ

∫ s
t dWD,τ

)
. Taking an

expectation:

Et
[
e−ρ(s−t)Ds|µt

]
= Dt exp

[
−ρ (s− t) + Et

[∫ s

t

µτdτ |µt

]
+

1

2
Var

(∫ s

t

µτdτ |µt

)]
.

One can show:

Et
[∫ s

t

µτdτ |µt
]

= µ̄ (s− t) +
1

θ

(
1− e−θ(s−t)

)
(µt − µ̄) ,

Var

(∫ s

t

µτdτ |µt
)

=
σ2
µ

θ2
(s− t)−

3σ2
µ

2θ3
+
σ2
µ

2θ3

[
4e−θ(s−t) − e−2θ(s−t)

]
,

giving:

Et
[
e−ρ(s−t)Ds|µt

]
= Dt exp

[
− (ρ− µ̄) (s− t) +

1

θ

(
1− e−θ(s−t)

)
(µt − µ̄) +G (s− t)

]
,

where: G (s− t) =
σ2
µ

2θ2
(s− t)−

3σ2
µ

4θ3
+
σ2
µ

4θ3

[
4e−θ(s−t) − e−2θ(s−t)

]
.

Then:

P ∗t = Dt

∫ ∞
0

Eϕµt
exp

[
− (ρ− µ̄) τ +

1

θ

(
1− e−θτ

)
(µt − µ̄) +G (τ)

]
dτ

=

∫ ∞
0

exp

[
− (ρ− µ̄) τ +

1

θ

(
1− e−θτ

)
(mϕ

t − µ̄) +G (τ)

]
exp

[
σ2
m

2θ2

(
1− e−θτ

)2
]
dτ,

(C.1)

giving the desired result.
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C.2 Analytic Path of Beliefs

We solve for the mean path of beliefs mϕ
t starting from the initial condition m0 = µ̄ and

the initial drift rate µ0. That is, we solve for mϕ
t if all subsequent Wiener shocks are equal

to 0. From equation (13), we have:

mϕ
t = mt + ϕIt. (C.2)

We first characterize the path of mt, and then the path of ϕIt.
We first solve the SDE for mt. Substituting equations (8) and (11) into equation (10),

we have:

dmt = θ (µ̄−mt) dt+KdBt

= θ (µ̄−mt) dt+Kσ−1
D (µtdt+ σDdWD,t −mtdt)

= (θµ̄+ κµt − (κ+ θ)mt) dt+KdWD,t, (C.3)

where κ ≡ K/σD. The solution to this SDE is:

mt = m0e
−(κ+θ)t + θµ̄

∫ t

0

e−(κ+θ)(t−s)ds+ κ

∫ t

0

e−(κ+θ)(t−s)µsds+K

∫ t

0

e−(κ+θ)(t−s)dWD,s.

(C.4)

Note that equation (9) implies:

E0 [µt|µ0] = e−θtµ0 +
(
1− e−θt

)
µ̄. (C.5)

Taking a conditional expectation of equation (C.4), using equation (C.5), and simplifying

terms, we find:

E0 [mt|µ0,m0] = µ̄+ (µ0 − µ̄) e−θt − (µ0 −m0) e−(κ+θ)t. (C.6)

We next solve for the mean path of ϕIt. Using equations (8), (11) and (14), we have:

ϕIt = Kϕ

t∫
t−k

e−θ(t−s)dBs = ϕκ

t∫
t−k

e−θ(t−s) (µs −ms) ds+ ϕκ

t∫
t−k

e−θ(t−s)dWD,s. (C.7)

Note that equations (C.5) and (C.6) together imply that for any s ≥ 0, E0 [µs −ms|µ0,m0] =
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(µ0 −m0) e−(κ+θ)s. Therefore:

E0 [ϕIt|µ0,m0] = ϕκ

t∫
max{t−k,0}

e−θ(t−s) (µ0 −m0) e−(κ+θ)sds

= ϕ (µ0 −m0)
(
e−κmax{t−k,0}−θt − e−(κ+θ)t

)
. (C.8)

Equations (C.6) and (C.8) together characterize the mean path of diagnostic beliefs

E0 [mϕ
t |µ0,m0] that we use to solve for the path of P ∗ (Dt,m

ϕ
t ).

C.3 Alternative Belief Formation

Diagnostic expectations have several attractive features for our analysis: they are a simple

departure from rational learning, they are easily parameterized, different sized changes in

fundamentals lead to a boom-bust-rebound of a different size but not a different length as

in the data, and they are motivated by evidence in the behavioral economics literature.

However, the boom-bust-rebound in response to a change in fundamentals really only

requires over-optimism and learning, and any belief microfoundation that generates the

same path of expected discounted dividends would generate the same results.

As an example, in this Appendix we provide an alternative rationalization of Vt based

on rational Bayesian updating but an over-optimistic prior. To simplify the exposition, we

consider a drift rate that can take n = 3 possible values µ1, µ2, µ3. As in the main text,

agents observe Dt but do not know the instantaneous drift rate. Each instant a shock

arrives with Poisson intensity ϕ that changes the drift rate, with fi the probability the

drift rate changes to µi if a regime-shift shock occurs.

We consider a one-time change from µ1 to µ2. To generate over-optimism, we set

{fi} such that agents perceive a higher probability of changing to µ3 than to µ2 if a

regime shock occurs. Since we consider a one-time change, one may interpret each fi as

agents’ subjective belief about the probability of jumping to regime i conditional on a

shift occurring, giving rise to an over-optimistic posterior relative to the the true objective

probability of switching to each regime.

Following Lipster and Shiryaev (1977), agents’ belief πi(t) that µ(t) = µi evolves as:

dπi(t) = ϕ (fi − πi(t)) dt+ πi(t) (µi − µ̄(t))σ−1
D dW̃ (t), (C.9)

where µ̄(t) ≡
∑

i πi(t)µi is the expected drift and dW̃ (t) ≡ dD(t)
D(t) − µ̄(t) is the surprise

innovation given agents’ current beliefs. The first term of equation (C.9) reflects the
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possibility of a regime change. The second term shows that πi(t) will increase if the drift

µi exceeds the current expected drift µ̄(t) and the dividend increases by more than the

expected drift, with the amount of updating determined by the precision of the Wiener

process σ−1
D .

The expected present value of dividends P ∗ (D,Π), where Π denotes the current set of

beliefs, satisfies:

P ∗ (D,Π) = E

[∫ ∞
t

e−ρsD(s)|F (t)

]
=

n∑
i=1

πiD

(ρ+ ϕ− µi) (1− ϕ∆)
, (C.10)

where ∆ ≡
∑n

i=1
fi

ρ+ϕ−µi . To interpret equation (15), suppose for the moment ϕ = 0.

Without the possibility of a regime shift, the expected present value is the expectation

of the Gordon growth formula, Ei [D/ (ρ− µi)], across possible drift rate regimes. The

additional terms in equation (15) account for the possibility of regime shifts.

To connect equation (C.10) to equation (15), consider starting from a near-certain

belief that µ(t) = µ1 and that if the regime changes it is very likely to change to regime

3, i.e. π1(0) close to 1 and f3 >> f2. An agent with such a prior who observes dividend

growth higher than µ1 will update her mean belief of the growth rate but overshoot due

to the optimistic prior, giving a path for P ∗ similar to the diagnostic case.

C.4 Lender Perfect Foresight

Figure C.1 shows the paths of price, Pt, and upfront mortgage cost as a share of the price,

Wt/Pt, when lenders have perfect foresight over the path of dividends.

As discussed in footnote 39, this exercise explains why changes in the cost of credit

have a small effect on prices. Even when lenders perfectly anticipate the peak in buyers’

beliefs and hence in prices, the rise in Wt/Pt of more than 8p.p. has a small impact on

the path of prices. Why do perfect foresight lenders not raise Wt by even more so as

to choke off the boom-bust? With the double-trigger for default, the estimated liquidity

shock frequency of roughly 5% per year, and the empirical recovery rate of roughly 65% on

foreclosures, lenders receive substantial cash flows even on mortgages made just prior to a

price peak. The 8p.p. rise in Wt/Pt is exactly sufficient to compensate for the anticipated

wave of foreclosures.
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Figure C.1: Prices and Mortgage Costs with Lender Perfect Foresight
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Notes: The figure shows the paths of price, Pt, and upfront mortgage cost as a share of the price, Wt/Pt,
when lenders have perfect foresight over the path of dividends.

D Computational Appendix

In this appendix, we detail the computational approach we employ for solving the model.

We first discuss approximating the Fokker-Plank partial differential equation via poly-

nomial projection methods. We then discuss how we use a sparse grids approach for

our global solution method. Finally, we discuss how Monte-Carlo simulation methods are

employed in our iterative global solution method to compute equilbirum mortgage pricing.

D.1 Approximating the Fokker-Plank Equation

One of the key state variables in our model is the infinite-dimensional distribution of

mortgage balances. The measure density g (M, t) of this distribution follows the Fokker-

Plank equation:
∂

∂t
g (M, t) = (It + ι)Htφ (M/Pt) /Pt − ιg (Mt)

where i is the arrival rate of liquidity shocks and φ (·) is the LTV origination distribtuion.

There is no closed form solution for this initial value problem, so we must rely on numerical

techniques.
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The key idea is to approximate the loan balance distribution with a Chebyshev series:

g (M, t) =
N∑
i=0

αi (t)Ti (M)

with:

Ti (M) = cos

(
i ∗ arccos

(
M −

(
Mu +M l

)
/2

(Mu −M l) /2

))
the (scaled) ith Chebyshev polynomail of the 1st kind, and Mu,M l the upper and lower

bounds of the mortgage balance distribution respectively. The coefficients αi (t) are de-

termined by requiring the polynomial series to interpolate the true measure density at

(M1, ...,MN ) collocation points. We set the collocation nodes to be the (scaled) Chebyshev-

Gauss-Lobato (CGL) points:

Mi =
1

2

(
Mu +M l

)
− 1

2

(
Mu −M l

)
cos

(
iπ

N

)
,

equal to the (N − 1) extrema of the N th Chebyshev polynomial plus the endpoints. We

thus require:
N∑
i=1

αi (t)Ti (Mj) = g (Mj, t)

for j = 1, ..., N.

Using the Fokker-Plank equation we find the system of differential equations governing

the coefficients:

N∑
i=0

α′i (t)Ti (Mj) = (It + ι)Htφ (Mj/Pt) /Pt −
N∑
i=0

ιαi (t)Ti (Mj)

for j = 1, ..., N . Letting:

A∗Ti (M) = ιαi (t)Ti (M)

we have:

α′ (t) = T (M )−1 [A∗T (M)α (t) + (It + ι)Htφ (M/Pt) /Pt] ,
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where:

α (t) =


α0 (t)

...

αN (t)



T (M) =


T0 (M0) · · · TN (M0)

...
. . .

...

T0 (MN ) · · · TN (MN )


which provides a finite-dimensional system of differential equations governing the evolution

of the coefficients of the Chebyshev expansion.

D.2 Sparse Grids

Using a Chebyshev series to approximate the loan balance distribution, the state variables

in the model are the current dividend Dt, current beliefs about the dividend growth rate

mϕ
t , the current housing stock Ht, the moving average of past investment rates Īt, and the

vector of Chebyshev coefficients α (t) . Full grid methods for the global solution quickly

run into the curse of dimensionality. We thus employ sparse grid techniques to get the

global solution of the model. Our approach follows Judd et al. (2014).

We use the Smolyak construction for the sparse grids, once again utilizing Chebyshev-

Gauss-Lobatto (CGL) points, that is extrema of Chebyshev polynomials of the 1st kind. In

particlar, let d denote the number of state variables. The Smolyak construction proceeds

as follows. We first extract a subsequence of unidimensional grid points S1, S2, ... from the

extrema of the Chebyshev polynomials satisfying |S1| = 1 |Si| = 2i−1 + 1 for i > 1 and

Si ⊂ Si+1. The first such four nested sets are:

S1 = {0}

S2 = {0,−1, 1}

S3 =

{
0,−1, 1,

−1√
2
,

1√
2

}
S4 =

{
0,−1, 1,

−1√
2
,

1√
2
,
−
√

2 +
√

2

2
,
−
√

2−
√

2

2
,

√
2−
√

2

2
,

√
2 +
√

2

2

}
,
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equal to the extrema of the 1st, 3rd, 5th, and 7th Chebyshev polynomials of the 1st kind.

To form multidimensional grid points, we can take d-fold products of the unidimensional

sets above. In particular, let:

Ki =
d∏
j=1

Sij

for i = (i1, ..., id). Finally, let µ ≥ 1 be the order of the approximation. Then, the Smolyak

sparse grid is formed as:

Hd,µ =
⋃

d≤|i|≤d+µ

Ki

where |i| = i1 + · · ·+ id.

We then construct an approximation to the true global solution f (x) : Rd → R as:

f̂ (x) =
M∑
n=1

cnΥn (x)

where Υn : Rd → R for n = 1, ...,M are a set of d-dimensional basis functions. We then

set the coefficients (cn)Mn=1 by minimizing the L2-norm:

c = arg min
c

∥∥∥∥∥f (Hd,µ)−
M∑
n=1

cnΥn

(
Hd,µ

)∥∥∥∥∥
2

,

where f
(
Hd,µ

)
,Υn

(
Hd,µ

)
∈ R|Hd,µ| are vectors which evaluate the respective functions at

each element of the sparse grid Hd,µ.

D.3 Monte-Carlo Simulation and Global Solution Algorithm

The key challenge for the global solution is determining equilibrium mortgage pricing,

which takes the form of mortgage points:

Wt = Et
[
e−r(τ−t) (Mt − ψRPτ )

]
.

The difficulty is that the mortgage points depend on the equilibrium house price function

in a nonlinear way. But of course equilibrium house prices depend on equilibrium mortgage

points.

We therefore follow an iterative procedure, in conjunction with Monte-Carlo simulation,

to solve for the global solution. Let W 0
(
Hd,µ

)
be an initial guess for equilibrium mortgage

points on the sparse grid Hd,µ. Then at iteration j:
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1. Given the current solution W j
(
Hd,µ

)
on the sparse grid, solve for the equilibrium

price function P j
(
Hd,µ

)
and equilibrium investment function Ij

(
Hd,µ

)
on the sparse

grid.

2. Construct appproximants to the house price and investment functions P̂ j and Îj

with coefficients cjP , c
j
I using the procedure described in the previous subsection.

3. At each point of the sparse grid Hd,µ, use Monte-Carlo simulation with N trials to

simulate house prices forward.

(a) At each point of the sparse grid Hd,µ, simulate dividends and beliefs forward

using Euler-Maruyama method for the SDE system.

(b) Use the investment function approximant Îj to simulate forward the housing

stock and the house price approximant P̂ j to construct house prices at each

step of the simulation.

4. At each point of the sparse grid x ∈ Hd,µ, compute:

W (x) =
1

N

N∑
i=1

EP
[
e−rτ (M (x)− ψRPτ ) 1 [τL < τC ]

]
,

where the expectation EP [·] is conditional on the simulated future house prices for

that Monte-Carlo trial. This gives W j+1
(
Hd,µ

)
.

If
∥∥W j+1

(
Hd,µ

)
−W j

(
Hd,µ

)∥∥ < ε for some specified tolerance level ε > 0, then terminate

and construct the approximant Ŵ ∗ with coefficient c∗W . If not, move to iteration j + 1

and return to Step 1. This procedure has the advantage of being highly parallelizable.

To estimate the parameters, we search over a grid which can be parallelized on a

high-performance computing cluster.
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