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1 Introduction

Growth in renewable electricity generation has been dramatic over the past 10 years, in the U.S.
and worldwide. By displacing generation from fossil fuels, renewables reduce greenhouse gas
emissions. However, almost all recent growth in renewables comes from intermi�ent sources
such as solar photovoltaics (PV): a solar farm cannot generate electricity a�er the sun sets, or
when a cloud passes overhead. Absent the ability to store electricity, integrating these intermit-
tent sources into the electricity grid requires the capability both to produce electricity at times
with low expected renewable production and to adjust production suddenly when renewable
production is unavailable. Intermi�ency adds to the social costs of renewables through the costs
of building, maintaining, and operating additional fossil fuel generators (Bushnell and Novan,
2018; Gowrisankaran et al., 2016; Joskow, 2011). �us, ba�ery storage is a potentially important
complement to intermi�ent renewable energy: it can lower the social costs of renewables by
storing energy when renewable production peaks and releasing it when it plummets.

We illustrate these points with data from California, a leader in adding solar generation ca-
pacity. Figure 1a displays median electricity demand and Figure 1b displays median solar gen-
eration, over the hours of the day and separately for 2015 and 2019. Solar generation increased
dramatically over this period, but this generation typically occurs in the middle of the day and
not in the evening, when demand is highest. Figure 1c displays median net load, which is the
di�erence between total demand and renewable generation, and hence the electricity that is sup-
plied by dispatchable generators.1 Net load in 2019 plummets in the middle of the day but rises
again in the early evening to a similar level as in 2015, resulting in a curve with two humps.
�is type of net load curve raises the social costs of renewables for two reasons. First, it implies
that solar PVs are not producing in the evening when net load, and hence marginal costs, are
highest. Second, it increases the ramping costs that generators bear every time they turn on or
o� (Cullen, 2010; Jha and Leslie, 2020; Mansur, 2008; Reguant, 2014). Finally, Figure 1d displays
median wholesale electricity prices. Despite the similarity in evening load between 2015 and
2019, median wholesale prices are substantially higher in 2019, suggesting the importance of
increased ramping costs.

Utility-scale ba�eries in California can lower the social costs of solar generation by storing
energy when the sun is shining and releasing it from the early evening on. Ba�eries can help
both by using stored energy to replace fossil fuel generation when marginal costs are highest
and by lowering ramping costs. However, the equilibrium value of large-scale ba�eries is limited
because each additional ba�ery, acting as an arbitrageur, will raise prices in the middle of the day
and lower them in the evening, thereby smoothing the di�erentials and lowering the marginal
value of storage.

In conjunction with these trends that a�ect the revenues from storage, the capital costs of

1Unlike intermi�ent generators like wind and solar PV power plants, dispatchable generators can be started
on demand at the request of a power grid operator. Examples of dispatchable generators include natural gas or
hydroelectric power plants.
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Figure 1: Electricity Demand, Solar Generation, and Prices by Year in California

(a) Electricity Demand (Load) (b) Solar Generation

(c) Net Load (d) Wholesale Price

Notes: Each panel shows the hourly median, 25th percentile, and 75th percentile of electricity demand (load),
solar generation, net load, and real-time wholesale market price, respectively. Figures calculated by authors from
California Independent System Operator data. All prices are for the California South Hub Trading Zone (SP15).

lithium-ion ba�ery cells have dropped 85% from 2010 to 2018 with projections of 50% further
cost drops over the next 10 years (Cole and Frazier, 2019; Goldie-Scot, 2019), with other stor-
age technologies expected to have up to 90% lower capital costs (U.S. Department of Energy,
2021). Not coincidentally, the 2019 Nobel Prize in Chemistry was awarded for the development
of lithium-ion ba�eries. Despite these dramatic cost decreases, the central impediment to utility-
scale ba�ery storage remains its high capital costs. For this reason, the private market is unlikely
to install ba�eries in the immediate future in the absence of mandates or subsidies.

Recognizing the complementarity between renewable energy and ba�eries and also these
high capital costs, states have paired renewable energy mandates with ba�ery storage require-
ments. For example, California law requires that 60% of electricity be generated by renewable
sources by 2030 and 100% by 2045. In addition, California passed a requirement for utilities to
procure 1,300 MW of storage power capacity by 2020, and directed that storage resources be op-
erational by 2024. �e California Public Utilities Commission justi�ed the storage mandate on
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the basis that storage resources can help optimally integrate renewable energy resources.2

Other states—notably Arizona, Massachuse�s, New Jersey, New York, Nevada, Oregon, and
Virginia—have also implemented ba�ery procurement targets or requirements as a complement
to their renewable energy standards.3 Despite the increasing prevalence of government storage
mandates, li�le is known about the costs associated with these policies, how much they alter
investment in storage, or how they might a�ect welfare in the presence of existing renewable
energy mandates.

�is paper has three main goals related to understanding the economics of ba�ery storage.
First, we evaluate the equilibrium and welfare e�ects of ba�ery operations in the electricity mar-
ket, focusing on how these utility-scale operations would impact equilibrium prices, electricity
generation costs, and the e�ects of these operations on di�erent market participants. Second, we
examine how much the expected future decline of ba�ery capital costs along with the planned
increase in renewable energy penetration in�uence the equilibrium adoption path of ba�ery ca-
pacity. Together these help us achieve our third goal, which is understanding how renewable
energy standards and ba�ery mandates a�ect the time path of ba�ery adoption and social wel-
fare.

We develop a new theoretical and estimation framework that we use to address the above
research questions. Our study contributes three main modeling innovations to the economics
and engineering literature on electricity storage, that we believe are crucial. First, we specify
and analyze a dynamic competitive equilibrium ba�ery operations model that allows us to eval-
uate how much large-scale ba�ery operations would a�ect the wholesale electricity price, and
through that, limit the marginal value of additional ba�ery capacity. Second, to solve this equi-
librium operations model across di�erent counterfactual ba�ery capacity levels, we develop a
high-frequency time-series model of net load and the electricity generation supply curve. Our
operations model and supply curve incorporate ramping costs, where past generation by dis-
patchable generators reduces current marginal costs. Finally, we link our operations model with
a ba�ery adoption model. In particular, our operations model microfounds revenues for our
adoption model. �e adoption model in turn allows us to understand how renewable energy
standards and ba�ery mandates a�ect ba�ery adoption and social surplus.

Our framework has two dynamic components: an operations model and a capacity adoption
model. �e operations model solves for charge/discharge decisions given a �xed ba�ery capacity
level, in a dynamic competitive equilibrium model. Each 5 minute interval, a �eet of ba�ery op-
erators buys and sells energy in the wholesale energy market. �e model incorporates a number
of features that we believe are important in this context: predictable within-day �uctuations in
net load; a non-linear marginal cost (or supply) curve of electricity that evolves over time and
includes ramping costs; serial correlation of the shocks to net load and marginal cost curve of

2�e legislation stated that “additional energy storage systems can optimize the use of the signi�cant additional
amounts of variable, intermi�ent, and o�peak electrical generation from wind and solar energy…”

3�e Federal Energy Regulatory Commission (FERC) Order 841 requires all electricity markets to remove bar-
riers that would inhibit participation of storage resources in wholesale energy markets.
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electricity; a restriction that ba�ery charge/discharge policies be based on data that would have
been available in real-time to a market participant; a loss in energy from charging and discharg-
ing the ba�ery; and the depreciation of ba�eries from operation, particularly with deep cycles.
We estimate the electricity demand and marginal cost curves using data from the California Inde-
pendent System Operator (CAISO)—which covers 80% of California’s electricity demand—from
2015-19. �is se�ing allows us to assess empirically the complementarity between renewable
energy generation and the value of storage. We estimate current and future ba�ery capital costs
from data compiled by the National Renewable Energy Laboratory (NREL).

Our capacity adoption model solves for the investment decisions of potential ba�ery oper-
ators, also in a dynamic competitive equilibrium model. Each year, potential ba�ery operators
make an optimal stopping decision, choosing whether to install capacity or wait, given ba�ery
installation costs, current and future renewable energy standards, and the mass of existing bat-
tery capacity. �e operating revenues in our capacity adoption model derive from the solution to
the operations model. We solve the operations model for di�erent in-sample levels of renewable
penetration and across counterfactual ba�ery penetration levels. We then estimate a regression
that links the two models by estimating the social surplus of ba�ery storage across these two
variables.

Our results depend crucially on four main identifying assumptions. First, we assume that
our market price and quantity data allow us to recover the supply curve of electricity for each
�ve-minute interval in our sample. Second, we assume that the net load process and electricity
generation supply curves that we identify from the data are structural and hence will continue
to hold in the presence of utility-scale ba�eries. �is assumption implicitly rules out the possi-
bility that fossil fuel generators will retire due to large-scale ba�ery storage. We leverage this
assumption to evaluate the marginal value of ba�ery operations at counterfactual aggregate bat-
tery capacity levels. We allow for ramping costs, serial correlation of the residuals, and daily
innovations to the supply curve. �is rich dependence on observables adds to the plausibility
of this assumption. �ird, we identify the impact of counterfactual renewable adoption with the
assumption that the relation between ba�ery storage and renewable generation that holds in our
data will continue to hold in the future when there is higher renewable penetration than exists in
the data. Finally, in order to be able to solve for a dynamic competitive equilibrium, we assume
that the electricity generation supply curves that we estimate represent the marginal costs of
production.

Relation to literature. Our study builds on several literatures. First, our work relates to
an engineering and economics literature that investigates the value of storage in wholesale elec-
tricity markets. Early engineering papers in this literature modeled the storage decision using
a �nite-horizon framework and assumed that the storage device operator had perfect foresight
about future prices or relied on historical prices when making discharge and charge decisions
(Sioshansi et al., 2009; Sioshansi and others, 2011; Walawalkar et al., 2007). More recent engineer-
ing studies relax the perfect foresight assumption and model storage decisions given uncertainty
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about future prices (Mohsenian-Rad, 2015; Mokrian and Stephen, 2006; Xi et al., 2014).4 Our op-
erations model uses substantial inputs from the engineering literature and extends this literature
by considering the equilibrium e�ects of large-scale storage in competitive storage markets. A
recent economics working paper, Kirkpatrick (2018), empirically estimates the e�ect of recent
utility-scale ba�ery installations on electricity market prices and transmission line congestion
in California. Finally, a contemporaneous economics working paper to ours, Karaduman (2019),
also seeks to understand the value of energy storage in an equilibrium se�ing. Our equilibrium
model is complementary to Karaduman (2019), with di�erent approaches to modeling demand
and marginal costs to allow for dynamics and equilibrium e�ects of large ba�ery capacity. Our
use of California data, which provides large variation in solar generation, allows us to evaluate
directly the impact of solar energy on ba�ery values.5

Second, we contribute to an economics literature that explores market impacts of new en-
ergy technologies. Bushnell and Novan (2018), Craig et al. (2018), Cullen (2013), Novan (2015)
Wolak (2018), Woo et al. (2016), and Jha and Leslie (2020) measure the environmental and market
e�ects of renewable energy generation. Burr (2014), Reddix (2015), Feger et al. (2017), Langer
and Lemoine (2018), and De Groote and Verboven (2019), evaluate the impact of solar subsidies
on adoption. We add to this literature with a dynamic model of investment in ba�ery capacity.
While previous work developed dynamic models of investment in a renewable energy, we are
the �rst paper to develop a dynamic model of ba�ery storage adoption. Unlike solar adoption,
ba�ery operations decisions themselves form a di�cult, dynamic problem. �us, our adoption
model integrates a dynamic operations model to microfound the payo�s in the adoption model.

�ird, our work also relates to the literature on electricity forecasting (Kanamura and Ōhashi,
2007; Kni�el and Roberts, 2005; Weron, 2014) and commodity pricing (Deaton and Laroque, 1992;
Pirrong, 2012). �ese papers recognize that the skewness and volatility of these prices relate to
the need to constantly balance demand and supply and the inability to hold negative inventories
in these markets. Based on this literature, we develop and estimate a model of electricity load
and marginal costs that allows for seasonal pa�erns, dynamics from ramping costs, and high-
frequency cost volatility arising from unanticipated shocks to available generation.

Finally, we use results from a literature on the computation of high-frequency dynamic mod-
els of electricity supply. Following Cullen and Reynolds (2017), we simplify the computation
burden by solving the social planner single agent dynamic problem, which yields equivalent
decisions to the competitive dynamic equilibrium problem.

Summary ofResults. Our ba�ery operations model yields several insights about the market
impacts of ba�ery storage. A very small ba�ery �eet would break even—earn enough revenues

4Other related work has considered the e�ects of storage on emissions (Carson and Novan, 2013; Hi�inger and
Azevedo, 2015; Holladay and LaRiviere, 2018), the value of storage in ancillary service markets (Berrada et al., 2016;
Cheng and Powell, 2016; Kazemi et al., 2017), the role of storage in integrating intermi�ent renewable power plants
(Black and Strbac, 2007; Garcia-Gonzalez et al., 2008; Paatero and Lund, 2005), and the e�ects of market prices on
observed storage operations (Lamp and Samano, 2021).

5Andrés-Cerezo and Fabra (2020) investigate the in�uence of market structure on ba�ery investment levels, and
subsequent e�ects on social welfare.
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in the energy market to cover costs—if capital costs were to fall by 41% from 2019 levels and
renewable energy share were to increase from 40% (the share in 2019) to 52%, which are both
expected to occur in 2027. A somewhat larger ba�ery �eet with 1,000 MWh of energy capacity
(250 MW power capacity)—comparable to the power capacity of a natural gas combined-cycle
generator—would reduce CAISO wholesale prices during evening hours by 6% and overall prices
by 3% over our sample period. Consequently, these ba�ery operations would improve gross social
surplus by $13 million annually through reductions in the total cost of electricity generation.6

Disaggregating these welfare impacts, ba�ery operations would reduce prices paid by utilities
to serve load by $256 million annually, provide $14 million in annual pro�ts for ba�ery owners,
and reduce generator pro�ts by $257 million.

�e marginal value of storage capacity investment depends heavily on the share of generation
coming from renewable sources. We solve our operations model separately across sample weeks,
�nding that the marginal value of the �rst ba�ery unit increases by more than 10% when the
renewable generation share increases from 40% to 50%. Importantly, we �nd that the marginal
value of storage capacity declines sharply with aggregate ba�ery capacity. More speci�cally,
our results show that while the �rst unit of storage capacity would provide over $200/kWh in
social surplus, the marginal value of storage capacity falls to $125/kWh when there is 5,000 MWh
of storage capacity already operating in the market. �is �nding highlights the importance of
modeling equilibrium e�ects when estimating the value of ba�ery investment.

We establish several �ndings pertaining to the time path of ba�ery investment. First, an
ambitious renewable energy standard, on its own, is not su�cient to encourage ba�ery adoption
at a massive scale. A small ba�ery adopter could break-even as soon as 2027, due to expected
capital cost declines and increases in renewable energy. Despite that, we �nd that only 7,500
MWh of expected ba�ery storage capacity (1,875 MW power capacity) would be installed in
California by 2045 in the absence of subsidies or mandates for ba�ery technologies. A 7,500
MWh (1,875 MW) ba�ery �eet would have a similar power capacity to a nuclear power plant,
and could serve about 8% of the typical CAISO load. �ree key mechanisms limit aggregate
ba�ery adoption: (1) the equilibrium e�ects of ba�ery operations greatly reduce the value of
subsequent investment, (2) rapidly declining capital costs create option value that incentivizes
delayed investment, and (3) ba�ery capacity depreciation caused by charging and discharging
substantially reduces the lifetime value of ba�ery investments. All together, this set of results
shows that absent a ba�ery mandate, policymakers should expect relatively modest installed
ba�ery capacity, but also that this capacity would substantially mitigate the pa�ern of sharp
peaks and troughs in wholesale electricity prices created by large-scale renewable generation.

Finally, we use our adoption model to assess the welfare e�ects of California’s ba�ery man-
date policy. On the one hand, we �nd that the ba�ery mandate of 1,300 MW (5,200 MWh7)

6Gross social surplus does not account for the �xed capital costs of ba�ery capacity.
7�e California bill sets a procurement requirement of 1,300 MW of storage power capacity but does not specify

an energy requirement. Assuming the storage mandate is satis�ed with 4-hour duration ba�eries, the most common
speci�cation currently installed in CA, this equates to 5,200 MWh of energy storage capacity.
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improves social surplus by $492 million relative to a scenario where ba�eries were not allowed
to operate in the electricity market. On the other hand, our estimates indicate that the ba�ery
requirement creates a deadweight loss of $433 million, or $11.50 per California resident, when
compared to the cost-minimizing investment path.8 �e mandate creates deadweight loss by
forcing investment much earlier than would occur in its absence. Consequently, the expected
capital cost expenditures are much higher under the mandate. However, the mandate leads to
large reductions in electricity generation costs in earlier years, which mitigates the overall cost
of the mandate. All in all, these �ndings suggest that augmenting an ambitious renewable en-
ergy standard with a ba�ery mandate imposes a relatively low social cost. In particular, a ba�ery
mandate is likely to substantially reduce the total cost for utilities to serve load, but comes at the
expense of reducing both fossil-fuel and renewable generators’ pro�ts. Such a mandate may also
provide other bene�ts that we do not model, notably learning-by-doing in ba�ery installations,
improvements in grid reliability, and environmental bene�ts from reduced emissions resulting
from less ramping.

�e remainder of our paper is structured as follows. Section 2 discusses our data and insti-
tutional features. Section 3 exposits our model. Section 4 explains our estimation. Section 5
presents our results and counterfactuals, and Section 6 concludes.

2 Data and Institutional Setting

2.1 Storage Resources in the Electricity Market

Recognizing the complementarity with renewable energy, regulators nationally and in California
have enacted new policies to increase electricity storage investment. In early 2018, the Federal
Energy Regulatory Commission (FERC) issued Order 841, which requires independent system
operators (ISO) to remove any existing barriers that would inhibit participation of storage re-
sources in wholesale markets.

In 2010, the California legislature authorized the California Public Utility Commission (CPUC)
to evaluate and determine energy storage targets for the state. Accordingly, the CPUC required
the state’s investor-owned utilities to procure 1.3 GW of storage power capacity by 2020,9 with
installations required to be operational no later than the end of 2024. Since this time, Califor-
nia’s utilities have been adding storage capacity and, by 2019, utilities had at least 126 MW of
operational ba�ery power capacity.10

�ough energy storage technologies such as pumped hydroelectric storage have been estab-
lished for decades, the majority of recent utility storage installations use ba�ery technologies.

8Consequently, we �nd that the cost-minimizing ba�ery investment path would increase social surplus by $925
million compared to a scenario where ba�eries were banned from the electricity market.

9Power capacity is the amount of power that the ba�ery can supply to the grid at any point in time while energy
capacity is the maximum amount of energy that the ba�ery can store. Ba�eries can be measured in either terms.

10Authors’ calculations based on maximum aggregate output reported by the California Independent System
Operators between May 2018 and December 2019.
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More speci�cally, lithium-ion based ba�eries now dominate the U.S. market—accounting for over
90% of ba�ery storage capacity (EIA, 2020). Nearly all lithium-ion ba�ery grid resources were
installed a�er 2014. We focus our analysis on lithium-ion ba�eries.

Although the stock of utility-scale ba�eries is growing at a rapid rate, the overall ba�ery �eet
remains small. As of 2018, there was only 900 MW of aggregate ba�ery power capacity in the U.S.
(1.2 GWh of energy capacity), a power capacity similar to that of two to three combined-cycle
natural gas generators (EIA, 2020).11

2.2 Capital Costs of Battery Storage

Our adoption model relies on data on the capital costs of energy storage. Given the large expected
declines in utility-scale ba�ery capital costs, we use forward-looking projections from the liter-
ature to model the evolution of future lithium-ion ba�ery costs. In particular, we use data from
the National Renewable Energy Laboratory (Cole and Frazier, 2019). �ese data compile utility-
scale lithium-ion ba�ery cost projections from over 25 publications published between 2016 and
2018.

�e exact cost of a ba�ery installation will depend on the ba�ery’s speci�cations such as
round-trip e�ciency and duration. A ba�ery’s round-trip e�ciency measures the percentage of
stored energy that is available for later usage; a more e�cient ba�ery typically entails higher
costs.12 �e ba�ery’s duration indicates the amount of time the ba�ery is able to discharge at
its rated power capacity. For example, a 2-hour duration ba�ery could discharge at full power
capacity for 2 hours. Although ba�ery systems can be developed with a range of speci�cations,
our study follows Cole and Frazier (2019) and focuses on the most common type of ba�ery sys-
tem currently being added in U.S. markets—ba�eries with 4-hour duration and 85% round-trip
e�ciency.13

Figure 2a demonstrates variation in cost projections for ba�ery storage over time in $/kWh.14

Each point in the �gure represents a normalized cost projection for a particular year from a single
publication, and the dashed line plots the mean projection for each year.15 As we discuss further
in Section 4.3, these data allow us to quantify the expected beliefs of future declines in storage
capital costs.

11While many of the very �rst ba�ery installation had storage durations of 1-2 hours, more recent capacity
investments are more likely to have longer durations (e.g., 4 hours).

12Round-trip e�ciency is always below 100% because some energy is lost during the charge-discharge cycle.
13According to EIA and the DOE Storage Database, the majority of new ba�eries have a 4-hour storage duration

and have round-trip e�ciency between 75 and 95%. Ba�eries with shorter duration (less than 2 hours) are relatively
be�er suited for ancillary service applications, whereas ba�eries with longer duration (e.g., 4-hour) are relatively
be�er suited for energy arbitrage applications.

14$/kWh costs can be converted to $/kW costs by multiplying by the duration (e.g., a $500/kWh, 4-hour ba�ery
would have a power capacity cost of $125/kW)

15NREL normalizes the cost projections so that each publications’ projection starts at the same baseline cost of
$380 in 2018. We only use cost projections related to grid ba�ery applications (i.e., not electric cars).
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Figure 2: Ba�ery Capital Cost Projections and Renewable Energy Trends

(a) Projected Ba�ery Capital Costs (b) Solar + Wind Market Share

Notes: �e authors constructed Figure 2a using data from Cole and Frazier (2019). Each transparent line represents
a future cost projection from a single publication. �e dashed line plots the mean cost projection. �e �gure
re�ects all cost projections related to grid ba�ery applications (not electric cars). �e authors constructed Figure
2b from CAISO data. It shows the share of electricity generation coming from solar and wind generators for each
week between 2015 to 2019.

2.3 �e California Wholesale Electricity Market

Our operations model relies on data from the California Independent System Operator (CAISO).16

California restructured its electricity sector in 1998, and consequently designated CAISO the
state’s new independent system operator. CAISO dispatches over 200 million megawa�-hours of
electricity to 30 million consumers each year, accounting for about 80% of electricity demand in
California. �e electricity market is connected to the Western Interconnection and also regularly
imports and exports power to other utilities and power producers across the western United
States.

CAISO runs two distinct wholesale energy markets: a day-ahead market (DAM) and a real-
time market (RTM). �e DAM serves as the primary scheduling market, while the RTM serves
as the means to se�le any last minute adjustments including those required due to unforeseen
circumstances.

In the day before power is delivered, CAISO conducts 24 DAM energy auctions, one for each
hour of the day. For each auction, CAISO produces a projection of net load and market-clearing
prices. �ese projections are publicly available to market participants, and hence would be avail-
able to ba�ery operators in planning their charge/discharge decisions. For each auction, market
participants submit bids to either buy or sell energy and CAISO then computes market-clearing
quantities and prices. CAISO also uses the day-ahead market to secure energy reserves, which
can be used if needed. At the close of the day-ahead market, each power producer is scheduled

16We obtain the data used for the analysis from the CAISO Open Access Same-time Information System (OASIS)
portal. OASIS provides real-time data related to the ISO transmission system and its markets, such as system demand
forecasts, transmission outage and capacity status, market prices, and market quantity (load and generation) data.
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hourly for a quantity of production (possibly zero), and a capacity allocated for reserves.17 CAISO
allocates production and reserves to meet demand at the lowest cost, subject to reliability and
other physical constraints of the system.

On the day of energy delivery, CAISO uses RTM auctions to re-adjust generator production
schedules in response to unplanned outages or deviations from the expected day-ahead demand
schedule. Market participants can submit real-time market bids until 75 minutes before the deliv-
ery hour. During the delivery hour, the system operator continuously updates the demand fore-
cast and dispatches the lowest-cost generators every �ve minutes.18 Any unanticipated supply-
demand imbalance that occurs within the last 5 minutes before electricity is delivered must be
met using reserve generators.

As we discuss in Section 4, our estimation uses data from both the DAM and the RTM. We
focus on wholesale electricity prices from CAISO’s South-Zone hub (SP-15), because this zone
covers the largest share of the California population and currently hosts the most ba�ery storage
capacity. Additionally, we augment the electricity price data with other market data: total load
from the CAISO territory, generation by resource type, natural gas prices, and hydroelectric
availability.

Following FERC Order 841, CAISO has made e�orts to integrate new storage technologies
into its wholesale markets. CAISO allows ba�eries to participate in both ancillary service and
energy markets as non-generator resources.19 CAISO allows ba�eries to submit either demand
bids or supply bids in both day-ahead and real-time energy auctions. A ba�ery can submit a
set of prices and associated quantities at which it is willing to discharge energy, with negative
quantities when it would like to charge.

Apart from the energy market, ba�eries also have the option to supply reserve capacity, in
what is called ancillary services. A limitation of our approach is that we model ba�eries’ op-
erations in the energy market but not in the ancillary services market. Although many of the
earliest ba�ery operators provided ancillary services, it unlikely that ancillary services will be
the primary ba�ery storage application in the long-run. Sackler (2019) emphasized this point,
noting: “Ba�ery storage investors, however, should be wary of building investment cases primar-
ily based upon future ancillary service market value expectations. …while frequency regulation
has historically been one of the most lucrative ancillary services markets (and exemplifying a
service that [ba�eries] can outcompete traditional providers in), most ISOs only require 100-400
MW of the product in any given hour.”20 For this reason, we concentrate our analysis on ba�ery
operations in the energy market to understand long-run market impacts of storage investments
at a large scale.

17Market participants that do not wish to directly participate in the day-ahead market can also submit self-
scheduled hourly production plans to the ISO for planning purposes.

18Generators can only submit one bid function for the entire trading hour but the market price can change every
�ve minutes due to demand shocks, transmission congestion, or supply outages.

19CAISO de�nes a non-generator resource as one that a can both inject and withdraw energy from the grid and
change back and forth quickly between injection and withdrawal without bearing a start-up cost.

20To support this point, Figure A.1 in Online Appendix A shows that CAISO procured an average of less than
800 MW of hourly regulation reserves in all but �ve months of our �ve-year sample.
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Notably, California’s grid is currently undertaking a dramatic transition away from fossil fuel
generation and towards renewable resources that will impact storage investment and operations.
As of 2015, California already hosted the largest capacity of solar PV panels in the United States.
Figure 2b shows that during the sample period of our study—January 2015 to December 2019—
utility-scale solar and wind resources’ market share doubled from 10% to 20%, and exceeded
30% during some weeks. Going forward, state lawmakers have voted to boost renewable energy
further under Senate Bill 100, signed in September 2018, which establishes the state’s updated
renewable portfolio standard (RPS). Figure A.2 in Online Appendix A provides details on Califor-
nia’s RPS schedule. Each grey line shows the required share of generation that must come from
renewable sources for a particular year according to the law: 44% by 2024, 52% by 2027, 60% by
2030, and 100% by 2045.

�e orange line in Figure A.2 projects the share of energy that will come from solar and
wind together for each future year that we model, as required by our analysis. �e California
RPS does not specify an exact requirement for every year, nor does it separate the requirements
by renewable source. We form this projection by linearly interpolating the RPS to intermediate
years, assuming that all new renewable energy will be from solar and wind, consistent with
recent trends.

Figure A.3 in Online Appendix A provides more details on market trends in CAISO over our
sample period. From Figure A.3a, average demand (load) for electricity has remained relatively
stable, falling by 7.5%. Figures A.3b, A.3c, and A.3d show the solar, wind, and combined solar
plus wind market shares over our sample period, respectively. Average wind power production
increased slightly from 5% to 7% of generation, and solar PV’s generation share rose from 6% to
14%. Figure A.3e shows that prices for natural gas, the predominant fossil fuel generation source
in CAISO, hovered around $3/MMBtu for much of the sample period. Figure A.3f shows that
mean prices in the real-time market have also trended upwards by nearly 20%. Finally, Figure
A.4 in Online Appendix A replicates Figure 1d but with data at the 5 minute, rather than hourly,
level. It shows that real-time prices have become more volatile within each hour of the day
as intermi�ent renewable generation has expanded and more high-frequency adjustments are
required in the real-time market. �ese changing market conditions are likely to substantively
alter the value of ba�ery storage by increasing the opportunities for arbitrage.

3 Model

Our dynamic equilibrium framework of ba�ery storage includes two components. First, the
capacity adoption model solves agents’ decisions of whether to make a capital investment in
storage capacity in a given year. Second, the operations model microfounds the capacity adoption
model by solving agents’ short-run dynamic decisions regarding when to charge and discharge
energy. �is section describes both components, in turn.
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3.1 Capacity Adoption Model

Our capacity adoption model considers an in�nite mass of ex-ante identical potential ba�ery
operators, or agents for short. Each agent i has the ability to install a unit capacity of storage
technology, k = 1, at one point in time. �e unit capacity is su�ciently small that each agent
takes electricity market prices as given.

Agents face an in�nite horizon dynamic problem with uncertainty and have an annual dis-
count factor of β. Each year, agents that have not yet adopted storage observe the current state
and decide whether to adopt storage, or wait and preserve the option to adopt storage in the
future. Adopters bear a �xed cost of obtaining storage capacity but can then use the storage
capacity to earn future �ow pro�ts, by acting as arbitrageurs in the energy market. Each agent
has room for exactly one storage system and cannot replace the system once installed. Hence,
agents solve an optimal stopping problem of when to invest.

Agent Decision Problem

At each year y, agents that have not previously adopted make a binary decision of whether or
not to invest in storage capacity. Agents that adopt must pay a �xed cost, cy, that is the cost net
of any subsidy available at year y. At year y, agents observe cy but do not know future adoption
costs. We assume that these costs evolve stochastically, declining over time in expectation due to
technological advances. Agents have rational expectations over future adoption costs and hence
form accurate distributions over future trajectories. A bene�t of waiting to invest is that capital
costs are likely to be lower in the future. Adoption costs can depend in part on subsidies that
the government o�ers for ba�ery investments in year y. We consider subsidy paths that evolve
deterministically and are known to market participants.

Besides costs, agents must also forecast the expected current and future revenues from their
system. �e annual per-unit revenues depend on both the year and the aggregate capacity of
storage present in the market. �e year ma�ers both because the expansion of renewable en-
ergy generation over time will likely increase the value of storage by increasing intertemporal
price �uctuations and also because the year may a�ect available subsidies. Given California’s
renewable portfolio standard, we model renewable energy market share as the exogenous and
deterministic function of y shown in Figure A.2. Moreover, aggregate storage capacity ma�ers
because of equilibrium e�ects: with additional capacity, storage owners will arbitrage away more
of the intertemporal price di�erentials, reducing per-unit revenues.

De�neK to be the aggregate ba�ery capacity present in the market at the start of a year. �e
aggregate state space can then be wri�en as (c, y,K). �e agent’s state includes the aggregate
state plus its ba�ery capacity k, which starts out at k = 1 upon installation. De�neK∗(c, y,K) to
be the equilibrium aggregate storage capacity following adoption at state (c, y,K); K∗ includes
the existing capacityK plus the capacity from the new adopters. Given the rational expectations
assumption, agents can accurately predict K∗(c, y,K) conditional on the state.

Owners of storage capacity buy and sell energy to maximize expected discounted pro�ts in
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every small time interval of each year. De�ne π (y,K) to be the expected revenues per unit of ca-
pacity from storage at year y with capacityK and δ (y,K) to be the capacity depreciation rate.21

�us, a ba�ery owner that installs a ba�ery system at state (c, y,K) will have δ(y,K∗(c, y,K))

of capacity at year y + 1. We microfound π (y,K) and δ (y,K) from our operations model, as
we discuss in Section 3.2.

�e agent’s decision problem can be described with the following Bellman equation:

V(k, c, y,K) =

1{k = 0}

[
max

{ Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (y,K∗) , c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y),

Value from waiting︷ ︸︸ ︷
β

∫
V
(

0, c′, y + 1, δ (y,K∗)K∗
)
dGc′(c′|c, y)

}]
(1)

+1{k > 0}

[
π(y,K∗)k + β

∫
V
(
δ (y,K∗) k, c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)︸ ︷︷ ︸

Value if adoption before y

]
,

where integration is over the conditional density of the next period’s costs net of subsidies given
the year and current period’s costs, dGc′(c′|c, y), and where K∗ abbreviates K∗(c, y,K).

In (1), an agent that has not already adopted can invest (the second line) or wait (the third
line). �ese agents face an important trade-o� in their capacity investment problem. On the one
hand, agents that do not invest maintain the option to invest in future years when capital costs
will likely be lower (though subsidies may also have expired). On the other hand, agents that
wait and do not invest forgo π(y,K∗). Finally, agents that invested before y (the fourth line) face
no further choices but see their capacity depreciate over time.

Equilibrium of Model

A market equilibrium consists of values of K∗(c, y,K) for all values of the aggregate state such
that no potential adopters want to deviate from their strategy given this equilibrium capacity
level. �e equilibrium condition speci�es that potential entrants must be indi�erent between
adopting and not adopting for all states with positive investment:

Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (y,K∗) , c′, y + 1, K∗δ (y,K∗) dGc′(c′|c, y) (2)

= β

∫
V
(

0, c′, y + 1, K∗δ (y,K∗)
)
dGc′(c′|c, y)︸ ︷︷ ︸

Value from waiting

, ∀c, y,K s.t. K∗ > K,

21Implicitly, π (y,K) and δ (y,K) incorporate the fact that agents will modulate usage of their ba�ery to lower
depreciation, and that usage may be lower with a higher K . We discuss this point further in Sections 3.2 and 4.2.
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where K∗ again abbreviates K∗(c, y,K). In addition, in equilibrium, for all states with zero
investment, K∗ = K , and the value from adopting (the le� side of (2)) must be less than or equal
to the value from waiting (the right side of (2)).

Finally, we discuss the computation of this model. We compute the social planner’s problem,
which will generate the same state-contingent adoption rates as the competitive dynamic equi-
librium but is easier to compute since it does not require that an equilibrium condition analogous
to (2) be fully characterized (Ljungqvist and Sargent, 2012; Lucas and Presco�, 1971). For each
aggregate state (c, y,K), the planner chooses a non-negative quantity of capacity to add.

De�neGSS(y,K) to be the social surplus from the electricity market at year y with capacity
K minus the surplus in the market without any ba�ery capacity, gross of ba�ery capital costs. As
we discuss in our operations model below, electricity demand is perfectly inelastic in the short-
run, implying that GSS(y,K) is the savings in total cost of electricity generation from having
ba�ery capacity K . �us, the planner Bellman equation can be wri�en:

W(c, y,K) =

max
K∗≥K

{
K∗GSS (y,K∗)− c (K∗ −K) + β

∫
W
(
c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)

}
, (3)

where K∗ once again abbreviates K∗(c, y,K). Comparing (3) to (1), the planner faces incentives
on its last unit of investment that are equivalent to the agents in the competitive equilibrium.

We compute the planner solution by discretizing both c and K . We choose a range for these
values that is su�ciently broad to avoid constraining the solution during the time period we
study and a discrete grid that is su�ciently �ne to approximate the optimal solution well.

3.2 Operations Model

Our operations model and our linking regression allow us to obtain GSS(y,K∗) and δ(y,K∗)
for a range of values of y and K∗. Since our data contain essentially no variation in ba�ery
capacity, we calculate GSS(y,K∗) and δ(y,K∗) across di�erent values of K∗ as counterfactuals
from a dynamic competitive equilibrium operations model, separately for each day in our data.
We further use the in-sample variation in renewable energy penetration and our assumptions
regarding future renewable penetration variation by year to project these quantities for future
years.

In the operations model, ba�ery operators, or agents, buy and sell energy in the real-time
electricity market in every �ve-minute time interval, with the goal of maximizing their expected
discounted pro�ts from being arbitrageurs. We model agents as solving an in�nite-horizon dy-
namic problem, where the structural parameters for each day are repeated in perpetuity. We be-
lieve that this is a reasonable approximation because we focus on ba�eries that can completely
�ll or empty within a few hours, so expectations about changes in future days’ demand and
supply conditions will have relatively li�le in�uence on charging decisions.

Each agent’s charge decision at each time interval is a function of its charge level and the mar-
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ket state, which characterizes the current and expected future electricity load and electricity cost
curve. Since each agent controls a small capacity of storage, it takes real-time electricity prices
as given. Although each agent acts as a price-taker, it knows that ba�ery operators together will
impact equilibrium market prices.

We operationalize this by estimating a marginal cost curve of electricity produced by dis-
patchable generators (which are all generators except intermi�ent renewable sources). Ba�ery
charging or discharging will change the quantity of electricity produced by dispatchable genera-
tors and thereby a�ect marginal costs and prices. Analogously to the adoption model, each agent
forms rational expectations about the evolution of net load and of aggregate quantity supplied
by storage owners, which allows it to form rational expectations about the equilibrium price
distribution in future periods. We account for ramping costs by allowing the marginal costs of
production to depend on lagged production, which in turn implies that lagged production is a
state variable for the planner problem.

Storage Technology

Our modeling approach captures three critical properties about ba�ery storage technology. First,
a ba�ery’s power capacity F determines what fraction of the ba�ery can be charged or dis-
charged in each �ve-minute interval and therefore how quickly the ba�ery can transition from
full to empty and vice versa. Following our discussion in Section 2.2, we model a ba�ery tech-
nology that can fully discharge within a four-hour period and thus F = 1

4×12
.

Second, we model the round-trip e�ciency of the ba�ery, υ, which determines the percent-
age of energy that is lost during a charge/discharge cycle. Again following our discussion in
Section 2.2, we focus on a round-trip e�ciency of υ2 = 0.85.

Finally, we model capacity fading or depreciation, which occurs when the amount of energy
a ba�ery can hold decreases with repeated use. Lithium-ion ba�eries, as well as most other
ba�eries, will exhibit substantial depreciation. A storage operator may not want to engage in
arbitrage if the expected pro�ts are not substantial enough to justify the additional depreciation
that the ba�ery will endure to complete a cycle. We model capacity depreciation using Xu et al.
(2016). It would be computationally di�cult to model agent’s optimization over the amount of
depreciation in the operations model. Instead, as we detail in Section 4.2, we develop a heuristic
optimization process to account for capacity depreciation in our model.

Agent Decision Problem

At each �ve-minute time interval, each agent seeks to maximize the sum of expected discounted
pro�ts, making charge/discharge decisions over the interval. We let S denote the number of time
intervals within a day (i.e., S = 288), D denote the number of days within a year, and d denote
any day in our (multi-year) sample. �e per-period discount factor is then β 1

SD .
�e agent bases its dynamic operations decisions on a state with two components. First,

the state includes the fraction of the ba�ery’s capacity that it has stored as energy. Denote the
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ba�ery’s fraction of charge as f ∈ [0, 1]. Second, at any time t, the state includes the current
market price P and the agent’s perceived conditional distributions of market prices next period,
which we denoteGP ′ . Because of our perfect competition assumption, the agent only cares about
market prices and not the actions of other ba�ery operators, though other agents’ actions will
a�ect prices in equilibrium.

We can express the operations Bellman equation for day d as:

V d(f, P, t) = max
q

{
P × (1{q > 0}qυ + 1{q < 0}q/υ)

+β
1

SD

∫
V d(f − q, P ′, t+ 1)dGP ′(P ′|t)

}
, (4)

s.t. − Fυ ≤ q ≤ F/υ and 0 ≤ f − q ≤ 1,

where q is the fraction of the ba�ery’s capacity that it discharges and P ′ is the price at time t+ 1

which has the conditional distribution dGP ′(P ′|t). Equation (4) states that the agent maximizes
its total current pro�ts from charging, which are equal to price times quantity supplied (the
�rst line), plus the expected future value of the position next period, where the agent’s energy
held next period is f − q (the second line). �is maximization is subject to the ba�ery’s power
capacity of F and the constraint that it cannot be less than empty or more than full (the third
line). �e quantity supplied/demanded in the �rst line re�ects that some energy is lost through
charging and discharging, symmetrically across charging and discharging, captured through the
round-trip e�ciency parameter, υ.

Equilibrium of Model

In order to understand the determinants of prices, we turn to the equilibrium. We focus on
a symmetric equilibrium, where all ba�ery operators start each period with the same fraction
already charged and then choose the same charge/discharge fraction each period. De�ne Q(q)

to be the quantity of electricity supplied to the grid by ba�ery operators at a period where this
(common) discharge fraction is given by q:

Q(q) = K∗ ×
(
1{q > 0}qυ + 1{q < 0}q/υ

)
.

To model equilibrium, we need to consider howQ(q) a�ects equilibrium prices and in turn a�ects
charge/discharge decisions. We do this by developing a model of electricity demand and supply.

We model the net demand for electricity, or net load—the electricity demanded by �nal users
net of the amount produced by intermi�ent renewable sources—as an autoregressive process
whose mean depends on the time of day, s. De�ne X to be the net load and Z the amount of
electricity that needs to be supplied by dispatchable generators, at some state. We assume that
X = XL

s + εL, where XL
s is the interval-of-day mean of net load and εL is the deviation of the

realization of net load from the interval-of-day mean. In the absence of storage, Z = X , since
net load is the amount of electricity that needs to be supplied by dispatchable generators. With
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ba�ery storage, Z = X −Q(q).
�e wholesale market price and marginal cost of production are a function of s, Z , last pe-

riod’s Z , which we denote Z̃ , and εP :

P (s, Z, Z̃, εP ) = MC(s, Z, Z̃, εP ), (5)

where MC(s, Z, Z̃, εP ) is the marginal cost function, and is equal to price by our perfect com-
petition assumption. We include Z̃ to allow for ramping costs. �e εP term represents other
factors that determine the price of electricity conditional on the amount of electricity supplied,
and includes factors such as weather, generator outages, and transmission congestion. We as-
sume that the residuals εL and εP have a joint conditional distribution dGε(·, ·|·, ·). �e current
values of εL and εP and their joint conditional distribution is known to the agents.

De�ne fa ∈ [0, 1] to be the fraction of aggregate storage capacity that agents are holding
at the start of any period. Any agent can determine the future equilibrium charge/discharge
decisions and hence the future price distribution from fa, s, Z̃ , εL, and εP . Since fa is the same
as f by the symmetry assumption, these �ve elements then indicate the state for an agent.

Le�ing q∗(fa, s, Z̃, εL, εP ) denote the equilibrium quantity discharged at that state, we can
rewrite the Bellman equation (4), imposing the equilibrium conditions as:

Vd(fa, s, Z̃, εL, εP ) =

max
q

{
P (s, Z, Z̃, εP )× (1{q > 0}qυ + 1{q < 0}q/υ)

+β
1

SD

∫
Vd(fa − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′ |εL, εP )
}
, (6)

s.t. Z = XL
s −Q(q∗(fa, s, Z̃, εL, εP )) + εL,−Fυ ≤ q ≤ F/υ, and 0 ≤ fa − q ≤ 1.

where ε′ denotes the value of ε next period. In a competitive dynamic equilibrium, q∗(fa, s, Z̃, εL, εP )

must be the value of q that maximizes (6) for every state (fa, s, Z̃, εL, εP ).
Analogously to our approach for solving the equilibrium in the investment stage, we recast

the ba�ery operations problem as a social planner’s problem. For a similar model to ours, Cullen
and Reynolds (2017) prove that a solution to the planner’s problem exists, that the solution and
associated state-contingent prices are equivalent to all competitive equilibria, and that a com-
petitive equilibrium exists. We rewrite the problem as the single-agent planner’s problem whose
allocation is then equivalent to the competitive equilibrium problem. �e objective of the social
planner is to maximize welfare. Since we assume that electricity demand is perfectly inelastic in
the short-run, the planner will meet demand by choosing the state-contingent ba�ery discharge
fraction q∗(fa, s, Z̃, εL, εP ) that minimizes the total expected discounted cost of electricity pro-
duction.

Let TC(q, s, Z̃, εL, εP ) denote the period total cost of production for any state. It is equal to
�xed costs plus the integral of marginal cost from zero to the amount of dispatchable generation.
It would be di�cult to identify the impact of Z̃ on �xed costs using marginal cost (or equivalently
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in our context, price) data alone. Accordingly, while we allow Z̃ to a�ect period marginal costs,
we assume that it cannot a�ect period �xed costs. Any remaining �xed costs (e.g., capital costs or
annual maintenance costs) are not relevant to the planner decision, since dispatchable generation
capacity is �xed. Hence, we assume that �xed costs are 0 and write:

TC(q, s, Z̃, εL, εP ) =

∫ XL
s −Q(q)+εL

0

P (s, ζ, Z̃, εP )dζ. (7)

We then write the social planner’s Bellman equation as:

Wd(fa, s, Z̃, εL, εP ) = max
q

{
− TC(q, s, Z̃, εL, εP )

+β
1

SD

∫
Wd(fa − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′ |εL, εP )
}
, (8)

s.t. Z = XL
s −Q(q) + εL,−Fυ ≤ q ≤ F/υ, and 0 ≤ fa + q ≤ 1.

We solve the operations model by discretizing the state elements Z̃ , εL, εP , and fa into 10
dimensions each and solving the social planner’s problem.22 We solve the optimization separately
for each day in our 4-year main estimation sample and across 8 candidate values of K∗. �ese
dimensions result in an overall size of the state space that is roughly 10× 10× 10× 10× 288×
4× 365× 8 ≈ 33 million states. We solve the optimization independently for each day-K∗ pair
which results in about 11,000 dynamic problems with 2, 880, 000 states each.23

�e in�nite horizon solution would be very computationally challenging: it would require
solving Bellman equations with discounting over a 5 minute period, implying a discount factor
very close to 1. To facilitate computation, we instead solve for a �nite approximation of the
in�nite horizon model. For each day, we set up a �nite horizon model with the base 288 periods
for the day plus 288 × 3 additional periods which repeat the same set of net load and marginal
cost parameters as the base periods. We set terminal values at the end of the four days as a
heuristic, equal to the amount of energy stored times the market price at that time without any
ba�ery charge/discharge. We then kept the policies for the �rst 288 periods and used these to
computeGSS(y,K∗), as we discuss in Section 4.2 below. For a subset of parameter values where
we computed the in�nite horizon solution, we found that the policies computed from the �nite
approximation are virtually identical to the policies from the in�nite horizon solution, but are
much more e�cient to compute.

22We discretize the transitions of εL, εP by assuming that the innovation to these shocks are independent and
normally distributed. We use the Rouwenhurst method to discretize εL, which avoid the sensitivity of the Tauchen
(1986) procedure to very persistent processes (Kopecky and Suen, 2010).

23We also solve the operations model under an (infeasible) assumption of perfect foresight. For this model, we
assume that the current and future values of εL, εP are known to the agent before it makes its operations decisions.
�e state space for this model is thus much smaller.
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4 Estimation

�is section �rst discusses our estimation of the inputs to the operations model. We then discuss
our estimation of the regressions that links the two models. Finally, we discuss our estimation
of the inputs to the adoption model.

4.1 Estimation of Inputs to the Operations Model

Computation of our operations model requires an estimation of the structural parameters un-
derlying net load and the electricity marginal cost curve. We estimate our model using both
CAISO’s day-ahead and real-time wholesale electricity markets. Speci�cally, we use forecasts
of (hourly) net load and prices from the DAM to estimate our structural parameters underlying
P (·, ·, ·, ·) and XL, as this information would be feasible to ba�ery operators. We then use 5-
minute realizations from the RTM to obtain the distribution and values of ε at each time period.
�is approach allows us to account for the high frequency changes in market conditions over
time.

Net Load

We assume that net load for electricity is perfectly inelastic and hence does not respond to price
variations. �e process for net load (XL

t ) at any �ve-minute period in our sample, t, is given by
the following equation:

XL
t = E0

[
XL
t

]︸ ︷︷ ︸
XL

s(t)

+
[
XL
t − E0

[
XL
t

]]︸ ︷︷ ︸
εLt

, (9)

where E0[·] is the expectation taken at time “zero,” s(t) is the interval of day corresponding to t,
and εLt represents the deviation in net load from what was expected in the day-ahead market.

In (9), we obtain XL
s(t) from the net load forecast published by the system operator in the

DAM, and XL
t from the RTM.24 One issue is that the DAM net load forecasts are only reported

at the hourly frequency, while our operations model is formulated at the �ve-minute frequency.
We use the Kalman �lter/smoother approach outlined Proie�i (2006) to temporally disaggregate
the DAM net load forecasts and create a �ve-minute-frequency forecast. See Online Appendix B
for details.

We model the transition of εL as an AR(1) process given by:

εLt = ρLεLt−1 + ηLt , ηLt ∼ N(0, σL) (10)

where ρL and σL are parameters to estimate. We estimate the AR(1) model using ordinary least

24We measure XL
t as the amount of energy supplied in MWh per 5-minute interval.
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squares (OLS) on εL estimated from a training sample in 2015,25 and hold these parameters �xed
over the evaluation sample, 2016–19, which we then use to compute the value of ba�eries. �is
ensures that the model would be feasible to estimate and implement given the information set
of a market participant.

Table A.1 in Online Appendix A summarizes estimation results for the model of net load.
Broadly speaking, the day-ahead forecasts of net load are relatively accurate.26 Our estimate of
ρL is very close to one—indicating a high level of persistence in the day-ahead forecast errors.
�e parameters governing the AR(1) process (ρL, σL) are fairly stable across both our training
(i.e., 2015) and evaluation samples (i.e., 2016–19), with only σL appearing to exhibit a modest
increase over the evaluation sample (Table A.1, panel b).

Marginal Cost Curve

We adapt the functional form for marginal cost from the literature on commodity storage. Fol-
lowing Pirrong (2012), we express price as a function of electricity supplied Z given available
generation capacity K:

P (Z|K) = θ1 + θ2[K − Z]−θ3 , (11)

where θ ≡ (θ1, θ2, θ3) are parameters that we estimate and that vary at the daily level. �e func-
tional form in (11) has two appealing properties for our application. First, as long as θ2, θ3 > 0, P
is monotonically increasing in Z , which is critical for solving the operations model. Second, it is
parsimonious, yet �exible enough to capture the highly-convex shape of the electricity marginal
cost curve. In particular, price rises inde�nitely as Z approaches K. �us, this functional form
can capture the high price spikes that occur frequently in the real-time market.

In (11), K indicates the generation capacity that is available to produce at any given time.
In principle, available capacity includes generators that are currently online or those that can
quickly become operational without any lead time to start up (e.g., gas peaker plants). For the
�nal price—RTM price—we specify:

K = καZ̃1−α exp(εP ) (12)

⇒ PRTM(Z|K, θ, α) = θ1 + θ2

[
καZ̃1−α exp(εP )− Z

]−θ3
,

where κ and α are two additional parameters to estimate, that also vary at the daily level. Our
functional form forK is Cobb-Douglas in a constant κ, lagged generation Z̃ , and an unobservable
term εP . By including Z̃ in (12), we are able to capture ramping costs: if electricity supplied last

25Day ahead forecasts for solar and wind are publicly available starting in Nov. 2015. �us, our training sample
includes only data from Nov. and Dec. 2015.

26CAISO market reports indicate that the CAISO day-ahead load forecasts are shaded up to ensure su�cient
supply is available. We scale the net load forecasts by 0.95 to re�ect this practice. �is choice is supported by the
empirical relationship between the day-ahead market forecasts and the realized values, see Table A.1, panel (a) in
Online Appendix A.
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period is higher, this will raise the current available capacity, which will raise the quantity at
which prices start to spike in the current period. �eα parameter governs the relative importance
of Z̃ versus κ in determining the available generation capacity. For α = 1, marginal cost is static
and there are no ramping costs, while if α < 1, an increase in generation last period will reduce
marginal costs in the current period.

We include the unobservable εP as an idiosyncratic shock toK in determining PRTM , which
allows for shi�s in RTM electricity supply to be due to unforeseen changes in available generation
capacity. �is non-linear entry of εP into PRTM allows for extreme price spikes (drops) to be
mitigated by storage operators discharging (charging) energy. We believe that this placement of
the structural residual generates more plausible counterfactuals than would an additive structural
unobservable onPRTM . Online Appendix C provides more discussion on the marginal cost curve.

Given the de�nition of total costs in (7) and the functional form for marginal costs in (12),
total costs are equal to:

TC(q, s, Z̃, εL, εP ) = θ1Z −
θ2

[
exp(εP )καZ̃1−α − Z

]1−θ3

1− θ3

, (13)

+
θ2

[
exp(εP )καZ̃1−α

]1−θ3

1− θ3

, where Z = XL
s −Q(q) + εL.

We model the transition of εP as an AR(1) process given by:

εPt = ρP εPt−1 + σPs(t)η
P
t

(14)

σPs(t) =

{
σP,Peak if s(t) ∈ Hours 5–10pm
σP,O�-peak if s(t) /∈ Hours 5–10pm

,

where ηP is a mean zero serially uncorrelated shock with unit variance, ρP governs the persis-
tence of changes to available capacity, and σs(t) accommodates any heteroskedasticity that exists
across peak (5pm-10pm) and o�-peak hours of the day.

We use DAM prices and quantities to estimate the marginal cost curves because these data
are available prior to the operating day, and therefore, could feasibly be used by ba�ery operators
in developing output choices in the RTM. Our model of DAM price is similar to PRTM but with
the exclusion of εP , which we assume to be realized in the 24+ hour period a�er the DAM clears.
We also allow for the possibility of measurement error and other linear disturbances and write:

E
[
PDAM(Z|Z̃, θ, κ, α)

]
= θ1 + θ2

[
καZ̃1−α − Z

]−θ3
. (15)

We estimate the marginal cost curve parameters (θ, κ, α) separately for each day of our sample
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using non-linear least squares. Speci�cally, for each day d, our estimates satisfy:

θ̂d, κ̂d, α̂d = arg min
θ,κ,α∈Θ

∑
t∈D(d)

[
PDAM
t −

(
θ1 + θ2

[
καXL,1−α

s(t−12) −X
L
s(t)

]−θ3)]2

, (16)

whereD(d) comprises the time periods belonging to day d, and Θ describes the allowable domain
for the marginal cost parameters. Given the hourly frequency of the day-ahead market, these
(daily) non-linear least squares regressions constitute regressions with 24 observations each.27

Because Qt ≈ 0 for most of our sample, we use X instead of Z in (16). To facilitate estimation,
we also standardize each day’s DAM prices and net load forecasts. For the DAM prices, we
subtract the median and divide by its interquartile range. For net load, we divide by the maximum
of that day’s net load forecast. Finally, we restrict the parameter domain, Θ, to be such that
θ1 ∈ [−700, 500], θ1 ∈ [0, 500], θ3 ∈ [1.01, 4], κ ∈ [1, 8], α ∈ [0, 1].28

Turning to the structural unobservable, conditional on a set of supply curve parameters for
any particular day, we recover a time series of εPt as the shocks required to rationalize the RTM
price observed at time twith the realizations of net load and lagged net load. At time t, we obtain:

εPt = ln

[
Zt +

(
PRTM
t − θ1

θ2

)−1/θ3
]
− ln

[
καZ̃1−α

t

]
, (17)

where we use the day d estimated values of (θ, κ, α).
We estimate an AR(1) model using OLS on the realizations of εPt for a training sample of Nov.

and Dec. 2015 and �x these parameters over our evaluation sample. To account for the possibility
of heteroskedasticity, we estimate separate variances for peak and o�-peak periods.29 As was the
case for net load, our approach of estimating these parameters from a training sample ensures
that the model would be feasible to estimate given the information set of a ba�ery operating in
the real-time market.30

Table A.2 in Online Appendix A reports sample statistics on the marginal cost curve param-
eters. �e linear marginal cost parameter, θ1, is below zero for the large majority of days. �e
weights on the current capital in the Cobb-Douglas capital function, α, center around 0.80 and
are fairly stable, indicating the presence of positive and similar ramping costs throughout our
sample. Consistent with the declining natural gas prices, the average slope of the marginal cost
curve, θ2, falls over our sample period, although there is signi�cant within-year volatility. Finally,
estimates for θ3 and κ indicate that the curvature of the marginal cost curve and the scheduled
available capacity are relatively stable over our analysis sample.

27For this reason, the lagged value of net load in the non-linear least squares step constitutes the lag of mean net
load last hour, XL

s(t−12).
28We also compute a perfect foresight model, which uses the same marginal cost curve parameters.
29For our estimates of σP (Peak), σP (O�-Peak), we use a robust (and consistent) estimator of the scale for the

normal distribution: 1.4826×mediant{|xt −medianjxj |} (Rousseeuw and Croux, 1993).
30We also estimated the ρP , σP (Peak), σP (O�-Peak) parameters separately for each year in our sample and

found that these parameters are relatively constant over time, see Table A.3 in Online Appendix A.
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Table A.3 reports our parameter estimates for the AR(1) process for εP . Our estimate of ρP–
based o� the training sample of 2015–is 0.869. �us, shocks to available generating capacity
exhibit less persistence than the shocks to net load. �is level of persistence is also stable over
the evaluation sample–lying within a range of 0.838 to 0.907. Our estimates of the standard
deviations for on- and o�-peak from our training sample are 0.015 and 0.13, respectively. �ese
estimates exhibit stability over our evaluation sample–never deviating more than 24 percent from
our training sample estimates. Across both the training and evaluation samples, the estimates of
σP (Peak), σP (O�-Peak) indicate that on-peak hours experience approximately 15 percent more
volatile changes in εP .

4.2 Regressions Linking the Operations and Adoption Models

Next, we use the dynamic competitive equilibrium policies from our storage model to estimate
surfaces of GSS(y,K) and δ(y,K), which we then use in our adoption model. Our basic ap-
proach is to calculate optimal policies from the operations models and then compute GSS and
δ using these policies. Let q∗(fa, s, Z̃, εL, εP , d,K) denote the policy consistent with the maxi-
mization process in (8) at day d and with capital K . We estimate q∗ for each day in our 2016–19
sample and for a grid of eight candidate values ofK ranging from 10 MWh to 50,000 MWh. �ese
values then form the basis points for our estimation of the surfaces.

For each value ofK and each week in our sample, we simulateGSS over a week-long period
where ba�eries start with 50% charge.31 At each �ve minute period, our simulation uses the
calculated policies q∗, evaluated at the observed values of the deterministic states s, d,K ; the
realized values of the residuals εL, εP ; and at the state variables fa, Z̃ consistent with previous
actions.32 �e simulation then outputs the realized GSS from having ba�ery operators with
capacity K for each week.

We use a simulation approach to calculating the value since we compute the value function
using a �nite approximation, which gives accurate policies, though not accurate values. �is
approach also is robust to misspeci�cation in the distribution assumptions around εL and εP .
Finally, it allows us to use a heuristic approach to incorporate capacity fading, as we discuss
below.

We use our approximation to GSS estimate the following regression:

GSSwk
Kk

= γ1 ln (Kk) + γ2RenewableSharew + γ3 ln (Kk)× RenewableSharew
+γ4Xw + νw + εwk, (18)

where w indexes sample week, k indexes sample capacity levels, Kk is a capacity in our sample,
RenewableSharew is the share of load generated by renewables in the week, Xw are other con-

31Because we de�ne simulated realized pro�ts at the week level, our sample starts on Friday, Jan. 1, 2016 and
ends on �ursday, Dec. 27, 2019.

32We set Z̃ for the �rst 5 minute interval of the week to the value that is consistent with no charge or discharge.

23



trols, νw is a week-of-year �xed e�ect, and εwk is an i.i.d. unobservable. �e ��ed values from
(18) provide us with GSS at a weekly level across K∗ values and years in our sample.33

Note that RenewableSharewk �uctuates seasonally, but is increasing over time on average. As
a consequence, this variable could be correlated with other factors that are changing over time
or are seasonal and that might a�ect the social value of storage. To address these endogeneity
concerns, we include week-of-year �xed e�ects, νw. We also control for the average price of
natural gas in week w, and the average peak electricity load (demand) in week w. Last, we
control for the Sacramento Valley water-year index in week w, which proxies for the amount of
hydroelectric resources available during each week. In contrast, ln (Kk) will not be correlated
with any omi�ed variables because we use the same set of candidate ba�ery capacity values to
solve the model in every distinct week of the sample.

Accounting for Battery Capacity Depreciation

We use heuristic methods to account for how agents would change their operations and adop-
tion behavior to account for the fact that ba�ery capacity will depreciate through use. �e idea
is that the perception of a lower-than-actual round-trip e�ciency will make a ba�ery operator
more reluctant to charge or discharge unless the payo� is su�ciently high. �is may then help
the ba�ery operator in its expected long-run pro�ts by causing less capacity depreciation. �us,
we use a perceived lower-than-actual round-trip e�ciency to proxy for long-run capacity depre-
ciation. �is approach is feasible for the agent to implement and ensures we do not overstate the
value of storage by ignoring depreciation.34

We operationalize this idea by again spli�ing our sample into a training sample, 2015, and
an evaluation sample, 2016–19. We solve the operations model for the training sample using
a sparse grid of di�erent candidate perceived one-way e�ciency levels [.7υ, .75υ, . . . , υ].35 For
each candidate perceived e�ciency value and value of K , we use our training sample to solve
for optimal policies, simulate the evolution of the state-of-charge, f , using the actual demand
and price data, and then feed the simulated state-of-charge series into an engineering capacity
depreciation model.36 �e capacity deprecation model outputs the percent by which the e�ec-
tive ba�ery capacity has depreciated over the training sample for each case, which is δ. For
each K , we calculate the best perceived one-way e�ciency level as the one that maximizes an
approximation to expected future value, GSS

1−β−δ over the training sample.
Using our estimated optimal heuristic policy, we obtain an estimate of δ for each week in our

evaluation sample andK . We then calculate a regression that is identical in sample and regressors
to (18), but with δwk instead of GSSwk/Kk as the dependent variable. We use the ��ed values

33We transformed GSS from a weekly to an annual measure to use it in our adoption model.
34Our approach could also be used as a practical “rule-of-thumb” for ba�ery operators when making operations

decisions.
35We solve the perfect foresight version of these models, because of computational ease and because DAM fore-

casts of net load (load net of renewable generation) were not available before November 2015.
36We use the Xu et al. (2016) capacity depreciation model, which is based on a rain�ow cycle counting algorithm.

Online Appendix D explains this model in more detail.
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from this regression to calculate an annualized δ(y,K∗), which enters into the adoption model
(3). We also use our calculated δ values to approximate the expected future value of a ba�ery
during our evaluation sample, again with the formula GSS

1−β−δ .

4.3 Estimation of Inputs to Adoption Model

To solve the adoption model, we estimate the evolution of ba�ery capital costs over time. We
specify the following unit root with dri� process for the cost of the storage technology, cy:

cy = cy−1 exp(τ) exp(ξy), ξy ∼ N(0, σ2
c ), (19)

with c2018 as the capital cost of ba�eries in 2018, the initial year, and τ and σc governing the size
of the dri� and future uncertainty of costs. To the extent that τ < 0, the costs of storage will
trend down over time on average. �e uncertainty about the size of these future declines in costs
is captured by the process ξy. We assume that ξy are i.i.d. over time.

�e National Renewable Energy Laboratory (NREL) cost projections in Figure 2a motivate
this functional form. In particular, they demonstrate: (i) a downward trend in costs, (ii) a non-
linear trajectory to costs, (iii) an increase in the uncertainty the further we are in the future, and
(iv) positive skewness in the distribution of future costs. �ese pa�erns motivate our modeling
approach in (19): �e downward trend in costs motivates the dri� term in our model; the non-
linear trajectory motivates the exponential formulation; the increasing level of uncertainty in
the forecast uncertainty motivates the unit-root (in logarithms) formulation of the model; and
the positive skewness in the cost assessments justi�es the log-normal distribution for the shock
process.

We estimate two parameters in (19): the magnitude of the downward dri� (τ ) and the size of
the shock process governing the level of cost uncertainty (σc). Importantly, we do not observe
actual realizations of the ba�ery capital cost process, only the set of projected cost realizations
from Cole and Frazier (2019). �erefore, our estimation treats each cost projection (i.e., each
line in Figure 2a) as a realization of the cost process. We use a method of moments approach
to recover τ and σc. Online Appendix E derives the moment conditions for estimation. Our
estimates for the cost process are τ̂ = −0.044 (with a standard error of 0.001) and σ̂c = 0.064

(with a standard error of 0.003). Following Cole and Frazier (2019), our simulations use an initial
condition for capital costs in 2018 of c2018=$380/kWh.

5 Results

�is section discusses results from our operations model, our linking regressions, and our adop-
tion model. It then provides an overall discussion and analysis of public policies.
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Figure 3: Mean Ba�ery Output and Equilibrium Prices E�ects

(a) Mean Hourly Ba�ery Output Across Day (b) Mean Hourly Equilibrium Prices

(c) Peak Five-Minute Equilibrium Prices (d) Mean Hourly Output from Dispatchable Gener-
ators

Notes: Each line plots the mean counterfactual outcome across all days during 2016–19.

5.1 Operations Model Results

Figure 3a illustrates the mean simulated ba�ery discharge quantity for each hour of the day
for our evaluation sample, 2016–19. Each line in the �gure shows ba�ery output for a speci�c
aggregate ba�ery �eet capacityK . Ba�eries discharge the most during the hours that net load is
the highest—the evening peak hours of 5–10 pm, but also discharge on average in the morning
between 5–7 am. As aggregate ba�ery capacity grows, total discharges increase in the evening
and total charges increase during the day.

As the �eet expands, Figure 3b shows that ba�ery operations exert a strong e�ect on lowering
the volatility of mean equilibrium prices. Figure 3c focuses on the evening hours, showing that
from 6-7 pm—the hours with the highest average net load—a relatively small 1,000 MWh ba�ery
�eet would reduce average prices by over $10 per MWh. Figure 3b also illustrates that ba�eries’
charging during the middle of the day has a relatively small e�ect on prices because marginal cost
is relatively low and �at during those hours. Additionally, Figure 3b shows that the �rst few units
of ba�ery investment would have the largest impact on equilibrium price, whereas incremental
storage investment has a smaller impact on prices. �e �rst ba�eries that enter the market will
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reduce the occurrence of extreme pricing events by discharging during periods when net load
approaches the available generation capacity. By doing so, the ba�eries will reduce prices and
also move the equilibrium to �a�er regions of the marginal cost curve, thus reducing the marginal
impact of subsequent ba�ery entry on prices. Table A.4 in On-line Appendix A emphasizes this
result, the �rst 1,000 MWh of storage capacity would reduce evening prices by 6% ($54.27/MWh
to $51.15/MWh) and overall average price by over 3% ($35.97 per MWh to $34.79 per MWh).
In contrast, an increase in capacity from 25,000 to 50,000 would only reduce mean prices by an
additional 3.2% ($30.63/MWh to $29.62/MWh).

Figure 3d demonstrates how ba�ery operations would a�ect the mean generation from dis-
patchable power plants (e.g., natural gas generators) throughout the day. Unsurprisingly, ba�er-
ies increase power plant output during the middle of the day and reduce power plant production
in the evening peak hours. Notably though, ba�eries would also change the times of day that dis-
patchable power plant production troughs and peaks occur. With no ba�ery capacity, the lowest
production hour is 11 am, whereas with a large ba�ery �eet the lowest production period moves
an hour later to noon. Similarly, the peak for dispatchable production without ba�ery storage is
7 pm, relative to a�er 8 pm with a large storage �eet. �ese pa�erns demonstrate the importance
of ramping costs in modeling the equilibrium e�ects of storage operations. With ramping costs,
current production costs are decreasing in last period’s generation. As a result, ba�ery opera-
tions can reduce generators’ costs by reducing the rate that dispatchable production increases.
With a large ba�ery �eet, the morning ramp down and evening ramp up period is spread over a
longer period of time to allow more time for adjustment.

To further understand how large ba�ery �eets would optimally operate, Figure 4 graphs
real-time prices and ba�ery operations for two randomly-selected days—June 23rd, 2016 and
December 29, 2018—both for a 25,000 MWh capacity. Ba�ery operations change discretely and
abruptly during the day. On the le� graph, ba�eries charge substantially in the morning before 8
am, remain idle throughout the middle of the day, and then discharge at di�erent points in time
in the evening. On the right graph, where prices did not plummet in the morning, ba�eries do
not charge until later in the day. On both days, ba�eries reach a full state of charge, wait several
hours, and then discharge in the evening when real-time market prices spike. �e two days di�er
in the times at which ba�eries start charging and discharging. More generally, and consistent
with Figure 4, we �nd that (1) ba�ery output at any time period varies considerably across days,
and (2) on most days, ba�eries will fully charge prior to the evening ramp-up period and then
wait to discharge until a price spike occurs.

As a result of highly volatile real-time prices, ba�ery operational revenues are highly skewed
across time periods. From Table A.5 in Online Appendix A, ba�eries earn over 70% of total
revenues during the most pro�table 1% of time intervals. For a 1000 MWh ba�ery �eet, each 1
MWh of ba�ery capacity would earn $37,396 during the most pro�table 1% of 5-minute intervals
and only $16,762 across the other 99% of time periods over our sample period. Ba�ery revenues
are very sensitive to equilibrium e�ects. Speci�cally, ba�ery revenues during the most pro�table
hours decline dramatically as aggregate ba�ery capacity rises. For example, an increase in the
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Figure 4: Ba�ery Operations on Selected Days

Notes: �e black lines show the observed real-time market price in the absence of ba�ery operations. �e orange
lines show the equilibrium prices a�er incorporating storage operations. �e green lines in both show the sim-
ulated amount of energy held in storage (i.e. the stock) as a percentage of energy capacity on June, 23, 2016 and
December, 29, 2018. �e simulations use an aggregate storage capacity of 25,000 MWh.

ba�ery �eet from 100 MWh to 10,000 MWh reduces per-unit revenues by nearly 37%. �ese
�ndings highlight the considerable decreasing returns-to-scale in ba�ery storage capacity, which
has important implications for the time path of ba�ery investment.

Value of Small Battery Fleet

To understand the value of ba�eries implied by our operations model, we calculate the gross
social surplus from ba�ery storage for each sample week over the 2016–19 period for a small
ba�ery �eet of 10 MWh. We convert each of these weekly observations into a “lifetime” value of
storage capacity, using an annual discount factor of β = 0.95.37

Figure 5 uses these value calculations to illustrate the value of ba�eries relative to capital
costs. First, Figure 5a plots the marginal social value of storage capacity for each week in our
4-year sample, with and without accounting for depreciation.38 �is panel demonstrates a strong
positive association between the renewable generation and the value of storage. �e dashed-red
line plots a simple linear �t of the relationship between marginal storage value and the share
of electricity generated by renewable sources, before adjusting for capacity depreciation.39 �e
dashed-grey line shows expected capital cost per kWh of storage capacity in 2019. Together,
these lines show that, absent capacity depreciation, the marginal social value would exceed the
2019 expected capital cost of storage if the renewable energy share were over 50%.

�e solid blue line in Figure 5a highlights how capacity depreciation (as discussed in Sec-
tion 4.2) in�uences the estimated storage values. Depreciation from cycling reduces the esti-
mated value of storage investment by 24% on average. Moreover, the impact of depreciation is
higher with more renewable energy, which is due to ba�eries cycling more in this case. A�er
accounting for depreciation, the �rst ba�ery unit would break even in the energy market only

37�is value implicitly assumes that the market conditions from the sample-week are repeated inde�nitely.
38We approximate the marginal value as the average value for this very small �eet.
39We calculate the renewable energy share as the percentage share of solar plus wind generators during the

sample week plus 19%. 19% is the mean share of generation from non-intermi�ent renewables including hydro,
geothermal, and biomass generators across the sample period.
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Figure 5: Renewable Energy, Depreciation, Uncertainty, and the Social Value of Ba�eries

(a) Ba�ery Depreciation and Ba�ery Value (b) Price Uncertainty and Perfect Foresight

Notes: Each point in the sca�er plots (a-b) represents the marginal value of storage capacity for a single week
during the sample (2016–19). �e solid lines in (a-b) plot the linear trend for each group. �e marginal value is the
estimated per-unit value from the �rst 10 MWh of operational storage capacity. We rescale the estimated weekly
storage value into a perpetuity using a 5% annual discount rate and adjusting for the rate of capacity depreciation.
All estimates in plot (b) account for ba�ery depreciation from operations.

when the share of renewable energy was 52% and capital costs declined by 41%, as is expected
to occur in 2027.40 �is �nding emphasizes the signi�cance of accounting for depreciation when
measuring the social value of ba�ery capacity.

Figure 5b compares our baseline storage value estimates—that assume ba�ery operators face
uncertainty about future wholesale prices—to the value estimates if ba�ery operators have per-
fect foresight about future load and electricity supply curve realizations.41 Our model with uncer-
tainty, which can be feasibly implemented by ba�ery operators, achieves 68% of the theoretical
maximum value under perfect foresight. Although our baseline model under uncertainty a�ains
the majority of the perfect-foresight value, it is notable that the social value of storage could be
further increased with a be�er-performing forecasting model. Importantly, our results that allow
for uncertainty should be interpreted as a lower bound for storage value that could be further
improved through be�er forecasting and modeling.

Welfare and Distributional E�ects of Storage Operations

Table 1 considers the impact of ba�ery �eets of di�erent sizes on overall value and the value to
di�erent market participants. From Column 1, a 1,000 MWh storage �eet would increase gross
social surplus by $13.6 million annually.42 A larger �eet with 10,000 MWh would further reduce
costs by $100 million per year. �e other columns of Table 1 report how ba�ery operations would
a�ect the economic rents earned by di�erent types of market participants. Column 2 indicates

40We calculate the expected renewable share based on the California RPS schedule and expected capital costs
based on our capital cost model in Section 4.3.

41In both cases, we adjust the values to account for depreciation.
42Since we assume that demand is perfectly inelastic and held �xed under counterfactual storage operations, a

change in gross social surplus is equal to the change in the total cost of electricity generation.
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that ba�eries would signi�cantly reduce the total cost (price×load) that load serving entities
need to pay to meet demand. In particular, a 1,000 MWh ba�ery �eet would reduce mean hourly
expenditures for utilities by over $256 million per year. Relatedly, ba�eries would reduce the
revenues of dispatchable generators substantially, by $227 million per year. Perhaps surprisingly,
these ba�ery operations reduce solar and wind generators revenues by $29 million annually.
Although, ba�eries increase prices between 9 am an 1 pm when solar plants are coming online,
ba�eries also reduce prices during the early a�ernoon (3-5pm) when many solar generators are
still producing. Summing these impacts, solar generators are made slightly worse o� by ba�ery
operations. �ese distributional impacts of storage operations have key implications for the
long-run investment incentives in the electricity market.

Table 1: Annual Gross Social Surplus Across Aggregate Ba�ery Capacity Levels

∆ Gross
Social Surplus

∆ Total Costs
to Serve Load

∆ Dispatchable
Generator π

∆ Solar
and Wind π ∆ Ba�ery π

0 0.00 0.00 0.00 0.00 0.00
100 1.43 -44.10 -39.13 -5.12 1.59
1000 13.58 -256.31 -227.32 -29.60 14.21
10000 99.63 -862.23 -764.47 -80.70 82.68
25000 184.77 -1,157.50 -1,008.45 -87.95 123.83
50000 261.26 -1,377.29 -1,164.05 -102.86 151.06
Notes: All variables are annual means in millions of dollars. “∆ Gross Social Surplus” is the change in mean total

costs of generation relative to the K = 0 case. “∆ Cost to Serve Load” is the change in total price paid by load-
serving entities for energy (change in equilibrium price times total load). “∆ Dispatchable Generatorπ”, “∆ Solar and
Wind π”, and “∆ Ba�ery π” are the mean change in annual gross revenues for dispatchable generators, renewable
generators, and ba�ery operators respectively.

5.2 Results from Linking Regressions

Table 2 report the results of our linking regressions, which estimate surfaces of GSS(y,K)/K

and δ(y,K). Column 1 shows results from a speci�cation of GSS with logged ba�ery capacity,
renewable energy share (wind + solar share), and an interaction term. Column 2, our preferred
speci�cation, adds week-level controls for mean load in the evening peak hours, mean natural
gas price, and the Sacramento Valley hydroelectric water year index (WYI), and week-of-year
�xed e�ects.

�e speci�cations with and without controls yield very similar results, adding to our con�-
dence that the estimates are not being confounded by electricity market changes that are con-
temporaneous to renewable energy share changes. In our preferred speci�cation, we estimate a
negative and statistically signi�cantly coe�cient on ln (K), a positive and signi�cant coe�cient
on renewable share, and a negative and signi�cant coe�cient for the interaction term, consistent
with the trends in Figure 5. Overall, our results paint a clear picture of the link between installed
ba�ery capacity, renewable generation, and the social value per unit of storage capacity.

�e regression estimates indicate that per-unit storage value falls quickly as the aggregate
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Table 2: Gross Social Surplus and Discounting as a Function of Year and Ba�ery Capacity

Gross Social Surplus / K ($/kWh) Annual Depreciation Rate (%)
(1) (2) (3) (4)

ln(K) -8.220∗∗∗ -8.220∗∗∗ 0.0089 0.0089
(2.702) (2.748) (0.0075) (0.0076)

Renewable Share (%) 8.485∗∗∗ 8.183∗ 0.0557∗∗∗ 0.0588∗∗∗
(2.577) (4.395) (0.0072) (0.0091)

ln(K) × Renewable Share (%) -0.6855∗∗∗ -0.6855∗∗∗ -0.0028∗∗∗ -0.0028∗∗∗
(0.1625) (0.1653) (0.0005) (0.0005)

Observations 1,664 1,664 1,664 1,664
R2 0.11863 0.39122 0.21373 0.52397
Within R2 0.16075 0.17552

Controls + week of year �xed e�ects X X

Notes: In columns 1 and 2, the dependent variable is the present discounted social surplus per kWh of storage capacity,
not accounting for capacity depreciation. Each observation represents a single week of the sample for a single storage
capacity. In columns 3 and 4, the dependent variable is the annual capacity depreciation due to operations. Columns 2
and 4 include controls for the mean load in the evening peak hours of 5–10 pm over the week, the mean natural gas
price over the week, and the Sacramento Valley hydroelectric water year index (WYI) associated with that week. Peak
load is the mean load between 5pm and 9pm hours during the week. Standard errors are clustered by week of sample.

storage capacity in the market rises. �is �nding is consistent with the signi�cant equilibrium
pricing impacts of storage documented in Section 5.1. Moreover, the value of storage rises with
renewable energy market share, but particularly when there is low storage capacity operating
in the market. As aggregate storage capacity increases, the marginal e�ect of renewable en-
ergy additions diminishes because the pre-existing ba�eries mitigate some of the marginal cost
�uctuations that would normally be exacerbated by solar and wind generation.

Table A.6 in Online Appendix A shows that the regression estimates are robust to alternative
speci�cations and control variables. Perhaps the most important control variable is peak load.
Changes in electricity demand can strongly impact the value of storage. Table A.6 shows that the
results are similar if we control for average load across the entire day instead of at peak times.
�e results are also similar if we add separate controls for both peak and o�-peak load conditions.
Last, we estimate a speci�cation that allows for a quadratic term on the renewable share variable.
We �nd that the coe�cient on the quadratic term is close to zero and not statistically signi�cant,
motivating the use of our linear speci�cation.

Columns 3 and 4 show regression results with the annual ba�ery depreciation rate as the
dependent variable. �e coe�cient on the renewable energy share is positive and statistically
signi�cant: as renewable energy increases, the annual depreciation rate also rises because ba�er-
ies engage in more charge-discharge cycles. Importantly, this �nding implies that the marginal
e�ect of increasing renewables on ba�ery value will be smaller a�er accounting for deprecia-
tion. However, the interaction term is negative, which implies that marginal e�ect of renewable
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energy on depreciation declines with larger ba�ery �eets.

5.3 Battery Adoption Results

�e regression estimates outlined above provide the �nal input needed to solve the adoption
model. Figure 6 provides simulated mean competitive equilibrium adoption paths under a vari-
ety of alternative assumptions, all using β = 0.95. �e purple line in Figure 6a plots the expected
ba�ery capital cost over time implied by our capital cost model outlined in Section 4.3. �rough-
out each panel of Figure 6, the solid-black line shows the expected ba�ery capacity trajectory
under our baseline case, in which we assume that: ba�ery capacity depreciates as a function of
use, potential adopters have rational expectations over future capital costs, renewable energy
increases according to the California RPS, and peak load is held �xed at the 2019 mean level. �e
solid-black line shows that ba�ery adoption begins slowly around 2030 before ramping up and
reaching an aggregate capacity 420 MWh in 2035, and 7,500 MWh in 2045.

�e remaining lines in Figure 6 explore several potential factors that may be limiting the base-
line equilibrium adoption. First, Figure 6a contrasts expected ba�ery capacity over time without
capacity depreciation to the baseline. When we ignore depreciation in calculating the value of
storage, adoption starts several years sooner and increases at much faster pace. In particular,
expected capacity would be four times higher in 2035 (1,840 MWh) and two times larger in 2045
(17,200 MWh).

Another factor that encourages potential ba�ery adopters to delay investment is the antici-
pation of future capital cost reductions. Figure 6b quanti�es the in�uence of future cost expec-
tations on investment by calculating the predicted adoption path for myopic agents. While the
forward-looking agents in our baseline know the parameters of the stochastic capital cost pro-
cess in (19), myopic agents assume that the current capital cost will remain unchanged in future
years, but are otherwise identical to the baseline agents.

Myopic agents invest much more heavily in storage between the years of 2025 and 2035. Un-
der myopic expectations, the �rst unit of ba�ery investment is expected by 2024, with aggregate
ba�ery capacity passing 4,000 MWh by 2030, and surpassing 23,300 MWh by 2045. �e myopic
results are striking, as they indicate that expectations of future ba�ery cost declines may play a
big role in limiting adoption.

Another key driver of the ba�ery adoption decisions is the trajectory of future renewable
energy generation. Figure 6c measures the e�ect of changing the renewable portfolio standard
on the time path of ba�ery adoption. Speci�cally, we plot the ba�ery investment path for a
40% RPS by 2045, a 60% RPS by 2045, an 80% RPS by 2045, and a 100% RPS by 2045 (the current
policy). With an RPS of 40%—a policy that would hold renewable generation constant at 2019
levels—almost no ba�ery investment would occur until a�er 2035, and aggregate storage capacity
would remain below 3,300 MWh through 2045. With the more aggressive renewable energy
mandates, storage investment substantially increases. �e 60% RPS would result in 4,700 MWh
of expected storage capacity by 2045, and the 80% RPS would lead to 6,200 MWh by 2045. �ese
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Figure 6: Counterfactual Ba�ery Capacity Adoption Paths

(a) Ba�ery Capacity With vs. Without Depreciation (b) Myopic vs. Forward-Looking Expectations

(c) Renewable Mandates and Ba�ery Capacity (d) Peak Demand and Ba�ery Capacity

Notes: In Figure 6a, the purple line show the expected capital cost over time. In all �gures, the solid black line
plots expected ba�ery capacity under the baseline case with: capacity depreciation, forward-looking expectations,
100% RPS, and peak load held constant. �e other lines plot expected ba�ery capacity adoption under di�erent
counterfactuals. Each �gure varies a single parameter, and holds all other assumptions �xed.

results indicate that ba�ery storage investments are not likely to be economically viable in the
wholesale energy market unless intermi�ent renewable penetration is relatively high and capital
costs decline substantially.

Finally, Figure 6d explores how changes in future electricity load (demand) would change
the time-path of ba�ery adoption. In our baseline case, Figure 6a, we assumed that peak load
would remain constant at 2019 levels in all future years. However, California’s peak load may
change over time for a multitude of reasons. On the one hand, peak load could decrease over
time due to energy e�ciency retro�ts and adoption of behind-the-meter storage technologies.
On the other hand, rising adoption of electric vehicles could increase peak load if drivers plug
in their cars during evening hours. Figure 6d illustrates how di�erent assumptions about future
peak load in California would change the trajectory of ba�ery adoption. We evaluate expected
ba�ery adoption under �ve di�erent cases: (1) 25% increase in peak load, (2) 10% increase in peak
load, (3) no change in peak load (baseline), (4) 10% decrease in peak load, and (5) 25% decrease in
peak load. We �nd that peak load changes can result in signi�cant changes in expected ba�ery
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investment. A 25% increase in peak load leads to a massive four-fold increase in capacity by
2045, whereas a 25% decrease in peak load reduces aggregate capacity by 38% relative to the
baseline case. �ese results show that utility-scale ba�ery investment serves as a substitute for
other investments that reduce peak load. For instance, energy e�ciency retro�ts can reduce
electricity demand at times of the day when the grid is most strained Boomhower and Davis
(2020) while home ba�ery installations could also reduce peak household electricity demand.
Accordingly, policies that encourage residential storage or energy e�ciency investments would
reduce the optimal capacity of utility-scale storage investment, while further investments in
residential solar might complement them.

5.4 Further Discussion and Policy Implications

Our results analyze the impact and value of ba�ery adoption over time, accounting for comple-
mentarity with renewable energy and the equilibrium e�ects of large-scale ba�ery operations.
Taking the California RPS as given, and assuming no ba�ery subsidy or mandate exists, we �nd
that expected ba�ery adoption would begin to increase steadily in the late 2020s. Although
storage investment increases substantially a�er 2030, we �nd that the overall level of storage in-
vestment would likely remain relatively low over the coming decades, reaching 7,500 MWH by
2045. A 7,500 MWh storage �eet composed of 4-hour duration ba�eries can produce 1,875 MW
at any instant, similar to the typical output of a nuclear power plant. While this output would
mark a substantial increase relative to present storage penetration, it is only su�cient to serve
around 8% of the typical CAISO load.

To be�er understand why our model predicts relatively low ba�ery adoption, Figure 7a over-
lays the trajectory of expected capital costs with per-unit value of ba�ery operations over time.
We calculate the per-unit value across several candidate capacity levels. For small aggregate bat-
tery capacity (e.g., K = 10), the marginal social value of ba�ery operations increases rapidly
over time as more renewables enter the market. Indeed, a 10 MWh ba�ery �eet would be quite
pro�table by the 2030s. Nevertheless, as more ba�eries enter the market, the marginal value
of additional capacity shi�s downward due to market equilibrium e�ects of operations of the
preceding ba�ery stock.43 For example, the marginal value of storage investment in 2020 falls
from over $200/kWh to $125/kWh when aggregate capacity increases from 10 kWh to 5,000 kWh.
�ese equilibrium e�ects prevent a very large storage �eet (e.g., 25,000 MWh) from ever becom-
ing economical unless capital costs were to fall far below current expectations.44

�e ba�ery adoption results have some stark implications for policymaking. Importantly, the
results suggest that a stringent renewable energy standard alone is not su�cient to encourage
enough investment in ba�ery storage for the grid to operate solely using renewable energy and
ba�eries. Consequently, additional policies will likely be needed if policymakers and the pub-

43Figure 7b highlights the dramatic decline in marginal value as aggregate capacity rises across years with dif-
ferent renewable energy penetration.

44Note that our analysis holds fossil fuel generation capacity �xed. As more fossil fuel generators retire, this
might raise the value of additional ba�ery storage.
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lic aspire to transform the electric grid to run primarily with intermi�ent renewable energy in
tandem with storage.

Policymakers have already began implementing other rules and regulations to spur invest-
ment in ba�ery technologies. For example, several states including California have implemented
targets or mandates for ba�ery storage investment. Despite the increasing prevalence of these
policies, there is li�le evidence about their welfare e�ects.

To shed light on this issue, we use our adoption model to measure the welfare e�ects of
California’s storage mandate. Under the mandate, utilities are directed to procure contracts for
storage resources by 2020, and those resources should be fully operational by 2024. Figure 8
shows how various ba�ery mandates—e�ective by 2024—would change welfare, de�ned as net
social surplus (W) minus the present value of the subsidies required to implement the mandates.
We compare net social surplus relative to a case with zero ba�ery investment, analogous to
a permanent ban on ba�eries from the electricity market. �e black line shows that welfare
declines roughly linearly as the level of the ba�ery mandate increases. �e y-intercept of the
black line, $925 million, represents the change in welfare under the competitive equilibrium
investment path (surplus maximizing investment path) relative to having no ba�ery market.

�e vertical pink line in Figure 8 marks the change in welfare imposed by California’s storage
mandate.45 We �nd that the mandate improves social surplus by $492 million dollars, or about
$12.45 per California resident, relative to a ba�ery ban. Moreover, any ba�ery mandate below
10,000 MWh would be welfare improving relative to a ban. �us, to the extent that regulators
create conditions for ba�eries to operate in the electricity market, it would improve welfare.

Figure 8 also shows the level of government subsidies for ba�ery storage needed to achieve
varying storage targets by 2024. We estimate that California would require a 49% up-front sub-

Figure 7: Marginal Value and Cost of Ba�ery Investment Over Time

(a) Marginal Value By Aggregate Capacity (b) Marginal Value by Year
Notes: In panel (a), the solid red line plots the expected value of future ba�ery capital costs based on the estimated
parameters of the cost process. �e dashed lines plot the annual value of a ba�ery investment over time, for
selected aggregate ba�ery capacity levels. �e values are obtained by plugging in the associated capacity level
and the renewable energy share based on the California RPS into the regressions in Equation 2. Panel (b) shows
the relationship between the marginal vale and aggregate capacity across three selected years, the marginal value
varies across years due to changes in projected renewable energy share.

45California’s target under Bill AB 2514 is 1.3 GW of storage power capacity, which equates to 5.2 GWh of storage
energy capacity if all ba�ery installations have a 4-hour depth-of-discharge.
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Figure 8: Welfare E�ects of Ba�ery Mandates, Ba�ery Subsidy Policies

Notes: �e black line plots the change in welfare in millions of dollars as function of mandated ba�ery capacity,
relative to a ba�ery ban. We assume the mandated capacity must be achieved by 2024. �e pink dashed line
indicates the California storage target under AB 2514. �e change in welfare is calculated as the reduction in
discounted total costs (ba�ery capital costs plus generation costs) relative to the scenario with no ba�ery adoption.
�e blue line plots the minimum ba�ery subsidy (percentage) required to reach the mandated level.

sidy for ba�eries to achieve the amount ordered under California’s AB 2514 storage bill. While
California’s mandate increases welfare relative to a ban, it also reduces welfare by $433 million
($925m-$492m) compared to the competitive equilibrium investment path.

It is theoretically unclear why California would need to mandate ba�ery installations to spur
ba�ery adoption when an aggressive renewable energy mandate already exists. Our empirical
results verify that the ba�ery mandate substantially alters the ba�ery adoption path, and con-
sequently has implications for social welfare. In particular, the mandate creates deadweight loss
by forcing ba�ery adoption when ba�ery capital costs are still relatively high. �e deadweight
loss from this mandate equates to a relatively small $11.50 per California resident. Moreover, the
ba�ery mandate may deliver bene�ts that are not in our model through improvements in grid
reliability and learning-by-doing in ba�ery installations and manufacturing.

6 Conclusion

A signi�cant challenge to meeting the world’s growing demand for energy is that utilities cannot
typically store electricity for later use. As the majority of new renewable generation capacity
comes from intermi�ent resources, the interest and potential role for ba�ery storage technology
has grown substantially. �is paper develops a novel dynamic equilibrium model of ba�ery
adoption and operations. �e model includes a number of key features that we believe are critical
for understanding the ba�ery adoption capacity and value created by ba�eries under di�erent
policies. �is includes modeling the equilibrium price e�ects of large-scale ba�ery adoption,
ramping costs, depreciation from ba�ery use, and the uncertainty faced by participants in the
wholesale electricity market.
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We estimate our model using data from California’s electricity market—which allows us to
exploit variation in renewable energy generation over time—but our model can be applied to
explore the economic impacts of storage in other markets and policy contexts. Our results high-
light a number of factors that have �rst-order impacts on ba�ery storage investment: (1) falling
ba�ery capital costs, (2) renewable energy penetration, (3) decreasing marginal value of storage
due to equilibrium e�ects, and (4) ba�ery capacity depreciation.

Although we are currently not very far from a point where a small ba�ery storage investment
could break-even in the energy market, expected ba�ery investment could still remain relatively
low for decades in the absence of other policy interventions. �e largest factor leading to low
capacity investment is that ba�eries �a�en electricity price peaks and valleys, thereby limiting
the marginal value of additional capacity. While California’s current storage mandate leads to
a modest deadweight loss relative to no mandate, it increases welfare relative to not having a
ba�ery market. More ambitious policies to encourage large scale storage will be substantially
more costly.

While our analysis makes several contributions towards understanding the economics of bat-
tery storage investment, our modeling approach has several limitations. We believe that the most
important limitations are as follows. First, our model holds the existing fossil-fuel generation
capacity and the associated electricity supply curve constant over time. Second, we use weekly
variation in renewable energy over our 4-year sample period and extrapolate to predict the value
of storage investment in a world where more renewable generation exist than we can observe
within our sample. �ird, our base model assumes that future peak load in California remains
�xed at 2019 levels. Fourth, our model assumes perfect competition in both traditional gener-
ation and storage operations. Fi�h, we model ba�ery resources that are operating entirely in
the real-time energy market, even though ba�eries can also o�er reserve services. Finally, we
assume that ba�ery costs evolve exogenously, and do not allow for ba�ery mandates to lead to
declines in production costs through learning-by-doing. As more ba�eries and renewable re-
sources are deployed in electricity markets, new data will create opportunities to relax some of
these assumptions and further investigate still other issues related to the economics of ba�ery
storage.
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On-line Appendix

A Additional Tables & Figures Referenced in Main Paper

Figure A.1: Regulation Service �antity Procured by CAISO

Notes: �e �gure plots the mean hourly quantity of regulation services procured by CAISO each month. Regulation
quantity is calculated the sum of “regulation up” and “regulation down” quantities in the day-ahead market.

Figure A.2: Renewable Energy Over Time Under the California Renewable Portfolio Standard

Notes: Each horizontal line shows the share of generation that must come from renewable sources in a particular
year under the California RPS. �e “All Renewables” line shows our linear interpolation of the California RPS.
�e “Solar + Wind” line shows our assumption about the solar and wind generation in each year.

.
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Figure A.3: CAISO Electricity Market Trends

(a) Load (b) Solar PV Share

(c) Wind Share (d) Solar + Wind Share

(e) Natural Gas Price ($/mmbtu) (f) RTM Price ($/MWh)

Notes: Each graphic plots the weekly average of a given single variable over the sample period. �e solar genera-
tion measure does not include distributed generation. �e reported market prices are for the CAISO South Zone
Trading Hub (SP 15). All data collected from CAISO.
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Figure A.4: Real-Time Market Prices (5-Minute Frequency)

Notes: Figure shows the average real-time market price (South Hub - SP-15) for each 5-minute interval of the day,
separately for 2015 and 2019.

Table A.1: Summary Statistics for Estimated Net Load Model

2015 2016 2017 2018 2019 2016–19
(a) Dependent Variable: Net Loadt

Net Load DAM Forecast 0.969 0.950 0.950 0.971 0.955 0.956
(0.003) (0.002) (0.001) (0.001) (0.002) (0.001)

Dependent Variable Mean 1794.61 1798.35 1734.13 1687.41 1599.83 1704.99
In-sample RMSE (day-ahead) 67.721 83.007 77.494 74.292 80.513 80.511

(b) Dependent Variable: εLt
εLt−1 0.996 0.996 0.996 0.995 0.995 0.996

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.144 -0.014 -0.023 0.178 0.017 0.032

(0.043) (0.016) (0.016) (0.023) (0.021) (0.009)
σL 6.426 7.110 7.245 7.591 8.131 7.530
Num. Observations 17568 105408 105120 105120 105120 420768
Notes: �is table summarizes the estimates of the net load model. �e 2015 sample, which is used to obtain the

parameters of the AR(1) process, includes only Nov. and Dec. Standard errors, clustered by day-of-sample, are
reported in parentheses.
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Table A.2: Summary Statistics for Estimated Marginal Cost Curve Parameters

Parameter 2015 2016 2017 2018 2019 2016–19
θ1

Mean -14.59 -15.85 -10.96 -7.92 -8.64 -10.85
Std. Dev. 20.79 19.58 15.67 12.22 12.78 15.64
25th-percentile -15.75 -30.38 -11.50 -6.57 -7.42 -9.95
75th-percentile -2.05 -2.29 -1.73 -1.69 -2.01 -1.95
θ2

Mean 76.30 88.82 57.07 36.13 40.96 55.77
Std. Dev. 148.17 144.35 111.87 87.27 92.63 113.11
25th-percentile 0.82 0.94 0.62 0.77 0.71 0.76
75th-percentile 35.46 134.63 26.10 10.10 10.98 21.79
θ3

Mean 1.60 1.41 1.42 1.53 1.28 1.41
Std. Dev. 1.20 0.99 0.97 1.09 0.81 0.97
25th-percentile 1.01 1.01 1.01 1.01 1.01 1.01
75th-percentile 1.01 1.01 1.01 1.01 1.01 1.01
κ
Mean 2.99 3.32 2.87 2.53 2.61 2.83
Std. Dev. 2.43 2.73 2.46 2.09 2.29 2.42
25th-percentile 1.43 1.33 1.28 1.32 1.28 1.29
75th-percentile 3.18 5.32 3.08 2.38 2.39 2.91
α
Mean 0.84 0.87 0.83 0.84 0.82 0.84
Std. Dev. 0.10 0.10 0.13 0.13 0.13 0.12
25th-percentile 0.77 0.80 0.74 0.77 0.73 0.77
75th-percentile 0.91 0.97 0.95 0.94 0.93 0.95
Notes: �is table summarizes the means, standard deviations, 25th and 75th percentile of the daily estimated

marginal cost curve parameters.

Table A.3: Summary Statistics for Estimated Marginal Cost Curve Residuals

2015 2016 2017 2018 2019 2016–19
Dependent Variable: εPt

εPt−1 0.869 0.896 0.880 0.907 0.838 0.891
(0.030) (0.013) (0.015) (0.012) (0.016) (0.008)

Constant 0.019 0.011 0.013 0.011 0.009 0.011
(0.004) (0.001) (0.002) (0.001) (0.001) (0.001)

σP,Peak 0.015 0.012 0.013 0.015 0.017 0.014
σP,O�-peak 0.013 0.010 0.012 0.012 0.015 0.012
Num. Observations 17568 105408 105120 105120 105120 420768
Notes: �is table summarizes the estimates of the marginal cost curve residual parameters. �e 2015 sample includes

only Nov. and Dec. Standard errors, clustered by day-of-sample, are reported in parentheses.
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Table A.4: Equilibrium Prices and Aggregate Ba�ery Capacity

Price (All hours) Price (6-9 AM) Price (10 AM - 3 PM) Price (5-10 PM)
0 35.97 31.52 25.23 54.27
10 35.95 31.51 25.23 54.21
100 35.77 31.40 25.17 53.72
1000 34.79 30.83 24.87 51.15
5000 33.14 30.00 24.73 46.46
10000 31.99 29.31 24.91 42.94
15000 31.42 29.08 25.24 40.90
25000 30.63 28.56 25.74 38.22
50000 29.62 28.24 25.51 35.25
Notes: Prices reported are in $/MWh and are the load-weighted mean across all �ve minute intervals between

2016–19.

Table A.5: Skewed Distribution of Ba�ery Revenues Across Time Periods

Time Periods - Other Percentiles Time Periods - 99th Percentile

Ba�ery Capacity in MWh: 10 15,996.72 41,948.91
Ba�ery Capacity in MWh: 100 15,993.46 41,171.26
Ba�ery Capacity in MWh: 1000 16,762.16 37,395.82
Ba�ery Capacity in MWh: 5000 14,518.92 30,495.52
Ba�ery Capacity in MWh: 10000 12,852.22 26,891.49
Ba�ery Capacity in MWh: 15000 10,752.46 24,265.86
Ba�ery Capacity in MWh: 25000 8,681.60 20,800.56
Ba�ery Capacity in MWh: 50000 5,374.76 15,469.13

Notes: �e �rst column lists the aggregate ba�ery capacity. �e second column indicates the total revenue a ba�ery
owner would earn between 2016–19 summed over the least pro�table 99 percent of time periods. �e third column
lists the total revenue a ba�ery owner would earn summed over the most pro�table 1 percent of time periods. All
numbers are in $/MWh of capacity.
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Table A.6: Robustness Checks: Social Value of Storage as a Function of Storage Capacity and
Renewables

Gross Social Surplus / K ($/kWh)
(1) (2) (3) (4)

ln(K) -8.220∗∗∗ -8.220∗∗∗ -8.220∗∗∗ -8.220∗∗∗
(2.748) (2.748) (2.749) (2.748)

Renewable Share (%) 8.183∗ 8.779∗ 8.342∗ 16.99
(4.395) (4.680) (4.809) (13.99)

ln(K) × Renewable Share (%) -0.6855∗∗∗ -0.6855∗∗∗ -0.6855∗∗∗ -0.6855∗∗∗
(0.1653) (0.1653) (0.1653) (0.1653)

Peak Load (Mean) 0.1568∗ 0.1353
(0.0930) (0.2180)

Load (Mean) 0.2172
(0.1317)

O�-Peak Load (Mean) 0.0358
(0.3410)

(Renewable Share)2 -0.3166
(0.3212)

Observations 1,664 1,664 1,664 1,664
R2 0.39122 0.39093 0.39124 0.38622
Within R2 0.16075 0.16035 0.16078 0.15385

Controls + week of year �xed e�ects X X X X

Notes: �e dependent variable is the present discounted social surplus per kWh of storage capacity,
not accounting for capacity depreciation. Each observation represents a single week of the sample
for a single storage capacity. All columns include controls for the mean natural gas price over the
week and the Sacramento Valley hydroelectric water year index (WYI) associated with that week.
Peak load is the mean load between 5pm and 9pm hours during the week; o�-peak load is the mean
load at all other times. Standard errors are clustered by week of sample.
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B �e Kalman Filter/Smoother

As described in Section 4.1, a complication of our data is that CAISO implements the day-ahead
market (DAM) only at the hourly frequency, reporting prices and forecasts for net load that
are constant over the 12 5-minute intervals of each hour. Our operations model and the real-
time market (RTM) prices use a 5-minute frequency. �us, our estimation procedure needs to
accommodate the mixed-frequency nature of the data.

We use the Kalman �lter/smoother to temporally disaggregate (i.e., interpolate) the forecasts
of net load to yield a forecast at the 5-minute frequency. Generically, assume that a series At
is observed only every h periods, and what is observed is the average of the interim h periods
of the latent process at, so At = 1

h

∑h−1
j=0 at−j . Our objective is to take the observed series At

and construct estimates of the latent process at such that the implied values of the accumulated
version of that series, φt, match the observable data (At) at the end of the h periods. We cast the
problem as a state space model and use the Kalman �lter/smoother to estimate the latent process
(e.g., Proie�i, 2006).

More speci�cally, we use the following state space model:

At = Ht

[
at

φt

]
,[

at

φt

]
= Mt

[
at−1

φt−1

]
+ Utψt, ψt ∼ N(0, 1),

where Ht is a deterministically time-varying selection matrix46 designed to handle the missing
observations of At; Mt

47 and Ut48 are deterministically time-varying matrices designed to create
the accumulated version of the latent process, φt; and ψt is a serially independent error term that
contributes to the time series variation in the latent process of interest at. We use the techniques
outlined in Harvey (1989) and Durbin and Koopman (2012) to recover an estimate of the latent at
for each �ve minute interval in our sample.49 We then use these estimates to augment our data
on the deterministic portion of net load, XL

s .

46Ht iterates between the matrix [0 1] on the last period of each hour (the period we observe At, and [0 0] for
the �rst to penultimate period of each hour.

47Mt takes 12 possible values for each period within the hour such that Mt = [1 0; 1/j(t) (j(t) − 1)/j(t)],
where j(t) is the period within the hour associated with time period t.

48Ut takes 12 possible values for each period within the hour such that Ut = [1; 1/j(t)], where j(t) is the period
within the hour associated with time period t.

49See Brave et al. (2021) for the explicit recursive formulation of the Kalman �lter/smoother equations for a
temporally aggregated series involving an average.
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C Additional Discussion of Marginal Cost Curve

We use the net load and price data from the day-ahead market (DAM) to estimate daily supply
curve parameters. Variation in these parameters over time may be caused by shi�s in natural
gas prices, changes in the availability of low cost generation coming from nuclear power plants
and hydroelectric sources, as well as day-to-day changes in generator availability and imports
and exports from neighboring states. By using the DAM to estimate the marginal cost curve, our
approach allows us to account for market characteristics that vary at a high frequency, while
ensuring that our dynamic operations model remains feasible in that it only uses information
that would be available to a market participant in bidding in the real-time market.

Figure C.1 provides an example of the marginal cost curve on June 2, 2016, when net load
was approaching the constraint on available generating capacity. From Figure C.1a, at 5:15 pm,
the market equilibrium was near an in�ection point: an increase in net load would signi�cantly
raise equilibrium price, while a decrease in net load would only have a small e�ect in decreasing
price. Figure C.1b illustrates the importance of ramping costs in our model. At this same time, a
20% decrease in generation from fossil fuel generators last period (Z̃) would lead to a substantial
price increase, with a smaller price decrease from a 20% increase in Z̃ .

Figures C.1c and C.1d illustrate how our model rationalizes a rapid change in price that oc-
curred in the real-time market. At 3:20 pm on June 2, 2016, the real-time market price was just
under $50/MWh, then at 3:40 pm price nearly tripled to $140/MWh. As evidenced by the change
in the marginal cost curves between 3:20 pm (top sub-panel of c) and 3:40 pm (top sub-panel of
d), the model largely rationalizes this price change as being due to a shock in the available gen-
erating capacity, εPt , (as opposed to an anticipated or unanticipated movement along the curve
driven by net load), perhaps due to unplanned generator outages or a transmission congestion
event.

Figure C.2 provides the �t of the supply curve for June 28, 2016. �e maroon dots show the
net load forecasts and DAM price realizations. �e blue line shows the predicted DAM prices as a
function of the forecasts of net load from our estimated model. Finally, the orange line shows the
predicted DAM prices as a function of the forecasts of net load from a model estimated without
ramping costs (i.e., α = 1). By allowing for ramping costs, the blue line is able to explain more of
the variation in the DAM prices than the orange line, and hence lies closer to the maroon dots.
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Figure C.1: Time-Varying Marginal Cost Curve

(a) Price Rises at Capacity Constraint (b) Generation Output at t− 1 shi�s MC

(c) Equilibrium Before Price Spike Event (d) Equilibrium During Price Spike Event

Notes: �is �gure displays marginal cost curves for June 2, 2016. Figure C.1a shows the market equilibrium and
the implied generation capacity available for a single �ve-minute interval. Figure C.1b shows how 20% changes in
last period’s dispatchable generation would shi� the marginal cost curve. Figures C.1c and C.1d show how both
the net load and the marginal cost curve shi�s during a period when price increased rapidly over a 20-minute
span.

Figure C.2: Marginal Cost Curve From Day-Ahead Market

Notes: �is �gure displays the day-ahead market prices and forecast of net load for each hour for June 28, 2016.
Additionally, the �gure displays the estimated marginal cost curve with ramping costs (blue line) and without
ramping costs (orange line). �e reported market prices are for the CAISO South Zone Trading Hub (SP 15).
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D Modeling Battery Capacity Depreciation

We model capacity fading or depreciation using Xu et al. (2016). In their approach, the depre-
ciation rate of a ba�ery is a non-linear function of time and cycling. Speci�cally, depreciation
depends on: (1) temperature, (2) depth-of-discharge, (3) state-of-charge, (4) calendar time, and
(5) number of cycles. For our application, we assume that ba�eries are operated at 25◦C (77◦F)
throughout the year, which is the Xu et al. base case.

Let K denote the ba�ery’s capacity this period, K ′ denote its capacity next period,50 and gd
be the term that determines degradation between the current period and next period, so that:

K ′ = K exp(−gd). (D.1)

From Xu et al. (2016), gd consists of calendar degradation and cycle degradation.
�e �rst component of the degradation function, calendar degradation gt, is the portion that

occurs regardless of how much the ba�ery is charged or discharged. Calendar degradation is
a function of elapsed time as well as the ba�ery’s mean state-of-charge. Ba�ery capacity will
degrade more if the ba�ery is le� idle at full state-of-charge relative to if the ba�ery is le� idle
at 50% state-of-charge. More concretely, at 25◦C, calendar degradation is the following function
of elapsed time in seconds, t̃, and the mean state-of-charge during the time elapsed, σ̄:

gt = 0.000000000414× t̃× exp(1.04(σ̄ − 0.5)). (D.2)

�e second component of the degradation function, cycle degradation, is the depreciation
a�ributable to operations. Using the Xu et al. notation, de�neN to be the total number of cycles
that the ba�ery undertakes during a time period, where a full cycle indicates a ba�ery making a
roundtrip of charging and discharging; ni to indicate if cycle iwas a full roundtrip cycle (ni = 1)
or a half cycle (ni = 0.5) of either charge or discharge; and gci to be the cycle degradation during
cycle i. �e cycle degradation gci depends on the mean state-of-charge during cycle i, σi, as
well as the depth of discharge of the cycle, δi. �e depth of discharge indicates what fraction of
power was gained or lost during the cycle. Cycle degradation is convexly increasing in the depth
of discharge. E.g., cycling from 0% to 100% once is more damaging than cycling from 25–75%
twice. Applying Xu et al. (2016) to the case of 25◦C,

gci = exp(1.04(σi − 0.5))× (140000δ−0.501
i − 123000)−1. (D.3)

We combine the di�erent degradation terms to write:

gd = gt +
N∑
i

nigci. (D.4)

50Our evaluation sample uses a period length of a week, as we discussed in Section 4.2.
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From (D.2)–(D.4), capacity depreciation gd is a function of t̃, N , σ̄, and ni, δi, and σi,∀i =

1, . . . , N .
Following Xu et al. (2016), we perform the following algorithm to simulate capacity depreci-

ation for our evaluation sample:51

1. Solve the optimal policy for a given week. Recall that we solve for policies separately for
each day within the week and that our policy functions for the evaluation sample incor-
porate a heuristic approach that limits cycling due to depreciation.

2. Use the optimal policy from (1) and the realized stream of load residuals εL, price residuals
εP , and supply curve parameters across all time periods in the week to simulate charge/dis-
charge actions.

• Record the ba�eries’ state-of-charge for each 5-minute time interval of the simulation.

3. Calculate gt over the simulation period using (D.2).

• Use the recorded state-of-charge path to calculate the mean state-of-charge over the
simulation period, σ̄.

• Over one week, t̃ = 60× 60× 24× 7 = 604, 800.

4. Feed the recorded state-of-charge path into a rain�ow cycle counting algorithm.

• See h�ps://www.mathworks.com/matlabcentral/�leexchange/3026-rain�ow-counting-
algorithm.

• �e rain�ow counting algorithm returns N and ni, δi, and σi,∀i = 1, . . . , N . In
words, it returns the number of cycles and whether each cycle is full or half, and
determines the depth-of-discharge and mean state-of-charge for each cycle.

5. Calculate gci,∀i = 1, . . . , N using (D.3).

6. Calculate the total depreciation rate exp(−gd) for each week-long simulation using the
above estimates and (D.4) and (D.1).

Finally, we note that this formulation implicitly assumes that both power and energy capacity
depreciate through cycling. �e engineering literature shows that primarily energy capacity
should degrade. �erefore, our calculation should provide a lower bound on the social value of
storage.

51Our algorithm for the training sample is similar, but occurs over the entire 2015 training sample period—rather
than separately by each week—and uses perfect foresight policies.
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E Capital Cost Estimation

We treat the �rst year of our sample, 2018, as y = 0. We rescale costs in year y to be relative to
initial cost c0, so that c̃y ≡ cy/c0. Taking logs of both sides of the (rescaled) capital cost evolution
equation (19) from Section 4.3, we obtain:

ln (c̃y)− ln (c̃0)︸ ︷︷ ︸
ln 1=0

= τ × y +

y∑
1

ξy. (E.1)

Using (E.1), we derive the following moment conditions.
First moment:

E[ln (c̃y)] = τ × y. (E.2)

Second moment:

Var [ln (c̃y)] = Var
[
yτ +

y∑
1

ξy

]

⇒ Var [ln (c̃y)] = Var [yτ ] + Var
[

y∑
1

ξy

]
⇒ Var [ln (c̃y)|y] = y × Var [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × SD [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × σ. (E.3)

We �nd the parameters τ and σc that solve the two moment conditions by estimating two
univariate regressions, pooling across the set of cost projections. For the �rst regression the
dependent variable is ln (c̃y), and the independent variable is y. For the second regression, the
dependent variable is the standard deviation of all the logged cost realizations ln (c̃y) conditional
on y and the independent variable is √y. To accommodate the variation in the number of cost
assessments over time, in the second regression we weight the regression by the number of cost
projections that were made for that year.52

52Figure 2a shows that years that are further in the future tend to have fewer cost projections.
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