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1 Introduction

Consider the commonly employed single-variable, just-identified instrumental vari-
able (IV) model, with outcome Y , regressor of interest X , and instrument Z,1

Y = bX +u, where (1)

C (u,Z) = 0, C (Z,X) 6= 0.

Conducting hypothesis tests and constructing confidence sets for b with correct
significance and confidence levels has been pursued for several decades. In this
setting, the validity of the Anderson-Rubin test (henceforth, AR) is well established
(Anderson and Rubin, 1949)2, and results expressing its advantages and optimality
come in several flavors.3

Despite these findings, applied research, with rare exceptions, instead relies
on t-ratio-based inference. Many studies have shown numerically or theoretically
that the t-ratio test for IV significantly over-rejects and associated confidence in-
tervals under-cover in situations when instruments are not sufficiently strong.4 To
deal with this problem, researchers have relied upon the first-stage F-statistic as a
pre-test for instrument weakness. Staiger and Stock (1997) and Stock and Yogo
(2005) provide a framework for precisely quantifying the distortions in—and there-

1It will be shown that all of our results apply to the single excluded instrument case more
generally, allowing for other covariates and variance estimators that accommodate departures from
i.i.d. errors, such as heteroskedasticity-consistent, clustered, or time series approaches. Throughout,
we use V (·) and C(·, ·) to denote population variance and covariance, respectively.

2Staiger and Stock (1997) show that AR-based inference delivers correct size/confidence with
nonnormal and homoskedastic errors under arbitrarily weak instruments. Stock and Wright (2000),
among others, show that AR-based inference is valid under more general error structures.

3The test of Anderson and Rubin (1949) in the just-identified case has been shown to minimize
Type II error among various classes of alternative tests, including classes of unbiased tests. (Here
we are referring to the unbiasedness of the test procedure, which requires rejection probabilities
under all alternatives to be larger than that under the null, as opposed to the unbiasedness of the IV
estimator.) This is shown for homoskedastic errors, by Moreira (2002, 2009) and Andrews, Moreira
and Stock (2006), and later generalized to cases for heteroskedastic, clustered, and/or autocorrelated
errors, by Moreira and Moreira (2019).

4See, for example, Nelson and Startz (1990), Bound, Jaeger and Baker (1995), and Dufour
(1997), and an earlier discussion by Rothenberg (1984). For a simple STATA program that demon-
strates the inaccuracy of the standard approximation compared to the "weak-iv" asymptotic approx-
imation, see http://www.princeton.edu/⇠davidlee/wp/SupplementarytF.html

1

http://www.princeton.edu/~davidlee/wp/SupplementarytF.html


fore correcting—inference, with the use of the first-stage F-statistic. Importantly,
although much of the econometric literature considers the general case of the over-
identified model with multiple instruments, Stock and Yogo (2005), for example,
make clear that the distortions in inference also occur in the single instrumental
variable, just-identified case—a common case for applied work, and the exclusive
focus of the current paper.5

Unfortunately, the implementation and interpretation by practitioners of the ap-
proach and results of Staiger and Stock (1997) and Stock and Yogo (2005) has typ-
ically been imperfect or deficient. For example, pre-testing using the rule-of-thumb
F-statistic threshold of 10 is commonplace, rather than the actual values provided
in Stock and Yogo (2005) tables. Or, practitioners erroneously refer to the interval
bb ± 1.96 · bse

⇣
b̂
⌘

as a “95% confidence interval,” (after pre-testing using F > 10
as a diagnostic), even though the Bonferroni bounds of Staiger and Stock (1997)
make clear that using F > 16.38 from Stock and Yogo (2005) implies that such an
interval is in fact an 85% confidence interval.6,7

In the current paper, focusing on the single-instrument case, we meet practi-
tioners “where they are” by introducing a new method of inference using only the
first-stage F statistic and the 2SLS t-ratio. Rather than relying on a fixed pre-
testing threshold value, we show how to smoothly adjust t-ratio inference based on
the first-stage F statistic. In its simplest form, this amounts to applying an adjust-
ment factor to 2SLS standard errors based on the first-stage F with the adjustment
factors provided in tables below for 95% and 99% confidence levels. We refer to
this procedure as the tF procedure and list some of its advantages here.

First, smooth adjustment yields usable finite confidence intervals for smaller

5This single-variable case includes applications such as randomized trials with imperfect com-
pliance (estimation of LATE Imbens and Angrist (1994)), fuzzy regression discontinuity designs
(see discussion in Lee and Lemieux (2010)), and fuzzy regression kink designs (see discussion in
Card et al. (2015)).

6We write bb for the IV estimator and bse(·) for the estimated standard error of an estimator.
7In their formulation, Staiger and Stock (1997) point out that this inferential statement requires

a pre-commitment to a confidence set that is the entire real line in the event that F<16.38. Hall,
Rudebusch and Wilcox (1996) show that over-rejection can be even worse in the presence of pre-
testing for weak instruments. Andrews, Stock and Sun (2019) also discuss in detail the practice of
selectively dropping specifications when first-stage F-statistics do not meet a particular threshold,
and show that severe distortion can result.
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values of the F statistic. In particular, for 95% confidence, finite adjustment factors
are available for any value of F > 3.84. This puts the smooth adjustment approach
on equal footing with AR, which yields bounded 95% confidence intervals for F >

3.84. Second, the confidence levels specified with the tF adjustment factors leave
little room for practitioner misinterpretation. These confidence levels incorporate
the effects of basing inference on the first-stage F ; again, this puts the confidence
interval on equal footing with AR, or other procedures that have zero distortion.
Third, the tF critical value function is the “smallest” one in the sense that any
alternative function that is weakly below the tF function everywhere (and strictly
below in the decreasing part of the function) leads to over-rejection for some data
generating process. Fourth, our table of adjustment factors is “robust” to commonly
considered error structures (e.g., heteroskedasticity, clustering). That is, no further
adjustment is needed for these scenarios as long as the same type of robust variance
estimator is used for the first-stage as for the IV estimate itself. Fifth, we compare
the tF approach to AR based on expected confidence interval length. Given the well-
established power properties of AR, our results here are surprising: conditional on
F > 3.84, the expected length of the AR interval is infinite, while that of the tF
interval is finite. Sixth, the tF adjustment can be easily applied to re-assess studies
that have already been published, provided that the first-stage F-statistic has been
reported, and does not require access to the original data.

In order to gauge the likely magnitude of tF adjustments in applied research
going forward, we use a sample of studies recently published in the American Eco-
nomic Review (AER) that utilize a single-instrument specification. For the sub-
sample of specifications where the first-stage F-statistic is reported or can be com-
puted from the published tables, applying the tF adjustment to the standard errors
leads, on average, to an increase in confidence interval length of about 25 percent.
We observe that among the specifications for which F > 10 and t2 > 1.962 (for the
null hypothesis that the slope coefficient is zero)—which would likely have been
deemed “statistically significant”—the use of tF adjustment would cause about one-
fourth of the specifications to be statistically insignificant at the 5 percent level. We
conclude therefore that these adjustments are likely to have a substantive impact on
inferences in applied research that employ t-ratio inferences.
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The paper is organized as follows. Section 2 uses recent papers published in the
AER to characterize current inferential practices for the single-instrument IV model.
In Section 3, we first describe the tF procedure—the critical values, the main results
on power, and its application to our sample of studies. Section 4 describes how the
results stated in Section 3 are derived. Section 5 concludes.

2 Inference for IV: Current Practice

To motivate our emphasis on improving t-ratio-based inference, this section doc-
uments facts about current practice for the single instrumental variable model, as
reflected by recent research published in the American Economic Review. We later
use this sample of studies to gauge to what extent our proposed adjustments could
make a difference in practice.

Our sample frame consists of all AER papers published between 2013 and 2019,
excluding proceedings papers and comments, yielding 757 articles, of which 123
include instrumental variable regressions. Of these 123 studies, 61 employ single
instrumental variable (just-identified) regressions.8 Consistent with the conclusion
of Andrews, Stock and Sun (2019), this confirms that the just-identified case is an
important and prevalent one, from an applied perspective.

From these papers, we transcribe the coefficients, standard errors, and other
statistics associated with each IV regression specification. Each observation in our
final dataset is a “specification,” where a single specification is defined as a unique
combination of 1) outcome, 2) endogenous regressor, 3) instrument, and 4) com-
bination of covariates. The dataset contains 1311 specifications from 61 studies;
among those studies, the average number of specifications is 21.5, with a median of
9, and with 25th and 75th percentiles of 4 and 21, respectively. The purpose of our
dataset is to fully characterize specifications that are reported in published studies.9

8Specifically, we include papers that exclusively employ just-identified specifications with one
endogenous regressor and presented 2SLS results in the main text; i.e., we exclude a paper if it
contains over-identified models , and we exclude papers if the only mention of a just-identified IV
model is in an appendix.

9See Andrews, Stock and Sun (2019) for a more in-depth comparison of AR and t-ratio-based
inference, using a subset of the studies for which it was possible to obtain the original microdata.
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Table 1: Current Practice Implementing IV estimation, Published Papers from AER

No Yes Total
Two-Stage Least Squares 445 132 577

(0.339) (0.101) (0.44)
[0.251] [0.088] [0.339]

Two-Stage Least Squares and First Stage 247 212 459
(0.188) (0.162) (0.35)
[0.204] [0.154] [0.358]

Two-Stage Least Squares and Reduced Form 13 7 20
(0.01) (0.005) (0.015)

[0.024] [0.035] [0.059]
Two-Stage Least Squares, First Stage, and Reduced 
Form 181 74 255

(0.138) (0.056) (0.195)
[0.15] [0.094] [0.244]

Total 886 425 1311
(0.676) (0.324) (1)
[0.628] [0.372] [1]

Combinations of regressions reported First Stage F-statistic?

N=1311. Drawn from 61 published papers. Each observation represents a unique combination
of outcome, regressor, instrument, and covariates. Unweighted proportions are in parentheses, and
weighted proportions are in brackets, where the weights are proportional to the inverse of the number
of specifications in the associated paper.

Each specification is placed into one of four categories, as shown in Table 1,
according to the types of regressions for which coefficients and standard errors
are reported: the coefficients and standard errors from 1) only the 2SLS, 2) the
2SLS and first-stage regression, 3) the 2SLS and the reduced-form regression of
the outcome on the instrument, and 4) the 2SLS, the first-stage, and the reduced
form. In addition, we identify whether or not, for each specification, the first-stage
F-statistic is explicitly reported, as indicated by the first two columns in Table 1.

For each configuration, Table 1 reports the number of specifications, as well as
proportions (parentheses) and weighted proportions (brackets), where the weight
for each specification is the inverse of the total number of specifications reported
from its study. Henceforth, unless otherwise specified, when we refer to propor-
tions, we refer to the weighted proportions, since we wish to implicitly give each
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study equal weight in the summary statistics that we report.
Table 1 shows that the most common combination among the eight possible

types is the reporting of 2SLS coefficients without explicitly reporting the first-
stage F-statistic, representing about a quarter of the specifications. The second
most-common practice is to report both the 2SLS and the first-stage coefficients
without reporting the F-statistic (about 20 percent), but it should be clear that the
F-statistic can be derived from squaring the ratio of the first-stage coefficient to its
associated estimated standard error. The least common reporting combination is the
2SLS and the reduced form, without reporting the first-stage F (2.4 percent).

In our analysis of the data, in order to maximize the number of specifications
for which we have a first-stage F-statistic, we compute it from the reported first-
stage coefficients and standard errors, but whenever this is not possible, we use the
explicitly reported F-statistic.10

Figure 1 displays the histogram of the F-statistics in our sample on a logarith-
mic scale. The weighted 25th percentile, median, and 75th percentiles are 14.23,
41.84, and 255, respectively. The figure shows that most of the reported first-stage
F-statistics in these studies do pass commonly cited thresholds such as 10. More
detail on these specifications is provided in Table 2, which is a two-way frequency
table for whether or not the square of the t-ratio for the hypothesis that b = 0 ex-
ceeds 1.962, and whether or not the computed F statistic exceeds 10 (a commonly-
used or cited threshold). Overall, the table indicates that for about 60 percent of
the specifications, the estimated 2SLS coefficient would be “statistically signifi-
cant” under the practice of using a critical value of 1.96 and a first-stage F-statistic
threshold of 10 as a basis of trusting the inference.

We recognize that the null hypothesis of b = 0 may not always be the hypoth-
esis of interest across all the studies. Furthermore, in our data collection, we do
not make any judgments as to the extent to which any particular regression speci-
fication is important for the conclusions of the article. Indeed, in some cases, the

10We find that among studies in which both the reported and computed F-statistic are available,
about 63 percent of the time the two numbers are within 5 percent of one another. For those speci-
fications in which the reported bF is the only F-statistic available, there are some situations where it
is not entirely clear whether the F-statistic is the first-stage F ; it is possible that they are F-statistics
for testing other hypotheses.
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Figure 1: Distribution of First-stage F-statistics
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N=847 specifications. Scale is logarithmic. All specifications use the derived F-statistic or, when not
possible, the reported F-statistic. F-statistics can be derived for specifications that report nonzero
standard errors in the first-stage. Six specifications that report (rounded) first-stage standard errors
of zero and do not report F-statistics are excluded. Proportions are weighted; see notes to Table 1.
Dashed lines correspond to the 25th (14.23), 50th (45.84), and 75th (225) percentiles of the distribu-
tion. The shaded region denotes the range between the 0.5th and 99.5th percentiles of a non-central
c2

1 distribution with a non-centrality parameter equal to 142.6.

2SLS specification is used for a “placebo” analysis, where insignificant results are
consistent with the identification strategy of the paper. It is beyond the scope of
our paper to determine whether or not any particular study’s overall conclusions are
still supported despite any changes to the statistical inferences caused by using the
corrections that we describe below. Instead, we focus more narrowly on gauging
to what extent the tF critical values are likely to impact the length of confidence
intervals in research going forward, using a recent sample of published studies to
guide and inform that estimate.

Most importantly, we observe from our sample that AR test statistics or AR con-
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Table 2: t2 and First-stage F-statistics, Conventional Critical Value, Rule of Thumb
Threshold of 10

F<10 F≥10 Total
 t2 ≥1.962 64 408 472

(0.076) (0.482) (0.557)
[0.104] [0.595] [0.699]

t2<1.962 41 334 375
(0.048) (0.394) (0.443)
[0.062] [0.238] [0.301]

Total 105 742 847
(0.124) (0.876) (1)
[0.167] [0.833] [1]

N=847. Unweighted proportions are in parentheses, and weighted proportions are in brackets. See
notes to Table 1. All specifications use the derived F-statistic, and when not possible, the reported
F-statistic. F-statistics can be derived for specifications that report nonzero standard errors in the
first-stage; 6 specifications that report (rounded) first-stage standard errors of zero and do not report
F-statistics are excluded.

fidence regions are reported for less than 3 percent of the specifications, despite the
fact that the econometric literature has noted that AR inference is valid and robust to
weak instruments and has a number of other attractive properties; see the discussion,
for example, in Andrews, Stock and Sun (2019). It is this stark difference between
theoretical considerations and practice that motivates our focus. We surmise that
practitioners may elect to use t-ratio inference, not because they believe it has supe-
rior properties compared to AR-based inference, but rather because it is presumed
that any inferential approximation errors associated with the conventional t-ratio
are minimal or acceptable. Or practitioners may presume that the inference has
the intended significance or confidence level, as long as the observed first-stage F-
statistic is sufficiently large—even though Stock and Yogo (2005) explicitly point
out that using 1.96 critical values can lead to over-rejection (or under-coverage)
even with the use of their critical values for the F-statistic.

tF inference eliminates this known and quantified distortion, taking as given the

8



common practice of computing the 2SLS and standard errors and providing critical
values that result in the intended significance or confidence levels.

An additional, and separate, motivation for exploring alternatives to AR is that,
if our sample is any indication, there are likely hundreds of other published studies
that use the single-instrument IV model, most of which do not use AR-based infer-
ence. In many cases, it may be prohibitively costly to obtain the original data to
assess how inferences might change when using AR. The adjustment we introduce
below allows one to adjust the reported 2SLS standard error solely on the basis of
the already-reported (or implicitly computed) first-stage F-statistic.

3 Valid t-based Inference: Theoretical Results and
Empirical Implications

This section states our main theoretical findings, emphasizing the motivation for
the tF procedure, and how to use the critical value tables in practice. We defer
the derivations of our results to Section 4 and details of the proofs to the Online
Appendix.

We begin by briefly reviewing the inferential problem with the t-ratio for IV , as
already established in the econometric literature. This motivates tF as a solution
to that problem. We then present the tF critical values for the 5 percent and 1 per-
cent levels.11 Since the use of the tF critical values allows one to achieve intended
significance and confidence levels, we then present some results on how the power
of the tF procedure compares to that of AR. Finally, we describe how the applica-
tion of the tF adjustments impacts the statistical inferences in our sample of AER
studies.

11We focus the specific cases of obtaining valid tests at the 5 percent and 1 percent significance
levels and the corresponding 95 percent and 99 percent confidence intervals, because these standards
of evidence are commonly used in applied research. However, it will be clear in Section 4 that our
formulas can be adapted to analyze other levels of significance or confidence levels.
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3.1 The tF procedure: Notation and Motivation

We begin with the notation for the structural and first-stage equations including
additional covariates:

Y = Xb +Wg +u

X = Zp +Wx + v

where W denotes the additional covariates which can include a constant correspond-
ing to an intercept term. Without loss of generality, we assume orthogonality be-
tween W and each of Y,X ,Z.12

The key statistics are given by

t̂ ⌘ b̂ �b0r
V̂N

⇣
b̂
⌘ and f̂ ⌘ p̂q

V̂N (p̂)
, F̂ = f̂ 2

where b̂ is the instrumental variable estimator. V̂N

⇣
b̂
⌘

represents the estimated

variance of b̂ , which can be a consistent robust variance estimator to deal with de-
partures from i.i.d. errors, including one- or two-way clustering (e.g., see Cameron,
Gelbach and Miller (2011)). t̂ is the usual t-ratio, where we first consider the distri-
bution of this statistic when the null hypothesis is true, but later on, when discussing
power in greater detail, we make the distinction between the true value b and the
(possibly false) hypothesized value b0. f̂ is the t-ratio (for the null hypothesis that
p = 0) for the first-stage coefficient, and its square is equal to the F-statistic, which
we denote F̂ .

The traditional argument for t-ratio inference is as follows. Under the null hy-
pothesis t̂2 d! t2. That is, the argument is that in large samples, a good approxi-
mation of the statistic t̂ is the random variable t, a standard normal, with its square
therefore being a chi-square with one degree of freedom. This approximation un-

12All of our results allow for covariates, since one can redefine Y , X , and Z as the residual from
regressing each of those variables on W . Using these residuals after partialing out the covariates
delivers the exact same point estimates, and standard errors, as if 2SLS was employed including the
covariates.
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derlies the use of the standard normal critical values ±1.96 for testing hypotheses at
the 5 percent level. More generally, the critical values ±pq1�a are used for tests at
the a level of significance, where q1�a is the (1�a)th quantile of the chi-squared
distribution with one degree of freedom.

What has been established and understood in the theoretical literature for quite
some time—but perhaps not fully internalized by practitioners more broadly—is
that 1) the use of a standard normal to describe the distribution of the random vari-
able t can lead to systematically distorted inference even with very large samples,
and 2) the magnitude of the distortion can be precisely quantified. More specifi-
cally, it has been understood in the econometric literature that even when samples
are large, t has a known non-normal distribution, which in some cases might be
"close" to the standard normal, but in other cases, the deviation from normality can
be significant.

Specifically, Stock and Yogo (2005) derive a formula for using Wald test statis-
tics based on 2SLS (and other k-class estimators). In the just-identified case with
one endogenous regressor, their results show that t2 under the null can be seen as
a function of two jointly normal random variables. With some re-arrangement of
terms, the two normal variables can be seen as f and tAR, where f̂ d! f and f has
mean f0 ⌘ pq

1
N AV (p̂)

and unit variance, where AV (p̂) is the asymptotic variance of

p̂ and tAR is a standard normal with AR = t2
AR. The correlation r of f and tAR is the

correlation of Zu and Zv.13

Their t2 formula allows one to precisely quantify the degree of distortions in
inference from using the rule t2 > q1�a to reject the null hypothesis. Based on this
formula, Panel (a) of Figure 2 provides a visualization of this relationship: it graphs
rejection probabilities—the probability that t2 > 1.962 under the null hypothesis—
for different values of E[F ] and r , where E [F ] = f 2

0 +1.14 The figure illustrates that

13Strictly speaking, Stock and Yogo (2005) use a homoskedastic model in which r is the corre-
lation between the errors u and v, but we use a heteroskedastic version for exposition here.

14As we explain in detail in Section 4, rejection probabilities displayed in Figure 2 Panel (a) can
be computed directly from integral expressions, and are accurate up to the precision of numerical in-
tegration. To provide assurance that our formulas and numerical integration give correct answers, we
additionally performed monte carlo simulations, and we plot examples of those results as diamonds
in Figure 2. Those results match quite closely with our theoretical calculations.
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with low values of r (e.g., 0 or 0.5)—a lower degree of “endogeneity”—the t-ratio
rejects at a probability below the nominal 0.05 rate. On the other hand, for r = 0.8,
for example, the rejection rate can be as large as 0.13, when the instrument is close
to irrelevant. In the extreme, with a maximal value of r equal to 1, the rejection
probability tends to 1 as instruments become arbitrarily weak. The true significance
level (size) of any test is by definition the maximum rejection probabiity across all
possible values of the nuisance parameters – here, r and E [F ]. Thus, the test based
on t2 > q1�a clearly has incorrect size, as widely understood in the econometric lit-
erature. Indeed Stock and Yogo (2005), for example, explicitly provide the quantity
represented by the red circle in Figure 2 Panel (a): when r = 1 and E [F ] = 6.88, the
rejection probability is 0.10; it represents the minimum value of E [F ] one needs to
assume in order for the ±1.96 critical values will lead to significance level of 0.10.

Even though one does not know the values of r or E [F ], Staiger and Stock
(1997) and Stock and Yogo (2005) propose to use the observed first-stage F̂ . More
specifically, they develop a framework for determining pairs of critical values c⇤

and F⇤ such that

Pr
⇥
t2 > c⇤,F > F⇤⇤ a

for a pre-specified significance level a . This amounts to a "step function" critical
value function: if F < F⇤, set c⇤ = • (accept the null); otherwise, use the value
c⇤ as the critical value for t2. Put equivalently, this implies a confidence interval
procedure that sets the confidence interval to the entire real line if F < F⇤, and
otherwise use ±

p
c⇤ ⇥ se for the confidence interval.

Utilizing the same analytical expressions in Stock and Yogo (2005), this paper
introduces the tF critical value function ca (F) such that

Pr
⇥
t2 > ca (F)

⇤
 a

for a pre-specified significance level a , where ca (F) is a smooth function of F ,
instead of a step function.15 As we will show below, inference based on tF has sig-

15As with the approach of Staiger and Stock (1997), the probability considered is an uncondi-
tional one. See Chioda and Jansson (2005) for an analysis of inference conditional on the observed
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Figure 2

(a) Pr[t2 > 1.962] vs. E[F ], for selected values of r

(b) Pr[t2 > c.05(F)] vs. E[F], for selected values of r

Note: Scale is ln(E[F]). Red circle corresponds to the quantity reported in Stock and Yogo (2005).
A black diamond represents the rejection probability from 250,000 Monte Carlo simulations, each
with a sample size of 1,000.
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nificant power advantages over inference based on a test that uses constant thresh-
olds c⇤,F⇤; furthermore, tF confidence intervals will have shorter expected length
compared to that of AR when both are bounded intervals.

3.2 The tF procedure: critical values and valid inference

Table 3a reports numbers that reflect the shape of the function c.05 (F). Specifically,
each of the 100 entries is a selected value of the first-stage F statistic, along with

the corresponding standard error adjustment factor,
p

c.05(F)
1.96 . c.05 (F) tends to •

as F tends to 1.962 and is strictly decreasing in F until reaching a minimum, the
constant value of 1.962.

The table can be used as follows: 1) Estimate the usual 2SLS (e.g. robust, clus-
tered, etc.) standard error, 2) multiply the standard error by the adjustment factor in
the table corresponding to the observed first-stage F̂ statistic. This “0.05 tF stan-
dard error” can be used for constructing the t-ratio for testing a particular hypothe-
sis, or for constructing confidence intervals using b̂ ±1.96⇥(“.05 tF standard error”).
Since the table contains selected values from an underlying convex function, to
compute intermediate values, a conservative approach would be to linearly inter-
polate between the selected values. As an example of this interpolation, if the
first-stage F̂ is 10, one would multiply the estimated standard error by 1.727 +

10.253�10
10.253�9.835 ⇥ (1.767�1.727) = 1.751 to obtain the “.05 tF standard error”.16

It is important to note that these “adjusted standard errors” are valid only for
0.05 significance or 0.95 confidence levels. Different adjustments are needed for
different significance/confidence levels. We report selected values for significance
(confidence) levels of 0.01 (.99), another commonly-used standard in applied re-
search, in Table 3b.

The table shows that the
p

c.01(F)
2.576 function has a similar pattern, but three im-

portant differences. First, the adjustment factor now has a vertical asymptote at
F = q.99 = 2.5762. Second, c.01 (F) declines until F = 252.34, at which point

F-statistic.
16We have also posted code to allow more precise computation of the adjustment factor for any

given value of F̂
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Table 3a: Selected values of tF Standard Error Adjustments,
p

c.05(F)
1.96

The top number in each of the ten rows is the first-stage F statistic and the bottom number in each

row is the corresponding value of
p

c.05(F)
1.96 , where we use F�1(.975) for "1.96". Numerical values

in each pair are rounded up (e.g. 4.0051 rounds up to 4.006).

the adjustment factor is 1.059. Finally, we note that
p

c.01(F)
2.576 is uniformly strictly

above
p

c.05(F)
1.96 . This implies that from a reporting convenience standpoint, one

could choose to report only the “.01 tF standard errors” by using the adjust-
ments in Table 3b, and the intervals b̂ ± 2.576 ⇥ (“.01 tF standard error”) and
b̂ ±1.96⇥ (“.01 tF standard error”) would be assured of confidence levels at both
the 99th and 95th percent levels. The cost for this reporting convenience is that the
latter interval would be unnecessarily conservative.

We verify that the tF adjustment achieves the intended significance level of 5
percent in Panel (b) of Figure 2, which is analogous to Panel (a), plotting rejection
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Table 3b: Selected values of tF Standard Error Adjustments,
p

c.01(F)
2.58

The top number in each of the ten rows is the first-stage F statistic and the bottom number in each

row is the corresponding value of
p

c.01(F)
2.58 , where we use F�1(.995) for "2.58". Numerical values

in each pair are rounded up (e.g. 6.6712 rounds up to 6.672).

probabilities for the tF procedure for the same values of r and f0. The curves
are accurate up to the precision of our numerical integration. To provide some
additional assurance that our formulas and numerical computations are correct, as
in Panel (a), the diamonds represent monte carlo simulation rejection rates, which
line up with the curves, as expected from the theory.
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Figure 3: Power curves for r = 0.5 and f0 = 3

Note: A black diamond represents the rejection probability, from 250,000 Monte Carlo simulations,
each with a sample size of 1,000.

3.3 The tF procedure: power comparisons to AR and step rules

In this subsection, we state our results on power, deferring derivations, proofs, and
further discussion to Section 4 and the Online Appendix. Since the tF and AR
tests (as well as rules like t2 > c⇤,F > F⇤ with appropriately chosen c⇤ and F⇤)
can deliver inferences at the same intended significance/confidence levels under the
same asymptotic approximation, it is natural then to investigate the relative power of
these test procedures. For the purposes of this power comparison, we set c⇤ = 1.962

and use the minimum F⇤—104.7—needed to ensure a test with significance level
0.05. We summarize the results below. Note that in our comparisons, we focus only
on procedures that allow the research to be completely agnostic about the nuisance
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parameters.17

We produce standard power curves by generalizing the analytical expressions
for the probability of rejection to depend on an additional parameter—a normal-
ized deviation b �b0, where b is the true parameter, while b0 is the hypothesized
value.18. We then compute the rejection probabilities with respect to this quan-
tity for different scenarios according to the combination of nuisance parameters,
r and f0. Any combination of r and f0 could be investigated: we illustrate these
traditional power curves for the nine combinations given by the three values of
r = 0,0.5,1 and the three values of f0 = 1,3,9.19

Figure 3 plots the power curve under the scenario r = 0.5, f0 = 3 (which corre-
sponds to E [F ] = 10). It shows that tF and AR have roughly similar power, but one
does not uniformly dominate the other.20 In particular, when the alternative value
of b is sufficiently larger than b0, then tF becomes slightly more powerful, while
the opposite is true when b is smaller than b0. An example of what this means
for practitioners is that if the OLS estimand is upward biased, then the probability
of rejecting no effect will be slightly higher for tF than for AR if the true effect is
positive.21 Both tF and AR have a substantial power advantage over the step rule
c⇤ = 1.962,F⇤ = 104.7. This latter observation should not be surprising since, in
the scenario that E [F ] = 10, the probability that F would exceed F⇤ = 104.7 is
extremely low.

Appendix Figure A2 in Appendix A.8 includes power curves for the other eight

17For example, the approach of Kocherlakota (2020) requires the researcher to assume a lower
bound for f0 for inference.

18Specifically, the normalized b �b0 is the unnormalized b �b0 divided by

q
E[Z2u2]

q
E[Z2v2]

19To provide additional assurance in our theoretical derivations and implementation of numerical
integration was carried out correctly, we overlay (as the diamonds in each graph) the results from
Monte Carlo simulations, where we generate the underlying data according to each scenario and
selected values of b � b0 and compute the fraction of the time, over 250,000 Monte Carlo draws
of sample sizes of 1,000 each, that each of the tests reject the null hypothesis. All of the results
line up well with the theoretical values as computed from our analytical expressions for rejection
probabilities.

20Note that AR has known power optimality among unbiased tests, but tF is not unbiased. More-
over, the degree of bias can be seen in the power graphs.

21Note that the power curves are symmetric with respect to r; that is, when r = �0.5 then the
power curve looks identical except the x-axis would be labeled b0 �b .
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scenarios for r, f0. The pattern of results mirror those described above, with the
additional observations that 1) the power curves for AR are consistently higher for
r = 0, and 2) the differences between tF and AR (for any r) are negligible with
f0 = 9, but 3) the dependence of the relative power between tF and AR on the
sign of b � b0 remains apparent with high endogeneity (r = 1). The threshold
rule continues to have low power in the nine scenarios we consider, which is not
surprising since, even with E [F ] = 92 + 1 = 82, the probability that F exceeds
104.7 continues to be relatively low. As f0 increases so that the instrument is much
stronger, the power curves for the step rule, tF , and AR all become closer to one
another.

Given that neither AR nor tF uniformly dominates one another across all values
of b �b0 for fixed values of the nuisance parameters, we turn to a different and in-
tuitive summary measure of power: the expected length of the confidence intervals
for AR and tF conditional on F > q1�a . The reason why we focus on the condition
F > q1�a is that it is a necessary and sufficient condition for both the tF and AR
confidence sets to be bounded intervals; when F < q1�a , both the AR and tF con-
fidence sets are unbounded (i.e. have infinite length). The nonzero probability that
F < q1�a implies that the tF and AR confidence sets will have infinite uncondi-
tional expected length. Conditional on the event F > 1.962, it is immediately clear
that the step rule of c⇤ = 1.962,F⇤ = 104.7 will also have infinite expectation since
104.7 > 1.962. 22

For any realization of the data, the tF and AR confidence sets behave similarly:
either both are bounded intervals (F > q1�a ) or both are unbounded (F < q1�a ).
Then, to compare expected lengths, we compare only the realizations of data that
yield bounded intervals for both methods. That is, we compute expected condi-
tional lengths conditional on F > q1�a . Surprisingly, our theoretical investigation
reveals that the conditional expected length of the AR confidence interval is infinite.
We show, by contrast, the conditional expected length for the tF interval is always
finite. We show below that this is true uniformly across all possible values of the

22Indeed, Gleser and Hwang (1987) and Dufour (1997) show that in models which allow for non-
(or nearly non-) identification, such as the IV model, any inference procedure with correct coverage
must must have infinite unconditional expected length.
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nuisance parameters. This has a very straightforward implication for practition-
ers. Conditional on the event that they produce bounded intervals (which occurs
with identical probabilities), the expected length of the tF confidence interval will
always be shorter than the expected length of AR confidence intervals.

These findings are more fully described in Section 4 and proven in the Appen-
dices C.2 and C.3. Here, we provide a simple visual of this result via a Monte
Carlo exercise, shown in Figure 4.23 Using the same data generating process from
Figure 3, we run repeated Monte Carlo simulations of sample size 1,000 each. For
each draw, we keep only those draws such that F̂ > 1.962, and when this occurs
we compute the length of the AR and the tF confidence interval. For each specified
number of Monte Carlo draws, we compute this conditional average using all ac-
cumulated draws up to that point. We do this four times, using an independent set
of draws each time. The figure exhibits the patterns that one would expect to see if
the conditional expected length were infinite for AR and finite for tF intervals: even
after 500,000 draws, the conditional averages for AR do not appear to be converg-
ing, and furthermore, there are occasional sharp discontinuities, which is expected
from a distribution of lengths with thick tails, which underlies the infinite condi-
tional mean.24 Meanwhile, the tF conditional averages for the four replications are
essentially on top of one another and converge relatively quickly to the conditional
mean of approximately 3.55.

3.4 The tF procedure: Impact on Applications

We now turn to gauging how the tF adjustments to the standard errors would im-
pact practice by using our sample of recent AER papers as a guide. We take the
computed or reported F-statistics from the specifications in Figure 1, and assign

the corresponding adjustment factor
p

ca (F)pq1�a
. Figure 5a is the (weighted) histogram

23We use the Monte Carlo design from the discussion on single-variable IV in Angrist and Pis-
chke (2009a), and discussed in Angrist and Pischke (2009b).

24Recall that the Strong Law of Large Numbers states that the sample average converges to the
expected value with probability one if it is finite. Furthermore, an application of the second Borel-
Cantelli lemma also shows that the sample average does not converge with probability one if the
population expectation is not finite.
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Figure 4: Monte Carlo Simulated Expected Length of tF and AR intervals, Condi-
tional on F>1.962, r = 0.5, f0 = 3

Note: Points on each curve represent the conditional expected length, using the specified number of
accumulated Monte Carlo draws, for tF (lower four lines) and AR (upper four lines). Each of the
four lines corresponds to an independent set of Monte Carlo draws.

for the reciprocal of the 0.05 tF adjustment factor, which represents the degree to
which the reported standard errors are understated. It shows significant mass at val-
ues close to 1 (no understatement); the median understatement is about 10 percent
while the 25th percentile understatement is about 33 percent. The weighted mean
value is 0.801.

Therefore, in this sample of studies, the tF adjustment would be expected to
increase confidence intervals by about 25 percent. To understand this magnitude,
it is helpful to recall that conventional 95 percent confidence intervals are about
20 percent longer than 90 percent confidence intervals. Another basis of compar-
ison comes from our examination of a small subset of the studies for which we
could obtain the microdata. For those studies that used clustered standard errors,
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Figure 5a: Distribution of 1.96p
c.05(F)

for AER sample

N=847 specifications. The x-axis is the ratio of F�1(.975) to the F-dependent value
p

c.05(F). All
specifications use the derived F statistic, and when not possible, the reported F statistic from the
paper. The 6 specifications that report (rounded) first-stage standard errors of zero are excluded.
Proportions are weighted; see notes to Table 1. Dashed lines correspond to the (weighted) 25th

(0.672), 50th (0.902), and 75th (1.00) percentiles of the distribution.

we computed non-clustered standard errors and found that the clustered standard
errors were about 25 percent larger. We conclude from these comparisons that, in
practice, the tF adjustment could be expected to impact standard errors by a magni-
tude roughly equivalent to erroneously using a 90 percent confidence interval while
calling it a 95 percent confidence interval, or using non-clustered standard errors
when clustered standard errors are appropriate.

Figure 5b repeats the exercise for the .01 tF adjustments and finds more signifi-
cant degrees of adjustment, where the weighted median degree of understatement is
now about 24 percent, while the weighted mean value is 0.68, implying a 32 percent
understatement.
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Figure 5b: Distribution of 2.58p
c.01(F)

for AER sample

N=847 specifications. The x-axis is the ratio of 2.58 to the F-dependent value
p

c.01(F). See notes
to Figure 5a. Dashed lines correspond to the (weighted) 25th (0.472), 50th (0.759), and 75th (0.945)
percentiles of the distribution.

Finally, to gauge how assessments of statistical significance are likely to be im-
pacted by the use of the tF critical value function, Figure 6 plots all of the specifica-

tions from Table 2 in t2,F space (using the one-to-one transformations
t2

1.962

1+ t2
1.962

and
F
10

1+ F
10

for the vertical and horizontal scales to allow visualization of the full range of
those statistics). It also plots the tF critical value functions for the 5 percent (black)
and 1 percent (gray) levels of significance. The size of each circle is proportional to
the share of total specifications from the same study. The black dots represent the
specifications that have a relatively low F-statistic (<10) or that have t2 less than
1.962. Arguably, under current practice, researchers would have generally viewed
the black circles as statistically insignificant estimates by virtue of either the ob-
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served t-ratio or the F-statistic.25 While most of these black circles would remain
insignficant using the tF adjustment, at the 5% level, some, by being above the tF
critical value function would become significant. The remaining specifications

Figure 6: Statistical Significance in AER sample, using c.05(F) and c.01(F)

N=847 specifications. Vertical scale is
t2

1.962

1+ t2
1.962

and horizontal scale is
F
10

1+ F
10

. Size of circle is propor-

tional to the weight described in Table 1. Size of the circle is proportional to the weight described in
Table 1. The solid black and gray lines are critical value functions c.05(F) and c.01(F), respectively.
The black circles denote cases where t2 < 1.962 or F < 10. The blue circles represent those that are
not significant using c.05(F). The purple circles represent those that are significant at the 5% but not
significant at the 1% level. The red circles represent those that are significant at the 1% level.

(blue, purple, and red circles), under current norms, would most likely have been
viewed as statistically significant. Of these, 24% (the blue circles) are in fact sta-
tistically insignificant at the 5 percent level, when the tF critical values are applied;

25We use the threshold 10 here not because it is a special threshold with respect to the theory
regarding size distortions. We use it because “10” appears to be the most commonly referenced
threshold in applied work.
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the remaining 76% (purple and red circles) remain significant at the 5 percent level.
The proportional impact of the adjustments is larger for a higher standard for

statistical significance, the 1 percent level. That is, among the specifications such
that t̂2 > 2.732, F̂ > 10—which arguably would have commonly been interpreted
as statistically significant at the 1 percent level—about 31 percent of them are sta-
tistically insignificant after applying the tF critical value function.

Although it is beyond the scope of our paper to suggest whether any of the
overall conclusions of the studies in our sample would be altered in light of these
adjustments, we do conclude that the tF adjustments could be expected to make
a nontrivial difference in inferences made in applied research, in some cases not
making much of a difference at all, but in other cases making a large difference.

Finally, we note if the only hypothesis of interest is the null that the coefficient of
interest is equal to zero, then one can simply conduct a test of whether the reduced
form coefficient (in the regression of Y on Z) is zero; indeed, this is equivalent to the
AR test. On the other hand, if there is an interest in computing confidence intervals,
then one requires information contained in the first-stage regression (which is used
by both AR and tF).

4 Derivation of Theoretical Results

This section explains how we derive all of the theoretical results discussed in Sec-
tion 3. Subsection 4.1 introduces the notation and shows how to analytically com-
pute the rejection probabilities for rules that use the t-ratio, whether it be for rules
like t2 > q1�a , or t2 > c⇤,F > F⇤, or t2 > ca (F). We do this for the case when
the null hypothesis is true (for analyzing size control) and for when the alternative
is true (for analyzing power). Subsection 4.2 defines the tF critical value function,
formally states some of its properties, and describes at a high-level the relevant
proofs in the Online Appendix. Subsection 4.3 formally states the results on the
conditional expected length of the AR and tF confidence sets and describes the
proofs. The details of all of the proofs of the results of this Section can be found in
the Online Appendix.
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4.1 Notation and Preliminaries: Rejection probabilities for t-
ratio-based rules

We begin by introducing some additional notation.

t̂AR (b0)⌘
p̂
⇣

b̂ �b0

⌘

ŝe
⇣

p̂
⇣

b̂ �b0

⌘⌘ =
p̂
⇣

b̂ �b0

⌘

r
V̂N

⇣
cpb
⌘
�2b0ĈN

⇣
cpb , p̂

⌘
+b 2

0 V̂N (p̂)

û0 = (Y �Xb0)�Zp̂
⇣

b̂ �b0

⌘

r̂ (b0)⌘
Ĉ (Zû0,Zv̂)q

V̂ (Zû0)
q

V̂ (Zv̂)

where b0 is a hypothesized value for b , t̂AR (b0) is a “t-ratio form” of the statis-
tic of Anderson and Rubin (1949), so that t̂2

AR (b0) = AR. V̂N

⇣
cpb
⌘
,ĈN

⇣
cpb , p̂

⌘
,

and V̂N (p̂) are elements of the estimator for the variance-covariance matrix of the
reduced form and first-stage estimators cpb and p̂ , respectively. û0 is the “AR
residual”, i.e., the residual from regressing Y � Xb0 on Z. Turning to the nota-
tion for r̂ (b0), note first that as we explain further in Appendix A.1, V̂ (·) and Ĉ (·)
(i.e., without a subscript of N) denote estimators of the middle or “meat” part of
“sandwich”-type variance estimators. This allows our approach to flexibly accom-
modate heteroskedastic errors, as well as one-way or two-way clustering, for exam-
ple. As examples of this notation, if we consider the homoskedastic case, br(b0) is
just the empirical correlation between the AR residual and the first-stage residual;
in the heteroskedastic case, it is the same but after multiplying both residuals by the
instrument.

A key equation in our analysis is

t̂2 =
t̂2
AR (b0)

1�2r̂ (b0)
t̂AR(b0)

f̂
+

t̂2
AR(b0)

f̂ 2

which is a numerical equivalence that can be shown using the definitions above and
with some re-arrangement of terms, as shown in Appendix A.4.
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From these definitions and the above relationship, it is shown that under the
weak-IV asymptotics of Staiger and Stock (1997), we obtain

t̂2 d! t2 = t2 (tAR (b0) , f ,r (b0))⌘
t2
AR (b0)

1�2r (b0)
tAR(b0)

f +
t2
AR(b0)

f 2

, (2)

where

 
tAR (b0)

f

!
⇠ N

0

@

0

@ f0
D(b0)p

1+2rD(b0)+D2(b0)

f0

1

A ,

 
1 r (b0)

r (b0) 1

!1

A (3)

D(b0) =

p
V (Zv)p
V (Zu)

(b �b0) and r (b0) =
r +D(b0)p

1+2rD(b0)+D2 (b0)
,

where r =C(Zu,Zv)/
p

V (Zu)V (Zv) is the population correlation between Zu and
Zv. 26 Thus, the squared t-ratio will converge in distribution to a random variable
t2, which is itself a function of the random variables tAR (b0) and f , which are
themselves jointly bivariate normal with unit variances and correlation r (b0). Note
that when the null hypothesis is true, b = b0 implies that D(b0) = 0 and r (b0) = r .

These relationships hold true for error structures that depart from i.i.d., but when
we consider the specific case of homoskedasticity, the formula in (2) can be shown
to yield equation 2.22 in Stock and Yogo (2005).

Remark. The econometric literature has long established the existence of dis-
tortions in inference that occur when using the t-ratio for IV . Equation (2) is yet
another way to see the same result. Specifically, the conventional asymptotic ap-
proximation implicitly treats t2 as a chi-squared with one degree of freedom, which
is the distribution of the numerator in (2), and therefore essentially ignores the de-
nominator in (2) by treating f as infinite. But, as Figure 1 illustrates, in our sample
of studies, half of the time F̂ = f̂ 2 is less than 46.

We use the expressions above to compute rejection probabilities for different
test procedures that reject the null hypothesis when t2 > k (F), where k (F) is a

26In the display, to simplify the presentation, we present notation for D(b0) for the heteroskedas-
tic case rather than the most general HAC case. Details of these derivations extended to the general
HAC case are contained in the Online Appendix.
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general critical value function that could depend on F :

Conventional t-ratio test: k (F) = q1�a

Single F threshold test: k (F) =

(
c⇤ if F > F⇤

• if F  F⇤

tF critical value function: k (F) = ca (F)

In all cases, the rejection probability can be expressed as

PrD(b0),r, f0
⇥
t2 > k (F)

⇤
=
Z Z

1
⇥
t2 (x,y,r (b0))> k

�
y2�⇤ (4)

⇥j

 
x� f0

D(b0)p
1+2rD(b0)+D2 (b0)

,y� f0;r (b0)

!
dxdy

where 1 [·] is the indicator variable, and j (·, ·;r) is the bivariate normal density with
means zero, unit variances, and correlation r.

This expression allows us to compute rejection probabilities up to the accuracy
of numerical integration. We use these computations to 1) illustrate the magnitude
of inferential distortions caused by the usual t-ratio procedure (Figure 2 Panel a), 2)
verify that the tF critical value function controls the significance level, as intended
(Figure 2 Panel b), and 3) construct power functions (Figure 3 and Appendix Figure
A2).27

Remark. In addition, expression (4) also allows us to answer the following
questions: 1) What restrictions on the nuisance parameter space f0,r could one
impose so that the usual t-ratio procedure has the intended significance level?28 2)
For single threshold rules, what minimal threshold for F⇤ could one use if c⇤ is
set to the nominal value q1�a? and 3) How do these answers change for different
significance levels? Appendix A.7 provides answers to these questions.

27Note that it is straightforward to use the mean shift in tAR (b0) from expression (3) to compute
the power function for AR.

28Kocherlakota (2020) develops a method that incorporates nuisance parameter information in a
t-ratio test.
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4.2 The tF critical value function: Definition and Properties

Equations (2) and (3) allow us to construct the tF critical value function ca (F), and
(4) allows us to verify its ability to control size and to explore its power.

Definition. The tF critical value function ca (F) is defined as follows:

1. Let Q denote the set of all pairs
�
F̃, c̃a

�
F, F̃

��
2 (q1�a ,•)⇥C 0 that satisfy

the following properties:

(a) (Piecewise with plateau) Viewed as a function of F , c̃a
�
F, F̃

�
is decreas-

ing in F on (q1�a , F̃ ] and equal to the constant c̃a
�
F̃, F̃

�
for F > F̃

(b) (Controls size for |r| = 1, f0 small) Pr|r|=1, f0
⇥
t2 > c̃a

�
F, F̃

�⇤
= a for

| f0|< f̄0 where f̄0 = h
�
F̃, c̃a

�
F̃, F̃

��
, with h(x,y)⌘ xpy+

p
x

(c) (F̃ not too large) Pr|r|=1, f0= f̄0

⇥
{t2 > c̃a

�
F, F̃

�
}\{F⇤ < F  F̃}

⇤
= 0

where
F⇤ ⌘

h
f̄0 +F�1

⇣
F
⇣p

F̃ � f̄0

⌘
� (1�a)

⌘i2

2. Let ca (F)⌘ c̃a (F,F⇤) , where

F⇤ = max
⇢

F̃ |
�
F̃, c̃a

�
F, F̃

��
2 Q and max

|r|1, f0 6=0
Pr
⇥
t2 > c̃a

�
F, F̃

�⇤
= a

�
.

The tF critical value function has the structure of a piecewise continuous func-
tion with a plateau, as given by property 1(a). The set Q characterizes a whole class
of functions that satisfy a key property of controlling rejection probabilities for
small f0 and |r|= 1 (property 1(b)). By definition, the tF critical value function is
given by the element in Q that gives the smallest plateau, while still controlling size
(rejection probabilities across the entire nuisance parameter space, property (2), not
just for |r| = 1, and small f0). For the 5 percent level, F⇤ = 104.7 as labeled in
Figure 6 and shown in Table 3a, while for the 1 percent level F⇤ = 252.34 as shown
in Table 3b.

We highlight the following points about this critical value function:

1. Property 1(b) is motivated by the numerical analysis of Stock and Yogo (2005)
that determined that r = ±1 produced the “worst case” rejection probabili-
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ties for a given f0 under the rule t2 > q1�a . Our analysis based on numerical
integration confirms this as well.

2. That Q is a nonempty set (existence) is not trivial to prove, and the details are
in Appendix B.1.

3. Property 1(c) is a technical refinement that excludes from the set Q those
critical value functions such that for f0 = f̄0, the set of values of F that are in
the acceptance region is a non-convex set. This simplifies the definition and
derivation of the tF critical value function.29

4. It should be clear that, by definition, the level of the plateau of ca (F) cannot
be lowered further without violating one of the properties. In Appendix B.2,
we show that any critical value function that is somewhere strictly below
ca (F) will over-reject for some f0,r . It is in this sense that the acceptance
region for ca (F) in t2,F space is as “small” as possible.

Deferring details to Appendix B.1, we now sketch the key elements of con-
structing the tF critical value function. It proceeds in the following steps:

1. Solve the following functional equation for k (F):

k
⇣
(g)2

⌘
=

g2 (g�h)2

h2 , where h =
Fp

k (F)+
p

F
and

g = h+F�1
⇣

F
⇣p

F �h
⌘
� (1�a)

⌘
.

This functional equation stems from considering small f0 (without loss of
generality, > 0) and r = 1.30 The key point is that when r = 1, the square of

29It is possible to relax this restriction and therefore enlarge the set Q. Doing so has no impact
on the 5 percent level critical values because property 2 is the binding constraint for determining
F⇤ (which is equal to 104.7). Our numerical analysis of the 1 percent level, suggests that removing
property 1(c) would mean that the F̃ value for the elements of Q would be unbounded: the critical
value function for the 1 percent would asymptote from above to 2.582. Property 1(c) ensures the
existence of a maximum value F⇤. For details on the algorithm to consider crticial value functions
that violate Property 1(c), see Lee et al. (2020).

30Following the same logic considering f0 < 0 and/or r =�1 results in the same function.
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the t-ratio, for a fixed value of f0, is a deterministic function of f (a quartic
polynomial in f )

t2 =
f 2 � f � f 2

0
�

f 2
0

,

which means that the rejection probability involves the set of f such that
this function of f is above the critical value function; recall that f � f0 is a
standard normal random variable. k (F) will be used as the decreasing part
of a candidate critical value function c̃a

�
F, F̃

�
.

2. Any two solutions to the functional equation will coincident in a neighbor-
hood of F = q1�a , with the only difference being the length of the inter-
val over which k is defined. Find the candidate function c̃a

�
F, F̃

�
with the

largest F̃ such that it satisfies Properties 1(a), 1(b), 1(c) and controls size
(using equation (4)) as described in Property 2.

In Appendix B.1, we show that our functional equation can be reformulated in
terms of a mapping that satisfies the conditions for application of the existence and
uniqueness theorem of Fefferman (2021), regarding invariant curves for degenerate
hyperbolic maps in the plane.

Finally, we note that while we are both motivated by, and leverage, the con-
clusions of the numerical analysis of Stock and Yogo (2005) that r = ±1 delivers
the worst-case rejection probabilities, we provide additional analysis that further
corroborates their finding. First, we use numerical integration of the expression in
(4) to compute the rejection probabilities under the null.31 Thus, even if there were
some regions where rejection probabilities were larger for |r| < 1, they would be
limited to that which could not be detected given the precision of numerical integra-
tion. Second, we present a theoretical result that establishes that r =±1 represents
worst case rejection probabilities in a particular “corner” of the nuisance parameter
space. We state the results below, deferring the proofs to Appendices B.3.

Size control for small f0 with |r| in a neighborhood of 1. Under the null, for
any |r| arbitrarily close to 1, there exists f̄0 for which Pr f0,r

⇥
t2 > ca (F)

⇤
< a for

all f0 < f̄0. By construction, ca (F) controls rejection probabilites for the case of

31Stock and Yogo (2005) use Monte Carlo integration to evaluate the expression
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r =±1 for small f0. The above result says that it also controls rejection probabilites
for |r| close to 1 for sufficiently small f0.

4.3 Conditional Expected Length: AR and tF confidence sets

This subsection describes how we obtain our results on the conditional expected
length of AR and tF intervals. Our motivation to examine expected length stemmed
from the traditional power curve analysis in Subsection 3.3, which showed that
neither AR nor tF seemed to dominate across all values of D(b0) or differing com-
binations of r and f0. A natural summary measure of power is that of expected
length of the confidence set, which has the equivalent interpretation, due to Pratt
(1961), as the average Type II error, where the averaging occurs across all possible
false hypotheses b0, where each value of b0 in the parameter space is given equal
weight. Power curves are conceived as rejection rates while keeping b0 fixed while

varying b , but our curves, since they are functions of D(b0) =
p

V (Zv)p
V (Zu)

(b �b0),

could equivalently be viewed as graphing power fixing b , while varying b0. So
the expected length of the confidence set is equivalent to averaging 1 minus power,
averaging across D(b0).

Examining unconditional expected length, however, will not be informative
since we know, from Dufour (1997), that inverting both the AR and tF tests, by
virtue of delivering correct confidence levels, will have infinite unconditional ex-
pected length. Thus, we turn to examining the expected length of confidence sets
conditional on F > q1�a . The event F > q1�a is important because it is the neces-
sary and sufficient condition for both the AR and tF confidence sets to be bounded
intervals; they have unbounded confidence sets with identical probabilities. This
allows us to interpret the conditional expected length as the average Type II error—
averaged across all false hypotheses b0—conditional on the confidence set being
an interval. Furthermore, conditional expected length is likely to be of interest to
practitioners who may wonder if they should expect AR or tF intervals to be shorter.

Given the ambiguity in the power comparison results, it was surprising to find
that an expected length comparison yields a stark contrast and clearly dominant
method. We find that tF intervals can be expected to be shorter. Indeed, the condi-
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tional expected length for the AR confidence interval is infinite, while the expected
length of the tF interval is finite.

We provide some intuition for this result. Appendix C.1 shows that, condi-
tional on F > q1�a the three following confidence interval lengths for IV

�
L̂IV
�
,

AR
�
L̂AR
�
, and tF

�
L̂tF
�

converge in distribution under weak-IV asymptotics as
follows:

L̂IV
d! LIV ⌘ 2

p
q1�a

s

1�2r tAR (b )
f

+
t2
AR (b )

f 2
1p
F

p
VW, (5)

L̂AR
d! LAR ⌘

p
F
p

F �q1�a (1� r̃2)

F �q1�a
LIV and L̂tF

d! LtF ⌘
p

ca (F)
pq1�a

LIV .

where

r̃2 =
(�tAR (b )+r f )2

�
f 2 �2rtAR (b ) f + t2

AR (b )
� and VW =

AV
⇣
cpb
⌘
�2bAC

⇣
cpb , p̂

⌘
+b 2AV (p̂)

AV (p̂)
.

The length of the IV (1�a) confidence interval, L̂IV converges in distribution to
a function of two jointly normal random variables tAR (b ) , f and the constants r ,
VW, and q1�a . Meanwhile, the limiting distribution of L̂AR is equal to the random

variable LIV times an inflation factor given by
p

F
q

F�q1�a(1�r̃2)
F�q1�a

, which itself is a
function of the random variables tAR (b ) , f and constants q1�a and r . Finally, the
tF inflation factor

q
ca (F)
q1�a

is only a function of the random variable F .
As discussed in Andrews, Stock and Sun (2019) and in Mikusheva (2010), it

should be noted that, strictly speaking, LAR is not always the length of the con-
fidence interval. It is the length of a bounded interval that is equal to the confi-
dence interval when F > q1�a , but it is the complement of the confidence set when
F < q1�a . That is, when F < q1�a the AR confidence set is non-convex: it covers
the real line except for the bounded interval that has length LAR.

In Appendices C.2 and C.3, we show that for all r, f0 6= 0

E [LAR|F > q1�a ] = • and E [LtF |F > q1�a ] < •.
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The intuition behind these results can be seen from Equation (5). Whenever F >

q1�a , it is clear from the inflation factors for both LAR and LtF , that the lengths
of the intervals asymptote to infinity as F approaches q1�a . It turns out that the
inflation factor essentially explodes too fast for the conditional expectation to exist
for LAR. As for LtF , the finiteness of E [LtF |F > q1�a ] may not be surprising in
light of our finding in Appendix B.1 that

lim
F#q1�a

ca (F)⇥ (F �q1�a) = q3
1�a

which implies, given the continuity of ca (F), that
p

ca (F)
q

K
F�q1�a

in a neigh-
borhood to the right of F = q1�a for some finite K, which implies integrability ofp

ca (F) in that small neighborhood – the function
p

ca (F) does not explode “too
fast” as F tends to q1�a .

While tF confidence sets are expected to be (infinitely) shorter when F > q1�a ,
AR confidence sets have smaller expected lengths when F < q1�a . For this latter
case, the tF confidence set consists of the entire line, but the AR confidence set is ei-
ther the real line or the union of two unbounded intervals. Thus, a trade-off in length
is expected: tF does better when F > q1�a , but AR does better when F < q1�a .
Note that the statement that tF does not dominate AR in terms of expected length
depends crucially on the presumption that researchers are prepared to properly re-
port, in the event that F < q1�a , a non-convex and unbounded confidence set.32 If,
for example, in practice researchers effectively ignore the non-convexity and simply
use the whole real line as the confidence set, then it would no longer be "shorter"
when F < q1�a . In other words, the expected difference in lengths between a "con-
vexified" AR confidence set and the tF interval would always favor tF .

5 Conclusion and Extensions

Since the work of Dufour (1997), it has been known in the econometrics community
that the conventional t-ratio delivers incorrect size, and the work of Staiger and

32We are unaware of an example when such a non-convex confidence set is reported other than
Cruz and Moreira (2005).
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Stock (1997) and Stock and Yogo (2005) provided the framework and approach for
quantifying—and fixing—these distortions to inference.

Yet practitioners, while using the ±1.96 critical values that are more commonly
associated with a 5 percent test or 95 percent confidence interval, seem not to have
been using those results to qualify their inferences (e.g., they typically do not explic-
itly state that they are assuming E [F ] > 6.88, recognizing the test as a 10 percent
significance test), nor have they been precise about the consequences of incorporat-
ing the first-stage F statistic into the inferences about b , even though the literature
has provided such a method (e.g. they have not explicitly described the rule, "reject
if and only if t2 > 1.962,F > 16.38," as a test at the 15 percent level of signifi-
cance). Applied work also rarely uses the AR statistic, which has been known to
deliver valid inference.

This paper develops a “continuous” version of the critical value functions that
result from the application of Staiger and Stock (1997) to the values in Stock
and Yogo (2005). This smooth adjustment approach reduces the scope for mis-
application or misinterpretation since the interpretation is straightforward: after ad-
justment of the standard errors, hypothesis tests and interval estimates have their
intended significance or confidence levels, irrespective of the true values of the nui-
sance parameters – just like AR.

In our comparison between the two alternatives—AR and tF—both of which
have correct size, we discover a somewhat surprising fact about the AR confidence
set. Conditional on the confidence set being a bounded interval, it has infinite ex-
pected length, due to the thick upper tail of the probability distribution of lengths.
By contrast, the tF confidence set has finite expected length, whenever it is a
bounded interval. Therefore, in addition to the tF adjustment allowing a way to
re-assess the inferences of past studies, there is a practical reason for considering
its use for applied work, as an alternative to AR going forward.

There are some issues that we believe are worthy of deeper investigation. The
scope of our study was limited to the common case of the single instrument IV
model, but it would be natural to expect the same kinds of issues to be at play with
the over-identified model, given the critical value tables of Stock and Yogo (2005),
which are appropriate for over-identified models as well. In ongoing work, we are
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exploring the extent to which the tF approach can be applied to over-identified
models.
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