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ABSTRACT

Books shape how children learn about society and norms, in part through representation of 
different characters. We introduce new artificial intelligence methods for systematically 
converting images into data and apply them, along with text analysis methods, to measure the 
representation of skin color, race, gender, and age in award winning children’s books widely read 
in homes, classrooms, and libraries over the last century. We find that more characters with 
darker skin color appear over time, but the most influential books persistently depict characters 
with lighter skin color, on average, than other books, even after conditioning on race; we also 
find that children are depicted with lighter skin than adults on average. Relative to their growing 
share of the U.S. population, Black and Latinx people are underrepresented in these same books, 
while White males are overrepresented. Over time, females are increasingly present but appear 
less often in text than in images, suggesting greater symbolic inclusion in pictures than 
substantive inclusion in stories. We then present analysis of the supply of, and demand for, books 
with different levels of representation to better understand the economic behavior that may 
contribute to these patterns. On the demand side, we show that people consume books that center 
their own identities. On the supply side, we document higher prices for books that center non-
dominant social identities and fewer copies of these books in libraries that serve predominantly 
White communities. Lastly, we show that the types of children’s books purchased in a 
neighborhood are related to local political beliefs.
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Education teaches children about the world, its people, and their place in it. Much
of this happens through the curricular materials society presents to children, particularly in
the books they read in school and at home (Giroux, 1981; Apple and Christian-Smith, 1991;
Jansen, 1997; Van Kleeck, Stahl and Bauer, 2003; Steele, 2010). These lessons are conveyed,
in part, through the inclusion or exclusion of characters of different identities in the images
and text of books. Given that the content of books used for education has been shown to
shape the later life beliefs of those exposed to them (Fuchs-Schündeln and Masella, 2016;
Cantoni et al., 2017; Arold, Woessmann and Zierow, 2022; Arold, 2022), the presence or
absence of these characters can contribute to how children see themselves and others, as well
as their strengths and possible futures. In light of persistent racial and gender inequality in
society (Darity and Mason, 1998; O’Flaherty, 2015; Blau and Kahn, 2017; Quillian et al.,
2017; Craemer et al., 2020), and the potential importance of identity and representation in
contributing to beliefs, aspirations, academic effort, and outcomes (Dee, 2005; Bian, Leslie
and Cimpian, 2017; Gershenson et al., 2018; Porter and Serra, 2020; Riley, 2022), the content
of books offers a policy lever for addressing these and related structural inequalities.

In this paper, we analyze representation in the content of children’s literature. Specif-
ically, we develop and apply computer science tools from the fields of computer vision and
natural language processing to measure the representation of skin color, race, gender, and
age in the images and text of influential children’s books which are likely to appear in homes,
classrooms, and libraries over the past century. These artificial intelligence tools allow for
more scalable and systematic measurement than what would be possible using the tradi-
tional approach to content analysis, which historically has been done primarily “by hand”
using human coders (Bell, 2001; Neuendorf, 2016; Krippendorff, 2018). We use these tools
to measure how representation varies by identity, over time, and by type of book. We then
present descriptive evidence of economic forces that contribute to these patterns.

Our main data set comprises children’s books recognized by awards featured by the
Association for Library Service to Children starting in the 1920s. We then divide these award-
winning books into two main collections. Our first collection of books receive recognition
for their literary or artistic value without explicit intention to highlight an identity group
(i.e., the Newbery and Caldecott awards). We call this the “Mainstream” collection of books
because of their general usage in mainstream outlets in the United States (U.S.), such as
schools and libraries. Using daily book checkout data from a major public library system,
we document that after books are recognized by a Mainstream award, they are checked out
four times as often as other children’s books. Using purchase-level data from over 1.5 million
children’s book sales, we find that books which were recognized by a Mainstream award
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sell over five times as many copies per title as other children’s books. This corroborates
qualitative accounts of how receipt of a Mainstream award establishes a book’s membership
in the “canon” of children’s literature, as well as other accounts of changes in the sales of
children’s books after receipt of an award (Smith, 2013; Cockcroft, 2018; Koss, Johnson and
Martinez, 2018). It also highlights the particular societal influence these books may have
and underscores the importance of understanding the messages they transmit. Books in our
second collection received recognition for both their literary or artistic value and for how they
highlight experiences of specific identity groups. These include awards such as the Coretta
Scott King and Rise Feminist awards. We term these the “Diversity” collection. Given their
focus, we posit that they provide a potential “upper bound” on representation in children’s
books in the market.

Our analysis characterizes several dimensions of the representation of skin color, race,
gender, and age in the content of these children’s books, including how levels of representa-
tion have endured, or changed, over time. We find that, over time, these books include more
characters with darker skin, but those in the Mainstream collection are significantly more
likely to depict lighter-skinned characters than those in the Diversity collection. This pattern
remains even when comparing pictured characters with the same predicted race classifica-
tion. Across all collections, children are more likely than adults to be shown with lighter
skin, despite there not being a definitive biological foundation for any systematic difference.
Regardless of the reasons behind this difference, our estimates show that lighter-skinned chil-
dren see themselves represented more often in these books than do darker-skinned children.
In addition, we show that Black and Latinx people have been historically underrepresented
relative to their share of the U.S. population, corroborating prior work on the representation
of race in smaller subsets of these collections of books (Valadez, Sutterby and Donaldson,
2013; Koss, 2015; Koss, Johnson and Martinez, 2018).

We compare the incidence of female-presenting appearances in images to female men-
tions in text, and we see that females are consistently more likely to be visualized (seen) in
images than mentioned (heard) in the text. This suggests there may be symbolic inclusion
of females in pictures without their substantive inclusion in the actual stories. Furthermore,
females are persistently less likely than males to be represented in the text of books in our
sample overall and over time. This finding is consistent across all of the measures we use:
pronoun counts, specific gendered terms, gender of famous individuals, and predicted gender
of character first names. This generalizes results from prior analysis of the representation of
gender in studies focusing on smaller subsets, or a small number of specific features contained
in these books (c.f., Weitzman et al. 1972, Davis 1984, Crisp and Hiller 2011). Our analysis
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of age reveals another surprising result: even though these books are targeted to children,
adults are depicted more often than children in both images and text.

Our results build on the rich existing history of manual content analysis. Prior work
documents low levels of representation of females and historically minoritized racial groups
(c.f., Weitzman et al. 1972; Williams Jr et al. 1987; Hamilton et al. 2006; Koss 2015). These
studies often focus on representation solely in prominent places in the images and text, for
example, in the images on the cover of the book or in text regarding the main character.
We confirm these results in a much larger number of books and in a far greater number of
sites within each book than would be possible via manual content analysis, given its time
and other cost constraints. These advantages allow us to characterize certain parameters –
such as trends in representation over time – more conclusively than prior contributions (c.f.,
Clark et al. 1999; Crisp and Hiller 2011; Koss, Johnson and Martinez 2018). We also ask
several novel questions, for example, characterizing representation in images and text at the
intersection of multiple sites of exclusion - skin color, race, gender, and age - and comparing
representation between images and text within a given book.

The second part of our paper describes and explores a set of economic forces which
may contribute to these patterns of representation, and which can help explain how the
messages in these books may propagate through society and across generations. We first
discuss theoretical and empirical work characterizing these forces on both the supply- and
demand-side, and then present descriptive evidence of their incidence.

On the supply side, prior research on the economics of the media suggests that, due
to fixed costs and other market frictions, books centering non-dominant social identities will
be under-produced relative to demand for them, and these books will be priced at a higher
level than other books (Waldfogel, 2003, 2007). Examining book-level price and purchase
data, we find evidence consistent with both phenomena. We also show that there are fewer
copies of children’s books recognized for highlighting underrepresented identities in libraries
that serve predominantly White communities.

On the demand side, we draw from related theoretical work on the economics of
identity from Akerlof and Kranton (2000), which suggests that people are more likely to
consume books which center identities similar to their own. Using purchase-level data on
book consumption linked to consumer demographics and checkout-level data from libraries,
we find several patterns consistent with this. Males purchase books with fewer female words
and images than females. White purchasers, on average, consume books with characters
that have lighter skin color; whereas, Black and Latinx purchasers consume books with
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characters that have darker skin, on average. In a related analysis tracking trends over time,
we document that as the market share of under-represented identities grows, so does their
likelihood of being represented in these books.

To understand how local book consumption relates to local consumer beliefs, we link
our individual-level book purchase data to the Cooperative Election Study (CCES), a na-
tionally representative, stratified sample survey collecting information about general political
attitudes connected to respondent demographics. We show that the type and volume of books
purchased in a given neighborhood align with the political viewpoints held by residents of
that neighborhood on issues related to race and immigration: in areas where people hold
more progressive views, the books purchased contain more diverse representation than do
books purchased by people in areas with more conservative views.

In summary, our paper makes three key contributions. First, we develop and hone a
series of tools from the field of computer vision to systematically process images into ana-
lyzable measures of representation; this includes introducing a novel computational method
to measure skin color. Second, we apply these image-to-data tools alongside established
natural language processing tools to measure the representation of skin color, race, gender,
and age in the images and text contained within a century of influential children’s books,
and document how this changes over time. Third, we describe economic forces on the supply
and demand side that may contribute to these levels of representation, and then present
empirical evidence showing how the pressures from these forces may contribute to persistent
overrepresentation of historically dominant identities. Using data on local book consumption
and local consumer beliefs, we then show that the levels of representation contained in the
books people buy are highly correlated with their views on race and immigration. Given
that the books used to teach children shape the beliefs these people hold when they are
adults (Fuchs-Schündeln and Masella, 2016; Cantoni et al., 2017; Arold, 2022; Arold, Woess-
mann and Zierow, 2022), the patterns in children’s book purchases we document may help
explain the persistence and intergenerational transmission of related beliefs (Bian, Leslie and
Cimpian, 2017; Dhar, Jain and Jayachandran, 2018; Eble and Hu, 2022).

This paper proceeds as follows. Section I presents background on the importance of
representation. Section II describes the books in our data and their influence. Section III
discusses prior work on content analysis. Section IV describes the image and text analysis
tools. Section V presents the patterns of representation we uncover. Section VI presents de-
scriptive evidence underlying market forces influencing levels of, and trends in representation.
Section VII concludes.1

1The appendix includes: further analysis; a methods appendix containing a discussion of the potential
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I Background: The Importance of Representation

Institutional practices, public policies, and cultural representations reflect values that
society assigns to specific groups. In a broad range of cultural products, from news media
and history books to children’s movies, people who do not belong to the culturally dominant
group are often absent or portrayed through negative stereotypes (Weitzman et al., 1972;
O’Kelly, 1974; Stewig and Knipfel, 1975; Dobrow and Gidney, 1998; Balter, 1999; Witt,
2000; Towbin et al., 2004; Brooks and Hébert, 2006; Martin, 2008; Paceley and Flynn, 2012;
Daniels, Layh and Porzelius, 2016). Research from different disciplines suggests that this
inequality in representation is a means through which societal inequality in other outcomes
can persist. For example, the genderedness of representations in language and folklore across
societies are both negatively correlated with gender equity in education, labor force partic-
ipation, and other social roles (Jakiela and Ozier, 2018; Michalopoulos and Xue, 2021). In
addition, debates over the content of what is taught in schools – exemplified by recent at-
tention, controversy, and confusion over the concept of critical race theory – underscore the
need to catalog and know what is taught via curricular materials, and what is absent.

One mechanism through which inequality of representation may contribute to inequal-
ity in outcomes is through its potential to instill beliefs about who belongs in which societal
domains. In particular, experiences of exclusion from certain spaces in society may reduce the
“capacity to aspire” in those spaces (Appadurai, 2004), and the absence of identity-specific
positive examples of success can lead to a distorted view of the path from present action
to future outcomes (Wilson, 2012; Genicot and Ray, 2017; Eble and Hu, 2020). This forms
a potential self-reinforcing loop: not seeing such examples may diminish a child’s expected
return to effort. If that change in expectation reduces actual effort, it may lower perfor-
mance, thus reinforcing the message behind the (once-erroneous) message. This highlights
the importance of addressing inequality in representation within educational content.

Curricular materials are designed and used with the intent to shape children’s de-
velopment into adults and their views of the world around them, and are likely to make
important contributions to the formation of children’s social preferences (Cappelen et al.,
2020; Alan et al., 2021; Dhar, Jain and Jayachandran, 2022). Several studies in economics
have shown that exposure to variation in content among textbooks ranging from subjects as
diverse as history and religion can lead to variations in later-life beliefs (Fuchs-Schündeln and

benefits and concerns to using AI models, a cost effectiveness analysis, further information on the methods
used, and a discussion the relationships between computational content analysis and traditional manual
approaches; additional analyses quantifying the increase in library checkout demand for books following
receipt of an award; details on award criteria; and qualitative interviews with suppliers of children’s books.
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Masella, 2016; Cantoni et al., 2017; Arold, Woessmann and Zierow, 2022; Arold, 2022).2,3

In education research, scholars have shown how children’s literature can be used in middle
school language arts and social science curricula to shape beliefs about self, community, and
civic action (Tyson, 2002; Levstik and Tyson, 2010).4

These materials also have the potential to shape how children view others of different
identities. When children do or do not see others represented, their conscious or unconscious
perceptions of their own potential and that of groups with identities different than theirs
can be molded in detrimental ways and can erroneously shape subconscious defaults. For
example, the representations that children see can shape the beliefs of members of the dom-
inant group about the capacity of members of the underrepresented group to participate in
different spheres of society (Hughes, Bigler and Levy, 2007; Marx, Ko and Friedman, 2009;
Plant et al., 2009; Alrababah et al., 2021).

Broadening representation to be more inclusive also has been shown to influence the
beliefs, actions, and learning of children. In economics alone, changes in representation
have been shown to influence these outcomes for females (Beaman et al., 2012; Stout et al.,
2011; Porter and Serra, 2020), and, separately, people of underrepresented racial and ethnic
identities regardless of gender (Kearney and Levine, 2020; Riley, 2022). While not a panacea,
such “subject-object identity match” – e.g., teacher-student identity match, or content-reader
identity match – can help improve academic performance for students, and may function via
a wide range of potential channels.5

II Context: Award-Winning Children’s Books

We focus on the content of series of books that are particularly likely to appear in
the homes, schools, and libraries of a large proportion of children in the U.S. Specifically, we
study the representation contained in the images and text of books recognized by any of 19
awards administered or featured by the Association for Library Service to Children (ALSC),

2In psychology, there is mixed evidence whether deliberately manipulated exposure to content shapes
child beliefs; see the review in Bigler (1999), as well as the pair of randomized controlled trials reported in
Hughes, Bigler and Levy (2007).

3Though children are more likely than adults to change their beliefs in response to stimuli (Gopnik et al.,
2017), recent evidence from political science shows that a change in the content of the media consumed can
change even adults’ beliefs (Broockman and Kalla, 2022).

4The age of the child consuming the books may influence the way the content is parsed and internalized.
This is also likely to vary with the nature of the content.

5These include, but are not limited to: by reducing stereotype threat (Steele and Aronson, 1995); by
potentially increasing the perceived likelihood of different possible futures for the individual (Wilson, 2012);
and by expanding the perceptions and assumptions of those in majority-represented groups who thereby
may be less likely to limit access to opportunities (Plant et al., 2009; Alrababah et al., 2021).
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a division of the American Library Association (ALA).6 These began honoring children’s
books in 1922, and continue to the present.

In this section, we describe these awards and how we separate them into “collections” of
awards with distinct sets of goals. We then provide descriptive analyses quantifying changes
in book consumption associated with being recognized by these awards.

II.A Collections of Books

In our analyses, we divide books into “collections.” These reflect commonalities in
goals across the various awards, and allow us to characterize how representation differs be-
tween sets of books recognized by awards with different goals. Many of our analyses focus on
comparing representation between books in two primary collections: (i) “Mainstream” books
considered to be of high literary or artistic value,7 and (ii) “Diversity” books selected because
of how they center experiences of specific underrepresented identity groups in addition to
their high literary value.

Mainstream Collection. The Mainstream collection comprises books recognized by ei-
ther the Newbery or Caldecott awards, the two oldest children’s book awards in the U.S. The
Newbery Medal, first awarded in 1922, is given to authors of books that are considered to
be the “most distinguished contribution to American literature for children.” The Caldecott
Medal, first awarded in 1938, is given to illustrators of “the most distinguished American
picture books for children.” These books are explicitly chosen for their literary or artistic
quality and not their popular appeal per se. Books receiving these awards are considered
to be of general interest to all children and are likely to be incorporated into mainstream
outlets for children, such as school libraries and curricula (ALSC, 2007; Koss, Johnson and
Martinez, 2018). We provide further evidence of the empirical relationship between recogni-
tion and consumption of books in Section II.B. The primary goal for studying these books
is to understand the representation contained in a set of books to which a large proportion
of children in the U.S. are exposed.

Diversity Collection. The Diversity collection comprises book awards featured by the
ALSC that center the experiences of excluded or marginalized identities. These books are
also likely to be placed on “diversity lists” during events such as Black History Month or

6We selected children’s book awards featured on the ALSC website at the time of writing this paper,
many of which are administered by different organizations.

7We use the term “Mainstream” to refer to these books in order to capture the fact that, as shown by
scholars of these books – such as Koss (2015), Koss, Johnson and Martinez (2018), and Koss and Paciga
(2020) – these books are the most influential award-winning books for the outcomes we study. We do
not intend this to connote any affirmation of centrality or default beyond its description of the historical
prominence of these books.
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Women’s History Month. We study the representation contained in these books for multiple
reasons: one, to estimate a potential “upper bound” on representation in children’s books
in the market; two, to measure the efficacy of these books in highlighting the identity on
which they focus; and three, to measure the levels of representation of historically excluded
identities beyond the identity on which a given award focuses. We use this last feature
to assess the extent to which these books have greater, similar, or less representation of
identities which exist at the intersection of multiple sites of exclusion.

This collection includes books recognized by the following awards: American Indian
Youth Literature, Américas, Arab American, Asian/Pacific American Award for Literature,
Carter G. Woodson, Coretta Scott King, Dolly Gray, Ezra Jack Keats, Middle East, Notable
Books for a Global Society, Pura Belpré, Rise Feminist,8 Schneider Family, Skipping Stones
Honor, South Asia, Stonewall, and Tomás Rivera Mexican American awards. The first of
these awards was the Coretta Scott King Award, created in 1970 specifically to recognize
African American authors and illustrators of books that “demonstrate an appreciation of
African American culture”; this award was introduced, in part, because no African American
writer had been recognized by a Newbery or Caldecott medal up to that point. Other awards
were created more recently, such as the South Asia Book Award, which began in 2012.

We also create smaller collections of these awards that highlight the following specific
identities: people of color, African American people, females, people with disabilities, and
people who identify as lesbian, gay, bisexual, transgender, and/or queer (LGBTQIA+). We
show the list of corpora by collection and their relative sample sizes in Appendix Figure B1.

Each award has a single “medalist” or “winner” of the award. Many awards also have
recognition for leading contenders, who are often called “honorees.” In our main analysis
we refer to the superset of these two groups as those “recognized” by the award. In some
analysis in Section II.B, however, we examine trends in consumption separately by medalists
and honorees. In Appendix F, we describe the criteria used by each award for recognizing
books in greater detail.

We present collection-level summary statistics of the books in our sample in Table 1,
which include average representation of skin color, putative race, gender, and age.

II.B Quantifying the Importance of Mainstream Awards

Mainstream awards are considered to be highly influential, with recognition by either
the Newbery or Caldecott Awards placing books into the “canon” of children’s literature
and making them a common feature in homes and libraries (Smith, 2013; Koss and Paciga,

8The Rise Feminist Award was formerly known as the Amelia Bloomer Award.
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2020). Winners are commonly featured in venues that are part of children’s learning experi-
ences, from book fairs and catalogues to school curricula and summer reading lists (Knowles,
Knowles and Smith, 1997). Publishers in the industry take cues from the winners for guidance
in what to publish, given the large boost in sales that the award stimulates, and children’s
librarians ensure the books’ presence in their inventories once they receive the award (Nilsen,
1971; Weitzman et al., 1972).

We further establish the importance of these awards in children’s experiences by esti-
mating the relationship between receipt of these awards and book popularity. Our analyses
use data on three measures of book consumption: (1) library checkouts, (2) book purchases,
and (3) internet searches. Each measure captures a different – but not mutually exclusive –
set of consumer preferences.

Library Checkout Data. We draw from publicly available, book-level, daily checkout
data from the Seattle Public Library system spanning the period from 2005 to 2017. Public
libraries aim to serve all members of their communities, regardless of socioeconomic status.
Library usage is common in the U.S., with approximately half of the population accessing a
public library at least once each year (Horrigan, 2015).

Book Purchase Data. We obtain book purchasing data from the Numerator Om-
niPanel, a large panel data set with information from over 1 billion shopping trips from
over 44,000 retailers from 2017-2020 We limit our analyses to purchases of children’s books.
Each purchase is matched to detailed demographic information on the consumer making
the purchase, including their gender, race, and the genders and number of their children.
We describe book purchaser characteristics in Appendix Table A1. For example, wealthier
people and people with more formal education are more likely to purchase children’s books.

Google Trends Data. We use data on the volume of internet searches from Google
Trends as a measure of general interest in the book awards found within our sample.9 We
limit our analysis to awards that have topic IDs in the Google Trends data.10 Data measuring
search interest for each topic ID are scaled on a range of 0 to 100 based on a topic’s search
proportion to total searches in the U.S. over a given time range (e.g., the week of December
12, 2016). We sum weekly search interest across all topic IDs corresponding to awards in a
given collection to get aggregate weekly search interest for that collection.

9Google Trends filters Google search requests to remove duplicate searches, uncommon searches, and
searches with special characters. Google Trends draws from a random sample of internet searches.

10Awards with topic IDs include the Amelia Bloomer Project (renamed Rise Feminist), Caldecott Medal,
Coretta Scott King Award, Ezra Jack Keats Book Award, John Newbery Medal, Pura Belpré Award, Schnei-
der Family Book Award, and Stonewall Book Award.
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We present three event studies that show average daily library checkouts (Figure 1a),
average daily purchases (Figure 1b), and average weekly search interest by collection (Figure
1c), centered around the time when awards are announced.11 In Figures 1a and 1b, we
disaggregate the data by books which were recognized by a Mainstream medal or honor in
that year, books which were recognized by a Diversity medal or honor in that year, and all
other children’s books.12

First, we see that library checkouts of books selected for Mainstream awards increase
substantially after announcement of awards with a larger increase for books that received
the medal as opposed to receiving an honorable mention.13 This persists for at least two
years after the award announcement, during which average daily checkouts of books in the
Mainstream collection plateau at a rate approximately four times that of the comparator
groups. The increase in library checkout rates for books in the Diversity collection after the
award announcements are substantially smaller in magnitude and, as expected, we see no
change around the award announcement of checkouts for other children’s books.14

Second, we see a similarly sustained increase in purchases of books belonging to both
the Mainstream and Diversity collections after the award announcements, again with a larger
increase for Mainstream books. This finding corroborates past analyses of publisher-level
data on book sales, which document large gains in sales – of similar or even larger magnitudes
– after a book receives an award (Nilsen, 1971; Weitzman et al., 1972; Cockcroft, 2018).

Finally, we find similar patterns in internet search interest: Google search volume
for awards belonging to the Mainstream collection is approximately seven times higher than
search interest for awards belonging to the Diversity collection, with a spike in search interest
immediately following the announcement of the awards.

As a whole, this evidence suggests that Mainstream books have greater influence than
other children’s books, and children are more likely to be exposed to the messages in these
books. This is consistent with and reinforces the findings of previous qualitative analysis
of their central role in children’s literature and previous quantitative analysis of book sales
data.

11We describe the empirical specification and data cleaning details in the Data Appendix.
12These include books that did not receive one of the awards in our study, but they may have received

recognition from a different source.
13Most of these awards are presented annually, and many award recipients are announced at the ALA’s

Midwinter Meeting, which typically occurs near the end of January. To be eligible for these awards, a book
must be published between February of the previous year and January of that year.

14We discuss and present our analyses of these data in greater detail in Appendix E).
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III Prior Work and the Need for Scalable Measurement Tools

The field of content analysis studies the content of books, including the representa-
tions contained within them. Historically, content analysis has been conducted primarily by
humans reading carefully through text, images, or other media while coding the presence of
certain words, themes, or concepts by hand (Neuendorf, 2016; Krippendorff, 2018). Prior
work has studied the content of some of these award-winning books, including the represen-
tation of gender and, more recently, race. An influential study by Weitzman et al. (1972)
examined the gender representation throughout the text of 18 Caldecott award recipients
published over a five-year period, documenting that females were less likely than males to be
represented in the content of the books; when they were represented, these representations
often reinforced traditional gender roles. Many studies since have measured the representa-
tion of race, gender, and other identities in various, smaller subsets of these books published
in specific time windows (c.f., Kolbe and La Voie 1981; Davis 1984; Williams Jr et al. 1987;
Clark, Lennon and Morris 1993; Crisp and Hiller 2011; Koss 2015; Koss, Johnson and Mar-
tinez 2018). They find that the books in their samples often underrepresent women and
people of color, relative to males and White people, though there is not consensus as to
whether these patterns attenuate or persist over time.15

The time and other costs it takes to perform manual content analyses constrain the
sample size and scope of the analysis that can be performed in a given study. The sample
sizes of most studies range from between a few dozen books to – with rare exceptions – at
most one or two hundred (Weitzman et al., 1972; Davis, 1984; Crisp and Hiller, 2011; Koss,
Johnson and Martinez, 2018). The few studies with a larger scope (500 to several thousand
books) focus only on one or a small number of sites of representation – for example, the title
of the book, the illustrations on its cover, or the main character instead of the full content
of the book (Weitzman et al., 1972; McCabe et al., 2011; Koss, 2015; Koss, Johnson and
Martinez, 2018).

By using computational content analysis to measure representation in both the images
and the text of these books, and by expanding the set of tools available to do so, we build on
and advance the findings and the scope of the existing content analysis literature. Here we
summarize a set of key advantages – and thus advances – of a computational approach. We
then discuss a set of potential limitations related to our approach and describe our efforts
to measure cost-effectiveness and validity.

Improved speed and reduced cost allow the study of more books. First, computational
15These differences often coincide with differences in focus or choice of sample collection or time period.
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content analysis can be used to systematically analyze features in large bodies of content in
a short amount of time. Due to their size, these bodies of content were previously beyond
the reach of traditional manual content analysis. Using these tools, we characterize the
representation of all detected gendered terms, named characters, and pictured characters
detected in over 1,100 books. This is one or two orders of magnitude larger than most prior
studies. To conduct further computational analysis of an even larger collections of books
would incur minimal additional cost beyond the digitization of the material.

Greater scope for measurement within each book. Computational tools are able to
measure more sites of representation in each book. This includes both the ability to analyze
all pictured and named characters detected in the book’s images and text – as opposed to
just the main characters, as is common in much manual content analysis (c.f., Koss 2015;
Krippendorff 2018) – and to analyze a wider variety of features of each character. By contrast,
resource constraints limit the number of characters and dimensions of representation that
can be measured using manual analysis. Studies that use manual content analysis on a
larger sample explicitly indicate compensating the cost implications by focusing on a smaller
number of prominent features, such as the book’s title, the images on its cover, and/or the
identities of only the main characters (Kortenhaus and Demarest, 1993; McCabe et al., 2011;
Koss, 2015; Koss, Johnson and Martinez, 2018).

Another contribution we make in this direction is to measure the incidence of repre-
sentation of identities at the intersections of multiple sites of exclusion in a large number of
books, and a large number of sites within each book. Different aspects of identity – such
as race, gender identity, class, sexual orientation, and disability – do not exist separately
from each other, but rather are inextricably linked (Crenshaw, 1989, 1990; Ghavami, Katsi-
aficas and Rogers, 2016). The notion of “intersectionality” refers to the unique experiences
of people whose identities lie at one or multiple intersections of marginalized identities. For
example, the experiences of Black women cannot merely be summarized by a description
of the experiences of all women and, separately, the experiences of all Black people. It is
important to note that intersectionality does not merely refer to an “interaction effect” (e.g.,
between race and gender), but rather the distinct experiences of individuals whose identities
exist at intersections of multiple dimensions of marginalization.

We draw on a central insight from the large body of work on intersectionality in
our analysis: when analyzing representation of different dimensions of identity, such as race
and gender, it is critical to characterize the power imbalances and their manifestations that
lead to greater disadvantage among individuals at the intersection of multiple marginalized
identities. We acknowledge that a more developed intersectional analysis requires a wide-
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reaching analysis of norms, rules, laws, and history that is beyond the scope of our study.
Instead, the starting point for our analysis is that a key site of power – and thus of potential
power imbalances – are the messages contained within the material we use to teach children.
More specifically, the inclusion or exclusion of identity groups in this content is a fundamental
expression of power, as it signals to the reader the spaces that these identities do or do not
occupy in society (Crenshaw, 1989, 1990; Davis, 2008; Ghavami, Katsiaficas and Rogers,
2016). Children’s books are an important site of the exercise of societal power, given the
potential for such content to shape the beliefs, norms, and conceptions of history that the
next generation will adopt (Fuchs-Schündeln and Masella, 2016; Cantoni et al., 2017; Arold,
Woessmann and Zierow, 2022; Arold, 2022). In this paper, we explore whether there is
differential representation of identities at the intersections of multiple sites of marginalization
within dimensions of skin color, race, gender, and age.

Greater flexibility and scalability. Separate from scope, our approach has the benefit
of yielding greater flexibility and scalability. In a given study, if re-analysis or new analysis
is required after the initial coding, the fixed costs of identifying, hiring, and training coders
are again incurred. In computational content analysis, the only additional costs are the
costs of digitizing material, the computational power necessary to re-run the analysis, and
human input to adjust the code. Our approach avoids these and other related costs, allows
for greater flexibility in expanding or changing a study’s scope mid-stream, either by adding
dimensions of analysis within books, or by adding additional content.

Reliability. In manual content analysis, inter-rater reliability is a core concern which
increases with scale (Neuendorf, 2016; Krippendorff, 2018).16 In computer-driven analysis,
however, these concerns do not vary with scale, as the traits of the coder are held constant.

Limitations. There are important limitations to our overall analysis. First, while we
focus on representation in light of its important role in the processes we describe above, it
is only one component of the complex, larger societal processes we are trying to describe.
There are myriad structural barriers to racial and gender equality woven throughout the
organizations, laws, and customs of our society (Darity and Mason, 1998; O’Flaherty, 2015;
Blau and Kahn, 2017; Quillian et al., 2017; Muhammad, 2019; Chetty et al., 2020). Second,
there are limitations even within our focus on representation. The key historical advantage
of manual content analysis, as opposed to computer-led content analysis, has been its ability
to measure more complex and nuanced understanding than those a computer may capture

16Once the AI is trained, it conducts its analysis with the same level of replicability, irrespective of scale.
In manual content analysis, the cost of maintaining reliability of raters increases as the number of raters
increases, as it incurs additional costs of training and supervision to ensure fidelity.
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(Rosenberg, Schnurr and Oxman, 1990; Linderman, 2001). We focus our analysis on mea-
suring the presence of different identities, a domain for which computer-driven analysis is
particularly suitable.17 In this regard, computational content analysis and manual content
analysis represent complementary approaches, and there are important limitations to our
application of AI tools to these content analysis tasks.

Cost-effectiveness and validation. In Appendix Section D.A, we describe the cost-
effectiveness and other advantages of using AI in our specific context. In that section, we also
discuss two important dimensions of our work. First, we describe how we use manual content
analysis to validate our computer driven measures of representation. Second, we explain
how both manual and computational content analysis reflect human-introduced biases in
measurement, and describe how these biases can be minimized.

IV Methods and Data

In this section, we describe the methods we use to create data from the images and
text in books.

IV.A Methods: Images as Data

Currently, images are neither widely nor systematically analyzed in social science
research despite the richness of information they contain, as alluded to by the maxim “a
picture is worth a thousand words.” This leaves an important data source “on the table”
(i.e., unused), in contrast to the use of text as data, which has seen growing attention from
social science in the past 15 years (Gentzkow and Shapiro, 2010; Gentzkow, Shapiro and
Taddy, 2019; Kozlowski, Taddy and Evans, 2019). Images may be particularly important
in children’s books, especially for those who are not yet textually literate (Pressley, 1977;
Sadoski and Paivio, 2013), and several studies have shown that better comprehension can
result from learning with text and pictures (i.e.,multimedia) compared to learning with text
only (Levie and Lentz, 1982; Vekiri, 2002; Fletcher and Tobias, 2005; Eitel et al., 2013).

We introduce, develop, and apply tools for computational analysis of the content of
images. Specifically, these tools first identify pictured faces of characters and then classify
their skin color, “putative” race,18 gender, and age. We depict this process in Figure 2a and
refer to it as our “Image-to-Data Pipeline.”

17Understanding patterns in the manner in which characters are represented is also important, and we are
pursuing this work in separate projects (c.f. Adukia et al. (2022a), Adukia et al. (2022b).

18We define putative race to be the race that society assigns to a person.
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IV.A.1 Image Feature Classification: Face Detection

Our first step in converting images to data is to detect the face of each pictured
character. Machine-led face detection, however, poses a set of complex problems. First,
images in these books consist of both illustrations and photographs. Because the current
state-of-the-art face detection models were trained exclusively on photographs, these models
are likely to undercount faces in illustrated images. This concern is amplified by the large
proportion of illustrations in our data: in a random sample of manually labeled images, we
found that over 80 percent were illustrations, as opposed to photographs. Second, these
images contain both human and non-human characters. Non-human characters could have
human skin colors (e.g., different shades of beige and brown), non-typical skin colors (e.g.,
blue or green), or monochromatic skin colors (e.g., grayscale or sepia). Third, characters
could be shown in different poses, such as facing the viewer, shown in profile, or facing away
from the viewer, a challenge for models trained to recognize faces shown from the front.

To address the potential undercounting of characters in illustrations, we trained a
custom transfer learning model to detect and classify both illustrated and photographic
faces using Google’s AutoML Vision (Zoph and Le, 2017).19,20 We trained our face detection
model using a manually labeled data set of 5,403 illustrated faces from our sample, which
contains a wide variety of illustrated characters.21 This process is described in greater depth
in Szasz et al. (2022), and we present further detail on it in Methods Appendix D.

IV.A.2 Image Feature Classification: Skin Color

Skin color is an important dimension of how humans categorize each other. Distinct
from race, skin color is itself a site of historical and ongoing discrimination with impacts on
health and the labor market (Hersch, 2008; Monk Jr, 2015). From a measurement perspec-
tive, it is a parameter for which we can use computers to more clearly measure the “ground
truth,” since the computer directly observes the color of each individual pixel as compared
to the categorization of putative race, which varies by observer and cultural context.

19Transfer learning is a process which facilitates the use of a pre-trained model as a “shortcut” to learn
patterns from data on which it was not originally trained. This mitigates concerns around having a sufficiently
large amount of manually labeled data necessary to train deep learning models, particularly in the absence
of public data sets using illustrations.

20Google is migrating workflows from AutoML to Vertex AI. They have similar functionality, but our
models in this paper used AutoML. People who wish to use these approaches in future will use Vertex AI.

21We refer to this data set as IllusFace 1.0 (Szasz et al., 2022). We refer to our face detection model
as FDAI (face detection using AutoML trained on illustrations). We use two parameters to evaluate the
performance of our face detection model: “precision” and “recall.” Our face detection model has 93.4 percent
precision and 76.8 percent recall in our testing data. In other words, 6.6 percent of the faces we identify
may not, in truth, be faces (a false positive), while the model may neglect to identify one in 4 “true” faces
(a false negative).
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Our skin color classification method involves a three-part process: (1) “segmenting”
the skin portion of each face to separate the parts of the face which contain skin from other
facial features; (2) extracting the predominant colors in the identified skin and collapsing
these colors into a single representative skin color; and (3) constructing measures of skin
color. Figure 2a illustrates this process. We discuss each of these steps broadly below and
in greater detail within the Methods Appendix.

Skin segmentation. We begin by isolating skin components from non-skin com-
ponents of each detected face using a deep learning approach called Fully-Connected Con-
volutional Neural Network Continuous Conditional Random Field (FC-CNN CRF).22 This
process of “skin segmentation” comprises three steps (Jackson, Valstar and Tzimiropoulos,
2016; Zhou, Liu and He, 2017; Beyer, 2018; Lu, 2018). First, we apply a fully-connected
convolutional neural network (FC-CNN).23 This allows us to predict periphery landmarks
such as the edges of the facial skin area, eyes, nose, and mouth. Second, we then use these
predicted landmarks to extract a convex hull “mask” for the targeted facial region. Third,
we refine this mask by applying a continuous conditional random field (CRF) module, which
predicts the labels of neighboring pixels (i.e., whether they are predicted to be skin or not
skin) to produce a more fine-grained segmentation result.24 We classify skin color from the
resulting face mask.

Representative skin color. We then identify the predominant colors in this face
mask (e.g. the segmented skin) by using k -means clustering to group the colors of each pixel
into distinct clusters in RGB color space. k -means clustering is a traditional unsupervised
machine learning algorithm whose goal is to group data containing similar features into k
clusters.25 For our analysis, we partition all the pixels in the segmented skin into five clusters
(i.e., where k takes a value of five), and we drop the pixels in the smallest two clusters as they
tend to represent shadows, highlights, or non-skin portions of the detected face. We take
the centroid of each of the remaining three largest clusters – which provide the dominant
skin colors in the segmented skin – and use a linear mapping to convert these three values
from RGB color space into the CIELAB, or L*a*b*, color space.26 After this conversion,
we collapse the dominant skin colors into a single color by taking the weighted average of

22Further information about how our skin segmentation approach improves upon traditional approaches
can be found in the Methods Appendix D.B.2.

23FC-CNN is a type of convolutional neural network (CNN) where the last fully-connected layer is substi-
tuted with a convolutional layer that captures locations of the predicted labels.

24CRF is a class of statistical modeling using a probabilistic graphical model.
25We used the k -means clustering function in the the scikit-learn Python library Sculley (2010).
26We convert colors from RGB space to L*a*b* space before averaging because L*a*b* color space – unlike

RGB color space – is perceptually linear.
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their L*a*b* values, where the weights correspond to the proportion of pixels assigned to the
cluster from which each of the top three dominant skin colors came. This weighted average
provides our measure of each face’s representative skin color.

Skin color classification: Perceptual tint and skin color type. Once we have
a representative skin color, we can measure how light or dark the skin color of each face is on
a scale of 0-100 (where 0 is the darkest and 100 is the lightest) using the L* value from the
representation of each face’s representative skin color in L*a*b* color space. This measure
reduces the dimensionality of skin color to a single value and provides us with our main skin
color measure of interest which we call “perceptual skin tint.”27 A given numerical change in
the skin tint value can be interpreted as a similar perceived change in the darkness/lightness
of a color. We also divide this continuous measure of skin tint into three terciles (darker,
medium, or lighter) for a coarser, but more intuitive, skin color classification.

We also separate the representative skin colors into three types: (1) polychromatic
human skin colors (e.g., brown, beige), (2) monochromatic skin colors (e.g., grayscale), and
(3) polychromatic non-typical skin colors (e.g., blue, green). We discuss how we separate
skin colors into these three types in Methods Appendix Section D.B.3. In Figure 3, we show
the representative skin colors of over 44,000 individual faces detected in each collection by
the three skin color types present in these images.28 The x-axis indicates perceptual tint and
the y-axis indicates vibrancy of each representative skin color.

IV.A.3 Image Feature Classification: Race, Gender, and Age

In order to classify putative race, gender, and age of detected faces in images, we
trained a multi-label classification transfer learning model using Google’s AutoML Vision
platform. This model was trained on the UTKFace public data set which contains over
20,000 faces manually labeled with race, gender, and age (Zhang and Qi, 2017).29,30

27A more common term for L* is “perceptual lightness,” but to de-center and de-emphasize “lightness” or
“brightness” relative to “darkness,” we refer to the concept as “perceptual tint,” or “skin tint.”

28We show these for each collection by decade for human skin colors (Appendix Figure B2), monochromatic
skin colors (Appendix Figure C1), and non-typical skin colors (Appendix Figure C2). We find that in the
earlier decades of the Mainstream collection, there was a greater proportion of monochromatic images, with
a general trend over time to have more polychromatic images. In the Diversity collection, and in particular
the People of Color collection, there is a consistently high proportion of monochromatic images, perhaps
representing the use of historical black-and-white photographs. Note that even though we detect over 54,000
faces in our sample of children’s books, we are only able to get a usable skin segmentation for 81 percent of
the faces because a CNN-based skin segmentation approach does not work on all illustrated faces.

29The labels in the data set include: Gender (female or male), Age (infant (0-3), child (4-11), teenager
(12-19), adult (20-64), senior (65+)), Race (Asian (a combination of Asian and Indian), Black, White, and
others (e.g., Latinx, Middle Eastern)).

30The resulting model has 90.6 percent precision and 88.98 percent recall in our testing data. We provide
additional detail in the Methods Appendix.
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Our model assigns probabilities that a detected face is of a given race, gender, and
age, respectively. Within each dimension, we classify a face with the identity to which the
model gives the highest predicted probability.31 The main limitation of this model is that
it was trained on photographs, which means that the predictions will be more accurate for
photographs of faces than illustrated faces.32

IV.B Methods: Text as Data

In this section, we describe the tools we use to measure representation in the text
of books. Researchers have manually analyzed (i.e., by hand) the messages contained in
text of printed material for centuries, a process which is highly resource intensive in terms
of both labor and time (Neuendorf, 2016; Krippendorff, 2018). Recent work by economists
and sociologists showcases how the computational speed and power of (super)computers
can be harnessed to conduct computational text analysis, greatly accelerating the speed
of work which would have traditionally been done manually (Gentzkow, Kelly and Taddy,
2019; Kozlowski, Taddy and Evans, 2019). We draw from this work and, in particular, a
series of natural language processing tools that take bodies of text – e.g., from a book – and
extract various features of interest. In Figure 2b, we show our process of extracting text
from digitized books and then analyzing it; we refer to this as our “Text-to-Data Pipeline.”
We describe this process in further detail in Methods Appendix D.C.

Digitizing text. We begin by extracting text from digital scans of the books us-
ing optical character recognition (OCR). This process converts text into ASCII which then
encodes each character to be recognizable by computers. We derive our textual measures
of race, gender, and age by enumerating the features of these text data, specifically various

31Previously, many existing artificial intelligence models that classified putative race had a high error rate,
both misclassifying the putative race of identified people and, in “one-shot” models that identify existence of
people and their putative race simultaneously, misclassifying people as non-human (Fu, He and Hou, 2014;
Nagpal et al., 2019; Krishnan, Almadan and Rattani, 2020). Ongoing work attempts to acknowledge and
address these disparities (Buolamwini and Gebru, 2018; Mitchell et al., 2019). We acknowledge that race is
a human-made construct that exists for political and economic purposes (Roberts, 2011; Logan, 2022) – and
so, as a result, any attempt to classify race with either a human or a computer is an imperfect exercise that
will yield imperfect results. Our analysis by race looks across collections within race, so any error within
a race would be consistent across collections (i.e., racial categories would be classified similarly across the
Mainstream and Diversity collections).
When labeling gender, we recognize that binary classifications are imperfect and focus only on the perfor-

mative aspect of gender presentation, as they are trained based on how humans classify images. Furthermore,
because we are classifying character gender based on the character’s appearance, our measurements use the
same binarized gender classification to assess the perceived presentation of gender, i.e. whether the character
is female-presenting or male-presenting, rather than female or male per se. Future work should incorporate
the classification of fluid and nonbinary gender identities.

32In Szasz et al. (2022), we curate the CBFeatures 1.0 data set, a manually labeled data set of illustrated
faces that can be used as training data to more precisely predict the race, gender, and age of faces detected
in illustrations in future work.
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types of single term counts, the presence of famous people, and the first names of characters.

Text analysis: Token counts (Gender and Age). We generate counts of different
“tokens” associated with gender and age.33 To calculate gender representation in text, we cal-
culate the number of male and female gendered pronouns along with a list of other gendered
terms such as queen and husband. To measure representation of age in text, we generate
lists of gendered terms associated with children, or “younger,” individuals (e.g., girl, nephew)
and gendered terms associated with adults, or “older,” individuals (e.g., woman, uncle). The
vocabulary used for each of these lists is shown in Appendix Section D.C.2.

Text analysis: Named Entity Recognition (Race and Gender). We measure
the representation of race and gender among named characters in these stories, be they
fictional or historical, using a tool called Named Entity Recognition (NER). NER identifies
and segments “named entities,” or proper nouns. There are two types of named entities that
we identify: (1) famous characters and (2) first names of characters.

Famous individuals. Exposure to salient examples of historical figures or celebri-
ties from marginalized backgrounds can lead to meaningful changes in social attitudes to-
wards people who hold those identities, as well as changes in beliefs about one’s self, and
improvements in academic performance among children who share those identities (Marx,
Ko and Friedman, 2009; Plant et al., 2009; Alrababah et al., 2021). To identify mentions
of famous characters, such as Martin Luther King Junior or Amelia Earhart, we match the
entities identified by NER that have at least two names (for example, a first and last name)
with a pre-existing data set, Pantheon 2.0, that contains data from over 70,000 Wikipedia
biographies, which provides information on gender for each famous individual (Yu et al.,
2016).34 We then manually code putative race for each identified person.35 This generates
a data set of 2,697 famous people. We count the number of unique books in which each
famous person is mentioned as well as the number of times they are mentioned in each book.

Character first names. We then measure the gender of characters who are
identified via NER but not identified as “famous.” We extract the first word (name) of
each of these named entities and estimate the probability that it is female (or male) using

33A token is a maximal sequence of non-delimiting consecutive characters. In our context, a token is an
individual word.

34The Pantheon 2.0 curators run a classifier over the English text of the Wikipedia biographies to extract
demographic information.

35Note that coding of putative race is subject to the individual biases and perceptions of each human coder
and may be classified with error. We collapse the following identities: East Asian, Middle Eastern, and South
Asian into the Asian category; North American Indigenous peoples and South American Indigenous peoples
into the Indigenous category; and African American and Black African into the Black category. If an
individual was coded as having more than one race, they were then classified as Multiracial.
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data on the frequency of names by gender in the U.S. population from the Social Security
Administration (SSA).36 If the predicted probability that a name is female is greater than
50 percent, we classify the name as female. Otherwise, we classify the name as male.37 For
example, in the SSA data, the proportion of people named Cameron who identify as female
is 9.16 percent. We therefore assign a probability of 90.84 percent that the name Cameron
is male, and classify the name as male.

IV.C Data Collection, Aggregation and Analysis

To analyze representation, we collected and digitized the books recognized by the
awards in our sample, using both library and online sources. Our final sample comprises 1,130
books recognized by at least one award.38 We divide these books into different collections,
as described in Section II.A. We then transform digitized page scans into data on the images
and text in these books using the methods described in this section.

We report results for the following measures of representation in images and text. For
the detected skin color of faces in images, we report the raw perceptual tint and, separately,
bin these values into terciles. For race, we measure race of famous figures mentioned in text
and predicted race of faces in images. For gender, we measure pronoun counts, gendered
term counts, predicted gender of character first names, and gender of famous figures in text;
and the predicted gender of faces in images. We also present an aggregate of all words with a
gender association, which we refer to as “gendered words.”39 For age, we measure predicted
age of faces and the ages associated with gendered terms in text.

To generate our estimates of representation, we first summarize each measure at the
book level, and then calculate the average across all books in a given collection, both overall
and over time. For example, to estimate the average percent of female faces in a collection,

36We predict gender with the gender package available in R which uses SSA data (Mullen, 2020). Using
this method, we are able to make gender predictions for approximately 60,000 names.

37To test how accurate these predictions are, we predicted the gender of each famous person in our data
using their first names and compared these predictions to their gender identified using Wikipedia and found
that our predictions were 96.35 percent accurate. We do not classify race using first names only. Other
recent text analysis has shown that conventional methods for classifying race of names fail to successfully
distinguish between Black people and White people (Garg et al., 2018).

38Our books include those recognized over the period 1923-2019. We include both books that win the
medal of the award, and those books that are honored by the award committee but not ultimate recipients
of the award in a given year. Some books are recognized by more than one award. The 19 award corpora
comprise 3,447 total books which either won an award or received an honorable mention; we obtained and
digitized 1,130 of these books using both library and online resources. In the sample, we have all but 16
Mainstream medalists (3 Newbery winners and 13 Caldecott winners).

39This includes predicted gender of character first names, gender of famous characters, gendered pro-
nouns, and specific gendered terms such as queen and husband, to generate a composite measure of gender
representation in text.
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we first calculate the percent of female faces in each book in the collection and then take the
average across books. This ensures that each book contributes equally to our collection-level
measures of skin color, race, gender, and age representation, regardless of book length.

We generate these estimates at the book level and then aggregate them to the col-
lection level, both overall and, separately, over time. While different awards commence in
different years, we study all books ever recognized by these awards, rather than limiting the
analysis to years in which all awards are active. Because the use of many books persists over
time, a teacher, librarian, or parent may be at least as likely to select a book considered to be
a “classic” that they know (thus an older book) rather than one more recently published.40

V Results

In this section, we describe patterns of representation of skin color, race, gender, and
age in the images and text of these books across collections and time.41

Skin color. We begin by characterizing patterns, across collections and over time, in
the skin color of the characters pictured in images. We focus our discussion on characters with
human skin colors. Results for characters with monochromatic or non-typical skin colors can
be found in Appendix Section C and generally show similar patterns as the characters with
human skin colors. Figure 4a shows the distribution of perceptual tint for detected faces in
the Mainstream and Diversity collections. These figures show that the faces in the Diversity
collection have darker skin tints, on average, than those in the Mainstream collection.42

A Kolmogorov-Smirnov test rejects the equality of the two distributions (p < 0.001); in
other words, the distributions of skin colors in pictured characters in the two collections
are statistically distinct. Furthermore, the distribution of skin color tint in the Mainstream
collection has a much smaller variance than that of the Diversity collection: a test of the
null hypothesis that the two variances are equal also rejects equality with p < 0.001. This
implies that there is a greater diversity of skin color tint shown in the Diversity collection.

We next examine the proportion of character faces in each skin color tercile – darker,
medium, or lighter. Our results show that over time, the proportion of characters with skin
colors in the darker and medium skin color terciles increases relative to those in the lighter

40For example, picture books such as The Snowy Day (1962) and novels such as Charlotte’s Web (1952)
were published and recognized by a Mainstream award long before 1970, when the awards in the Diversity
collection first began to recognize books. Nonetheless, both of these books are still part of the canon of
children’s literature and remain frequently used in libraries and classrooms.

41A previous version of this paper (available here: https://www.nber.org/papers/w29123) includes some
results which were removed in the revision process.

42Appendix Figures C3 and C4 demonstrate that this result holds regardless of image color type: monochro-
matic or non-typical skin colors.
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skin color tercile, in both the Mainstream and the Diversity collections (Figure 4b). The
distribution of skin color across the three terciles in books in the Mainstream collection
from 2010-2019 is similar to that in the Diversity collection from 1970-1979. A related but
distinct parameter of interest is the mean value of perceptual skin tint. Unlike our result for
the distribution of skin color in faces across terciles, we find that average perceptual tint has
changed less over time (Appendix Figure C5).

Figure 4c shows the distributions across these terciles for all seven collections. For both
Mainstream and Diversity collections, the medium skin color tercile is the most represented,
with almost half of all faces in both collections falling in this tercile. In the Mainstream
collection, however, lighter skin is in the second most common tercile of skin color (approxi-
mately one third of faces), while in the Diversity collection, darker skin comprises the second
most common skin color tercile (approximately 40 percent of faces). This suggests that the
Diversity collection is more representative of characters that have darker skin tints. Of the
seven collections, the Mainstream collection has the lowest proportion of faces falling in the
darker skin color tercile and the Female collection has the greatest proportion.43

We then explore how skin color representation varies by race, gender, and age (Fig-
ure 5). We see that the Mainstream collection is more likely to show characters within a
given race as lighter than their counterparts in the Diversity collection (panel A).44 Given
the minoritization of females and those with darker skin color, we test for a difference in
representation at the intersection of female gender identity and darker skin tint. We find no
evidence of a significant difference between the skin color distributions of faces classified as
females and of faces classified as males (panel B).

We then see when children are depicted in images, they are more likely to be shown
with lighter skin color than adults, regardless of the collection in which the image appears
(panel C).45,46 We are aware of no definitive biological justification for this systematic dif-
ference in the representation of skin colors by age. There are many possible determinants
of potential differences. One might expect to see adults depicted with darker skin color,
for example, if they have greater exposure to the sun from more outside labor. One might

43Appendix Figure C2 shows that the method of classifying “human” vs. “non-typical” polychromatic skin
colors may underestimate the number of darker-skinned faces if the browns that are used do not follow the
polychromatic R ≥ G ≥ B rule as described in the Methods Appendix. However, Appendix Figure C4 shows
that this does not change the patterns in skin color representation by collection over time.

44We see the same result for monochromatic faces in Appendix Figure C6a.
45One concern could be that the algorithms are trained to classify faces as being more likely to be a child

if the skin color of the detected face is lighter, which then would attenuate the number of children detected.
46In Appendix Figure B3, we present the representation of skin color and age by the percentage presence

in each of the coarser categories.
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also hypothesize that children pictured are products of mixed-race couples which may lead
to children having lighter skin, on average, than adults. However, this phenomenon would
more likely result in a compression of the skin color distribution rather than a shifting of
the distribution. Moreover, interracial relationships were prohibited by “anti-miscegenation”
laws in many contexts for a substantial portion of our study period and their incidence re-
mains low. On the other hand, children could be depicted as having darker skin, on average,
for a number of other potential reasons. For example, evidence of the breakdown of melanin
over the life course suggests that there may be reason to expect the skin tint of adults to be
lighter than that of children (Sarna et al., 2003). Nonetheless, the pattern we find of children
being represented with lighter skin than adults is consistent across collections. While there
are many potential interpretations of this pattern, some include brightness being used to
connote innocence (e.g., of childhood), supernatural features (e.g., of angels), or another
type of emphasis which separates the character from the rest of the context. Exploration of
the reasons behind this phenomenon merits further work beyond the scope of our study.

Putative race. We then explore trends in racial representation of famous individuals
over time (Figure 6).47 Onto this time series we overlay the U.S. population share of different
races, by decade, using census data. We see that in the Mainstream collection, relative to
their U.S. population shares, Black people and Latinx people have been historically under-
represented. The last three decades, however, have shown increasing parity in representation
of Black famous individuals. We see that despite increases in a diversity of representation
over time, the average individual included – whether a famous person or a pictured character
– is a White individual, regardless of collection.48

White adults (and children) are more likely to be pictured than adults (and children)
of any other racial category across all collections (Appendix Figure B6). Juvenile ageism, a
term coined in Westman (1991), refers to the notion that social systems ignore the interests
of children (de la Fuente-Núñez et al., 2021). From an intersectional perspective, this also

47Appendix Figure B4 shows a similar version of this graph with non-standard axes to more clearly view
changes in groups with small population proportions.

48Appendix Figure B5 shows the proportion of famous figures broken down by race overall. We find that,
in all collections, the famous figures mentioned are predominantly White. In the Mainstream collection, over
90 percent of famous figures are White. Conventional content analyses of the race of main characters in
Caldecott and Newbery award-winning books find qualitatively similar results (Koss, Johnson and Martinez,
2018; Koss and Paciga, 2020). The African American collection is the only collection to have a majority
identity other than White represented; in it, Black people are the most represented, comprising 50 percent
of the famous people in that collection. In other collections, Black people comprise 7 to 29 percent of famous
figures mentioned. Other groups appear far less frequently. Famous people of Asian, Latinx, Indigenous
and Multiracial identities account for between 3 and 11 percent of famous people combined, a high level of
inequality in representation relative to population averages. The U.S. census estimates that only 60 percent
of the population is non-Latinx White (2019).
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means that children of color, whose identities fall at the intersection of at least two sites of
societal marginalization, are least likely to be seen by readers. Figure 6 shows that White
individuals have been overrepresented among mentioned famous figures relative to their
population share since the 1930s, particularly White males (Figure 7). Both White males
and females are predominantly included as pictured characters (Figure 8).49

Our results here also show that when children see females in these books, they are see-
ing mostly White females. This relates to a key prediction from studies of intersectionality:
that identities at the intersection of multiple sites of exclusion may face even greater dis-
advantage than would be predicted by individual, group-specific patterns. Specifically, the
message sent by this pattern of representation is that when women inhabit prominent spaces
in society (e.g., in the historical and fictional accounts contained in curricular materials), this
is primarily limited to White women. However, that same figure reveals the surprising result
that, conditional on the person being classified as Asian, Black, or Latinx + Others, the
Mainstream collection is more likely than the Diversity collection to represent the person as
a woman. The Female collection, on the other hand, is far more likely than the Mainstream
collection to represent people classified as Asian, Black, or Latinx + Other as females. This
suggests that, on average, books in the Female collection are the most attentive to the power
imbalances that come from the intersection of multiple sites of exclusion, at least in terms
of including the presence of females of color.

Among famous figures, after White males and females, Black males comprise the
next most represented group (5-37 percent of famous people). The representation of Black
females (between 2 and 8 percent of famous people, except in the African American collection,
where they comprise 13 percent) is consistently less than that of Black males, despite their
approximately equal shares in the population. Conditional on the famous person being
Black, we see greater representation of females in the Mainstream and Female collections
than in the Diversity or African American collections (the representation of Asian and Latinx
people is often close to zero for this measure, making comparison difficult). This highlights
that even within collections of books curated to highlight a given racial identity, we see less
representation of people at the intersection of multiple dimensions of marginalization than
of those who occupy only one such dimension.

In Appendix Table A2, we list the five most frequently mentioned famous people
49Appendix Figure B7 shows that most pictured characters are classified as being White. Appendix

Figure B8 shows that we classify almost half of pictured characters in the Mainstream collection as female-
presenting. We map share of faces by predicted race on their respective shares of the U.S. population in
Appendix Figure B9. Appendix Figure B10 shows the proportion of characters in images and text by race
and gender over time.
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overall, including their race and gender. The most uniquely mentioned person in the Main-
stream collection is George Washington; in the Diversity collection, it is Martin Luther King
Junior. For the Mainstream collection, all five of the most commonly mentioned people
are White males. For the Diversity collection, all five are males, three of whom are Black
(Martin Luther King Junior, Frederick Douglass, and Langston Hughes) and two of whom
are White (Abraham Lincoln, George Washington). In the Female collection, where one
might anticipate the presence of more females, the three most uniquely mentioned people
are males (John F. Kennedy, Martin Luther King Junior, and Jimmy Carter) and the fourth
is a female (Betty Friedan).50

Gender. We then explore the representation of gender. We first measure the inci-
dence of words with any gender association, which includes pronouns and other gendered
terms, the gender of the famous people mentioned in the text, and the gender classifications
for character first names. In Table 1 and Figure 9, we present average book-level proportions
of female words out of all gendered words. For all collections except those books specifically
recognized for highlighting females, we observe fewer female words than male words. Table 1
shows that the proportion of gendered words that are female in these collections is between
34 and 45 percent, as opposed to 56 percent in the Female collection. Figure 9a shows that
this proportion increases gradually over time, but remains below the U.S. population share
of females for all collections in every decade, except for the Female collection.

In Figure 9b, we show how these distributions change over time. In both collec-
tions, the skewness of the distribution of our measure of book-level gendered words changes
over time, becoming less right-skewed in more recent years. In addition the representation
contained in the median book has moved closer to equality.

In Figure 9c, we show the distribution of the book-level proportion of female words
for each collection. The Mainstream collection is the most male-skewed of all collections,
and in all distributions except that of the Female collection, the central tendency is skewed
towards more male representation. The Female collection, which we would expect to be more
female-centered, appears less female-skewed than the Mainstream collection is male-skewed.

Our results are robust to restricting analysis to each type of gendered word: gendered
pronouns, gendered terms, or first names (Appendix Figure B11). This addresses the concern
that we could be misattributing changes in gender representation to changes in the historical
grammatical convention to use what were then considered “gender-neutral” pronouns (e.g. he,

50Appendix Tables A3 and A4 show this for the top five females and top five males, respectively, uniquely
mentioned in each collection. Appendix Table A5 shows the most uniquely mentioned famous figure by
collection for each decade.
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his) and related terms (e.g. waiter, actor); for example, if an author writing in an earlier era
wanted to include more female representation, we would see this reflected in the proportion
of named female characters but not in the proportion of female pronouns but we do not see
this skewed pattern in our results. The robustness of our results to this sample restriction
demonstrates that our results are not driven by measurement error stemming from changes
over time in this historical convention. Our results are also robust to restricting analysis of
gender representation to gender of famous figures. Famous figures transmit more implicit
information to a child than generic terms or characters by virtue of their identity in society.51

In Figure 7, we show that ninety percent of the famous figures in the Mainstream collection
mentioned were male, for example, and even the Female collection includes more unique
famous males than females. Overall, less than a third of famous figures in the books we
study are female (Appendix Figure B11).

Next, we describe the representation of gender in the images of these books.52 We show
the proportion of faces in each collection identified as female in Figure 8 and Appendix Figure
B8a. In the majority of the collections, fewer than half of the detected faces are classified as
female-presenting. In the Female and Ability collections, respectively, however, our model
classifies 71 and 67 percent of the faces as female. Appendix Figure B8b shows that, unlike
for text, the incidence of representation of women in images is relatively consistent over time.
For example, in the Mainstream collection, female-presenting faces comprise between 39 and
51 percent of all detected character faces over time.53

We then compare representation of gender across images and text. In Figure 10, we
show a scatterplot of collection-by-decade average proportions of female words on the x-axis
and the average proportion of female-presenting faces on the y-axis. It shows that females
are more likely to appear in images rather than text, which means that females are more
likely to be visualized (seen) than mentioned in the story (heard). One interpretation of
this pattern is that authors or illustrators may perfunctorily include additional females in
pictures, giving the appearance of equity while not actually having them play an important
role in the story. It also highlights that on average, females are represented less than half of
the time in both images and text.54

51This can occur through any of a number of channels, for example via role model effects (Dee, 2005; Porter
and Serra, 2020) or via effects on more general social preferences and beliefs (Plant et al., 2009; Alrababah
et al., 2021)

52This exercise demonstrates the limitations of existing AI approaches. Compared to the state of the
art, a human would be better able to more accurately classify individuals who identify as transgender or
non-binary.

53We show a similar pattern when using a continuous measure of the average probability that a face is
classified as being female in Appendix Figure B12.

54In Appendix Figure B13, we show these results for females by race in which we see Black and Latinx
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Age. Finally, we describe the representation of people by age in the images and text
of our books. In Table 1, we show that, across all collections, adults are more likely to be
present in both images and text. Three to 19 percent of characters presented in images are
classified as children, and 17 to 28 percent of age-specific gendered words refer to children.
In Appendix Figure B14a, we show the proportion of pictured character faces by age and
gender. Regardless of gender, in both images and text, we show that there are more adults
than children depicted in the books in each collection.55 We also see in Appendix Figure
B9c that adults are overrepresented relative to their U.S. population share, meaning that
adult depictions are more likely to be privileged in books targeted to children. Children of
color are the least likely to be pictured, even in the People of Color or African American
collections (Appendix Figure B6).

In Appendix Figure B14b, we show the age classifications of gendered words (e.g., girl
vs. woman). Similar to images, we see that older people are more likely to be mentioned
than younger people. In most books, the distribution of young people by gender is similar,
though in the Female collection, girls are approximately twice as likely to appear as boys.
In gendered words specific to adults, however, men appear more often than women.

VI Economic and Social Factors Underlying Representation in Books

In this section, we investigate a series of economic and social factors which may
contribute to the patterns of representation of skin color, race, gender, and age in prominent
children’s books that we document in Section V. Some of these patterns include, for example:
that White people and males are overrepresented relative to their population share; that skin
pigment in pictured characters has trended darker over time; and that women are more often
pictured in images than they are mentioned in text. In this section, we aim to shed light on
potential economic forces determining what publishers produce and what consumers consume
that, in turn, may contribute to these patterns.

First, we discuss relevant prior theoretical and empirical research related to the eco-
nomics of the media and, separately, the economics of identity, to conceptually characterize
a set of market forces which may influence the patterns of representation within children’s
books. For clarity, we separate these into demand- and supply-side forces. Second, we gen-
erate a series of stylized facts that relate the representational content in the children’s books
that we study to this series of demand and supply forces suggested by prior literature. Our

females less represented.
55One concern may be that the age classification algorithms are primarily trained on adult faces, and

therefore may overclassify adults; however, we see consistent ratios of adult presence to children presence in
images and in text.
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analysis uses individual-level data on book purchases and purchaser demographics, alongside
library-branch level data on library acquisitions linked to neighborhood demographic char-
acteristics, in the cross-section and over time. We also estimate the relationship between
historical trends – first historical events, followed by changes over time in social mores and
then, separately, in market shares of consumers of different identities – and the representa-
tion we see in books. Finally, we explore how local political beliefs relate to the consumption
of books with different levels of representation.

VI.A Related Literature on Market Forces Driving Supply and Demand

Demand for representation in children’s books. A consumer’s demand for represen-
tation in the images and text of books they purchase may be affected by their identities
in various ways. Our analyses describe and explore two main channels for this link from
identity to demand.

The first is through demand for shared-identity, or “homophilic” representation (Jack-
son, 2010). This stems from the idea that people seek out and enjoy psychic utility from
associating with – or even seeing – others similar to the self. This consumer preference of
“utility from homophily” would lead consumers to be more likely to purchase children’s books
with characters that match the identities of themselves or their children.

The second is informed by the notion that deviating from social norms is costly;
Akerlof and Kranton (2000) call these costs “identity losses.” This force can lead to demand
for representation that hews closely to the (perceived) status quo. Applied to our setting, this
suggests that consumers who have identities that have been historically over-represented in
media have been socialized to suffer greater identity losses from consuming content that does
not center their (socially dominant) identities than historically under-represented consumers,
because consuming such content deviates from the perceived status quo or social norm. For
example, males might suffer greater identity losses than females from reading a book with a
female main character than females would from reading a book with a male main character.
Furthermore, this force of “status-quo bias” in consumption of books would push consumers
of all identities to be more likely to consume children’s books containing characters with
socially dominant identities than those containing characters with other identities. This is
reflected in a result from Bernheim (1994) showing that under certain conditions, people will
adapt their preferences to match broader societal preferences.

Supply of representation in children’s books. Prior work on the economics of the
media also points to some key supply-side forces that are likely to contribute to the levels
of and trends in representation that we document. This work shows, both theoretically and
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empirically, that in media markets with startup costs, search costs, and other frictions, supply
will cater primarily to the preferences of the majority group rather than proportionally to
the individual preferences of various groups of consumers present in the market (Waldfogel,
2003, 2007). Ceteris paribus, these forces would reduce the supply of differentiated products
targeted to the demands of various identity-specific subgroups of consumers. Given the
various fixed costs faced by the publishing industry (Waldfogel, 2007; Berry and Waldfogel,
2010), publishers of books targeted at the general market – such as those in the Mainstream
collection – may choose to publish more books which feature characters whose social identity
matches the majority of children in the market. This, of course, would come at the expense
of publishing fewer books containing characters of other identities. Such a pattern is in line
with phenomena described in Waldfogel (2007), labeled there as the “tyranny of the market.”

A corollary of this idea is that, as the market share of a given group changes because
of shifting demographics, so should the supply of books catering to that group. This follows
Acemoglu and Linn (2004) and DellaVigna and Pollet (2007), who show that market size
can be predicted from demographic profiles of birth cohorts, and that this, in turn, shapes
profitability and innovation in a wide range of markets, including pharmaceuticals, toy and
bicycle manufacturing, and life insurance.

A second supply-side force in such markets is a “pricing-in of representation.” This
refers to the notion that books which deliberately elevate non-dominant identities may sell
fewer copies, leading publishers to increase their prices to cover the fixed costs of production
for these books (e.g., author advances, printing start-up costs).56

Our analysis puts aside a few key aspects of these markets, such as supply on the
extensive margin. We discuss these and other limitations later in this section. We also
supplement this with analysis of qualitative data collected from a series of semi-structured
interviews with professionals who currently work at or recently worked at libraries, publishing
houses, and children’s bookstores, and/or who served on book award selection committees.
We report these in Appendix G.

VI.B Empirical Analysis of Economic Forces

In this section, we present a series of empirical analyses probing the economic (supply
and demand) factors in publishing decisions (and selection) of children’s books. We analyze
book consumption data from the Numerator OmniPanel linked to book-level representation

56This is isomorphic with another possible explanation for higher prices consistent with our summary of
prior work on the supply-side forces leading to these patterns: if publishers are less likely to supply books
which deliberately elevate non-dominant identities, a given level of demand met with low levels of supply
would also lead to higher prices.
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levels that we estimate.

We first present analyses of book consumption that document patterns which are
consistent with demand-side utility from homophily. We estimate the correlations between
book purchaser identity and the average representation in these books in Table 2. In Panel
A, we show that purchasers who have a son purchase books with two percent fewer female
names as a proportion of all gendered names, and one percent fewer female words as a
proportion of all gendered words, as compared to purchasers that have no children. We see
a roughly symmetric preference for books with a greater proportion of female names and
female gendered words between purchasers who have a daughter and purchasers who have
no children. Finally, we see that purchasers with daughters purchase books that, on average,
have more similar representation levels of gender in text and images (i.e., books in which
females are more equally “seen” and “heard”) (column 4). In Table 2, Panel B, we see that
males’ purchasing patterns exhibit a slight revealed preference for books with more male
words and faces. Specifically, compared to female purchasers, males purchase books with 1
to 2 percent fewer female words, names, and faces. We find no evidence of a difference in
the ratio of female representation in images and in text across male and female purchasers.

In Table 3, we show the relationship between purchaser race/ethnicity and the repre-
sentation of skin color and putative race in books purchased. These results are also consistent
with the notion of utility from homophily. In column 1, we see that purchasers who identify
as Black or as Latinx are more likely to buy books that contain pictured characters with
darker skin color, on average, than purchasers who identify as White. In columns 2-5, we
show similar results for mentions of famous individuals by putative race. We find positive and
statistically significant estimates for Asian, Latinx, and Black consumers purchasing books
that contain more mentions of famous people who share their own racial identity. White
people, in turn, are more likely than other groups to purchase books with predominantly
White famous people.

We also document utility from homophily using inventory data from branches of the
Seattle Public Library system. In Table 4, we show that public libraries in communities
with a higher proportion of White, non-Hispanic residents contain more books from the
Mainstream collection (column 1) and fewer books from our Diversity collection (column
2). We show in columns 3 and 4 that the results are robust to controlling for measures of
household income within a community. If we assume that adults are making the majority
of purchasing decisions, then the overrepresentation of adults and underrepresentation of
children that we estimate (even in these books targeted at children) is also consistent with
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utility from homophily.57

We also estimate whether there is higher demand for Mainstream books, which we
show to disproportionately represent males and White people, than for Diversity books. Us-
ing consumer panel data on children’s book purchases from Numerator, we see in Table 5
that Mainstream books sell more than twice as many copies per title (83) than Diversity
books (33). In the Seattle Public Library data, books in the Mainstream collection receive
approximately four times as many checkouts per title than do books in the Diversity collec-
tion. While only suggestive, this pattern is consistent with the phenomenon of status-quo
bias in the following way: the much larger volume of purchases for Mainstream collection
books than for Diversity collection books is highly likely to contain purchases by consumers
whose racial or ethnic identities are not centered in these books, but who may have demand
for the status quo (i.e., the centering of the dominant group). A weakness of this link, of
course, is that we cannot quantify the extent of this with the data we have available.. Also
consistent with the demand-side force of status-quo bias, a majority of the books purchased
in our data have predominantly male-focused content, despite the fact that most of the pur-
chasers in our sample are female (Appendix Table A1). Together, these findings relate to
the patterns showing the overrepresentation of White people, and males, in both images and
text, documented in Figures 7-9, Appendix Tables A2-A4, and Appendix Figures B5-B8.

On the supply side, we find evidence supporting the notion that suppliers cater pri-
marily to the dominant group (what Waldfogel (2007) describes as tyranny of the market).
Specifically, we find that White famous figures are over-represented in the text of Main-
stream books relative to the share of White people in the U.S. population (c.f., Figure 6).
In the Seattle Public Library inventory data, we see that these libraries stock twice as many
copies of books belonging to the Mainstream collection than books belonging to the Diver-
sity collection (Table 5, Panel B).58 Finally, we show evidence in Table 5, Panel A, that
the average price of books in the Diversity collection is 22 percent higher than those in the
Mainstream collection, which is consistent with the idea that representation is being priced
in by suppliers of books.

VI.C Historical Trends and Representation

We next explore how changes in representation in the Mainstream collection over time
may be associated with historical events, trends in societal attitudes towards issues related

57Additionally, adults are both the producers of the content and the decision-makers on the award-selection
committees. Utility from homophily would predict that their preferences for book content, even in these
roles, may reflect their identities as adults.

58Number of library copies serve as a measure of supply.
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to race and gender, and changes in market share of various identity groups.

We begin by exploring how changes in representation may track salient historical
events, such as the Black Lives Matter and #MeToo movements, or the first person of a given
identity to inhabit a major societal role, such as the first female Supreme Court justice or
Black president. We show the time series of the average skin color of pictured faces (Appendix
Figure B15) and the average percentage of gendered words (Appendix Figure B16), with
a selected set of relevant salient historical events overlaid upon the graph with vertical
black lines. We emphasize that this narrative exercise is descriptive rather than causal
and hypothesis-generating rather than providing a confirmatory test of any hypothesized
relationship. We observe that these major historical events are often accompanied by a
temporary change in representation, similar to estimates of how racial attitudes respond to
economic downturns (Jayadev and Johnson, 2017).

We then explore how representation of race and gender tracks social attitudes over
time. We use data from the General Social Survey (GSS), a repeated cross-sectional survey
collecting attitudes from a nationally representative sample of people in the U.S. several
times per decade since 1972 (Smith et al., 2021). We find that attitudes towards Black
individuals – as measured by the likelihood that a person “would vote for a qualified Black
candidate for president” – have trended more egalitarian, coinciding with a trend towards
darker average perceptual tint in the skin color of character faces (Appendix Figure B17a).
Similarly, we see a trend in attitudes towards greater gender equality – as measured by
people’s acceptance of egalitarian gender roles – which coincide with a trend towards more
equal inclusion of females and males in the text of books (Appendix Figure B17b).

We can also characterize the correlation between changes in market share and the
representation of race and gender in books over time. Following existing studies estimating
this type of relationship (Acemoglu and Linn, 2004; DellaVigna and Pollet, 2007), we cal-
culate the market share of various race and gender groups and use this to estimate whether
there is a statistically detectable relationship between market share and representation of
the group in the books we study. For race, we use the share of racial groups in the US
population according to the decadal census. For gender, while the share of females in the
census is relatively stable, we can instead use the female labor force participation rate as a
measure of market share. We conceive of this as capturing the (relative) consumer power of
females relative to males.59

We find a positive and significant relationship between the market share of Asian,
59A related test for future research would be to correlate market share with prices. Because the price data

we use do not extend prior to 2017, this analysis is beyond the scope of our study.
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Black, and White people in a given decade and their representation in books from the Main-
stream collection published in that decade (Appendix Table A6). We find no evidence of a
correlation between market share and representation of Latinx people and their representa-
tion in books, but we believe this is primarily an artefact of the very low representation of
this group in books we study.60 Also, census data on Latinx individuals are only available
beginning in 1970 and we are only able to predict whether the race of a detected face is
“Latinx + Others,” both of which lead to noisier estimates. For gender, too, we find a posi-
tive and significant association. The female labor force participation rate is strongly related
to the proportion of gendered terms contained in books over time. While we find no such
correlation with the representation of gender in images, we suspect this is primarily because,
throughout our period of study, representation of gender in images is closer to parity than
it is in text.61

These results help explain the trends in representation in children’s books over time
that we document in Section V.62 In this section, we show that these results are correlated
with broader changes in overall societal mores. This aligns with findings from sociology on
the patterns of changes in racial beliefs over time (Schuman et al., 1997) and the linkages
between beliefs – particularly racial beliefs – and behavior (Ajzen et al., 2018). It also
corresponds to theoretical predictions of the evolution of social preferences (Bernheim, 1994;
Sobel, 2005). Bernheim (1994) predicts that people’s preferences will adapt to what they
think are social preferences. Similarly, Sobel (2005) predicts that preferences are informed
by a desire for reciprocity. In our setting, greater demand for a diverse set of representations
could come from awareness of increasing diversity in the U.S. population, and, as we see in
the CCES data, (gradually) increasing acceptance of racial equality for Black people.

VI.D Local Beliefs and Book Consumption

We have documented that demand for representation in children’s books is related
to the identities of the consumer. In this subsection, we provide evidence that demand for
representation in children’s books is also related to consumer beliefs.

60These patterns can also been seen visually in Figure 6, which shows the relationship over time between
population share and representation by race and ethnicity in text.

61These associations between market share and representation of specific identify groups coupled with
projected changes in U.S. demographics from the US Census Bureau suggest that representation of non-
Hispanic white will continue to decrease over the next 40 years along with their proportion of the U.S.
population. Similarly, we would expect to see a continued increase in the representation of racial groups
that are projected to have proportional increases in the U.S. population such as Black and Asian individuals
(Vespa, Medina and Armstrong, 2020). We are not aware of any long-term projected change in female labor
force participation and so do not anticipate a change in female representation stemming from this linkage.

62See Figures 4, 6, and 9, and Appendix Figures B4, B9, and B10.
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We analyze cross-sectional variation in consumer beliefs and book consumption, draw-
ing from the Cooperative Election Study (CCES), a nationally representative, stratified sam-
ple survey administered by YouGov. The survey collects information about general political
attitudes linked with respondent demographic data. We draw from the 2017 CCES data set
because it was the earliest survey year for which book purchase data were available. We
merge these data with Numerator data on the number of books from the Mainstream and
Diversity collections purchased, by zip code, from 2017-2020

In Table 6, we show that a greater number of purchases of books from the Diversity
collection is associated with a smaller proportion of individuals who believe that undocu-
mented immigrants should be deported (column 1),63 a smaller proportion of individuals
who believe that federal funds should be withheld from localities that do not follow federal
immigration laws (column 2), and a larger proportion of individuals who believe that White
people in the U.S. have certain advantages because of the color of their skin (column 3).
We see no association between the number of book purchases from the Diversity collection
and the percent of people who are angry that racism exists (column 4); this is likely because
most respondents (80 percent) answer yes to this question, as opposed to only 37 percent
who believe that undocumented immigrants should be deported.

Combined with our analysis of the representations contained in these books, and seen
through the lens of other research showing how the content of children’s books can shape
adult beliefs (Fuchs-Schündeln and Masella, 2016; Cantoni et al., 2017), the evidence we pro-
vide here suggests that children’s books may be an important factor in the intergenerational
transmission of societal values.

VI.E Limitations

In this section, we discuss some limitations of our investigation of the economic forces
behind the levels of representation we find.

The first limitation of this investigation is that it is descriptive, rather than causal,
and exploratory, rather than confirmatory. We conduct and report a series of descriptive
analyses of relationships in the cross-section and over time. We anticipate that the stylized
facts we present will serve as hypothesis-generating, instigating further work to characterize
these relationships with experimental, quasi-experimental, and structural methods.

A second limitation is that there exist a series of potential contributors to the results
analyzed in this section beyond the supply and demand forces explored above. Our analysis
attempts to characterize and investigate evidence for forces that influence what consumers

63In the CCES, the wording of the question referred to “illegal” immigrants.
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choose to purchase. We do not explore factors that may influence what consumers choose
not to purchase; for example, there is scope for for discrimination against certain identities
to drive some of these results. This force could exert itself on the decisions of purchasers,
publishers, and awards committees. Its impact would be in addition to – but separate
from – the forces we explicitly explore. Another related limitation is a potential market
response from publishers to the preferences of different award-granting committees. There is
necessarily a limited number of books that can receive major awards. If these major awards
increase consumption of books that receive those awards, publishers may actively try to
produce books that are more likely to receive these awards, reinforcing whatever patterns
of representation that publishers perceive the relevant awards committee to prefer. Because
membership on awards committees is confidential, analysis of their preferences beyond what
we present here exceeds the reach of our study.

Separately, we observe that the effect of utility from homophily is attenuated for
book purchasers who are not White, in comparison to White purchasers. We attribute this,
in part, to status-quo bias. We acknowledge, however, that part of this pattern may also
arise because of the potentially higher costs that are associated with consuming books that
highlight characters with non-dominant identities. These higher costs may come from at
least two sources – financial and psychic – which we cannot fully disentangle. The first
source may be increased financial cost stemming from there being fewer options available in
the larger market centering non-dominant identities, leading to a higher price (i.e., pricing-in
diversity). The second source may be from increased psychic costs given that the demand for
homophily by members of the dominant group may be amplified by status-quo bias, while
this may not be the case for other groups.

Additionally, our empirical analysis of the relationship between content and consumer
demographics is limited to the content in award-winning books. In Section II, we document
that these awards are strongly correlated with what is purchased and consumed in homes,
libraries, and schools. While we might wish to draw from a representative sample of the
“universe” of children’s books, such a sample is less well-defined and likely has lower per-
book influence than our analysis sample. One related challenge is how to appropriately
account for the award itself influencing consumer preferences.

Finally, the findings related to skin color can not be further explained in the scope of
our economic analysis. We do not have skin color information for individuals in the larger
population, so we can not examine the relationship between consumer skin color and revealed
preference related to content. These are important phenomena to document nonetheless,
given the importance of the role that the messages in these books play in potentially shaping
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children’s development. We leave exploration of their potential causes to future research.

VII Summary and Concluding Remarks

The books we use to educate our children teach them about the world in which they
live. The way that people are – or are not – portrayed in these books demonstrates who can
inhabit different roles within this world and, in so doing, can shape subconscious defaults.

The content of images is an important but understudied dimension of this and other
social processes related to education and belief formation. Per the adage “a picture is worth
a thousand words,” images in particular convey numerous messages to the reader, and the
images contained in the content we use to teach children are likely to be particularly influ-
ential in processes of child belief formation and development. Social scientists are leaving
data on the table by not systematically measuring the content of these messages implicitly
and explicitly sent to the viewer.

In this paper, we make three primary contributions. First, we introduce computer
vision methods to convert images into data on skin color, putative race, gender, and age of
pictured characters. Second, we apply these image analysis tools – in addition to established
natural language processing methods that analyze text – to award-winning children’s books
to document the representations to which children have been exposed over the last century.
This uncovers many sites of inequality of representation in these books, both confirming
results found in prior, manual content analysis of smaller sets of these award winning-books,
as well as revealing many novel dimensions of inequality in representation in both the images
and text of these books. Third, we analyze linkages between economic forces on the demand
and supply side described in prior research and the representation levels that we measure.
Our analysis reveals a series of stylized facts showing how these economic forces may con-
tribute to the levels of representation we document. This includes evidence that demand for
representation in children’s books, as demonstrated by local purchasing patterns, is related
to consumers’ personal and political beliefs. Our results suggest how the demand for rep-
resentation may be a channel through which beliefs about race and gender could propagate
across generations through the messages contained in the books parents purchase for their
children.

Our approach has a few key limitations. First, artificial intelligence tools reflect the
biases of the human coders that trained the models, in ways distinct from but consistent
with traditional content analysis conducted entirely manually. Second, the measures of rep-
resentation that we use are imperfect. Our measures of gender identity neglect measurement
of non-binary and gender-fluid identities. Because race is a multifaceted construct of hu-
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man categorization that is ill-defined, efforts to measure it are inherently difficult. Third,
the algorithms we use do not perfectly detect faces or isolate the skin from faces, generat-
ing measurement error. Fourth, our analysis consists of a numerical accounting of different
characters through simple representational statistics, i.e., whether characters are included.
However, this is not a holistic measure of representation. If a character is depicted in a
reductive or stereotypical manner, then their representation may send messages which may
reinforce existing inequality, despite deliberate efforts to improve equality in numerical rep-
resentation. An important avenue for future work will be to further develop tools that can
measure how people are represented and thus capture the messages sent by the manner of
their portrayal. Finally, we were able to access and analyze 1,130 of the 3,447 books rec-
ognized by these awards. To the extent that book presence or absence in the sources we
consulted (library and online) is related to book traits, we may generate a biased estimate
of representation in the larger universe of these books. We argue, however, that our ability
to access these books is most likely to be positively correlated with consumers’ ability to
access them, such that our estimates are likely to closely track the levels of representation
in the books to which children are actually exposed.

The image-to-data tools we introduce allow for the systematic measurement of char-
acteristics in visual data that were previously beyond the reach of empirical researchers.
This contribution is in the spirit of other recent work introducing new sources of data to the
economic study of social phenomena, such as text (Gentzkow and Shapiro, 2010; Gentzkow,
Shapiro and Taddy, 2019), geospatial imagery (Burchfield et al., 2006; Henderson, Storey-
gard and Weil, 2012), and traditions of folklore (Michalopoulos and Xue, 2021). Practically,
we aim to instigate the use of these tools by scholars in a wide range of fields. This may
include, for example, analysis of representation in the historical record, or in other visual me-
dia such as television programming (Jensen and Oster, 2009; La Ferrara, Chong and Duryea,
2012; Kearney and Levine, 2019), advertising (Bertrand et al., 2010; Lewis and Rao, 2015),
and textbooks (Fuchs-Schündeln and Masella, 2016; Cantoni et al., 2017).

The findings in this study – and the power of the tools we use to generate them –
generate hypotheses that can motivate and inform subsequent research on the causes and
consequences of representation in children’s books. Computational tools allow researchers
to systematically measure what content children see in their curricular materials with a
greater speed and lower costs than previously possible, while reducing discrepancies across
researchers and inaccuracies due to human error. Such measurements, paired with causal
inference tools and complementary manual content analysis for measuring features beyond
the reach of current computational tools, could be used to advance prior work on the impact
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of book content on children’s beliefs and later life outcomes (Fuchs-Schündeln and Masella,
2016; Cantoni et al., 2017; Arold, Woessmann and Zierow, 2022; Arold, 2022), for example,
linking exposure to different levels of representation with formation of beliefs, preferences,
and societal outcomes. These same measurements could also be used to better understand the
objective functions of different publishers, and how these change over time and in response
to societal events.

The “optimal” level of representation is a normative question beyond the scope of this
paper, but the actual representation in books is something that can be measured and, given
some reasonable set of goals, improved upon. Computational tools will directly contribute to
lasting improvement of the practice of education, both by helping guide curriculum choices
and by assisting publishers and content creators to prospectively assess representation in the
creation of new content. More broadly, they can help inform and contribute to ongoing and
future efforts to understand how the representation contained in content contributes to, and
can be used to reduce inequality in human development.
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VIII Exhibits: Tables and Figures

Table 1. Summary Statistics

Mainstream Diversity People of Color African American Ability Female LGBTQIA+
(1) (2) (3) (4) (5) (6) (7)

Collection Totals
Total Number of Books 495 635 577 130 29 14 15
Range of Years in our Sample 1923-2019 1971-2019 1971-2019 1971-2017 2000-2014 2013-2017 2010-2017
Book-Level Averages: Book Attributes
Number of Pages 139 148 137 147 213 314 268
Number of Words 24,362 26,520 23,816 26,328 35,273 87,411 56,771
Number of Faces 44 59 60 41 30 30 79
Number of Famous People 3 8 7 9 5 40 13
% Faces - Monochromatic Skin Color 58% 47% 47% 52% 45% 55% 45%
Book-Level Averages: Skin Color
Perceptual Skin Tint of All Faces 55 44 44 41 46 34 47
Book-Level Averages: Putative Race
% Faces Classified as Asian 6% 16% 16% 11% 6% 9% 4%
% Faces Classified as Black 2% 13% 13% 22% 8% 21% 3%
% Faces Classified as Latinx + Others 4% 3% 3% 3% 4% 1% 5%
% Faces Classified as White 88% 68% 67% 64% 82% 69% 88%
% Famous People Classified as Asian 3% 7% 7% 1% 3% 8% 5%
% Famous People Classified as Black 5% 22% 23% 55% 8% 21% 8%
% Famous People Classified as Indigenous 0% 1% 1% 0% 0% 1% 0%
% Famous People Classified as Latinx 1% 9% 10% 0% 1% 0% 2%
% Famous People Classified as Multiracial 0% 2% 2% 1% 0% 1% 3%
% Famous People Classified as White 92% 59% 57% 44% 87% 68% 82%
Book-Level Averages: Gender
% Faces Classified as Female 48% 50% 49% 43% 67% 71% 48%
% Female Gendered Words 34% 43% 42% 40% 42% 56% 45%
% Famous People Classified as Female 15% 22% 20% 24% 28% 37% 41%
Book-Level Averages: Age
% Faces Classified as Children 19% 14% 14% 10% 19% 3% 18%
% Young Gendered Words 26% 20% 20% 21% 17% 21% 32%

Note: In this table, we present summary statistics (described in the row titles) for each collection of books we analyze (named in the column titles).
Percentages may not sum to one due to rounding error.
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Table 2. Gender Representation in Book Content by Purchaser Identities

Dependent Variable: Percent of Female

Words Names Faces Images vs. Text
(1) (2) (3) (4)

Panel A: Gender of Purchaser Child

Purchaser Has a Daughter 0.032∗∗∗ 0.019∗∗ −0.002 −3.399∗∗∗
(0.008) (0.009) (0.010) (1.148)

Purchaser Has a Son −0.012 −0.020∗∗ 0.003 1.437
(0.008) (0.009) (0.010) (1.137)

Constant 0.385∗∗∗ 0.363∗∗∗ 0.415∗∗∗ 4.456∗∗∗

(Baseline Group: No Children) (0.003) (0.003) (0.004) (0.400)

Observations 9,658 9,419 6,680 8,049
Adjusted R2 0.0020 0.0010 −0.0003 0.001

Panel B: Purchaser Gender

Male −0.015∗∗∗ −0.017∗∗∗ −0.019∗∗∗ −0.654
(0.005) (0.006) (0.006) (0.711)

Other −0.006 −0.038∗∗ 0.024 1.386
(0.016) (0.019) (0.021) (2.378)

Constant 0.388∗∗∗ 0.370∗∗∗ 0.432∗∗∗ 6.645∗∗∗

(Baseline Group: Female) (0.002) (0.002) (0.002) (0.238)

Observations 28,645 28,120 18,737 22,213
Adjusted R2 0.0003 0.0004 0.0004 −0.00003

Note: We regress indicator variables for whether the purchaser has a daughter or son (Panel A) and purchaser
gender (Panel B) on four different measures of female representation contained in a purchased book. The
dependent variable in the first column is the percent of female words out of all gendered words where gendered
words include all gendered names, gendered pronouns, and gendered terms. The dependent variable in the
second column is the percent of female names out of all gendered names. The dependent variable in the third
column is the percent of female faces out of all faces detected. The dependent variable in the fourth column
is the difference between the third and first column dependent variables. We obtain book-level purchasing
data from the Numerator OmniPanel which contains data on purchases made from 2017-2020 and merge
it with our curated data on representation in award-winning children’s books. We subset purchasing data
to include purchases of award-winning children’s books which we have digitized that contain at least one
gendered word, name, or face. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3. Skin Color and Race Representation in Book Content by Purchaser Identities

Dependent variable:

Average Percent of Famous Mentions by Race
Skin Tint Asian Black Latinx White

Purchaser Ethnicity (1) (2) (3) (4) (5)

Asian −0.074 0.005∗∗∗ −0.005 0.002 −0.004
(0.709) (0.002) (0.007) (0.002) (0.008)

Black/African American −6.467∗∗∗ −0.001 0.120∗∗∗ 0.005∗∗ −0.125∗∗∗
(0.720) (0.002) (0.007) (0.002) (0.008)

Hispanic/Latino −3.287∗∗∗ 0.001 0.014∗∗ 0.013∗∗∗ −0.028∗∗∗
(0.645) (0.001) (0.006) (0.002) (0.007)

Other −2.409∗∗ 0.003 0.023∗∗ −0.002 −0.025∗∗
(1.031) (0.002) (0.010) (0.003) (0.011)

Constant 59.240∗∗∗ 0.008∗∗∗ 0.078∗∗∗ 0.007∗∗∗ 0.904∗∗∗

(Baseline Group: White) (0.190) (0.0005) (0.002) (0.001) (0.002)

Observations 14,189 18,219 18,219 18,219 18,219
Adjusted R2 0.0070 0.0004 0.0160 0.0030 0.0150

Note: We regress indicator variables indicating the race or ethnicity of the purchaser on five different
dependent variables. The dependent variable in column 1 represents the average skin tint of characters in
each book purchased in our sample. The dependent variables in columns 2-5 represent the percentage of
famous people of a different race mentioned in the text of each book purchased in our sample. We get
book-level purchasing data from the Numerator OmniPanel which contains data on purchases made from
2017-2020 and merge it with our curated data on representation in award-winning children’s books. We
subset purchasing data to include purchases of award-winning children’s books which we have digitized that
contain at least one detected face in column 1 and that contain at least one mention of a famous person in
columns 2-5. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

56



Table 4. Number of Mainstream and Diversity Books in Library Collection by Community Characteristics

Dependent variable:
Number of Award Winning Children’s Books by Collection

Mainstream Diversity Mainstream Diversity

(1) (2) (3) (4)

% of Population White, Non-Hispanic 0.465∗∗∗ −1.177∗∗∗ 0.324∗∗ −0.770∗
(0.167) (0.355) (0.159) (0.388)

Median Household Income 0.0002 −0.001
(0.0002) (0.0004)

% of Population Below Poverty Line 0.238 −0.531
(0.447) (0.778)

Number of Children’s Books in Library Branch 0.011∗∗∗ 0.021∗∗∗ 0.011∗∗∗ 0.021∗∗∗

(0.0004) (0.001) (0.0004) (0.001)

Total Population 0.0005 −0.002∗∗ 0.0005 −0.002∗∗
(0.001) (0.001) (0.001) (0.001)

Constant −1.245 67.706∗∗ −14.690 100.308∗

(13.427) (30.033) (27.152) (53.866)

Observations 53 53 53 53
Adjusted R2 0.983 0.984 0.982 0.984

Note: Each observation in the data used to make this table corresponds to a community reporting area (CRA). Each community area is manually
matched to its closest Seattle Public Library branch. Each Seattle Public Library branch is matched to at least one CRA. Column 1 shows that the
number of books which were recognized by a Mainstream award available in the library branch closest to a given CRA is increasing in the proportion of
the CRA population that is White, non-Hispanic. Column 2 shows that this relationship is decreasing for books which were recognized by a Diversity
award. Columns 3 and 4 show these results are robust to including measures of household income for a given CRA. Population demographics are
taken from the American Community Survey, 5-year Series 2013-2017 accessed through Seattle’s Data Portal. Seattle Public Library inventory data
as reported on October 1st, 2017 also accessed through Seattle’s Data Portal. Standard errors are clustered at the library branch level. Variables
containing percentages are scaled so that potential values range from 0− 100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

57



Table 5. Readership by Collection

Panel A: Average Price and Copies Purchased In Numerator OmniPanel

Number of Mean Number of Mean Copies
Copies Sold Book Price Unique Titles Sold Per Title

Collection (1) (2) (3) (4)

Mainstream 40,854 $7.66 493 83
Diversity 35,553 $9.34 1,067 33
All Other Children’s Books 1,683,406 $7.42 97,866 17

People of Color 26,899 $9.51 880 31
African American 9,081 $9.95 149 61
Female 4,892 $8.68 120 41
Ability 2,834 $8.70 55 52
LGBTQIA+ 2,838 $9.07 34 83

Note: In this table, we present summary statistics (described in the column titles) on prices and quantities
for purchases of children’s books from different collections (named in the row titles) using book purchase
level data from the Numerator OmniPanel from 2017-2020

Panel B: Seattle Public Library Inventory and Checkouts

Mean
Number of Checkouts Number of Mean Library
Checkouts Per Title Unique Titles Copies Per Title

Collection (1) (2) (3) (4)

Mainstream 107,866 823 131 14.0
Diversity 176,828 200 883 6.6
All Other Children’s Books 12,918,820 220 58,785 5.6

People of Color 155,217 206 755 6.6
African American 18,197 236 77 8.3
Female 7,240 97 75 6.5
Ability 13,028 296 44 7.5
LGBTQIA+ 8,276 251 33 9.3

Note: In this table, we present summary statistics (described in the column titles) for library book checkouts
of children’s books from different collections (named in the row titles) using data on library book inventory
and checkouts from the Seattle Public Library system between 2005-2017.
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Table 6. Local Beliefs and Children’s Book Purchases within Zip Codes

Dependent variable:

% of Respondents who think the % of Respondents
U.S. government should somewhat or strongly agree

Identify and deport Withhold federal funds from White people in the U.S. have I am angry
undocumented localities that do not follow certain advantages because of that racism
immigrants federal immigration laws the color of their skin exists

(1) (2) (3) (4)

% of Children’s Books
Purchased that Won −0.517∗∗∗ −0.677∗∗∗ 0.582∗∗∗ 0.117
a Diversity Award (0.107) (0.107) (0.109) (0.087)

% of Children’s Books
Purchased that Won −0.245∗∗ 0.063 0.321∗∗∗ 0.023
a Mainstream Award (0.118) (0.119) (0.120) (0.096)

Constant 40.347∗∗∗ 58.045∗∗∗ 52.380∗∗∗ 79.683∗∗∗

(0.549) (0.552) (0.560) (0.446)

Observations 9,046 9,046 9,046 9,046
Adjusted R2 0.003 0.004 0.004 −0.000

Note: In this table, we regress the percentage of respondents surveyed in a zip code who agree with a statement or policy (described in the column
titles) on the percentage of all children’s books purchased in that zip code which were recognized by an award in our Mainstream collection and/or
Diversity collection. Data on beliefs at the zip code level are drawn from the 2017 Cooperative Election Study Common Content Survey (Schaffner
and Ansolabhere, 2019). Data on children’s book purchases at the zip code level are drawn from the 2017-2020 Numerator OmniPanel data. Variables
containing percentages are scaled so that potential values range from 0− 100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 1. Children’s Book Readership Centered Around Award Announcements

(a) Library Checkouts

(b) Purchases

(c) Search Interest

Note: Panel A shows average daily checkouts of children’s library books between 2005-2017 from the Seattle
Public Library. Panel B shows average daily children’s book purchases between 2017-2020 from the Numera-
tor OmniPanel. Both panels are disaggregated by Mainstream books (award winners vs. honorees), Diversity
books (award winners vs. honorees), or children’s books not recognized by an award in either collection. We
scale daily checkouts and purchases by the number of unique titles in each collection and smooth the data
with a 14-day moving average. Panel C shows average weekly search interest in the U.S. between 2017-2021
from Google Trends data. We collect search interest for the eight awards with unique topic IDs in Google
Trends as described in Section II. Panels are centered around the time of award announcements each year.
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Figure 2. Converting Images and Text into Data

(a) Image-to-Data Pipeline

(b) Text-to-Data Pipeline

Note: In this figure, we show how we process scanned book pages into image and text data. In Panel A, we
show how we extract image data to construct image measures of skin color, race, gender, and age. In Panel
B, we show how we extract and isolate various dimensions of text to construct textual measures of gender,
race, and age.
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Figure 3. Skin Color Data, by Color Type

(a) Human Skin Colors (b) Monochromatic (c) Non-Typical Skin Colors

Note: This figure shows the representative skin colors of the individual faces we detect in the images found in the books from each collection. We
show these by the three color “types” present in these images: human skin colors (polychromatic skin colors where R ≥ G ≥ B), monochromatic skin
colors (e.g., black and white, sepia), and non-typical polychromatic skin colors (e.g., blue, green). The y-axis indicates the standard deviation of the
RGB values of each face. The higher the standard deviation, the more vibrant the color.
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Figure 4. Skin Colors in Faces, by Collection: Human Skin Colors

(a) Distribution of Skin Colors (b) Mean Proportion in Each Tercile, Over Time

(c) Mean Proportion in Each Tercile, All Collections

Note: This figure shows our analysis of the representative skin colors of the individual faces we detect in the
images found in the books we analyze, focusing on faces considered to be human skin colors (polychromatic
skin colors where R ≥ G ≥ B). Panel A shows the distribution of skin color tint for faces detected in books
from the Mainstream and Diversity collections. The mean for each distribution is denoted with a dashed line.
In Panel B, we show the average proportion of faces in each tercile, over time, for faces in the Mainstream
and Diversity collections. Panel C shows the overall collection-specific average proportion of faces in each
skin color tercile for each of the seven collections. Skin classification methods are described in Section IV.A.
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Figure 5. Skin Color by Predicted Race, Gender, and Age of Detected Faces

(a) Skin Color Distribution by Race

(b) Skin Color Distribution by Gender (c) Skin Color Distribution by Age

Note: This figure shows the distribution of skin color tint by predicted features of the detected faces in
the Mainstream and Diversity collections. Panel A shows differences in the skin tint distributions between
collections, conditional on predicted race. Panel B shows differences in the skin tint distributions between
faces predicted to be male and faces predicted to be female, conditional on collection. Panel C shows
differences in the skin tint distributions between faces predicted to be adults and faces predicted to be
children, conditional on collection. Skin tint extracted using methods described in Section IV.A.2. Race,
gender, and age were predicted using methods described in Section IV.A.3.
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Figure 6. Share of U.S. Population and Famous People in the Text, by Race/Ethnicity

Note: In this figure, we find the percent breakdown of famous people mentioned in a given book by
race/ethnicity. For example, if Aretha Franklin was mentioned 3 times in a book and Jimmy Carter is
mentioned 2 times, then 60% of the mentions of famous people in that book would be Black. We then show
the average percentage breakdown over all books by collection and decade for the Mainstream and Diversity
collections. We also show the share of the U.S. population by race/ethnicity for each decade as a comparison.
We classify famous people using methods described in Section IV.B. We collapse the following identities:
East Asian, Middle Eastern, and South Asian into the Asian category; North American Indigenous peoples
and South American Indigenous peoples into the Indigenous category; and African American and Black
African into the Black category. If an individual was coded as having more than one race, we classify them
as multiracial. See Appendix Figure B4 for a similar version of this graph with non-standard axes to better
see changes in groups with small population proportions.
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Figure 7. Race and Gender Classifications of Famous Figures in the Text

Note: In this figure, we count the number of famous people mentioned at least once in a given book and
sum over all books in a collection. We then show the percentage breakdown of these famous people by race
and gender. For example, if Aretha Franklin was mentioned at least once in two separate books within the
Diversity collection, we would count her twice for that collection. We identify famous individuals and their
predicted gender using methods described in Section IV.B. We manually label the race of famous individuals.
We collapse the following identities: East Asian, Middle Eastern, and South Asian into the Asian category;
North American Indigenous peoples and South American Indigenous peoples into the Indigenous category;
and African American and Black African into the Black category. If an individual was coded as having more
than one race, we classify them as multiracial. See Appendix Figure B5 for the same figure broken down by
race alone.
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Figure 8. Race and Gender Predictions of Pictured Characters

Note: In this figure, we show the proportion of detected faces in all collections by race and gender predictions.
Race and gender were classified by our trained AutoML model as described in Section IV.A.3. See Appendix
Figure B7 for the same figure broken down by race alone.
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Figure 9. Female Words as a Percent of All Gendered Words

(a) % Female Words Over Time & U.S. Population Share

(b) % Female Words Distribution Over Time

(c) % Female Words Distribution

Note: In this figure, we show female words as a percentage of all gendered words in three different ways. Panel
A shows how this average varies by decade. Panel B shows the distributions over time in the Mainstream
and Diversity collections. Panel C shows the distribution over all books in a collection. In this case, gendered
words encompass the total number of gendered names, gendered pronouns, and a pre-specified list of other
gendered terms (e.g., queen, nephew). We list the pre-specified gendered terms in the Data Appendix.
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Figure 10. Female Representation in Images and Text of Children’s Books

Note: In this figure, we plot collection-by-decade average percentages of female representation in images
(on the y-axis) and female representation in text (on the x-axis). This enables a comparison between the
proportion of females represented in the images and the proportion of females represented in the text of the
children’s books in our sample.
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