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1 Introduction

This paper makes two contributions. First, we develop a linear generalized method of mo-

ments (GMM) estimator for a discrete time mixed proportional hazard (MPH) model for

duration data, including an extension to an environment with competing risks. Second, we

apply our methodology to data from two large panels for the duration of price spells. We

then use the estimated model to re-examine three aspects of sticky price models commonly

explored in macroeconomics: the shape of the hazard of price changes as a diagnostic device

for distinguishing between different structural models; how the interaction between individ-

ual firms’ price setting decision affects aggregate price stickiness; and the different behavior

of temporary sales versus regular price changes.

Methodological Contribution. The first contribution of this paper is to develop an

estimator for a discrete time MPH model for duration data. Here we briefly describe our

benchmark MPH model, for concreteness in terms of the elapsed time between price changes

of products at the retailer level. We assume that the probability that a price changes t

periods after the last price change, conditional on not having changed earlier, is equal to θbt.

The frailty parameter θ is specific to a particular product (defined as a bar code and retailer

in our empirical application), and is fixed over time. We refer to θ as the product type and

assume throughout that it is unobserved. The value of bt is the baseline hazard at duration

t. It is common across products, but can vary arbitrarily with the elapsed time since the

last price change. The MPH model assumes that, conditional on the product type θ, the

duration of any two spells is independently and identically distributed. Thus the model is

completely specified by a value of bt for each duration t and a distribution G for the frailty

parameter θ. We are interested in estimating bt as well as some measure of heterogeneity as

captured by G.

Our estimator builds on continuous time identification results from Honoré (1993). We

first extend his identification results to discrete time, and then turn those into a set of moment

conditions, linear in bt, which allow us to estimate the baseline hazard using linear GMM.

Our estimator is consistent, it is robust to the shape of the unknown frailty distribution, it

allows that the MPH structure only holds on some interval of durations, and it handles both

left- and right-censored data. We then extend the set-up and results to an environment with

competing risks and observable characteristics, where the MPH structure may only hold for

a subset of risks and observables.

We also estimate the Kaplan-Meier hazard Ht, the probability that a typical spell ends

in period t conditional on not having ended earlier. We prove that Ht = btE[θ|t] where E[θ|t]
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is the mean frailty parameter among the spells that have had a constant price until duration

t. We prove that in the model without competing risks, the average type E[θ|t] must be

decreasing with duration t, and use the degree to which it is decreasing as a measure of the

importance of heterogeneity.

Our estimator of the baseline hazard is consistent in panel data sets that are large in

the cross-sectional dimension, so long as we observe at least two (possibly right-censored)

price spells for a positive fraction of products. That is, our inference relies on limits as

the number of products goes to infinity, but allows for a boundedly short time dimension.

Estimation and inference are simple and quick, even with large data sets, since we use linear

GMM. In realistic cases, the model is over-identified, and so we use the Hansen-Sargan J

test to explore the assumptions of the MPH model. We also test the prediction in the model

without competing risks that the average type E[θ|t] is decreasing in duration t.

Cox (1972) and Lancaster (1979) pioneered the analysis of the MPH model in continu-

ous time; see also Lancaster (1990, Chapter 4). The main contributions in terms of non-

parametric identification using single spell data and observable covariates are Elbers and

Ridder (1982) and Heckman and Singer (1984). Heckman and Honoré (1989) extend this to

a competing risks framework. The main contribution on non-parametric identification using

repeated spells is Honoré (1993). Abbring and van den Berg (2003) extend this to handle

competing risks.

The bulk of the literature estimates the continuous time MPH model using maximum

likelihood, either with continuous records or with records that are time aggregated. We

believe that there are several advantages to our approach. We impose no restrictions on the

frailty distribution, while maximum likelihood requires specifying its family, e.g. a gamma

distribution. Our estimator is linear in the baseline hazard, which makes estimation fast and

inference straightfoward. In contrast, the likelihood function can be difficult to maximize,

particularly when the frailty distribution is a mixture of gammas or when there are competing

risks. Finally, our approach to the competing risks model allows the MPH structure to hold

only for some risks, with an unspecified hazard rate for other risks. In contrast, maximizing

the likelihood requires a parameterized hazard rate (typically an MPH with known frailty

family) for all risks.

Horowitz and Lee (2004) build on Honoré’s identification argument to construct an esti-

mator for two-spell continuous time data with continuous records. Their estimator, like ours,

does not require specification of the frailty distribution. Still, there are again several advan-

tages to our estimator. It is linear, and hence simple to implement and conduct inference.

It allows us to easily use all spells, while they only provide an explicit formula using the first

two spells. It handles competing risks. It imposes no restrictions on the joint distribution
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of the unobserved type and the time a product is in the sample, while Horowitz and Lee

(2004) impose they are independent. Finally, our estimator is formulated for data measured

in discrete time, which is the usual format of duration data sets. If the data generating

process were in continuous time and continuous records were available, Horowitz and Lee’s

approach would be consistent and our method would generally not be.

Application to Price Setting. The second contribution of our paper is applying our

estimator of the MPH model to real-world data, and then using the estimates to improve

our understanding of macroeconomic models with sticky prices. For this we use the IRI

weekly store data, which record weekly revenue and weekly quantities for each product

(store and UPC code). This is a large data set, covering 30 categories of mostly packaged

products, e.g. razor blades, coffee, beer, and frozen pizza. We define the price as the ratio of

revenue to quantity, and a price spell as the time between two price changes for a product.

After cleaning, our data contains more than 21 million products. We also explore the Online

Micro Price Data from Cavallo (2018) which, while much smaller in size (250,000 products),

has daily frequencies and arguably much less measurement error.

We use these data sets to ask three substantive questions. First, we examine the shape

of the baseline hazard rate as a diagnostic device for different structural models. As is well

known, heterogeneity across products always pushes the Kaplan-Meier hazard rate down

with duration due to dynamic selection. For this reason, we concentrate on the shape of

baseline hazard rate. State dependent models with persistent cost shocks (Golosov and

Lucas, 2007) imply that the hazard rate of price changes is increasing in the time since the

last price change for any particular product. In contrast, time dependent models impose no

restriction on duration dependence in the baseline hazard, although it is often assumed that

the hazard of price changes is constant for each product (Calvo, 1983).

In the IRI data, we find a decreasing baseline hazard rate, despite uncovering a substan-

tial amount of heterogeneity. Figure 1 shows that the baseline hazard rate bt is generally

decreasing between durations 2 and 60 weeks, except for a noticeable spike near one year’s

duration. The Kaplan-Meier hazard Ht is much steeper throughout the entire time period.

As a result, the average type E[θ|t] = Ht/bt, which we normalize to 1 at the start of a spell,

declines sharply to 0.4 during the first 20 weeks. It then keeps declining at a slower pace,

reaching 0.3 after one year. The pattern for the baseline hazard is common in most product

categories, and the one for the average type holds for essentially all categories.

We find a similar pattern using the daily Online Micro Price Data, with one important

exception: we uncover a sharp spike in the hazard each week, suggesting that many prices

only change on a particular day of the week. This justifies our analysis of a discrete time
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model, where the time period of one week corresponds to the timing of price change decisions.

The second substantive question we examine is how the price setting decisions of hetero-

geneous firms are affected by and affect the path of prices following a monetary policy shock.

We explore a time-dependent pricing model, where the distribution of the duration of price

spells is exogenous and described by our estimated MPH model. When firms adjust their

price, they do so in order to maximize the expected discounted deviation from a moving

target, which in turn depends on both economic fundamentals and the average price set by

other firms. Because of the dependence on other firms’ prices, the pricing decisions exhibit

strategic complementarities, which is known to increase aggregate price stickiness in this

type of environment.

We first find the impulse response of the price level to a monetary policy shock using our

estimated MPH model. We then compare this with two artificial economies which share the

same Kaplan-Meier hazard. In one, all firms are homogeneous and the common hazard rate

of each is the Kaplan-Meier hazard. In the other, all firms set prices for a fixed duration as

in Taylor (1979, 1980), with a population distribution of durations that achieves the same

Kaplan-Meier hazard. If there is no strategic complementarity in pricing, we show that

all three economies have the same impulse response (see also Carvalho and Schwartzman,

2015). With strategic complementarity, the exact aggregation result does not hold, and so

the relationship between the three impulse responses is a quantitative question. We find that

the price level initially adjusts most quickly when firms are homogeneous and least quickly

when prices are set for a fixed duration. The response of the price level after about two

years is the reverse, largest when prices are set for a fixed duration and smallest when firms

are homogeneous. The response in our estimated model lies in between, but is closer to the

one in the homogeneous firm economy. We therefore conclude that researchers can safely

estimate the Kaplan-Meier hazard and assume that all firms are homogeneous and have this

hazard rate. On the other hand, assuming all firms are homogeneous with a constant hazard

rate (Calvo, 1983) would give the wrong shape to the impulse response.

The third question we examine is how to distinguish between regular and temporary price

changes. We use the extended framework with observable characteristics and competing risks

to estimate separately four different baseline hazard rate functions, depending on whether

the spell starts and ends with a price increase or decrease, effectively introducing a statistical

filter for sales and other temporary price changes. We think, for example, of sales as being

a subset of price decreases followed by price increases. Relative to the existing literature

(Nakamura and Steinsson, 2008), our approach to regular price changes is consistent with

the statistical models used for estimation and testing, and allows for the full generality

of the MPH model presented above. When applied to the IRI data, the baseline hazard
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function for price increases followed by subsequent price increases is much flatter than the

one for price decreases followed by price increases. That is, regular price increases have

a much flatter baseline hazard rate than the one for sales, consistent with the price plan

model in Eichenbaum, Jaimovich, and Rebelo (2011), whose hazard rate Alvarez and Lippi

(2020) analyze. A caveat is that the data appears to be much more consistent with an MPH

structure for regular price increases as compared with sales, as evidenced by the results of

the J test. For this reason, it is reassuring that our econometric approach gives consistent

estimates of the baseline hazard for regular price increases, even if sales do not have an MPH

structure.

Related Literature. Our application of duration data to price spells builds on the seminal

work of Bils and Klenow (2004). Nakamura and Steinsson (2008) and Fougere, Le Bihan, and

Sevestre (2007) offer the most thorough analyses of the shape of the baseline hazard in the

presence of unobserved heterogeneity for price changes. Nakamura and Steinsson (2008) use

both CPI and PPI data for the US, and Fougere, Le Bihan, and Sevestre (2007) use CPI data

for France. Both papers use maximum likelihood to estimate the parameters of a continuous

time duration model with a parametric frailty distribution. Nakamura and Steinsson (2008)

assume the monthly and bimonthly data comes from continuous time records, while Fougere,

Le Bihan, and Sevestre (2007) correct for time aggregation.

The Nakamura and Steinsson (2008) approach and ours yield qualitatively similar results

on our data set, although there are some significant quantitative differences. To see this, we

maximize the likelihood function for a continuous time model with continuous time records

using the IRI data set. This estimator recovers less heterogeneity than our GMM estimator.

For instance, the average type is estimated to decrease from E[θ|t] = 1 during the first

week to E[θ|t] = 0.37 at six months using the GMM estimates. Instead it decreases to only

E[θ|t] = 0.48 using the maximum likelihood estimates. Equivalently, the baseline hazard

rate estimated using GMM is flatter than the one estimated using maximum likelihood with

continuous records. We also compare our results with those we obtain by maximizing the

likelihood for time-aggregated records. We conclude that in our data set, time aggregation

is quantitatively important but the shape of the frailty distribution and whether we assume

time is continuous or discrete is less so.

The closest paper in terms of application, if not results, is Fougere, Le Bihan, and Sevestre

(2007). They estimate the baseline hazard for almost 400 product categories at a similar

level of aggregation to ours. They find very little evidence of unobserved heterogeneity

within these categories. They test whether the baseline hazard is constant and fail to reject

this hypothesis in more than half of the categories. These results contrast with ours. We
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hypothesize that one reason is the lower frequency of their data (their price data is gathered

monthly while ours is gathered weekly). Another more important reason is that they have

many fewer price spells per category, roughly three orders of magnitude fewer than ours.

Hence, they have less power to reject the null hypothesis of a constant baseline hazard.

Fougere, Le Bihan, and Sevestre (2007) also specify and estimate a competing risks model

where a price spells can end with a price increase or a price decrease. They estimate this

model without unobserved heterogeneity and conclude that this extension barely affects the

shape of the baseline hazard, a result that is again very different than ours. Finally, they note

that their estimator did not converge for the competing risks model with unobserved het-

erogeneity. Since our GMM estimator is linear in the baseline hazard even in the competing

risks extension, this is not an issue for us.

Our three substantive questions are related to a variety of papers, and we turn to those

next. The first is about the shape of the hazard rate in structural price setting models. The

simplest model of price adjustment is Calvo (1983), where the hazard of price adjustment

is a constant function of duration. If this probability differs across firms, as in Carvalho

(2006), the model has an MPH structure with a constant baseline hazard and a decreasing

Kaplan-Meier hazard. Another large class of models assumes state-dependent prices, e.g.

Golosov and Lucas (2007). In a canonical version of this model, the desired price follows

a stochastic process, exogenous to any firm, and a firm can adjust its price at any time by

paying a fixed cost. Under some regularity conditions, a firm optimally adjusts its price

when the difference between the current and desired price is too high, and the hazard of

price changes is increasing in duration.

In most cases, adding heterogeneity across firms into a structural model of price setting

will typically not lead to an MPH representation. For example, Nakamura and Steinsson

(2010) use a model with heterogenous firms following a combination of time and state-

dependent price rules to investigate the degree of monetary non-neutrality. In this case, the

resulting statistical model will not be exactly an MPH model. Still, we have found that in

quantitative versions of these models, the shape of the baseline hazard recovered using an

MPH model resembles the “typical” hazard rate for the original model.

The second substantive question we analyze is the effect of monetary policy in an environ-

ment with time-dependent price setting rules. Caballero (1989), Reis (2006), and Alvarez,

Lippi, and Paciello (2011) analyze models of firms’ price setting based on costly information

gathering. In an environment with neither strategic complementarity nor strategic substi-

tutability in price setting, they show that optimal price setting rules are pure time-dependent.

Alvarez, Lippi, and Paciello (2011) show how these decision rules apply to a once and for

all monetary shock. Carvalho (2006) and Nakamura and Steinsson (2010) use models where
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firms follow time-dependent and state-dependent price setting rules, respectively, to evaluate

real effects of monetary policy in presence of heterogeneity. Both papers find that not taking

heterogeneity into account leads to underestimation of the real impact of monetary policy.

Carvalho and Schwartzman (2015) obtain an analytical characterization of the cumulative

impulse response of the aggregate price level to a monetary shock in the presence of hetero-

geneity for a general time-dependent pricing models. Our analysis further generalizes this

to a case not previously considered in the literature mentioned above, where price setting

exhibits strategic complementarity.

The third substantive question is related to price setting models of price plans, as intro-

duced by Eichenbaum, Jaimovich, and Rebelo (2011) and further analyzed by Alvarez and

Lippi (2020). In these models, a firm can adjust costlessly between a set of prices constitut-

ing a “price plan,” but it has to either pay a fixed cost or just wait for a free adjustment

opportunity to switch its price plan. A firm that follow a price plan will show frequent rever-

sal of prices, since changes within the plan are assumed costless. As a consequence, in these

models the hazard of changing the price may be decreasing; see Section F of the Appendix

of Alvarez and Lippi (2020). In particular, when a price plan containing two prices can be

modified with probability λ in each period, the hazard of changing the price is 1/(2t) + λ at

duration t.

This paper proceeds as follows. In Section 2, we describe the discrete time MPH model,

prove it is nonparametrically identified using repeated spell data, and define the Kaplan-

Meier hazard. In Section 3, we discuss measurement issues, especially left- and right-

censoring. We then present our estimators for the baseline and Kaplan-Meier hazards. Sec-

tion 4 extends the framework to allow for observable characteristics and competing risks. We

then discuss our data sets in Section 5 before turning to our applied results. In Section 6 we

present our estimates of the baseline hazard in both data sets, and then use the estimated

model to analyze the aggregate implications of microeconomic heterogeneity for a monetary

policy shock. Section 7 distinguishes temporary and regular price changes, showing that the

baseline hazard is much flatter for regular price increases compared to the end of sales, and

that moreover only the former fits the MPH structure. Section 8 compares our results with

those we obtain using other estimation techniques, especially maximum likelihood estimation

of a continuous time model with continuous records. Finally, we conclude in Section 9.
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2 Discrete Time MPH

2.1 Model

We consider a continuum of products. Each product has a fixed type θ with cumulative

distribution function G(θ), also known as the frailty distribution. The fixed type may be

correlated with some observable individual characteristics, but we are interested in cases

where the econometrician does not observe θ perfectly. For expositional simplicity, we focus

on the case where the econometrician does not observe any individual characteristics.

Time is discrete and the amount of time between price changes is a random variable

taking values in the positive integers, 1, 2, . . . . We call this elapsed time the spell length.

The MPH model specifies that conditional on a spell length at least equal to t, the probability

that the length is exactly t, i.e. the hazard at duration t, is the product of two components,

the product’s type θ and the baseline hazard bt, which is common to all products.

We assume the baseline hazard bt is strictly positive for at least one value of t. We also

assume that the frailty distribution G(θ) has a bounded support [θL, θH ] with θHbt ≤ 1 and

0 ≤ θLbt < 1 for all t = 1, 2, . . . . We also allow that different types of products are observed

with different probability and let ω(θ) > 0 denote the weight on observations for type θ

products. In our application, we will specify this to be the frequency weight (number of

spells per unit of time) for a type θ product. It will be convenient to define the weighted

frailty distribution

G(θ|ω) ≡
∫ θ
θL
ω(θ′)dG(θ′)∫ θH

θL
ω(θ′)dG(θ′)

. (1)

The sequence of baseline hazards {b1, b2 . . . }, the frailty distribution G, and weights ω

determine the distribution of spell lengths in the population. The duration distribution can

be described by its cumulative distribution function, or equivalently, by its survival function

Φt(ω) ≡
∫ θH

θL

t∏
s=0

(1− θbs)dG(θ|ω), (2)

where for notational convenience we define b0 = 0. This is the fraction of spells that last

strictly more than t periods.

Only the product of the baseline hazard bt and the type θ enters the survival function.

This implies that we can multiply the baseline hazard at all durations by a positive multi-

plicative constant and divide the type of each product by the same constant without affecting

the probability of any outcome. In what follows, we therefore identify the baseline hazard

up to a multiplicative constant.
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2.2 Identification with Multi-Spell Data

We now show that the model is non-parametrically identified with data on two spells. To

do this, we first define the two-spell survival function:

Φt1,t2(ω) ≡
∫ θH

θL

(
t1∏
s=0

(1− θbs)

)(
t2∏
s=0

(1− θbs)

)
dG(θ|ω). (3)

This is the ω-weighted probability that first spell length is greater than t1 and the second

spell length is great than t2 given our model structure. It uses the assumption that the

length of the two spells is independent conditional on the product type θ.

In this section, we think of the one- and two-spell survival functions as something we

can observe in the data,1 and ask how we can use them to recover the baseline hazard

b ≡ {b1, b2, . . . } (up to the aforementioned multiplicative constant) and the weighted frailty

distribution G(·|ω). Our proof is an adaptation of the identification result of Honoré (1993)

to the discrete time model.

Proposition 1 For an arbitrary weight ω, the baseline hazard b is identified up to a multi-

plicative constant using the two-spell survival function Φt1,t2(ω). Given b, the frailty distri-

bution G(·|ω) is identified using the one-spell survivor function Φt(ω).

Proof. We first show how to identify the baseline hazard and then show how to identify the

frailty distribution.

Baseline Hazard. The definition of the two-spell survival function in equation (3) implies

Φt1−1,t2−1(ω)− Φt1,t2−1(ω) = bt1

∫ θH

θL

θ

(
t1−1∏
s=0

(1− θbs)

)(
t2−1∏
s=0

(1− θbs)

)
dG(θ|ω),

Φt1−1,t2−1(ω)− Φt1−1,t2(ω) = bt2

∫ θH

θL

θ

(
t1−1∏
s=0

(1− θbs)

)(
t2−1∏
s=0

(1− θbs)

)
dG(θ|ω).

It follows immediately that

bt2
(
Φt1−1,t2−1(ω)− Φt1,t2−1(ω)

)
= bt1

(
Φt1−1,t2−1(ω)− Φt1−1,t2(ω)

)
.

By varying t1 and t2, we can recover b up to a multiplicative constant.

1If the duration distribution is defective, limt→∞Φt(ω) ≥ 0, there is a positive probability that we would
not observe a second spell. Here we ignore that issue by assuming Φt1,t2(ω) is known, but our estimator in
Section 3 handles defective duration distributions.
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Frailty Distribution. Let µk ≡
∫ θH
θL

θkdG(θ|ω) denote the kth moment of the frailty dis-

tribution G(·|ω). It exists since the distribution is bounded. Once we know the baseline

hazard b up to a multiplicative constant, the model implies that the probability that the

completed duration of a spell is t is Φt−1(ω)− Φt(ω), a known function of µk, k = 1, . . . , t:

Φt−1(ω)− Φt(ω) = bt

∫ θH

θL

θ
t−1∏
s=0

(1− θbs)dG(θ|ω) = bt

t−1∑
k=0

αk(t− 1; b)µk+1, (4)

where for all t, k ≥ 1, the coefficients αk(t; b) are defined recursively as follows:

αk(t; b) =


1 if k = 0

0 if k > t

αk(t− 1; b)− btαk−1(t− 1; b) if t ≥ k > 1

(5)

We know b. Setting t = 1 in equation (4) gives us an equation for µ1. Having found

µ1, . . . , µk−1, setting t = k in equation (4) gives us an equation for µk. Thus by induction

we can find all the moments µk of G(·|ω). Since the support of G(·|ω) is a bounded interval

[θL, θH ], its moments uniquely determine distribution G(·|ω).

Proposition 1 is behind our approach to estimation, where we convert this logic into

moment conditions for the case where we have measures of the survival function from a

finite sample.

2.3 Kaplan-Meier Hazard

The Kaplan-Meier hazard is the probability that the spell length is exactly t conditional on

it being at least t, but not otherwise conditional on the product’s type:

Ht(ω) ≡ Φt−1(ω)− Φt(ω)

Φt−1(ω)
= bt

∫ θH
θL

θ
∏t−1

s=0(1− θbs)dG(θ|ω)∫ θH
θL

∏t−1
s=0(1− θbs)dG(θ|ω)

. (6)

This is the baseline hazard bt times the average type among those products with spell length

at least t,

∫ θH
θL

θ
∏t−1
s=0(1−θbs)dG(θ|ω)∫ θH

θL

∏t−1
s=0(1−θbs)dG(θ|ω)

. This gives a clear decomposition of the evolution of the

Kaplan-Meier hazard Ht(ω) into the component explained by structural duration depen-

dence, captured through the baseline hazard bt, and the component explained by dynamic

selection of heterogeneous products, captured through changes in the average type over time.

An implication of the MPH model is that the average type declines with duration:
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Proposition 2 Assume bt > 0 for all t. For any weights ω, the ratio of the Kaplan-Meier

hazard to the baseline hazard, Ht(ω)/bt, is strictly decreasing in t.

Proof. We let Gt(θ|ω) be the distribution of θ among those products whose duration is at

least t,

Gt(θ|ω) ≡
∫ θ
θL

∏t−1
s=0 (1− θ′bs) dG(θ′|ω)∫ θH

θL

∏t−1
s=0 (1− θ′bs) dG(θ′|ω)

.

Consider the double ratio of the densities at θ1 < θ2 and t1 < t2:

dGt1(θ2|ω)

dGt2(θ2|ω)

dGt2(θ1|ω)

dGt1(θ1|ω)
=

∏t1−1
s=0 (1− θ2bs)∏t2−1
s=0 (1− θ2bs)

∏t2−1
s=0 (1− θ1bs)∏t1−1
s=0 (1− θ1bs)

=

t2−1∏
s=t1

1− θ1bs
1− θ2bs

,

Since θ1 < θ2, 1− θ1bs > 1− θ2bs and so
∏t2−1

s=t1
1−θ1bs
1−θ2bs > 1. That is,

dGt1(θ2|ω)

dGt2(θ2|ω)
>
dGt1(θ1|ω)

dGt2(θ1|ω)
. (7)

This in turn implies that Gt1 first order stochastically dominates Gt2 , Gt1(θ|ω) < Gt2(θ|ω)

for all θ ∈ (θL, θH). To prove this, suppose to the contrary that there exists a θ ∈ (θL, θH)

with Gt1(θ|ω) ≥ Gt2(θ|ω). Since these are distribution functions, it follows that∫ θ

θL

dGt1(θ′|ω) ≥
∫ θ

θL

dGt2(θ′|ω) and

∫ θH

θ

dGt1(θ′|ω) ≤
∫ θH

θ

dGt2(θ′|ω),

and in particular that there exists a θ1 ∈ [θL, θ] and a θ2 ∈ (θ, θH ] such that

dGt1(θ1|ω) ≥ dGt2(θ1|ω) and dGt1(θ2|ω) ≤ dGt2(θ2|ω).

That contradicts equation (7).

Since Gt1 first order stochastically dominates Gt2 , the expected value of θ is higher under

the former distribution than the latter,∫ θH
θL

θ
∏t1−1

s=0 (1− θbs)dG(θ|ω)∫ θH
θL

∏t1−1
s=0 (1− θbs)dG(θ|ω)

>

∫ θH
θL

θ
∏t2−1

s=0 (1− θbs)dG(θ|ω)∫ θH
θL

∏t2−1
s=0 (1− θbs)dG(θ|ω)

.

Using equation (6), this implies Ht1(ω)/bt1 > Ht2(ω)/bt2 .

This result reflects dynamic sorting and is intuitive: products with a higher type have a

higher chance of changing their price early and thus exit the pool of surviving products. As

duration increases, products with lower type disproportionately remain. Lancaster (1979)
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discusses the same point in a related continuous-time setup.

3 Estimation and Testing

In this section, we turn the identification result in Proposition 1 into moment conditions

for the baseline hazard. We work in a more general environment, where there is an MPH

data generating process for durations t ∈ {
¯
T, . . . , T̄}, 1 ≤

¯
T < T̄ < ∞, but not necessarily

for durations outside this interval. More precisely, let ht(θ) be the hazard at duration

t = 1, 2, . . . for a product with type θ. For t ∈ {
¯
T, . . . , T̄}, we assume ht(θ) = θbt, but

we allow for arbitrary ht(θ) ∈ [0, 1] outside this interval. For notational convenience, let

h0(θ) = 0 for all θ.

Our estimator works with right-censored duration data and allows for a defective dura-

tion distribution. It recognizes that some products may have only a single spell, but uses

information from all available spells. This is important in our empirical application.

After we show how to estimate the baseline hazard, we turn to estimation of the Kaplan-

Meier hazard rate, the average hazard rate among all products with spells lasting t periods.

Here we seek an estimator that does not rely on the MPH structure at all, but simply uses

stationarity assumptions on the data generating process.

3.1 Censoring and Measurement

We start by introducing left- and right-censoring into the duration model. A product i is

described by a type θi and a censoring time ci, possibly correlated. We continue to let G(θ)

denote the frailty distribution and G(θ|ω) denote the frailty distribution weighted by ω, as in

equation (1). We let Qc(θ) be the cumulative distribution of censoring times conditional on

type, with density qc(θ) ≡ Qc(θ) − Qc−1(θ), allowing for an arbitrary correlation structure.

The product type affects the true duration of spells through the hazard function ht(θ
i), while

the censoring time is equal to the number of (consecutive) periods during which we observe

the product.

For results concerning the Kaplan-Meier hazard, we make an additional assumption on

the duration of the in-progress spell when we first observe the product: it is a random draw

from the stationary ergodic duration distribution for that product. More precisely, let ω̃t(θ)

denote the probability that a type θ product last changed its price t periods ago in the

stationary ergodic duration distribution. We measure this immediately after firms change

their price, so ω̃0(θ) is the probability a firm changes its price. For arbitrary t ≥ 0, this

12



satisfies ω̃t+1(θ) = (1− ht+1(θ))ω̃t(θ). Using
∑∞

t=0 ω̃t(θ) = 1, this implies

ω̃t(θ) =

∏t
s=0(1− hs(θ))∑∞

t′=0

∏t′

s=0(1− hs(θ))
. (8)

If the initial duration for a type θ product is a random draw with density ω̃t(θ), we call this

a stationary mixture model.2

If we observed product i for infinitely long, we would see a vector of completed durations

τ i = {τ i0, τ i1, . . . , τ iK̄i}, where K̄i is either a non-negative integer or infinite and
∑K̄i

j=0 τ
i
j =∞.3

But we do not observe any product for infinitely long. The censoring time ci affects the

measured duration of spells, which we denote by ζi = {ζ i0, ζ i1, . . . , ζ iKi}. In particular, since

the censoring time ci is finite, we only observe a finite number of spells, Ki ≤ K̄i.

To define Ki and ζi, it is useful to first define the residual censoring time after the start

of each spell, cij with ci0 = ci. The initial spell j = 0 may be in progress when we first observe

the product, and hence its measured duration may be left-censored, ζ i0 ≤ τ i0. Subsequently

we define the residual censoring time for the jth spell as cij = cij−1 − ζ ij−1. The jth spell is

uncensored if its completed duration is less than the residual censoring time, τ ij ≤ cij; in

this case, the measured duration is ζ ij = τ ij . If τ ij > cij ≥ 0, the measured duration is right

censored at ζ ij = cij + 1 ≤ τ ij ; additionally, we set Ki = j.4 We do not observe anything

about spells j > Ki and they are not part of the vector ζi.

We assume that the baseline hazard b0 = {b0,
¯
T , . . . , b0,T̄} is nontrivial, by which we mean

b0 6= 0, and let T0 be the smallest t ≥
¯
T with b0,t > 0. We then impose the following rank

condition:

Assumption 1 K ≥ 2, ζ1 = T0, and ζ2 ≥ T̄ with G-positive probability.

This ensures that we have enough data to compare bT0 to bT̄ . It holds if and only if

∫ θH

θL

(
1−QT0+T̄−1(θ)

) T̄−1∏
t=1

(1− ht(θ))dG(θ) > 0.

This requires that there is a positive measure of product types θ with (i) a positive probability

2The stationary ergodic distribution is defined for a type θ product if and only if the expected duration
of a spell is finite, since this is a necessary and sufficient condition for the denominator in equation (8) to be
finite. We assume that this is the case when we examine the Kaplan-Meier hazard.

3If the duration distribution is defective,
∏∞

s=1(1 − hs(θi)) > 0, K̄i will be almost surely be finite with
τ i
K̄i =∞. Otherwise K̄i is almost surely infinite.

4The addition of one period to the measured duration of the right-censored spell captures the fact that
we know the spell lasts strictly longer than cij periods and ensures that ζiKi is a tight lower bound on the

duration of the final spell. These definitions imply that if ci1 > 0,
∑Ki−1

j=1 τ ij ≤ ci1 and
∑Ki

j=1 τ
i
j > ci1, with

Ki = 1 if τ i1 > ci1.
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of a censoring time at least equal to T0 + T̄ and (ii) a positive probability of a spell lasting at

least T̄ periods. If either of these assumptions were violated, no product would have K ≥ 2

with ζ1 = T0 and ζ2 ≥ T̄ . In particular, the first assumption ensures that we can observe the

product long enough to have K = 2, with spell 0 ending in the first period, spell 1 ending

T0 periods later, and spell 2 lasting at least until T̄ .

When this combination of assumptions determines the distribution of measured duration

ζ and the rank assumption 1 is satisfied, we say that ζ is drawn from an MPH model with

baseline hazard b0. We turn next to a consistent estimate of the baseline hazard when

measured duration ζ is drawn from an MPH model with baseline hazard b.

3.2 Moment Conditions for the Baseline Hazard

In Section 2, we argued that for any durations t1, t2 and any weighting function ω, the model

implies

bt2 Pr[τ i1 = t1, τ
i
2 ≥ t2] = bt1 Pr[τ i1 ≥ t1, τ

i
2 = t2].

If we observed two completed spells per product, it would be straightforward to turn this

result into a moment condition:

E
[
bt21τ i1=t1,τ i2≥t2 − bt11τ i1≥t1,τ i2=t2

]
= 0,

since expected value of the indicator function is the probability of the corresponding event.

Censoring affects our ability to use such conditions since τ i1 and τ i2 are not always observed.

For example, if there is a positive probability that τ i1 > ci1 ≥ t1, then there is no function of

data that is equivalent to 1τ i1≥t1,τ i2=t2 . To see why, note that the first spell is right censored

for any product with τ i1 > ci1 ≥ t1, and so this record does not depend at all on τ i2 and in

particular does not depend on whether τ i2 = t2.

We use two key observations to circumvent this. Consider a product where we observe

at least two spells, Ki ≥ 2. First, if ci1 ≥ t1 + t2, we can evaluate whether the event

τ i1 = t1, τ
i
2 ≥ t2 occurred using objects we observe. This is because we see the product for

long enough to tell if the first spell lasts exactly t1 periods; and if it does, we see it long

enough to tell if the second spell lasts at least t2 periods. The second is that the model

implies probabilities are symmetric across the two spells, so the events τ i1 ≥ t1, τ
i
2 = t2 and

τ i1 = t2, τ
i
2 ≥ t1 are equally likely. While we cannot evaluate an indicator function for the

first event, we can evaluate one for the second event for all individuals with ci1 ≥ t1 + t2.
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This motivates the following moment condition:

E
[
bt21Ki≥2,ζi1=t1,ζi2≥t2 − bt11Ki≥2,ζi1=t2,ζi2≥t1

]
= 0.

Our main result formalizes these observations and shows how to develop a moment condition

that uses information from two arbitrary spells, not just the first two spells:

Proposition 3 Assume ζ = (ζ0, ζ1, . . . , ζK) is drawn from an MPH model with baseline

hazard b0. Define

f
[b]
t1,t2(ζ; b) ≡

∑
(j,k):1≤j<k≤K

(
bt21ζj=t1,ζk≥t2 − bt11ζj=t2,ζk≥t1

)
. (9)

Then E
[
f

[b]
t1,t2(ζ; b)

]
= 0 for all

¯
T ≤ t1 < t2 ≤ T̄ if and only if b = λb0 for some number λ.

We postpone the proof of this Proposition, since we can obtain it as a special case of Propo-

sition 5 below. See Appendix A for the proof of that proposition and the explanation for

why Proposition 3 is a special case.

We use Proposition 3 to build a GMM estimator of b0 for some strictly positive λ. Let

T = T̄ −
¯
T . We have T (T + 1)/2 moment conditions of the form E

[
f

[b]
t1,t2(ζ; b0)

]
= 0 for

some
¯
T ≤ t1 < t2 ≤ T̄ , each linear in the T + 1 vector b0. The basic idea of GMM is

to replace the expected value with the sample mean, so we have the moment condition
1
I

∑I
i=1 f

[b]
t1,t2(ζi; b) = 0. We estimate b0 by minimizing the quadratic form of the error

in the moment conditions, weighted by a positive-definite matrix W . The “if” part of

Proposition 3 gives us the necessary condition for this estimator to be consistent, while the

“only if” part gives us sufficiency. We discuss further details of the GMM estimator, including

standard errors and clustering, in Appendix B. Here we highlight one important feature of

our approach: since the moment conditions in equation (9) are linear in the baseline hazard,

we obtain the GMM estimator of b0 in closed form.

The multiplicative structure of the MPH model is restrictive and can be tested using

a J-test of overidentifying restrictions. In particular, Proposition 3 gives us T (T + 1)/2

moment conditions to estimate T parameters in the vector b0. For T ≥ 2, the model is thus

overidentified.

We can also build on the proof of Proposition 1 to find moment conditions for the moments

of the type distribution. Unfortunately, unless we impose that the proportional hazard

structure holds at the shortest duration,
¯
T = 1, and that censoring time ci1 and type θi

are independent, these conditions are difficult to interpret. We therefore relegate them to

Appendix C.4 and do not report them in our main analysis.
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3.3 Moment Conditions for the Kaplan-Meier Hazard

Proposition 2 tells us that the ratio of the Kaplan-Meier hazard to the baseline hazard,

Ht(ω)/bt, is decreasing in t for any weighting function ω. Generalizing equation (6) to the

case of an arbitrary type-dependent hazard function ht(θ), the Kaplan-Meier hazard rate at

duration t is

Ht(ω) ≡
∫ θH
θL

ht(θ)
∏t−1

s=0(1− hs(θ))dG(θ|ω)∫ θH
θL

∏t−1
s=0(1− hs(θ))dG(θ|ω)

. (10)

We seek to test this prediction, but first must describe our choice of ω and how we estimate

Ht(ω).

Anticipating our theoretical model of price setting described in Section 6.3, we would like

to measure the hazard rate for a typical spell, rather than a typical product. In a stationary

mixture model, defined in Section 3.1, a product changes its price with a fixed probability

per unit of time. We thus want weights ω∗ equal to the expected number of times that a

type θ product changes its price during the observation window:

ω∗(θ) ≡
∑∞

c=1 cqc(θ)∑∞
t=0

∏t
s=0(1− hs(θ))

. (11)

The numerator is the expected censoring time for a type θ product. We multiply this by the

expected number of price changes per unit of time for that product type, ω̃0(θ) defined in

equation (8).5

Unfortunately, censoring limits our ability to estimate Ht(ω
∗) for t ∈ {

¯
T, . . . , T̄}. In

particular, if c ≤ T̄ , we cannot observe a spell j ≥ 1 which lasts T̄ periods.6 This means

that we cannot estimate the Kaplan-Meier hazard at duration T̄ for such products. Since we

want to estimate the Kaplan-Meier hazard at all durations {
¯
T, . . . , T̄} across a fixed set of

products, we must focus attention on the subset of productst that we observe for more than

T̄ periods. That is, we thus seek to estimate Ht(ω
f ), where the feasible frequency weight ωf

satisfies

ωf (θ) ≡
∑∞

c=T̄+1 cqc(θ)∑∞
t=0

∏t
s=0(1− hs(θ))

. (12)

This gives zero weight to any product that we observe for less than T̄ periods, but is otherwise

the same as ω∗(θ).

We now give a consistent estimator of the Kaplan-Meier hazardH(ωf ) = (H
¯
T (ωf ), . . . , HT̄ (ωf )):

5The denominator is also equal to the expected duration of a price spell for a type θ product.
6Recall all observations start with an ongoing spell j = 0 of unknown duration. Thus ci ≤ T̄ implies the

residual censoring time at the start of spell 1 satisfies ci1 ≤ ci − 1 and hence ci1 < T̄ .
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Proposition 4 Assume ζ = (ζ0, ζ1, . . . , ζK) is drawn from a stationary mixture model with

Kaplan-Meier hazard H0(ωf ). Define

f
[H]

t,T̄
(ζ;H) ≡

 c
c−T̄

∑K
j=1

(
Ht1ζj≥t,cj≥T̄ − 1ζj=t,cj≥T̄

)
if c > T̄

0 if c ≤ T̄
(13)

where c =
∑K

j=0 ζj − 1 and cj =
∑K

j′=j ζj′ − 1. Then E
[
f

[H]

t,T̄
(ζ;H)

]
= 0 for all

¯
T ≤ t ≤ T̄

if and only if H = H0(ωf ).

We prove this result in Appendix A. The basic idea is that 1
I

∑I
i=1

∑K̄i

j=1 1τ ij≥t and

1
I

∑I
i=1

∑K̄i

j=1 1τ ij=t
are consistent (but infeasible) estimates of the survivor function and den-

sity at duration t. For t ≤ T̄ and cij ≥ T̄ , the indicator functions are equivalent to ones

using measured duration ζ ij instead of completed duration τ ij , suggesting a path towards a

feasible estimator. The only difficulty is that this underweights products with short censor-

ing times ci. We prove that when durations are drawn from a stationary mixture model, the

multiplicative factor ci

ci−T̄ is the correct reweighting.

We test monotonicity of the ratio Ht(ω
f )/bt by looking at the inequalities

(
logHt(ω

f )− log bt
)
−
(
logHt+1(ωf )− log bt+1

)
≥ 0 ∀t =

¯
T, . . . , T̄ − 1.

This gives us T inequalities, which we test jointly using Chen and Szroeder (2009).

4 Observables and Competing Risks

We now consider two extensions to our basic model, allowing for (possibly spell-specific)

observable characteristics which affect the hazard, and permitting competing risks for why a

spell ends. In our empirical application, the observable characteristics include the product’s

category and whether the spell starts with a price increase or decrease; and the competing

risk is a spell ending with a price increase or decrease.

4.1 Setup

We assume that each product is characterized by an unobserved type vector θ with popula-

tion distribution G(θ). In addition, we assume that each product and spell has an observable

characteristic, say χj ∈ {1, . . . , X} for the jth spell. We allow for correlation between ob-

servables and unobservables, as discussed below.
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Both the observed and unobserved characteristics affect the joint distribution of the

duration of a spell and the reason why the spell ends. We let hrt (χ,θ) ≥ 0 denote the

probability that a spell with observable χ and unobservable θ ends at duration t ∈ {1, 2, . . . }
for reason r ∈ {1, . . . , R} conditional on not ending earlier. χ captures all observables that

affect the hazard, and so in particular conditioning on past observables is not useful for

forecasting the hazard.7 Let ht(χ,θ) ≡
∑R

r=1 h
r
t (χ,θ) denote the probability of a duration t

spell with observable χ and unobservable θ ending in period t. We assume that ht(χ,θ) ≤ 1

for all θ, so this is a proper probability, and
∫
ht(χ,θ)dG(θ) < 1, so there is a chance of

observing spells with observable χ at any duration.

The initial (left-censored) observable characteristic χ0 is a random variable. Let π0(x|θ) ≥
0 denote the probability that χ0 = x given θ, with

∑X
x=1 π0(x|θ) = 1 for all θ. There-

after, the observable characteristic follows a first order Markov process. For j ≥ 1, let

π(x|χj−1, ρj−1,θ) ≥ 0 denote the probability that χj = x conditional on the observable

characteristic of the previous spell χj−1 ∈ {1, . . . , X}, the reason the previous spell ended

ρj−1 ∈ {1, . . . , R}, and the unobserved type, with
∑X

x=1 π(x|χj−1, ρj−1,θ) = 1 for all χj−1,

ρj−1, and θ.8 This structure is rich enough to allow for an arbitrary relationship between

observable and unobservable characteristics.

For at least one observable characteristic x, reason r, and set of durations {
¯
T, . . . , T̄},

we assume that there is a proportional hazard representation, hrt (x,θ) = φ(θ)bt for all

¯
T ≤ t ≤ T̄ , where φ(θ) is a scalar function of the unobserved type vector θ and bt ≥ 0 for all

t ∈ {
¯
T, . . . , T̄}. We focus throughout on this pair (x, r) and seek to estimate b = {b

¯
T , . . . , bT̄}

up to a multiplicative constant.

We do not impose any restrictions on hr
′
t (x′,θ) for (x′, r′) 6= (x, r). However, we allow

for the possibility that multiple hazards have a proportional hazard representation, with

potentially different scaling functions φ and different baseline hazards b. In this case, we can

jointly estimate all the baseline hazards. We note, however, that even if all the hazards have

a proportional hazard representation, the hazard of a spell with characteristic x ending for

any reason, ht(x,θ), generally does not have a proportional hazard representation. Thus we

may reject the MPH model but not fail to reject this more general specification.

7To be precise, let ĥrt (χ1, . . . , χj ,θ) denote the probability that a spell with current and lagged observables
χ1, . . . , χj and unobservable θ ends at duration t ∈ {1, 2, . . . } for reason r ∈ {1, . . . , R} conditional on not

ending earlier. Then we assume hrt (χj ,θ) = ĥrt (χ1, . . . , χj ,θ). One can view this as a definition of the
observable state χj .

8We assume a Markovian structure for notational simplicity, but can easily relax this assumption. A
substantive assumption is that the duration of one spell does not directly affect the duration of later spells,
i.e. we assume that there is no lagged duration dependence. We do not know how to relax this assumption
without imposing additional structure elsewhere in the model. Still, we allow for the possibility that the
reason one spell ends can influence the duration of the next spell. This is important in our empirical
application.
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4.2 Identification

To understand identification, it is useful to consider an environment with left-censoring but

no right-censoring. Consider a product where spell 0 has observable characteristic x0 and

ends for reason r0. We compute the conditional probability that the first uncensored spell has

observable characteristic x and ends for reason r at duration t1, while the second uncensored

spell also has characteristic x and lasts at least t2 periods. We assume
¯
T ≤ t1 < t2 ≤ T̄ and

so use hrt1(x,θ) = φ(θ)bt1 :

Pr[τ1 = t1, τ2 ≥ t2, ρ1 = r, χ1 = χ2 = x|χ0 = x0, ρ0 = r0]

= bt1

∫ θH

θL

φ(θ)π(x|x0, r0,θ)π(x|x, r,θ)

t1−1∏
s=1

(1− hs(x,θ))

t2−1∏
s=1

(1− hs(x,θ)) dG(θ).

Reversing the role of t1 and t2 gives

Pr[τ1 = t2, τ2 ≥ t1, ρ1 = r, χ1 = χ2 = x|χ0 = x0, ρ0 = r0]

= bt2

∫ θH

θL

φ(θ)π(x|x0, r0,θ)π(x|x, r,θ)

t2−1∏
s=1

(1− hs(x,θ))

t1−1∏
s=1

(1− hs(x,θ)) dG(θ).

Combining these two we get

bt2 Pr[τ1 = t1, τ2 ≥ t2, ρ1 = r, χ1 = χ2 = x|χ0 = x0, ρ0 = r0]

− bt1 Pr[τ1 = t2, τ2 ≥ t1, ρ1 = r, χ1 = χ2 = x|χ0 = x0, ρ0 = r0] = 0.

Since this equation holds for any (x0, r0), it is true when we integrate across that left-censored

spell distribution. This gives us a moment condition:

E [bt21τ1=t1,τ2≥t2,ρ1=r,χ1=χ2=x − bt11τ1=t2,τ2≥t1,ρ1=r,χ1=χ2=x] = 0.

We can then vary t1 and t2 to recover b up to a multiplicative constant. This generalizes the

identification argument in Proposition 1 to a framework with observable characteristics and

competing risks.

We cannot use this moment condition for GMM in our setting because we have censored

data. Moreover, it does not make use of available data after the end of the second spell. The

remainder of this section shows how to adapt this insight to our framework, building on the

approach in Section 3.
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4.3 Censoring and Measurement

As in the MPH model, we assume that we observe product i for ci periods, where the

censoring time ci may be correlated with the product’s type θ. We still let Qc(θ) denote the

cumulative distribution of censoring times conditional on type θ and G(θ) denote the frailty

distribution.

As before, we let ζi = (ζ i0, ζ
i
1, . . . , ζ

i
Ki) be the vector of measured durations, with the

first spell left censored and the last spell right censored, so ci =
∑Ki

j=0 ζ
i
j − 1. We also let

χi = (χi0, χ
i
1, . . . , χ

i
Ki) be a vector recording the observable characteristic of each spell and

ρi = (ρi0, ρ
i
1, . . . , ρ

i
Ki−1) be a vector recording the risk that ended each spell. Since the last

spell is right-censored, we do not observe why it ended, and hence ρ is of length Ki rather

than Ki + 1.

We assume that the baseline hazard b0 = {b0,
¯
T , . . . , b0,T̄} is nontrivial, b0 6= 0, and let

T0 denote the smallest t ≥
¯
T with b0,t > 0. We then generalize the rank condition in

Assumption 1 to the environment with observable characteristics and competing risks:

Assumption 2 With positive probability, there exists a 1 ≤ j < k ≤ K with ζj = T0,

ζk ≥ T̄ , ρj = r, and χj = χk = x.

This guarantees that we have variation in the data to compare bT̄ to bT0 . It holds, for

example, if there is a positive probability that the left-censored spell has observable x0 and

ends for reason r0 for some (x0, r0), and

∫ θH

θL

(
1−QT0+T̄−1(θ)

)
π(x|x0, r0,θ)π(x|x, r,θ)

T̄−1∏
t=1

(1− ht(x,θ))dG(θ) > 0,

so there is a positive probability that the censoring time is at least T0 + T̄ , spells 1 and 2

both have observable x, and the second spell lasts at least T̄ periods.

We highlight two special cases in which this reduces to the rank condition in Assump-

tion 1. First, the observable distribution may have full support for each of the first two

spells for all r and θ. This is the case in our empirical analysis when x measures whether

the spell starts with a price increase or decrease and r measures whether it ends with a price

increase or decrease. Second, the observable may be fully persistent and π0(x|θ) > 0. This is

the case in the empirical analysis when the observable characteristic measures the product’s

category. Of course, combinations of these assumptions are consistent with Assumption 1

as well, e.g. we can observe both the product’s category and whether the spell starts with a

price increase or decrease.

When this set of assumptions determine the joint distribution of (ζ,χ,ρ) and the rank
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condition holds, we say that (ζ,χ,ρ) is drawn from a competing-risk model with baseline

hazard b0 for observable characteristic x and risk r.

4.4 Moment Conditions

We now show how to estimate the baseline hazard, extending the approach in Proposition 3:

Proposition 5 Assume (ζ,χ,ρ) is drawn from a right-censored competing-risk model with

baseline hazard b0 for observable characteristic x and risk r. Define

f
[b,x,r]
t1,t2 (ζ,χ,ρ; b) ≡

∑
(j,k):1≤j<k≤K

(
btk1ζj=t1,ζk≥t2,ρj=r,χj=χk=x − btj1ζj=t2,ζk≥t1,ρj=r,χj=χk=x

)
.

(14)

Then E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ; b)

]
= 0 for all

¯
T ≤ t1 < t2 ≤ T̄ if and only if b = λb0 for some

number λ.

The proof is in Appendix A.

5 Data

For most of our empirical applications, we use IRI weekly store data,9 described in Bron-

nenberg, Kruger, and Mela (2008). We also use Online Micro Price Data

5.1 Construction of Price Spells

The IRI data set contains weekly revenue and quantity sold for a large number of products

in chain grocery and drug stores for years 2001–2011. The data cover 30 large product cat-

egories, 10 such as coffee, carbonated beverages, and detergents, and include approximately

2.6 million distinct items defined by its store and barcode (Universal Product Code, UPC).

We use revenue and quantity sold to compute the average weekly price for each product.

We turn data on price levels into data on price spells by first computing the price change from

the prior week and then defining a price spell as the time elapsed between two price changes.

In particular, suppose that the first price observation occurs at time t0, the last one at time

tK+1 and that price changes occur at times t1, . . . , tK . Then we construct ζj = tj+1 − tj for

j = 0, . . . , K − 1, and ζK = tK+1 − tK + 1, reflecting the fact that the earliest possible date

9All estimates and analyses in this paper based on Information Resources Inc. data are by the authors
and not by Information Resources Inc..

10There are 31 product categories in IRI but we exclude cigarettes from our analysis because their price
is regulated.
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when the price set at tK can change is tK+1 + 1 and the hence the price spell will be at least

ζK periods long. Spell 0 has measured duration ζ0 and is left-censored. The censoring time

is c = tK+1 − t0.

We use price levels to determine whether the price spell follows a price decrease or

increase; we can determine this for every price spell except the left-censored ones. We

further use prices to determine whether a price spell ends with a price increase or decrease;

we can construct such indicator for every spell which is not right-censored. We use this

information to estimate the model with observable characteristics and competing risks.

Missing observations are prevalent. For example, if the product has not been sold in

a given week, the store does not report quantity or revenue. We address this problem by

selecting the longest period with no missing observations for a given product and use only

this interval to construct price spells.

We work with average weekly prices, which brings in two issues for the spell construction.

First, some changes in the average weekly price are due to the fact that some customers shop

with coupons, which we cannot directly observe. We impose a lower bound on the price

change of 0.1 percent to exclude such price changes. Second, if the product’s price changes

in the middle of a week, it generates a spurious spell of duration one week.11 We therefore

set
¯
T = 2 and do not estimate the baseline hazard in week 1.

Table 1 shows summary statistics of the price spells by product category, focusing on price

spells longer than
¯
T = 2 weeks (which are not left-censored). The pooled sample contains

21,717,549 products, yielding 684,919,778 pairs of durations where both durations exceed
¯
T .

It is the total number of pairs of durations that enters into the sums in Propositions 3 and 5.

5.2 Choice of
¯
T and T̄

Since we observe average weekly prices, price changes occurring in the middle of the week

generate spurious price spells with duration one week. We think of these as coming from

a different model, possibly without an MPH structure, and so drop them to avoid biasing

estimates of the baseline hazard at all durations. At the same time, we want to choose the

lowest possible value for
¯
T . Therefore, we set

¯
T = 2.

We provide further justification for this choice. An implication of any mixture model

where each product has two independent spell durations from its type-specific distribution,

and of the MPH model in particular, is that the autocorrelation of the duration of two

completed spells is non-negative, and strictly positive when there is heterogeneity in mean

11For example, suppose that the price of a product increases from $1 to $2 in the middle of a week. Then
we would measure average price of $1 in week 1, $1.5 in week 2 and $2 in week 3, which looks like as if there
were two price changes.
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number of products with number of percentiles of ζ ij
K̃i ≥ 1 K̃i ≥ 2 pairs 50th 90th

Yoghurt 1,402,766 1,155,766 98,999,368 3 10
Carb. Beverage 1,819,607 1,321,762 90,836,025 3 8
Salty Snack 2,481,250 1,670,539 72,485,278 3 9
Frozen Dinner 2,272,888 1,693,017 70,495,598 3 8
Cold Cereal 1,429,028 1,038,096 56,080,465 4 12
Beer 701,604 470,815 37,454,496 3 11
Milk 549,261 426,316 34,036,391 4 14
Soup 1,286,921 897,080 33,873,770 4 14
Spaghetti Sauce 501,088 353,379 25,015,292 3 11
Frozen Pizza 711,065 519,293 24,984,150 3 8
Margarine 244,844 204,293 23,833,374 4 13
Hot Dog 213,598 172,031 19,603,427 3 9
Coffee 793,004 455,555 13,969,362 3 10
Toilet Tissue 412,746 312,604 10,791,034 3 11
Laundry Det. 804,837 489,482 9,993,575 3 9
Facial Tissue 250,134 185,450 9,557,189 3 11
Peanut Butter 203,380 150,692 9,255,148 4 13
Mayonnaise 186,392 136,585 7,992,048 4 14
Mus. & Ketchup 217,559 143,485 7,659,886 4 16
Paper Towel 340,032 252,339 6,939,886 3 13
HH Cleaners 413,061 232,276 5,959,387 4 11
Toothpaste 716,457 322,194 4,615,305 3 8
Shampoo 1,134,428 352,570 2,483,449 3 7
Diapers 602,164 247,864 1,918,554 3 7
Sugar Sub. 94,528 56,644 1,818,682 4 17
Deodorant 972,970 291,558 1,633,620 3 6
Toothbrush 512,729 178,488 1,097,352 3 7
Blades 297,314 114,407 1,076,134 3 10
Photo 65,503 28,187 358,959 3 8
Razors 86,391 26,001 102,574 2 6

Table 1: Descriptive statistics by product category, IRI data. For this table, we consider
only spells ζ ij ≥ ¯

T = 2 and use K̃i to denote the number of such spells for the product
i. The first column shows the number of products with at least one spell longer than

¯
T .

The second column reports the number of products with at least two such spells. The third
column reports the number of pairs where both are longer than

¯
T . The last two columns

show the median and 90th percentile value of the censored spell length.
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duration. To understand why, note that conditional on a product’s type, the autocorrelation

of duration is zero by assumption. But with heterogeneity, the autocorrelation captures

differences in the type-specific means and is necessarily positive.

Inspired by this, we measure the autocorrelation of the duration of price spells in the

data. If we use all price spells, including one-week spells, we find a correlation of 0.029 when

duration is measured in levels, and -0.042 when duration is measured in logs. This suggests

that the data are unlikely to come from a mixture model. But once we exclude spells lasting

one week, the correlation increases to 0.235 in levels and 0.233 when measured in logs. These

correlations increase a bit further to 0.248 in levels and 0.256 in logs when we consider spells

at least 3 weeks long. That is, once we exclude one-week spells, the correlation is different

from zero, and it is fairly stable if we exclude two-week spells. This is behind our decision

to set
¯
T = 2. We examine the robustness of our results to this assumption in Appendix D.3.

The choice of T̄ is guided by the nature of the data and our need to balance two forces.

On the one hand, we want to choose a large value for T̄ to learn about the baseline hazard

at long durations. At the same time, the number of spells longer than T̄ decreases quickly

with T̄ . Indeed, Table 1 shows that depending on the product category, the median spell

duration is 2–4 weeks and the 90th percentile varies between 6 and 17 weeks. This means

that data are thin at durations longer than half a year. While this does not constitute a

problem for estimating the baseline hazard—smaller sample size will be reflected in larger

standard errors—the choice of T̄ affects our estimates of the Kaplan-Meier hazard at all

durations because we condition on c ≥ T̄ . Balancing these forces, we choose T̄ = 60 weeks,

a little over a year, because there is an interesting pattern in the hazard at 52 weeks. Figure

9 in Appendix D.3 shows estimates beyond 60 weeks. The estimates are noisy but follow the

same trend from before T̄ = 60 so our main results are for T̄ = 60.

5.3 Online Micro Price Data

We are also interested in looking at higher frequencies than are available in the IRI data.

To do this, we use the daily Online Micro Price data, the open access data from the Billion

Prices Project presented by Cavallo (2018).12 In this data set, we observe daily posted prices

for many products, which we use to construct price spells. We focus on the U.S. stores. We

impute some missing observations. If the last non-missing price before missing observations

is the same as the first non-missing price after the missing observations, we impute this price

to the missing observations. If these two prices are not the same, we do not impute any

price. After this imputation, we consider the longest window without missing data for each

12http://www.thebillionpricesproject.com/datasets/
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product in the sample, as we did in the IRI data. The resulting sample contains 71,925

products with at least one spell, Ki ≥ 1, out of which 48,550 products have at least two

spells, Ki ≥ 2. Since we observe the posted price directly, we do not need to exclude price

spells of length 1. For this data, we therefore choose
¯
T = 1 and T̄ = 70, that is, 10 weeks.

6 Results

We start this section by presenting our estimates of the baseline and Kaplan-Meier hazards

for the MPH model. We first analyze our main data set with weekly price observations

before turning to a data set with daily price data to explore whether time aggregation

affects our results. Finally, we develop a simple theoretical framework in which we explore

how heterogeneity and duration dependence interact to create real effects from monetary

policy shocks.

6.1 Baseline Hazard and Heterogeneity

Here we present estimates for the basic model with X = 1, R = 1 on the pooled sample; see

Figure 1. Figures 14 and 15 in Appendix F show results for each product category separately.

The left panel of Figure 1 shows the Kaplan-Meier and baseline hazards. The Kaplan-

Meier hazard13 is steeply declining throughout the whole investigated range, except for the

peak at 52 weeks. In contrast, the baseline hazard is constant until week 4, after which it

modestly declines, also showing a peak at 52 weeks.

The distinction between the Kaplan-Meier and baseline hazard points to substantial

unobserved heterogeneity. Recall from equation (6) that the ratio of the Kaplan-Meier

hazard to the baseline hazard is the average type, which captures the extent of dynamic

sorting. A flat average type suggests that there is little dynamic sorting and hence little

heterogeneity, while a steeply declining average type suggests a lot of heterogeneity. The

right panel of Figure 1 shows that the average type is steeply declining. Within 20 weeks, the

average type drops by 60 percent and it continues to decline thereafter, albeit more slowly.

This means that heterogeneity plays an important role in shaping the Kaplan-Meier hazard.

We now turn to the two tests of the model. Recall there are T = T̄ −
¯
T = 58 independent

moments and M = 1,770 moment conditions. The J-statistic is J = 10,498, while the critical

value of the χ2 distribution with M −T degrees of freedom is 1,749, implying that we reject

the model at any conventional significance level. In what follows, we investigate the source

13To estimate the Kaplan-Meier hazard, we need an assumption that the data come from a stationary
mixture model. In Appendix D.1, we propose a test of the stationarity assumption and find that the data
look close to stationary.
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Figure 1: Kaplan-Meier and baseline hazard for pooled IRI data, log scale. The purple line
shows the Kaplan-Meier hazard, the blue line is the estimated baseline hazard. The red
line shows the “average type” at given duration, calculated as the ratio of Kaplan-Meier
and baseline hazards. Shaded regions show two standard error bands. Standard errors are
clustered at the store × product category level. The baseline hazard is normalized to equal
the Kaplan-Meier hazard at duration 2 weeks.

of this rejection in more detail, but note here that we have 21 million products and a model

that is significantly over-identified. Perhaps it is not surprising that we fail the J-test in

such a situation.

Our second test is whether the average type is decreasing. The right panel of Figure 1

shows a declining trend through durations 2 to 60 weeks, but a formal test rejects the null

hypothesis due to the very tight standard errors.

Our conclusion is that the baseline hazard is declining, although much less so than the

Kaplan-Meier hazard, suggesting the presence of substantial unobserved heterogeneity. We

find evidence of a mild spike in the baseline hazard at week 52, suggestive of certain time-

dependent pricing rules (Taylor, 1979, 1980). Still, all of these results are tempered by the

fact that the model fails the overidentifying test as well as the test for dynamic sorting.

In Section 7, we investigate whether this failure can be driven by the fact that sales follow

different dynamics than regular price changes, which we do not distinguish in this section.

6.2 Higher Frequency Data

We study the price data through the lens of a discrete time model and naturally wonder if

the frequency of the data affects our results. To explore this, we repeat our analysis using

daily Online Micro Price data.
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Figure 2: Kaplan-Meier and baseline hazard for Online Micro Price Data using daily and
weekly data, log scale. Solid lines use daily data, dashed lines weekly data. The purple
line shows the Kaplan-Meier hazard, the blue line is the estimated baseline hazard. The
red line shows the “average type” at given duration, calculated as the ratio of Kaplan-Meier
and baseline hazard. Shaded regions show two standard error bands. The baseline hazard
is normalized to be equal to the Kaplan-Meier hazard at duration 1 day in the daily data,
or 1 week in the weekly data. Kaplan-Meier hazard and baseline hazard are in daily units
throughout.

Figure 2 shows the estimates using daily data for
¯
T = 1 day and T̄ = 70 days (solid

lines). We observe that the price-change hazard spikes every seventh day. This suggests that

even though the data are daily, the decision to change prices is taken at the weekly frequency

and hence a week might be a natural time unit.

To see how much information we gain from using daily data, we aggregate the data to

weekly frequency. That is, any spell lasting 1–7 days is recorded as duration of 1 week,

spells lasting 8–14 days as duration of 2 weeks, etc. We then estimate the model again. The

dashed lines in Figure 2 show the results, with hazards adjusted to have the same (daily)

units. We find that the estimates are similar, even though weekly data recover somewhat

less heterogeneity that the daily data.

In Appendix D.2, we conduct a similar exercise with the IRI data, where we aggregate

weekly data up to a monthly frequency. We find that the monthly data understate the

extent of heterogeneity, even more so than in Online Micro Price Data (Figure 8). We think

that this is because in Online Micro Price Data, large spikes in the hazard every seven days

indicate that the decision to change prices is made at the weekly frequency, and hence using
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weekly instead of daily data does not make significant difference. With the IRI data, the

week is the relevant unit for measurement, and so monthly data miss selection which happens

within a month, leading to an understatement of the extent of heterogeneity.

6.3 Aggregate Implication of Firm-Level Heterogeneity

Finally, we discuss the macroeconomic implications of our estimates using a model of het-

erogeneous firms with time-dependent pricing rules. We are interested in understanding the

dynamic response of the price level to a monetary policy shock. In a richer model with price

rigidity, this would translate into the impact on output.

We consider a discrete time economy populated by heterogeneous firms which use time-

dependent pricing rules. We assume firms are described by their type θ with population

distribution G and support [θL, θH ]. Φt(θ) is the survival function for type θ firms, the

probability that a type θ firm keeps the same price for more than t periods, with Φ0(θ) = 1.

We assume the expected duration of a completed spell is finite for all θ, which is equivalent

to assuming that
∑∞

t=0 Φt(θ) is finite. We also assume that if a type θ firm adjusts its price

at t, it sets it to a new log price denoted νt(θ).

We assume all products are in the stationary ergodic duration distribution. Let ω̃t(θ)

denote the fraction of type θ firms that have kept the same price for t periods, measured

immediately after the price adjustment, so ω̃0(θ) is the fraction of the time that a type θ

firm adjusts its price. Generalizing equation (8) to the case of arbitrary survival functions

gives

ω̃t(θ) =
Φt(θ)∑∞
s=0 Φs(θ)

.

This means that the average log price charged by type θ firms at time t is a weighted average

of past values of the new prices νt(θ):

pt(θ) ≡
∞∑
s=0

ω̃s(θ)νt−s(θ) =

∑∞
s=0 Φs(θ)νt−s(θ)∑∞

s=0 Φs(θ)
. (15)

This varies over time if νt(θ) is not constant. We turn to its determinants next.

For all t ≤ 0, we assume that all firms set a log price normalized to 0. Thereafter, we

assume that a type θ firm, if it is able to adjust its price at t, sets a price to minimize the

discounted squared difference between the actual log price and a frictionless target log price

P ∗t+s during the time until the next price change:

νt(θ) ≡ arg min
ν

∞∑
s=0

βsΦs(θ)(ν − P ∗t+s)2,
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where β ∈ [0, 1] is the discount factor. The first order condition implies

νt(θ) =

∑∞
s=0 β

sΦs(θ)P
∗
t+s∑∞

s=0 β
sΦs(θ)

.

We also assume that for t ≥ 1, the frictionless target log price P ∗t is a weighted average of

the new long-run steady state log price δ 6= 0 and the average log price charged by other

firms Pt, P
∗
t = (1− α)δ + αPt, where

Pt ≡
∫ θH

θL

pt(θ)dG(θ). (16)

To the extent that the target price is increasing in the average log price set by other firms, we

say there is strategic complementarity in pricing decisions. The parameter α with 0 ≤ α < 1

captures this strategic complementarity.

In summary, the log price set by firms at t satisfies

νt(θ) =

(1− α)δ + α

∑∞
s=0 β

sΦs(θ)Pt+s∑∞
s=0 β

sΦs(θ)
if t > 0

0 if t ≤ 0.

(17)

We are interested in solving equations (15)–(17) to characterize the evolution of the average

log price Pt under the restriction that Pt is bounded. In Appendix C.1, we prove that there

is a unique such price sequence and find a contraction with modulus α which characterizes

the entire sequence Pt.

When α = 0, we also obtain a useful aggregation result (see also Carvalho and Schwartz-

man, 2015, Proposition 2′). We prove in Appendix C.2 that the dynamics of Pt are identical

in a heterogeneous firm economy and in an economy where there is only a single type of firm

with a survival function

Φ̄t ≡
∫ θH

θL

Φt(θ)dG(θ|ω̃0). (18)

This is a weighted average of the heterogeneous firms’ survival functions, with weights given

by the frequency of price changes. Put differently, it is the survival function associated with

the Kaplan-Meier hazard Ht(ω
∗), as defined in equations (10) and (11). Thus if we can

measure the Kaplan-Meier hazard, we do not need to understand the extent of heterogeneity

in the economy without strategic complementarity. This is a useful benchmark.

For other values of the complementarity parameter α, we do not have a closed-form

solution and the exact aggregation result fails. We therefore solve the model numerically

to investigate the difference between the path of the average log price in a heterogeneous
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economy and in other economies with the same Kaplan-Meier hazard rate.

More precisely, we calibrate the model using the estimated baseline hazard presented in

Section 6.1. See Appendix C.4 for details. We set the weekly discount factor to β = 0.999

(five percent annual discounting) and consider a monetary shock which increases the steady

(log) price from 0 to δ = 1. We examine three different values of the complementarity

parameter, α = 0, α = 0.5 and α = 0.95, with the aggregation result not holding in the

latter two economies. We calibrate the distribution of survival functions using our estimated

moments of the frailty distribution. The estimated model does a good job of matching the

Kaplan-Meier hazard (Figure 6 in the Appendix).

We then consider three different economies with the same Kaplan-Meier hazard. The

first is the estimated MPH model. The second is a homogeneous firm economy, where each

firm’s hazard is the Kaplan-Meier hazard. The third is a heterogeneous firm economy where

every firm adjusts its price at fixed intervals (Taylor, 1979, 1980), but different firms have

different intervals so as to match the Kaplan-Meier hazard.14

Figure 3 displays these results. The left panels show the evolution of the average log

price Pt, while the right panel shows the fraction of the gap between the current average log

price and the asymptotic log price δ that is closed in period t, lt ≡ ln(δ−Pt−1)− ln(δ−Pt).
We observe that average log price dynamics in the MPH economy is similar to that in the

homogeneous firm economy.15 The average log price is somewhat less similar in the Taylor

economy, especially when strategic complementarities are strong (α = 0.95). For example,

the initial speed of price convergence in the MPH and homogeneous economies is significantly

faster than in the Taylor economy, while after half a year it is noticeably slower.

At least for this question and this data set, our analysis shows that a researcher can

usefully approximate the true heterogeneous firm economy with a representative firm that

has the empirical Kaplan-Meier hazard. This approximation is useful for two reasons. First,

it may be easier to model a homogeneous firm economy. And second, as we have shown in

Proposition 4, it is possible to estimate the Kaplan-Meier hazard without first estimating a

mixture model.

This approximate aggregation result, that only the Kaplan-Meier hazard affects aggre-

gate price dynamics, extends Carvalho and Schwartzman (2015), who analyze the role of

heterogeneity for the cumulative impulse response of the aggregate price level to a monetary

14There is a sense in which the latter two economies represent polar cases of heterogeneity. In any
mixture model, the correlation between the duration of any two spells is non-negative. In a homogeneous
firm economy, this correlation is zero, while in the Taylor economy it is 1.

15We use the model-implied Kaplan-Meier hazard for this exercise. An alternative would be to use the es-
timated Kaplan-Meier hazard without first imposing the MPH structure. Since the calibrated model hits the
empirical the Kaplan-Meier hazard almost exactly, the implied paths for the log price are indistinguishable.
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Figure 3: Mean log price Pt and the fraction of the gap closed in period t, lt, in a heteroge-
neous and single-firm economy. The top panels have α = 0 (no strategic complementarity in
pricing), middle have α = 0.5 (weak strategic complementarity), and the bottom panels have
α = 0.95 (strong strategic complementarity). Throughout we assume β = 0.999 per week.
The blue lines show the estimated MPH model. The red dashed line shows the economy
with a single firm with survival function equal to the Kaplan-Meier survival function. The
purple line shows the economy with heterogeneous firms, each with a fixed price duration
(Taylor, 1979, 1980), and the same Kaplan-Meier survival function. The green line shows
a single firm with a constant probability of changing its price (Calvo, 1983), and hence a
different Kaplan-Meier survival function.
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shock in the case without strategic complementarity, α = 0. Their analysis implies that

the impulse response of aggregate prices to a one-time monetary shock in an economy with

heterogeneous sectors is the same as the impulse response of a one sector economy with

survival function given by equation (18). We use our estimated model to turn this into an

approximation result in an environment with a strategic complementarity. To be clear, for

arbitrary distributions of hazard rates, this approximation result would not hold.

In addition to this exercise, we examine whether the path for Pt can be well approximated

by a single firm with a Calvo price setting rule, a common assumption in the literature. We

show in Appendix C.3 that in this case, the average price equals δ(1−xt) where x depends on

the firm’s Calvo parameter as well as the value of the complementarity parameter α and the

discount factor β. This implies a constant speed of convergence lt in the Calvo model. The

time path for the average price is quite far from this exponential structure in our estimated

model, and hence cannot be well-approximated by a single Calvo firm, depicted by the green

lines in Figure 3.

7 Disentangling Regular Price Changes from Sales

Nakamura and Steinsson (2008) show that distinguishing between sales prices and regular

prices has important implications both for the frequency and hazard of price changes. In

particular, sales are more transient than regular price changes and are not typically related to

macroeconomic conditions. Following their pioneering work, most researchers have dropped

all price changes associated with sales from the data set before estimating the hazard of

regular price changes. We are concerned that doing so may affect the estimated stochastic

process for the regular price changes. In our case, this problem is particularly acute, since

we do not observe sales directly, but instead must infer them from the nature of the price

change, e.g. a short-lived low price between two higher prices. Even if one could directly

observe sales prices, dropping a subset of price changes can bias estimates of the hazard for

the remaining price changes, a standard issue in competing risk models.

Our approach instead allows us to view sales as part of the data, albeit a part that

does not necessarily fit the MPH structure, for example if sales have a fixed duration that

varies across products. We propose circumventing sales by focusing on outcomes—that is,

competing risks—that represent regular price changes, and measuring duration dependence

for only those risks. We focus on price increases following price increases and on price

decreases following price decreases, which we call price trends. Our approach can be used to

look at other risks, e.g. setting a price that has not been observed in the recent past. In a

data set with a reliable sales flag, one could use our competing risks framework to look at
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price spells that neither start nor end with sales.

We distinguish spells based on whether they started with a price increase or price de-

crease. Thus we set X = 2 and for mnemonic convenience let χij = + if the jth spell of

product i follows a price increase and χij = − if it follows a price decrease. We also distin-

guish whether a spell ends with a price increase or decrease, R = 2, and let ρij = + if the

jth spell of product i ends with a price increase and ρij = − if it ends with a price decrease.

Spells with χij = ρij represent price trends, while other spells are price reversals.

We separately estimate four different baseline hazards, one for each possible combination

of x and r. We use b++
t to denote the baseline hazard that a spell after a price increase

ends with a price increase at duration t; b+−
t the baseline hazard that a spell following a

price increase ends with a price decrease at duration t. Similarly, b−+
t denotes the baseline

hazard that a spell following a price decrease ends with a price increase at duration t and b−−t
denotes the baseline hazard that a spell following a price decrease ends with a price decrease

at duration t. We allow for four different functions determining unobserved heterogeneity,

φ++(θ), φ+−(θ), φ−+(θ), and φ−−(θ).

This richer model allows for the possibility that price trends have different dynamics than

price reversals. We estimate it using the moment conditions specified in Proposition 5. Figure

4 shows the results and some interesting patterns. The baseline hazards for price trends,

b++
t and b−−t , are rather flat, especially the hazard for two consecutive price increases. The

baseline hazards for the price reversal are declining, with b−+
t showing the sharpest decline.

We conclude from these findings is that the shape of the baseline hazard we recovered in

Figure 1 is primarily driven by price reversals, especially those associated with sales (price

increases following price decreases), where the hazard is steeply declining. Price reversal are

common in the data: 72.3 percent of spells starting with a price increase end with a price

decrease, while 72.4 percent of spells starting with a price decrease end with a price increase.

The model is over-identified and so we can again apply the J-test. We run a separate J-

test for each hazard. This is conceptually correct since each baseline hazard can be estimated

without assuming a MPH structure for the other competing hazards. The five percent critical

value is 1,749 for each risk, and the test statistics are J++ = 3,920, J+− = 8,737, J−+ =

7,910, and J−− = 3,401. Even though we still reject the model at the five percent level, the

rejection is “milder” for price trends than price reversals, and is especially mild compared

to the estimates of the MPH model, where we had J = 10,498.

Figures 16 and 17 in Appendix F show estimated b++ and b−− for individual product

categories. The results are in line with those for the pooled sample. The hazard b++ declines

for about 6 weeks and then is flat, and the baseline hazard b−− is declining in most categories.

The value of the J-test for individual categories is lower than the value on the pooled sample.
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Figure 4: Baseline hazards in the competing risks model for pooled IRI data, log scale. b++
t

is the baseline hazard for spell which begin and end with a price increase; b−−t for spells
which begin and end with a price decrease; b+−

t for spells which begin with a price increase
and end with a price decrease; and b−+

t for spells which begin with a price decrease and end
with a price increase. The shaded regions show two standard error bands. Standard errors
are clustered at the store × product category level. We normalize the baseline hazard to be
1 at duration =

¯
T = 2.
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In particular, we cannot reject the specification for 8 categories for b++ and 21 categories for

b−−.

We investigate the nature of the failure of proportional hazard assumption more system-

atically in Appendix D.3. We conclude that the dynamics of price trends is well described

by the MPH assumption, and that the baseline hazard is fairly flat. On the other hand, we

conclude that MPH assumption is not a good description of the dynamics of price reversals.

One possible reason is that temporary changes might have fixed duration which does not fit

into the MPH framework.

Based on these test results we believe that the richer model with competing risks and

observable characteristics is a useful framework to analyze the data. The baseline hazard for

two consecutive price increases is decreasing until week 6 which covers a substantial amount

of price changes: 76.8% of complete spells which start after a price increase last at most

6 weeks (among complete spells which start and end with a price increase, 76.7% last at

most 6 weeks). During first 6 weeks, the baseline hazard drops by almost 50%. The hazard

is then flat until week 45. This shape of the hazard is consistent with price plan models

with Calvo-type switching between plans. There is a pronounced spike at around one year,

consistent with Taylor-type pricing. The baseline hazard for two consecutive price decreases

is mildly decreasing over the examined range.

8 Comparison to Other Estimation Methods

The usual approach to estimating the MPH model is via maximum likelihood for the con-

tinuous time model. Formulating the likelihood requires an assumption on the frailty dis-

tribution. It is convenient to assume a gamma distribution, since this makes it possible to

integrate out the frailty distribution analytically and obtain a simpler expression for the

likelihood function. Since the gamma distribution is described by its mean and variance,

and the mean can be normalized to 1, one then finds the baseline hazard and variance to

maximize the likelihood.

One issue which arises is that time in the model is continuous but the data are typically

measured discretely. One approach, as in Nakamura and Steinsson (2008), is to assume that

the baseline hazard is piece-wise constant, b(t + γ) = bt for all γ ∈ [0, 1) and nonnegative

integer t, and to assume that observing an integer duration t means that the exact (con-

tinuous time) duration was t. Maximum likelihood estimation can be done using a built-in

procedure in Stata with some tricks, as we explain in Appendix E.3.

Figure 5 compares estimates from Stata with ours. In both cases, the average type is

normalized to 1, so the baseline hazards are equal to the Kaplan-Meier hazard at duration 2
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weeks. The baseline hazard estimated using maximum likelihood is somewhat steeper than

the one estimated using GMM. We think there are two potential biases in the maximum

likelihood estimates. First, maximum likelihood requires choosing a family for the frailty

distribution. Heckman and Singer (1984) pointed out that imposing a specific distribution

can bias the estimates of the baseline hazard. Another possibility is time aggregation. The

likelihood is formulated in continuous time while data are discrete, and failure to properly

account for time aggregation can bias the estimates. We investigate these reasons in detail

in Appendix E and conclude that in our data set, time aggregation plays a more important

role.

In closing, we note that there are several advantages to using the GMM estimator we

developed over maximum likelihood. First, our estimator does not require us to specify the

frailty distribution. Second, it is linear in b and hence is very simple and fast to solve. Third,

we proved in Proposition 3 that we find a global maximum. In contrast, the log-likelihood is

non-linear b and finding its maximum can be slow.16 Importantly, there is no guarantee that

maximum likelihood finds a global maximum. Finally, we showed that our method is easily

extended to a competing risks framework with spell-specific observable characteristics. We

can handle these even if the proportional hazard assumption only holds for some risks and

some observables. This set of assumptions has proved to be extremely hard to handle in

the maximum likelihood framework. For example, Fougere, Le Bihan, and Sevestre (2007)

try to estimate a competing risks model with unobserved heterogeneity but say on page 260

that “. . . convergence of the maximum likelihood procedure is very difficult to reach.”

9 Conclusion

We develop a new consistent estimator of the baseline hazard in the MPH model using

duration data with repeated observations. Our estimator has many desirable features: it is

linear in the baseline hazard and hence easy to implement; it does not require specifying

the frailty distribution; and it handles right-censored data, competing risks, and discrete

observable characteristics. Importantly, it works in an environment where duration takes on

one of a finite number of possible values, which is the format of real-world data. We further

propose and implement two tests of the MPH specification.

We treat the frailty distribution as a nuisance parameter in most of our analysis. However,

in the Appendix, we present estimators of the first three moments of the frequency-weighted

16Using our pooled IRI sample, it took 15 hours to estimate the baseline hazard using the ML method
in Stata on a computer with 256GB memory. It took 70 minutes to estimate it (including standard errors)
using GMM. A computer with 60GB memory failed to deliver ML estimates but produced GMM estimates.
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Figure 5: The left hand figure shows the Kaplan-Meier and baseline hazard for pooled IRI
data, log scale. The purple line shows the Kaplan-Meier hazard, the blue solid line is our
GMM estimate of the baseline hazard, and the blue dotted line is the maximum likelihood
estimate of the baseline model under the assumption that the data generating process is
in continuous time and the frailty distribution is gamma. The right hand figure shows the
average type, with our GMM estimate the solid line and the maximum likelihood estimate
the dotted line.

frailty distribution following the identification proof and insights from the construction of

the estimator of Kaplan-Meier hazard.

We also estimate a competing risk model for the direction of price changes, distinguishing

between price trends, which we interpret as regular price changes, and price reversals, which

include sales. Our framework is general enough to handle different notions of sales. For

example, we could have defined a sale as a temporary cut in price from a “normal” price p to

a sale price p′ < p, followed by a reversal back to p. We could also include other variable into

the vector of observable characteristics, such as bins of marginal cost or of the average price

of competitors. All these options can be handled through appropriately defining observables

x and risks r in our framework.

The model and its estimator can also be applied in other fields. In the labor market, it can

be used to study duration dependence in transitions between employment, unemployment

and out of labor force. Worker’s current labor market status is an observable characteristic

and the next labor market status can be treated as a competing risk.
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Honoré, Bo E., 1993. “Identification Results for Duration Models with Multiple Spells.”

Review of Economic Studies. 60 (1): 241–246.

Horowitz, Joel L., and Sokbae Lee, 2004. “Semiparametric Estimation of a Panel Data

Proportional Hazards Model with Fixed Effects.” Journal of Econometrics. 119 (1): 155–

198.

Lancaster, Tony, 1979. “Econometric Methods for the Duration of Unemployment.” Econo-

metrica. 47 (4): 939–956.

Lancaster, Tony, 1990. The Econometric Analysis of Transition Data . No. 17 in Econometric

Society Monographs, Cambridge University Press.

Nakamura, Emi, and Jón Steinsson, 2008. “Five Facts about Prices: A Reevaluation of Menu

Cost Models.” Quarterly Journal of Economics. 123 (4): 1415–1464.

Nakamura, Emi, and Jón Steinsson, 2010. “Monetary Non-neutrality in a Multisector Menu

Cost Model.” Quarterly Journal of Economics. 125 (3): 961–1013.

Newey, Whitney K., and Daniel McFadden, 1994. “Large Sample Estimation and Hypothesis

Testing.” Handbook of Econometrics. 4: 2111–2245.

39



Politis, Dimitris N., 2011. “Higher-Order Accurate, Positive Semidefinite Estimation of

Large-Sample Covariance and Spectral Density Matrices.” Econometric Theory. 27 (4):

703–744.

Reis, Ricardo, 2006. “Inattentive Producers.” Review of Economic Studies. 73 (3): 793–821.

Taylor, John B., 1979. “Staggered Wage Setting in a Macro Model.” American Economic

Review. 69 (2): 108–113.

Taylor, John B., 1980. “Aggregate Dynamics and Staggered Contracts.” Journal of Political

Economy. 88 (1): 1–23.

40



Appendix

A Omitted Proofs

A.1 Kaplan-Meier Hazard Moments

Proof of Proposition 4. Take a product i with measured durations ζi = (ζ i0, ζ
i
1, . . . , ζ

i
Ki)

and hence censoring time ci =
∑Ki

j=0 ζ
i
j − 1. Let zi = {zi1, . . . , zici} be a vector of length ci

with the following elements:

zis =

ζ ik for s =
∑k−1

j=0 ζ
i
j and k = 1, . . . , Ki

0 otherwise.

zis encodes the measured duration of any spell that starts s periods into the observation

window for the product, with zeros in any period when a new spell does not start.

We first claim is that for any product i and any duration t = 1, . . . , T̄ + 1,

Ki∑
j=1

1ζij≥t,cij≥T̄ =
ci−T̄∑
s=1

1zis≥t,

where we understand that the left hand side evaluates to 0 when ci ≤ T̄ . The left-hand sum

counts the number of spells (except the initial left-censored one) with duration at least t and

residual censoring time at least T̄ . The right-hand sum counts the same spells by dropping

all those that start after ci − T̄ , when the residual censoring time would be less than T̄ .

Next, we compute the expected value of
∑ci−T̄

s=1 1zis≥t for any t = 1, . . . , T̄ + 1 conditional

on ci and θi. Here we use the assumption that initial duration is drawn from the stationary

ergodic distribution. This implies that with probability ω̃0(θi) = 1/
∑∞

t′=0

∏t′

s=0(1 − hs(θi))
(see equation 8), the firm changes its price in any period s ≥ 1, in which case zis > 0,

while otherwise zis = 1zis≥t = 0. If the firm does change its price, the probability that the

measured duration of the price spell is at least t is given by the type-specific survivor function∏t−1
s=0(1 − hs(θi)). This use the fact that right censoring is not an issue for t ≤ T̄ + 1 and

s ≤ ci − T̄ .

Putting this together, in any period s ∈ {1, . . . , ci − T̄}, the expected value of 1zis≥t

conditional on ci and θi is ∏t−1
s=0(1− hs(θi))∑∞

t′=0

∏t′

s=0(1− hs(θi))
.
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It follows that

E

 Ki∑
j=1

1ζij≥t,cij≥T̄

∣∣∣∣ci, θi
 = E

ci−T̄∑
s=1

1zis≥t

∣∣∣∣ci, θi
 =


(ci−T̄ )

∏t−1
s=0(1−hs(θi))∑∞

t′=0

∏t′
s=0(1−hs(θi))

if ci > T̄

0 if ci ≤ T̄.

Now condition only on θi. Using the conditional distribution of c given θ we get

E

[
c

c− T̄

K∑
j=1

1ζj≥t,cj≥T̄

∣∣∣∣θi
]

=

(∑∞
c=T̄+1 cqc(θ

i)
)(∏t−1

s=0(1− hs(θi))
)∑∞

t′=0

∏t′

s=0(1− hs(θi))

= ωf (θi)
t−1∏
s=0

(1− hs(θi)),

where the feasible weight ωf is defined in equation (12). Finally, integrating across θ using

the frailty distribution G, we get

E

[
c

c− T̄

K∑
j=1

1ζj≥t,cj≥T̄

]
=

∫ θH

θL

ωf (θ)
t−1∏
s=0

(1− hs(θ))dG(θ) (19)

for all t = 1, . . . , T̄ + 1.

For any t = 1, . . . , T̄ , this implies

E

[
c

c− T̄

K∑
j=1

1ζj≥t+1,cj≥T̄

]
=

∫ θH

θL

ωf (θ)
t∏

s=0

(1− hs(θ))dG(θ).

We can then take first differences for any such t to get

E

[
c

c− T̄

K∑
j=1

1ζj=t,cj≥T̄

]
=

∫ θH

θL

ωf (θ)ht(θ)
t−1∏
s=0

(1− hs(θ))dG(θ). (20)

Then using equations (13), (19) and (20), it follows immediately that E
[
f

[H]

t,T̄
(ζ;H)

]
= 0

for t = 1, . . . , T̄ if and only if

Ht =

∫ θH
θL

ωf (θ)ht(θ)
∏t−1

s=0(1− hs(θ))dG(θ)∫ θH
θL

ωf (θ)
∏t−1

s=0(1− hs(θ))dG(θ)
=

∫ θH
θL

ht(θ)
∏t−1

s=0(1− hs(θ))dG(θ|ωf )∫ θH
θL

∏t−1
s=0(1− hs(θ))dG(θ|ωf )

,

where the last equation uses equation (1). This is equal to Ht(ω
f ), proving the result.
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A.2 Baseline Hazard Moments

Since Proposition 3 is a special case of Proposition 5, we prove the latter proposition first

and then turn to the special case.

To simplify the exposition in this appendix, we introduce the following notation. For any

K vector ζ = (ζ1, . . . , ζK) and k ≤ K, we define ζk to be a vector consisting of the first k

elements of ζ, that is, ζk = (ζ1, . . . , ζk). For k > K, we construct ζk by adding k −K zeros

to the end of ζ to construct a k vector, ζk = (ζ1, . . . , ζK , 0, . . . , 0}. Next, for j < k we let

ζk/j denote the vector ζk without the jth element, that is, ζk/j ≡ (ζ1, . . . , ζj−1, ζj+1, . . . , ζk).

The key step in proving Proposition 5 is the statement and proof of Lemma 1.

Lemma 1 Assume ζ,χ,ρ are drawn from a right-censored competing-risk model with base-

line hazard b0 for observable characteristic x and risk r. Take any k > j ≥ 1 and vector

t = (t1, . . . , tk) ∈ {1, 2, . . . }k with tj, tk ∈ {
¯
T, . . . , T̄}. Also take any x ∈ {1, . . . , X}k with

xj = xk = x and r ∈ {1, . . . , R}k−1 with rj = r. Define

fj,k,t,x,r(ζ,χ,ρ; b) ≡

btk1K≥k,χk=x,ρk−1=r,ζk−1=tk−1,ζk≥tk − btj1K≥k,χk=x,ρk−1=r,ζk−1/j=tk−1/j ,ζj=tk,ζk≥tj . (21)

Then E [fj,k,t,x,r(ζ,χ,ρ; b0)] = 0.

Proof of Lemma 1. We first claim that the first indicator function in equation (21)

evaluates to 1 if and only if these conditions hold:

1. without censoring, the product has sufficiently many spells, K̄ ≥ k;

2. the observable characteristics for the first k spells is x, χk = x;

3. the risk for the first k − 1 spells is r, ρk−1 = r;

4. we observe the product for sufficiently long,
∑K

l=1 ζl ≥
∑k

l=1 tl;

5. the uncensored durations satisfy τk−1 = tk−1 and τk ≥ tk.

If the first condition failed, we could never observe k spells. The second and third conditions

ensure we observe the desired pattern of observable characteristics and risks. The fourth

condition ensures we observe the product sufficiently long to see ζk−1 = tk−1 and ζk ≥ tk.

Finally, if the last condition failed, we might observe k spells, but they would not satisfy

ζk−1 = tk−1 and ζk ≥ tk. On the other hand, if all five conditions are satisfied, we measure

K ≥ k, ζk−1 = τk−1, ζk ≥ tk, ρk−1 = r, and χk = x.
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Analogously, the second indicator function in equation (21) evaluates to 1 if and only if

the first four conditions hold and the uncensored durations satisfy τk−1/j = tk−1/j, τj = tk

and τk ≥ tj.

Next, we use the MPH model to compute the probability of a realization of the event in

the first indicator function, conditional on θ. This is

Pr[χk = x,ρk−1 = r, ζk−1 = tk−1, ζk ≥ tk|θ]

= π1(x1|θ)
k∏
l=1

(
π(xl|xl−1, rl−1,θ)1l 6=1hrltl (xl,θ)1l 6=k

tl−1∏
s=1

(1− hs(xl,θ))

)

= b0,tjφ(θ)π1(x1|θ)
k∏
l=1

(
π(xl|xl−1, rl−1,θ)1l 6=1hrltl (xl,θ)1l6=j,l 6=k

tl−1∏
s=1

(1− hs(xl,θ))

)
.

The first equation uses the structure of the model, in particular the fact that we are comput-

ing the probability of a particular sequence of observable characteristics and spell durations.

The second equation uses the fact that rj = r, xj = x, and hrtj(x,θ) = φ(θ)b0,tj since

tj ∈ {
¯
T, . . . , T̄}. Integrating across the distribution of θ conditional on censoring time equal

to at least
∑k

l=1 tl − 1 gives us

E
[
1K≥k,χk=x,ρk−1=r,ζk−1=tk−1,ζk≥tk

]
= ψ(tk−1/j, tj, tk,x, r; j, k)b0,tj , (22)

where

ψ(tk−1/j, tj, kj,x, r; j, k) ≡
(

1− P
( k∑

l=1

tl

))
×

∫ θH

θL

φ(θ)π1(x1|θ)
k∏
l=1

(
π(xl|xl−1, rl−1,θ)1l 6=1hrltl (xl,θ)1l 6=j,l 6=k

tl−1∏
s=1

(1− hs(xl,θ))

)
dG∑k

l=1 tl−1(θ).

(23)

Now swap the role of tj and tk but leave tk−1/j, r, and x unchanged. The same logic

implies

E
[
1K≥k,χk=x,ρk−1=r,ζk−1/j=tk−1/j ,ζj=tk,ζk≥tj

]
= ψ(tk−1/j, tk, tj,x, r; j, k)b0,tk . (24)

Moreover, equation (23) and the commutative property of multiplication implies

ψ(tk−1/j, tk, tj,x, r; j, k) = ψ(tk−1/j, tj, tk,x, r; j, k). (25)
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The result then follows from equations (22), (24), and (25).

Proof of Proposition 5. We first prove that E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ;λb0)

]
= 0 for all

¯
T ≤ t1 <

t2 ≤ T̄ and λ (necessity). Then we prove E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ; b)

]
= 0 for all

¯
T ≤ t1 < t2 ≤ T̄

only if b = λb0 (sufficiency) for some λ.

Necessity: We show in two steps that function f
[b,x,r]
t1,t2 (ζ,χ,ρ; b) is the sum of functions

defined in Lemma 1, each of which have expected value zero. First, take 1 ≤ j < k, a

pair (tj, tk) with tj, tk ∈ {
¯
T, . . . , T̄}, an observable characteristic x, and a risk r. Define the

following function

fj,k,tj ,tk,x,r(ζ,χ,ρ; b) ≡ btk1K≥k,ζj=tj ,ζk≥tk,ρj=r,χj=χk=x − btj1K≥k,ζj=tk,ζk≥tj ,ρj=r,χj=χk=x.

Then let t be an arbitrary k vector of durations with jth element tj and kth element tk, x be

an arbitrary k vector of observables with jth and kth element x, and r be an arbitrary k− 1

vector of risks with jth element r. Summing across all such vectors, we get

fj,k,tj ,tk,x,r(ζ,χ,ρ; b) =
∑

tk−1/j ,xk−1/j ,rk−1/j

fj,k,t,x,r(ζ,χ,ρ; b),

where this follows directly from the definition of fj,k,t,x,r(ζ,χ,ρ; b) in equation (21). Lemma 1

states that the expected value of each component of the sum is zero for b = b0. Thus the

expected value of fj,k,tj ,tk,x,r(ζ,χ,ρ; b0) is zero.

Second, fix a pair of durations (t1, t2) with
¯
T ≤ t1 < t2 ≤ T̄ , an observable characteristic

x, and a risk r. Sum fj,k,t1,t2,x,r(ζ,χ,ρ; b) across all pairs of spells (j, k) with 1 ≤ j < k. By

equation (14), this gives us f
[b,x,r]
t1,t2 (ζ,χ,ρ; b). Since the expected value of each component of

this sum is zero, this implies E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ; b0)

]
= 0.

Finally, note that the function f
[b,x,r]
t1,t2 defined in equation (14) is linear in the base-

line hazard, f
[b,x,r]
t1,t2 (ζ,χ,ρ;λb) = λf

[b,x,r]
t1,t2 (ζ,χ,ρ; b) for all t1, t2, ζ,χ,ρ, b, and λ. Thus

E
[
f

[b,x,r]
t1,t2 (ζ,χ,ρ;λb)

]
= 0 as well.

Sufficiency: Recall that T0 is the smallest t ∈ {
¯
T, . . . , T̄} with b0,t > 0. We prove that

any solution must take the form b = λb0 where λ = bT0/b0,T0 .

Equation (14) implies that

bT0

∑
(j,k):1≤j<k≤K

E
[
1ζj=t,ζk≥T0,χj=χk=x,ρj=r

]
= bt

∑
(j,k):1≤j<k≤K

E
[
1ζj=T0,ζk≥t,χj=χk=x,ρj=r

]
.
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Assumption 2 states that E
[
1ζj′=T0,ζk′≥t,χj=χk=x,ρj=r

]
> 0 for some 1 ≤ j′ < k′ < K and any

t ≤ T̄ . Therefore the sum on the right hand side of this equation is strictly positive, allowing

us to pin down the ratio bt/bT0 :

bt
bT0

=

∑
(j,k):1≤j<k≤K E

[
1ζj=t,ζk≥T0,ρj=r,χj=χk=x

]∑
(j,k):1≤j<k≤K E

[
1ζj=T0,ζk≥t,ρj=r,χj=χk=x

] .
From the ‘necessity’ part of the proof, we know bt/bT0 = b0,t/b0,T0 solves this equation, so

this must be the only solution.

Proof of Proposition 3. Set X = R = 1. This implies π1(1|θ) = π(1|1, 1,θ) = 1, so

Assumption 1 is equivalent to Assumption 2 in this case. Then

f
[b,1,1]
t1,t2 (ζ,1,1; b) = f

[b]
t1,t2(ζ; b),

where 1 is a vector of 1’s, and so the results in Proposition 5 imply the proof of this propo-

sition.

B GMM Estimation

B.1 GMM Estimator

Proposition 3 gives us one moment condition for the choice t1, t2 such that
¯
T ≤ t1 < t2 ≤ T̄ :

E
[
f

[b]
t1,t2(ζ; b)

]
= 0.

Let Y (
¯
T, T̄ ) = {(t1, t2) :

¯
T ≤ t1 < t2 ≤ T̄}. This set has M = T (T + 1)/2 elements which

we index with m and refer to it as ym = (ym1 , ym2). Let f [b](ζ; b) be a vector function with

mth element corresponding to the choice ym ∈ Y (
¯
T, T̄ ), given by f

[b]
ym1 ,ym2

(ζ; b).

Since the baseline hazard is identified up to scale, we choose our normalization. Choose

T0 ∈ {
¯
T, T̄} to be the shortest for which there exists product i with at least two spells,

Ki ≥ 2, and 1 ≤ j < k ≤ Ki such that ζ ij = T0, ζ
i
k = t for any t ∈ {T0, T̄}.17 Without loss of

generality, we normalize bT0 = 1.

Let b·/T0 be the vector b without its component bT0 , that is, b·/T0 = (b
¯
T , . . . bT0−1, bT0+1, . . . bT̄ ).

17If no product with at least two spells has a complete spell of duration t, then we estimate b̂t = 0 and
so we cannot use it for normalization.
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Linearity of f
[b]
t1,t2(ζ; b) and normalization of bT0 implies that we can write

f [b](ζ; b) = U [b](ζ)b·/T0 − V [b](ζ),

where U [b] is M ×T matrix, and V [b](ζ) is a vector of length M . With this notation, we can

write

E
[
U [b](ζ)

]
b·/T0 − E

[
V [b](ζ)

]
= 0. (26)

Proposition 4 gives us one moment condition for each
¯
T ≤ t ≤ T̄ . Define f

[H]

T̄
as a

vector function, with mth element given by f
[H]

m+
¯
T−1,T̄

(ζ;H T̄ ) for m = 1, . . . , T + 1. Since

equation (13) is linear in H T̄ , we can write f
[H]

m+
¯
T−1,T̄

(ζ;H T̄ ) = U [H]H T̄ − V [H], where U [H]

is a (T +1)×(T +1) matrix and V [H] is a (T +1)×1 vector. With this notation, the moment

condition from Proposition 4 becomes

E
[
U [H](ζ)

]
H T̄ − E

[
V [H](ζ)

]
= 0. (27)

We stack these moment conditions for b and H T̄ . Define

β =

(
b·/T0

H T̄

)
,f(ζ;β) =

(
f [b](ζ; b)

f
[H]

T̄
(ζ;H T̄ )

)
, U =

(
U [b] 0

0 U [H]

)
, V =

(
V [b]

V [H]

)
.

Then the moment conditions are

E [U(ζ)]β − E [V (ζ)] = 0. (28)

To estimate the model, we replace expected values with sample means:

UI ≡
1

I

I∑
i=1

U(ζi), VI ≡
1

I

I∑
i=1

V (ζi).

The sample analog of (28) is UIβ−VI = 0. For a given positive-definite (M +T +1)× (M +

T + 1) weighting matrix W , the estimator β̂ ∈ R2T+1
+ solves

β̂ = arg min
β∈R2T+1

+

(UIβ − VI)′W (UIβ − VI) .

This is a linear-quadratic maximization problem and its solution is known in a closed form:

β̂ = (U ′I (W +W ′)UI)
−1
U ′I (W +W ′)VI .
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In practice, we choose the identity matrix as a weighting matrix.

Proposition 3 and 4 imply consistency of GMM without any other assumptions. In

particular, we do not need to impose that the space of possible parameters β is compact

since our estimator is linear; see Newey and McFadden (1994).18

B.2 Clustered Standard Errors

Recall that the GMM formula for the variance-covariance matrix of the parameter vector β

is

V AR ≡ 1

I
(F ′WF )−1F ′WΩW ′F (F ′W ′F )−1, (29)

where F is the score matrix F ≡ E[∇βf ] and Ω = E[ff ′]. To get an estimate of the

variance-covariance matrix, we replace F and Ω with its sample analogs FI and ΩI :

FI ≡
1

I

I∑
i=1

∇βf(ζi; β̂) = UI , ΩI ≡
1

I

I∑
i=1

f(ζi; β̂)f(ζi; β̂)′,

where β̂ is a GMM estimate of β.

To implement one-way clustering, we follow Cameron, Gelbach, and Miller (2011). For-

mula (29) still applies but with cluster-robust sample analog of Ω. Let Q denote the number

of clusters indexed by q = 1, . . . ,Q. If a product i belongs to cluster q, we say 1i∈q = 1.

Define f̄q as the sum of the moment conditions across products in cluster q,

f̄q =
I∑
i=1

f(ζi; β̂)1i∈q.

Then

Ω
[cluster]
I =

Q
Q− 1

I − 1

I − (2T + 1)

1

I

Q∑
q=1

f̄qf̄
′
q,

where 2T+1 is the number of parameters. The term Q
Q−1

I−1
I−(2T+1)

is adjustment for the degrees

of freedom; without this adjustment, the clustered standard errors are biased downwards.

We obtain the variance-covariance matrix by substituting Ω
[cluster]
I into equation (29).

18Theorem 2.7 states conditions for consistency of estimators without compactness. Example 1.2 on page
2134 then shows that these conditions are satisfied for the linear GMM estimators.
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B.3 Practical Consideration

It is a known that in practice matrix ΩI (or Ω
[cluster]
I ) can be badly scaled, especially with a

large number of moments as we have. This is not necessarily an issue for estimating of the

variance-covariance matrix V AR but is for the J−test which requires inverting the matrix

ΩI (or Ω
[cluster]
I ).

Moreover, in our application, ΩI has some negative eigenvalues. This is a result of

numerical imprecisions; matrix ΩI as well Ω
[cluster]
I is positive semidefinite in any sample by

construction.

We address both of these issues in one step, following Cameron, Gelbach, and Miller

(2011) and Politis (2011). We construct matrix ΩI , compute its eigenvalues and replace

all negative one and those close to zero in absolute term, with a small positive number

ε to construct Ω+
I , a positive definite matrix. Specifically, we write ΩI = AΛA′, where

Λ = Diag(λ1, . . . , λK) are the eigenvalues of ΩI , and A is a matrix of eigenvectors. We

define λ+
j = max(ε, λj) and Λ+ = Diag(λ+

1 , . . . , λ
+
K). We then construct Ω+

I = AΛ+A′.

We need to balance two forces when choosing ε. It has to be small enough so that it does

not affect results as the sample size grows, and at the same time, it has to be big enough to

address the problem of ill-conditioned matrix. Politis (2011) suggests to choose ε = I−a for

a ∈ [1, 2]; we follow this suggestion and choose a = 1.5.

We find that ΩI with no clustering and Ω
[cluster]
I with one-way clustering has a small share

of negative eigenvalues, less than 2.5 percent, and that they are small in absolute value, of

the order of 10−13. This gives us confidence that these are indeed numerical imprecisions

which we correct with the above described procedure.

C Time-Dependent Pricing with Heterogeneous Firms

C.1 General Model

It is useful to define

Ωt(θ) =
βtΦt(θ)∑∞
s=0 β

sΦs(θ)
and Ψt(θ) =

Φt(θ)∑∞
s=0 Φs(θ)

,

49



so that we can write equations (15) and (17) as

pt(θ) =
t∑

s=0

Ψs(θ)νt−s(θ),

νt(θ) = (1− α)δ + α
∞∑
s=0

Ωs(θ)Pt+s

for t ≥ 0. We have simplified the first equation using the assumption that νt(θ) = 0 for

t ≤ 0.

Substitute the second equation into the first to get

pt(θ) = (1− α)δp0
t (θ) + α

∞∑
s=0

kt,s(θ)Ps, (30)

where

p0
t (θ) =

t∑
s=0

Ψs(θ) and kt,s(θ) =
t∑

x=max(0,t−s)
Ψx(θ)Ωx+s−t(θ).

Here p0
t (θ) is the average price among θ-type firms which would prevail in an economy with

no strategic complementarity, and kt,s(θ) is a θ-type kernel given by a convolution of Ωt(θ)

and Ψt(θ). One can verify that

∞∑
s=0

kt,s(θ) =
t∑

x=0

Ψx(θ) ≤ 1.

Average both sides of equation (30) across the type distribution G(θ) to get

Pt = (1− α)δP 0
t + α

∞∑
s=0

Kt,sPs, (31)

where

P 0
t ≡

∫ θH

θL

p0
t (θ)dG(θ) and Kt,s ≡

∫ θH

θL

kt,s(θ)dG(θ).

Since
∑∞

s=0Kt,s ≤ 1 for all t, the mapping (31) is a contraction with modulus α < 1, and so

has a unique solution in the space of bounded functions.
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C.2 Special Case: No Strategic Complementarity

We say there is no strategic complementarity when α = 0. In this case, the optimal price

for a firm that adjusts its price is simply δ, and so the average price in the economy is

Pt = δ

∫ θH

θL

∑t
s=0 Φs(θ)∑∞
s=0 Φs(θ)

dG(θ).

Changing the order of summation and integration, we get that

Pt = δ
t∑

s=0

∫ θH

θL

Φs(θ)∑∞
s′=0 Φs′(θ)

dG(θ) = δ
t∑

s=0

∫ θH

θL

Φs(θ)ω̃0(θ)dG(θ)

=

(
δ

t∑
s=0

Φ̄s

)(∫ θH

θL

ω̃0(θ)dG(θ)

)
= δ

∑t
s=0 Φ̄s∑∞
s′=0 Φ̄s′

where Φ̄s is the frequency-weighted Kaplan-Meier survival function defined in equation (18).

In the last equality, we used that

∞∑
s=0

Φ̄s =

(∫ θH

θL

ω̃0(θ)dG(θ)

)−1

.

Thus, the price level Pt is the same as in an economy with a single firm with the frequency-

weighted Kaplan-Meier survival function.

C.3 Special Case: Calvo

It is useful to analyze this problem for a single Calvo firm with parameter θ. In this case,

Ωt = (1 − β(1 − θ))βt(1 − θ)t and Ψt = θ(1 − θ)t, and so suppressing dependence on the

parameter θ, equations (15) and (17) then are

pt = θ

t∑
s=0

(1− θ)sνt−s,

νt = (1− α)δ + α(1− β(1− θ))
∞∑
s=0

βs(1− θ)spt+s.
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These can in turn be reduced to a pair of linear first-order difference equations,

pt+1 = θνt+1 + (1− θ)pt,

νt = (1− α)δ(1− β(1− θ)) + α(1− β(1− θ))pt + β(1− θ)νt+1.

The solution is of the form pt = δ(1−c1x
t
1−c2x

t
2) where x1 < x2 are roots of the quadratic

equation

x2β(1− θ)− x
(
1− αθ + β(1− θ)(1− (1− α)θ)

)
+ 1− θ = 0

and c1 and c2 are constants to be determined. It holds that 0 < x1 < 1 < x2, and so we set

c2 = 0 to have a non-explosive path for the average price. The initial condition p0 = 0 then

pins down c1 = 1.

C.4 Calibration of the Model

For the numerical exercise, we use estimates from our baseline model. We assume that the

baseline hazard is given by our estimates presented in Section 6.1. We also want to estimate

moments of the frailty distribution. Since
¯
T > 1, it is not feasible to estimate moments

distribution of dG(θ|ω̃f ) because we do not know what hs(θ) is for s < T̄ . However, it is

feasible to estimate moments of the distribution G(·|ω̃f
¯
T ), where

ω̃f
¯
T (θ) ≡

( ∞∑
c=1

cqc(θ)

)
ω̃T̄−1(θ),

is the weight given by the expected censoring time for a type θ product, multiplied by the

probability that a spell of this product reaches T̄ . It is useful to note that manipulating this

expression using equations (8) and (12) leads to

ω̃f
¯
T (θ) = ωf (θ)

¯
T−1∏
s=0

(1− hs(θ)).

Denote µ = (µ1, µ2, µ3) the first three moments of the distribution G(·|ω̃f
¯
T ). Assuming

that ζ = (ζ0, ζ1, . . . , ζK) is drawn from a stationary mixture model, we can translate equation
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(5) in the identification proof into moment conditions for µ1, µ2, µ3:

f
[µ1]

T̄
(ζ;µ, b) ≡ c

c− T̄

K∑
j=1

(
1ζj=

¯
T,cj≥T̄ − b¯Tµ11ζj≥

¯
T,cj≥T̄

)
f

[µ2]

T̄
(ζ;µ, b) ≡ c

c− T̄

K∑
j=1

(
1ζj=

¯
T+1,cj≥T̄ − b¯T+1

(
µ1 − b

¯
Tµ2

)
1ζj≥

¯
T,cj≥T̄

)
f

[µ3]

T̄
(ζ;µ, b) ≡ c

c− T̄

K∑
j=1

(
1ζj=

¯
T+2,cj≥T̄ − b¯T+2

(
µ1 − (b

¯
T + b

¯
T+1)µ2 + b

¯
T b

¯
T+1µ3

)
1ζj≥

¯
T,cj≥T̄

)
,

where we use weights c
c−T̄ following the same logic as in equation (13).

To see that E
[
f

[µ1]

T̄
(ζ;µ, b)

]
= 0, we use equations (19) and (20). We use equation (19)

and set t =
¯
T to find an expression for the expected value of the second term in f

[µ1]

T̄
:

E

[
c

c− T̄

K∑
j=1

1ζj≥
¯
T,cj≥T̄

]
=

∫ θH

θL

ωf (θ)
¯
T−1∏
s=0

(1− hs(θ))dG(θ)

=

∫ θH

θL

ω̃f
¯
T (θ)dG(θ).

In the next step, use equation (20) with t =
¯
T to find the expected value of the first term of

f
[µ1]

T̄
:

E

[
c

c− T̄

K∑
j=1

1ζj=
¯
T,cj≥T̄

]
=

∫ θH

θL

ωf (θ)ht(θ)
t−1∏
s=0

(1− hs(θ))dG(θ)

=

∫ θH

θL

ωf (θ)θb
¯
T

¯
T−1∏
s=0

(1− hs(θ))dG(θ)

= b
¯
T

∫ θH

θL

θω̃f
¯
T (θ)dG(θ).

Since µ1 =

∫ θH
θL

θω̃f

¯
T (θ)dG(θ)∫ θH

θL
ω̃f

¯
T (θ)dG(θ)

, the result follows. The proof that E
[
f

[µ2]

T̄
(ζ;µ, b)

]
= 0 and

E
[
f

[µ3]

T̄
(ζ;µ, b)

]
= 0 is similar and so we omit it.

We find that µ̂ = (1, 1.331, 2.137). We assume that G(·|ω̃f
¯
T ) has a beta distribution

over the interval [θL, θH ], and choose its two parameters α̃, β̃ together with θL, θH to match

the first two estimated moments of the distribution and to minimize the mean squared

error between the model-implied and estimated Kaplan-Meier hazard. We find θL = 0.156,

θH = 6.071, α̃ = 1.668, β̃ = 10. This distribution has a mass point at θmax = 1/b̂2, with
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Figure 6: Kaplan-Meier and average type implied by the calibrated model and its comparison
to estimates for pooled IRI data, log scale. The purple line shows the Kaplan-Meier hazard,
the blue line is the estimated baseline hazard, and the red line shows the “average type” at
given duration, calculated as the ratio of Kaplan-Meier and baseline hazards, as in Figure
1. The dashed lines show the fitted Kaplan-Meier hazard and the average type.

mass 0.0057, which ensures that 1− θbt is always positive for all t. The third moment of this

distribution, which is not targeted in the calibration, is 2.178, very close to the estimated

µ̂3 = 2.137.

Figure 6 shows that we fit the estimated Kaplan-Meier hazard and average type for t ≤ 60

very well. Using the estimate baseline hazard and the frailty distribution with the above

parameters, we use equation (6) to compute the implied Kaplan-Meier hazard, call it H̃t,

and then compute the average type as H̃t/b̂t. These are depicted with dashed lines in Figure

6.

We use the Kaplan-Meier hazard estimated in Section 6.1 for t <= 60 and assume that

it is given by Ht = γ0 + γ1/t for 60 < t ≤ 500, and zero for any t > 500. We estimate γ0

and γ1 by fitting this function using the estimated baseline hazard for weeks 10–60. We find

γ0 = 0.009 and γ1 = 1.142. We then use the model structure to recover the baseline hazard

for t > 60 using the decomposition Ht = btE[θ|t]. For any initial distribution dG(θ), we can

compute distribution of types among products surviving to t, dG(θ|t), using the distribution

dG(θ|t−1) and baseline hazard at t, bt. We use this relationship together with Ht = btE[θ|t],
where Ht is known, to recover bt.
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Online Appendix

D Additional Empirical Results

We report additional empirical results in this section.

D.1 Ergodic Distribution

To estimate the Kaplan-Meier hazard, we assume that when we first observe a product,

the duration of the in-progress spell is a random draw from the stationary ergodic duration

distribution for that product. A testable implication of that assumption is that, conditional

on censoring time, the share of products changing its price in any week is constant. We

implement a test in the following way. For all products with censoring time c, we compute

the fraction of price changes that occur by week t since the start of the in-progress spell;

we call it Fc(
t
c
). We then average the cumulative distribution function Fc across all c > T̄ ,

using the number of products with the corresponding value of c as weights. Figure 7 shows

that the corresponding empirical density lies within five percent of a uniform density. It is

close enough to uniform that we think the stationary mixture assumption is an empirically

useful starting point.

D.2 Aggregation to Monthly to Frequency

We aggregate weekly data to monthly frequency in the following way: spells with duration

2–5 weeks are coded as duration of one month, spells of with duration 6–9 as duration of

two months, and so on. We then estimate the MPH model using setting
¯
T = 1 and T̄ = 15

months. To display the results, we convert the baseline hazard and Kaplan-Meier hazard

into weekly units by

hwt = 1− (1− hmt )1/4,

where hmt is monthly hazard, either Kaplan-Meier or baseline, in month t and hwt is a weekly

hazard in month t.

Figure 8 compares the estimates using weekly and monthly data.

D.3 Sensitivity of Results to the Choice of
¯
T and T̄

We examine the sensitivity of our results to the choice of
¯
T and T̄ . This allows us to see

if there is a systematic failure of the MPH assumption. The idea is the following. Suppose

we want to learn about the relative baseline hazards at duration 10 and 20, b10/b20. The
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Figure 7: Empirical density of times when products change prices, measured from the start
of an in-progress spell, pooled IRI data.

MPH model admits several ways of recovering the ratio. We can directly recover the ratio

b10/b20 from equation (9) by choosing t1 = 10 and t2 = 20. But there are other options

which use information on spells at other durations. Specifically, we can use this moment

condition to recover b10/bt and b20/ht for some t 6= 10, 20, and combine them to find b10/b20.

Our estimator uses all such conditions. If it is the case that the MPH model is not correctly

specified at t, then including t into estimation will affect the relative hazards b10/b20.

Let bt(
¯
T, T̄ ) denote the GMM estimate of the baseline hazard at duration t ∈ {

¯
T, . . . , T̄}

using some values
¯
T and T̄ . We first fix T̄ = 60 and estimate the model for different values

of
¯
T = 2, 3, . . . , 10. To help visualize the impact of

¯
T on the shape of the baseline hazard,

we normalize b2(2, 60) = 1 and then recursively set b
¯
T (

¯
T, 60) = b

¯
T (

¯
T − 1, 60) for

¯
T > 2. If

the model is correctly specified for t ∈ {
¯
T, . . . , T̄}, we should find that bt(

¯
T, T̄ ) = bt(

¯
T ′, T̄ )

for all
¯
T <

¯
T ′ < t ≤ T̄ . Substantial deviations from this indicate systematic violations of

the MPH assumption.

The left panel of Figure 9 shows the results for the benchmark model and Figure 10 for

the competing risks model. The choice of
¯
T affects the estimate of the baseline hazard in the

benchmark model. This is in line with the fact that we reject the model using the J-test.

The choice of
¯
T has little effect on the hazard of price trend, b++ and b−−, consistent with a

correctly-specified model, but it substantially affects the hazard of price reversals, especially
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Figure 8: Kaplan-Meier and baseline hazard using weekly and monthly pooled IRI data, log
scale. The solid lines uses weekly data, the dashed lines are data aggregated to monthly
frequency. The purple line shows the Kaplan-Meier hazard, the blue line is the estimated
baseline hazard. The red line shows the “average type” at given duration, calculated as the
ratio of Kaplan-Meier and baseline hazard. The baseline hazard is normalized to be equal to
the Kaplan-Meier hazard at duration 2 weeks in the weekly data, or 1 month in the monthly
data. Kaplan-Meier and baseline hazard are in weekly units.
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T ∈ {2, . . . , 10} and T̄ = 60 in the left panel, and using different values for T̄ ∈ {10, 20, . . . 90}
and

¯
T = 2 in the right panel.

so b−+.

To analyze the role of T̄ , we fix
¯
T = 2 and estimate the model for T̄ ∈ {10, 20, . . . , 90}.

We now normalize b2(2, T̄ ) = 1 for each value of T̄ . The right pane of Figure 9 and Figure

11 show that the choice of T̄ does not affect the estimates.

This exercise does not reveal systematic violation of the MPH structure for b++ and b−−.

However, it brings up the concern that the hazards b+− and b−+ are not well described by the

MPH, at least at short durations. One hypothesis for the failure of the MPH model is that

the product type φ(θ) is not fixed over time. We investigate this by restricting the censoring

time ci to at most 80 weeks for every product. With the shorter censoring time, the choice

of
¯
T matters less for all four hazards, see Figure 12. The baseline hazards b++ or b−− are

insensitive to the choice of
¯
T , supporting our conclusion that these are well described by the

MPH model. The estimates of b+− or b−+ still depend on the choice of
¯
T , but much less so

than in the case of unrestricted censoring time. This is consistent with time-varying types.

E Maximum Likelihood Estimators

We investigate reasons for differences between GMM and ML estimates presented in Figure

5. We formulate the MPH model in continous time and write down the likelihood function

under two different timing assumptions. First, we assume that the data are generating by a

continuous time model but durations are measured only in discrete times; we call this model

Continuous Time with Discrete Measurement (CT-DM). Second, we assume that the baseline
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Figure 10: Baseline hazard for the competing risks model, pooled IRI data, log scale, esti-
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hazard is piece-wise constant and that observed discrete duration corresponds to continuous

time duration; we call this model Continuous Time with Continuous Measurement (CT-CM).

We make two simplifying assumptions when formulating likelihoods for CT-DM and CT-

CM models. First, in line with the literature, we assume that censoring time c is independent

of product’s types θ. Second, we use at most two spells per product which allows us to

represent the data in a simple way. For each combination of durations (t1, t2), with t1 ≥ 1

and t2 ≥ 0, it is enough to store the number of products with these measured durations and

the share of these with the right-censored first and/or second spell. Due to this simplification,

maximizing the likelihood is very fast but we are aware of the fact that usefulness of this

trick disappears in a general setup where different products have a different number of spells.

E.1 Continuous Time with Discrete Measurement

We formulate a continuous time MPH model with discrete time measurement (CT-DM),

which is correctly specified in real-world data where durations are rounded to integer values.

We assume each product has a censoring time c ∈ R+ with continuous cumulative distribution

P and a type θ drawn from a Gamma distribution with mean m and variance v. We later

consider an extension to the case where the frailty distribution is a mixture of Gamma

distributions. In contrast to our GMM estimates of the discrete time model, we impose that

c and θ are independent random variables.

In the continuous time mixed proportional hazard model, we assume that for any t ∈ R+,

the probability that the true duration of a spell is at least t for a product with type θ is

e−θ
∫ t
0 b(s)ds for all t ≥ 0. With discrete measurement, we assume that the measured duration

is always rounded up to the next integer. That is, for t = 1, 2, . . . , the probability that

measured duration is at least t is e−
∫ t−1
0 θb(s)ds.

In the CT-DM model, there is no hope of recovering the baseline hazard at all real

durations, since we only observe integer outcomes. Instead, for any t = 1, 2, . . . , define

bt ≡
∫ t
t−1

b(s)ds. Additionally, for notational convenience continue to assume b0 = 0. Our

objective is to recover b ≡ {b1, . . . , bT̄ , bT̄+1}, where sparsity of data lead us to impose

bt = bT̄+1 for all t ≥ T̄ + 1. It is also useful to define the integrated hazard zt ≡
∑t

s=0 bs =∫ t
0
b(s)ds, so the probability that measured duration of a spell is at least t = 1, 2, . . . for a

type θ product is e−θzt−1 .

We formulate the likelihood function for case where we observe two spells per product.

The data we observe is censored, (ci, di1, d
i
2, ζ

i
1, ζ

i
2) for a typical individual i, where ζ ij is the

measured duration of jth spell and dij equals one if jth spell is censored. If the first spell

right-censored (and hence the second spell is not observed), we code the duration of the
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second spell as ζ i2 = 0 and di2 = 1. Under our assumptions we can write down the likelihood

of different outcomes. First, we may observe two completed spells, ζ i1 = t1 ∈ {1, 2, . . . },
ζ i2 = t2 ∈ {1, 2, . . . }, and di1 = di2 = 0. The probability of this event is

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=

(
1− P (t1 + t2 − 1)

) ∫ ∞
0

e−θ(zt1−1+zt2−1)(1− e−θbt1 )(1− e−θbt2 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

The integrand is equal to the probability that the censoring time exceeds t1 + t2, ci ≥ t1 + t2,

multiplied by the probability that the uncensored durations (τ i1, τ
i
2) are exactly (t1, t2) given

θ, multiplied by the density of a Gamma distribution with mean m and variance v. Here Γ

is the gamma function. Solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=
(
1− P (t1 + t2 − 1)

)
fCT−DM0 (t1, t2; z,m, v)

where

fCT−DM0 (t1, t2; z,m, v) ≡
(

1 +
v

m
(zt1−1 + zt2−1)

)−m2

v −
(

1 +
v

m
(zt1 + zt2−1)

)−m2

v

−
(

1 +
v

m
(zt1−1 + zt2)

)−m2

v
+
(

1 +
v

m
(zt1 + zt2)

)−m2

v
.

We note the explicit dependence of this function on the integrated hazard z = {z1, z2, . . . },
as well as the mean and variance of the frailty distribution.

Second, we may observe a completed spell followed by a censored spell, ζ i1 = t1 ∈
{1, 2, . . . }, ζ i2 = t2 ∈ {0, 1, . . . }, di1 = 0, di2 = 1. The probability of this event is

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
=

(
P (t1 + t2)− P (t1 + t2 − 1)

) ∫ ∞
0

e−θ(zt1−1+zt2 )(1− e−θbt1 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is exactly t1 + t2, ci = t1 + t2 multiplied by

the probability that τ i1 = t1 and τ i2 > t2. Again, solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
=
(
P (t1 + t2)− P (t1 + t2 − 1)

)
fCT−DM1 (t1, t2; z,m, v)
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where

fCT−DM1 (t1, t2; z,m, v) ≡
(

1 +
v

m
(zt1−1 + zt2)

)−m2

v −
(

1 +
v

m
(zt1 + zt2)

)−m2

v
.

Finally, we may observe a single censored spell, ζ i1 = t1 ∈ {1, 2, . . . } and di1 = di2 = 1.

The probability of this event is

E
[
1ζi1=t1,di1=1

]
=
(
P (t1)− P (t1 − 1)

) ∫ ∞
0

e−θzt1
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is t1, ci = t1, multiplied by the probability

that τ i1 > t1. Solve the integral to get

E
[
1ζi1=t1,di1=1

]
=
(
P (t1)− P (t1 − 1)

)
fCT−DM2 (t1, 0; z,m, v)

where

fCT−DM2 (t1, 0; z,m, v) ≡
(

1 +
v

m
zt1

)−m2

v
.

We can use the probability of these three events to compute the log-likelihood. We treat

P as a nuisance parameter and take advantage of the fact that each of the probabilities is

multiplicatively separable in the terms involving P to get

LCT−DM =
1

N

N∑
i=1

log fCT−DM
di1+di2

(ζ i1, ζ
i
2; z,m, v). (32)

We impose z0 = 0, which holds by definition. We also normalize m = 1.19 Given a data set,

we can search for values of z and v to maximize this likelihood, subject to the constraint

zt+1 − zt = bT+1 for t ≥ T . We then first difference the integrated hazard zt to recover the

baseline hazard, bt = zt − zt−1.

It is straightforward to extend this analysis to the case where the frailty is a mixture of

K gamma distributions. Let {mk, vk, wk} denote the mean, variance, and weight on each

distribution. Then the likelihood is

LCT−DM =
1

N

N∑
i=1

log

(
K∑
k=1

wkf
CT−DM
di1+di2

(ζ i1, ζ
i
2; z,mk, vk)

)
. (33)

We again impose z0 = 0 and fix
∑K

k=1 wk = 1 and mk, vk, and wk all nonnegative to have

19The likelihood is unaffected by doubling m, quadrupling v, and halving z.
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a mixture model. We also normalize
∑K

k=1wkmk = 1. We then search for values of z and

distributional parameters which maximize the likelihood for fixed K.

E.2 Continuous Time with Continuous Measurement

We next turn to the continuous time model with continuous time measurement (CT-CM). As

in CT-DM, we assume each product has a censoring time c ∈ R+ with continuous cumulative

distribution P and a type θ drawn from a Gamma distribution with mean m and variance

v. We later consider an extension to the case where the frailty distribution is a mixture of

Gamma distributions. We again impose that c and θ are independent random variables.

We also assume that for any t ∈ R+, the probability that the true duration of a spell is

at least t for a product with type θ is e−θz(t) for all t ≥ 0, where z(t) ≡
∫ t

0
b(s)ds. As usual,

measured durations may be censored, but here we assume that we can measure the exact

duration or censoring time for each spell.

The data we observe is (ci, di1, d
i
2, ζ

i
1, ζ

i
2) for a typical individual i. Under the assumption

of a Gamma frailty distribution with mean m and variance v, independent of ci, we can

write down the likelihood of different outcomes. First, we may observe two completed spells,

ζ i1 = t1 ≥ 0, ζ i2 = t2 ≥ 0, and di1 = di2 = 0. The density of this event is

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=
(
1− P (t1 + t2)

)
b(t1)b(t2)

∫ ∞
0

θ2e−θ(zt1+zt2 ) e
−mθ

v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

The integrand is equal to the probability that the censoring time exceeds t1 + t2, ci ≥ t1 + t2,

multiplied by the density that the uncensored durations (τ i1, τ
i
2) are exactly (t1, t2) given θ,

multiplied by the density of a Gamma distribution with mean m and variance v. Again, Γ

is the gamma function. Solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=
(
1− P (t1 + t2)

)
fCT−CM0 (t1, t2; z,m, v)

where

fCT−CM0 (t1, t2; z,m, v) ≡ b(t1)b(t2)
(
m2 + v

) (
1 +

v

m
(z(t1) + z(t2))

)−2−m2

v
.

Second, we may observe a completed spell followed by a censored spell, ζ i1 = t1 ≥ 0,

ζ i2 = t2 ≥ 0, di1 = 0, di2 = 1. The density of this event is

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
= h(t1 + t2)b(t1)

∫ ∞
0

θe−θ(zt1+zt2 ) e
−mθ

v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.
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This is the probability that the censoring time is exactly t1 + t2, ci = t1 + t2 multiplied by

the probability that τ i1 = t1 and τ i2 > t2. Again, solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
= h(t1, t2)fCT−CM1 (t1, t2; z,m, v)

where

fCT−CM1 (t1, t2; z,m, v) ≡ b(t1)m
(

1 +
v

m
(z(t1) + z(t2))

)−1−m2

v
.

Finally, we may observe a single censored spell, ζ i1 = t1 ≥ 0 and di1 = di2 = 1. The

probability of this event is

E
[
1ζi1=t1,di1=1

]
= h(t1)

∫ ∞
0

e−θzt1
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ

This is the probability that the censoring time is t1, ci = t1, multiplied by the probability

that τ i1 > t1. Solve the integral to get

E
[
1ζi1=t1,di1=1

]
= h(t1)fCT−CM2 (t1, 0; z,m, v)

where

fCT−CM2 (t1, 0; z,m, v) ≡
(

1 +
v

m
zt1

)−m2

v
.

As in the CT-DM model, we use the probability of these three events to compute the

log-likelihood, taking advantage of the fact that each of the probabilities is multiplicatively

separable in the terms involving P to treat P as a nuisance parameter. This gives us the

portion of the likelihood that we are interested in:

LCT−CM =
1

N

N∑
i=1

log fCT−CM
di1+di2

(ζ i1, ζ
i
2; z,m, v). (34)

As usual, we normalize m = 1.

It is again straightforward to extend this analysis to the case where the frailty is a mixture

of K gamma distributions. Let {mk, vk, wk} denote the mean, variance, and weight on each

distribution. Then the likelihood is

LCT−CM =
1

N

N∑
i=1

log

(
K∑
k=1

wkf
CT−CM
di1+di2

(ζ i1, ζ
i
2; z,mk, vk)

)
. (35)

We again impose
∑K

k=1 wk = 1 and mk, vk, and wk all nonnegative to have a mixture model.
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We also normalize
∑K

k=1 wkmk = 1.

Given any finite data set, we need to impose some restrictions on the baseline hazard

in order to maximize either likelihood (34) or (35). We assume that the baseline hazard is

piecewise constant and so z is piecewise linear.

E.3 Estimation of CT-CM Model in Stata

Stata has a built-in command for parametric estimation of the MPH model with multiple

spells (streg) and observable characteristics. Even though it is necessary to specify frailty

distribution as well as the functional form of the baseline hazard, one can use a full set of

dummy variables for duration to “over-ride” the parametric form of the baseline hazard and

estimate it flexibly. Since we are interested in estimating hazards up to duration T̄ , we have

only one dummy variable for spells longer than T̄ . This dummy is equal to 1 if the measured

duration exceeds T̄ +1 and zero otherwise. We find that when we use two spells per product,

the maximum likelihood estimates in Stata coincide with the CT-CM model estimates with

one gamma distribution.

E.4 Results

We use IRI pooled sample data where we use first two spells per product. On this sample, we

estimate the baseline hazard using CT-CM, CT-DM as well as the discrete time model with

discrete measurement (DT-DM) using our GMM estimator. For the CT-CM and CT-DM

models we assume that the frailty distribution is either gamma or a mixture of gammas.

Figure 13 shows the results. The hazards are normalized to be equal 1 at duration of

2 weeks. The blue line shows the baseline hazard estimated from the discrete time model

with discrete measurement (DT-DM) using GMM. The other solid lines show ML estimates

for the continuous time model, either with discrete measurement CT-DM(1) (black line)

or continuous time measurement CT-CM(1) (green line). The CT-DM(1) model, which

properly takes into account time aggregation, gives an estimate basically identical to our DT-

DM model. The CT-CM(1) baseline hazard is much lower, recovering little heterogeneity.

In general, CT-DM and DT-DM models are not the same and so we should not expect them

to deliver the same estimates. There is, however, an important special case when they are,

which is when the baseline hazard is constant.

Heckman and Singer (1984) pointed out that imposing a specific distribution for the ML

estimation can bias the estimates of the baseline hazard. We investigate whether misspecifi-

cation of the frailty distribution can explain the difference between CT-CM(1) and DT-DM.

We cannot formulate the likelihood without choosing a frailty distribution but we can choose
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Figure 13: Baseline hazard estimated using different methods with two-spell IRI data, log
scale. The blue line is the discrete time model with discrete measurement (DT-DM). The
green lines correspond to continuous time with continuous time measurement (CT-CM),
where the frailty distribution is a single gamma distribution (green solid line) or a mixture
of 2 gamma distributions (green dashed line). The black lines correspond to the continuous
time, discrete measurement (CT-DM) model, where the frailty distribution is a single gamma
distribution (black solid line) or a mixture of 2 gamma distributions (black dashed line).

a more flexible distribution than a single gamma, for example a mixture of several gamma

distributions. In the CT-CM model, we could not find the second gamma distribution and

hence the estimates of CT-CM(1) and CT-CM(2) are identical. In the CT-DM model,

modeling the frailty as a mixture of distributions does not affect the baseline hazard and

CT-DM(1) and CT-DM(2) are very close. We therefore conclude that in this case, imposing

a specific functional form on the frailty distribution does not affect results.

Our conclusion from this exercise is that the most important factor explaining the differ-

ence between the CT-CM and DT-DM model is the failure of CT-CM to deal with discrete

data.

F Baseline Hazards for Product Categories

Here we present our results by product category. Figure 14 shows the baseline and KM

hazards and Figure 15 shows the average type estimated using the GMM conditions for
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the MPH model. Figures 16 and 17 show the baseline hazard for price trends, b++ and

b−− respectively, estimated using the GMM conditions for the competing risks model with

observable characteristics.
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Figure 14: Kaplan-Meier and baseline hazards for individual product categories, IRI data,
log scale. Product categories are sorted by the number of spell pairs.
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Figure 15: Average type for individual product categories, IRI data, log scale. Product
categories are sorted by the number of spell pairs.
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Figure 16: Baseline hazard b++ in the competing risks model for individual product cate-
gories, IRI data, log scale. Product categories are sorted by the number of spell pairs.
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Figure 17: Baseline hazard b−− in the competing risks model for individual product cate-
gories, IRI data, log scale. Product categories are sorted by the number of spell pairs.
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