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ABSTRACT

Despite its important theoretical, empirical and policy implications, sunk—cost hysteresis has
not been characterized for the case of model consistent, or rational expectations (previous studies
assume that firms believe the forcing variable is generated by some ad hoc, time invariant process
such as an iid or Brownian motion process). This omission is significant since if firms do have
forward—looking expectations, the existing characterizations cannot be used for empirical testing,
or as a guide in developing appropriate econometric techniques. Furthermore, policy conclusions
based on such characterizations may be misleading.

This paper demonstrates the possibility and characterizes the nature of sunk—cost hysteresis
for a broad class of assumptions on the forcing variable process. Most notably this class includes
rational or model consistent expectations. Specifically, we show that the firm’s problem with a
quite general forcing variable process can be reduced to be formally identical to the iid case.
Additionally we analytically show that (i) the hysteresis band tends to widen with greater sunk
costs, (ii) the effect of greater volatility on the band width depends upon the specific nature of the
process generating the uncertainty, and (iii) greater persistence in the shocks has the effect of
making well-entrenched firms more likely to exit and of narrowing the band for marginal firms.
Lastly we show that the possibility of sunk—cost hysteresis is robust to a number of medifications

of the basic sunk cost model.
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Sunk—Cost Hysteresis

*
Richard Baldwin
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Despite its important theoretical, empirical and policy implications, sunk—cost hysteresis has
not been characterized for the case of model consistent, or rational expectations {previous
studies assume that firms believe the forcing variable is generated by some ad hoc, time
invariant process such as an iid or Brownian motion process). This omission is significant
since if firms do have forward—looking expectations, the existing characterizations cannot be
used for empirical testing, or as a guide in developing appropriate econometric techniques.
This paper demonstrates the possibility and characterizes the nature of sunk—cost hysteresis

for a broad class of assumptions concerning firms’ beliefs about the process generating the
forcing variable. Most notably this class includes rational or model consistent expectations.

Hysteresis can occur in any dynamic system which has multiple steady—state equilibria since
an exogenous shock may knock the system from one steady—state equilibrium to another.1 The
notion of hysteresis in economics dates back at least to Phelps (1972) and is somewhat related to
well—known effects such as irreversibilities, ratchet effects and path—dependencies.2 However,
because hysteresis is merely a property of a model, it may arise in different models for entirely
different economic reasons. For instance, hysteresis can occur in models where an exogenous
shock can lead to an irreversible change in the employability of the workers (as in Phelps 1972), or
in union membership (as in Blanchard and Summers 1986), or in the internationai distribution of
factor endowments {as in Kemp and Wan 1974). This paper examines the type of hysteresis first
demonstrated by Baldwin (1986, 1988a). The logic of this latter type of hysteresis is simple. In
the presence of sunk market entry costs, a firm’s entry and exit conditions are asymmetric so a
temporary shock can lead to a hysteretic change in market structure and thereby induce
hysteresis in prices and quantities.

The possibility of any type of hysteresis has important theoretical, empirical and policy
implications. For instance comparative static results, which formally hold only for small changes,
are frequently used to analyze the effects of non—infinitesimal shocks or policy changes. Such
results may be misleading if the economy is subject to hysteresis since the equilibrium conditions

on which the comparative static analysis are based may be hysteretically altered by the shock



itself. A recent example of a policy implication of hysteresis is found in the debate on how far the
US dollar must fall to be consistent with balanced trade. One approach to this issue uses time
series estimates of exchange rate pass—through elasticities, and import and export price
elasticities to determine the balanced—trade level of the US dollar (e.g., Bryant, Holtham and
Hooper 1988). However, given the unprecedented magnitude of the 1980s dollar cycle, it is at least
theoretically possible that the relationship between the US dollar and the trade balance has
hysteretically shifted. Indeed, Baldwin (1988a) presents rudimentary evidence that, due to
sunk—cost hysteresis, US import prices in the 1980s were lower than expected given the real
exchange rate. If hysteresis did in fact occur, the parameters estimated using pre—1980 data
overstate the actual response of the trade balance, implying that the dollar must fall further than
the Bryant—Holtham—Hooper calculations would suggest. It is easy to see that such
miscalculations could occur in any situation involving large shocks, or large changes in policy
where hysteresis is a possibility. The empirical implications of hysteresis are perhaps the most
important. For instance, estimation equations derived from a model which imposes a unique
long—run equilibrium may be misspecified if the model is subject to hysteresis. Furthermore, the
use of fixed—coefficient lag structures to capture the effects of history may be inappropriate if
hysteresis is a possibility.

The theoretical, empirical and policy implications of the type of hysteresis stemming
specifically from sunk costs have been studied by several authors. For instance the possibility of
sunk—cost hysteresis has been shown to affect the entry and exit decisions firms facing
uncertainty (Dixit 1987a), the pass—through of exchange rates to import prices (Dixit 1987b,
Baldwin 1988a, 1988b), the performance of UK exports in the 1980s (Bean 1987), the rise of
anti—dumping cases in the US (Dixit 1987a), the dynamic behavior and long—run level of real
exchange rates (Baldwin and Lyons 1988a, Baldwin and Krugman 1989, Krugman 1988), and the
persistence of the US trade deficit in the 1980s (Krugman and Baldwin 1987). Indeed the
possibility of sunk—cost hysteresis is one of the factors that led Krugman (1988) to argue for a
return to fixed exchange rates. Bertola (1987) uses a related model to study investment behavior.
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Yet despite its broad implications, sunk—cost hysteresis has been formally characterized for
only three highly special assumptions on firms beliefs about the process governing future
uncertainty. This lack of theoretical generality is a significant omission since it hinders efforts to
empirical test for hysteresis as well as the development of econometric techniques to estimate
models that allow for sunk costs. Moreover, it hinders the integration of the partial equilibrium
sunk cost model into a general equilibrium macro model. Sunk—cost hysteresis was first
characterized for assuming that firms had perfect foresight on the future values of the forcing
variable (Baldwin 1986, 1988a). Two subsequent studies characterized sunk—cost hysteresis for
the case where firms act as if the forcing variable is generated by a stochastic process (identically
and independently distributed in Baldwin and Krugman 1989, and Brownian motion in Dixit
1987a, b). The perfect foresight result showed that sunk—cost hysteresis has nothing to do with
uncertainty but it and the identically and independently distributed (iid) assumption are
obviously unrealistic in many applications. Dixit (1987a, b) takes an important step toward
realism by using the techniques of continuous—time dynamic programming to solve for the
optimal entry—exit strategy when the uncertainty is expected to evolve according to Brownian
motion. Dixit is able to show analytically that sunk—cost hysteresis is a possibility. His
numerical solution also allows a characterization of how the position and width of the
no—entry—no—exit band changes with various underlying parameters. Most notably he shows that
the band widens with greater sunk costs and with greater volatility of the uncertainty.

Brownian motion is a natural way of modeling expectations about uncertainty in many
instances. Yet there are many situations when the Brownian motion assumption is unacceptable.
For instance, if the stochastic forcing variable is the endogenous outcome of more fundamental
factors such as monetary and fiscal policy (as in the case of macro uncertainty), or supply and
demand interactions (as in the case of price uncertainty), then the Brownian motion assumption
is equivalent to imposing a rigid form of adaptive expectations. Clearly in such cases the
Brownian—motion characterization of the entry—exit strategy cannot be used for empirical
testing (since agents may well have had forward—looking expect ations).'?' Additionally the
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Brownian motion assumption is inappropriate when the entry—exit decision feeds back into the
stochastic process. For instance unless the firm is atomistic, its own entry into the market will
affect the process generating the uncertain return on its investment. In the context of
international economics, foreign firms entering the home country market could affect the process
generating the exchange rate as shown by Baldwin and Lyons (1988b).

This paper attempts to correct partially this lack of generality by using the techniques of
discrete—~time dynamic programming. Specifically we solve for the optimal entry—exit strategy
and demonstrate the possibility of hysteresis in the presence of sunk entry costs allowing for a
broad class of processes generating the forcing variable. The solution involves the use of a fairly
standard mathematical technique (Bellman 1957) which reduces the problem with a general
forcing variable process to be formally equivalent to theiid case. We also analytically
characterize how the width and position of the hysteresis band is affected by changesin (i) the
size of the sunk costs, (ii) the volatility of the uncertainty, and (iii) the degree of persistence of
the forcing variable process. Lastly we show that the possibility of hysteresis is robust to
modifications of several of the assumptions of the basic sunk cost model.

The intellectual antecedents of sunk—cost hysteresis are manifold. The economics are related
to the putty—putty versué putty—clay investment distinction (e.g., McDonald and Siegel 1985),
and the criticisms of the contestability literature (e.g., Stiglitz 1987) in the industrial
organization literature. Williamson (1963) discusses the importance of selling costs as a barrier
to entry. Our model follows the basic industrial organization approach of Dixit (1979, 1980) and
Eaton and Lipsey (1980, 1981). In the empirical trade literature, Orcutt (1950) discusses and
tests for a quantum effect of large exchange rate changes without theoretical explanation.

The paper has six sections. The first two present the basic model and solve for the optimal
entry—entry strategy for a broad class of expectations. The third demonstrates the possibility of
hysteresis. The fourth section characterizes the nature of hysteresis. The fifth considers

modifications of the basic model. The concluding remarks are in the last section.



L. The Basic Model

Consider a firm which can sell in a market by expending (in addition to variable production
costs) a fixed and sunk cost, F. To sell in subsequent periods the firm must incur a fixed
maintenance cost M, such that F > M (F and M are finite and M may be zero). A binary state
variable, A, keeps track of the firm’s history (At= 1ifit was active last period, and At: 0
otherwise). The firm has two decisions in each period: Whether to be active in the market; and if
it is active what level of sales or price (depending on the specific strategic assumptions) to choose.
Since the exact nature of the second decision is tangential to our purposes, its details are
submerged in a function which gives the level of its operating profit, 7., as a function of the
realization of the stochastic forcing variable, s, (for example s can be thought of as marginal cost,
or a variable negatively affecting demand) and a vector of state variables, Xy
(1.1) 7, = ms,x ], where gg[st,xt] < 0.

t

The support of s is the real line and X is defined according to the dictates of the specific
application. The function 7 is continuous in all arguments and bounded above and below. The
firm chooses an entry—exit strategy to maximize its expected discounted cash flows. The timing
of the decision is: The firm observes Sy then decides to be active orinactive, and then earns
m—F—Da, (ifitis active), or zero (otherwise), where D = F-M. Section IV considers a number of
variations on these assumptions.

II. The Optimal Entry—Exit Strategy

To provide intuition for the optimal entry—exit strategy, consider the standard problem of a
firm with fixed start—up costs in a static setting. In this case, the optimal decision rule (entry
condition) is that the firm should be active only if profits can at least cover the fixed costs:
™2 G, where G is the fixed cost (the entry and exit conditions are symmetric). Allowing for
multiple periods and sunk costs requires a modification of this rule. Sunk costs imply that it is
cheaper for the firm to stay "in" than it is to get "in". Consequently, being active this period may

provide the firm with an advantage in future periods. We refer to the discounted expected value




of this advantage as the incumbency premium and denote it as \Ilt_H. Thus with sunk costs the
optimal decision rule becomes: 7, + v 41 2 F + DA, where §is the constant discount rate.
A. The LL.D. Finite Horizon Example

To fix ideas, we first find the optimal entry—exit strategy for the simple case of an iid forcing
variable and a finite horizon. Although we spend a good deal of time on this example it is well
worthwhile. Subsections IL.B and II.C show that the solution allowing for a broad class of
processes and an infinite horizon is quite similar the simple case considered here.

Consider the discrete—~time dynamic system which describes the evolution of x and A:
(2.1) xt+1=k[st,xt,Ut], A=Y,
where U is the control variable (U,= 1 if the firm chooses to be active in period t, U= 0 otherwise).
The triplet (st’xt’At) is an element of the state space S. The forcing variable, s, is iid across periods
with the cumulative distribution function (cdf) P[s]. The problem is to find a control policy (a

sequence of functions) ¢ = {”'0"“’”"1‘—1}’ where each #, (£=0,..,T—1) maps the state space S into the

set {1, 0}, and maximizes:

(2.2) V%’[s At’”’t[st’xt’At]]} +8p such that 6 < § < 1and

t'xt'

T—1
O’XO’AOJ = E{t §06tg[s

1=k [st'xt’“t[st’xt’At]] '
W[st,xt] —F- DAt’ lfUt =1

gls,x AU ] =
R, iU, =0, allt,

and gp = 0. Expectations are over s, (t=9,...,T—1). We characterize the optimal control policy
using Bellman’s optimality principle. That is, supposing that the optimal value of the firm in
period t (all t) is finite and can be described by the functions V,[sx Al (existence of these
functions is addressed below), then, using (2.1), we characterize the control policy by solving the

much simpler sub—problem of choosing Ut to maximize:
(2.3) U, (7fs,x] =F—DA) + 6E{Vt+1 [s,k[st,xt,Ut],Ut] h

where the expectation is overs, . (We omit the time subscript on S41 10 (2.3) toindicate that
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the expectation involves integrating over all possible realizations). The optimizing firm
calculates (2.3) for U= 1ando, and opts for the one which yields the highest value. Specifically, it

is active only if s x ]-F—DA + 0EV s,k[st,xt,l],l]] is greater than or equal to

il

5EVt+1[s,k[st,xt,0],0]].

The optimal entry—exit strategy can be stated in terms of the realization of s, for which the

firm is indifferent to being active and inactive. This critical value, ay, is defined implicitly by:

(2.4) ﬂ{at,xt]—F—DAt+EVH_1[s,k[at,xt,l],l} = Ethr1 [s,k[at,xt,O],O],
or more succinctly, oy x ]+ 6‘I,t+1[at’xt] =F+DA,
where \Iltﬂ[at,xt] = EVtH[s,k[at,xt,l],l} - EVt+1 [s,k[at,xt,O],()].

Now assuming that the functions 7, V +1and k are such that,

t
(2.5) 6(7r{st,xt1 + 5‘I’z+1[’v"t])/5’t <0,

{more on this condition below), the period t opt imal entry—exit strategy is depicted in figure
1. The critical value for the case where A=0 is labeled a{, and the critical value for A=1 is
labeled a? in figure 1. Condition (2.5), which we call the slope condition, ensures that nfs x|
intersects the F—0¥

x] and M—é¥ x,] lines from above. Clearly, the optimal strategy is:

i1 i1l

Be active only if 5, ¢ ai (f A= 0), or be active only ifstg a? (ifAtz 1). The conditions under which
(2.5) holds depend upon the specifics of the functions k and =; in section I1.D (2.5) is shown to
hold for a broad class of problems. If the inequality in the slope condition is reversed, the
inequalities in the decision rule are reversed as shown in figure 2. In Bellman's terminology, o,
partitions the state space into two decision regions.
The hysteresis Band

In each period, the firm faces only ai af A=0)or a? af A =1),not both. Nonetheless,
considering the two critical values simultaneously builds understanding of sunk—cost hysteresis.
Infigure 1, ai and a? divide the realizations of s into three regions: For any s, < a{ the firm is

active regardless of its history; for any s > a? the firm is inactive regardless of its history.



However, for any S between a{ and a?, history matters; if the firm was out last period, it remains
out; ifit was in last period, it remains in. This is the no—entry—no—exit band referred to in the
introduction. We show in section III that its existence implies the possibility of hysteresis (which

is why it is sometimes called the hysteresis band). More concisely:

L ifs, <o
(2.6) ut[st,xt,At] =

0 otherwise

where @ is implicitly defined by (2.4).
Eristence and Optimakty

For (2.6) to be optimal, the functions V, (8=0,...,T—1) and their expectations in (2.4) must
exist and be finite. The proof that these conditions are met and that (2.6) is indeed optimal is
sketched in appendix 1. Basically, the proof proceeds by solving sub—problems like (2.3), starting
with the period T—1, and working backward. In T—1, we know that EV_[-,-,-] exists and is finite
since no matter what the firm does in period T, its value is zero. The solution to (2.3) for T—1

Given By

gives us Py and the value function, Vipq[*im-] = Max ]:7!'[5 xT_I]—F—DAT_l, 0] .

T—1"
and Vp_ylee] wecan form the expectations needed to solve (2.3) for period T—2. Repeated
application of this dynamic programming algorithm yields the optimal control palicy (2.6), and

the value functions: Max[w{st]—F—DAt+6Evt+l[sk [spx, 10, 1], 6EVt+1[s,k[st,xt,0],0]],Vt

The incumbency premium ‘I’t-}-l[st’xt]’ which is the key to characterizing (2.6), is:
I (¢}
%t1 %1
(2.7) (F— 1\_4) [ dP[z] + j {7z, k[st,xt,l]] M+ 6%, +2[z,k[st,xt,1]]}dP[z]
ZI=-m I=q,
t+1

In words, the incumbency premium is the expectation of the difference between Vt+1[- ,+,1] and
Vt+1[' ,*,0). Onone hand, ifst L t+1’ the firm will be active whether A =10r0,50 it is worth
Tt 6Vt+2[- e ,1]—F-—DAt+1. Clearly for such realizations of 841 the difference,
Vt+1[- .. ,1]—Vt+1[- ,+,0], equals F — M. On theother hand, ifst+1> a?H, the firm will be inactive

e
—M+ 6‘Ilt+2 -]. Integrating over all

+1

o) .
Lastly, for a 418 841 @y the difference equals LA

possible Si41 (weighting the various outcomes by the pdf of st+1) gives us LAICEE

for A, ,=1and0, and will be worth Vt+1[-,- ,0]. Thus the difference equals zero for such s,
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B. Extension to Infinite Horizon Approximation

The question of whether the world will come to an end is well beyond the scope of this paper.
However, in many situations it is unrealistic to assume that firms know exactly when the last
period will come. Moreover, the infinite horizon approximation is of special interest since many
macro models use this framework. Fortunately the extension to the infinite horizon case is simple.
In one sense, most of the work is already done. The existence of the hysteresis band in (2.6) did
not depend on the size of T, so making T larger should not affect the existence of the band.
Continually making T bigger is essentially what is involved in mbving to the infinite horizon
approximation. The mathematical problem is to check that the value of the firm remains finite
and the expectations remain well-defined as T limits to infinity. Indeed, if for every triplet
(’t’xt’At) Vv, converges to a finite number as T goes to infinity, then there exists a time—invariant

function V which relates the value of the firm in period t to XL and A Given our assumptions,

t
this convergence is a fairly obvious result. 7 is bounded above and below so 8 is always finite
and 6is between 0 and 1 so it is easy to see that the discounted sum of expected g,’s would
converge as T goes to infinity. Appendix 2 sketches the proof.

Given Vls, x,,A,] exists and is finite and the slope condition holds, the stationary entry—exit
strategy is: Be active only if:
(2.8) s, $ @ =alx,A], where a[x,,A ] is defined by:

ma, x| + W[O‘z"‘t] =F+DA,
where, \Il[at,xt] =EV [s,k[at,xt,l],l] —EV [s,k[at,xt.O],O]

Here expectations are over See1 As before, if the inequality in the slope condition is reversed, then
the optimal entry—exit strategy would be described by (2.8) with the inequality reversed.
C. General Expectations: a mathematical sleight—of—hand

Consider the infinite horizon problem of the firm as outline above with the modification that

now the firm believes that the forcing variable evolves according to the very general process:

(2.9) s, = e,y



where ¢, is an iid disturbance and ¥y is a vector of state variables governed by the laws of motion:

t
(2.10) SRS CRUAD
The function he,y] is assumed to be continuous in all its arguments and increasing in its first.

Equation (2.9) obviously includes rational or model consistent expectations when thereis a
single underlying source of iid uncertainty in the model. In any particular example, the laws of
motion governing the state variables will be defined by the specifics of the macro or micro model
and e will be some transformation of the underlying source of iid uncertainty. As the studies
mentioned in the introduction showed, one implication of hysteresis is that a large shock may
alter some of the parameters in a macro or micro model. It isimportant to note that (2.9) is
sufficiently general to account for such shifts. Aslong as firms’ expectations — including the
possibility of parameter shifts — are based on state variables (that obey well-behaved laws of
motion) and an underlying iid shock. This point is made explicitly in the context of exchange rate
hysteresis in Baldwin and Lyons (1988b).

Now to reduce the problem to the iid case solved above, we define:
(2.11) e, w,] = W[h[et,ytj,xt],
where w,= (xt;yt), and then treat ¢ exactly as we did s in the iid problem, using 1:[ instead of m, w
and its laws of motion instead of x and expanding the state space toinclude ¢, and y,. Given the
arguments made above, the optimal entry—exit strategy of the firm is given by (2.8).
The AR1 Ezample of (2.9)

To illuminate this technique, we briefly consider an explicit example of (2.9). Suppose the
firm faces an infinite horizon, that 7 depends only on s and the firm expects s to evolve according
to the first—order autoregressive (ARL) process:

(2.12) 0<p<tL

1= Ty 08P2
where ¢ s iid, E{e} = 0 and the support of ¢ is the real line. The state variables are €25, and A

(specifically v, Ss,_,,and the function y is such that Vop1= &% pyt). By the dynamic
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programming algorithm, V[€t+p’t—1'At] is:
(2.13) Max [ﬂet+pst_l]—F——DAt+6EV[e+p(et+pst_1),1],6EV[e+p(et+pst_1),0]] ,

where the expectation are over ¢ e In period t, the optimal decision rule is: Be active only if

t
et €< th = ;[At]’ where the function ;[At] is implicitly defined by:

(2.14) rla]+ 6¥a)=F+DA, where
¥(q] = EV[e+pq,1] — EV[e+pq,0], or equivalently
0
a
V(g = (F-M)P[a'—pq] — [ {ls]—M+0U(a]}dP—pal.

z=Qa
Note that the cdf of 5, in the AR1 caseis P[st—pst_l] where P[-]is the cdf of e. Tostate the

entry—exit strategy more explicitly, if the firm was inactive last period, it should come "in" only
ifst < ax; if it was active last period, it should go "out" only if s, > a® where:

ral] + 8¥al]= F

2.15
(215) Ma®) + 6%(a0) = M.

In the AR1 case the critical values are time invariant, since the current realization of sis a
summary statistic for the state of the s process. An equivalent decision rule which treats ¢ exactly
like s in the iid case is: Be active only if €, < ft = ;[At] -
D. Expectation Processes for which the Slope Condition Holds

The condition that B(fI[et,wt] + 6‘I![et,wt])/ (’iet be negative is not easy to interpret since the ¥
function depends on the functions V, x, h, y and k. Here we examine the case where fI depends
only on s in order to identify a class of forcing variable processes that are consistent with the slope
condition. In this case, one easily interpretable sufficient condition is that the expected value of
incumbency premium, ¥, be everywhere non—increasing in €. In other words, if a higher ¢ this
period is bad news for profits in all future periods then the expected premium from being active
this period is diminished. This condition implies that the slope condition holds due to (1.1)
and the assumption that dh{-,-1/ (’iet is positive. This sufficient condition is met when the shocks
are expected to evolve according to an autoregressive—moving average (ARMA) process which

1




has a moving average (MA) representation with non—negative parameters.

Proposition 1 (¥ is non—increasing for any ARMA forcing variable process with positive

persistence): If the function, h, can be represented by 8, = J§00 ey , such that all 0j are
non—negative, then ¥ is non—increasing in the contemporaneous realization of ¢.

The outline of the proof is as follows. First, any ARMA process can be represented as an MA -
process (perhaps of infinite order). In particular, if all the AR and MA coefficients in an ARMA
process are non—negative then all coefficients in the MA representation are also be non—negative.
Second, we demonstrate that ¥, + is non—increasing in € {all t) for the T—period finite horizon

case. Lastly we argue that \Ilt converges to a time invariant function as T approaches infinity. The

first and last steps involve applications of well-know results so we omit them. Given:

(2.16) E b . 6.20alli €isiid,
i=0

The optimal strategy is given by (2.6) taking the contemporaneous realization of € as the

=

disturbance and all lagged values of ¢ as the state vector x,. To verify that a¥ b/ Betg 0 for an

arbitrary period t, note that the incumbency premium, ‘I’t+1[€t’et—1""]’ is:
I
%41 .
(2.17) (F—M)P[a +1] +OJ{T[ 00z+01€t+i§2016t+1—i] —-M+ §‘I’t+2[z,Et,et_l,...]}dP[z],
@y +1
where P[-] is the cdf of e. Since a£+ and c:t 41 depend on €, €, enters the integrand and limits of

integration in (2.17). The partial derivative of the incumbency premium, \Ilt +1[...], with respect to

4
€ is (defining s- Syl = 00at+1+2 b€ 1 a,nd:;t 1:+f0at+1+2 be 1)
(2.18) (F-M)P7[a} ]a"iﬂ + a"‘t+1 1 1 M+80. [0 e ]
: 1| T Ty 42! Fp 41 t+1
t t
0
%41
o, M5t M+ 69 el 1+| | 16,71, 2 fe 0¥ pglt] ap
T et T t+2[ 417 [ t+1 i t+1—1]+55?— JaPEal)
t
I
=C¥t+1
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where 7[-] is the derivative of x{-] and P'[-]1s the pdf of e. By definition of the critical value a?_H
the second term in large parentheses is zero since at a(: 41 the sum of profits and incumbency
premium exactly equals M. By definition of ai_H, the first and third terms in large parentheses
cancel since at a{ 41 the sum of profits and incumbency premium exactly equals F. (NB: These
cancellations could be thought of an application of the envelope theorem to a discrete choice
situation. The change in the value of firm in t+1 with respect to € is the same with and without
re—optimization on the at_H’s. Since this is truefor A =1 and 0, it is also true for \I’t+1' These
cancellations are used extensively in the analysis in section IV.) Clearly, the partial derivative
depends only on the last term in large parentheses. Since 01 is non—negative and =(-] is negative,
the term will be negative if the partial of \Ilt+2 with respect to €, is non—positive. The formula for

this latter partial (using the envelope cancellations) is similar (2.18):

[0}

a ® av bz

(2.19) 0¥, ole] J t+2{927r’[9oz +E ANPIRE 6azj—s }dP{z]|.
d Et z:aH_ 2 i=1 t

Since 0y is non—negative and -] is negative, if a\IItH[...]/Betis negative then (2.19) is negative.
Repeating the argument we would eventually reach period T—1 in which the incumbency
premium is zero regardless of the realization of & (so NT[...]/aet =10). Thus awm[...]/aet is

non—positive since 1[-] is everywhere negative and all #.’s are non—negative. If 8% [.}/0¢ is
8 1 8 t

t+1
non—positive for the T—period finite horizon, and ¥ t+1['"] converges to ¥ then it must be that
6\11[...]/65t is also non—positive so the sufficient condition for the slope condition to hold is met.
IT1. Existence of Sunk Cost Hysteresis

To demonstrate the possibility of hysteresis we first demonstrate the existence of a
no—entry—no—exit band:
Proposition 2 (Existence of the hysteresis band): Assuming condition (2.5) holds, the optimal
entry—exit strategy described by (2.6) is such that at < a?.

The proof is simple. If they are equal then by (2.4) F = M. Since this is a contradiction of an
assumption, it must be that they are not equal. Also supposing that ai > a? then by the slope
condition, ai is not the optimal decision rule for A=0. Since we showed that a{ was indeed the
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optimal decision rule, this supposition must be false.

Next we show that the existence of the no—entry—no—exit band implies that hysteresis is a
possibility. Note that we demonstrate that hysteresis is a possibility — not an inevitability.
Proposition 3 (Possibility of hysteresis): Given that the firm’s optimal entry—exit strategy is
marked by a no—entry-no—-exit band and that the firm is not atomisticin its own market, a
sufficiently large, temporary shock could hysteresis in quantities and prices.

The proof is by construction of a simple example. More complicated examples may be
interesting but are not necessary to demonstrate the possibility of hysteresis. Suppose that r
depends only on the current s and the firm was inactive in period t—1 so A,=0. Consider the
following historical sequence of realizations of e. In period t the value of € was ect), where ect) liesin
the no—entry—no—exit band. In period t+1, the value of the e decreased to "t'+1’ where e't'_H is
less than a:_H. Lastly for the next N—1 periods, €opi (i=2,...N) was within the no—entry—no—exit
band. For comparison consider another historical sequence of € (t=1,...N). This second sequence
is identical to the first except that €t1 lies within the band rather than below it. The
probabilities of such sequences could be calculated using the pdf of ¢, however it is sufficient to
note that they are non—zero. In non~hysteretic models, the effects of € " would eventually fade
out in the sense that price and quantity in period N would be the same for both sequences (for
sufficiently large N). However, due to the asymmetric entry and exit conditions created by the
sunk costs, in the first sequence the firm switches from being inactivein t to being activein t+1in
the first sequence, and more importantly, remains active during the next N—1 periods. Comparing
this to the second sequence (where the firm does not enter), we see that hysteresis in market
structure has occurred. As long as the firm is not atomistic in its own market, its presence will
affect the quantity and for pricein its own market. As a result, past shocks affect real variables in
amanner that cannot be captured with the simple fixed lag structures commonly employed in the
empirical work. In a time series estimation that did not include the number of firms as an
explanatory variable, hysteresis would appear as a structural break. Obviously since home
imports are foreign exports, this demonstrates the possibility of hysteresis in exports as well.
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Note that hysteresis differs from irreversibilities since the system could be restored to its period t
state by a corrective shock.
IV. Characterizing the Nature of Sunk Cost Hysteresis

This section characterizes how the width and position of the band is affected by changes in
underlying parameters such as the size of the sunk costs, the degree of persistence in the s process,
and the degree of volatility in the s process. We restrict our attention to the infinite horizon case,
where L depends only on the current s b and s is expected to evolve according to the AR1 process
described in (2.12). The AR1 process reflects a large class of expectations such as the random
walk and iid. Generalizing to other specific ARMA processes would involve similar analytic
techniques. These comparative static exercise involve totally differentiating (2.15) with respect
to a{ a® and either F, p or an index of volatility, r. Clearly ¥ depends on these parameters, and to
be entirely correct, we should have denoted it as W[’t'xc3A] where A is the vector of parameters.
However for notational simplicity we explicitly include only F, p or r as a variable in ¥ as needed.
A. The Band and the Size of F

In this sub—section, we prove that under certain conditions an increase in the size of the sunk
costs, F, widens the band by increasing a® and decreasing d. Heuristically, figure 1 shows that
¥ increases with F only if the incumbency premium (evaluated at ao) increases with F. To see
why ¥ increases with F, recall that ¥ is positive because it is cheaper to stay in than to get in
(i.e., F > M). As this difference increases the expected value of the incumbency advantage
increases. The effect of a higher F on olis slightly more complicated because a higher F increases
the cost as well as the benefit of becoming active. More formally, treating F as a variable, the

definition of W[SC’F] evaluated at s = qis:
[0}

a
(41) (F-MPl' —pal + | {ls]—M + 6¥[s,F}dPl — pa]
z=Q

where P[-] is the cdf of ein (2.12). Totally differentiating (2.15), using (4.1), we get:

(o]
0 6\IIF[a , F

1
, and da' ﬂ,F[a’F] —!

(42) - da da’
dF

[=9)

—r[aol-é‘lll[a(,)F] -1 [aI]-é‘Ill[a{F] ’
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where \Ill[- ;F] is the partial of ¥ with respect toits first argument. By assumption m[-] is negative

and differentiating (4.1), we have that ¥, [a,F] equals:

0
a
(4.3) —p(F—M)P'[a— pq] — 4 f { 7{2]—M+ 6% [, F]} P [z—pq)ds.
=Q

To show that this is non—positive, we integrate the second term by parts:
(4.4) ¥ [ F] = (p)(F-M)P o~ pa]
~p{m1a01-M+82100F)P1C—pa] + p{r{all-M+6¥[a Fl}Pia—pq)
aO
+p | {m[s]+6%, s, F]}dP[s—pd].
!5=(.3¥I
By the envelope cancellations the first three terms cancel out, leaving only the integral term

which involves the partial that we are trying to sign. Repeatedly substituting \Ill[- ,0] into itself
shows that the partial is non—positive since it depends only on terms involving pm[-]dP{-]. Thus
from (4.3) we have that the sign of dao/dF depends on the sign of \IIF and the sign of daI/dF
depend on the sign of \IIF— 1. Differentiating with respect to F and using the envelope

cancellations described above:
o]

a
(4.5) ¥ [9,F] = Pla’ — o] + J (0% [z}l — p.
a

" To build intuition, we first sign (4.5) for theiid case (p = 0). With p = 0:

o]
a
(4.6) Vol F) = P[aI] + [ IJ’ 6\IIF[z,F]dP[z]].
a
Using the fact that \IIF[z,F] is independent of the realization of %41 when the process is iid, Vol F]

equals P[aI]+6\IIF[q,F](P[aO]—P[aI]), so:
Pl aI]
, forallq.

4.7 ¥_[q,F] =
(1) ploF] 1 — &pla®] — Plal)

Standard properties of cdf’s and the fact that af < a° can be used to show that \IIF[- JF] lies
between zero and unity, as long as the discount factor, 4, is not too small. By (4.3) then, it is clear

that daI/dF is negative and dao/dF is positive. Consequently a higher F leads to a wider band.
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General Rho
The demonstration is more intricate for p # 0. In appendix 3, we show that Yy is still positive

in this case so da¥/dF is positive. By a series of substitutions (detailed in appendix 3):

I — oAl I )
(4.8) Yol F< C=Pla —pa] (1 +—1—:£&p—), where

o= (Pla® — pa) — P[a — pa®), f=(P(a® — pal) — P[d — pal).

Given this, it is possible to show that as long as difference between F and M is not too great, then
C (and consequently \IIF[o&F]) is less than unity. In particular if we evaluate daI/dF at the point
where F=M, then we can use the fact that at that this value of F, a®= ol Thus at this value of F,
B and ¢ are zero, so C equals P[aI(l—p)] which is obviously strictly less than unity so daI/dF is
negative. Consequently, we know that at least for F sufficiently close to M, greater sunk costs
lead to a wider band.
B. The Band and The Degree of Persistence in the s Process

Next we address the link between p and the band. There are several economic interpretations
of changing rho. First as tho decreases from unity the process tends to revert to its mean faster,
reducing the degree of persistence. One instance where this has a concrete economic meaning is
the case of the standard linear stochastic version of the sticky price monetary model of exchange
rate determination. In this model it is well know that a lower rho indicates faster adjustment of
the domestic price level to changes in aggregate demand. Changes in this speed of adjustment can
come from faster pass—through of exchange rate changes to traded goods prices. This latter source
of changes is emphasized in Baldwin and Lyons (1988a).

Treating p as a variable rather than a parameter, o and a° are defined by: 1r{aI] + 6‘I/[afp] =F

and 7r{ao] + 6‘Il[a(,)p] =M. Totally differentiating these:

(4.9) da® Wpla(?p] , and dd’ “’g[“%"]
¥ r1a®1-8% 1000 P mia -6 ol

Since m'[-]is negative and §¥ [-,p] can be shown to be negative (using a (4.4) type of argument),

[.
1
the derivatives have the same sign as .\Ilp. The definition of ¥(q,0] is:
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o]
a
(4.10) (P-M)P{a— pa] + { {ls] =M + 6¥[s,pl}dPls—pq],
=
§0 \Ilp[q,p] equals:
o] (o]

I a a
(4. 10)(F-M0P (' el (G5 —a) + f (oMl M+ OV oI a—palds + 1 B¥ faldPla—pd]
a a

o I
* [(ﬂaol—M+5‘I’[a?p])P’[ao-PqJ§%] + [(ﬂa‘J—Mm[aEpJ)Pv{a‘—quj%J,

where P[] is derivative of the pdf of ¢. With the envelope theorem cancellations \Ilp[q, 0] becomes:

(o)

a
(P-M)P'{a —pa](—) + ,J (—a){la]—M+E(s, 01} P [s—palds
a

o]
a
+ | Y [z,pdPlz—pq).
o 4

(4.12)

The sign of this depends on the termsin large parerthesis and on the third term which involves
‘I’p[q,p] itself. Substituting this definition of ¥ p[q,p] into itself, we get:

(o]
a
) (P-M)Pla'~pal(—0) + f <—q>{ﬂzJ—M+N{z,p]}P"{z—pqldz]
a

a4
0]
a4
+6 [ J (a0p1al—ps ) +f (M- S0P 7] dP{z—qu}
I y=a

a
+6 J J{‘I'p{w]}dPh—mldP{z—qu-

The sign of (4.13) depends on the first two terms in large parentheses and on the sign of ‘Ilp itself.
The second term in large parentheses, however, is similar to the term in large parentheses in
(4.12). Repeated substitution produces an infinite, discounted sum of terms similar to the term in
large parentheses in (4.12). Thus, if we can show that the term in large parentheses in (4.12)is
always of one sign then we can sign (4.12).

Intuition for the sign of (4.12) is provided in figure 3. Essentially increasing phas the

effect of shifting the pdf osz1 to the right if q is positive (e.g., s't'), and to the left if q is
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negative (e.g., si). Since the difference Vis, , ,1] — V[s, , .,0] is non—increasing, a rightward shift

t+1 t+1
places more weight on the lower values of ¥, thereby decreasing the conditional expectation. A
left ward shift place more weight on higher values, thereby increasing ¥. This intuition is only

suggestive since p affects the value of Vs, .,1] — V[s, ,,0]in the range o'~ More formally, we

t+1 t+1’
sign the term in large parentheses in (4.12) by integrating by parts (using the fact that F-M

equals ﬂ{aI]-—M+6‘II[aI,p]) to get:
(4.14) ¥ fap] = (—a)(rla'}-M+ 5Vt )Pl —pd

+ (@{ral-M+6¥ P al—p + (—){ra®-M+8¥(a pl}P(aO—pq]
O

[
+ (@ [ {"[E+Y, [pl}dPlE—pq)
a

The first three terms cancel out by the envelope cancellations, so the sign of (4.14) depends only
on 7(-]and ¥, (which are negative) and q (which may have either sign). Clearly then (4.12) has
the opposite sign of q.
Interpretation

In the case where both a° and o are negative, \Il[a(,)p] and ‘l'[ogp] increase with p so, by
inspection of (4.9), the band shifts to the right with increases in the degree of persistence. On the
other hand, if a® and o are both positive, ‘Il[ao,p] and ‘Il[aI,p] decrease with p so the band shifts
to the left as the degree of persistence increases. If alis negative and aPis positive the band
narrows. Loosely speaking, if the demand and cost parameters are such that both of and o© are
negative then the firm will not be active at the steady—state level of s, since by definition the
unconditional expectation of s is zero (recall E{¢} = 0). We might refer to such firms as unlikely
entrants. If both o and ao are positive, the firm might be thought of as well—entrenched. If o° is
positive and alis negative, the firm might be thought of as a marginal firm. Roughly speaking
then, we say that an increase in persistence in the exchange rate expectations, narrows the band
for marginal firms. For well—entrenched firms, more persistence makes the firms less well

entrenched (since the band moves toward zero). For unlikely entrants, more persistence moves
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the band to the right toward zero.
C. The Band and Volatility

Dixit (1987a) shows that an increase in the variance of the Brownian motion process leads to
a widening of the band. This subsection demonstrates that the band widening effect of volatility
does not hold in general but does hold for processes that are sufficiently close to a random walk.
To demonstrate that band—widening is not a general result, consider a simple counter—example.
Let p =0 and #{-] be linear in s. With iid expectations, the incumbency premium is independent
of the current realization s. In particular, the value of the incumbency premium is the same at
5= o and 5= a° An increase in volatility changes the value of the incumbency premium, and
this would in turn change the position of the band. However the width would not change since 7{-]
is linear. The example is illustrated in figure 4, assuming that the volatility reduces the premium
from \IIH_1 to ‘ilt+1’ so that of and a© shift to o and a®.
Random Walk Case

Before turn to the general link between volatility and band width, we show that under
assumptions that might be thought of as the discrete time version of those in Dixit (1987a)
greater volatility does widen the band. In particular, we assume that p =1 and ¢ has a symmetric,
single—~peaked, mean~zero distribution, and #{-] islinear over an interval that includes aI and
ao. Using the Diamond—Rothschild—Stiglitz notation for mean—preserving spreads (MPS), ol
and ao are defined by: ﬂ'[aI]+6\Il[a{r]=F and 1|-[a0]+6‘11 [a?r]:M, where r indexes MPS’s of the pdf
P[e,r] (higher rindicates more volatility). Totally differentiating the relationships that define the
band:

I 0
dal 6‘Ilr[a , 1] aa® ov oo
(4.15) T M S
—r[a ]—6‘Ill[a,r] —r[a ]—6‘111[01, r]
A sufficient condition for the band—widening is that of decreases while o° increases in response to
a mean—preserving spread (MPS) of e. By (4.13), this occurs only if \Ilr[aI,r] is negative and
‘I/r[ao,r] is positive. Intuition for why this holds in the special case of a random walk is provided in

1=V

t+1'0] and the solid light line plots the

1:+1’1
20

Figure 5. The heavy line shows the difference V(s



pdf of Syl when 8= o!. The random walk assumption together with the assumption that eishasa
symmetric mean—zero distribution implies that the distribution of St is centered exactly on .
A MPS of ¢ leads to a MPS of el thus moving weight out toward the tails as shown by the

0], obviously falls; to

dashed line. The conditional expectation of the difference, V[s, _ .,1] —V[s

t+1 t+1’

the left of aI, the MPS has no effect since V[s, . ,,1]—VIs, . ,,0] is constant. To the right of aI,

t+1° t41'
however, the MPS puts more probability weight on lower values of V[st+1,1]—V[st+1,0]. Using an
analogous argument we can see that \Il[a(,)r] increases with r since for 8 equal to a(,) the

distribution of St is centered on a°. Again figure 5 is only suggestive since it excludes the fact

0]

that the MPS alters V(s . .,1]-V[s , .,0] over the of—a® interval as shown by the dotted line:

t41’ t+1'
While this shift tends to mitigate the above discussed effects, appendix 4 shows that a MPS does
indeed lead to a band widening. Appendix 4 also argues that if p is close enough to unity then we
would still get the band widening effect.
LID. Case

Returning to a more general {-), if rho is zero, then \I’r[al,r] = \Ilr[ao,r] so the band will widen
if \I’r[aI,r] is positive and will narrow if it is negative. This follows from (4.15), the convexity of
profit functions and the fact that o' < a®. Also using a diagram similar to figure 5, it is easy to see
that \Ilr[al,r] is positive when both aI and ao are negative, and is negative when both are positive.
Thus roughly speaking, in the iid case, the band widens for firms that are unlikely entrants and
narrows for those that are solidly entrenched firms.

V. Model Modifications

This section shows that the existence of a no—entry—no—exit band is quite robust to the
specific assumption made in section I. To be concrete, we focus on the finite horizon case.
A. Ex ante Timing of the Entry—Exit Decision

Consider the following timing: At the beginning of this period the firm decides to be acfive or
inactive this period, based on the previous disturbance ¢,_,. Subsequently & is observed and the
cash flow 7, —F — DA, (if the firm is active) or zero (if it is inactive) is realized. To be specific we
assume that T depends only on s, and that sis ARl asin (2.12). The state variables in period
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T—1are 4, and s the value function in T—11is:

Tl T
@
(5.1) Vo _pAr = Max[i{ s+ps_oldPE]} —F—DA, . 0]
The optimal decision rule is:
(5.2) by php I =1 i ey S0y p=ap Ay ]
= 0, otherwise

where the critical value function, ap_ (A is implicitly defined by:

T_l]l

(5.3) {f :{z+pa,r_2]dP[z]} =F+DAp

I=—m

Obviously since F > M and 7(-] is negative, ap_ [0 <ap (1. We will have use for the
expectation of v, conditioned on information available at time T—2 so we write this out:

1
s )

(5.4) E{Vy ALl lBT—3} = J _{I 7r[w+p(z+psT__3)]dP[w]} dPz] —F—DA_,_,.

where ap_,=an [An | InT-2 the value function, Vv, is defined by:

T—olPr_gAoh
@

(5.5) Max [2 1r[z+paT_3]dP[z]}—F—DAT_2+§E{VT_1[s,1] | sp_gh §E{VT_1[s,0] | sT_s}}

and decision rule is:

r gy ghr ol =1 if ap gSap g=ap ,(Ar ]

= 0, otherwise

where i ﬂz+pa,r_3]}dP[z] + 6%, (o, J=F+DAL ,,
and Vo lap J 2BV, ]| ag o} ~E{V,_ (s0]]ap ).

Notethat, ¥, , is decreasingins since an increase ins;,_, has no effect on

T3’

1=V 0] for those s, , less than an_, (0], and for s1_, between ap_, 0] and

Vo_ilbp_p=Vr_ler o

ap_4(1], an increase in s reduces the difference (since (-] is negative and p is positive).

T-3
Consequently it must be that ar_ol0] <ap_o(1. Iteratively applying this type of reasoning it is

possible to show that the optimal entry—exit strategy is marked by a no—entry—no—exit band for
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all t=(0,..., T~1).
B. An International Application: Maximization in Foreign Currency

In the single country interpretation of the section I model, the issue of the numeraire of
maximization does not arise. However, much of the sunk—cost hysteresis was developed iz the
context of international trade so the issue of numeraire is important. First it is obvious that if F
and M are fixed in foreign numeraire terms (using each country’s currency as its numeraire) and
the foreign firm maximized its value in terms of that same currency, none of our results would be
altered. However, if F and M are fixed in home currency and yet the firm maximizes its value in
terms of foreign country currency, the solution is somewhat more involved but is still marked by ¢
hysteresis band. To show this as simply as possible, we assume that T, (now defined in foreign
currency terms) depends only on the level of the iid exchange ratee, (home price of foreign
currency) and F and M are fixed in home currency. In the penultimate period the value function

and decision rule are:
(5.6) Vo glep_pAp_l= Mu[ﬂ{cT_l] —(F+DA_V/eq o], and

pp_gleq_pAp l=1l ifep Sog  =ap [Ay )]
=0, otherwise

where n{a,r_l] =(F+ DAT_I)/ Oy _-
This assumes that e 7le,] is decreasing in e which is true if and only if, operating profits measured
in home currency are decreasing in the level of the real exchange rate. If instead e e ! is

increasing is ¢, then the inequality in (5.6) would be reversed. For an arbitrary period:
(5.7 V[, A ] = Max [ﬂ‘[et] —(F+DA)/e, + JEEVt +1[e,1], 6EVH_1[:,0]] ,

and the borderline realization of ¢, is given by:

LGk Nt+1 =(F+DA)/a, where

‘I’t+1 ZEV, [ - EV, [0
Here expectations are overe, .. The decision rule is depicted in Figure 6. In the top part of the
figure, we have drawn 7] such that it falls more steeply than Fle, — 6‘Ilt+1 and M/e, — 6‘Ilt+1, In
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this case, a,[0] < a1} so the decision rule to to be active only if: e, $a Al As usual thereis a
hysteresis band. In the bottom part, we have drawn 7e,] has falling less steeply than Ffe — 6‘I/t+1
and M/e, — Wt+1' In this case a,[1] < a0}, however there still is a hysteresis band, since the
derision rule is be active only if: e, 2a[A).
C. Demand Side Hysteresis

For many types of goods, consumers find that the cheapest way of judging the quality of a
product is to actually try it. In one of the seminal formalizations this idea (Schmalensee 1982),
the producer faces a linear demand curve that shifts out by a proportional factor after consumers
try the good. Thus profits for a firm that was "in" last period are greater than for a firm that was
"out" last period. Plainly this is a situation that is formally quite close to sunk entry—cost
problem we have solved. Consider the section I timing with iid shocks. Suppose that consumers
have a short memory. If they consumed the product last period the firm would earn operating
profits equal to 7r{st](1+)\) by selling the product this period, where A > 0, If they did not consume
it last period, the firm’s operating profits would be just s, Now in addition to manufacturing
the product, the firm must incur some fixed costs, G, (it need not be sunk) in every period it
wishes to sell. In the next—to—last period:
(5.8) Vo gl Ayl = Maxlzlsy 11+ XA, ) =G, 0],
and be active only if ST_1 Cap  =alal, where

Moy J1+2A,_)=G.

For an arbitrary period the value function and decision rule are:
(5.9) V,[s,,A,] = Max| s (1 + AAt) -G+ 6EVt+1[s,l], 6EVH_1[s,0]},
and be activeonly if: s, $a =alAl, where

a1+ AAt) + ‘I’t+1 =G, and

U SEV, 1 -EV,

Given the iid assumption the slope condition is met since ¥, 41 is a constant. Obviously hysteresis

[,0].

is a possibility in this model since a,[0] <a,1], for all t.
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V1. Concluding Remarks

This paper demonstrates the existence and characterizes the nature of sunk cost hysteresis for
for a broad class of processees generating the forcing variable. Most notably this class includes
rational or model—generated expectations. Specifically we show that the hysteresis band tends to
widen with greater sunk costs, but the effect of greater uncertainty on the band width depends
upon the specific nature of the process generating the uncertainty. Lastly we show that greater
persistence in the shocks has the effect of making well—entrenched firms more likely to exit, of
narrowing the band for marginal firms and of making unlikely entrants more likely to enter.

The paper uses discrete—time dynamic programming techniques to derive the optimal
entry—exit strategy. It would appear that these techniques might be useful complement to the
very powerful techniques discussed by Dixit (1987a, b). In particular in a wide variety of
multi—period problems where it is cheaper to get "in" than to stay "in" (broadly interpreting the
meaning of "in"), the analytics in this paper could easily be extended to show the possibility and
characterize the nature of hysteresis. These include problems that involve irreversibilities and
sunk costs. The finite time dynamic programming algorithm involves mathematics which are
simple enough to allow the introduction of more complicated economic considerations. The
drawback is that — unlike the continuous—time Brownian motion analytics employed by Dixit
(1987a, b) — it is often not possible to explicitly solve for the values of end points of the
no—entry—no—exit band. Nonetheless for many analytic and empirical purposes it is not really
necessary to find a closed form solution for these critical points. This paper shows that a fairly

informative characterization of the band can be derived even without a closed form solution.
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APPENDIX 1
Assuming that:
{al) ﬂ'[st,xt] attains a finite minimum and maximum value and is continuous in all its
arguments, and decreasing in its first argument,

{a2) x, ;= kls,x,, U lisa continuous function which is known to the firm,

t+1
(a3) the pdf of 5, P[], is everywhere finite, F and M are finite and

{ad) EV, Ad=c¢ for all s, x and A, where c is a finite number,

-

{a5) the functions 7 and k are such that (x{- ,-]/65t + 60% -]/6st) is negative,

el
then there exists an optimal control policy ¢ = (”0’”1""’“'1‘—1) where each J4y, MAps the state space
into the control space, {1,0}, and has the form (2.6).

The proof is by mathematical induction. Its outline is as follows. In lemma 1, we show by
construction that if BV, [“’k[s’xt'Ut]’Atﬂ] exists and has a finite value and the slope condition in
(a5) holds then optimal decision rule in period t is of the nature specified in (2.6). Inlemma 2 we
show by construction that if E:Vt+1 [”k[s’xt'Ut]'Atﬂ] exists and is finite then the value function for
period t, V [s x,,A ] exists and is finite. In lemma 3 we show that if Vx4l exists and is finite
and the decision rule has the (2.6) form and then the expectation EV, [a,k[s,xt__l,U Ay exists
and is finite. Lastly to start off the chain of mathematical induction, we show by construction in
lemma 4 that ifVT[- ,4,*]=c, then Ve leanar] exists and is finite.

Proof of the lemmas is as follows.
Lemma 1: IfEV

s’k[st’xt’Ut]'A exists and is finite for all (st,xt), and if

t+1 [ t+1

(m-,-] + 66\Ilt+1[- , -])/63t is well defined and is negative, where ¥ x,] is defined in (2.4), then

ppal®

the optimal decision rule, fs At],is: Set U=1, iff 5, $ @, 5.t

tlx'tY

(A1.1) me,x] + & a,x] =F+DA,

t+1[
The proofis simple. If the firm chooses to be active it is worth:

ﬂst,xt]—F-DAt+6EVt+l[s,k[st,xt,l],l]; if it chooses to beinactiveit is worth: (5EVt+1[s,k[st,xt,0],0].

Since these are both finite numbers, one most be at least as large as the other. The optimal

strategy is to choose the action that leads to the highest value. By assumptions (al), (a5) and (a2)
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there is only one value of 5 for any (XA, call it ay, for which the two alternatives are equal.
Furthermore (a5) implies that for values of 5 less than o the activity option is preferable.

Lemma 2: If the expectation, EV 5,k[s,.x,, U] ] , exists and is finite, then the function

|
Vt[’t‘xt’At] also exist and is finite.

t+1

The proof is by construction. V,[s,x,,A,] equals:

(A1.2) mu[‘n‘[ut,xt]—F—DAt+5EVt +1[;.,k[st,xt,1],1],45Evt +1["k['t"‘v°]'°]]

By (al), (a3) and the supposition, V, is finite.

Lemma 3: If vt['t’xt‘At] exists and is finite then EV, ["k["xt—l'ut—ll’At] exits and is finite.
Proof is by construction. Using lemma 1 and the supposition implies that the optimal

decision rule is defined by @, SOEV, [“’k["xt—l’Ut—ll'At] equals:

R

t
[‘r[z,k[st_l,xt_l,1]]—F—DAt+45E{Vt L +1,1]}] dP[z]

=

(A1.3)

b

+ [ {45EVt+1[s,xt+1,0]}dP[‘]|

t
where for notational convenience, we did not write out:

X =k nk [st—l ’xt—l’Ut—l] oy ["k['t—rxt—l'ut—l] ‘At] } ’

t+

The expectations here are overs, . Given the supposition, (al), (a2) and (a3), it is obvious that
the expectation exist and is a finite number.

Lemma4: Vv Ar_y) exists and is finite number.

11—
Again proof is by construction and is isomorphic to the proof of lemma 2, noting that

EVT['y'y'] =cC.

APPENDIX 2: Convergence and Existence in Infinite Horizon Case.
Our proof technique in this section requires that the cash flow in any period be non—negative.

By the boundedness of LA and the finiteness of F and M, we know that L € s, x| — DA, < H, where
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L snd H are finite numbers. If we restricted both L and H to be non—negative then the proof
would be more direct. However, we do not wish to restricted L to be non—negative since we might
very well want to consider cases where a firm can lose money this period in expectation of profits
in future periods (of course if H is negative then the firm would never operate so to avoid a
vacuous problem we assume that H > 0). To accommodate these two requirements we prove
convergence for a related infinite horizon problem and then show that our result also implies
convergence and optimality for the original problem.

Comnsider a vector of state variables, q, = (s,%,4,), that is an element of a space S and which
obeys the laws of motion implicit in the discrete—time dynamic system:
(A2.1) %Y= f[qt,ut]
where u, is an element of a non—empty space C, and s, is an element of a space D and is
characterized by the cdf P[s]. Given theinitial state ay the problem is to find a control policy
$= {pgteyr-} such that 4 [q]:5 4 C, Y k=0,1,... (we call such control policies admissible policies and

denote the set of all such policies as ) and which maximizes the functional:

T—1
(A22) Tglagh=1imE{ I &' [qt,#t[qtl]}, where 0¢ §<1 and
T-o t=0
{(A2.3) gla,u,] ={W[st,xt] —DA, +K,ifu=1
K, ifut=0

subject to (A2.1) and such that
(A2.4) K= Max{—L,0].
By adding this appropriately chosen finite constant to each period’s cash flow, we have:
(A2.5) 0 < gla,u,] ¢ B, such thatB=K + H.
Introducing more notation, we call the optimal value function JT and define it by,

*
Id =¢82p0 J¢[<11-

Comnsider the T stage problem derived from {A2.2) by truncation. The optimal value of this

sub—problem is: J;[g]: sup J¢ [a] (where QT is the set of all admissible ¢T) and is given by the
¢.€Q. T

T'T
T—th step of the dynamic programming algorithm as described in appendix 1 (reversing time

subscript so that 0 is now the last period and T is the first). To reiterate:
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(A2.6) Tl =0, Ya€s

(A2.7) JH-I[q] = sup ( glqu] + §E{Jt [i{q,u]]} ), Yq €8, t=0,1,...,T~1.
ueC

where the expectation is with respect to the period t realization of s, and we have dropped the
time subscripts on q and u for notational convenience (in (A2.7) the q and u would otherwise all
have been 44y and qu). )
Proposition: (convergence) The optimal value of (A2.2), J, is such that:

(A2.9) 0¢ J‘[q] <B/(1—f), YVq€S, and
(A2.10) J‘[q]= 1imJ¢[Cl], Yq€S
T-m T

To show (A2.9) involves an obvious use of (A2.5). To show (A2.10), use the fact that by

definition of a supremum:

A * &
(A2.11) T4l J¢'£q] + K(—=5)-
That is, if we used the dynamic programming algorithm to choose the control policy, ¢T, for the
first T periods and then set u,=0 for all subsequent periods, the value of the firm would be that
given by the right hand side of (A2.11) and obviously 1" is at least as great as this arbitrary
control policy. Similarly J * can be no greater than the value of the firm if it optimized for the first

T periods and then received the maximum cash flow for all subsequent periods, i.e.:

. T
(A2.12) ICRACE B—25.
Plainly then .
6T . §T
J¢¥1] +K) STl ¢ J¢¥1] +B(——5)
T T

and since K( 1f6 ) and B( 1f6 ) go to zero as T goes to infinity, we have
Vld=1im Tyl
T=wo T
Now since we know that the value function J, converges to J *as T-o, we know that the
optimal control policy for (A2.2) is stationary since with an infinite horizon the maximization

problem is identical in every period. Indeed the optimal policy is given by (skipping over some

mathematical details more fully covered in Bertsekas 1972):
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pa)=u, ¥aq €S,
where the function yis implicitly defined by:
lj= sup (glagn] + 58057 [da,n)]3).
utEC

Lastly we take the fairly obvious step of showing that the optimal policy for the modified
problem is also optimal for the original problem. Since we added X to the cash flow in each
period, we know that

* *® 1
Vid=7d-Kip
50 the ufq] which maximizes expected discounted cash flow plus a constant, as in (A2.2), also

maximizes the expected discounted cash flow without the constant.

APPENDIX 3: Evaluating (OE¥/JF) for AR1 expectations

By definition \Il[st,F] evaluated at 5=q is:

(o]
a
(A3.1) (E-M)P[a' —pa] +  f {#ls]—M + §¥[s,F]}dPlz — pq]
=0
where P[] is the cdf of ¢ in (2.12). Differentiating with respect to F using the envelope
cancellations:
aO
(A3.2) Y laF =Pla ~p + f {6%[sF]}dPf:~pd
a

Repeatedly substituting this formula into itself, we have that \IIF equals:

I
a
1 1
(A3.3) Pla —pq] +[ —aOJ 8Pla =3, ) dP[zH_l—pq]]
1T
1 1
a a 9 I
+ L _ aoj . aoj §Pla —p”t+2]dp[”t+2"p”t+1]dP[zt+1-p‘4]}
t427 t+17
aI a 0163 1
+ _ aoj . - aoj . - aoj Pla'—pz,  gldPlz, | g=pm, pldPls, o=z, | (JdPl, y—pal| + -
t+3 t+2 t+1=

Two points are immediately obvious. First this quantity is positive since it is the discounted sum
of probabilities. Second, to analytically evaluate this expression is not a easy task sinceit involves

integrals of a cdf.
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As explained in the text, the signing of dao/dF only requires that the expression is positive.
However the sign of daI/dF depends on whether the above expression is less than unity. To this
end, we make a number of substitutions that simplify the expression. The resulting expression is
equal to a number C, and due the nature of the substitutions we know that ‘IIF is less than C.
Thus if we can show that C is less than unity, we show that ‘IIF is also less than unity. Specifically,
consider the first term in large parentheses in (A3.3). The difficulty here is that the integral of the
cdf, P(-], is not an easily interpretable function. However we know that the value of P[aI—pz t+1]
over the range of integration is less than or equal to P[aI—paI]. Thus if we substituted this

constant in place of the function the value of the resulting integral is greater than the value of the

original integral. With this substitution:
1

a
1 I o] 1 1
(A3.4) 6Pla’ —pa' (P —pq] — P[a —pq]) > aoj 6P[a P31l 4Pls,  ~pdl |-
Using a similar substitution in the second term in large parentheses is less than:
o}
2 1 1% 0 1
(A3.5) §°Pla'—pa L‘I {Pla”—ps, | —Pla'—ps,  1}dPls,  —pq]

Making similar substitutions for P[ao—pth] and P[aI-—;nH_l], we have that the second term in

large parentheses from equation (A3.3) is less than:
(A3.6) 6°pla—pa\(p(a®—pa) — Pla"—pa ) (P(aC—pq] — P(al—pq)).

Repeating performing these substitutions gives us an expression, C, which is greater than the

original expression (A3.3) and yet involves values which are simple to interpret. Thus C equals:
(A3.7) P[aI—pq] + 6P[aI—paI]ﬂ+ 62P[a1—paI] o0+ #P[al—pallwzﬂ +
where o= (P[ao—pal] - P[aI—pao], and f= P[ao—pq] - P[aI—pq].

Solving the infinite sum evaluated at q = aI, we have that:

I )
(A38) C=P[a —pq](1+1—_éb—w—)

Both 4 and  are fractions which depend on aI and ao, and both are zero at F = M.
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Appendix 4: Band Widening for Rho Close to Unity
Here we show that for the p sufficiently close to unity, a symmetric MPS widens the band
assuming that s is expected to follow a random walk and #{-] is linear. The proofis as follows: We
show that the band widens for each period in the T—period finite horizon case, and then apply the
usual limiting arguments to assert that the band would widen for the infinite horizon case. In

period T—1 the band is unaffected by the MPS since no uncertainty is present when the firm

makes its entry—exit decision. In T-2, a,i,_z and a("1)‘—2 depend on \IIT—I[~ ,I] (here we denote the

period with superscripts to make room for subscripts denoting partial derivatives). The

definition of 9T evaluated at sp_s=a is:

aO
I T-1
(A41) (F-M)Pla;,  —pas] + J { 7{z]-M}dP[z—pq;1]
I
=0Ty
its partial with respect to ris (integrating by parts and using the usual cancellations):

Q’O
T-1
(A4.2) ‘I/T—l[q,r] =— { ™z P2[z—pq,r] dz

2
|
where P[] denotes the partial of P[-,-] with respect to its second argument. Consider the case
where p = 1. To see that (A4.2) is negativeat q = a,i,_l, and positive at q = a(,l),_l, turn to figure

A4.1 which plots P,[-r]. By definition ofa MPS, P,[- ] is positive to theleft of the mean of ¢, and

ol
negative to the right since € has a symmetric, single—peaked distribution. Ifq= a,},_l, thenz—q
is always non—negative (zero at z=a,i,_l, positive everywhere else over the interval of
integration), so P, [z is always non—positive (zero at z=a,i,_1, negative everywhere else over
the interval of integration). By inspection of (A4.2), these facts imply that \Ilg_l[a,},_l,r] is
negative. Since this is a strict inequality and p enters continuously, \Ilg_l[a,}_l,r] is negative for p
close enough to unity. Similar reasoning shows that \Ilg_l [ag_l,r] is positive. Also by continuity,
\Ilg_l {ar]is increasing in q. Turning to period T—2 (integrating by parts and using the
cancellations)
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C!o ao
T2, ,_ T-2 T—1 2
(A4.3) \1’2 la,f] =— { {‘K"[!]+5‘~I’1 [s,r]}Pz[z—pq,r]dl + 5{ {\I’Z[z,r]}dP[z—pq,r]
Gy )

By the same type of reasoning used to sign (A4.2), the first term in A4.3 is negative at q = a,;_z

and positive at q = a¥_2. Also since \I’g-l[z,r] is increasing in z for p = 1, then we know that:

0 0
-1 -1

(Ad.4) 6 { {\Ifg‘l[z,r]}dp[z—pag_z,r]>5 { (U (s al}dPl—pal il
T e )

Clearly then:

V62—l _yi>o
This fact together with the linearity of #{-] implies that the band widens with a MPS in T-2.
Also note that by continuity \I’g—l[x,r] is increasing in x. Repeated applications of these step
shows that the band widens in all periods (formally we would use mathematical induction). By
the limiting argument in appendix 2, this implies that the band widens for p sufficiently close to

unity even in the infinite horizon approximation.
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FOOTNOTES

* I gratefully acknowledge the helpful comments and suggestions of Rich Lyons, Alberto Giovannini, Ricardo
Caballero, Mike Gavin and Aaron Tornell. An early draft of this paper waa circulated with the title "Sunk
Cost Hysteresis with General Exchange Rate Expectations".

1. American Heritage Dictionary defines hysteresis as "failure of a system changed by an external
agent to return to its original value when the cause of the change is removed."

2. Irreversible investment, per se, does not lead to the possibility of hysteresis; the important
aspect is that the investment be firm—specific so that the cost is unrecoverable. For instance, if
the investment was irreversible but could be resold to another firm at its replacement cost,
hysteresis is not a possibility. Ratchet effects differ from hysteresis in that they cannot be
reversed by a corrective shock. Path dependencies create the possibility of one type of hysteresis
since the long run steady—state depends on the path.

3. For instance in the sticky price monetary model of exchange rate determination (Dornbusch
1976 and extensions), if the UK interest rate is higher than that in the US, then investors must
expect the dollar to appreciate if they are to be happy holding dollar assets. This is inconsistent
with the random—walk—with—a—drift assumption since stability requires that investors expect
theinterest rate differential to erode over time.

4, Consider Gyfz.x] 2 glzx], where the subscript indicates the partial with respect to the first

argument, and the integral:

b}x]
IIx] = glw,xldw = G[b[x],x] — Ga[x]x].

w=a[x]

Clearly, dlfx]/dx = G, [b[x];x]b'[x] + G, [blx],x] — G, [alx]x]a"{x] — G alx],¥]

which by rearrangement and the fundamental theorem of calculus is equal to:

b[x!
Gl[b[x],x]b’[x] - Gl[a[x],x]a’[x] + } gz[w,x]dw.

w=a[x]
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Figure 1: Hysteresis Band for Finite Horizon Case
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Figure 2: Hysteresis Band with Reversed Slope Condition
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Figure 3: The Effect on ¥ of Changes in Rho
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Figure 4: Counter Example of Band Width and Volalitity
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Figure A4.1:
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Figure 5: Band Widening for Random Walk
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Figure 6. Hysteresis Band for Maximization in Foreign Currency
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