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ABSTRACT

The rigorous evaluation of anti-poverty programs is key to the fight against global poverty. 
Traditional approaches rely heavily on repeated in-person field surveys to measure program 
effects. However, this is costly, time-consuming, and often logistically challenging. Here we 
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resolution satellite imagery and deep learning methods. Our application estimates changes in 
household welfare in a recent anti-poverty program in rural Kenya. Leveraging a large literature 
documenting a reliable relationship between housing quality and household wealth, we infer 
changes in household wealth based on satellite-derived changes in housing quality and obtain 
consistent results with the traditional field-survey based approach. Our approach generates 
inexpensive and timely insights on program effectiveness in international development programs.
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Introduction

Rigorous impact evaluation forms the basis of the modern approach to fight global poverty

and provides input for evidence-based policy making (1,2). The impacts of anti-poverty inter-

ventions are almost universally evaluated using household surveys, typically comprehensive

questionnaires containing hundreds of questions that can touch every aspect of people’s lives.

However, such field surveys are often prohibitively expensive to conduct (3,4) and unantici-

pated events, such as political unrest or public health crises, frequently disrupt them (5). In

this paper, we provide the first demonstration that the household welfare impacts of a large

scale anti-poverty randomized controlled trial (RCT) can be accurately measured relying

solely on satellite data, instead of household surveys.

Recent advances enable poverty to be identified remotely (6–13) and widespread adoption

of mobile phones allows targeted anti-poverty interventions to be deployed over-the-network

(14), such as the cash transfer program we study here (15). By demonstrating that the

impacts of such interventions can be evaluated remotely, we hope that future programs

can, in principle, be designed, deployed, and evaluated with limited reliance on logistically

complex and expensive ground operations. Because costs and logistics play a major role in

limiting the scale of anti-poverty programs (16), simplifying their deployment and evaluation

is crucial to achieving their full global potential.

We study a large pre-existing trial (15) that was recently completed and evaluated with

field surveys and show that we can consistently recover the impact of the program using

satellite imagery and deep learning. While previous studies have successfully evaluated the

environmental impacts of randomized controlled trials with remote sensing data (17,18), we

are not aware of studies that demonstrate similar successes for household economic well-

being. Specifically, we combine high-resolution daytime imagery (19) and state-of-the-art

deep learning models (20) to measure housing quality among treatment and control house-

holds, and estimate the program effects on housing quality. We then map housing quality

to household wealth for these households by inverting an “Engel curve,” an established con-

cept in economics (21–24) that describes household spending on specific goods as a function

of economic well-being. Using this approach, we accurately recover the program effects on

household wealth for a fraction of the cost ($0.006 per household, see Supplementary Text

A) that would typically be spent on household surveys ($18–300 per household (4)).

Early work has shown that satellite data can be used to monitor economic development

by correlating nighttime luminosity, i.e., the amount of light emitted from Earth at night

(hereafter “night light”) with Gross Domestic Product (GDP) at national and subnational
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scales (25–27). However, the night light data show poor sensitivity in less developed and

rural areas (6), presumably because of low electrification rates—for example, from 1992 to

2008, 99.73% of pixels were completely unlit in Madagascar, 99.47% in Mozambique, and

this is representative of low-income countries (25). This makes the data less useful for study-

ing the very target of many international development programs—people living under the

poverty line. Additionally, the low spatial granularity of night light prevents it from being

used to evaluate programs reliant on fine spatial variations, including most randomized con-

trolled trials in which households in close proximity to one another are assigned to different

treatments.

We propose an alternative approach—we analyze daytime imagery using a deep-learning

model (20) to explicitly measure the quality of housing, a tangible and verifiable asset that

is known to be a powerful proxy for household wealth. Even in communities where electri-

fication rates are low, housing quality remains a strong predictor of wealth as it is often a

family’s single most valuable asset (28) and accounts for a sizable portion (10–20%) of total

household expenditure globally (29). Furthermore, in most rural and low-income contexts,

individuals do not trade up their residence but rather upgrade existing housing by expanding

or building new structures on their property in response to improved economic conditions,

making housing footprint a meaningful proxy for welfare. In this study, we focus on building

footprint because it can be precisely measured at scale with modern deep learning techniques.

Many features of buildings other than footprint are observable with satellite imagery; for

example roof material (30, 31). One of the main advantages of the method proposed here

compared to alternative “black-box” machine learning approaches to measuring wealth that

utilize all available information contained in satellite images (such as convolutional neural

networks (6, 11) or random kitchen sinks (32)) is that it allows the exclusion of subsets of

satellite-derived outcomes that may have been directly impacted by the intervention. We

show the benefits of this feature of our method in the context of the experiment we evaluate.

Specifically, households were eligible for the GiveDirectly study as long as their roofing

was of low quality (thatched). Due to this eligibility criterion, treatment households were

“prompted” to use the GiveDirectly transfer to upgrade their roofing as a way to signal to

the experimenters that they had used the cash for good. An improvement of roofs among

participating households beyond what would have been expected solely from wealth increases

biases estimates of wealth when methods cannot exclude subsets of outcomes. In contrast,

it is straightforward for our method to focus exclusively on subsets of available information

that were not affected directly (in this case building footprints) while ignoring problematic
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outcomes (such as roof material) in order to provide unbiased estimates of wealth effects.

Results

We evaluate a development intervention that was conducted in 2014–2017 in 653 villages in

rural Kenya (15). GiveDirectly, a US charity, implemented a randomized controlled trial of

unconditional cash transfers to rural households via mobile money, using as sole eligibility

criterion whether the household lived under a thatched roof (a low quality roof material that

served as a simple means test). Each treatment household received $1,000—equivalent to

about 75% of annual household expenditures—in lump sum, and could spend it however it

wished. To evaluate the effectiveness of the program, GiveDirectly randomly selected 328

villages as the treatment group, where eligible households (about 1/3 of the population)

received transfers, and used the remaining 325 villages as the control group. The authors

conducted extensive household surveys before and after the distribution of the transfers to

measure program impacts as is the current practice in the evaluation literature.

Mapping Treatment Intensity and Housing Quality. To evaluate program impacts,

we first construct a map that shows the intensity of the anti-poverty program (hereafter

“treatment”) in different geographical units (in this case it is simplest to work with raster grid

cells). This geocoded information is obtained from program implementation records, which

document where the program was administered. Because of the extremely high granularity

of satellite-derived housing quality metrics, it is feasible to study programs that induce fine

spatial variation such as household-level randomized trials. Importantly, the variation in

treatment intensity has to be either random (if induced by an experiment) or as good as

random (in a natural experiment setting), as is the case for any credible program evaluation

project.

For the GiveDirectly experiment, we construct the treatment intensity map from a local

census fielded in 2014–2015, which surveyed all the 65,385 households living in the study

area (15). The census data record each household’s geo-location, and indicate whether

they belong to the treatment (T), control (C), or out-of-sample (O) group (Figure 1a).

Among the three groups, only the treatment households eventually received the cash transfer

from GiveDirectly. The control households were randomized into not receiving the transfer,

whereas the out-of-sample households were never eligible to participate in the program. Our

sample contains 11,055 treatment households and 10,682 control households in total. We lay

out a regular grid, and count the number of treatment households in each grid cell (Figure
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1b). As every transfer was roughly USD 1,000, this variable can be interpreted as the amount

of cash infusion (in $1,000) into a given grid cell, and is our preferred measure of treatment

intensity (Figure 1c).

Next, we measure housing quality in daytime satellite images with deep learning tech-

niques. The input images are from Google Static Maps (19). They are taken after the

GiveDirectly intervention, have a spatial resolution of about 30cm per pixel, and contain

only the RGB (red, green, blue) bands (Figure 1d).

To segment buildings, we train a state-of-the-art deep learning model, Mask R-CNN (20),

on large, publicly available datasets such as COCO (Common Objects in Context) (33) and

Open AI Tanzania (34), as well as a small annotated dataset, which are randomly sam-

pled from all the input images (see Supplementary Text B for details on model training).

The model predictions are highly accurate, both quantitatively (Figure S1) and qualitatively

(Figure S2). The model generalizes well to other countries, such as Mexico, where the num-

ber of houses identified in the deep learning predictions is highly correlated with the census

population count (Figure S9 and Supplementary Text C). After post-processing, each pre-

dicted instance of buildings is represented by a polygon and a “representative” roof color

(Figure 1e). The Mask R-CNN model conducts instance segmentation (as opposed to se-

mantic segmentation), meaning that it is able to identify every building instance separately,

even if they are adjacent to each other. As such, we can measure housing outcomes for each

household.

We extract two metrics for each built structure: the size of building footprint, and the

type of roof material. The roofs are classified into three types: tin roof, thatched roof, and

painted roof, based on their color profiles (Figure S3). Compared to tin roofs, thatched roofs

are generally of lower quality (15, 35). (Painted roofs are relatively uncommon in the study

area.) In prior work, roof reflectance and roof color have been shown to be good proxies

of housing quality (30, 31). As such, we aggregate the total building footprint to measure

all housing assets (Figure 1f, Building Footprint), and the footprint of tin-roof buildings

to measure high-quality housing assets (Figure 1f, Tin-roof Area), in each grid cell. To

obtain night light data for systematic comparison, we download and resample the Visible

Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) composite images in

2019 (36, 37).

The maps of treatment intensity and remotely sensed outcomes for the GiveDirectly

experiment are shown in Figure 2. For visual display and privacy protection purposes,

we plot the maps with a spatial resolution of 0.005◦ (roughly 500 meters), which is lower
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than the resolution used in the subsequent statistical analysis. The experiment generated

substantial variation in treatment intensity, as expected (Figure 2a). Both of the housing

quality measures capture richer variation in the entire area (Figure 2b, c), whereas the night

light data demonstrate little variation in this rural, sparsely populated area, except in a few

spots close to local towns (Figure 2d).

Estimating the Program Effects on Housing Quality. We regress the remotely sensed

outcomes on treatment intensity to estimate the causal effects of the GiveDirectly cash trans-

fer. We choose a spatial resolution of 0.001◦ (approximately 100m), such that most of the grid

cells contain 0–5 households. We exploit only the experimentally-induced random variation

in treatment intensity for identification, and account for pre-determined differences in pro-

gram eligibility. Intuitively, consider two grid cells, one containing a household that received

the transfer, and the other containing a household that was eligible to get the transfer but

did not because it was randomized into the control group. With valid randomization (15),

the differences in outcomes between the two can be attributed to the cash transfer. We

plot the causal effects on night light and housing quality as cash infusion intensity increases

(Figure 3, in color), without making assumptions on the structure of the effects. The results

suggest that the effects grow linearly with the amount of cash infusion. We therefore also re-

port an “average” effect, estimated with the assumption that each $1,000 transfer generates

an effect of the same magnitude (Figure 3, panel subtitles). We demonstrate the validity of

the empirical strategy further by running 100 placebo simulations—we artificially generate

placebo cash transfers that did not actually take place but is consistent with the original

randomization design, and estimate their treatment effects (Figure 3, in gray). The resulting

estimates are reassuringly centered around zero.

We observe statistically significant and economically sizable effects on housing quality, on

both the extensive margin (larger building footprint) (Figure 3a), and the intensive margin

(higher quality roofs) (Figure 3b). On average, a $1,000 cash transfer significantly increased

building footprint by 7.9 square meters (95% CI: [2.3, 13.5], t(14, 143) = 2.8, p = 0.006) or

85.0 square feet, and tin-roof area by 13.6 square meters (95% CI: [9.6, 17.6], t(14, 143) =

6.7, p < 0.001) or 146.4 square feet. These increases indicate that households may have

built new structures—either primary residences or auxiliary structures, such as kitchens

and sheds, expanded their existing structures, and/or upgraded their thatched roofs to tin

roofs, an improvement that people commonly used the transfer for (35). These estimates

are consistent with the results from extensive field surveys, which also documented large
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increases in housing asset values (15).

On the other hand, we do not observe any program effects on night light (Figure 3c),

despite the fact that the cash transfer had large positive impacts on many aspects of the

recipient households’ economic well-being—food expenditure, consumer durable spending,

asset holding, and housing values (15). The estimated effect is −0.000120 (95% CI: [−0.008,

0.008], t(14, 143) = −0.03, p = 0.977) which is not statistically different from zero, is small

in magnitude, and actually slightly negative. This may be because of low demand for elec-

trification (38), or the poor sensitivity of night light in low-income, rural regions (6).

Recovering the Program Effects on Economic Well-being with Engel Curves.

We recover the program effects on household economic well-being with a canonical economic

concept, the Engel curve. Engel curves describe how household expenditures on particular

goods or services are related to households’ economic well-being. For example, it is widely

known that poorer families spend a larger share of their expenditure on food. Engel curves

have long been used to infer economic well-being without needing detailed information on

prices as it is straightforward to measure how much of a household’s expenditure is spent on

food (21–24). We adapt this concept to housing quality by exploiting the fact that someone

who lives in a larger house is likely to be wealthier than someone who lives in a smaller house

(Figure 4a). By the same logic, if we observe that someone’s house size increased, then we

can infer what level of wealth is associated to such a house size—as if they were moving

up on the Engel curve. Mathematically, the slope of the Engel curve represents the ratio

between the change in house size and the change in wealth. We divide the change in the

house size (Figure 3) by the slope of the Engel curve (Figure 4a) to infer the corresponding

change in wealth (Figure 4b). Importantly, the validity of this approach depends on the

assumption that the Engel curve does not shift in response to the treatment, which could

happen due to relative price changes of the good or taste changes.

In this study, we derive housing Engel curves from an endline survey of the GiveDirectly

trial participants between May 2016 and June 2017, which includes 4,578 geo-coded house-

holds who were eligible for the transfer. Of these households, only those assigned to the

control group are used for the estimation. In Figure 4a, we show the relationship between

survey-based measures of economic well-being (x-axis) and remotely sensed night light or

housing quality measures (y-axis). The Engel curves are estimated with a linear regression

(dotted lines). The non-linear fit with LOESS (solid lines) shows only small deviations from

the linear regression line, and we cannot reject the null hypothesis that these Engel curves
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are linear (see Materials and Methods). The Engel curves are also roughly monotonically

increasing, validating the choice of these variables as wealth proxies.

The Engel curves can be derived from any geo-coded consumption and expenditure sur-

vey, as long as the surveyed households are—or can be re-weighted to be—representative of

the sample in the previous treatment effect estimation step. Notably, the sample does not

necessarily have to include any one who has received the treatment, opening up the pos-

sibilities of using existing data sources (such as the Living Standards Measurement Study

(LSMS)) to estimate Engel curves. We demonstrate this by comparing the Engel curves

derived from two distinct samples: the households who were deemed eligible to receive the

cash transfers (meaning that they used to live in thatched-roof houses), and households who

were not. While all the households live in the same area in western Kenya, the ineligible

households are generally wealthier than the eligible ones. Their Engel curves, however, are

similar within the same range of wealth (Figure S8).

We scale program effects on each remotely sensed outcome by the Engel curve slope

to estimate the impacts of the GiveDirectly transfer on household wealth, measured by

aggregating the values of a variety of assets as measured with household surveys. In Figure

4b, we compare the satellite-derived estimates against the survey-based estimates, which are

computed from rich endline household survey data and taken from Table 1, Column 1 in the

original paper (15). As can be seen, the estimate based on building footprint (USD 425 PPP,

95% CI: [61, 788]) is informative and very close to the survey based estimate (USD 556 PPP,

95% CI: [485, 626]). For reference, the entire GiveDirectly cash transfer is worth USD 1,871

PPP (USD 1,000 nominal). Note that the estimate based on night light is slightly negative

and imprecise, and both the upper and lower bounds are uninformative. In contrast, the

estimate based on tin-roof area is about two times as large as the survey-based estimate.

The results are qualitatively similar when we distinguish between housing asset (Figure S4)

and non-housing asset (Figure S5), or when we use annual consumption expenditure as the

alternative measure of economic well-being (Figure S6).

Why is the estimate based on the tin-roof area much larger than the survey based esti-

mate? We argue this is due to the violation of a key assumption, which is that the Engel curve

used to estimate changes in wealth cannot change directly in response to the treatment—

only through its wealth effects. To give intuition for why this matters, consider a program

that directly gives people food. In such a case we can no longer look at food consumption to

infer program effects on economic well-being, because the relationship between the food and

income will be altered directly by the program and households will “look” wealthier than
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they really are based on their food consumption. More relevant for impact evaluation using

satellite data, this example is analogous to examining the impacts of a program that provides

roads to a region. One would need to exclude the program roads themselves contained in

satellite images and look at other correlates of welfare to estimate impacts of such a roads

program in an unbiased manner. In the GiveDirectly case, only households that lived in

thatched-roof houses were eligible for the study. Households’ usual consumption patterns of

high-quality tin roofs might have been affected by this eligibility criteria. One can observe

that treatment households owned more tin-roof buildings compared to control households

with the same amount of wealth (Figure S7). This may have been a result of households

interpreting the treatment as a “labelled” cash transfer (39).

These results highlight the importance of using interpretable proxies when evaluating pro-

grams with machine learning predictions. An emerging literature is making great progress

in mapping poverty with satellite imagery and machine learning with a high spatial granu-

larity at scale (6–13). Typically, a machine learning model first learns the mapping between

the input satellite images and the ground truth labels of wealth or consumption expendi-

ture, assembled from geo-coded household surveys. Then, the model generates predicted

poverty maps for every region in the sample, including those with no survey coverage. The

model implicitly combines and executes two tasks: (1) extracting semantically meaningful

observations of, say, housing quality, agricultural productivity, or infrastructure, from raw

satellite images; and (2) inferring economic well-being from observing the consumption pat-

terns of these private or public goods (similar to the Engel curve analysis in this study).

While the flexibility of the machine learning models helps improve predictive performance,

the difficulty in interpretation makes it almost impossible to know or constrain what private

or public goods are identified and utilized by the model. Since black-box machine learning

models utilize as much information as possible from the input satellite images, it is very

likely that the Engel curves of at least some of the observed goods will change (similarly

to the tin-roof area variable in this study), introducing biases in the estimated program

effects. In this study, we disentangle the two tasks, so that the first task can be framed

as a traditional object detection and segmentation task, allowing us to leverage extensive

research in computer science; and the second task becomes more transparent, explicit, and

the assumptions testable (for example, with Figure S7).
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Discussion

This paper provides evidence that RCT program evaluations aimed at improving household

welfare can be obtained solely based on satellite imagery and deep learning methods. This

approach has the advantage of being inexpensive and timely, suggesting great promise as a

complement and in some cases as a substitute to in-person survey data collection methods.

However, it bears noting that a fundamental limitation to evaluating programs based on

satellite imagery is that in order to be measurable from space, programs being evaluated

have to generate impacts on the built landscape. This prevents applicability to programs

targeted at addressing development challenges that are unlikely to impact the built environ-

ment such as improved teaching methods at schools. Another limitation is that welfare is

a household or individual concept whereas satellite images capture characteristics about a

place. Mapping household welfare to housing as we do here requires a tight mapping between

structures and households through limited mobility. While migration rates are very low in

the GiveDirectly study area (15), this may be a challenge for programs that impact mobility,

such as transportation infrastructure programs.
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Figure 1: Constructing maps of treatment intensity and remotely sensed out-
comes from program implementation records and satellite imagery. a An illus-
tration of geocoded program implementation records. b Placing a regular grid over a and
measuring the intensity of the treatment in each grid cell. c Constructed raster of the num-
ber of treatment households in each grid cell. d An example daytime satellite image from
Google Static Maps. e Example deep learning predictions on d. Each building is outlined
in white and filled with the “representative” roof color. f Constructed rasters of remotely
sensed housing quality outcomes. In c and f, grid cells without trial participants are omitted
and shown in white.
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Figure 2: Mapping treatment intensity and remotely sensed outcomes in the
GiveDirectly study area in 2019. a Treatment intensity represents the number of house-
holds who received a $1,000 cash transfer from GiveDirectly. b Building footprint measures
the total area covered by any building, shown as a percentage of the total area. c Tin-roof
area measures the total footprint of buildings with roofs made of tin (a high quality con-
struction material), shown as a percentage of the total area. d Night light is the average
radiance in the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB).
In all the panels, the gray lines outline the GiveDirectly study area in Siaya, Kenya. Grid
cells without trial participants are omitted and shown in white. n = 2, 501.
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Figure 3: Housing quality increased in response to the GiveDirectly cash transfer,
but night light remained unchanged. The treatment effects of the cash transfers on
building footprint (a), tin-roof area (b), and night light (c) are shown in color. The dots
represent the point estimates, and the error bars represent the 95% confidence intervals.
Gray lines show the estimated effects of the placebo cash infusions from 100 simulations.
The panel subtitles report the average treatment effect of a $1,000 transfer and the 95%
confidence intervals, assuming constant effect. *** indicates statistical significance at the
1% level for a two-sided t-test. n = 14, 155.
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area, and night light, estimated with LOESS (solid line) or a linear regression (dotted line).
The shaded regions represent the 95% confidence intervals for the latter. b Comparing the
survey-based versus satellite-derived treatment effects. The dots show the point estimates.
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Materials and Methods

Constructing the Treatment Intensity Map. To construct the treatment intensity

map, we utilize data from a baseline census, which was conducted by the authors of the

original paper in 2014–2015. The census identified all 65,385 households (roughly 280,000

people) residing in 653 villages in the study area, recorded their GPS coordinates, whether

each household was eligible for the GiveDirectly cash transfer, and whether they had been

randomized into the treatment or control group (15). To address the measurement errors

of the GPS collection devices, we discard 58 outliers (living more than 2 kilometers away

from the village centers) and impute those and other 4 missing GPS coordinates with village

center coordinates. Then, we convert these household records into a raster map. We lay

out a regular grid, and count, in each grid cell, the number of households that ultimately

received the GiveDirectly cash transfer (see Figure 1 and Figure 2a). Grid cells containing no

eligible households are excluded. To account for pre-determined policy intensity differences,

we record (and later control for) the number of households that were eligible for the cash

transfer, regardless of whether they had been randomized into the treatment or control

group.

Obtaining High-resolution Daytime Satellite Images. We utilize high-resolution

daytime satellite images from Google Static Maps (19). These images have a spatial resolu-

tion of about 30cm per pixel (at equator), and contain only the RGB (red, green, blue) bands

(see Figure 1d and Figure S2 for examples). These images come from a variety of commer-

cial providers such as Maxar (formerly DigitalGlobe) and Airbus, and have been seamlessly

mosaicked together. They have also been geo-referenced and pre-processed to remove clouds

and address other data quality issues. Google does not provide the exact timestamps for

these images, but we estimate that they were taken in 2019, most likely on Dec 30, 2019.

The dates for retrieving these images from the Google Static Maps API are between Feb

19 and Feb 21, 2020, and the Google Earth Pro imagery archive reflects that the closest

available images in the study area were from Dec 30, 2019. Multiple other satellite images

taken in February, March, July, August and September 2019 are also available in the study

area, indicating that the images used in this study are most certainly from 2019.

Extracting Housing Quality Metrics with Mask R-CNN. We first leverage a state-

of-the-art deep learning model, Mask R-CNN (20) to segment buildings—that is, to detect

each building and the pixels that they occupy—in the Google Static Map satellite images.
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We then convert the pixel-wise predictions to polygons, and extract housing quality metrics

related to the size of the building and the roof materials from each polygon (see Figure 1e

and Figure S2 for examples).

Loosely speaking, the Mask R-CNN model operates as follows. First, the model proposes

a large number of “regions of interest”, each of which potentially contains a building. Then,

the model uses convolutional filters to identify patterns within the proposed region that are

indicative of the presence of buildings, such as the sharp edges, the highly reflective roofs,

and the building shadows. Finally, the model predicts whether each proposed region contains

a building, as well as whether each pixel is occupied by the building.

We train the Mask R-CNN model with a multi-step process and a transfer learning frame-

work, as described in greater detail in Supplementary Text B. Publicly available building

footprint datasets in rural and low-income regions are rare, and they often differ substan-

tially in spatial resolution, sensor instrument, and landscape from inference images (that is,

the target images that the model will make predictions for). Relying solely on publicly avail-

able training data is therefore insufficient for achieving satisfactory predictive performance.

We curate a set of in-sample annotations by randomly sampling 120 images from all the

Google Static Map images in the study area, and manually creating high-quality building

footprint annotations for them. We pre-train the Mask R-CNN model on large, publicly

available datasets such as COCO (Common Objects in Context) and Open AI Tanzania,

and fine-tune them on this set of in-sample annotations.

The model predictions are highly accurate. The overall F1 score (a standard performance

metric for instance segmentation) on a random subset of inference images is 0.79 (Figure

S1). The F1 score is the harmonic mean of precision (the proportion of model-identified

buildings that are actual buildings) and recall (the proportion of actual buildings that are

correctly identified by the model). Here, a building is deemed to be correctly identified if the

predicted pixel mask and the ground truth pixel mask have sufficient overlap (more precisely,

if the intersection of the two masks is more than 50% of the union of the two masks). As a

reference point, the top winner in the 2nd SpaceNet building footprint extraction competition

reported an F1 score of 0.69 (40). This demonstrates that the Mask R-CNN model used

in this study performs well, although building footprint segmentation in rural, less complex

scenes is generally easier than in modern cities so these metrics are not directly comparable.

We post-process the model-predicted pixel masks by converting them to polygons, and

simplifying the polygons with the Douglas-Peucker algorithm with a pixel tolerance of 3. For

each polygon, we compute two housing quality metrics: building footprint and type of roof

21



materials. We then lay out a regular grid, assign each building to grid cells based on the

centroids of the polygons, and aggregate to obtain two metrics at the pixel level: building

footprint (Figure 2b) and tin-roof area (Figure 2c).

First, we measure the size of each building polygon and convert it to square meters. We

correct for area distortion, which is induced by the Web Mercator projection system that the

Google Static Map uses. This metric may appear larger than what one expects for the size

of homes in a low-income context (Figure 4), because (1) it represents the footprint of the

entire building, which is typically larger than the size of the livable area; and (2) it accounts

for both residential and non-residential structures, since the model is not able to distinguish

between the two.

Second, we estimate the types of roof materials based on the colors of the roofs, and

compute the footprint of tin-roof buildings in each grid cell. For each building, we take all

the pixels associated with the given building instance, and assign a “representative” roof

color by computing the average values in the RGB (Red, Green, Blue) channels. Since the

Euclidean distances between color vectors in the RGB color space does not reflect perceptual

differences, we project all the RGB color vectors to the CIELAB color space, and cluster

these roof color vectors into 8 groups by running the K-means clustering algorithm. We

further classify these 8 groups into three types of roof materials: tin roof, thatched roof, and

painted roof (Figure S3), and compute the total footprint of tin-roof buildings.

Obtaining the Night Light Data. To measure nighttime luminosity, we use the Visi-

ble Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) composite images

hosted on Google Earth Engine (36, 37). The VIIRS-DNB data product excludes areas im-

pacted by cloud cover and correct for stray light (41). However, it has not been filtered

to screen out lights from aurora, fires, boats, and other temporal lights, and lights are not

separated from background (non-light) values (36). This data product has a native spatial

resolution of 15 arc seconds (approximately 463 meters at the equator), and we resample

the data by conducting nearest neighbor interpolation when necessary. We average over

all the monthly observations in 2019 and construct a single cross sectional observation, to

reduce seasonality effects and for consistency with the daytime satellite imagery (Figure 2d).

The VIIRS-DNB data product is considered superior to the more widely used night light

data, DMSP-OLS (the United States Air Force Defense Meteorological Satellite Program,

Operational Linescan System) because it preserves finer spatial details, has a lower detection

limit and displays no saturation on bright lights (42). This ensures that we conduct a fair
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comparison with the most modern and high-quality night light data product.

Estimating the Program Effects on Housing Quality. The main econometric speci-

fication for Figure 3 is as follows

yi =
∑
k∈K

τk1{xi = k}+
∑
m∈M

βm1{ei = m}+ εi (1)

where each observation i represents a 0.001◦×0.001◦ grid cell (approximately 100m×100m);

τk represents the estimate of interest: the treatment effects of the unconditional cash transfer

on remotely sensed outcomes; xi denotes the number of recipient households per grid cell

(equivalent to the amount of cash infusion in $1000); ei denotes the number of eligible house-

holds per grid cell, with m ∈M = {0, 1, 2, 3, · · · }; and yi denotes remotely sensed outcomes:

night light, building footprint, and tin-roof area. To account for pre-existing differences in

population density or wealth, which may cause non-random variation in treatment inten-

sity, we flexibly control for the number of eligible households per grid cell, and exclude grid

cells with no eligible households. Because the grid cells are fairly small and the number of

observations for k > 2 is small, we bin the number of recipient households into four bins

k ∈ K = {0, 1, 2, 2+}, to preserve statistical power. Standard errors are calculated à la

Conley, with a uniform kernel and a 3km cutoff (43–46). To reduce the effects of outliers

(due to sensor malfunctioning or machine learning model prediction errors), we winsorize all

remotely sensed variables at the 99 percentile.

We run 100 placebo simulations to further demonstrate the validity of the main spec-

ification. In each simulation, we randomly assign half of the 68 groups of villages to the

high-saturation group, and the other half to the low-saturation group. In the high-saturation

groups, we randomly assign 2/3 of the villages to the treatment group (and the rest to the

control group); whereas in the low-saturation group, we assign only 1/3 of the villages to the

treatment group (and the rest to the control group). This mimics the two-tier randomization

scheme of the original trial (15). Using these simulated placebo treatment status variables,

we estimate the placebo treatment effects with the econometric specification described in

Equation 1.

To compute a single pooled treatment effect, we make an assumption of linear treatment

effects—every transfer of $1,000 has an effect of the same magnitude, regardless of the

treatment intensity in that geographical area. The resulting econometric specification is as
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follows

yi = τxi +
∑
m∈M

βm1{ei = m}+ εi (2)

where τ is the “average” treatment effect, and all else remain the same as in Equation 1.

We conduct two-sided t-tests to assess statistical significance.

Estimating the Engel Curves. An Engel curve describes how household expenditure on

a particular good varies with income—a relationship that can be used to infer households’

economic well-being from the consumption patterns of a limited subset of goods (21–24).

The mathematical formulation is

Qhp = Fp(Wh) + εhp (3)

where household h withWh wealth (or other measures of economic well-being) would consume

Qhp quantities of a normal good p, and Fp(·) represents the Engel curve for product p in the

population. With a linearity assumption, this can be simplified to be

Qhp = αp + βpWh + εhp (4)

where αp is the intercept and βp is the slope of a linear Engel curve.

In this study, we estimate the Engel curves—the relationships between remotely sensed

metrics and survey-based measures of economic well-being—based on the endline survey of

the original GiveDirectly trial, which includes a representative set of 4,578 geo-coded house-

holds who were eligible for the transfer. The households participated in a comprehensive

consumption and expenditure survey between May 2016 and June 2017, after the distribution

of cash transfers. From the surveys, we observe annualized household consumption expen-

diture, and asset values. Household consumption expenditure is the annualized sum of total

food consumption in the last 7 days, frequent purchases in the last month, and infrequent

purchases over the last 12 months. Household assets include housing and non-housing assets,

but not land values. Housing asset values are measured as the respondent’s self-reported cost

to build a home like theirs. Non-housing assets include livestock, transportation (bicycles,

motorcycles, and cars), electronics, farm tools, furniture, other home goods, and lending or

borrowing from formal or informal sources. We do not study land values because they are

difficult to value given thin local markets (15).

We perform heuristic matching between the buildings and the household survey GPS co-

ordinates, to link variables in the survey with remotely sensed variables. First, we take the
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baseline census data, which geo-coded every single household who lived in the study area,

and assign every building in the satellite images to its closest census GPS coordinate, if the

distance between the two was within 250m. This ensures that every building is matched to

at most one household. Second, we match GPS coordinates from the survey with GPS coor-

dinates from the census. While the same household supposedly had the same geo-location,

these two often differed because of the measurement errors of the GPS collection devices,

and because the coordinates might be recorded anywhere on the participants’ plots and not

necessarily in their primary residence. We similarly assign each survey GPS coordinate to

its closest census GPS coordinate, if the distance between the two was within 250m. In cases

of multiple surveys being assigned to the same census coordinate, we keep the closest survey.

The final sample contains only census observations that are matched with both buildings

in the satellite images and survey records, and consists of 1,904 treatment households and

1,844 control households.

The Engel curves are estimated with only the control group (Figure 4a and Figure S4a,

S5a and S6a). They are estimated both non-linearly with LOESS (see Equation 3 and the

solid lines in Figure 4a) and linearly (see Equation 4 and the dotted lines in Figure 4a).

When fitting LOESS, we allow for locally-fitted quadratic polynomials, and use 75% of the

data points for each fit. We test for the non-linearity of the Engel curves in a separate

procedure. We first run a linear regression, take the residuals, and fit the residuals with a

natural (cubic) spline with 5 knots. We then conduct a two-sided F-test on the coefficients

of the natural spline basis, and reject the null hypothesis (linearity) if these coefficients are

jointly significant. We cannot reject linearity for any of the three proxies in Figure 4 (building

footprint: F (1, 838) = 0.37, p = 0.829; tin-roof area: F (1, 838) = 0.79, p = 0.533; night

light: F (1, 838) = 0.39, p = 0.814). To minimize the influence of outliers, we winsorize annual

expenditure, housing assets, non-housing assets and total assets at the 1 and 99 percentile

of the eligible and non-eligible sample, respectively. We winsorize at the 1 percentile as

outliers with a large amount of debt exist and could potentially drive the results otherwise.

We similarly winsorize all the remotely sensed variables at the 99 percentile for the eligible

and non-eligible sample. We exclude a small number of renters who do not own any housing

assets (31 treatment households, 32 control households, and 55 ineligible households), to

simplify the interpretation of the Engel curves.

Recovering the Program Effects on Economic Well-being. We adapt a prior math-

ematical formulation that uses the Engel curve to infer changes in economic well-being (23).
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Suppose that one is interested in studying the effect of a plausibly exogenous treatment Z

on, say, wealth W (denoted τ̂W ), but can only inexpensively observe its effect on the con-

sumption of product p (denoted τ̂Qp). Recall that β̂p is the estimated slope of the linear

Engel curve in Equation 4, then

τ̂W = τ̂Qp/β̂p (5)

Using a formula for propagation of error (or the multivariate Delta method), one can derive

the standard error for τ̂W as follows. This derivation is based on prior work (23), but

additionally accounts for the precision of the slope of the Engel curve.(
σ̂(τ̂W )

τ̂W

)2

=

(
σ̂(τ̂Qp)

τ̂Qp

)2

+

(
σ̂(β̂p)

β̂p

)2

(6)

A key assumption of this approach is that β̂p does not depend on Z—that is, the Engel

curve does not change in direct response to the treatment—also termed the conditional

independence assumption (22).

We estimate the treatment effects on wealth (or other measures of economic well-being)

according to Equation 5 and Equation 6, with the treatment effect estimates for remotely

sensed variables, and the slopes of the Engel curves. We compare the satellite-derived es-

timates against the survey-based estimates, taken from Table 1, Column 1 in the original

paper (15), which were based on the endline household survey data (Figure 4b).
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Supplementary Text

A Cost Estimation

We estimate that our evaluation approach costs $0.006 per household, when accounting

for imagery acquisition and computing costs. The Google Static Maps API charges users

$0.002 per image request (47). We estimate that our computing cost is roughly $0.004 per

household. Our entire data pipeline can be run within 72 hours on an NC24 instance with 4

K80 GPUs on Microsoft Azure, which costs $3.60 per hour, and we have analyzed over 60,000

households. This is a liberal estimate that accounts for image downloading, model training,

model inference, model validation, and regression analysis. Notably, we do not include labor

costs for research and development, as these only need to be incurred once, are not relevant

for application of the method, and that such labor costs are difficult to quantify.
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B Training the Deep Learning Model

B.1 Creating In-sample Building Footprint Annotations

We create in-sample building footprint annotations to train the model, and to objectively and

quantitatively evaluate model performance. Among the 71,012 satellite images that cover all

of the Siaya county in Kenya, we randomly sample 120 images for annotation. We use the

Supervisely image annotation web platform to create annotations. On any given image, we

outline the boundaries of all the instances of buildings on the image. Buildings that border

each other are annotated as separate instances, if there are reasons to believe that they

are separate structures (e.g., if they appear to use different roof materials). Half-finished

buildings are annotated, although they are fairly rare in the analysis sample.

Some measurement errors can arise from the annotation process, which may in turn

impact the predictions of the deep learning model. First, the Google Static Maps logo

blocks 1.05% of the total area of any given image, and structures covered by the logos are

not annotated. Second, only the visible parts of the buildings are annotated, but a very small

part of some buildings may be partially occluded by trees. Third, the annotation accuracy

(and thus potentially prediction accuracy) may be different across buildings with different

roof materials. In particular, thatched-roof houses tend to be harder to identify for human

annotators than metal-roof houses, because they are typically smaller, not as reflective, and

may resemble trees in the overhead imagery.

B.2 Training the Mask R-CNN Model

We use the Mask R-CNN model (20) for instance segmentation of buildings on satellite

images. The backbone architecture used is ResNet50 with the Feature Pyramid Networks.

The model is trained with a learning rate of 5× 10−4 and a batch size of 10. Optimization is

conducted with the Adam optimizer. We implement the deep learning pipeline with Python

and PyTorch. In particular, we use the official Torchvision implementation of Mask R-CNN.

We train the Mask R-CNN model in a transfer learning framework, with a multi-step process

as follows.

1. COCO (Common Objects in Context) The model is first pre-trained with the

COCO (Common Objects in Context) data set, a large-scale natural image data set contain-

ing 80 object categories and around 1.5 million object instances (33). Despite the fact that

input images and object categories in COCO are different from target satellite images, pre-
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training the model with a large-scale dataset often provides meaningful performance gains,

even when the model is later transferred across domains.

2. Open AI Tanzania The model is then fine-tuned on the Open AI Tanzania building

footprint segmentation data set, a collection of high-resolution aerial imagery collected by

consumer drones in Zanzibar, Tanzania (34). These images are representative of the rural or

peri-urban scenes in a developing country context, in terms of the distribution of the density,

sizes and heights of the buildings. All the buildings in the drone images are identified,

outlined and classified into three categories (completed building, unfinished building, and

foundation) by human annotators. This somewhat unusual categorization is due to the fact

that there are a large number of unfinished structures in Zanzibar. Most input satellite

images in this study contain very few unfinished structures, so we collapse the first two

categories into one and drop the third category. The native resolution of the drone images

is 7cm, and we down-sample the images to about 30cm to match with the resolution of the

target satellite images.

In training time, 90% of the data are used for training, and the remaining 10% for

validation. In order to guard against overfitting, and choose the best model, in each epoch,

we evaluate the performance of the model with the validation set, using average precision

with an Intersection over Union (IoU) cutoff of 0.5 as the main evaluation metric. The model

is trained for 50 epochs, and the best model (at epoch 43) is saved and loaded in subsequent

steps.

3. Supplementary Annotations in Mexico, Tanzania and Kenya The model is then

fine-tuned on a set of 587 annotated high-resolution satellite images from Mexico, Tanzania,

and Kenya. The Mexico dataset consists of 199 satellite images corresponding to 8 randomly

sampled rural localities studied in Figure S9. Some of these are historical images with lower

data quality and more cloud coverage. These images are pooled and randomly split into

a training set (90%) and a validation set (10%). The model is trained for 25 epochs, and

achieves the best performance at epoch 17.

4. In-sample Annotations Finally, the model is fine-tuned on a set of 120 in-sample

annotated images in Siaya, Kenya (see Section B.1 for details). This ensures that training

images and inference images belong to the same data distribution. The model is trained on

90% of the images for 25 epochs, and evaluated with the 10% held out set. We keep the
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best-performing model (at epoch 15). This is the main model used for conducting inference

on input satellite images in the GiveDirectly study area.

Throughout the training process, we conduct extensive data augmentation to increase the

transferability of the model from one dataset to another. We randomly flip the training

images horizontally and vertically, randomly jitter the brightness, contrast, saturation, and

hue of the images. For the Open AI Tanzania dataset, we also randomly blur and crop the

images.
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C Validation in Mexico

C.1 Results

We provide additional validation results in rural Mexico, using the 2010 Population and

Housing Census (48). Population count in a rural village (as reported in the 2010 census),

is highly correlated with the number of houses in that village (as identified by the deep

learning model), with a Pearson correlation coefficient of 0.82 (Figure S9b). Population

count, however, is only modestly correlated with night light (Figure S9a). Night light is less

sensitive in smaller, less populated villages, a finding that is consistent with prior work (6).

C.2 Methods

This comparison is based on the locality-level data set, Principales Resultados por Localidad,

or ITER. (A locality is equivalent to a village in rural areas.) To form the analysis sample,

we drop all urban localities (defined as having more than 2,500 residents), small localities

where the relevant asset measures are masked in the census to protect privacy, and localities

where these measures are missing. To avoid covering neighboring urban or rural localities

in the satellite images, we exclude rural localities that are closer than 0.01 degree (1.1 km)

from other rural localities, or 0.1 degree (11.1 km) from urban localities. Finally, to reduce

computation, we randomly sample 200 rural localities, and drop 3 of them, for which Google

Static Maps does not have satellite image coverage for.

In the census, each rural locality is geo-coded as a point. Most of the rural localities

are small, isolated and surrounded by vegetation or open space, making it feasible to match

census records to corresponding satellite images. For each locality, we obtain satellite images

that cover an area of roughly 1×1 km, with the locality coordinate at the center. The images

are retrieved from the Google Static Maps API on October 10, 2019, and are likely taken

several years after the census. We generate deep learning predictions on these images with

the method described in Materials and Methods and Supplementary Text B, but only train

the model for the first three steps in Supplementary Text B.2. For the comparison, we

count the number of houses in a locality in the deep learning predictions, and extract the

population count variable from the census. Additionally, we download night light data,

the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) composite

images from 2019.
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Figure S1: The precision-recall curve of the Mask R-CNN model shows sat-
isfactory predictive performance. The Mask R-CNN model is trained and evaluated
with 3-fold cross validation. The evaluation is based on 120 annotated images, which were
randomly sampled from all the input satellite images in Siaya, Kenya. The Mask R-CNN
model outputs a confidence score for every predicted building instance, and the precision-
recall curve is generated by varying the confidence score threshold, below which predicted
instances are dropped. A higher threshold makes the model more conservative and corre-
sponds to the left portion of the curve (with high precision and low recall), and vice versa.
The dot represents the optimal confidence score threshold, obtained by maximizing F1, the
harmonic mean of precision and recall. The main model used in this study employs the
optimal threshold, and has a recall of 0.79 and a precision of 0.80.
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Figure S2: Ten randomly sampled pairs of input images and deep learning pre-
dictions. Ten images are randomly sampled from all the input satellite images in the
GiveDirectly study area. Each predicted building is outlined in white and filled with the
“representative” roof color.
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Tin roof

Thatched roof

Painted roof

Figure S3: The distribution and grouping of roof colors. All the buildings in the
GiveDirectly study area are split into eight groups by a K-means clustering algorithm, based
on their roof colors. The color block on the left represents the “average” roof color of the
cluster, and the color blocks on the right represent a random subset of all the roof colors in
the given cluster. The number of color blocks on the right is proportional to the size of the
cluster. The eight groups are further grouped into tin roof, thatched roof, and painted roof.

34



0 2000 4000

200

250

300

Building Footprint (m2)

0 2000 4000

100

150

200

Tin-roof Area (m2)

0 2000 4000

0.30

0.33

0.36

Night Light (nW·cm−2·sr−1)

−1000 0 1000 2000
Treatment Effect (USD PPP)

Survey-based estimate
Satellite-derived estimates based on: 
    Building Footprint
    Tin-roof Area
    Night Light

b    Treatment Effect Estimates on Housing Assets

a    Engel Curves

Housing Assets (USD PPP)

Figure S4: The treatment effect on housing assets can be similarly recovered by
scaling the effect on building footprint. a The Engel curves of building footprint, tin-
roof area, and night light, estimated with LOESS (solid line) or a linear regression (dotted
line). The shaded regions represent the 95% confidence intervals for the latter. b Com-
paring the survey-based versus satellite-derived treatment effects. The dots show the point
estimates. The error bars show the 95% confidence intervals, with the arrow(s) marking
upper/lower bounds that are out of range (if any). n = 1, 844.
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Figure S5: The treatment effect on non-housing assets can be similarly recovered
by scaling the effect on building footprint. a The Engel curves of building footprint,
tin-roof area, and night light, estimated with LOESS (solid line) or a linear regression (dotted
line). The shaded regions represent the 95% confidence intervals for the latter. b Compar-
ing the survey-based versus satellite-derived treatment effects. The dots show the point
estimates. The error bars show the 95% confidence intervals, with the arrow(s) marking
upper/lower bounds that are out of range (if any). n = 1, 844.
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Figure S6: The treatment effect on annual expenditure can be similarly recovered
by scaling the effect on building footprint. a The Engel curves of building footprint,
tin-roof area, and night light, estimated with LOESS (solid line) or a linear regression (dotted
line). The shaded regions represent the 95% confidence intervals for the latter. b Compar-
ing the survey-based versus satellite-derived treatment effects. The dots show the point
estimates. The error bars show the 95% confidence intervals, with the arrow(s) marking
upper/lower bounds that are out of range (if any). n = 1, 843.
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Figure S7: The Engel curves for tin-roof area shifted in response to the cash
transfer. The Engel curves for the treatment households (in green, n = 1, 904) and the
control households (in gray, n = 1, 844). The shaded regions represent the 95% confidence
intervals.
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Figure S8: The Engel curves estimated based on in-sample and out-of-sample
data are broadly similar. The Engel curves for the in-sample eligible households (in
gray, n = 3, 748) and the out-of-sample ineligible households (in green, n = 1, 821) in the
GiveDirectly study area. The shaded regions represent the 95% confidence intervals.
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Figure S9: Population count in Mexican villages is more strongly correlated
with the number of houses in satellite imagery, compared to night light. The
population count is shown in log scale. Each point corresponds to a randomly sampled rural
locality in Mexico. Gray lines are estimated LOESS curves, and the shaded regions are the
95% confidence intervals. The (Pearson) correlation coefficients are reported in the panel
subtitles. n = 197.
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