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Abstract

We develop a simple (incumbent versus entrant) strategic deterrence model to study the economic
and geopolitical interactions underlying international trade-related infrastructure projects such as the
Panama Canal. We study the incentives for global geopolitical players to support allied satellite
countries where these projects are or could potentially be built. We show that even if no effective
competitor emerges, the appearance of a geopolitical challenger capable of credibly supporting the
entrant has a pro-competition economic effect which benefits consumers all over the world.
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1 Introduction

There is a growing and fascinating body of empirical literature on the effects of large-scale infrastructure
projects (e.g., the expansion of the Panama Canal) on the volume and pattern of international and
regional trade (Maurer and Yu, 2008; Hugot et al., 2016; Feyrer, 2021). These studies use disruptions
in the operation of trade-related infrastructures or new infrastructure projects as invaluable exogenous
shocks that affect trade costs across locations and products. This is definitely a well founded empirical
approach to estimate the causal effect of trade costs on the volume and pattern of international and
regional trade. In this paper, we adopt a completely different but complementary approach. Our goal is
to explore the strategic economic and political forces that underlie some of these infrastructure projects.
Strategic considerations are relevant for at least two reasons. First, the construction of large-scale trade-
related infrastructure, such as ports and canals, tends to be undertaken on a non-competitive basis, as
such projects are often carried out under monopolistic or oligopolistic conditions or are conducted by
government-owned firms. Thus, the scope for strategic economic decisions is simply larger than it is,
say, for standard shipping and transportation services. Second, since major infrastructure projects have
the potential to redirect trade flows and foreign direct investment and, in the event of open conflict, to
influence military operations, they are often considered to be of key importance for geopolitical reasons.
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As the Panama Canal provides such a strategic link between the Atlantic and Pacific Oceans, it is
an excellent example of a trade-related infrastructure project that is subject to substantial economic
and geopolitical strategic considerations. Ever since its construction, the Panama Canal has been an
almost uncontested monopoly. Initially, it was owned by the United States and, although in 1999 it
was transferred to the Republic of Panama, it is still considered to be within the orbit of influence of
the United States (Sabonge and Sánchez, 2014). During the twentieth century, several projects to build
alternative routes between the Atlantic and Pacific Oceans were envisioned, but it was not until the
economic and geopolitical rise of China that a more serious challenge emerged. That challenge took the
form of China’s inclusion of a proposal for an alternative transoceanic canal running through Nicaragua
as part of its Belt and Road Initiative. However, the project has since been postponed and the initial
construction works have been suspended. We argue that the expansion of the Panama Canal played
an important role in China’s decision to suspend the project, but we also contend that the threat of a
Chinese-financed rival canal through Nicaragua was a factor in Panama’s decision to expand its canal
and in the United States’ decision to support that plan.

To formally capture the strategic interactions illustrated by the Panama Canal, we develop a formal
game-theoretic model of strategic entry deterrence that includes a geopolitical component. In this model,
there is one incumbent (e.g., Panama) and a potential entrant (e.g., Nicaragua) that play an entry game
and two global powers (e.g., United States and China) that try to influence the outcome of this entry game
for economic and geopolitical reasons. To do so, each global power subsidizes its geopolitical ally. When
the global power allied with the incumbent wins the subsidy race, in equilibrium, there is deterrence
(e.g., no canal is built in Nicaragua). This does not imply that geopolitics does not matter. Under
deterrence, the incumbent, supported by its global ally, overinvests in capacity to deter the entrant that
has received a credible promise of support from the other global power. In equilibrium, this credible
promise is not acted upon, but it plays an important role in prompting the incumbent and its global
ally to further expand capacity/ support the expansion of that capacity. Thus, even when no effective
competitor emerges, the rise of a geopolitical challenger has a pro-competition economic effect which
benefits consumers all over the world.

When the global power that is allied with the entrant wins the subsidy race, in equilibrium, there
is accommodated entry. In other words, there is entry (e.g., a canal is built in Nicaragua with Chinese
support) when the global ally of the entrant is willing to provide significant support and the global ally
of the incumbent (e.g., the United States) is not willing to provide the substantial funds required to
deter entry. In this case, the rise of a geopolitical challenger has economic as well as geopolitical effects.
From an economic perspective, the market structure changes from a monopoly to a duopoly, which in
turn leads to a reduction in the equilibrium price. Once again, consumers of all regions benefit from this
change. From a geopolitical perspective, in equilibrium, there is effective entry by a new global power,
which breaks up the geopolitical monopoly of the incumbent’s global ally.

In the baseline model, we implicitly assume that the subsidies promised by both global powers are
contingent but binding decisions. In an extension, we explore what happens when the global ally of
the entrant cannot fully commit to support the entrant. That is, we consider the possibility that the
rising global power (e.g., China) has a limited ability to convince the incumbent and its global ally (e.g.,
the United States and Panama) that the funds needed to support the entrant’s efforts will actually be
forthcoming. Limited credibility gives rise to three novel results. First, when the rising global power
enjoys relatively high levels of commitment, entry is less likely to occur and deterrence becomes easier to

2



sustain, as the established global power cannot be bullied with non-credible promises of large subsidies.
Second, when the rising global power has intermediate levels of commitment, it does not present a
geopolitical threat for the established global power because the incumbent is willing to deter entry even
with no support. Then, at the margin, both global powers are better off if the rising global power gains
some credibility, which prompts the incumbent to expand its capacity in order to deter entry. Finally,
when the rising global power has a low level of commitment, in equilibrium, entry is blocked and, once
again, both global powers will be better off if the rising global power gains enough credibility to induce
deterrence.

1.1 Related Literature

There are two areas of the literature that are specifically related to this paper. First, there is an extensive
body of literature on industrial organization and strategic entry deterrence. Second, in the area of
international relationships, there is also an extensive body of literature on geopolitics and, in particular,
on the interactions between an established global or regional power and a rising challenger.

The literature on industrial organization as it relates to strategic entry deterrence has highlighted two
main mechanisms that an incumbent can use to deter entry. A first group of models focuses on pricing
decisions, which can be used to build up the reputation of an incumbent (Kreps et al., 1982) or to signal
the existence of a low cost to the potential entrant (Milgrom and Roberts, 1982). A second group of
models considers that an incumbent can use strategic investments to deter entry. Spence (1977) formalizes
the idea that investments in capacity are a credible commitment capable of deterring entry, while Dixit
(1979) expands this model to allow the incumbent to choose between deterring and accommodating
entry. Dixit (1980) goes on to explore different post-entry scenarios, including those involving a quantity
leadership role for the entrant and price competition. Our model builds on Tirole (1988), who drew
on the results of Kreps and Scheinkman (1983) and Fudenberg and Tirole (1984) to study a two-stage
entry game where firms select their capacities in the first stage and then compete on prices in the second
stage. We augment this model by introducing two new players (the global powers) with the ability and
willingness to influence the incumbent and entrant, respectively.

The seminal models of entry deterrence have been extended in several directions. For example,
Maggi (1996) introduced uncertainty regarding conditions in the contested market, while Bagwell and
Ramey (1996) explored the role of avoidable costs, and Eaton and Ware (1987) looked at how the market
structure might vary with technology. Additionally, several theoretical implications of these models have
been tested in a variety of markets. For example, Thomas (1999) focused on cereals, Lieberman (1987)
on chemical industries, Conlin and Kadiyali (2006) on lodging properties, and Ellison and Ellison (2011)
on pharmaceuticals. However, to the best of our knowledge, models of strategic deterrence have not been
employed to study trade infrastructure and/or extended to study how geopolitical considerations affect
the equilibrium. At a pure theoretical level, our model also suggests that once we introduce a player
with the ability and willingness to expand the equilibrium quantity (e.g., the rising global power in our
model), blocked entry will never be an equilibrium of the deterrence model. The reason being that such
a player can always induce deterrence without actually incurring any cost. The only remaining question
is whether this player is interested in escalating its support to induce entry.

There is a vast body of literature within the field of international relations on the interactions between
an established power and a rising challenger (e.g., Nye, 1991; Ikenberry, 2011). Our paper emphasizes
the dilemma between economic gains and geopolitical threats. Overall, a rising economic power opens
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up excellent new economic opportunities for the established power via specialization, international trade
and foreign direct investment. The cost for the established power is the sharing of political influence with
the rising power. We make three contributions to this literature. First, we formally model one possible
way in which an established power and a rising challenger can interact and explore under what conditions
and why a dilemma between economic gains and geopolitical threats emerges. Second, our model also
allows us to explore what the consequences are for the countries being influenced by the global powers
as well as third countries. Finally, we identify a mechanism through which geopolitical competition and
considerations shape strategic international trade infrastructure.

The rest of the paper is organized as follows. Section 2 develops a simple model of strategic economic
deterrence taking the subsidies provided by the global powers as a given. Section 3 introduces the
geopolitical dimension by looking at the equilibrium interactions between the two global powers. Section
4 explores an extension of the model in which the rising global power does not enjoy full credibility.
Section 5 applies the model to the case of the Panama Canal. Section 6 presents the conclusions.

2 A Simple Model of Economic Deterrence

Consider two countries that, due to by virtue of their locations, could provide an strategic transportation
service such as a connection between the Atlantic and Pacific Oceans (e.g., Panama and Nicaragua). The
demand for this service comes from three countries and/or regions that we interpret as two global powers
(e.g., the United States and China) and the rest of the world, respectively. To simplify things, suppose
that the strategic transportation service is an homogenous product for which the demand in country j is
a linear function of the price:

Qj = Aj (a− P ) for j ∈ J = {G1, G2, RW} ,

where P ≥ 0 is the price of the service, a > 0, and Aj > 0 for all j. Therefore, the inverse demand of the

service is P = a− bQ, where b =
(

∑

j∈J A
j
)−1

and Q =
∑

j∈J Q
j.

The countries that are strategically located to provide this service are not symmetric. One country,
denoted by I, is the market incumbent (e.g., Panama) and the other country, denoted by E, is a potential
entrant (e.g., Nicaragua). I and E play a deterrence game. Specifically, countries first make a capacity
decision (e.g., build or expand the canal) and later compete on prices. Let ki ≥ 0 denote the capacity
decision of country i ∈ {I,E}. The cost of building capacity kI for the incumbent is given by:

CI (kI) = ckI − S1 (kE) ,

where c ∈ (0, a) and S1 (kE) = S1 ≥ 0 if kE = 0 and S1 (kE) = 0 if kE > 0. That is, S1 is the subsidy
provided by global power 1 if E does not enter. The cost of building capacity kE for the potential entrant
is given by:

CE (kE) = ckE + F − S2 (kE) ,

where S2 (kE) = S2 with S2 ≥ 0 if kE > 0 and S2 (kE) = 0 if kE = 0. That is, F > 0 is the entry cost
and S2 is the subsidy provided by global power 2.
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The timing of events is as follows: (i) I selects kI ≥ 0; (ii) E observes kI and selects kE ≥ 0; (iii)
Given (kI , kE), there is price competition. Specifically, I and E simultaneously and independently select
prices (pI , pE) and the demand of each player is determined according to the efficient-rationing rule.1

To solve this game, we employ subgame Nash perfect equilibrium. Moreover, we impose restrictions
on capacity choices and the set of parameters which ensure that, in equilibrium, under a duopoly, both
countries set the same price and use all their installed capacity. (See Appendix A.1 for details.) That is,
the equilibrium market price as a function of (kI , kE) is P = a− b(kI + kE) and, hence, profit functions
are given by:

ΠI (kI , kE) = [a− b(kI + kE)− c] kI + S1 (kE)

ΠE (kI , kE) = [a− b(kI + kE)− c] kE − S2 (kE)

To characterize the equilibrium it is useful to define the following thresholds2,3:

S̄b = F − (a− c)2

16b
(1)

S̄d (S2) =
(a− c)2

8b
− 2 (a− c)

√

F − S2

b
+ 4 (F − S2) (2)

S̄d
0 ∈

(

S̄b, S̄
)

such that S̄d
(

S̄d
0

)

= 0 (3)

S̄ = F − (2a− 3c)2

36b
(4)

The following proposition characterizes the economic equilibrium for any pair of subsidies (S1, S2).

Proposition 1 Economic equilibrium. Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7.

1. Suppose that 0 ≤ S2 ≤ S̄b. Then, the entry of E is blocked. Specifically, in equilibrium, (kI , kE) =
(

a−c
2b , 0

)

and P = a+c
2 .

2. Suppose that S̄b < S2 ≤ S̄.4

(a) If S1 > S̄d (S2), then the entry of E is deterred. Specifically, in equilibrium, (kI , kE) =
(

a−c−2
√

b(F−S2)

b , 0

)

and P = c+ 2
√

b (F − S2).

1The efficient-rationing rule indicates that consumers with the highest willingness to pay will be served first. This rule
has the advantage of maximizing the consumer surplus. For more details see Tirole (1988).

2In Appendix A.1 we prove that, under proper conditions, S̄d (S2) is strictly increasing and strictly convex in S2 for all
S2 ∈

[

S̄b, S̄
]

. Moreover, there exists a unique S̄d

0 ∈
(

S̄b, S̄
)

such that S̄d (S2) < 0 for all S2 ∈
[

S̄b, S̄d

0

)

, S̄d
(

S̄d

0

)

= 0, and

S̄d (S2) > 0 for all S2 ∈
(

S̄d

0 , S̄
]

.
3S̄b is the minimum subsidy that G2 must offer to E before E considers entering when I behaves as an unchallenged

monopoly. S̄d (S2) is the minimum subsidy that G1 must offer to I in order to deter entry when G2 is offering a subsidy of
S2 to E. S̄d

0 is the minimum subsidy that G2 must offer to E in order for E to consider entering when I is willing to expand
its capacity, but it does not receive any support from G1. Finally, S̄ is the maximum feasible subsidy for G2.

4In Appendix A.1 we further characterize the equilibrium for S̄b < S2 ≤ S̄. In particular, we prove that there exists
S̄d

0 ∈
(

S̄b, S̄
)

such that for all S̄b < S2 ≤ S̄d

0 , I deters the entry of E.
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(b) If S1 = S̄d (S2), then there are two equilibria: in one equilibrium the entry of E is deterred,
while in the other I accommodates the entry of E. Under deterrence (accommodation),
(kI , kE , P ) is as in part a (c).

(c) If S1 < S̄d (S2), then I accommodates the entry of E. Specifically, in equilibrium, (kI , kE) =
(

a−c
2b , a−c

4b

)

and P = a+3c
4 .

Proof: See Appendix A.1. �

Figure 1 illustrates Proposition 1. When the subsidy provided to E by global power G2 is below a
certain threshold (formally, 0 ≤ S2 ≤ S̄b), then E will not enter even if I keeps capacity at the monopoly
level. Under such circumstances, I does not need to invest in extra capacity to deter E. Then, the
equilibrium outcome coincides with the standard equilibrium under a monopoly. For the case of the
Panama Canal, this can be interpreted as a situation in which China is not seriously committed to
subsidizing Nicaragua and, lacking China’s backing, Nicaragua finds it too costly to build a new canal
even when Panama does not expand its capacity.

When the subsidy provided to E by global power G2 is above a certain threshold (formally, S2 >
S̄b) and if I keeps capacity at the monopoly level, then E will have incentives to enter. Under such
circumstances, I’s only choice is between accommodating and overinvesting in capacity to deter the entry
of E. Indeed, when the subsidy provided by global power G1 is generous enough (formally, S1 > S̄d (S2)),
it is profitable for I to install extra capacity to deter E’s entry. The market then becomes a monopoly.
For the case of the Panama Canal, this can be interpreted as a situation in which the United States
helps Panama to build extra capacity in order to deter Nicaragua from building a new canal with the
support of China. It is worth mentioning that, although the market becomes a monopoly under both
deterred and blocked entry, equilibrium quantities and prices are not the same. The reason for this is
that when S2 > S̄b

2, I must overinvest in capacity to deter E. When the subsidy provided by G1 is not
generous enough (formally, S1 < S̄d (S2)), I prefers to accommodate entry and the equilibrium outcome
coincides with the equilibrium of the Stackelberg’s model. For the case of the Panama Canal, this can
be interpreted as a situation in which the United States does not provide enough support to Panama to
deter Nicaragua from building a new canal with the support of China. Finally, S1 = S̄d (S2) is a knife
edge situation in which the subsidies are such that I is indifferent to the choice between deterrence and
accommodation. This knife edge situation will prove to be important in Section 3, where we endogenize
the subsidies provided by the global powers.
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Figure 1. Economic equilibrium given (S1, S2). Note: The figure has been plotted assuming a = 3.75,
b = 1/400, c = 2.5, and F = 100.

3 Geopolitics and Political Deterrence

This section introduces geopolitical conflict between the global powers that use the strategic transporta-
tion service. In particular, we introduce a payoff function for each global power that considers economic
as well as geopolitical factors and we characterize the equilibrium subsidies and corresponding capacity
choices.

Suppose that before I and E play the economic deterrence game, global powers play an international
influence game in which they simultaneously and independently select (S1, S2). Let the payoff function
of global power Gj be given by:

Wj (kI , kE) = CSj (kI , kE) +Bj (kI , kE) ,

where CSj is the consumer surplus enjoyed by country Gj , and Bj is the net geopolitical net benefits for
Gj (i.e., geopolitical benefits minus subsidies). In particular, assume that:

B1 (kI , kE) =

{

BM
1 − S1 if kE = 0

BD
1 if kE > 0

and B2 (kI , kE) =

{

0 if kE = 0
BD

2 − S2 if kE > 0

where BM
1 > BD

1 ≥ 0, BD
2 > 0. BM

1 is the geopolitical benefits enjoyed by G1 when there is no entry, i.e.,
under a monopoly, while BD

1 is the geopolitical benefits enjoyed by G1 when there is entry, i.e., under a
duopoly. Thus, BM

1 − BD
1 > 0 is the geopolitical benefits for G1 of avoiding entry. Similarly, BD

2 > 0 is
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the geopolitical benefits enjoyed by G2 when there is entry, while, under no entry, G2 has no geopolitical
benefits.5

The payoff functions of the global powers encompass in a stylized fashion the perspectives on the goal
of states supported by the two most influential schools of thought in International Relations: liberalism
and realism. While liberals often emphasize the importance of economic gains through international
cooperation, realists focus on security dilemmas (e.g., Shiraev and Zubok 2020). Since we assume that
each global power values economic as well as geopolitical payoffs, our specification can handle both schools.
Indeed, as geopolitical benefits rise (decrease), our payoff functions become more realists (liberal).

To characterize equilibrium subsidies, it is useful to employ a selection criterion to deal with multiple
economic equilibria for the knife edge situation. Recall that when S1 = S̄d (S2), deterrence and accom-
modation are both subgame perfect Nash equilibria (see Proposition 2.2.b). A convenient criterion is to
assume that if S1 = S̄d (S2), then the economic equilibrium will be accommodation when accommoda-
tion strictly dominates deterrence for G2. Otherwise, the economic equilibrium will be deterrence. One
advantage of this criterion is that G2 always has a best response for any S1.

The following proposition characterizes the equilibrium subsidies chosen by the global powers. To do
so, we define:

∆ (S) =
9 (a− c)2

32
−

[

a− c− 2
√

b (F − S)
]2

2
(5)

where Aj∆(S) is the change in the consumer surplus experienced by consumers of country j when the
economic equilibrium moves from deterrence to accommodation.

Proposition 2 Geopolitical equilibrium.6 Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7, A1b <

2
(√

2− 1
)

, and BD
2 ∈

(

S̄d
0 −A2∆

(

S̄d
0

)

, S̄ −A2∆
(

S̄
)]

. Then, the equilibrium subsidy profiles are those
that satisfy:

S1 = S̄d (S2) , S2 ∈
[

S̄d
0 , S̄

]

(6)

and

[BD
2 > S2 −A2∆(S2) and BM

1 −BD
1 ≤ A1∆

(

(

S̄d
)−1

(S1)

)

+ S1] (7)

or

[BD
2 ≤ S2 −A2∆(S2) and BM

1 −BD
1 ≥ A1∆

(

(

S̄d
)−1

(S1)

)

+ S1] (8)

Moreover, if (7) holds there is accommodated entry, while if (8) holds, entry is deterred. Proof: See
Appendix A.2. �

To see the intuition behind Proposition 2, we must understand the logic behind equations (6), (7)
and (8). In equilibrium, it is always the case that S1 = S̄d (S2) and S2 ∈

[

S̄d
0 , S̄

]

. This is because

5One possible way to motivate the geopolitical payoff function is to assume that geopolitical benefits are determined by a
contest as follows: B1 (kE, kI) =

(kI )
m

(kI)
m+(kE)m

B−S1 (kE) and B2 (kE , kI) =
(kE)m

(kI )
m+(kE)m

B−S2 (kE) with m ∈ (0, 1]. Then,

BM

1 = B, BD

1 = (2)m

(2)m+1
B, and BD

2 = 1
(2)m+1

B.
6In Appendix A.2 we prove a more general version of this proposition that fully characterizes equilibrium subsidies for

any set of parameters.
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S2 =
(

S̄d
)−1

(S1) is the best response function of G2. Figure 2 illustrates why this is the case. Panel
a shows the payoff of G2 as a function of S2 for any S2 ∈

[

0, S̄
]

, while Panel b zooms in to the key
range S2 ∈

[

S̄d
0 , S̄

]

. The intuition is as follows. Given S1, from Proposition 1, we know that if G2 offers

S2 ∈
[

0,
(

S̄d
)−1

(S1)
)

, then entry will be deterred, while if G2 offers S2 ∈
(

(

S̄d
)−1

(S1) , S̄
]

, then there

will be accommodation. Offering S2 ∈
[

0,
(

S̄d
)−1

(S1)
)

is not a best response to S1. With this offer E

will not enter and, hence, G2 will not need to pay any subsidy. However, the higher the subsidy offered
by G2, the greater the amount of capacity that I will need to install to deter E and, hence, the lower the

equilibrium price. Formally, W2 (S1, S2) is strictly increasing in S2 for all S2 ∈
[

0,
(

S̄d
)−1

(S1)
)

. Offering

S2 ∈
(

(

S̄d
)−1

(S1) , S̄
]

is not a best response to S1 either. With this offer, E will enter and, hence, G2

will need to pay the subsidy. However, the equilibrium price under accommodation does not depend

on S2. Formally, W2 (S1, S2) is strictly decreasing in S2 for all S2 ∈
(

(

S̄d
)−1

(S1) , S̄
]

. Thus, the only

remaining possibility is S2 =
(

S̄d
)−1

(S1). But are we sure that S2 =
(

S̄d
)−1

(S1) is the best response

function of G2? In particular, note that W2 (S1, S2) is not continuous at S2 =
(

S̄d
)−1

(S1) (see Figure

2.b). Our selection criterion, however, implies that S2 =
(

S̄d
)−1

(S1) leads to the economic equilibrium

that maximizes W2 (S1, S2), which ensures that S2 =
(

S̄d
)−1

(S1) is indeed the best response function of
G2. (For further details, refer to Lemma 2 in Appendix A.2).

Does S2 =
(

S̄d
)−1

(S1) lead to deterrence or accommodation? There are two possible situa-
tions to consider. Suppose that G1 offers a relatively low subsidy (formally, S1 such that BD

2 >
(

S̄d
)−1

(S1) − A2∆
(

(

S̄d
)−1

(S1)
)

). Then, W2 (S1, S2) adopts its maximum at S2 =
(

S̄d
)−1

(S1) when

there is accommodation (see Figure 2.b). On the other hand, suppose that G1 offers a relatively high

subsidy (formally, S1 such that BD
2 ≤

(

S̄d
)−1

(S1) − A2∆
(

(

S̄d
)−1

(S1)
)

). Then, W2 (S1, S2) adopts its

maximum at S2 =
(

S̄d
)−1

(S1) when there is deterrence (see Figure 2.b). Intuitively, when G1 offers a

relatively low (high) subsidy, it is (not) worth it for G2 to pay S2 =
(

S̄d
)−1

(S1) in order to enjoy the eco-
nomic as well as geopolitical gains associated with E’s entry. Summing up, in order for accommodation
(deterrence) to be an equilibrium it must be the case that BD

2 > S2 −A2∆(S2) (B
D
2 ≤ S2 −A2∆(S2)).

What about G1’s incentives? Considering the best response function of G2, there are two types of
candidates for equilibrium subsidy profiles. For any profile in which S1 = S̄d (S2), S2 ∈

[

S̄d
0 , S̄

)

and

BD
2 > S2 −A2∆(S2) leads to accommodation. For those profiles, BM

1 − BD
1 ≤ A1∆

(

(

S̄d
)−1

(S1)
)

+ S1

ensures that G1 does not have an incentive to unilaterally deviate to S1 < S̄d (S2), which would lead
to deterrence. For any profile in which S1 = S̄d (S2), S2 ∈

[

S̄d
0 , S̄

)

and BD
2 ≤ S2 − A2∆(S2) leads to

deterrence. For those profiles, BM
1 − BD

1 ≥ A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 ensures that G1 does not have an

incentive to unilaterally deviate to S1 > S̄d (S2), which would lead to accommodation. The intuition
behind these inequalities is as follows. BM

1 − BD
1 > 0 is the geopolitical gain for G1 associated with

maintaining its geopolitical monopoly. To enjoy those benefits, G1 must incur two costs: a reduction in

the consumer surplus of A1∆
(

(

S̄d
)−1

(S1)
)

(the equilibrium price under accommodation is lower than

under deterrence) and the payment of a subsidy of S1 to the incumbent.
Several remarks regarding Proposition 2 are called for here. First, consider the equilibria that induce

9



deterrence. In those equilibria, G2 does not actually pay any subsidy to E. G2 just offers a subsidy,
which triggers a response from G1 and I, which move to overinvest in capacity to deter E’s entry. Of
course, this raises the question as to how credible is G2’s offer to subsidize the entrance of E actually
is. The model implicitly assumes that S2 is fully credible, but it is not difficult to envision situations in
which G2 must at least incur some cost in order to signal its commitment. Similarly, in the equilibria
that induce accommodated entry, G1 does not actually pay any subsidy to I, but the subsidy promised
by G1 is not completely irrelevant either. Indeed, the higher S1, the more generous S2 needs to be in
order to induce E’s entrance.

Second, Proposition 2 suggests a simple but coherent explanation for the expansion of the Panama
Canal. (See Section 5 for further details.) China threatened to support Nicaragua’s effort to build a
new canal, and Panama reacted by expanding its canal to deter entry. Does the United States need
to subsidize the expansion of the Panama Canal in order for this to be an equilibrium? According to
Proposition 2, not necessarily. Depending on the parameters of the model, (S1, S2) =

(

0, S̄d
0

)

could be a
Nash equilibrium that leads to deterrence.

Finally, G2’s geopolitical challenge (i.e., its willingness and commitment to support E’s entry) has
a pro-competition economic effect (i.e., lower equilibrium price), which benefits consumers all over the
world (including consumers who are not associated with any global power). This is an example of good
economic outcomes resulting from political competition.

30 40 50 60 70 80 90 100
0
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40

50

60
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Figure 2.a. Geopolitical equilibrium. Notes: The figure has been plotted assuming a = 3.75,
b = 1/400, c = 2.5, F = 100, A2 = 100, and BD

2 = 115.
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Figure 2.b. Geopolitical equilibrium. Notes: The figure has been plotted assuming a = 3.75,
b = 1/400, c = 2.5, F = 100, A2 = 100, and BD

2 = 115.

3.1 Comparative Statics Analysis

Proposition 2 states necessary and sufficient conditions for a profile of equilibrium subsidies to induce ac-
commodation and deterrence. Next, we further characterize these conditions and explore how geopolitical
factors affect the equilibrium. The following proposition summarizes the results.

Proposition 3 Comparative statics. Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7, A1b < 2
(√

2− 1
)

,

BD
2 ∈

(

S̄d
0 −A2∆

(

S̄d
0

)

, S̄ −A2∆
(

S̄
)]

and BM
1 − BD

1 ∈
[

A1∆
(

S̄d
0

)

, A1∆
(

S̄
)

+ S̄d
(

S̄
)]

. Let S̃1 ∈
(

0, S̄d
(

S̄
)]

and S̃2 ∈
(

S̄d
0 , S̄

]

be the unique solution to:

BM
1 −BD

1 = A1∆

(

(

S̄d
)−1 (

S̃1

)

)

+ S̃1 (9)

BD
2 = −A2∆

(

S̃2

)

+ S̃2 (10)

1. If S̃1 ≥ S̄d
(

S̃2

)

, then the equilibrium subsidy profiles are those that satisfy: S1 = S̄d (S2) and

S2 ∈
[

S̃2,
(

S̄d
)−1

(

S̃1

)]

. Moreover, in all these equilibria entry is deterred.

2. If S̃1 < S̄d
(

S̃2

)

, then the equilibrium subsidy profiles are those that satisfy: S1 = S̄d (S2) and

S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

. Moreover, in all these equilibria there is accommodated entry.

3. S̃1 (S̃2) is strictly increasing in BM
1 − BD

1 (BD
2 ); S̃1 and S̃2 are both strictly increasing in F ; and

the effect of c (a) on S̃1 and S̃2 is ambiguous.

11



Proof: See Appendix A.2. �

The intuition behind Proposition 3 is as follows. S̃1 is the maximum subsidy that G1 is willing to pay
in order to deter entry. Indeed, (9) simply equates the geopolitical benefits derived from deterrence (i.e.,

BM
1 − BD

1 ) with its economic costs (i.e., A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1). Analogously, S̃2 is the maximum

subsidy that G2 is willing to pay in order to induce entry, while (10) equates the geopolitical and economic

benefits of entry (i.e., BD
2 +A2∆

(

S̃2

)

) with its cost (i.e., S̃2). There are two possible situations. When

S̃1 ≥ S̄d
(

S̃2

)

, G1 is willing to offer a subsidy higher than or equal to S̄d
(

S̃2

)

in order to deter entry,

while G2 is not willing to pay more than S̃2 to induce entry. Then, G1 outbids G2 in the subsidy race

and, in equilibrium, entry is always deterred. On the other hand, when S̃1 < S̄d
(

S̃2

)

, G1 is not willing

to offer more than S̄d
(

S̃2

)

in order to deter entry, while G2 is willing to pay up to S̃2 to induce entry.

Then, G2 outbids G1 in the subsidy race and, in equilibrium, there is accommodated entry.
How do geopolitical benefits affect equilibrium subsidies and, ultimately, the entry decision? An

increase in BM
1 −BD

1 makes G1 more willing to pay a higher subsidy in order to deter entry. Formally, S̃1

is strictly increasing in BM
1 − BD

1 (Proposition 3.3). If it was initially the case that S̃1 ≥ S̄d
(

S̃2

)

, then

a rise in BM
1 −BD

1 does not affect the nature of the equilibrium, i.e., before as well as after the increase
in BM

1 − BD
1 entry is deterred. However, the rise in BM

1 − BD
1 , increases the maximum equilibrium

subsidy offered by G2, which reduces the lowest possible equilibrium price. Thus, the rise in BM
1 − BD

1

opens the way for improving the situation for consumers all over the world.7 On the other hand, if it

was initially the case that S̃1 < S̄d
(

S̃2

)

, then a marginal rise in BM
1 − BD

1 does not affect the nature

of the equilibrium. Before, as well as after, the increase in BM
1 − BD

1 , there is accommodated entry.
Moreover, since, under accommodated entry, neither capacity choices nor the equilibrium price depend
on the subsidies, a marginal rise in BM

1 −BD
1 has no effect on the well-being of consumers. Starting from

S̃1 < S̄d
(

S̃2

)

, a sufficiently large rise in BM
1 − BD

1 reverses this inequality and, hence, the equilibrium

changes from accommodated entry to deterrence. Since the equilibrium price under deterrence is always
higher than under accommodated entry, this large rise in BM

1 −BD
1 makes consumers all over the world

worse off. Summing up, a rise in the geopolitical benefits of G1 has an ambiguous effect on the well-being
of consumers.

An increase in BD
2 makes G2 more willing to pay a higher subsidy in order to induce entry. Formally,

S̃2 is strictly increasing in BD
2 (Proposition 3.3). If it was initially the case that S̃1 < S̄d

(

S̃2

)

, a rise

in BD
2 does not affect the nature of the equilibrium. Before, as well as after, the increase in BD

2 , there
is accommodated entry. Moreover, since, under accommodated entry, neither capacity choices nor the
equilibrium price depend on the subsidies, a rise in BD

2 has no effect on the well-being of consumers. On

the other hand, if it was initially the case that S̃1 > S̄d
(

S̃2

)

, then a marginal a rise in BD
2 does not affect

the nature of the equilibrium. Before, as well as after, the increase in BD
2 , there is deterrence. However,

7Since there are multiple equilibrium subsidy profiles, we cannot state that consumers will be better off after the increase
in BM

1 −BD

1 . More formally, every equilibrium subsidy profile before the rise in BM

1 −BD

1 will also be an equilibrium subsidy
profile after the rise in BM

1 −BD

1 . In addition, after the rise in BM

1 −BD

1 , there will be a new range of equilibrium subsidy
profiles with higher S2 than in the equilibrium subsidy profiles before the rise in BM

1 −BD

1 .
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this marginal rise in BD
2 increases the minimum equilibrium subsidy offered by G2, which reduces the

highest possible equilibrium price. Thus, the rise in BD
2 opens way for improving the situation for

consumers.8 Starting from S̃1 > S̄d
(

S̃2

)

, a sufficiently large rise in BD
2 makes S̃2 greater than or equal

to
(

S̄d
)−1

(

S̃2

)

and, hence, the equilibrium changes from deterrence to accommodated entry. Since

the equilibrium price under accommodated entry is always lower than under deterrence, this change
unambiguously makes consumers better off. Summing up, a rise in the geopolitical benefits of G2 has a
benign pro-competition economic effect that tends to improve the well-being of consumers all over the
world.

What are the effects of a change in entry costs F? A rise in F makes both global powers more
willing to pay a higher subsidy. Formally, S̃1 and S̃2 are both strictly increasing in F (Proposition 3.3).
The intuition behind this result is as follows. Consider the economic and geopolitical calculus of G1.
The geopolitical benefits derived from deterrence (i.e., BM

1 − BD
1 ) are not affected by a change in F ,

while its economic costs (i.e., A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1) decrease with a rise in F . This might seem

counterintuitive given that A1∆ is decreasing in F (as the consumer surplus obtained by G1 under entry
is not affected by F while the consumer surplus obtained by G1 under deterrence decreases with F ).

However, F also influences
(

S̄d
)−1

. Indeed, an increase in F leads to a decrease in
(

S̄d
)−1

(

S̃1

)

and

this ‘indirect’ change dominates the direct effect of F on ∆. Thus, a higher F leads to a higher S̃1. For
G2, neither the geopolitical benefits of entry (i.e., BD

2 ) nor its cost (i.e., S̃2) are affected by F , while

the economic benefits of entry (i.e., A2∆
(

S̃2

)

) increase with F as the consumer surplus obtained by G2

under entry is not affected by F while the consumer surplus obtained by G2 under deterrence decreases
with F . Thus, a higher F leads to a higher S̃2.

What about the nature of the equilibrium? It is easy to verify that if it was initially the case that

S̃1 ≥ S̄d
(

S̃2

)

, then this inequality will also hold after a rise in F . Thus, if before the rise in F there was

deterrence, there will also be deterrence after the rise in F . Moreover, it is also possible to prove that

a change in F does not affect F −
(

S̄d
)−1

(

S̃1

)

and, hence, has no impact on well-being of consumers.

(See Appendix A.2 for details). In other words, the rise in F is fully neutralized by G1 with no effect on

consumers or geopolitical outcomes. If, on the contrary, it was initially the case that S̃1 < S̄d
(

S̃2

)

, we

must distinguish two possible situations. First, if after the rise in F it is still the case that S̃1 < S̄d
(

S̃2

)

,

then there is accommodated entry before as well as after the change in F . Since under accommodated
entry, neither capacity choices nor the equilibrium price depend on the subsidies or the entry cost, a rise

in F has no effect on the well-being of consumers. Second, if after the rise in F we have S̃1 ≥ S̄d
(

S̃2

)

,

then the equilibrium changes from accommodated entry to deterrence, making consumer worse off.

8Since there are multiple equilibrium subsidy profiles, we cannot state that consumers will be better off after the increase
in BD

2 . More formally, the rise in BD

2 eliminates a range of equilibrium subsidy profiles with the lowest S2 and, hence, the
highest equilibrium prices.
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4 Extension: Non-binding Subsidies

One concern with the set-up in Section 3 is that subsidies are considered to be fully credible promises.
However, in equilibrium, one of the global powers does not actually pay any subsidy. For example, global
power G2 can push the incumbent to increase its capacity just by threatening to subsidize the entrant,
without actually paying any subsidy. The reason for this is that we have assumed that the threat is
credible because S2 is a contingent but binding decision. That is, in the event that E decides to enter,
G2 must fulfill its commitment to pay S2, but if there is no entry, then no subsidy is paid. Similarly, S1

is a contingent but binding decision made by global power G1. If there is no entry, G1 must still fulfill
its commitment to pay S2, but if E enters, then no subsidy is paid.

To illustrate the importance of credibility for the global powers, we consider a situation in which G2

has only limited credibility.9 In particular, we assume that the actual subsidy paid by G2 cannot be
larger than a fraction ρ ∈ (0, 1) of the maximum possible subsidy S̄. Formally, any promise above ρS̄
will not be credible.

It is not difficult to see how G2’s limited commitment affects Proposition 1. (See Appendix A.3
for details). When ρ ∈

[

ρ̄d0, 1
)

, where ρ̄d0 = S̄d
0/S̄ , it is possible for entry to be blocked, deterred or

accommodated depending on S1 and S2, as it is the case in Proposition 1. Thus, for ρ ∈
[

ρ̄d0, 1
)

, limited
commitment has no major impact on Proposition 1. When ρ ∈

(

ρ̄b, ρ̄d0
)

, where ρ̄b = S̄b/S̄, G2 can
only credibly commit to pay an amount lower than S̄d

0 , which could be enough to induce I to increase
its capacity to deter entry, but it will never be enough to induce accommodation. In other words, for
intermediate values of ρ, entry will be either blocked or deterred. Finally, when ρ ∈ (0, ρ̄], entry is always
blocked for all values of S2. Intuitively, with a low enough ρ, G2 can only credibly commit to pay an
amount lower than S̄b, which is never enough to induce the incumbent to deter entry or to induce an
accommodated entry.

The following proposition characterizes the Nash equilibrium subsidies chosen by the global powers
for different values of ρ.

Proposition 4 Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7, and that the maximum credible subsidy that G2

can promise is ρS̄. Let

ρ̄b =
S̄b

S̄
and ρ̄d0 =

S̄d
0

S̄

1. Suppose that ρ̄d0 ≤ ρ < 1, BD
2 ∈

(

S̄d
0 −A2∆

(

S̄d
0

)

, S̄ −A2∆
(

S̄
)]

and BM
1 − BD

1 ∈
[

A1∆
(

S̄d
0

)

, A1∆
(

S̄
)

+ S̄d
(

S̄
)]

.

(a) If S̃1 ≥ S̄d
(

ρS̄
)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d
(

ρS̄
)

and
S2 ∈

[

ρS̄, S̄
]

. Moreover, in all these equilibria entry is deterred.

(b) If S̃1 < S̄d
(

ρS̄
)

and S̃2 ≤ ρS̄, then Proposition 3 holds.

(c) If S̃1 < S̄d
(

ρS̄
)

and S̃2 > ρS̄, then the equilibrium subsidy profiles are those that satisfy S1 =

S̄d (S2) and S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, ρS̄
)

. Moreover, in all these equilibria there is accommodated

entry.

9To some extent, it is arbitrary to restrict the credibility of G2, but not the credibility of G1. One possible justification
is that G2 represents a rising global power that is still building up its reputation in the international arena.
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2. Suppose that ρ̄b < ρ < ρ̄d0. Then, the set of equilibrium subsidies is given by S1 = 0 and S2 ∈
[

ρS̄, S̄
]

.
Moreover, in equilibrium, entry is deterred.

3. Suppose that 0 < ρ ≤ ρ̄b. Then, the set of equilibrium subsidies is given by S1 = 0 and S2 ∈
[

0, S̄
]

.
Moreover, in equilibrium, entry is blocked.

Proof: See Appendix A.3. �

Proposition 4.1 is similar to Proposition 3. In equilibrium, entry is deterred when global power G1

wins the subsidy race, and there is accommodated entry when global power G2 wins the subsidy race.
The difference is that while in Proposition 3 the winner is the global power that is willing to go farther
in the subsidy race, now G2 faces a credibility problem that restricts how much it can credibly promise
to offer to E. As a consequence, if G1 is willing to offer S1 ≥ S̄d

(

ρS̄
)

(formally, if S̃1 ≥ S̄d
(

ρS̄
)

), then
there is nothing that G2 can do to induce entry. In equilibrium, entry is deterred, even when G2 would

be willing to outbid G1, (formally, when S̃2 >
(

S̄d
)−1

(

S̃1

)

). The problem is that G2 cannot credibly

promise to offer its willingness to pay to induce entry. When G1 is not willing to offer S1 ≥ S̄d
(

ρS̄
)

(formally, when S̃1 < S̄d
(

ρS̄
)

), then there are two possible situations. If G2’s credibility constraint is not

binding (formally, if S̃2 ≤ ρS̄), then Proposition 3 holds. All that matters is the global players’ willingness
to pay to deter or to induce entry. If G2’s credibility constraint is binding (formally, if S̃2 > ρS̄), then
it must be the case that G2 is willing to and capable of outbidding G1. Then, in equilibrium, there

is accommodated entry. The only difference with Proposition 3 is that now S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, ρS̄
)

instead of S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

.

Table 1 summarizes the differences between Proposition 3 and Proposition 4.1. First, suppose that

S̄d
(

ρS̄
)

≤ S̃1 < S̄d
(

S̃2

)

. Then, when the maximum credible subsidy that G2 can offer is S̄, there

is accommodated entry, while when the maximum credible subsidy that G2 can offer is ρS̄, there is
deterrence. In other words, G2’s limited commitment changes the nature of the equilibrium outcome
(from accommodation to deterrence). This induces a rise in the equilibrium price, which negatively

affects consumers. Second, suppose that S̄d
(

ρS̄
)

≤ S̄d
(

S̃2

)

≤ S̃1. Then, G2’s limited commitment

does not change the nature of the equilibrium outcome (i.e., with or without limited commitment there
is deterrence). However, under limited commitment, the equilibrium price is higher than under full
commitment because G2 has to bid a subsidy lower than its willingness to pay to induce entry. Once

again, limited commitment negatively affects consumers. Finally, suppose that S̃1 < S̄d
(

ρS̄
)

< S̄d
(

S̃2

)

.

Then, limited commitment does not change the nature of the equilibrium outcome (i.e., with or without
limited commitment, there is accommodated entry). However, under limited commitment, there is a
lower maximum subsidy that G2 pays to support entry. Since, under accommodation, subsidies do not
change the equilibrium price, consumers are not affected.
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Maximum credible S2

Situation
S̄ (Proposition 2)

S1 = S̄d (S2)
and S2 ∈

ρS̄ (Proposition 4)
S1 = S̄d

(

min
{

S2, ρS̄
})

and S2 ∈

Main effects
of limited

commitment

S̄d
(

ρS̄
)

≤ S̃1 < S̄d
(

S̃2

) [

(

S̄d
)−1

(

S̃1

)

, S̃2

)

(accommodation)

[

ρS̄, S̄
]

(deterrence)

- From
accommodation
to deterrence
- Higher price

S̄d
(

ρS̄
)

≤ S̄d
(

S̃2

)

≤ S̃1

[

S̃2,
(

S̄d
)−1

(

S̃1

))

(deterrence)

[

ρS̄, S̄
]

(deterrence)

- Lower S1

- Higher price

S̄d
(

S̃2

)

≤ S̃1 < S̄d
(

ρS̄
)

[

S̃2,
(

S̄d
)−1

(

S̃1

))

(accommodation)

[

S̃2,
(

S̄d
)−1

(

S̃1

))

(accommodation)

- No effect

S̃1 < S̄d
(

S̃2

)

≤ S̄d
(

ρS̄
)

[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

(deterrence)

[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

(deterrence)

- No effect

S̃1 < S̄d
(

ρS̄
)

< S̄d
(

S̃2

) [

(

S̄d
)−1

(

S̃1

)

, S̃2

)

(accommodation)

[

(

S̄d
)−1

(

S̃1

)

, ρS̄
)

(accommodation)

- Lower S2

Table 1: Binding versus non-binding subsidies from G2 when ρ̄d0 ≤ ρ < 1.

Proposition 4.2 brings about new results. For ρ̄b < ρ < ρ̄d0, G2 can only credibly commit to pay an
amount lower than S̄d

0 , which implies that E will not enter, even when S1 = 0. This does not imply
that there is no room for strategic subsidies, however. In particular, to induce the incumbent to expand
its capacity, G2 has an incentive to offer the highest possible subsidy to E (i.e., S2 ∈

[

ρS̄, S̄
]

). On the
other hand, G1 does not need to offer any subsidy to induce deterrence. Thus, in equilibrium, S1 = 0,
S2 ∈

[

ρS̄, S̄
]

and entry is deterred. In the context of the Panama Canal, this would be an scenario where
China, by promising to support Nicaragua, forces deterrence by Panama without the need for any subsidy
from the United States. Compared with Proposition 4.1, now limited commitment has a more radical
impact on the equilibrium outcome. For ρ̄b < ρ < ρ̄d0, G2 does not pose any geopolitical threat for G1.
This is because there is no promise that G2 can make that will induce E to enter. Moreover, in economic
terms, G1 benefits from G2’s support to E because it forces I to increase its capacity, which reduces the
equilibrium price of the transportation service. Indeed, it is easy to verify that when ρ̄b < ρ < ρ̄d0, the
payoffs for both global powers are increasing in ρ. Thus, this is a situation in which the United States
would prefer that China gains credibility up to ρ < ρ̄d0.

Proposition 4.3 also brings about novel results. For 0 < ρ ≤ ρ̄b, regardless of the subsidy offered by
G2, entry will be blocked. Then, G1 does not have any incentives to offer a positive subsidy. G2, on the
other hand, is indifferent to any promised subsidy because, given its low level of credibility level, G2’s
promises will not affect capacity decisions. In the context of the Panama Canal, this would be an scenario
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in which China lacks credibility and entry remains blocked. Once again, this is not a good outcome for
the global powers. Both would be better off if China were to gain credibility and I were forced to increase
its capacity in order to deter entry.

5 The Case of the Panama Canal

The Panama Canal’s monopoly on passage between the Atlantic and Pacific Oceans has periodically been
threatened by the possibility of a project to build a new canal through Nicaragua. In the last decade,
this threat became more credible because such a project was part of China’s Belt and Road worldwide
infrastructure initiative aimed at developing logistical infrastructure to facilitate Chinese engagement in
foreign markets and military actions (Cai, 2017).

Panama’ existence as a state and an economy that are backed by American interests in transoceanic
travel has been defined by the Panama Canal ever since its construction. Sigler (2014) shows just how
much the Panama Canal has shaped Panama’s national economy and its internal politics and goes on to
show how disruptive a rival, such as a canal in Nicaragua, could be for that country.

The geopolitical implications of the possibility of constructing canals to span Central America are
closely linked to the inception of the state of Panama itself. The Panamanian isthmus was part of
the sovereign territory of Colombia and became a place of interest to the French government in the
late nineteenth century when France started dredging a trans-American canal through the swamps and
jungles of that territory to create a sea lane to connect the Atlantic and Pacific Oceans. The French
eventually failed when malaria and yellow fever decimated their workers. This opened up an opportunity
for the United States, under President Theodore Roosevelt, to take over the project. As Panama was part
of Colombia at the time, the negotiations concerning the building of the canal took place between the
United States and Colombia. Those talks led to the signing of the Hay-Herrán Treaty, which, however,
ended up being rejected by the Colombian Senate. This set the stage for the separation of Panama from
Colombia and resulted in the Hay-Bunau-Varilla Treaty, which was signed by the French plenipotentiary
ambassador of Panama to Washington. The United States then bought the French interest in Panama
for US$40 million (Sabonge and Sánchez, 2014). When the United States purchased the rights to the
canal project, the population of the isthmus rebelled against Colombia and declared independence in
1903. Colombia tried to retake the isthmus, but the new state of Panama was shielded by a fleet of US
Navy ships (Sánchez, 2019).

The Hay-Bunau-Varilla Treaty gave the United States the rights, in perpetuity, to a strip of land (the
Canal Zone) where the laws of the United States would apply. The arrangement for operating the canal
did not allow for Panama to share in the revenue or other financial benefits derived from it. All that
Panama received was a modest lease payment (Sabonge and Sánchez, 2014). All this changed, however,
with the signing of the Torrijos-Carter Treaty in 1977, which provided for the Canal Zone to be abolished
and for the Panama Canal to be handed over to the Republic of Panama at the end of 1999 (Sabonge
and Sánchez, 2014).

Since the construction of the Panama Canal in 1914, the value of that route has changed over time.
In the beginning, the Canal was primarily of strategic value from a military standpoint. In the years
following the Second World War, it gained increasing economic and commercial value. And since its
handover to the Republic of Panama, it has become a significant generator of wealth for Panama, whose
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monopoly position has essentially been uncontested until fairly recently, when a robust push for a canal
through Nicaragua began to emerge.

The Nicaragua Interoceanic Grand Canal Master Plan was aimed at creating a faster route through
the Americas while also industrializing the adjacent corridor. As it would be located to the north of
the Panama Canal, the Nicaraguan canal would provide a faster route for ships bound for the Northern
Hemisphere and would be able to accommodate ships that are too large to fit through the Panama Canal.
The project was to be organized by the Hong Kong Nicaragua Canal Development Investment Company
(HKND). In 2013, a 100-year concession contract for the management of the Nicaraguan Canal Authority
was signed between HKND and the Government of Nicaragua. The first stages of the canal’s construction
began the following year. It has often been speculated that the HKND receives funds directly from the
Chinese government (Sabonge and Sánchez, 2014). Arturo Cruz, the former Ambassador of Nicaragua
to the United States, has said that “if the canal goes ahead. . . it will be because the Chinese government
wants it to, and the financing will come from China’s various state firms” (Sánchez, 2019).

However, although the Nicaraguan canal project nominally still forms part of China’s Belt and Road
Initiative, China has distanced itself from the project, and construction has been suspended. At the same
time, Panama has effectively doubled the capacity of the Panama Canal by adding a new lane of traffic
so that a larger number of ships can transit the canal at the same time and increasing the width and
depth of the lanes and locks in order to accommodate larger container ships. The new ships, called New
Panamax, are about one and a half times the previous Panamax size and can carry over twice as much
cargo. The expansion was approved by a national referendum in 2006, but because of the 2008 financial
crisis, construction did not actually begin until later, and the expanded facilities were finally completed
in 2016.

In 2006, the Panama Canal Authority (PCA) estimated the cost of the third set of locks at US$5.25
billion. The PCA also estimated that the investment could be recouped thanks to the increased revenues
that the project would yield. Opponents of the project contend that these estimates are based on uncer-
tain projections of maritime trade and world economic trends. Indeed, Former President Jorge Illueca,
former Assistant Administrator of the Panama Canal Commission Fernando Manfredo, shipping consul-
tant Julio Manduley, and industrial entrepreneur George Richa M. have said that the expansion was not
necessary and claimed that the construction of a mega-port on the Pacific side would be sufficient to meet
probable future demand. At the moment, the projections presented to support the financial viability of
the project appear to be grounds for optimism; the delay in the construction works has also substantially
altered the initial financial estimates. External finance for the project was provided by several interna-
tional financial institutions in which the United States Government has a great deal of influence, such as
the Inter-American Development Bank (IDB) and the International Finance Corporation (IFC), as well
as by the Japan Bank of International Cooperation (JBIC) and the European Investment Bank (EIB).

Although it is often argued that China has stepped back from the Nicaragua canal project in response
to Panama’s decision to cut diplomatic ties with Taiwan and to recognize the People’s Republic of China
as the only sovereign Chinese republic (Cheng and Lohman, 2017), Propositions 2-4 offer a more plausible
explanation. Indeed, these propositions suggest several mechanisms that explain the observed behavior of
the parties involved. First, most likely the Panama Canal has very high geopolitical value for the United
States and much more limited geopolitical value for China. For example, some works in International
Relations indicate that powerful countries put special interest in keeping other powerful countries out of
their areas of influence (e.g., Mearsheimer 2003). In terms of our model, this translates into BM

1 − BD
1
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relatively higher than BD
2 , which makes deterrence more likely. Second, the entry cost for Nicaragua-

China was probably very high. Some initial estimates for the Nicaragua Canal were US$ 50 billion
(almost 10 times the cost of the Panama Canal expansion). As we discussed after Proposition 3, a rise
in F makes deterrence more likely. This, however, does not imply that China should have not considered
doing the project. As Proposition 4 shows, even when China knew that, in equilibrium, entry will be
deterred, it was rational to include the Nicaragua Canal in the Belt and Road Initiative, start serious
conversations with the Nicaraguan government about the project, and sign a contract for the concession
of the Nicaraguan Canal Authority to HKND. We interpret these decisions as strategic moves to establish
the credibility of China’s intentions. Ultimately, China did not finance the Nicaragua Canal, but creating
a credible threat was probably useful to influence the expansion of the Panama Canal, a non-negligible
improvement as China is the second most important user of the canal.10

6 Concluding Remarks

We have developed a simple model of strategic deterrence between an incumbent country in which
strategic trade-related infrastructure is located and a potential entrant. An established global power
allied with the incumbent and a rising global power aligned with the entrant strategically influence the
game by making funding available in order to advance their economic and geopolitical interests. Our
main finding is that, even if the entrant is deterred, a geopolitical challenger that credibly commits to
supporting the entrant has a pro-competition economic effect on the market for this type of strategic
transportation service. This effect makes consumers of the transportation service in all regions better
off, reduces the profits of the incumbent, and has no effect on the entrant. The established global power
might be forced to pay out more generous subsidies in order to support the incumbent’s deterrence effort,
but it will not suffer a geopolitical loss. The rising global power will enjoy a larger consumer surplus at
no cost, but it will not secure any geopolitical advantage.

The model used in this paper and the resulting findings are just the tip of the iceberg for a more
ambitious research agenda focusing on the international political economy of strategic trade-related in-
frastructure, in particular, and geopolitics and international trade, more generally. That research should
address questions such as the following: When does rivalry between global powers lead to market re-
strictions that distort international trade flows (e.g., colonial powers and mercantilist policies) and when
does it generate pro-competition economic effects by breaking up monopoly positions or forcing agents
to engage in more competitive behaviors?
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Online Appendix to “Geopolitics and International Trade Infrastruc-

ture”

This appendix presents the proofs of all lemmas and propositions.

A.1 Proof of Proposition 1

Proposition 1 Economic equilibrium. Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7.

1. Suppose that 0 ≤ S2 ≤ S̄b. Then the entry of E is blocked. Specifically, in equilibrium (kI , kE) =
(

a−c
2b , 0

)

and P = a+c
2 .

2. Suppose that S̄b < S2 ≤ S̄.

(a) If S1 > S̄d (S2), then the entry of E is deterred. Specifically, in equilibrium, (kI , kE) =
(

a−c−2
√

b(F−S2)

b , 0

)

and P = c+ 2
√

b (F − S2).

(b) If S1 = S̄d (S2), then there are two equilibria: in one equilibrium the entry of E is de-
terred, while in the other I accommodates the entry of E. Under deterrence (accommodation),
(kI , kE , P ) is as in part a (c).

(c) If S1 < S̄d (S2), then I accommodates the entry of E. Specifically, in equilibrium, (kI , kE) =
(

a−c
2b , a−c

4b

)

and P = a+3c
4 .

Proof. We proceed through backward induction.
Efficient-rationing rule and price competition : According to the efficient-rationing rule, de-

mands are given by:

QI (pE, pI) =







min
{

max
{a−pI

b − kE , 0
}

, kI
}

if pI > pE
min

{

max
{a−p

2b , a−p
b − kE

}

, kI
}

if pE = pI = p

min
{a−pI

b , kI
}

if pI < pE

QE (pE, pI) =







min
{

max
{a−pE

b − kI , 0
}

, kE
}

if pE > pI
min

{

max
{a−p

2b , a−p
b − kI

}

, kE
}

if pE = pI = p

min
{a−pE

b , kE
}

if pE < pI

To see the logic behind the efficient-rationing rule, assume that pE = pI and focus on I (analogous logic ap-
plies to E). Then, demand will be split evenly between both countries at (a− p) /2b, unless E is capacity-
constrained. If so, I will be the only service provider over the excess of demand (a− p) /b− kE . Since I
also needs to consider its own capacity constraint, we have QI (pE, pI) = min

{

max
{a−p

2b , a−p
b − kE

}

, kI
}

.
Next, assume that pE > pI . Then, as consumers try to buy from the low-priced firm first, I’s de-
mand is (a− pI) /b, provided that its capacity constraint (kI) does not bind. Therefore, QI(pE , pI) =
min

{a−pI
b , kI

}

. E obtains the residual demand max
{a−pE

b − kI , 0
}

(if any) after taking into account its

own capacity constraint (kE). Then, QE (pE , pI) = min
{

max
{a−pE

b − kI , 0
}

, kE
}

. A similar reasoning
follows for pE < pI .
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Suppose that I and E have selected capacity levels kI ≥ 0 and kE ≥ 0, respectively. We will prove
that, under proper conditions, it is a Nash equilibrium for I and E to set pI = pE = p∗ = a− b (kI + kE).
To do so, suppose that I sets pI = p∗ = a− b (kI + kE) and recall that E’s demand is given by

If pE > pI , then xE = min

{

max

{

a− pE
b

− kI , 0

}

, kE

}

If pE < pI , then xE = min

{

a− pE
b

, kE

}

If pE = pI = p, then xE = min

{

max

{

a− p

2b
,
a− p

b
− kI

}

, kE

}

Then, E has three possible choices to consider:
1. If E also sets pE = p∗, then E’s demand is given by xE = min {max {(kI + kE) /2, kE} , kE} = kE

and, therefore, E’s revenue is RE (p∗) = p∗kE = [a− b (kI + kE)] kE .
2. If E sets pE < p∗, then E’s demand is given by xE = min {(a− pE) /b, kE} and, therefore, E’s

revenue is RE = pE min {(a− pE) /b, kE}. Since pE < p∗, it must be the case that (a− pE) /b > (kI + kE)
and, hence, RE = pEkE < p∗kE . Thus, E obtains higher revenues of it sets pE = p∗.

3. If E sets pE > p∗, then E’s demand is given by xE = min {max {(a− pE) /b− kI , 0} , kE} and,
therefore, E’s revenue is RE = pE min {max {[(a− pE) /b]− kI , 0} , kE}. Since pE > p∗, it must be
the case that [(a− pE) /b− kI ] < kE and, hence, RE = pE {[(a− pE) /b]− kI}. This implies that E’s
maximum revenue is attained at pE = p̂ = (a− bkI) /2. In order for pE = p̂ not to be a possible deviation,
we need that p̂ ≤ p∗, which holds if and only if kE ≤ (a− bkI) /2b.

Summing up, E’s best response to pI = p∗ = a − b (kI + kE) is to set pE = p∗ if and only if
kE ≤ (a− bkI) /2b. Following the same steps it is easy to prove that I’s best response to pE = p∗ is to
set pI = p∗ if and only if kI ≤ (a− bkE) /2b. For these conditions to hold for every profile of capacity
choices, we impose that

kI ∈
[

0,
a

3b

]

and kE ∈
[

0,
a

3b

]

Capacity. Next we study the capacity choices. Assume that I has selected kI ∈
[

0, a
3b

]

. Then, the
problem of E is given by:

max
kE∈[0, a

3b ]

{

πE = [a− b (kI + kE)− c] kE −
{

F − S2 if kE > 0
0 if kE = 0

}

If E selects kE > 0, its best response is kE = (a− bkI − c) /2b (see parameter restrictions at the end of the

proof to ensure that (a− bkI − c) /2b ≤ a/3b). Thus, E’s profits are πE =
[

(a− bkI − c)2 /4b
]

−(F − S2).

On the contrary, if E selects kE = 0, E’s profits are πE = 0. Thus, E’s best response is given by (see
parameter restrictions at the end of the proof to ensure that k̄d ≤ a/3b):

kE (kI) =

{

0 if k̄d ≤ kI ≤ a
3b

a−bkI−c
2b if 0 ≤ kI < k̄d

, where k̄d =
a− c− 2

√

b (F − S2)

b

Given the reaction function of E, the problem of I is:

max
kI∈[0, a

3b ]

{

πI =

{

πm
I = (a− bkI − c) kI + S1 if kI ≥ k̄d

πs
I =

(

a−bkI−c
2

)

kI if kI < k̄d

}
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Let k̄m = (a− c) /2b be the monopoly capacity level (see parameter restrictions at the end of the proof
to ensure that k̄m ≤ a/3b). It is easy to verify that πs

I is increasing in kI for all kI ∈
[

0, k̄m
)

, decreasing
in kI for all kI ∈

(

k̄m, a/3b
]

and it has a maximum at kI = k̄m. Similarly, πm
I is increasing in kI for all

kI ∈
[

0, k̄m
)

, decreasing in kI for all kI ∈
(

k̄m, a/3b
]

and it has a maximum at kI = k̄m. Thus, to solve
this problem we must consider two possible cases.

Case 1 (blocked entry): Suppose that k̄d ≤ k̄m, which holds if and only if

S2 ≤ S̄b = F − (a− c)2

16b

Then πd
I is increasing in kI for all kI < k̄d and πm

I has a global maximum at kI = k̄m. Since πm
I

(

k̄m
)

≥
πm
I

(

k̄d
)

> πs
I

(

k̄d
)

, πI has a global maximum at kI = k̄m. Summing up, when k̄d ≤ k̄m, the unique
subgame perfect Nash equilibrium outcome is kI = k̄m, kE = 0, the equilibrium price is P = a − bk̄m,

and the equilibrium profits of I and E are πI =
[

(a− c)2 /4b
]

+ S1 and πE = 0, respectively.

Case 2 (deterred or accommodated entry): Suppose that k̄m < k̄d, which holds if and only if

S2 > S̄b = F − (a− c)2

16b

Then, πs
I has a global maximum at kI = k̄m and πm

I is decreasing in kI for all kI ≥ k̄d, which
means that πm

I has a global maximum at kI = k̄d. If I selects kI = k̄m, then it gets πs
I

(

k̄m
)

=
(

a− bk̄m − c
)

k̄m/2. If I selects kI = k̄d, then it gets πm
I

(

k̄d
)

=
(

a− bk̄d − c
)

k̄d+S1. π
m
I

(

k̄d
)

> πs
I

(

k̄m
)

if and only if S1 >
[

(a− c)2 /8b
]

− 2 (a− c)
√

(F − S2) /b + 4 (F − S2), πm
I

(

k̄d
)

= πs
I

(

k̄m
)

when

S1 =
[

(a− c)2 /8b
]

− 2 (a− c)
√

(F − S2) /b + 4 (F − S2), and πm
I

(

k̄d
)

< πs
I

(

k̄m
)

if and only if

S1 <
[

(a− c)2 /8b
]

− 2 (a− c)
√

(F − S2) /b+ 4 (F − S2). Therefore, we have the following cases:

Case 2.a (deterred entry). Suppose that

S1 > S̄d (S2) =
(a− c)2

8b
− 2 (a− c)

√

F − S2

b
+ 4 (F − S2)

Then, the unique subgame perfect Nash equilibrium outcome is kI = k̄d, kE = 0, the
equilibrium price is P = a − bk̄d, and the equilibrium profits of I and E are πI =
{[

2
√

b (F − S2)
] [

a− c− 2
√

b (F − S2)
]

/b
}

+ S1 and πE = 0, respectively.

Case 2.b (deterred or accommodated entry). Suppose that

S1 = S̄d (S2) =
(a− c)2

8b
− 2 (a− c)

√

F − S2

b
+ 4 (F − S2)

Then, there are two subgame perfect Nash equilibrium outcomes: the equilibrium described in case 2.a
and the equilibrium described in case 2.c.

Case 2.c (accommodated entry): Suppose that

S1 < S̄d (S2) =
(a− c)2

8b
− 2 (a− c)

√

F − S2

b
+ 4 (F − S2)
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Then, the unique subgame perfect Nash equilibrium outcome kI = k̄m, kE = (a− c) /4b, the equi-
librium price is P = (a+ 3c) /4, and the equilibrium profits of I and E are πI = (a− c)2 /8b and

πE =
[

(a− c)2 /16b
]

− (F − S2), respectively.

Parameter restrictions and characterization of S̄d (S2): To ensure that, if E selects kE > 0,
then its best response is kE = (a− bkI − c) /2b ≤ a/3b, we need to impose that a ≤ 3c. To ensure that

k̄d ≤ a/3b we need to impose that S2 ≤ S̄ = F −
[

(2a− 3c)2 /36b
]

. Moreover, note that S̄b ≤ S̄ if and

only if 9c/7 ≤ a ≤ 3c. Finally, k̄m ≤ a/3b if and only if a ≤ 3c.
It is possible to further characterize the equilibrium for S̄b < S2 ≤ S̄. In particular, note that:

• S̄d is a continuous function of S2 for all S̄b ≤ S2 ≤ S̄.

• S̄d
(

S̄b
)

= − (a− c)2 /8b < 0.

• dS̄d (S2) /dS2 =
[

(a− c) /
√

(F − S2) b
]

− 4 > 0 if and only if S2 > S̄b. Thus, S̄d (S2) is strictly

increasing in S2 for all S̄b ≤ S2 ≤ S̄.

• d2S̄d (S2) / (dS2)
2 = (a− c) /2b1/2 (F − S2)

3/2 > 0. Thus, S̄d (S2) is strictly convex in S2 for all
S̄b ≤ S2 ≤ S̄.

• S̄d
(

S̄
)

=
(

−7a2 + 6ac+ 9c2
)

/72b > 0, which holds provided that a <
(

6
√
2 + 3

)

c/7 ≈ 1.64c.

Therefore, there exists S̄d
0 ∈

(

S̄b, S̄
)

such that S̄d (S2) < 0 for all S2 ∈
[

S̄b, S̄d
0

)

, S̄d
(

S̄d
0

)

= 0, and
S̄d (S2) > 0 for all S2 ∈

(

S̄d
0 , S̄

]

. Moreover, S̄d (S2) has a continuous inverse and, hence, S1 = S̄d (S2) if

and only if S2 =
(

S̄d
)−1

(S1).
Summary of equilibrium outcomes:
If 0 ≤ S2 ≤ S̄b, then entry is blocked.

If S̄b < S2 <
(

S̄d
)−1

(S1), then entry is deterred.

If S2 =
(

S̄d
)−1

(S1), then entry is either deterred or accommodated.

If
(

S̄d
)−1

(S1) < S2 ≤ S̄ entry is accommodated. �

A.2 Proof of Propositions 2 and 3

We begin proving two lemmas that help us characterize the geopolitical trade-off faced by each global
power. Then, we prove a general version of Proposition 2. Finally, Propositions 2 and 3 in the text are
derived as corollaries of Proposition 2 (general version).

Lemma 1 Geopolitical trade-off for G1. Suppose that A1b < 2
(√

2− 1
)

.

1. If BM
1 −BD

1 < A1∆
(

S̄d
0

)

, then BM
1 −BD

1 < A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

.

2. If A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

, then there exists a unique S̃1 ∈
[

0, S̄d
(

S̄
)]

such that

BM
1 −BD

1 > A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̃1

)

, BM
1 −BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1,

and BM
1 −BD

1 < A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
(

S̃1, S̄
d
(

S̄
)

]

.
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3. If BM
1 −BD

1 > A1∆
(

S̄
)

+S̄d
(

S̄
)

, then BM
1 −BD

1 > A1∆
(

(

S̄d
)−1

(S1)
)

+S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

.

Proof : Define

∆W1 (S1) = BM
1 −BD

1 −A1∆

(

(

S̄d
)−1

(S1)

)

− S1,

where ∆ (S) = 9(a−c)2

32 −
[

a−c−2
√

b(F−S)
]2

2 and
(

S̄d
)−1

is the inverse of S̄d (S) = (a−c)2

8b −2 (a− c)
√

F−S
b +

4 (F − S). ∆W1 (S1) is continuously differentiable for all S1 ∈
[

0, S̄d
(

S̄
)]

. Take the derivative of
∆W1 (S1) with respect to S1:

∂∆W1 (S1)

∂S1
= −A1





∂∆
(

(

S̄d
)−1

(S1)
)

∂
(

S̄d
)−1

(S1)





[

∂
(

S̄d
)−1

(S1)

∂S1

]

− 1

where

∂∆
(

(

S̄d
)−1

(S1)
)

∂
(

S̄d
)−1

(S1)
= −

[

a− c− 2

√

b
(

F −
(

S̄d
)−1

(S1)
)

]√
b

√

F −
(

S̄d
)−1

(S1)

Due to the implicit function theorem,

d
(

S̄d
)−1

(S1)

dS1
=





dS̄d
(

(

S̄d
)−1

(S1)
)

dS1





−1

=









a− c
√

b
(

F −
(

S̄d
)−1

(S1)
)

− 4









−1

It is easy to verify that ∂∆W1 (S1) /∂S1 < 0 if and only if
(

S̄d
)−1

(S1) > S′
2 = F −

[

(

1−A1b
)2

(a− c)2 /4
(

2−A1b
)2

b
]

. Thus, ∂∆W1 (S1) /∂S1 < 0 if and only if S1 > S̄d (S′
2). Note

that S̄d (S′
2) < 0 if and only if A1b < 2

(√
2− 1

)

≈ 0.828, which we assume holds. Therefore,
∂∆W1 (S1) /∂S1 < 0 for all S1 ≥ 0, which implies that ∆W1 (S1) is an strictly decreasing function
of S1 for all S1 ∈

[

0, S̄d
(

S̄
)]

. Since ∆W1 (S1) is a continuous and strictly decreasing function of S1 for
all S1 ∈

[

0, S̄d
(

S̄
)]

, there are three possible cases to consider:
Case 1 : Suppose that ∆W1 (0) < 0 or, which is equivalent, BM

1 −BD
1 < A1∆

(

S̄d
0

)

. Then, BM
1 −BD

1 <

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

.

Case 2 : Suppose that ∆W1

(

S̄d
(

S̄
))

≤ 0 ≤ ∆W1 (0) or, which is equivalent, A1∆
(

S̄d
0

)

≤
BM

1 − BD
1 ≤ A1∆

(

S̄
)

+ S̄d
(

S̄
)

. Then, there exists a unique S̃1 ∈
[

0, S̄d
(

S̄
)]

such that BM
1 − BD

1 >

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̃1

)

, BM
1 − BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1, and BM
1 − BD

1 <

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
(

S̃1, S̄
d
(

S̄
)

]

.

Case 3 : Suppose that ∆W1

(

S̄d
(

S̄
))

> 0 or, which is equivalent, BM
1 − BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

.

Then, BM
1 −BD

1 > A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. �

Lemma 2 Geopolitical trade-off for G2.
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1. If BD
2 ≤ S̄d

0 −A2∆
(

S̄d
0

)

, then BD
2 < S2 −A2∆(S2) for all S2 ∈

(

S̄d
0 , S̄

]

.

2. If S̄d
0 − A2∆

(

S̄d
0

)

< BD
2 ≤ S̄ − A2∆

(

S̄
)

, then, there exists a unique S̃2 ∈
(

S̄d
0 , S̄

]

such that

BD
2 > S2 − A2∆(S2) for all S2 ∈

[

S̄d
0 , S̃2

)

, BD
2 = S̃2 − A2∆

(

S̃2

)

, and BD
2 < S2 − A2∆(S2) for

all S2 ∈
(

S̃2, S̄
]

.

3. If BD
2 > S̄ −A2∆

(

S̄
)

, then BD
2 > S2 −A2∆(S2) for all S2 ∈

[

S̄d
0 , S̄

]

.

Proof : Define
∆W2 (S2) = BD

2 +A2∆(S2)− S2,

where ∆ (S2) =
9(a−c)2

32 −
[

a−c−2
√

b(F−S2)
]2

2 . Note that ∆W2 (S2) is a continuous and strictly decreasing
function of S2 for all S2 ∈

[

S̄d
0 , S̄

]

. Thus, that there are three possible cases to consider.
Case 1 : Suppose that ∆W2

(

S̄d
0

)

≤ 0 or, which is equivalent, BD
2 ≤ S̄d

0 − A2∆
(

S̄d
0

)

. Then, BD
2 <

S2 −A2∆(S2) for all S2 ∈
(

S̄d
0 , S̄

]

.
Case 2 : Suppose that ∆W2

(

S̄
)

≤ 0 < ∆W2

(

S̄d
0

)

or, which is equivalent, S̄d
0 − A2∆

(

S̄d
0

)

< BD
2 ≤

S̄−A2∆
(

S̄
)

. Then, there exists a unique S̃2 ∈
(

S̄d
0 , S̄

]

such that BD
2 > S2−A2∆(S2) for all S2 ∈

[

S̄d
0 , S̃2

)

,

BD
2 = S̃2 −A2∆

(

S̃2

)

, and BD
2 < S2 −A2∆(S2) for all S2 ∈

(

S̃2, S̄
]

.

Case 3 : Suppose that ∆W2

(

S̄
)

> 0 or, which is equivalent, BD
2 > S̄ − A2∆

(

S̄
)

. Then, BD
2 >

S2 −A2∆(S2) for all S2 ∈
[

S̄d
0 , S̄

]

. �

Proposition 2 (General version). Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7 and A1b < 2
(√

2− 1
)

.
Let

∆(S) =
9 (a− c)2

32
−

[

a− c− 2
√

b (F − S)
]2

2

1. Suppose that BD
2 ≤ S̄d

0 −A2∆
(

S̄d
0

)

. Then, the set of equilibrium subsidies is given by S1 = S̄d (S2)
with:

S2 = S̄d
0 if BM

1 −BD
1 < A1∆

(

S̄d
0

)

S2 ∈
[

S̄d
0 ,
(

S̄d
)−1

(

S̃1

)]

if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

S2 ∈
[

S̄d
0 , S̄

]

if BM
1 −BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

Moreover, in all these equilibria entry is deterred.

2. Suppose that S̄d
0 −A2∆

(

S̄d
0

)

< BD
2 ≤ S̄ −A2∆

(

S̄
)

. Then, the set of equilibrium subsidies is given
by S1 = S̄d (S2) with:

S2 ∈
[

S̄d
0 , S̃2

)

if BM
1 −BD

1 < A1∆
(

S̄d
0

)

S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

and S̃1 < S̄d
(

S̃2

)

S2 ∈
[

S̃2,
(

S̄d
)−1

(

S̃1

)]

if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

and S̃1 ≥ S̄d
(

S̃2

)

S2 ∈
[

S̃2, S̄
]

if BM
1 −BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

27



where S̃1 ∈
[

0, S̄d
(

S̄
)]

is the unique solution to BM
1 − BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1 and S̃2 ∈
(

S̄d
0 , S̄

]

is the unique solution to BD
2 = S̃2−A2∆

(

S̃2

)

. Moreover, in all the equilibria in which S2 ∈
[

S̃2, S̄
]

entry is deterred, while in all the equilibria in which S2 ∈
[

S̄d
0 , S̃2

)

there is accommodated

entry.

3. Suppose that BD
2 > S̄ − A2∆

(

S̄
)

. Then, the set of equilibrium subsidies is given by S1 = S̄d (S2)
with:

S2 ∈
[

S̄d
0 , S̄

]

if BM
1 −BD

1 < A1∆
(

S̄d
0

)

S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̄
]

if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

S2 = S̄ if BM
1 −BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

Moreover, in all these equilibria entry is accommodated.

Proof :
Payoff functions: The consumer surplus of country j as a function of the price is CSj (P ) =

Aj (a− P )2 /2. Thus, employing Proposition 1, the consumer surplus of each country as a function of
(S1, S2) is given by:

CSj (S1, S2) = Aj











































(a−c)2

8 if 0 ≤ S2 ≤ S̄b
[

a−c−2
√

b(F−S2)
]2

2 if S̄b < S2 < S̄d
0

[

a−c−2
√

b(F−S2)
]2

2 if S̄d
0 ≤ S2 <

(

S̄d
)−1

(S1)
[

a−c−2
√

b(F−S2)
]2

2 or 9(a−c)2

32 if S̄d
0 ≤ S2 =

(

S̄d
)−1

(S1)
9(a−c)2

32 if S̄d
0 ≤

(

S̄d
)−1

(S1) < S2 ≤ S̄

Once again, employing Proposition 1, the geopolitical payoff of each global power as a function of (S1, S2)
is given by:

B1 (S1, S2) =



























BM
1 − S1 if 0 ≤ S2 ≤ S̄b

BM
1 − S1 if S̄b < S2 < S̄d

0

BM
1 − S1 if S̄d

0 ≤ S2 <
(

S̄d
)−1

(S1)

BM
1 − S1 or BD

1 if S̄d
0 ≤ S2 =

(

S̄d
)−1

(S1)

BD
1 if S̄d

0 ≤
(

S̄d
)−1

(S1) < S2 ≤ S̄

B2 (S1, S2) =



























0 if 0 ≤ S2 ≤ S̄b

0 if S̄b < S2 < S̄d
0

0 if S̄d
0 ≤ S2 <

(

S̄d
)−1

(S1)

BD
2 − S2 or 0 if S̄d

0 ≤ S2 =
(

S̄d
)−1

(S1)

BD
2 − S2 if S̄d

0 ≤
(

S̄d
)−1

(S1) < S2 ≤ S̄

Finally, the payoff function of each global power as a function of (S1, S2) is given by:

Wj (S1, S2) = CSj (S1, S2) +Bj (S1, S2)
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Selection criterion : From Proposition 1.2.b, if S1 = S̄d (S2), deterrence and accommodation are
both subgame perfect Nash equilibria. In such a case, the equilibrium with accommodation is selected
when it strictly dominates the equilibrium with deterrence for G2. Otherwise, the economic equilibrium
with deterrence is selected. Thus,

W2

(

S1,
(

S̄d
)−1

(S1)

)

= max











A2

[

a−c−2

√

b
(

F−(S̄d)
−1

(S1)
)

]2

2 ,
A29(a−c)2

32 +BD
2 −

(

S̄d
)−1

(S1)











Best response correspondence of G2: Employing the above selection criterion, the payoff function
of G2 as a function of (S1, S2) is given by:

W2 (S1, S2) =



























































A2(a−c)2

8 if 0 ≤ S2 ≤ S̄b

A2
[

a−c−2
√

b(F−S2)
]2

2 if S̄b < S2 < S̄d
0

A2
[

a−c−2
√

b(F−S2)
]2

2 if S̄d
0 ≤ S2 <

(

S̄d
)−1

(S1)

max











A2

[

a−c−2

√

b
(

F−(S̄d)
−1

(S1)
)

]2

2 ,
A29(a−c)2

32 +BD
2 −

(

S̄d
)−1

(S1)











if S2 =
(

S̄d
)−1

(S1)

A29(a−c)2

32 +BD
2 − S2 if

(

S̄d
)−1

(S1) < S2 ≤ S̄

W2 (S1, S2) is a constant for all S2 ∈
[

0, S̄b
]

, it is strictly increasing in S2 for all S2 ∈
[

S̄b,
(

S̄d
)−1

(S1)
)

,

and it is strictly decreasing in S2 for all S2 ∈
(

(

S̄d
)−1

(S1) , S̄
]

. This does not immediately imply that

W2 (S1, S2) has its unique global maximum at S2 =
(

S̄d
)−1

(S1). The reason is that W2 (S1, S2) might

not be continuous at S2 =
(

S̄d
)−1

(S1).
11 However, note that W2

(

S1,
(

S̄d
)−1

(S1)
)

adopts the maximum

between the left and right limits of the function at S2 =
(

S̄d
)−1

(S1) and both of these limits exist.

Therefore, it is always the case that W2 (S1, S2) adopts its unique global maximum at S2 =
(

S̄d
)−1

(S1).
Thus, the best response correspondence of G2 is given by:

S2 =
(

S̄d
)−1

(S1) for all S1 ∈
[

0, S̄d
(

S̄
)

]

Economic equilibrium selection under S2 =
(

S̄d
)−1

(S1): To determine if S2 =
(

S̄d
)−1

(S1) leads

to deterrence or accommodated entry, we must study W2

(

S1,
(

S̄d
)−1

(S1)
)

. Note that

W2

(

S1,
(

S̄d
)−1

(S1)

)

=















A2

[

a−c−2

√

b
(

F−(S̄d)
−1

(S1)
)

]2

2 if ∆W2

(

(

S̄d
)−1

(S1)
)

≤ 0

A29(a−c)2

32 +BD
2 −

(

S̄d
)−1

(S1) if ∆W2

(

(

S̄d
)−1

(S1)
)

> 0

11W2 (S1, S2) is always a continuous function of S2 for all S2 ∈

[

0,
(

S̄d
)

−1
(S1)

)

and S2 ∈

(

(

S̄d
)

−1
(S1) , S̄

]

. In particular,

it is continuous at S2 = S̄b.
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where ∆W2 (S2) = BD
2 +A2∆(S2)−S2. Employing Lemma 2, there are three possible cases to consider.

Case 1 : Suppose that BD
2 ≤ S̄d

0 − A2∆
(

S̄d
0

)

. Then, BD
2 < S2 − A2∆(S2) for all S2 ∈

(

S̄d
0 , S̄

]

.

Therefore, W2

(

S1,
(

S̄d
)−1

(S1)
)

= A2

[

a− c− 2

√

b
(

F −
(

S̄d
)−1

(S1)
)

]2

/2 for all S1 ∈
[

0, S̄d
(

S̄
)]

.

That is, S2 =
(

S̄d
)−1

(S1) leads to deterrence.

Case 2 : Suppose that S̄d
0−A2∆

(

S̄d
0

)

< BD
2 ≤ S̄−A2∆

(

S̄
)

. Then, there exists a unique S̃2 ∈
(

S̄d
0 , S̄

]

such that BD
2 > S2 − A2∆(S2) for all S2 ∈

[

S̄d
0 , S̃2

)

, BD
2 = S̃2 − A2∆

(

S̃2

)

, and BD
2 < S2 − A2∆(S2)

for all S2 ∈
(

S̃2, S̄
]

. Therefore,

W2

(

S1,
(

S̄d
)−1

(S1)

)

=















A29(a−c)2

32 +BD
2 −

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

S̃2

)

A2

[

a−c−2

√

b
(

F−(S̄d)
−1

(S1)
)

]2

2 if S̄d
(

S̃2

)

≤ S1 ≤ S̄d
(

S̄
)

That is, S2 =
(

S̄d
)−1

(S1) leads to accommodated entry when S1 < S̄d
(

S̃2

)

and to deterrence when

S1 ≥ S̄d
(

S̃2

)

.

Case 3 : Suppose that BD
2 > S̄−A2∆

(

S̄
)

. Then, BD
2 > S2−A2∆(S2) for all S2 ∈

[

S̄d
0 , S̄

]

. Therefore,

W2

(

S1,
(

S̄d
)−1

(S1)
)

= A29(a−c)2

32 +BD
2 −

(

S̄d
)−1

(S1) for all S1 ∈
[

0, S̄d
(

S̄
)]

. That is, S2 =
(

S̄d
)−1

(S1)

leads to accommodated entry.
Best response correspondence of G1. The payoff function of G1 as a function of (S1, S2) is given

by:

W1 (S1, S2) =











































A1(a−c)2

8 +BM
1 − S1 if 0 ≤ S2 ≤ S̄b

A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S̄b < S2 < S̄d

0

A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S̄d

0 ≤ S2 ≤ S̄ and S1 > S̄d (S2)

A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 or A19(a−c)2

32 +BD
1 if S̄d

0 ≤ S2 ≤ S̄ and S1 = S̄d (S2)
A19(a−c)2

32 +BD
1 if S̄d

0 ≤ S2 ≤ S̄ and S1 < S̄d (S2)

If 0 ≤ S2 ≤ S̄b, then, W1 (S1, S2) =
[

A1 (a− c)2 /8
]

+ BM
1 − S1, which is strictly decreasing in

S1. Thus, the best response to 0 ≤ S2 ≤ S̄b is always S1 = 0. Similarly, if S̄b < S2 < S̄d
0 , then

W1 (S1, S2) = A1
[

a− c− 2
√

b (F − S2)
]2

/2 + BM
1 − S1, which is strictly decreasing in S1. Thus, the

best response to S̄b < S2 < S̄d
0 is always S1 = 0.

If S̄d
0 ≤ S2 ≤ S̄, there are three possible cases to consider and for each case, we have three possible

subcases.
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Case 1 : Suppose that BD
2 ≤ S̄d

0 −A2∆
(

S̄d
0

)

. Then:

W1 (S1, S2) =



















A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S1 > S̄d (S2)

A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S̄d (S2) if S1 = S̄d (S2)

A19(a−c)2

32 +BD
1 if S1 < S̄d (S2)

W1 (S1, S2) adopts its maximum at S1 = S̄d (S2) if and only if BM
1 −BD

1 ≥ A1∆(S2) + S̄d (S2), while it
adopts its maximum at S1 ∈

[

0, S̄d (S2)
)

if and only if BM
1 −BD

1 ≤ A1∆(S2)+ S̄d (S2). Thus, employing
Lemma 1, we must consider three possible subcases:

Case 1.a : Suppose that BM
1 − BD

1 < A1∆
(

S̄d
0

)

. Then, from Lemma 1 BM
1 − BD

1 <

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. Therefore, the best response correspondence of G1

is given by:

S1 =

{

0 if 0 ≤ S2 ≤ S̄d
0

[

0, S̄d (S2)
)

if S̄d
0 < S2 ≤ S̄

Case 1.b: Suppose that A1∆
(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, from Lemma 1, there

exists a unique S̃1 ∈
[

0, S̄d
(

S̄
)]

such that BM
1 − BD

1 > A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̃1

)

,

BM
1 −BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+S̃1, and BM
1 −BD

1 < A1∆
(

(

S̄d
)−1

(S1)
)

+S1 for all S1 ∈
(

S̃1, S̄
d
(

S̄
)

]

.

Therefore, the best response correspondence of G1 is given by:

S1 =















0 if 0 ≤ S2 ≤ S̄d
0

S̄d (S2) if S̄d
0 < S2 ≤

(

S̄d
)−1

(

S̃1

)

[

0, S̄d (S2)
)

if
(

S̄d
)−1

(

S̃1

)

≤ S2 ≤ S̄

Case 1.c: Suppose that BM
1 − BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, from Lemma 1, BM
1 − BD

1 >

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. Therefore, the best response correspondence of G1 is

given by:

S1 =

{

0 if 0 ≤ S2 ≤ S̄d
0

S̄d (S2) if S̄d
0 < S2 ≤ S̄

Case 2 : Suppose that S̄d
0 −A2∆

(

S̄d
0

)

< BD
2 ≤ S̄ −A2∆

(

S̄
)

. Then:

W1 (S1, S2) =































A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S1 > S̄d (S2)

A19(a−c)2

32 +BD
1 if S1 = S̄d (S2) and S2 < S̃2

A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S̄d (S2) if S1 = S̄d (S2) and S2 ≥ S̃2

A19(a−c)2

32 +BD
1 if S1 < S̄d (S2)

If S2 < S̃2, W1 (S1, S2) adopts its maximum at S1 ∈
[

0, S̄d (S2)
]

if and only if BM
1 − BD

1 ≤ A1∆(S2) +

S̄d (S2). Otherwise, there is no S1 ∈
[

0, S̄d
(

S̄
)]

that maximizes W1 (S1, S2). If S2 ≥ S̃2, W1 (S1, S2)
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adopts its maximum at S1 = S̄d (S2) if and only if BM
1 − BD

1 ≥ A1∆(S2) + S̄d (S2), while it adopts its
maximum at S1 ∈

[

0, S̄d (S2)
)

if and only if BM
1 −BD

1 ≤ A1∆(S2)+ S̄d (S2). Therefore, the best response
correspondence of G1 is given by:

S1 =















0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̃2 and BM

1 −BD
1 ≤ A1∆(S2) + S̄d (S2)

S̄d (S2) if S̃2 ≤ S2 ≤ S̄ and BM
1 −BD

1 ≥ A1∆(S2) + S̄d (S2)
[

0, S̄d (S2)
)

if S̃2 ≤ S2 ≤ S̄ and BM
1 −BD

1 ≤ A1∆(S2) + S̄d (S2)

Thus, employing Lemma 1, we must consider three possible subcases:
Case 2.a : Suppose that BM

1 − BD
1 < A1∆

(

S̄d
0

)

. Then, from Lemma 1 BM
1 − BD

1 <

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. Therefore, the best response correspondence of G1

is given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̃2

[

0, S̄d (S2)
)

if S̃2 ≤ S2 ≤ S̄

Case 2.b: Suppose that A1∆
(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, from Lemma 1, there

exists a unique S̃1 ∈
[

0, S̄d
(

S̄
)]

such that BM
1 − BD

1 > A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̃1

)

,

BM
1 −BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+S̃1, and BM
1 −BD

1 < A1∆
(

(

S̄d
)−1

(S1)
)

+S1 for all S1 ∈
(

S̃1, S̄
d
(

S̄
)

]

.

Therefore, the best response correspondence of G1 is given by:

S1 =



























0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 < S̃2

S̄d (S2) if S̃2 ≤ S2 ≤
(

S̄d
)−1

(

S̃1

)

[

0, S̄d (S2)
)

if max
{

S̃2,
(

S̄d
)−1

(

S̃1

)}

≤ S2 ≤ S̄

Case 2.c: Suppose that BM
1 − BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, from Lemma 1, BM
1 − BD

1 >

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. Therefore, the best response correspondence of G1 is

given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

S̄d (S2) if S̃2 ≤ S2 ≤ S̄

Case 3 : Suppose that BD
2 > S̄ −A2∆

(

S̄
)

. Then:

W1 (S1, S2) =















A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S1 > S̄d (S2)

A19(a−c)2

32 +BD
1 if S1 = S̄d (S2)

A19(a−c)2

32 +BD
1 if S1 < S̄d (S2)

If S̄d
0 ≤ S2 < S̄, W1 (S1, S2) adopts its maximum at S1 ∈

[

0, S̄d (S2)
]

if and only if BM
1 − BD

1 ≤
A1∆(S2) + S̄d (S2). Otherwise, there is no S1 ∈

[

0, S̄d
(

S̄
)]

that maximizes W1 (S1, S2). If S2 = S̄, then

32



W1 (S1, S2) adopts its maximum at S1 ∈
[

0, S̄d (S2)
]

. Therefore, the best response correspondence of G1

is given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̄ and BM

1 −BD
1 ≤ A1∆(S2) + S̄d (S2)

[

0, S̄d
(

S̄
)]

if S2 = S̄

Thus, employing Lemma 1, we must consider three possible subcases:
Case 3.a : Suppose that BM

1 − BD
1 < A1∆

(

S̄d
0

)

. Then, from Lemma 1 BM
1 − BD

1 <

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. Therefore, the best response correspondence of G1

is given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 ≤ S̄

Case 3.b: Suppose that A1∆
(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, from Lemma 1, there

exists a unique S̃1 ∈
[

0, S̄d
(

S̄
)]

such that BM
1 − BD

1 > A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̃1

)

,

BM
1 −BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+S̃1, and BM
1 −BD

1 < A1∆
(

(

S̄d
)−1

(S1)
)

+S1 for all S1 ∈
(

S̃1, S̄
d
(

S̄
)

]

.

Therefore, the best response correspondence of G1 is given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 ≤ S̄

Case 3.c: Suppose that BM
1 − BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, from Lemma 1, BM
1 − BD

1 >

A1∆
(

(

S̄d
)−1

(S1)
)

+ S1 for all S1 ∈
[

0, S̄d
(

S̄
)]

. Therefore, the best response correspondence of G1 is

given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

[

0, S̄d
(

S̄
)]

if S2 = S̄

Nash equilibrium : We must consider three possible cases and for each case, we have three possible
subcases.

Case 1 : Suppose that BD
2 ≤ S̄d

0 −A2∆
(

S̄d
0

)

.
Case 1.a : Suppose that BM

1 −BD
1 < A1∆

(

S̄d
0

)

. Then, best response correspondences are given by:

S1 =

{

0 if 0 ≤ S2 ≤ S̄d
0

[

0, S̄d (S2)
)

if S̄d
0 < S2 ≤ S̄

and S2 =
(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = 0 and S2 = S̄d
0

Moreover, in this equilibrium entry is deterred.
Case 1.b: Suppose that A1∆

(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, best response corre-
spondences are given by:

S1 =















0 if 0 ≤ S2 ≤ S̄d
0

S̄d (S2) if S̄d
0 < S2 ≤

(

S̄d
)−1

(

S̃1

)

[

0, S̄d (S2)
)

if
(

S̄d
)−1

(

S̃1

)

≤ S2 ≤ S̄

and S2 =
(

S̄d
)−1

(S1)
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Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̄d
0 ,
(

S̄d
)−1 (

S̃1

)

]

Moreover, in all these equilibria entry is deterred.
Case 1.c: Suppose that BM

1 − BD
1 > A1∆

(

S̄
)

+ S̄d
(

S̄
)

. Then, best response correspondences are
given by:

S1 =

{

0 if 0 ≤ S2 ≤ S̄d
0

S̄d (S2) if S̄d
0 < S2 ≤ S̄

and S2 =
(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̄d
0 , S̄

]

Moreover, in all these equilibria entry is deterred.
Case 2 : Suppose S̄d

0 −A2∆
(

S̄d
0

)

< BD
2 ≤ S̄ −A2∆

(

S̄
)

.
Case 2.a : Suppose that BM

1 −BD
1 < A1∆

(

S̄d
0

)

. Then, best response correspondences are given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̃2

[

0, S̄d (S2)
)

if S̃2 ≤ S2 ≤ S̄

and S2 =
(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̄d
0 , S̃2

)

Moreover, in all these equilibria entry is accommodated.
Case 2.b: Suppose that A1∆

(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, best response corre-
spondences are given by:

S1 =



























0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 < S̃2

S̄d (S2) if S̃2 ≤ S2 ≤
(

S̄d
)−1

(

S̃1

)

[

0, S̄d (S2)
)

if max
{

S̃2,
(

S̄d
)−1

(

S̃1

)}

≤ S2 ≤ S̄

and S2 =
(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

[S1 = S̄d (S2) and S2 ∈
[

(

S̄d
)−1 (

S̃1

)

, S̃2

)

] when S̃1 < S̄d
(

S̃2

)

[S1 = S̄d (S2) and S2 ∈
[

S̃2,
(

S̄d
)−1 (

S̃1

)

]

] when S̃1 ≥ S̄d
(

S̃2

)

Moreover, in all the equilibria in which S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

, entry is accommodated, while in the

equilibria in which S2 ∈
[

S̃2,
(

S̄d
)−1

(

S̃1

)]

entry is deterred.

34



Case 2.c: Suppose that BM
1 − BD

1 > A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, best response correspondences are
given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

S̄d (S2) if S̃2 ≤ S2 ≤ S̄
and S2 =

(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̃2, S̄
]

Moreover, in all these equilibria entry is deterred.
Case 3 : Suppose that BD

2 > S̄ −A2∆
(

S̄
)

.
Case 3.a : Suppose that BM

1 −BD
1 < A1∆

(

S̄d
0

)

. Then, best response correspondences are given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 ≤ S̄

and S2 =
(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̄d
0 , S̄

]

Moreover, in all these equilibria entry is accommodated.
Case 3.b: Suppose that A1∆

(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

S̄
)

+ S̄d
(

S̄
)

. Then, best response corre-
spondences are given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 ≤ S̄
and S2 =

(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

[S1 = S̄d (S2) and S2 ∈
[

(

S̄d
)−1 (

S̃1

)

, S̄

]

Moreover, in all these equilibria entry is accommodated.
Case 3.c: Suppose that BM

1 − BD
1 > A1∆

(

S̄
)

+ S̄d
(

S̄
)

. Then, best response correspondences are
given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

[

0, S̄d
(

S̄
)]

if S2 = S̄
and S2 =

(

S̄d
)−1

(S1)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d
(

S̄
)

and S2 = S̄

Moreover, in this equilibrium entry is accommodated. This completes the proof of Proposition 2 (general
version). �

Proposition 2 in the text is an immediate corollary of Proposition 2.2 (general version), Lemma 1, and

Lemma 2. In particular, Lemma 1 implies that S1 ∈
[

0, S̃1

]

if and only BM
1 −BD

1 ≥ A1∆
(

(

S̄d
)−1

(S1)
)

+
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S1, while S1 ∈
[

S̃1, S̄
d
(

S̄
)

]

if and only if BM
1 −BD

1 < A1∆
(

(

S̄d
)−1

(S1)
)

+S1; and Lemma 2 implies that

S2 ∈
[

S̄d
0 , S̃2

)

if and only if BD
2 < S2−A2∆(S2), while S2 ∈

[

S̃2, S̄
]

if and only if BD
2 ≥ S2−A2∆(S2)).

Proposition 3 Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7, A1b < 2
(√

2− 1
)

, BD
2 ∈

(

S̄d
0 −A2∆

(

S̄d
0

)

, S̄ −A2∆
(

S̄
)]

and BM
1 − BD

1 ∈
[

A1∆
(

S̄d
0

)

, A1∆
(

S̄
)

+ S̄d
(

S̄
)]

. Let S̃1 ∈
(

0, S̄d
(

S̄
)]

and S̃2 ∈
(

S̄d
0 , S̄

]

be the unique solution to:

BM
1 −BD

1 = A1∆

(

(

S̄d
)−1 (

S̃1

)

)

+ S̃1

BD
2 = −A2∆

(

S̃2

)

+ S̃2

1. If S̃1 ≥ S̄d
(

S̃2

)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d (S2) and

S2 ∈
[

S̃2,
(

S̄d
)−1

(

S̃1

)]

. Moreover, in all these equilibria entry is deterred.

2. If S̃1 < S̄d
(

S̃2

)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d (S2) and

S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

. Moreover, in all these equilibria there is accommodated entry.

3. S̃1 ( S̃2) is strictly increasing in BM
1 −BD

1 (BD
2 ); S̃1 and S̃2 are both strictly increasing in F ; and

the effect of c ( a) on S̃1 and S̃2 is ambiguous.

Proof :
Nash equilibrium : Parts 1 and 2 are immediate from Proposition 2.2 (general version), Lemma 1

and Lemma 2.
Comparative statics with respect to BM

1 −BD
1 and BD

2 : S̃1 and S̃2 are given by:

BM
1 −BD

1 = A1∆

(

(

S̄d
)−1 (

S̃1

)

)

+ S̃1

BD
2 = S̃2 −A2∆

(

S̃2

)

Employing the implicit function theorem we have:

∂S̃1

∂
(

BM
1 −BD

1

) =









A1
∂∆

(

(

S̄d
)−1

(

S̃1

))

∂
(

S̄d
)−1

(

S̃1

)









∂
(

(

S̄d
)−1

(

S̃1

))

∂S̃1



+ 1







−1

∂S̃2

∂BD
2

=
1

1−A2

[

∂∆(S̃2)
∂S̃2

] > 0

We have already proved that ∂∆W1(S1)
∂S1

= −
{

A1

[

∂∆
(

(S̄d)
−1

(S1)
)

∂(S̄d)
−1

(S1)

]

[

∂(S̄d)
−1

(S1)

∂S1

]

+ 1

}

< 0 for all S1 ∈
[

0, S̄d
(

S̄
)]

(see the proof of Lemma 1). Therefore, ∂S̃1

∂(BM

1 −BD

1 )
> 0. We have already proved that

∂∆W1(S2)
∂S2

= 1−A2

[

∂∆(S̃2)
∂S̃2

]

> 0 for all S2 ∈
[

S̄d
0 , S̄

]

(see the proof of Lemma 2). Therefore, ∂S̃2

∂BD

2
> 0.
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Comparative statics with respect to F : To make calculations easier, define S̃1 = S̄d
(

Š2, F
)

.
Then:

BM
1 −BD

1 = A1∆
(

Š2, F
)

+ S̄d
(

Š2, F
)

BD
2 = S̃2 −A2∆

(

S̃2, F
)

where

∆
(

Š2, F
)

=
9 (a− c)2

32
−

[

a− c− 2
√

b
(

F − Š2

)

]2

2

S̄d
(

Š2, F
)

=
(a− c)2

8b
− 2

√

F − Š2

b

[

a− c− 2
√

b
(

F − Š2

)

]

Employing the implicit function theorem we have:
[

A1 ∂∆
(

Š2, F
)

∂Š2

+
∂S̄d

(

Š2, F
)

∂Š2

]

dŠ2 +

[

A1∂∆
(

Š2, F
)

∂F
+

∂S̄d
(

Š2, F
)

∂F

]

dF = 0



1−
A2∂∆

(

S̃2, F
)

∂S̃2



 dS̃2 −
A2∂∆

(

S̃2, F
)

∂F
dF = 0

Using dS̃1 =
∂S̄d(Š2,F)

∂Š2
dŠ2 and solving we obtain:

∂S̃1

∂F
= −







A1 ∂∆(Š2,F)
∂F +

∂S̄d(Š2,F)
∂F

A1 ∂∆(Š2,F)
∂Š2

+
∂S̄d(Š2,F)

∂Š2







∂S̄d
(

Š2, F
)

∂Š2

∂S̃2

∂F
=

A2 ∂∆(S̃2,F)
∂F

1−A2

[

∂∆(S̃2,F)
∂S̃2

]

where

∂∆
(

Š2, F
)

∂F
=

√
b

[

a− c− 2
√

b
(

F − Š2

)

]

√

(

F − Š2

)

> 0,
∂∆

(

Š2, F
)

∂Š2

=
−∂∆

(

Š2, F
)

∂F
< 0

∂S̄d
(

Š2, F
)

∂F
=

− (a− c)
√

b
(

F − Š2

)

+ 4 < 0,
∂S̄d

(

Š2, F
)

∂Š2

=
−∂S̄d

(

Š2, F
)

∂F
> 0

Then:

∂S̃1

∂F
=

−∂S̄d
(

Š2, F
)

∂Š2

> 0,
∂S̃2

∂F
=

A2 ∂∆(S̃2,F)
∂F

1−A2

[

∂∆(S̃2,F)
∂S̃2

] > 0
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Finally, we study the effect of F on S̃1 ≥ S̄d
(

S̃2, F
)

. Note that S̃1 ≥ S̄d
(

S̃2, F
)

if and only if

Š2 =
(

S̄d
)−1

(

S̃1, F
)

≥ S̃2. define

H (F ) = Š2 (F )− S̃2 (F )

and take the derivative of H with respect to F :

∂H (F )

∂F
=

∂Š2 (F )

∂F
− ∂S̃2 (F )

∂F
= 1− A2 ∂∆(S̃2,F)

∂F

1−A2

[

∂∆(S̃2,F)
∂S̃2

] =
1

1 +A2

[

∂∆(S̃2,F)
∂F

] > 0

where we have used that
∂∆(S̃2,F)

∂Š2
=

−∂∆(S̃2,F)
∂F and

∂∆(S̃2,F)
∂F > 0. Thus, if S̃1 ≥ S̄d

(

S̃2, F
)

holds, then

S̃1 ≥ S̄d
(

S̃2, F
′
)

for F ′ > F .

Comparative statics with respect to c: Using the same procedure we employed for a change in
F we obtain:

∂S̃1

∂c
= −







A1 ∂∆(Š2,c)
∂c +

∂S̄d(Š2,c)
∂c

A1 ∂∆(Š2,c)
∂Š2

+
∂S̄d(Š2,c)

∂Š2







∂S̄d
(

Š2, c
)

∂Š2

∂S̃2

∂c
=

A2 ∂∆(S̃2,c)
∂F

1−A2

[

∂∆(S̃2,c)
∂S̃2

]

where

∆
(

Š2, c
)

=
9 (a− c)2

32
−

[

a− c− 2
√

b
(

F − Š2

)

]2

2

∂∆
(

Š2, c
)

∂c
=

7 (a− c)− 32
√

b
(

F − Š2

)

16

∂∆
(

Š2, c
)

∂Š2

=

−
√
b

[

a− c− 2
√

b
(

F − Š2

)

]

√

F − Š2

< 0

and

S̄d
(

Š2, c
)

=
(a− c)2

8b
− 2 (a− c)

√

F − Š2

b
+ 4

(

F − Š2

)

∂S̄d (S, c)

∂c
=

− (a− c) + 8
√

b
(

F − Š2

)

4b

∂S̄d
(

Š2, c
)

∂Š2

=
a− c− 4

√

b
(

F − Š2

)

√

b
(

F − Š2

)

> 0
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Note that ∂S̃1
∂c > 0 if and only if A1 ∂∆(Š2,c)

∂c +
∂S̄d(Š2,c)

∂c < 0 or, which is equivalent, A1b < 4
7

and Š2 > F − 1
b

[

7(a−c)( 4
7
−A1b)

32(1−A1b)

]2

. Since S̃1 = S̄d
(

Š2, c
)

, Š2 > F − 1
b

[

7(a−c)( 4
7
−A1b)

32(1−A1b)

]2

if and only if

S̃1 > S̄d

(

F − 1
b

[

7(a−c)( 4
7
−A1b)

32(1−A1b)

]2

, c

)

. Thus,∂S̃1
∂c > 0 if and only

A1b <
4

7
and S̃1 >

[

16
(

5A1b− 2
) (

1−A1b
)

+ 7
(

4− 7A1b
)2
]2

(16)2 b (1−A1b)2

∂S̃2
∂c > 0 if and only if

∂∆(S̃2,F)
∂F > 0 or, which is equivalent,

S̃2 > F − 1

b

[

7 (a− c)

32

]2

Comparative statics with respect to a: It is easy to verify that ∂S̃1
∂a = −∂S̃1

∂c and ∂S̃2
∂a = −∂S̃2

∂c .
This completes the proof of Proposition 3. �

A.3 Proof of Proposition 4

We begin reconsidering Proposition 1 when the maximum credible subsidy that G2 can promise is ρS̄.
Then, we prove a general version of Proposition 4. Finally, Proposition 4 in the text is deduced as a
corollary of Proposition 4 (general version).

Let S2 →
[

0, S̄
]

denote the subsidy promised by G2. Then, the subsidy that G2 will actually pay if
E enters and, hence, the credible component of S2, is given by:

Sc
2 = min

{

ρS̄, S2

}

Proposition 1bis Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7 and the maximum credible subsidy that
G2 can promise is ρS̄. Let

ρ̄d0 =
S̄d
0

S̄
and ρ̄b =

S̄b

S̄

1. Suppose that ρ̄d0 ≤ ρ < 1. Then:

(a) If 0 ≤ S2 ≤ S̄b entry is blocked, (kI , kE) =
(

a−c
2b , 0

)

and P = a+c
2 .

(b) If S̄b < S2 < S̄d
0 entry is deterred, (kI , kE) =

(

a−c−2
√

b(F−S2)

b , 0

)

and P = c+2
√

b (F − S2).

(c) If S̄d
0 ≤ S2 ≤ S̄ and S1 > S̄d (Sc

2) entry is deterred, (kI , kE) =

(

a−c−2
√

b(F−Sc

2)
b , 0

)

and

P = c+ 2
√

b (F − Sc
2).

(d) If S̄d
0 ≤ S2 ≤ S̄ and S1 = S̄d (Sc

2), then there are two equilibria: in one equilibrium entry
is deterred, while in the other entry is accommodated. Under deterrence (accommodation),
(kI , kE , P ) is as in part c (e).
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(e) If S̄d
0 ≤ S2 ≤ S̄ and S1 < S̄d (Sc

2) entry is accommodated, (kI , kE) =
(

a−c
2b , a−c

4b

)

and P = a+3c
4 .

2. Suppose that ρ̄b < ρ < ρ̄d0. Then,

(a) If 0 ≤ S2 ≤ S̄b entry is blocked, (kI , kE) =
(

a−c
2b , 0

)

and P = a+c
2 .

(b) If S̄b < S2 ≤ S̄ entry is deterred, (kI , kE) =

(

a−c−2
√

b(F−Sc

2)
b , 0

)

and P = c+2
√

b (F − Sc
2).

3. Suppose that 0 < ρ ≤ ρ̄b. Then, entry is blocked, (kI , kE) =
(

a−c
2b , 0

)

and P = a+c
2 for all

0 ≤ S2 ≤ S̄.

Proof. From Proposition 1 we have: If 0 ≤ Sc
2 ≤ S̄b, then entry is blocked; if S̄b < Sc

2 < S̄d
0 , then

entry is deterred; if S̄d
0 ≤ Sc

2 <
(

S̄d
)−1

(S1) (or, which is equivalent, S̄d
0 ≤ Sc

2 ≤ S̄ and S1 > S̄d (Sc
2)]

entry is deterred; if S̄d
0 < Sc

2 =
(

S̄d
)−1

(S1) [or which is equivalent, S̄d
0 ≤ Sc

2 ≤ S̄ and S1 = S̄d (Sc
2)], then

entry is either deterred or accommodated; and, finally, if
(

S̄d
)−1

(S1) < Sc
2 ≤ S̄ [or which is equivalent

S̄d
0 ≤ Sc

2 ≤ S̄ and S1 < S̄d (Sc
2)] entry is accommodated. Let ρ̄b = S̄b/S̄, ρ̄d = S̄d

0/S̄. Then, Proposition
1bis follows by the definition of Sc

2 = min
{

ρS̄, S2

}

. �

Proposition 4 (General version) Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7, A1b < 2
(√

2− 1
)

, and
the maximum credible subsidy that G2 can promise is ρS̄. Let

ρ̄b =
S̄b

S̄
and ρ̄d0 =

S̄d
0

S̄

1. Suppose that ρ̄d0 ≤ ρ < 1.

(a) Suppose that S̄d
0 − A2∆

(

S̄d
0

)

< BD
2 ≤ ρS̄ − A2∆

(

ρS̄
)

. Then, the set of equilibrium subsidies
is given by S1 = S̄d

(

min
{

S2, ρS̄
})

with:

S2 ∈
[

S̄d
0 , S̃2

)

if BM
1 −BD

1 < A1∆
(

S̄d
0

)

S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

) if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

and S̃1 < S̄d
(

S̃2

)

S2 ∈
[

S̃2,
(

S̄d
)−1

(

S̃1

)] if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

and S̄d
(

S̃2

)

≤ S̃1 < S̄d
(

ρS̄
)

S2 ∈
[

ρS̄, S̄
] if A1∆

(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

and S̃1 = S̄d
(

ρS̄
)

S2 ∈
[

S̃2, S̄
]

if BM
1 −BD

1 > A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

where S̃1 ∈
[

0, S̄d
(

S̄
)]

is the unique solution to BM
1 − BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1 and

S̃2 ∈
(

S̄d
0 , S̄

]

is the unique solution to BD
2 = S̃2−A2∆

(

S̃2

)

. Moreover, in all the equilibria in

which S2 ∈
[

S̃2, S̄
]

entry is deterred, while in all the equilibria in which S2 ∈
[

S̄d
0 , S̃2

)

there

is accommodated entry.
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(b) Suppose that ρS̄ − A2∆
(

ρS̄
)

< BD
2 ≤ S̄ − A2∆

(

S̄
)

. Then, the set of equilibrium subsidies is
given by S1 = S̄d

(

min
{

S2, ρS̄
})

with:

S2 ∈
[

S̄d
0 , ρS̄

)

if BM
1 −BD

1 < A1∆
(

S̄d
0

)

S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, ρS̄
)

if A1∆
(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

S2 ∈
[

ρS̄, S̄
] if A1∆

(

S̄d
0

)

≤ BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

and S̃1 = S̄d
(

ρS̄
)

S2 ∈
[

ρS̄, S̄
]

if BM
1 −BD

1 > A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

where S̃1 ∈
[

0, S̄d
(

S̄
)]

is the unique solution to BM
1 − BD

1 = A1∆
(

(

S̄d
)−1

(

S̃1

))

+ S̃1.

Moreover, in all the equilibria in which S2 ∈
[

ρS̄, S̄
]

entry is deterred, while in all the equilibria
in which S2 ∈

[

S̄d
0 , ρS̄

)

there is accommodated entry.

2. Suppose that ρ̄b < ρ ≤ ρ̄d0. Then, the set of equilibrium subsidies is given by S1 = 0 and S2 ∈
[

ρS̄, S̄
]

. Moreover, in equilibrium, entry is deterred.

3. Suppose that 0 < ρ ≤ ρ̄b. Then, the set of equilibrium subsidies is given by S1 = 0 and S2 ∈
[

0, S̄
]

.
Moreover, in equilibrium, entry is blocked.

Proof of Part 1: Suppose that ρ̄d0 ≤ ρ < 1.
Selection criterion : From Proposition 1bis, if S1 = S̄d (S2), deterrence and accommodation are

both subgame perfect Nash equilibria. In such a case, the equilibrium with accommodation is selected
when it strictly dominates the equilibrium with deterrence for G2, provided that S̄d (S2) < ρS̄. Otherwise,
the economic equilibrium with deterrence is selected. Thus,

W2

(

S1,
(

S̄d
)−1

(S1)

)

=























max











A2

[

a−c−2

√

b
(

F−(S̄d)
−1

(S1)
)

]2

2 ,
A29(a−c)2

32 +BD
2 −

(

S̄d
)−1

(S1)











if
(

S̄d
)−1

(S1) < ρS̄

A2
[

a−c−2
√

b(F−ρS̄)
]2

2 if
(

S̄d
)−1

(S1) ≥ ρS̄

Best response correspondence of G2. Suppose that
(

S̄d
)−1

(S1) ≥ ρS̄ (equivalently, S1 ≥
S̄d
(

ρS̄
)

). Then, employing the above selection criteria, the payoff function of G2 as a function of (S1, S2)
is given by:

W2 (S1, S2) =























A2(a−c)2

8 if 0 ≤ S2 ≤ S̄b

A2
[

a−c−2
√

b(F−S2)
]2

2 if S̄b < S2 < S̄d
0

A2
[

a−c−2
√

b(F−min{S2,ρS̄})
]2

2 if S̄d
0 ≤ min

{

S2, ρS̄
}

≤
(

S̄d
)−1

(S1)

which adopts a maximum at S2 ∈
[

ρS̄, S̄
]

. Suppose that
(

S̄d
)−1

(S1) < ρS̄ (equivalently, S1 < S̄d
(

ρS̄
)

).
Then, employing the above selection criterion, the payoff function of G2 as a function of (S1, S2) is given
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by:

W2 (S1, S2) =



































































A2(a−c)2

8 if 0 ≤ S2 ≤ S̄b

A2
[

a−c−2
√

b(F−S2)
]2

2 if S̄b < S2 < S̄d
0

A2
[

a−c−2
√

b(F−S2)
]2

2 if S̄d
0 ≤ S2 <

(

S̄d
)−1

(S1)

max







A2
[

a−c−2
√

b(F−S2)
]2

2 ,
A29(a−c)2

32 +BD
2 − S2







if S2 =
(

S̄d
)−1

(S1)

A29(a−c)2

32 +BD
2 − S2 if

(

S̄d
)−1

(S1) < S2 ≤ ρS̄
A29(a−c)2

32 +BD
2 − ρS̄ if ρS̄ < S2 ≤ ρS̄

which adopts a maximum at S2 =
(

S̄d
)−1

(S1). Thus, the best response correspondence of G2 is given
by:

S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)

Economic equilibrium selection under the best response correspondence of G2. We must
consider three possible cases:

Case 1 : Suppose that S1 ≥ S̄d
(

ρS̄
)

. Then, using Proposition 1.bis and the economic selection
criterion, S2 ∈

[

ρS̄, S̄
]

leads to deterrence.

Case 2 : Suppose that 0 ≤ S1 < S̄d
(

ρS̄
)

. To determine if S2 =
(

S̄d
)−1

(S1) leads to deterrence or
accommodated entry, we use lemma 2. There are two possible cases to consider:

Case 2.a : Suppose that S̄d
0 < S̃2 ≤ ρS̄ or, which is equivalent, S̄d

0 − A2∆
(

S̄d
0

)

< BD
2 ≤ ρS̄ −

A2∆
(

ρS̄
)

. Then, S2 =
(

S̄d
)−1

(S1) leads to accommodated entry when S1 < S̄d
(

S̃2

)

and to deterrence

when S1 ≥ S̄d
(

S̃2

)

.

Case 2.b: Suppose that ρS̄ < S̃2 ≤ S̄ or, which is equivalent, ρS̄ −A2∆
(

ρS̄
)

< BD
2 ≤ S̄−A2∆

(

S̄
)

.

Then, S2 =
(

S̄d
)−1

(S1) leads to accommodated entry.

Best response correspondence of G1. If 0 ≤ S2 ≤ S̄b, then, W1 (S1, S2) =
[

A1 (a− c)2 /8
]

+

BM
1 − S1, which is strictly decreasing in S1. Thus, the best response to 0 ≤ S2 ≤ S̄b is always S1 = 0.

Similarly, if S̄b < S2 < S̄d
0 , then W1 (S1, S2) = A1

[

a− c− 2
√

b (F − S2)
]2

/2+BM
1 −S1, which is strictly

decreasing in S1. Thus, the best response to S̄b < S2 < S̄d
0 is always S1 = 0.

If S̄d
0 ≤ S2 ≤ S̄, there are two possible cases to consider:

Case 1 : Suppose that S̄d
0 −A2∆

(

S̄d
0

)

< BD
2 ≤ ρS̄ −A2∆

(

ρS̄
)

. Then, S̄d
0 < S̃2 ≤ ρS̄ and, hence,
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W1 (S1, S2) =























































A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S̄d

0 ≤ S2 < S̃2 and S1 > S̄d (S2)
A19(a−c)2

32 +BD
1 if S̄d

0 ≤ S2 < S̃2 and S1 ≤ S̄d (S2)

A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S̃2 ≤ S2 ≤ ρS̄ and S1 ≥ S̄d (S2)

A19(a−c)2

32 +BD
1 if S̃2 ≤ S2 ≤ ρS̄ and S1 < S̄d (S2)

A1
[

a−c−2
√

b(F−ρS̄)
]2

2 +BM
1 − S1 if ρS̄ < S2 ≤ S̄ and S1 ≥ S̄d

(

ρS̄
)

A19(a−c)2

32 +BD
1 if ρS̄ < S2 ≤ S̄ and S1 < S̄d

(

ρS̄
)

For S̄d
0 ≤ S2 < S̃2, W1 (S1, S2) adopts its maximum at S1 ∈

[

0, S̄d (S2)
]

if and only if BM
1 − BD

1 ≤
A1∆(S2) + S̄d (S2). Otherwise, there is no S1 ∈

[

0, S̄d
(

S̄
)]

that maximizes W1 (S1, S2). For S̃2 ≤ S2 ≤
ρS̄, adopts its maximum at S1 = S̄d (S2) if and only if BM

1 −BD
1 ≥ A1∆(S2) + S̄d (S2), while it adopts

its maximum at S1 ∈
[

0, S̄d (S2)
)

if and only if BM
1 − BD

1 ≤ A1∆(S2) + S̄d (S2). For ρS̄ < S2 ≤ S̄,
adopts its maximum at S1 = S̄d

(

ρS̄
)

if and only if BM
1 − BD

1 ≥ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

, while it adopts
its maximum at S1 ∈

[

0, S̄d
(

ρS̄
))

if and only if BM
1 − BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Therefore, the best
response correspondence of G1 is given by:

S1 =































0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̃2 and BM

1 −BD
1 ≤ A1∆(S2) + S̄d (S2)

S̄d (S2) if S̃2 ≤ S2 ≤ ρS̄ and BM
1 −BD

1 ≥ A1∆(S2) + S̄d (S2)
[

0, S̄d (S2)
)

if S̃2 ≤ S2 ≤ ρS̄ and BM
1 −BD

1 ≤ A1∆(S2) + S̄d (S2)
[

0, S̄d
(

ρS̄
))

if ρS̄ < S2 ≤ S̄ and BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

S̄d
(

ρS̄
)

if ρS̄ < S2 ≤ S̄ and BM
1 −BD

1 ≥ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

Thus, employing Lemma 1, we must consider three possible subcases:
Case 1.a : Suppose that BM

1 − BD
1 < A1∆

(

S̄d
0

)

. Then, the best response correspondence of G1 is
given by:

S1 =















0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̃2

[

0, S̄d (S2)
)

if S̃2 ≤ S2 ≤ ρS̄
[

0, S̄d
(

ρS̄
))

if ρS̄ < S2 ≤ S̄

Case 1.b: Suppose that A1∆
(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, the best response
correspondence of G1 is given by:

S1 =











































0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 < S̃2

S̄d (S2) if S̃2 ≤ S2 ≤
(

S̄d
)−1

(

S̃1

)

[

0, S̄d (S2)
)

if max
{

S̃2,
(

S̄d
)−1

(

S̃1

)}

≤ S2 ≤ ρS̄
[

0, S̄d
(

ρS̄
))

if ρS̄ < S2 ≤ S̄

S̄d
(

ρS̄
)

if ρS̄ < S2 ≤ S̄ and S̃1 = S̄d
(

ρS̄
)
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Case 1.c: Suppose that BM
1 −BD

1 > A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, the best response correspondence
of G1 is given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

S̄d (S2) if S̃2 ≤ S2 ≤ ρS̄
S̄d
(

ρS̄
)

if ρS̄ < S2 ≤ S̄

Case 2 : Suppose that ρS̄ −A2∆
(

ρS̄
)

< BD
2 ≤ S̄ −A2∆

(

S̄
)

. Then, that ρS̄ < S̃2 ≤ S̄ and, hence,

W1 (S1, S2) =































A1
[

a−c−2
√

b(F−S2)
]2

2 +BM
1 − S1 if S̄d

0 ≤ S2 < ρS̄ and S1 > S̄d (S2)
A19(a−c)2

32 +BD
1 if S̄d

0 ≤ S2 < ρS̄ and S1 ≤ S̄d (S2)

A1
[

a−c−2
√

b(F−ρS̄)
]2

2 +BM
1 − S1 if ρS̄ ≤ S2 ≤ S̄ and S1 ≥ S̄d

(

ρS̄
)

A19(a−c)2

32 +BD
1 if ρS̄ ≤ S2 ≤ S̄ and S1 < S̄d

(

ρS̄
)

Therefore, the best response correspondence of G1 is given by:

S1 =















0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < ρS̄ and BM

1 −BD
1 ≤ A1∆(S2) + S̄d (S2)

[

0, S̄d
(

ρS̄
))

if ρS̄ ≤ S2 ≤ S̄ and BM
1 −BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

S̄d
(

ρS̄
)

if ρS̄ ≤ S2 ≤ S̄ and BM
1 −BD

1 ≥ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

Thus, employing Lemma 1, we must consider three possible subcases:
Case 2.a : Suppose that BM

1 − BD
1 < A1∆

(

S̄d
0

)

. Then, the best response correspondence of G1 is
given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < ρS̄

[

0, S̄d
(

ρS̄
))

if ρS̄ ≤ S2 ≤ S̄

Case 2.b: Suppose that A1∆
(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, the best response
correspondence of G1 is given by:

S1 =



















0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 < ρS̄
[

0, S̄d
(

ρS̄
))

if ρS̄ ≤ S2 ≤ S̄

S̄d
(

ρS̄
)

if ρS̄ ≤ S2 ≤ S̄ and S̃1 = S̄d
(

ρS̄
)

Case 2.c: Suppose that BM
1 −BD

1 > A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, the best response correspondence
of G1 is given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

S̄d
(

ρS̄
)

if ρS̄ ≤ S2 ≤ S̄

Nash equilibrium : We must consider two possible cases:
Case 1 : Suppose that S̄d

0 −A2∆
(

S̄d
0

)

< BD
2 ≤ ρS̄ −A2∆

(

ρS̄
)

.
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Case 1.a : Suppose that BM
1 −BD

1 < A1∆
(

S̄d
0

)

. Then, best response correspondences are given by:

S1 =















0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < S̃2

[

0, S̄d (S2)
)

if S̃2 ≤ S2 ≤ ρS̄
[

0, S̄d
(

ρS̄
))

if ρS̄ < S2 ≤ S̄

and S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̄d
0 , S̃2

)

Moreover, in all these equilibria entry is accommodated.
Case 1.b: Suppose that A1∆

(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, best response
correspondences are given by:

S1 =











































0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 < S̃2

S̄d (S2) if S̃2 ≤ S2 ≤
(

S̄d
)−1

(

S̃1

)

[

0, S̄d (S2)
)

if max
{

S̃2,
(

S̄d
)−1

(

S̃1

)}

≤ S2 ≤ ρS̄
[

0, S̄d
(

ρS̄
))

if ρS̄ < S2 ≤ S̄

S̄d
(

ρS̄
)

if ρS̄ < S2 ≤ S̄ and S̃1 = S̄d
(

ρS̄
)

S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

(

S̄d
)−1 (

S̃1

)

, S̃2

)

S1 = S̄d (S2) and S2 ∈
[

S̃2,
(

S̄d
)−1 (

S̃1

)

]

S2 ∈
(

ρS̄, S̄
]

and S1 = S̄d
(

ρS̄
)

= S̃1

Moreover, in all the equilibria in which S̃1 ≥ S̄d
(

S̃2

)

entry is deterred, while in all the equilibria in which

S̃1 < S̄d
(

S̃2

)

, entry is accommodated. In the equilibrium in which S2 ∈
(

ρS̄, S̄
]

and S1 = S̄d
(

ρS̄
)

= S̃1,

entry is deterred.
Case 1.c: Suppose that BM

1 −BD
1 > A1∆

(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, best response correspondences are
given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

S̄d (S2) if S̃2 ≤ S2 ≤ ρS̄
S̄d
(

ρS̄
)

if ρS̄ < S2 ≤ S̄

and S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)
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Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̃2, ρS̄
)

S1 = S̄d
(

ρS̄
)

and S2 ∈
[

ρS̄, S̄
]

Moreover, in all these equilibria entry is deterred.
Case 2 : Suppose that ρS̄ −A2∆

(

ρS̄
)

< BD
2 ≤ S̄ −A2∆

(

S̄
)

. ρS̄ < S̃2 ≤ S̄
Case 2.a : Suppose that BM

1 − BD
1 < A1∆

(

S̄d
0

)

. Then, the best response correspondence of G1 is
given by:

S1 =







0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if S̄d
0 ≤ S2 < ρS̄

[

0, S̄d
(

ρS̄
))

if ρS̄ ≤ S2 ≤ S̄
and S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

S̄d
0 , ρS̄

)

Moreover, in all these equilibria entry is accommodated.
Case 2.b: Suppose that A1∆

(

S̄d
0

)

≤ BM
1 − BD

1 ≤ A1∆
(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, the best response
correspondence of G1 is given by:

S1 =



















0 if 0 ≤ S2 < S̄d
0

[

0, S̄d (S2)
]

if
(

S̄d
)−1

(

S̃1

)

≤ S2 < ρS̄
[

0, S̄d
(

ρS̄
))

if ρS̄ ≤ S2 ≤ S̄

S̄d
(

ρS̄
)

if ρS̄ ≤ S2 ≤ S̄ and S̃1 = S̄d
(

ρS̄
)

S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d (S2) and S2 ∈
[

(

S̄d
)−1 (

S̃1

)

, ρS̄

)

S1 = S̄d
(

ρS̄
)

= S̃1 and S2 ∈
[

ρS̄, S̄
]

Moreover, in all the equilibria in which S̃1 < S̄d
(

ρS̄
)

, entry is accommodated, while in the equilibrium

in which S2 ∈
(

ρS̄, S̄
]

and S1 = S̄d
(

ρS̄
)

= S̃1, entry is deterred.
Case 2.c: Suppose that BM

1 −BD
1 > A1∆

(

ρS̄
)

+ S̄d
(

ρS̄
)

. Then, the best response correspondence
of G1 is given by:

S1 =

{

0 if 0 ≤ S2 < S̄d
0

S̄d
(

ρS̄
)

if ρS̄ ≤ S2 ≤ S̄
and S2 =

{

(

S̄d
)−1

(S1) if 0 ≤ S1 < S̄d
(

ρS̄
)

[

ρS̄, S̄
]

if S1 ≥ S̄d
(

ρS̄
)

Therefore, the set of Nash equilibrium subsidies is given by:

S1 = S̄d
(

ρS̄
)

and S2 ∈
[

ρS̄, S̄
]
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Moreover, in all these equilibria entry is deterred.
Proof of Part 2: Suppose that ρ̄b < ρ < ρ̄d0. Then, employing Proposition 1bis (Part 2), the

consumer surplus of each country as a function of (S1, S2) is given by:

CSj (S1, S2) = Aj







(a−c)2

8 if 0 ≤ S2 ≤ S̄b

[

a−c−2
√

b(F−min{ρS̄,S2})
]2

2 if S̄b < S2 ≤ S̄

while the geopolitical payoff of each global power as a function of (S1, S2) is given by:

B1 (S1, S2) =

{

BM
1 − S1 if 0 ≤ S2 ≤ S̄b

BM
1 − S1 if S̄b < S2 ≤ S̄

, B2 (S1, S2) =

{

0 if 0 ≤ S2 ≤ S̄b

0 if S̄b < S2 ≤ S̄

Therefore, the payoff function of each global power is given by:

W1 (S1, S2) =







A1(a−c)2

8 +BM
1 − S1 if 0 ≤ S2 ≤ S̄b

A1
[

a−c−2
√

b(F−min{ρS̄,S2})
]2

2 +BM
1 − S1 if S̄b < S2 ≤ S̄

W2 (S1, S2) =







A2(a−c)2

8 if 0 ≤ S2 ≤ S̄b

A2
[

a−c−2
√

b(F−min{ρS̄,S2})
]2

2 if S̄b < S2 ≤ S̄

Best response correspondence of G1. Fix S2 ≥ 0. Suppose that 0 ≤ S2 ≤ S̄b. Then,

W1 (S1, S2) =
[

A1 (a− c)2 /8
]

+ BM
1 − S1, which is strictly decreasing in S1. Thus, the best re-

sponse to 0 ≤ S2 ≤ S̄b is S1 = 0. Suppose that S̄b < S2 ≤ S̄. Then, W1 (S1, S2) =

A1
[

a− c− 2
√

b
(

F −min{ρS̄, S2}
)

]2

/2 + BM
1 − S1, which is strictly decreasing in S1. Thus, the best

response to S̄b < S2 ≤ S̄ is S1 = 0.
Best response correspondence of G2. Fix S1 ≥ 0. W2 (S1, S2) is a continuous function of S2

for all S2 ∈
[

0, S̄
]

(in particular, W2 (S1, S2) is continuous for S2 = S̄b); W2 (S1, S2) is a constant for all
S2 ∈

[

0, S̄b
]

; W2 (S1, S2) is strictly increasing in S2 for all S2 ∈
[

S̄b, ρS̄
]

; and W2 (S1, S2) is constant for
all S2 ∈

[

ρS̄, S̄
]

. Thus, the best response to S1 ≥ 0 is S2 =
[

ρS̄, S̄
]

.
Nash equilibrium. The set of Nash equilibrium profiles is given by S1 = 0 and S2 ∈

[

ρS̄, S̄
]

.
Most preferred equilibrium for each global power. In any Nash equilibrium it must be the case

that S1 = 0, which implies that the payoffs of the global powers as a function of the equilibrium profile
of subsidies are given by:

W1 (0, S2) =
A1
[

a− c− 2
√

b
(

F − ρS̄
)

]2

2
+BM

1

W2 (0, S2) =
A2
[

a− c− 2
√

b
(

F − ρS̄
)

]2

2

Thus, G1 and G2 are indifferent among the Nash equilibrium profiles (S1, S2). This completes the proof
of Proposition 4.2.
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Proof of Part 3: Suppose that 0 < ρ ≤ ρ̄b. Then, employing Proposition 1bis (Part 3), the consumer
surplus of each country as a function of (S1, S2) is given by:

CSj (S1, S2) = Aj (a− c)2

8

while the geopolitical payoff of each global power as a function of (S1, S2) is given by:

B1 (S1, S2) = BM
1 − S1, B2 (S1, S2) = 0

Therefore, the payoff function of each global power is given by:

W1 (S1, S2) =
A1 (a− c)2

8
+BM

1 − S1, W2 (S1, S2) =
A2 (a− c)2

8

Best response correspondence of G1. Fix S2 ≥ 0. Then, W1 (S1, S2) =
[

A1 (a− c)2 /8
]

+BM
1 −

S1, which is strictly decreasing in S1. Thus, the best response to S2 ≥ 0 is S1 = 0.
Best response correspondence of G2. Fix S1 ≥ 0. Then, W2 (S1, S2) = A2 (a− c)2 /8, which

does not depend on S2. Thus, the best response to S1 ≥ 0 is S2 ∈
[

0, S̄
]

.
Nash equilibrium. The set of Nash equilibrium profiles is given by S1 = 0 and S2 ∈

[

0, S̄
]

.
Most preferred equilibrium for each global power : In any Nash equilibrium it must be the case

that S1 = 0, which implies that the payoffs of the global powers as a function of the equilibrium profile
of subsidies are given by:

W1 (0, S2) =
A1 (a− c)2

8
+BM

1 , W2 (0, S2) =
A2 (a− c)2

8

Thus, G1 and G2 are indifferent among the Nash equilibrium profiles (S1, S2). This completes the proof
of Proposition 4.3. �

Proposition 4 (Simplified version in text) Suppose that 9c/7 ≤ a ≤
(

6
√
2 + 3

)

c/7, A1b <

2
(√

2− 1
)

, and the maximum credible subsidy that G2 can promise is ρS̄. Let

ρ̄b =
S̄b

S̄
and ρ̄d0 =

S̄d
0

S̄

1. Suppose that ρ̄d0 ≤ ρ < 1, BD
2 ∈

(

S̄d
0 −A2∆

(

S̄d
0

)

, S̄ −A2∆
(

S̄
)]

and BM
1 − BD

1 ∈
[

A1∆
(

S̄d
0

)

, A1∆
(

S̄
)

+ S̄d
(

S̄
)]

.

(a) If S̃1 ≥ S̄d
(

ρS̄
)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d
(

ρS̄
)

and
S2 ∈

[

ρS̄, S̄
]

. Moreover, in all these equilibria entry is deterred.

(b) If S̃1 < S̄d
(

ρS̄
)

and S̃2 ≤ ρS̄, then Proposition 3 holds.

(c) If S̃1 < S̄d
(

ρS̄
)

and S̃2 > ρS̄, then the equilibrium subsidy profiles are those that satisfy S1 =

S̄d (S2) and S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, ρS̄
)

. Moreover, in all these equilibria there is accommodated

entry.
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2. Suppose that ρ̄b < ρ ≤ ρ̄d0. Then, the set of equilibrium subsidies is given by S1 = 0 and S2 ∈
[

ρS̄, S̄
]

. Moreover, in equilibrium, entry is deterred.

3. Suppose that 0 < ρ ≤ ρ̄b. Then, the set of equilibrium subsidies is given by S1 = 0 and S2 ∈
[

0, S̄
]

.
Moreover, in equilibrium, entry is blocked.

Proof of Part 1: The proof of Part 1 is almost immediate from Proposition 4 (general version). We
must consider several cases:

Case 1 : Suppose that S̄d
0 − A2∆

(

S̄d
0

)

< BD
2 ≤ ρS̄ − A2∆

(

ρS̄
)

(i.e., S̃2 ≤ ρS̄ ). Then, from
Proposition 4.1.a (general version) we have:

Case 1.a : If S̃1 ≥ S̄d
(

ρS̄
)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d
(

ρS̄
)

and S2 ∈
[

ρS̄, S̄
]

. Moreover, in all these equilibria entry is deterred.

Case 1.b: If S̄d
(

S̃2

)

≤ S̃1 < S̄d
(

ρS̄
)

, then the equilibrium subsidy profiles are those that satisfy

S1 = S̄d (S2) and S2 ∈
[

S̃2,
(

S̄d
)−1

(

S̃1

)]

. Moreover, in all these equilibria entry is deterred. That is,

Proposition 3.1 holds.

Case 1.c: If S̃1 < S̄d
(

S̃2

)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d (S2)

and S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, S̃2

)

. Moreover, in all these equilibria there is accommodated entry. That is,

Proposition 3.2 holds.
Case 2 : Suppose that ρS̄−A2∆

(

ρS̄
)

< BD
2 ≤ S̄−A2∆

(

S̄
)

(i.e., S̃2 > ρS̄). Then, from Proposition
4.1.b (general version) we have:

Case 2.a : If S̃1 ≥ S̄d
(

ρS̄
)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d
(

ρS̄
)

and S2 ∈
[

ρS̄, S̄
]

. Moreover, in all these equilibria entry is deterred.

Case 2.b: If S̃1 < S̄d
(

ρS̄
)

, then the equilibrium subsidy profiles are those that satisfy S1 = S̄d (S2)

and S2 ∈
[

(

S̄d
)−1

(

S̃1

)

, ρS̄
)

. Moreover, in all these equilibria there is accommodated entry.

Proof of Parts 2 and 3: Parts 2 and 3 are identical to Proposition 4.2 and 4.3 (general version). �
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