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1. Introduction

The joint-hypothesis problem posed by Fama (1970) is central to empirical investigations of

market efficiency. Fama (1991) expresses the inherent challenge as follows:

We can only test whether information is properly reflected in prices in the context

of a pricing model that defines the meaning of “properly.”

In this study, we ask which pricing model best defines “properly.” Such a model offers the

best benchmark for assessing market efficiency and gauging mispricing. Models that capture

expected returns empirically could be identifying mispricing in an inefficient market or com-

pensated risks in an efficient market.1 Which pricing model, among prominent candidates,

would best describe expected stock returns if there were no mispricing? That is the question

we address in this paper.

Tests of market efficiency seek to control for the equilibrium model of expected returns or

identify situations where the underlying model differences out (such as examining deviations

from the law of one price, e.g., Lamont and Thaler, 2003, Du, Tepper, and Verdelhan, 2018,

Hu, Pan, and Wang, 2013). Conversely, we seek to avoid having market inefficiency confound

tests of asset pricing models. To implement this idea empirically, we attempt to plausibly

identify when mispricing is absent. Our key assumption is that any current mispricing of

a stock gets corrected in less than ten years. That is, regardless of how investors interpret

information or how arbitrage is impeded, we assume the forces of learning and arbitrage are

strong enough over 10 years to correct any mispricing. In U.S. equity markets, a 10-year

horizon seems, if anything, a conservative assumption. Suppose a long-short spread based on

decade-old information produces a significant alpha with respect to a given pricing model.

That alpha does not reflect mispricing under our assumption, so we infer that the model

does not describe expected stock returns in the absence of mispricing.

In many ways, finding settings where information must surely be reflected in prices is an

easier task than identifying the right pricing model (or finding deviations from the law of one

price). While our plausible (and conservative) assumption avoids mispricing, a drawback

1Prominent empirical models in asset pricing have received numerous interpretations from both sides of
the market efficiency debate. An inexhaustive list of rational and behavioral theories includes Fama and
French (1993, 1995, 2015), Gomes, Kogan, and Zhang (2003) , Zhang (2005), Li, Livdan, and Zhang (2009),
Belo (2010), Li and Zhang (2010), Liu and Zhang (2008), Berk, Green, and Naik (1999), Johnson (2002), Sagi
and Seasholes (2007), Liu, Whited, and Zhang (2009), and Hou, Xue, and Zhang (2015) on the rational, no
mispricing side and Lakonishok, Shleifer, and Vishny (1994), Daniel and Titman (1997), Daniel, Hirshleifer,
and Subrahmanyam (1998), Barberis, Shleifer, and Vishny (1998), Hong and Stein (1999), and Stambaugh
and Yuan (2017) on the behavioral, mispricing side.
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is low power. Tests where we can confidently rule out mispricing may also be tests that

have low power to discriminate among pricing models. For instance, while information

in decade-old characteristics should be reflected correctly in today’s prices, many of those

characteristics may have low correlation with the current values of multifactor betas that

pricing models either omit or include. The betas of long-short spreads based on those

lagged characteristics could then be essentially zero, offering little power to discriminate

among models. Nevertheless, we find that some characteristics provide adequate power. In

particular, one of the Stambaugh and Yuan (2017) composite mispricing measures, PERF,

provides power to distinguish among prominent asset pricing models.

The five models we consider include the traditional CAPM of Sharpe (1964) and Lintner

(1965) and four multifactor models: the three-factor model of Fama and French (1993), the

four-factor model of Hou et al. (2015), the five-factor model of Fama and French (2015), and

the CAPM augmented by the betting-against-beta factor of Frazzini and Pedersen (2014).2

For each pricing model, our test’s null hypothesis is that the model assigns zero alpha to

investment strategies formed using only decade-old information. For a long-short strategy

based on stocks’ decade-old PERF scores, the CAPM passes our test but the above four

multifactor models do not. In other words, our novel test prefers the CAPM to promi-

nent multifactor models as the “proper” no-mispricing benchmark model for tests of market

efficiency.

Our results admit a simple explanation. Observable characteristics can help identify mis-

pricing of some stocks, and multifactor betas can help capture those stocks’ expected returns.

Some of those multifactor betas, however, can persist longer than the stocks’ mispricing. If

a multifactor beta gets included in a pricing model to help explain expected returns that in

part reflect mispricing, then persistence in that beta injects unhelpful distortions into stocks’

implied expected returns after the mispricing corrects. When a security’s mispricing is more

transitory than its multifactor betas, including factors that capture mispricing will distort

the security’s expected return absent mispricing. By excluding those multifactor betas, the

CAPM avoids such effects. We find that PERF spreads have persistent multifactor betas

that cause the multifactor models to assign positive alphas to spreads based on decade-old

PERF scores.

We show that much of the persistence in the PERF spreads’ multifactor betas can be

2A positive premium on the latter factor, theoretically motivated, implies positive (negative) CAPM
alphas on assets with low (high) betas. Black (1972) and Fama (1976) provide earlier theoretical motivations
for augmenting the CAPM with such a beta factor, and Black, Jensen, and Scholes (1972) and Fama and
MacBeth (1973) provide related evidence.
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explained by persistence in the measures of profitability, distress, and momentum that con-

stitute PERF. Our test’s power when based on PERF owes mainly to those underlying

characteristics persisting longer than the associated mispricing. For example, a firm with

a currently high PERF score (signaling overpricing) tends to remain unprofitable and dis-

tressed long thereafter. Previous studies link the predictive abilities of those characteristics

to investor underreaction.3 Suppose, for example, investors underreact to profitability infor-

mation, paying too high a price for an unprofitable firm. We expect that the longer a firm

has been unprofitable, the less likely are investors to underreact to currently low profitability.

Consistent with that hypothesis, we find that the longer a stock has had its current PERF

score, the less useful that score is in constructing a profitable long-short strategy today.

We find our test has little ability to discriminate among models when using spreads based

on decade-old scores for MGMT, the other mispricing measure of Stambaugh and Yuan

(2017). There is less persistence in those spreads’ multifactor betas, as there is less persis-

tence in MGMT’s underlying stock characteristics. Consequently, our test lacks sufficient

power. One property of MGMT scores, though, further supports the above underreaction

scenario: In contrast to PERF scores, the MGMT scores that have persisted longest are no

less useful in predicting returns than are the scores least like their previous values. Consistent

with this result, unlike the PERF characteristics, the characteristics constituting MGMT,

such as firms’ issuance and asset growth, are not linked to underreaction by the literature.

We conduct our tests separately within different segments of firm size, for a number of

reasons. Consider the largest firms, for example. Our assumption that mispricing disappears

within 10 years seems especially plausible for the largest stocks, which are liquid and well-

monitored. Large stocks should be those least likely to have persistent market frictions

impeding price correction over periods as long as a decade. Correctly pricing large stocks

thus seems the purest test for any proper benchmark model to clear. Moreover, our test

relies on decade-old information being related to current multifactor betas, and betas seem

likely to be more stable over time for the largest firms. We empirically confirm that larger

stocks have more persistent multifactor betas. The type of securities affording our test the

most power are those with no mispricing based on 10-year old information with persistent

and reliably stable multifactor betas. The largest firms seem to have these characteristics.

Consider instead the smallest stocks. They are probably subject to the greatest mispric-

ing, thereby presenting salient targets for multifactor models aiming to fit average short-run

3Although the literature provides empirical evidence linking these characteristics to underreaction, that
evidence plays no role in how Stambaugh and Yuan (2017) group prominent anomalies into PERF versus
their other mispricing score, MGMT.
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returns. In this respect, small stocks could offer our test an especially informative sample for

distinguishing such models from the proper no-mispricing benchmark. Offsetting this poten-

tial advantage, however, is that multifactor betas are least stable for small stocks, making

the link between decade-old information and current betas substantially weaker. Because

determinants of our test’s informativeness likely differ across firm size, we allow each segment

to speak separately in the data.

We find that results differ meaningfully across firm size. Our test delivers its strongest

message when based on the largest stocks in the economy. For stocks larger than the NYSE

70th percentile, and even for the largest 200 names, a long-short PERF strategy produces

significant alpha that lasts for less than a year under the CAPM but persists for up to 10 years

under prominent multifactor models. The latter result is striking, given the implausibility

of decade-long mispricing afflicting the largest stocks in the economy. A more plausible

explanation is that the multifactor models significantly distort what these stocks’ expected

returns would be in the absence of mispricing. In contrast, although we find greater apparent

mispricing (larger initial alphas) among the smallest firms, the characteristics and betas of

small firms change too rapidly to distinguish among competing models at longer lags of the

mispricing measures—the low power problem. The fact that our results are driven by the

largest firms provides compelling support for the notion that multifactor models pick up

temporary mispricing that then distorts expected returns that should only reflect underlying

risk premia. In other words, the largest firms would seem to present the strongest test of

what model should be the proper benchmark for addressing questions about market efficiency

(Fama, 1991). Our test indicates that the CAPM is a better model for this task than popular

multifactor models.

We reach the same conclusion about the CAPM when conducting our test instead using

spreads formed by sorting stocks on their industry average book-to-market ratio (BM). Unlike

our choices of PERF and MGMT, which are characteristics motivated as mispricing proxies,

we entertain industry BM simply as a characteristic with potential to exploit persistence in

multifactor risk measures, thereby providing our test with power. When using spreads based

on decade-old industry BM, we find that our test does not hinge on just large stocks and

that spreads within medium and small stocks also provide our test with sufficient power to

distinguish among models. In all cases, the CAPM is again the model that our test favors

as the no-mispricing benchmark. Across size categories, spreads on decade-old industry BM

produce insignificant CAPM alphas but significant alphas with respect to the multifactor

models.
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Models failing our hurdle for a no-mispricing benchmark can perform well by the usual

empirical metrics that assess a pricing model’s ability to describe expected returns condi-

tional on any available information. Those models potentially capture mispricing well, and

some of them are even cast explicitly in those terms (e.g., Stambaugh and Yuan (2017)).

Such models can be quite useful in designing trading strategies, for example, but they are less

useful for providing the benchmark model of expected returns to which “properly” applies

in the sense of Fama (1991).

Our approach and evidence are novel, but they relate to results reported in recent studies

by Cho and Polk (2020), Keloharju, Linnainmaa, and Nyberg (2020), and Yara, Boons, and

Tamoni (2020). We discuss and interpret their results in the context of our tests. Our

framework can reconcile and add perspective to those results, providing a unified explanation.

The rest of the paper is organized as follows. Section 2 motivates our test, discusses its

power, describes our empirical setting, and presents the test results for various pricing models

using spreads formed with decade-old measures of mispricing. Section 3 provides insights

into the test results by examining the resulting alphas and factor betas for the sequence of

lags up to ten years. Section 4 examines the implications of persistent firm characteristics

for factor betas as well as the underreaction scenario. Section 5 reports results using lagged

industry book-to-market ratios. Section 6 discusses our findings in the context of the related

studies mentioned above, and Section 7 concludes.

2. A simple test of pricing without mispricing

In this section we introduce and apply our test of whether an asset pricing model is the

proper benchmark that delivers expected returns in the absence of mispricing. We begin by

motivating our test and discussing its inherent challenge in achieving power. We explain why

large stocks are likely to provide our test with the greatest power, given their more persistent

multifactor betas, which we document. We then apply the test to a variety of asset pricing

models prominent in the literature. In addition to the traditional CAPM of Sharpe (1964)

and Lintner (1965), we test the three-factor model of Fama and French (1993), the five-factor

model of Fama and French (2015), the four-factor model of Hou, Xue, and Zhang (2015), and

the CAPM augmented by the betting-against-beta (BAB) factor of Frazzini and Pedersen

(2014).
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2.1. Motivation and power

In the absence of mispricing, the proper benchmark asset pricing model should deliver zero

alpha for any investment strategy. This implication motivates the canonical test of market

efficiency, but it is plagued by the joint hypothesis problem identified by Fama (1970): any

test of efficiency is a joint test of the pricing model. The proper model for testing efficiency

is one that characterizes prices in an equilibrium wherein (public) information is correctly

reflected in prices. Such an equilibrium may be just hypothetical in a market with noise

traders or other frictions that hinder information from being incorporated immediately into

prices. Nevertheless, the “proper” model is the one relevant to the joint hypothesis problem

posed by Fama (1970). Under this view, non-zero alphas imply mispricing or an incorrect

model, while zero alphas imply no mispricing or, again, an incorrect model. In the latter case,

the incorrect model captures mispricing but not expected returns in the absence thereof. In

other words, the model is not a useful empirical benchmark for gauging the extent of market

inefficiencies.

Rather than investigate potential market inefficiencies, we explore the other side of the

joint hypothesis. That is, we ask which asset pricing models best capture expected return

in the absence of mispricing. To do so, we assume that decade-old information is correctly

reflected in prices today, however inefficient the market may be in reflecting current in-

formation. Specifically, we test the abilities of various models to produce zero alpha for

strategies based on decade-old stock characteristics. Such a test, we argue, is unlikely to be

contaminated by information inefficiency.

The test’s inherent challenge is achieving power. We seek to discriminate among pricing

models that include or omit various factors. For many assets, however, current betas on

those factors may have little or no relation to decade-old characteristics. Our test relies on

finding assets and characteristics for which the relation between the assets’ current betas

and lagged characteristics is strong enough to provide power. We expect the greatest power

to be offered by assets most likely to have stable betas.

To understand better the nature of our test and its potential power, let ft denote the

vector of returns in month t on the factor portfolios associated with a given asset pricing

model. Consider the time-series regression,

rt = α + β′ft + εt, (1)

where rt is the excess return in month t on an investment strategy whose portfolio weights

in month t are determined by sorting a given universe of assets, A, on the values in a vector
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x of a characteristic observed (publicly) in month t − τ . The value of α depends on the

identity of the characteristic, x, its lag length, τ , the set of factors, f , and the asset universe,

A. We represent this dependence via the functional notation,

α = α(x, τ, f, A). (2)

Let f ∗ denote the factors in the proper pricing model that captures expected return in the

absence of mispricing. Our test assumes

α(x, 120, f ∗, A) = 0 (3)

for any characteristic x. If the market is efficient, then α(x, 1, f ∗, A) = 0 for any x. In an

inefficient market, various choices of x can make α(x, 1, f ∗, A) 6= 0.

A model can fail as the no-mispricing benchmark by omitting a relevant factor or by

including an irrelevant one. Omitting a relevant factor from a pricing model is a possibility

long recognized in the literature. In an inefficient market, however, there is a distinct possi-

bility that models are developed with factors that are irrelevant in the absence of mispricing.

The factors in prominent pricing models are generally returns on portfolios formed using

recent information, unavailable before month t − 1. In an inefficient market, a set of such

factors, f̃ , can be useful in making

α(x, 1, f̃ , A) ≈ 0 (4)

for various choices of a characteristic, x. To reject such a model as being the correct no-

mispricing benchmark, our test relies on detecting

α(x̂, 120, f̃ , Â) 6= 0, (5)

for a given asset universe, A = Â, and a given characteristic, x = x̂.

Suppose that the model is not the no-mispricing benchmark because f̃ incorrectly includes

or excludes a given factor, fj. Let βj(x̂, τ, f̃ , Â) denote the factor’s corresponding element

of β in equation (1) if f̃ includes fj. Otherwise, let βj(x̂, τ, f̃ , Â) denote the factor’s slope

coefficient in that regression when f̃ is augmented by fj. A necessary condition for (5) to

obtain, and thus for our test to have power, is that that

βj(x̂, 120, f̃ , Â) 6= 0. (6)

That nonzero beta in (6), when multiplied by the non-zero mean (factor premium) of fj,

then represents the component of expected return that is incorrectly included or excluded,
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resulting in the nonzero alpha in (5). The challenge faced by our test, noted earlier, is that

for many asset universes and characteristics, there may be essentially no relation between

individual assets’ decade-old values in x̂ and their current betas on fj. In that scenario, a

long-short strategy based on those values in x̂ is likely to produce βj(x̂, 120, f̃ , Â) = 0, the

same as one would expect if the assets in the long and short legs were just randomly selected.

Settings more likely to avoid this no-power scenario are those in which βj(x̂, 1, f̃ , Â) 6= 0 and

the individual assets’ betas on fj are stable over time. The latter condition, in turn, seems

more likely when the selected universe, Â, comprises assets tending to have more stable

factor betas generally.

2.2. Large stocks have the most stable betas

We expect larger stocks to have more stable betas. By virtue of their size, large firms are

likely to have greater inertia, taking longer to change course in ways that would significantly

impact their characteristics relevant to factor exposures. (Aircraft carriers turn more slowly

than destroyers.)

Table 1 reports evidence consistent with this argument for betas with respect to the five

factors in the model of Fama and French (2015). For each factor, we compute the rank

correlation between stocks’ estimated betas in months t and t− 120 for all stocks that exist

in both months. The beta estimate in a given month uses monthly returns in the prior 60

months. The table reports the average rank correlation across all months in our sample,

which covers the period from January 1968 through December 2018. We compute these

rank correlations within each of three size segments. Using NYSE market-cap percentiles as

break points, and using market values at the end of month t−120, we form three subsamples

consisting of all NYSE, AMEX, and NASDAQ stocks (i) above the 70th percentile, (ii)

between the 70th and 20th percentiles, and (iii) below the 20th percentile. For labeling ease,

we denote these segments as “large,” “medium,” and “small,” while recognizing that other

terms can be applied. For example, we sometimes use “microcaps” as an alternative label

for the stocks below the 20th percentile, following Fama and French (2008).4

The results in Table 1 reveal that some factors generally have more stable betas than

others. For example, MKT and SMB betas have rank correlations between 0.14 and 0.33,

whereas the correlations for CMA betas are 0.03 or less in magnitude. For all factors,

4Stocks between the 70th and 20th NYSE percentiles essentially combine categories that are often denoted
as “mid-cap” and “small-cap.” In that respect, readers should not misinterpret our “small” labeling.
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however, the rank correlation among large stocks exceeds that among the other two size

segments. Moreover, aside from the tiny correlations for CMA betas, the rank correlation

among medium-sized stocks exceeds that among small stocks for each of the other four

factors. We see that beta stability increases in firm size, suggesting large stocks are likely

to provide our test with the most power. Large stocks are also less volatile and more liquid,

which reduces estimation error in their betas, which can also improve power.

2.3. Mispricing measures and test power

2.3.1. PERF and MGMT scores

Rather than entertain many separate stock characteristics, we rely on two measures that

combine multiple characteristics. Specifically, we focus on PERF and MGMT, the two “mis-

pricing” measures constructed by Stambaugh and Yuan (2017) using 11 stock characteristics

corresponding to a set of prominent return anomalies analyzed previously by Stambaugh,

Yu, and Yuan (2012, 2014, and 2015).5 We follow this research design for two reasons: par-

simony and transparency. First, favoring parsimony, Stambaugh and Yuan (2017) show that

factors based on PERF and MGMT, when combined with market and size factors, produce

jointly insignificant alphas for spreads formed using a large number of other stock charac-

teristics beyond the set of 11. With each of the two measures comprising a manageable

number of characteristics, related behavioral hypotheses can be more easily identified, and

we exploit that ability in analyzing our results. Second, to maximize transparency, we stick

with two measures used in previous studies rather than tailor measures specific to this one.

While in principle such latter measures might provide additional power, they would likely

invite concerns about how we settled on an approach for selecting those measures, versus

potentially many other reasonable approaches that might yield different conclusions.

Stambaugh and Yuan (2017) construct PERF and MGMT by separating the 11 charac-

teristics into two clusters, with a cluster containing the characteristics most similar to each

other. Similarity can be measured by either time-series correlations of anomaly returns or

average cross-sectional correlations of characteristic rankings. As shown by Stambaugh and

Yuan (2017), both methods produce the same two clusters of characteristics.

The characteristics in PERF are distress, O-score, momentum, gross profitability, and

return on assets, while those in MGMT are net stock issues, composite equity issues, ac-

5The appendix included in Stambaugh and Yuan (2017) provides detailed descriptions of these 11 char-
acteristics.
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cruals, net operating assets, asset growth, and the ratio of investment to assets. Following

Stambaugh and Yuan (2017), we compute a stock’s PERF and MGMT scores in a given

month by averaging the stock’s rankings with respect to its available characteristics within

each of the two clusters. Higher rankings for a characteristic correspond to lower abnormal

returns, as identified by previous studies documenting the return anomalies. If a stock has

fewer than three non-missing rankings within either cluster, its corresponding mispricing

score (PERF or MGMT) for the month is missing.

2.3.2. Test power for PERF versus MGMT

At a given point in time, the stock characteristics underlying either PERF or MGMT can

correlate cross-sectionally with the stocks’ sensitivities to one or more of the factors in a

multifactor pricing model. For such factors, the more stable are stocks’ related characteris-

tics, the more likely it is that a spread based on lagged values of those characteristics has

current betas on those factors that differ between the spread’s long and short legs. That is,

the more likely is the spread to meet the condition in equation (6).

Figure 1 reports the persistence in PERF and MGMT scores for large, medium, and

small cap stocks. Within each universe, we rank stocks on their PERF or MGMT scores and

compute the average difference in scores between stocks in the top 30% versus the bottom

30%. We compute that average difference for scores lagged from 1 month (“year 0”) to 120

months (“year 10”). The k-year persistence measure, displayed in the figure, is the ratio of

the average score difference for the year-k lag to that for the year-0 lag.

Figure 1 shows that PERF scores exhibit substantially greater persistence than MGMT

scores, for all three size categories. By the earlier reasoning, the multifactor betas on PERF

spreads are more likely to be persistent and thereby satisfy the condition in equation (6),

as compared to MGMT spreads. We also see in Figure 1 that the persistence in PERF

scores is especially strong among large stocks. This observation that large firms have greater

persistence in at least some of their characteristics seems consistent with the results presented

earlier, showing multifactor betas are generally most stable for large stocks. Overall, given

these findings, we expect PERF spreads among the largest stocks to provide our test with

the most power. In a later section, we investigate carefully the role that persistence in

characteristics and betas plays in our test results, which are presented next.
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2.4. Test results

We apply our test to the CAPM, the Fama-French three- and five-factor models (denoted

as FF3 and FF5), the Hou-Xue-Zhang four-factor model (denoted as Q4), and the CAPM

augmented by the Frazzini-Pedersen BAB factor (denoted as CAPM+BAB).6 For each of

these five models, and for various market-cap subsamples, Table 2 reports the estimated

alphas and associated t-statistics for spreads based on decade-old PERF or MGMT scores.

To construct the spreads, in each month t, stocks are divided into the most underpriced 30%

(M1), the middle 40% (M2), and the most overpriced 30% (M3) based on their PERF or

MGMT scores in month t−120. The long-short spread is the M1 minus M3 return in month

t, and the stocks in each leg are value weighted. This sorting and long-short construction is

performed separately within each of the large, medium, and small segments of size described

earlier, formed based on market values in month t − 120. We also repeat the above within

a “mega cap” subsample of the 200 largest stocks, as well as within the all-stock universe.

The most striking results in Table 2 occur when sorting on decade-old PERF scores, in

Panel A. Across all size segments, spreads based on PERF produce relatively small CAPM

alphas, between −14 and 21 basis points (bps) per month, with t-statistics of 1.55 or less

in magnitude. In contrast, among large stocks, the same PERF spreads produce substantial

and statistically significant alphas for all four of the multifactor models, between 29 and 46

bps, with t-statistics between 2.35 and 4.16. Even a PERF spread among just the mega caps

produces equal or greater alphas for FF3, FF5, and Q4, with significant t-statistics between

2.16 and 3.32, despite there being only 200 stocks in that category. For CAPM+BAB, the

mega-cap alpha is 7 bps lower than among all large caps, with the t-statistic dropping from

2.71 to 1.81, but the mega-cap alpha is still a substantial 31 bps per month, versus the

CAPM’s alpha of 19 bps with a t-statistic of just 1.16.

Consistent with our prior that large stocks offer our test the most power, the large-stock

segment is where we see differing test outcomes across models. For the small-stock segment,

decade-old PERF scores produce nothing close to a rejection for any of the models, with t-

statistics between −0.49 and −1.10. That is, microcaps do not allow our test to say anything

about whether one model serves better than another as the proper no-mispricing benchmark.

This result is unsurprising. Firms that were microcaps a decade ago, if still around today, are

likely to have experienced significant changes in their fundamental characteristics, implying

their decade-old PERF scores may have little relation to their current betas on any of the

various models’ factors. A sort on those PERF scores then produces essentially the same

6We download factors for the last four models from the respective authors’ websites.
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estimated alphas one would expect from a random sort—zero.

The corresponding results for medium-sized stocks lie between the two contrasting cases

for large and small stocks, just as one would expect with a positive relation between firm size

and test power. For medium stocks, the CAPM is again not rejected, producing an alpha of

−9 bps with a t-statistic of −0.54, the smallest values in absolute magnitude among the four

models. For the multifactor models, the results are mixed: FF5 and CAPM+BAB produce

alphas of 26 and 28 bps, respectively, with t-statistics of 2.10 and 2.02, thus being rejected;

Q4 produces nearly the same alpha, 25 bps, but with a marginal t-statistic of 1.64; FF3 is

clearly not rejected, with an alpha of 10 bps and a t-statistic of 0.73. Thus, as compared to

small stocks, stronger evidence against at least two of the multifactor models emerges among

medium stocks, but the strongest evidence clearly resides with large stocks.

Microcaps account for roughly half of the total number of stocks in a given month, so

given the above results for microcaps, including them when sorting on decade-old PERF

scores is likely to shrink the multifactor alphas considerably. Indeed, when sorting within

the all-stock universe, the resulting alphas with respect to FF5 and Q4 are just 17 and 18

basis points, with t-statistics of 1.62 and 1.54, which are smaller than what those models

produce within the large and medium categories. For FF3 and CAPM+BAB, however, the

all-stock alphas, though lower than the large-stock alphas, are nevertheless substantial, equal

to 31 and 29 bps, with t-statistics of 2.86 and 2.19.

The results in Panel B of Table 2 reveal that our test cannot discriminate across models

when based on MGMT scores. The alphas for all of the models, across all size categories,

are no greater than 17 bps in magnitude, and the t-statistics are no greater than 1.54 in

magnitude. MGMT scores, in contrast to PERF scores, exhibit less long-term persistence,

and decade-old MGMT scores bear little relation to current estimated betas on the various

model’s factors. PERF scores exhibit considerable persistence, as shown earlier, and we later

relate that property to persistence in the PERF spread’s multifactor betas. Nevertheless, for

those wishing to set aside this distinction between PERF and MGMT and view the earlier

PERF results as simply “one out of two,” we next conduct multiple-comparison versions of

our test to assess whether rejection of the multifactor models based on our test is simply

due to chance.
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2.5. Multiple comparisons

The first four columns of results in Table 3 report p-values for a joint test of whether the

PERF and MGMT alphas are jointly zero. This Wald test essentially corresponds to that

of Gibbons, Ross, and Shanken (1989), modified to incorporate a heteroskedasticity- and

autocorrelation-consistent covariance matrix, with p-values thus computed using the asymp-

totic chi-square distribution rather than the F -distribution. For large stocks, the CAPM

produces a p-value of 7.5%, whereas the four multifactor models produce p-values less than

2%. Thus, even when ignoring the distinction between PERF and MGMT that is relevant to

our test’s power, a meaningful distinction emerges between the CAPM and the multifactor

models. At a conventional 5% significance level, the joint test does not reject the CAPM

as the appropriate no-mispricing benchmark model, but all four of the multifactor models

are rejected. Among mega-cap stocks, the p-values for FF3, FF5, and Q4 are just slightly

higher but still well below 5%. As with the PERF result in Table 2 for CAPM+BAB among

mega caps, the corresponding result in Table 3 for that 200-stock category is again marginal,

with a p-value of nearly 8%. In contrast, though, the CAPM’s p-value among mega caps is

36%. For the medium and small categories, the joint test rejects none of the five models at

conventional significance levels, which is not surprising given the results for these categories

in Table 2.

The last two columns of Table 3 report p-values for tests that set aside the power-relevant

distinctions between not only PERF and MGMT, but also between large and small firms.

The test reported in the next-to-last column is the same as reported in the previous four

columns but performed on the all-stock universe. The last column reports a test of whether

both the PERF and MGMT alphas, in each of the three separate size categories (large,

medium, and small), are all jointly equal to zero. In other words, this last test considers

a six-element vector of alphas. Most of the p-values in both columns exceed conventional

significance levels except those for FF3 and CAPM+BAB. For FF3, the p-values are 1.25%

in the next-to-last column and 0.12% in the last column. For that popular, long-standing

model, evidently the decade-old PERF scores of large stocks identify violations strong enough

to survive dilution by including smaller stocks via either of the two underlying channels. For

CAPM+BAB, the all-stocks p-value in the next-to-last column is 2.39%. The multifactor

models’ remaining p-values in the last two columns, between 5.7% and 13.1%, while exceeding

conventional significance levels, are substantially smaller than those of the CAPM, which

are 30% and 18.9%. Overall, these all-in multiple-comparison tests, which ignore power

distinctions, echo the same message as earlier but with weaker statistical significance.
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The results of our test among large stocks reveal what seems to be an economically

significant shortcoming of popular multifactor models. These models fail significantly in

capturing expected returns on strategies based on decade-old information. Our assumption

that such information should be fully reflected in prices seems especially reasonable for the

market’s largest and most liquid stocks. The CAPM, in contrast, fares well in this regard,

emerging as a better candidate for the no-mispricing benchmark model.

3. Alphas and betas across lags

To gain additional perspective, we compute the alphas and factor betas of portfolios formed

by sorting on PERF and MGMT across various lag lengths, up to the ten years used in the

test. We first examine the lag patterns of alphas within each of the size segments. We then

decompose the large-stock alphas across lags, revealing which of PERF’s factor betas exhibit

the persistence underlying each multifactor model’s rejection by our test.

3.1. Alphas and lag length

Figure 2 plots the alphas of long-short spreads sorted on PERF lagged 1, 12, 24, . . . , 120

months, moving from left to right on the horizontal axis (labeled in years and denoting the

1-month lag as year 0). The top three panels plot the alphas under each model for each

of the three size groups, and the bottom three panels plot their corresponding t-statistics

(displaying reference lines at ±1.65 and ±1.96).

First, consider results for the large stocks, shown in the leftmost plots in Figure 2. When

sorting on PERF scores in the most recent month, the M1−M3 spread produces monthly

alphas between 26 and 62 bps across the five models, all statistically significant (marginally

so for Q4). These results echo those in Stambaugh and Yuan (2017), who sort stocks on the

most recent mispricing score (combining PERF and MGMT) and find significant long-short

alphas with respect to various prominent models. When PERF scores are instead lagged

one year, however, we see that the resulting spread’s CAPM alpha drops to just 6 bps, with

an insignificant t-statistic of 0.42. In contrast, the spread’s monthly alphas with respect to

the other three models are between 29 and 44 bps, with t-statistics between 2.1 and 4.8. At

longer lags, the CAPM alphas remain well smaller than those of the other models and never

rise to a level that is statistically different from zero. In contrast, all four multifactor models

produce positive and significant alphas that generally persist across the multi-year lags.
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The results for medium-sized stocks, in the middle panels of Figure 2, are similar to

those for large stocks in that the CAPM alphas lie consistently well below the multifactor

alphas at longer lags. The statistical significance of the latter alphas is weaker, consistent

with the lower power discussed earlier. For microcaps, in the rightmost plots, alphas for

all models drop sharply as the lag in PERF scores lengthens. That pattern dominates any

cross-model differences, which essentially converge to zero at the longest lags, consistent with

microcaps having little long-run stability in multifactor betas and hence providing no power

to discriminate across models.

Figure 3 plots alphas across lags for spreads based on MGMT scores. Recall from our

test results that all models, in all size segments, deliver statistically insignificant alphas when

MGMT scores are lagged ten years. Figure 3 reveals a general pattern of substantial declines

in the alphas as the lag length increases from one month to a few years. The basic reason,

noted earlier, is that factor betas for MGMT spreads are less persistent than those for PERF

spreads. Therefore, the MGMT spread’s long- and short-leg betas with respect to a given

factor tend to converge more quickly to the same value as the lag lengthens. As a result, the

MGMT spreads essentially provide no power for our test when sorting on decade-old scores.

Figure 4 shows results for the 200 largest stocks (mega caps) that correspond to the

plots for large, medium, and small stocks displayed in Figures 2 and 3. As noted earlier,

even when the PERF and MGMT spreads are formed just within the mega caps, our test

produces results quite similar to those obtained for the broader large-cap segment. The plots

in Figure 4 reveal that this strong similarity of results extends across all lags.

Even though the MGMT spreads provide our test with insufficient power to distinguish

the various models’ suitability as the no-mispricing benchmark, the MGMT spreads do help

provide insight, along with PERF, into potential empirical motivations for multifactor pricing

models. Specifically, consider the alphas for spreads formed based on the most recent scores

(i.e., at the end of the previous month), corresponding to year 0 in the plots. In Figure 3, for

example, note that the alphas based on the most recent MGMT scores are greatest for the

CAPM across all size segments; the multifactor models, especially FF5 and Q4, reduce those

alphas considerably. For PERF, the latter two multifactor models also reduce the year-0

CAPM alphas among the medium and small stocks, which are the segments in which year-0

CAPM alphas are the greatest.

Combined with our test results, the above year-0 observations suggest a narrative in

which many apparent violations of the CAPM produced by year-0 (month t − 1) sorting

characteristics, such as PERF and MGMT, reflect short-term mispricing rather than omitted
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components of expected returns under the no-mispricing benchmark model. Multifactor

models reduce apparent year-0 violations by partially capturing mispricing, but the models

then distort expected returns relative to the no-mispricing benchmark. We next investigate

sources of these distortions.

3.2. Decomposing alphas

When applied to large stocks, our test rejects each of the multifactor models as being the

no-mispricing model. To understand better the source of these rejections, Tables 4 through

8 decompose the large-stock alphas for the PERF and MGMT spreads plotted in Figures

2 and 3. Specifically, the alpha at each lag is decomposed into the average return spread

minus the product of the spread’s estimated beta times the sample-average factor premium

for each factor in the model. Panel A reports results for PERF, and Panel B reports results

for MGMT. For example, the first row of Panel A of Table 4 decomposes the FF3 alpha

based on PERF scores from the most recent month (year 0) as follows:

raw excess return︸ ︷︷ ︸
0.21

+ (−βMKTMKT )︸ ︷︷ ︸
0.14

+ (−βSMBSMB)︸ ︷︷ ︸
0.01

+ (−βHMLHML)︸ ︷︷ ︸
0.26

= α︸︷︷︸
0.62

Note that the bulk of the alpha is coming from a negative exposure to HML that delivers

an additional 26 bps above the 21 bps excess return. The alpha of 62 bps, with a t-statistic

of 6.05, confirms the predictive ability of the PERF mispricing measure of Stambaugh and

Yuan (2017).

When PERF is lagged 12 months or more, in the remaining rows of Panel A in Table 4,

the average return spreads are generally quite small, all less than those at the one-month lag.

As the lag increases, the spread’s market-exposure component shrinks slightly but remains

fairly stable, declining from 0.14 at one month to 0.10 at ten years. The SMB component

is consistently tiny. At all lags, the largest component of alpha comes from HML exposure,

whose contribution is 26 bps at year 0 and declines only modestly to 20 bps at year 10. In

other words, the PERF spread’s negative beta on HML is very persistent. The persistent

HML beta injects an unhelpful component of implied expected returns for the PERF spread

well after any earlier mispricing associated with the stale PERF scores is likely to have

disappeared. Any persistence in mispricing, especially among large and liquid stocks, is

likely to be far less than the observed persistence in PERF’s HML exposure. We see that

the latter persistence accounts for the rejection of FF3 as the no-mispricing benchmark model

in the sense of Fama (1970), based on our test using decade-old PERF scores.
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Panel B of Table 4 reports the corresponding FF3 results for spreads based on lagged

MGMT scores. The average return spread equals 37 bps at a one-month lag (year 0), declines

to 14 bps at a three-year lag, and takes even smaller values at longer lags. The year-0 alpha

of the spread is 27 bps (t-statistic: 3.63), and the year-1 alpha remains nearly that high

at 25 bps (t-statistic: 3.09). At longer lags, however, the alpha is small and insignificant.

The contributions to alpha from market and SMB exposures are consistently small. Most

importantly, in contrast to the PERF results, the contribution from HML exposure shrinks

substantially toward zero as the lag increases. Thus, as the lag in MGMT scores increases,

the average spread return shrinks, but so does the contribution from HML exposure, resulting

in no significant alpha. The shrinking exposure to HML indicates that the HML betas of

the MGMT spread’s long and short legs become similar within a few years. This lack of

persistence in betas leaves our test based on decade-old MGMT scores with little power.

For the FF5 model, Table 5 presents the same alpha decomposition. The results based

on PERF spreads, in Panel A, are very similar. The component of alpha arising from HML

exposure is even somewhat larger than in FF3 (Table 4). Again, that exposure persists at

long lags, injecting an unhelpful component of implied expected return well after any previ-

ous mispricing associated with the lagged PERF scores is likely to have been corrected. The

negative alpha components reflecting exposures to the two additional factors, investment

(CMA) and profitability (RMW), help produce lower alphas than does FF3. That result is

consistent with those factors helping to capture mispricing. As the lag increases, however,

PERF’s exposures to CMA and RMW shrink and only modestly offset the positive contri-

bution from the persistent HML exposure. The latter contribution, as with FF3, accounts

for our test’s rejecting FF5 as the no-mispricing benchmark model. For the spread based on

decade-old PERF scores, the alpha is 29 bps per month with a t-statistic of 2.62.

Panel B of Table 5 reports results for MGMT spreads. As noted earlier, our test fails to

reject FF5 when using MGMT, as the year-10 alpha is −12 bps with a t-statistic of −1.29.

The results for the other lags in Panel B, however, offer a nuanced interpretation. Recall

from Table 4 that the spread based on MGMT scores from the most recent month (year 0)

produces a FF3 alpha of 27 bps, with a t-statistic of 3.63. That spread’s alpha under FF5

drops to just 5 bps with a t-statistic of 0.76. At longer lags, though, the FF5 alphas turn

negative and produce some relatively large t-statistics. For example, if we had designated

seven years rather than ten in our test’s no-mispricing assumption, the corresponding test

would have produced a rejection for FF5 using MGMT (t-statistic: −2.47). The reason

for the negative alphas at longer lags is that the MGMT spread’s HML, CMA, and RMW

exposures all make relatively persistent negative contributions to alpha that are not offset
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by MGMT’s positive but progressively smaller average return spreads at longer lags. By

year 10, the most important of the alpha contributions, reflecting exposure to the CMA

investment factor, declines to less than 40% of its year-0 value. Therefore, insufficient beta

stability, as discussed earlier, ultimately dooms our test based on decade-old MGMT scores.

At the same time, somewhat more CMA beta stability would evidently have otherwise led

to rejection. Also worth noting is that MGMT’s year-0 alpha under FF3 (and under the

CAPM) is the largest in absolute magnitude across all lags, whereas that same spread’s tiny

alpha under FF5 is the second smallest in absolute magnitude across all lags (and just 1 bp

higher than the year-1 value). Viewed collectively, these results for MGMT at least suggest

a scenario, as outlined earlier, in which adding investment and profitability factors helps

capture mispricing and satisfy the condition in equation (4). Persistent exposures to those

factors distort implied expected returns after the mispricing is corrected.

Table 6 reports the same alpha decomposition for the Q4 model of Hou, Xue, and Zhang

(2015). This model does not contain the value factor, HML, which is the main factor causing

distortions to expected returns in the FF3 and FF5 models. Instead of including HML, the

Q4 model adds investment and profitability factors, IA and ROE, to the market and size

factors. Panel A reports the results for the PERF spreads. As with FF3 and FF5, we again

see a factor injecting an unhelpful positive component of alpha at longer lags. Unlike with

those models, where the unhelpful factor is HML, here we see IA is the most troublesome

factor for the Q4 model. The IA column in Panel A of Table 6 contains values very similar

to those in the HML column in Panel A of Table 4 (in fact the year-0 and year-10 values

are identical). As with FF5, PERF’s exposure to the profitability factor makes a relatively

persistent negative contribution to alpha that only partially offsets the unhelpful positive

contribution from the most troublesome factor, IA. Thus, we arrive at the same explanation

as to why our test rejects Q4 using PERF; the explanation here simply replaces HML with

IA. We return a bit later to this swapping of roles between IA and HML as the troublesome

factor causing distortions in expected returns.

Panel B of Table 6 suggests the same interpretation for the Q4 model discussed previously

as that of Panel B of Table 5, for the FF5 model. The year-0 MGMT spread’s alpha under

Q4 is 5 bps, the same as the spread’s FF5 alpha. At longer lags, alphas are again negative,

larger in magnitude, and often with substantial t-statistics. As with FF5, the most important

contributor to the negative alphas at longer lags is the investment factor, IA, and the pattern

across years is similar: MGMT’s IA exposure exhibits nontrivial persistence across lags, but

not enough to produce a significant alpha at year 10. The IA contribution at year 10 is only

35% of its year-0 contribution.
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Spreads based on lagged PERF scores exhibit persistent exposures to the value factor,

HML, that largely account for the rejections of FF3 and FF5 as the no-mispricing bench-

mark model. Recall that the rejection of the Q4 model, however, owes largely to persistent

exposures to Q4’s investment factor, IA. The results in Table 7 reveal that this swapping of

roles as the troublesome factor is due to the fact that Q4 does not include a value factor.

To draw that conclusion, we augment the factors in Q4 with HML and decompose alphas

with respect to that multifactor model. First, our test based on decade-old PERF scores

among large stocks also rejects this model as the no-mispricing benchmark. Specifically, the

year-10 alpha reported in Panel A of Table 7 is 36 bps with a t-statistic of 3.16. The largest

contribution to that alpha is HML exposure, which is strongly persistent across all lags. The

alpha contribution from IA exposure is consistently small. This dominance of HML exposure

for the PERF spread therefore closely resembles that for FF5 in Panel A of Table 5. In other

words, when comparing these results to those in Panel A of Table 6, we see that the IA

exposure of the PERF spread simply serves as a stand-in for the spread’s HML exposure

when HML is absent, as in the Q4 model.

Panel B of Table 7 decomposes the MGMT-spread alphas with respect to the model

that augments Q4 with the HML factor. These results are very similar to those for Q4

in Table 6. The alpha is very small for year-0 but is larger and negative at longer lags,

often producing significant t-statistics. The year-10 value is again insignificant because the

investment factor’s large negative alpha contribution is not persistent enough as the lag

increases.

Table 8 reports decompositions of large-stock alphas with respect to the CAPM aug-

mented by the BAB factor of Frazzini and Pedersen (2014). Panel A presents results for the

PERF spreads. We see that persistent negative exposure to the BAB factor results in a per-

sistent positive alpha contribution across lags. That contribution is the largest component

of alpha at all lags beyond year 0. As with the other multifactor models, persistent expo-

sures to a non-market factor continue to inject unhelpful components into implied expected

returns well after mispricing related to stale PERF scores is likely to have been corrected.

Panel B of Table 8 reports corresponding results for MGMT-spread alphas. In this case,

exposures to the BAB factor make a persistent contribution to alpha, but the contribution

is negative and offsets positive contributions from average return and market exposure. As

a result, the alpha at the ten-year lag is insignificant, with a t-statistic of −1.08. Again,

spreads based on MGMT do not provide enough power to allow our test to distinguish among

models as being the no-mispricing benchmark.
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4. Persistence in characteristics

A spread based on decade-old PERF scores exhibits a very persistent HML beta, especially

among large stocks. What accounts for that persistence? Is price correction why the spread’s

average return is less persistent? We next explore these two questions, focusing on the role

of persistence in characteristics that constitute the PERF score.

4.1. HML beta and persistent characteristics

As noted earlier, a stock’s PERF score is the average of its cross-sectional rankings (per-

centiles) on five characteristics: gross profitability, return on assets, distress, O-score, and

momentum. To streamline our analysis, we average the first two characteristics to form a

profitability score, and we average the second two to form a “financial health” score (the neg-

ative of the two distress measures). Figure 5 plots the average, across all sample months, of

the current difference in average profitability scores (Panel A), financial health scores (Panel

B), and momentum scores (Panel C) between the long and short legs of spreads formed on

lagged PERF scores among large-cap stocks. The lags range from 1 month (0 years) to 10

years, and the shaded areas indicate plus/minus 1.96 standard errors.

As Figure 5 indicates, the spread in profitability scores between the PERF spread’s long

and short legs (M1 versus M3) declines slowly as the lag increases but remains significant

even at the ten-year lag. In other words, the profitability difference between today’s high-

and low-PERF stocks tends to persist well into future years. This persistence in profitability

is consistent with the low turnover of profitability-sorted portfolios found by Novy-Marx

(2013) and Frazzini, Israel, and Moskowitz (2018). The second plot in Figure 5 shows that

financial health is similarly persistent over a 10-year horizon. The third plot, however, shows

that there is little persistence in momentum differences, which is consistent with the high

turnover of momentum strategies (Frazzini, Israel, and Moskowitz (2018)).

The persistence in some of PERF’s underlying characteristics can explain much of the

persistence in PERF’s HML beta. To show this, we first regress individual large stocks’

current HML betas on the stocks’ current profitability, financial health, and momentum

scores. The HML betas are estimated in the FF5 model, using the most recent 60 months

of return data. Table 9 reports the coefficients and t-statistics from this Fama-MacBeth

regression. The HML beta exhibits a strongly significant negative relation to profitability (t-

statistic: −8.87) and a marginally significant negative relation to financial health (t-statistic:
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−1.81). As observed above, the PERF spread’s long-short differences in these characteristics

are quite persistent.

We can assess the role of that persistence in capturing the persistence in PERF’s HML

beta. Specifically, for each characteristic, we multiply the coefficient in Table 9 by the

PERF spread’s corresponding long-short difference in the characteristic plotted in Figure

5. We then sum those products across characteristics to obtain the fitted HML beta of the

PERF spread for each lag. Figure 6 plots those fitted betas along with the actual estimated

betas. The fitted betas are uniformly smaller in absolute magnitude than actual betas,

because the regression does not explain all cross-sectional variation in HML betas. Thus,

the regression predicts less of a difference between the betas on the long and short legs than

exists in the actual estimates. However, the fitted betas exhibit strong persistence, not as

much as in the actual beta estimates, but a substantial amount nonetheless. In other words,

persistence in PERF’s characteristics accounts for much of the persistence in the HML beta

of the PERF spread. Recall that the latter persistence lies at the heart of our test’s rejection

of the multifactor models that include the HML factor.

4.2. Underreaction and persistent characteristics

Our test rejects prominent multifactor models as being the no-mispricing benchmark. As

discussed above, these rejections are consistent with the PERF characteristics, and thus the

PERF spreads’ multifactor betas, persisting longer than mispricing. In order for PERF to

persist longer than whatever mispricing it identifies, PERF must therefore be an imperfect

indicator of mispricing. We next explore whether PERF’s limitation as a mispricing measure

is consistent with the likely source of mispricing it identifies.

PERF’s underlying characteristics are profitability, financial health, and momentum.

Previous studies provide evidence that the abilities of all three characteristics to predict

stock returns reflect the market’s underreaction to relevant information. For example,

Bouchard, Krüger, Landier, and Thesmar (2019) link the profitability anomaly to under-

reaction; Dichev (1998) links the financial-health (distress) anomaly to underreaction; Da,

Gurun, and Warachka (2014) link the momentum anomaly to underreaction. Moreover,

Chen, He, Tao, and Yu (2020) directly link the PERF measure’s predictive ability to under-

reaction.

If the mispricing identified by PERF reflects underreaction, then the degree of that

mispricing should depend on how long a stock has had its current PERF score. As observed
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earlier, PERF scores are generally quite persistent, especially for large firms, but we expect

any associated mispricing to be less persistent. For a stock whose PERF score has not

changed in years, it seems unlikely that the market would still be underreacting to whatever

information that PERF score initially represented. For a stock whose PERF score recently

changed, underreaction to the underlying information reflected in that score is more plausible.

To examine this hypothesis, we distinguish PERF scores that have persisted at their

current levels from PERF scores that have more recently changed. We first divide all large

stocks into quintiles based on their PERF scores in the most recent month. LetQi,t denote the

stock’s PERF quintile, with quintile 1 containing the most underpriced stocks and quintile 5

the most overpriced. Within PERF quintiles 1 and 5, we further divide stocks into quintiles,

P1 through P5, based on the persistence of their current score over the past ten years.

Specifically, for each stock i in month t, we compute

Persistencei,t = [I(Qi,t = 5)− I(Qi,t = 1)]×
120∑
τ=13

ωτ [Mi,t−τ − 0.5] , (7)

where I(Qi,t = n) equals 1 if Qi,t = n and 0 otherwise, ωτ = [10− int((τ − 1)/12)] /9,

and Mi,t−τ is the percentile rank of stock i based on its PERF score in month t − τ , with

a high (low) rank corresponding to overpricing (underpricing). To provide some sense of

the differences in the persistence of scores, P1 firms have on average been in their PERF-

score quintile for around a year (12 months), while P5 firms on average have been in their

respective PERF-score quintiles for about 8 out of the last 10 years.

For each persistence quintile, the first row of Table 10 reports the monthly CAPM alphas

of long-short spreads based on PERF quintiles 5 minus 1. The underreaction hypothesis

predicts that long-short spreads based on PERF scores should be the most profitable when

formed with stocks whose PERF scores are the least persistent. Consistent with this hypoth-

esis, the PERF-spread alphas are nearly monotonic across persistence quintiles. The spread

based on the least persistent PERF scores has the highest alpha, equal to 89 bps per month

with a t-statistic of 3.57. The spread based on the most persistent scores has an alpha of only

24 basis points with a t-statistic of 1.02. In other words, PERF scores that have remained

relatively constant for a long time exhibit no significant ability to predict returns. The differ-

ence of 66 bps between the least and most persistent PERF quintiles has a t-statistic of 2.29.

The last column shows that a PERF spread using the least persistent scores outperforms the

PERF spread within the entire large-stock segment (regardless of score persistence) by 50

bps per month (t-statistic of 2.69). The results for the PERF spreads in Table 10 strongly

support the underreaction hypothesis and demonstrate why mispricing is likely to be less
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persistent than PERF scores and their underlying stock characteristics.

The difference in persistence between mispricing and PERF scores among large stocks

is essentially what enables our test to distinguish the CAPM from prominent multifactor

models as the better candidate for the no-mispricing benchmark model. On the flip side,

for the objective of finding profitable trading strategies, our results indicate that the stock

characteristics underlying PERF, such as profitability and financial health, are primarily

useful when dissimilar to their past values. When a firm’s values of these characteristics

have been similar for a long time, the characteristics lose their predictive ability for returns,

consistent with our premise that mispricing does not last very long in competitive markets.

The second row of Table 10 repeats the above analysis using MGMT scores to identify

mispricing. The literature generally does not advance underreaction as an explanation for

the predictive abilities of the stock characteristics that constitute MGMT (net stock issues,

composite equity issues, accruals, net operating assets, asset growth, and investment to as-

sets). Consistent with that observation, we see no pattern in the MGMT-spread alphas

across the persistence quintiles. The P1 minus P5 difference in alphas is −11 bps with a sta-

tistically insignificant t-statistic of −0.49. MGMT scores strongly predict returns, however,

delivering a CAPM alpha for the MGMT spread within all large stocks of 64 bps per month

(t-statistic of 5.75).

5. Tests using book-to-market ratios

Given that the HML factor is a spread between high and low ratios of book to market (BM),

and given that persistence in the HML betas on PERF spreads plays such a key role in

our test’s ability to distinguish among models, a natural question arises: Do spreads based

on decade-old BM, rather than decade-old PERF, also allow our test to distinguish among

models? This section addresses that question. As explained below, the answer is no for

stock-specific BM but yes for industry-level BM. The CAPM again emerges as the only

model not rejected as being the proper no-mispricing benchmark when our test uses spreads

based on stocks’ decade-old industry BM.
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5.1. Using stock-specific book-to-market ratios

Spreads based on decade-old values of BM for individual stocks are unable to distinguish

among the models we consider as the proper no-mispricing benchmark. Such spreads produce

insignificant alphas with respect to any of the five models considered. This apparent lack of

power occurs despite the key role played by HML betas in the results presented earlier. The

essential reason is that the HML betas on BM spreads exhibit less persistence than do the

HML betas on PERF spreads. In that respect, the HML betas on BM spreads have more in

common with those on MGMT spreads, with the lack of persistence similarly depriving our

test of sufficient power to distinguish among models.

At the root of this somewhat surprising result is that current BM is related less to past

BM than to past PERF characteristics, especially profitability. Table 11 reports estimates

from a multiple regression of large stocks’ current BM values on decade-old values of BM,

profitability, financial health, and momentum. The coefficient on past BM is insignificant,

with a t-statistic of 1.22, but the coefficient on past profitability is strongly negative, with

a t-statistic of −3.51. These results make sense if investors underreact to information such

as profitability, a hypothesis supported in the previous section. Recall from the earlier

discussion that profitability is typically rather persistent. Our finding in Table 11 that a

firm with low past profitability tends to have high current BM is consistent with a scenario

in which the stock’s past price underreacted to the low profitability but eventually fell as

profitability remained low. The same underreaction would make the stock’s past BM, before

that price decline, less useful in predicting its current BM. This effect would reduce the

persistence in HML betas on individual-stock BM spreads.

5.2. Using industry-level book-to-market ratios

Some industries, such as technology, are generally viewed as growth oriented, while other

industries, such as financials, are usually associated with value. These industry characteriza-

tions are often rather longstanding. In this respect, spreads based on stocks’ industry-level

BM seem good candidates to provide their multifactor risk measures with enough persistence

to give our test power. As an alternative to using a given stock’s own BM, we therefore use

the stock’s industry BM. The latter is the average BM of all stocks within the stock’s indus-

try, using the 48-industry classification scheme of Fama and French (1997).

Our conjecture that spreads based on industry BM can deliver fairly persistent multifactor
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risk measures is supported by the data. For example, the average HML beta of a spread based

on the most recent month’s industry BM equals 0.63. When industry BM is increasingly

lagged out to ten years, the resulting spread’s HML beta steadily declines, but at the ten-year

lag it still equals 0.38, retaining 60% of its magnitude at the one-month lag.

Panel A of Table 12 reports alphas of portfolios formed by sorting stocks on the most

recent month’s industry BM. The CAPM again emerges as a model distinct from the other

four models considered. The latter models produce significant negative alphas in virtually

all cases, for portfolios formed within the various market-cap segments as well as within the

all-stock universe. In contrast, the CAPM alphas, while also negative, have t-statistics with

magnitudes of 1.17 or less for the large, medium, and small categories as well as the all-stock

universe. Only the mega-cap subset of large produces a negative alpha with even marginal

significance, producing a t-statistic of −1.93. The last column reports the test of whether

the large-, medium-, and small-cap alphas are jointly zero. The CAPM p-value is 0.487,

while the other models’ p-values are 0.009 or less.

The results in Panel A clearly point to the CAPM as being distinct from the other models,

with the CAPM successfully pricing spreads based on current industry BM while the other

models fail to do so. The latter models evidently imply too high an expected return on a

high-minus-low industry-BM spread. Of course, proponents of a multifactor model being

the proper no-mispricing benchmark could argue that the multifactor model successfully

identifies mispricing associated with industry BM, while the CAPM fails to do so. Such

an argument could be difficult to dispel, despite the previous literature not prominently

associating mispricing with industry BM. Our test, however, offers a potential resolution. If

the significantly negative multifactor alphas reflect mispricing, our test assumes that such

mispricing would be corrected within a decade. We turn next to that test.

Panel B of Table 12 reports alphas of portfolios formed by sorting stocks on decade-old

industry BM. The most striking property of Panel B is its similarity to Panel A. The CAPM

is again rather distinct from the other models. The monthly CAPM alphas in all columns

are fairly small, ranging between −8 and −22 bps, and none are significant, with t-statistics

of 1.39 or less in magnitude. In contrast, the other models produce negative monthly alphas

ranging between −23 and −57 bps, with mostly significant t-statistics. Of the 20 t-statistics,

the smallest magnitude is 1.83, and all but four are greater than 1.96 in magnitude. The

test of whether the large-, medium-, and small-cap alphas are jointly zero produces a CAPM

p-value of 0.483, while the other models’ p-values are 0.006 or less.

When based on industry BM spreads, our test again favors the CAPM as the proper no-
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mispricing benchmark. This result echoes our test’s earlier finding based on PERF spreads.

If anything the results based on industy BM are even more compelling, as they do not hinge

mostly on large stocks.

6. Reinterpreting related studies

When compared to prominent multifactor models, the CAPM emerges as the best choice

for the benchmark model of proper pricing in the sense of Fama (1970). Our test reveals

that the CAPM prices decade-old information better than prominent multifactor models.

This finding resembles some other recent results from the literature, but we provide a rather

different motivation and interpretation. Our framework can reconcile and provide some

additional clarity to the other results, offering a potentially unifying explanation.

For example, Cho and Polk (2020) find that the CAPM describes the cross-section of

prices better than it describes expected short-horizon returns. Their finding can be inter-

preted through the lens of our test. Price levels of stocks, viewed as discounted present

values of long-term assets, are likely to depend more on discount rates applied in the long

run than on short-run discount rates. If mispricing gets corrected in the short run, as we

assume, then it affects expected returns (discount rates) only at short horizons. When ab-

stracting from mispricing (conditioning only on decade-old information), we find that the

CAPM best captures expected returns. Likewise, by looking at prices, Cho and Polk (2020)

effectively mitigate the impact of mispricing distortions, present in short-horizon expected

returns, thereby allowing the expected returns that are unaffected by mispricing, i.e., those

prevailing in later periods, to have the dominant voice. The CAPM then fares well, con-

sistent with our results. Cho and Polk (2020) do not interpret their result in this manner

and instead leave it as a challenge for future work. Nor do they conduct tests to distinguish

among various asset pricing models. We offer a novel test that distinguishes among models

and provides a plausible interpretation of their results.

Keloharju, Linnainmaa, and Nyberg (2020) find that persistent differences in firm char-

acteristics do not predict stock returns, a result that they argue is consistent with long-term

expected returns not varying across stocks. While the authors admit a mispricing expla-

nation, they largely interpret their findings as reflecting changes in firms’ risks over time,

with risks reverting toward common levels. We offer a different (and somewhat opposite)

interpretation. That is, the reason persistent characteristics fail to have long-term return

consequences is because they imperfectly identify mispricing, which dissipates faster than
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the characteristics change. The characteristics do not matter for expected returns absent

mispricing (e.g., expected returns in more distant periods), consistent with our finding that

the CAPM serves better than do multifactor models as the proper no-mispricing benchmark.

Of course, separate from that point, CAPM betas could also revert to a common level (one),

making long-run return forecasts equal across stocks, but our interpretation does not in-

volve risks converging. In fact, as explained earlier, our test’s power to discriminate among

prominent asset pricing models hinges on stability in multifactor betas.

A distinction between long-run and short-run expected returns further clarifies our study’s

focus. The CAPM and the multifactor models that we consider are models of short-run

(single-period) expected returns. Among those models, we find the CAPM to be the most

favored as describing short-run expected returns in an efficient market. This finding suggests,

for example, that when evaluating returns on short-run strategies exploiting information

period by period, the CAPM would best identify the portion of those returns attributable

to mispricing, or at least it would do so better than the four multifactor models.

Expected returns could be virtually equal across assets at long return horizons, whether

or not the market is efficient and whether or not the CAPM (implying unequal short-run

returns) is the appropriate no-mispricing benchmark. That is, if mispricing is fairly short

lived and risk measures tend to mean revert, assets’ expected returns can converge to each

other as the return horizon grows, following Keloharju, Linnainmaa, and Nyberg (2020). For

short-horizon returns, in contrast, there is little motivation for a model of equal expected

returns in an efficient market, and we do not include that model in our reported test results.

For the most part our test based on decade-old information cannot distinguish that model

from the CAPM, but such results seem uninteresting, given the absence of motivation.

Yara, Boons, and Tamoni (2020) examine the returns to 56 characteristic-sorted port-

folios up to five years after portfolio formation and compare the return differences between

long-short portfolios sorted on the most recent information about a characteristic and lagged

(up to five years) information about a characteristic. For about half of the cross-sectional

characteristics they study, they find significant pricing errors between the recent and old

characteristics that are not captured by existing asset pricing models, where 2/3 of those

characteristics contain more return predictability from newer information and 1/3 contain

more predictability from old information. Yara, Boons, and Tamoni (2020) argue that over-

fitting of short-term return predictability by multifactor models (e.g., Harvey and Liu, 2019)

may explain these findings. However, the authors do not link their findings to asset pricing

theory or explain why some characteristics benefit more from older versus newer information.
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They simply show that existing asset pricing models fail to capture characteristic-sorted port-

folio returns at different horizons, where the CAPM does better at pricing older sorts, but

worse at newer sorts, while popular mulitfactor models like the Fama and French five-factor

model do better at pricing newer sorts than older sorts, all consistent with our results. Our

study provides insights into why some characteristics produce alphas for longer periods than

others, depending on which pricing model is used to compute alpha.

7. Conclusion

In an efficient market, public information is properly reflected in prices, but assessing ef-

ficiency rests on having a pricing model that defines “properly” (Fama, 1970, 1991). We

investigate whether prominent asset pricing models appear suitable for that role. We assume

prices properly reflect at least the information the market has had ten years to evaluate and

exploit, whether or not the market is efficient. With this assumption, a model suitable as the

no-mispricing benchmark should clear the seemingly modest hurdle of assigning zero alphas

to long-short spreads based on decade-old information.

We find a number of prominent models fail that test, assigning significant alphas to

spreads formed using ten-year lags of the Stambaugh and Yuan (2017) PERF mispricing

score. The above models include the three- and five-factor models of Fama and French (1993,

2015), the four-factor model of Hou, Xue, and Zhang (2015), and the CAPM augmented with

the betting-against-beta factor of Frazzini and Pedersen (2014). In contrast, the same long-

short spreads do not produce significant alphas with respect to the traditional CAPM of

Sharpe (1964) and Lintner (1965). Therefore, the CAPM emerges from this evaluation as

the best candidate for the no-mispricing benchmark.

While it seems reasonable that spreads based on decade-old information should receive

zero alpha with respect to the no-mispricing benchmark, the main challenge faced by our

test is achieving power. For many stocks, current values of factor betas may be unrelated

to decade-old information. However, we show that large stocks sorted on PERF have the

most stable multifactor betas, thus offering our test the most power. Consistent with that

evidence, the large-stock segment is where a ten-year-lag PERF spread provides the clearest

rejections of the various multifactor models. Our evidence is consistent with a scenario in

which mispricing, due to underreaction that PERF imperfectly identifies, corrects faster

than the PERF spread’s multifactor betas decay toward zero. Those betas then persist in

making unhelpful distortions to implied expected returns. We find additional support for

28



underreaction, where the longer a PERF score remains unchanged, the less useful it is in

predicting returns.

To have large stocks play the strongest role in our test underscores the economic impor-

tance of the result. For these stocks that are the backbone of the US economy, prominent

multifactor models evidently distort expected returns purged of mispricing. Mispricing of

large stocks is likely short-lived, given their high visibility and liquidity, so long-run de-

cisions using expected returns not purged of mispricing could create substantial economic

consequences and capital misallocations. Our results in support of the CAPM do not hinge

solely on large stocks, however. In particular, spreads based on decade-old industry BM

allow our test to distinguish the CAPM from multifactor models within medium and small

stocks as well.

The traditional CAPM fares well in our test, compared to prominent multifactor models.

At the same time, our study is probably better viewed as saying more about the latter

models than as issuing an unqualified endorsement of the CAPM as being the proper no-

mispricing benchmark model. The relatively parsimonious set of models we consider is far

from exhaustive. Identifying the right set of factors, let alone constructing them properly

in a world that may include mispricing, must remain challenges for future research. In

an initial attempt to compare the abilities of pricing models to serve as the no-mispricing

benchmark, we believe the models we consider present a horserace with interesting entrants.

We certainly acknowledge that there could be speedier horses out there. Seeking refinements

of our approach that potentially offer more power also seems a worthy research objective.

Of course, another worthy and parallel objective for research in asset pricing is to continue

building models that better describe actual expected returns, whether or not the prices

determining those expected returns include mispricing. Although such models may be less

useful for gauging the extent of market inefficiencies or understanding risk premia, they can

be otherwise useful, such as in designing investment strategies.
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Figure 1. Persistence in PERF and MGMT scores. The figure displays the persistence
in PERF and MGMT scores for large, medium, and small cap stocks. Within each universe,
we rank stocks on their PERF or MGMT scores and compute the average difference in scores
between stocks in the top 30% versus the bottom 30%. We compute that average difference
for scores lagged from 1 month (“year 0”) to 120 months (“year 10”). The k-year persistence
measure, displayed in the figure, is the ratio of the average score difference for the year-k lag
to that for the year-0 lag.
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Figure 2. Spreads formed with PERF scores. The figure plots estimated alphas (top
panels) and their t-statistics (bottom panels) for long-short spreads formed using lagged
PERF scores. The long (short) leg is the value-weighted portfolio of stocks in the bottom
(top) 30% of PERF scores, which are lagged from 1 month (year 0) up to 120 months (year
10). The PERF percentiles and spreads are constructed separately within three segments
based on (lagged) market capitalization: large (left panels), medium(middle panels), and
small (right panels), with the NYSE’s 70th and 20th percentiles used as breakpoints. Alphas
are computed with respect to six pricing models: CAPM, FF3, FF5, Q4, and CAPM+BAB.
“BAB” denotes the betting-against-beta factor of Frazzini and Pedersen (2014). The lower
subpanels include reference lines at t-statistics of ±1.65 and ±1.96. The sample period is
from 1/1968 to 12/2018.
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Figure 3. Spreads formed with MGMT scores. The figure plots estimated alphas (top
panels) and their t-statistics (bottom panels) for long-short spreads formed using lagged
MGMT scores. The long (short) leg is the value-weighted portfolio of stocks in the bottom
(top) 30% of PERF scores, which are lagged from 1 month (year 0) up to 120 months (year
10). The MGMT percentiles and spreads are constructed separately within three segments
based on (lagged) market capitalization: large (left panels), medium (middle panels), and
small (right panels), with the NYSE’s 70th and 20th percentiles used as breakpoints. Alphas
are computed with respect to six pricing models: CAPM, FF3, FF5, Q4, and CAPM+BAB.
“BAB” denotes the betting-against-beta factor of Frazzini and Pedersen (2014). The lower
subpanels include reference lines at t-statistics of ±1.65 and ±1.96. The sample period is
from 1/1968 to 12/2018.
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Figure 4 . Spreads formed with PERF and MGMT scores among mega-caps.
The figure plots estimated alphas (top panels) and their t-statistics (bottom panels) for
long-short spreads formed using lagged PERF scores (left panels) and MGMT scores (right
panels). The long (short) leg is the value-weighted portfolio of stocks in the bottom (top)
30% of scores, which are lagged from 1 month (year 0) up to 120 months (year 10). The
percentiles and spreads are constructed within the sample of mega-cap stocks, consisting
of the largest 200 stocks ranked by their most recent market capitalization. Alphas are
computed with respect to six pricing models: CAPM, FF3, FF5, Q4, and CAPM+BAB.
“BAB” denotes the betting-against-beta factor of Frazzini and Pedersen (2014). The lower
subpanels include reference lines at t-statistics of ±1.65 and ±1.96. The sample period is
from 1/1968 to 12/2018.
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Figure 5. Spreads in PERF characteristics. Each panel plots the average difference in
a characteristic’s current score between the long and short legs of a spreads based on PERF
scores lagged from 1 month (year 0) up to 120 months (year 10). The spreads contain large-
cap stocks (exceeding the NYSE’s 70th percentile), and each spread’s long (short) leg contains
stocks in the bottom (top) 30% of that sample’s PERF scores lagged from 1 month (year
0) up to 120 months (year 10). The characteristics, which constitute the PERF measure,
are profitability (left panel), financial health (middle panel), and momentum (right panel).
A stock’s profitability score is calculated as the simple average of the percentile rankings
of two profitability measures, ROE and gross profitability, with high scores indicating high
ROE and high gross profitability. A stock’s financial health score is calculated as the simple
average of the percentile rankings of two distress measures, failure probability and O-score,
with high scores indicating low failure probability and low O-scores. A stock’s momentum
score is the percentile ranking of its previous 12-month return, omitting the most recent
month. The shaded areas indicate 95% confidence intervals. The sample period is from
1/1968 to 12/2018.
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Figure 6 . Fitted and actual HML betas of PERF spreads. The figure plots the
realized (solid line) and fitted (dashed line) HML beta of long-short spreads formed using
lagged PERF scores. The spreads contain large-cap stocks (exceeding the NYSE’s 70th
percentile), and each spread’s long (short) leg contains stocks in the bottom (top) 30% of
that sample’s PERF scores lagged from 1 month (year 0) up to 120 months (year 10). The
realized beta is the coefficient in a time-series regression using the most recent 60 months.
The fitted beta combines the characteristic spreads in Figure 5 with the regression coefficients
in Table 9. The sample period is from 1/1968 to 12/2018.
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Table 1
Correlations between current and decade-old factor betas

The table reports rank correlations of stocks’ factor betas in the current month with those ten
years ago. The factors are those in the model of Fama and French (2015), and factor betas
are estimated over the most recent 60 months. The rank correlations are computed separately
within three segments based on (lagged) market capitalization—large, medium, and small—
with the NYSE’s 70th and 20th percentiles used as breakpoints. The rank correlations are
averaged across all months from 1/1973 to 12/2018.

Factor Large Medium Small

MKT 0.27 0.23 0.14
SMB 0.33 0.19 0.15
HML 0.17 0.12 0.04
CMA 0.03 −0.02 −0.01
RMW 0.10 0.06 0.05
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Table 2
Pricing tests using decade-old information

The table reports estimated monthly alphas (in percent) and t-statistics (in parentheses) for
spreads between value-weighted portfolios of stocks in the bottom and top 30% of stocks
sorted by PERF scores (Panel A) and MGMT scores (Panel B), both lagged 10 years. Results
are shown for the total stock universe as well as mega-cap stocks (largest 200) and three
market-cap segments formed using NYSE percentiles as breakpoints: large (above 70th),
medium (70th to 20th), and small (below 20th). The models tested are the CAPM of Sharpe
(1964) and Lintner (1965), the three- and five-factor models of Fama and French (1993, 2015),
denoted FF3 and FF5, the four-factor model of Hou, Xue, and Zhang (2015), denoted Q4, and
CAPM+BAB, where “BAB” denotes the betting-against-beta factor of Frazzini and Pedersen
(2014). The sample period is 1/1968 to 12/2018.

Mega-cap Large Medium Small All stocks

Panel A: Spreads based on PERF

CAPM 0.19 0.21 −0.09 −0.14 0.12
(1.16) (1.55) (−0.54) (−0.87) (0.99)

FF3 0.48 0.46 0.10 −0.16 0.31
(3.32) (4.16) (0.73) (−0.96) (2.86)

FF5 0.29 0.29 0.26 −0.20 0.17
(2.16) (2.62) (2.10) (−1.10) (1.62)

Q4 0.37 0.33 0.25 −0.21 0.18
(2.21) (2.35) (1.64) (−0.99) (1.54)

CAPM+BAB 0.31 0.38 0.28 −0.10 0.29
(1.81) (2.71) (2.02) (−0.49) (2.19)

Panel B: Spreads based on MGMT

CAPM 0.03 0.09 0.12 0.07 0.08
(0.32) (1.01) (0.74) (0.41) (0.86)

FF3 −0.04 0.02 −0.04 −0.01 −0.01
(−0.34) (0.18) (−0.28) (−0.09) (−0.09)

FF5 −0.17 −0.12 −0.02 −0.08 −0.14
(−1.54) (−1.29) (−0.14) (−0.45) (−1.43)

Q4 −0.14 −0.12 −0.08 −0.11 −0.14
(−1.17) (−1.15) (−0.49) (−0.58) (−1.34)

CAPM+BAB −0.12 −0.11 −0.03 −0.03 −0.13
(−1.11) (−1.08) (−0.19) (−0.17) (−1.33)
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Table 3
Multiple comparison tests

The table entries are p-values. The first five columns test joint equality to zero of the alphas
in Panels A and B of Table 2 for the corresponding size segment. The last column tests joint
equality to zero of the six element vector containing the alphas in Panels A and B of Table
2 for each of the large, medium, and small size segments. The test is that of Gibbons, Ross,
and Shanken (1989) but with a heteroskedasticity- and autocorrelation-consistent covariance
matrix

.

Mega-cap Large Medium Small All stocks Large/Medium/Small

CAPM 0.3581 0.0753 0.6050 0.6727 0.2999 0.1892
FF3 0.0006 < 0.0001 0.7237 0.6363 0.0125 0.0012
FF5 0.0285 0.0126 0.1434 0.3957 0.1102 0.0570
Q4 0.0233 0.0197 0.2124 0.3404 0.1309 0.1005
CAPM+BAB 0.0777 0.0070 0.1270 0.8145 0.0239 0.0701
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Table 4
Decomposing Fama-French three-factor alphas

The table decomposes alphas with respect to the three-factor model of Fama and French (1993) for

spreads formed using PERF scores (Panel A) and MGMT scores (Panel B). The spreads contain

large-cap stocks (exceeding the NYSE’s 70th percentile), and each spread’s long (short) leg contains

stocks in the bottom (top) 30% of that sample’s scores lagged from 1 month (year 0) up to 120 months

(year 10). Summing, within a row, the ExRet column (spread’s average return) and the subsequent

columns of −β×factor mean (contributions of factor exposures) gives the α column (spread’s monthly

percent alpha). The last column reports the alpha’s t-statistic. The sample period is from 1/1968

to 12/2018.

Year ExRet −βMKTMKT −βSMBSMB −βHMLHML α t(α)

Panel A: Spreads based on PERF

0 0.21 0.14 0.01 0.26 0.62 6.05
1 0.02 0.11 0.01 0.29 0.44 4.81
2 0.01 0.10 0.01 0.27 0.39 3.89
3 0.08 0.08 0.01 0.24 0.41 4.28
4 0.08 0.08 0.01 0.24 0.41 4.24
5 0.03 0.09 0.00 0.23 0.35 3.65
6 0.08 0.09 0.00 0.23 0.40 3.99
7 0.07 0.08 0.01 0.23 0.39 3.54
8 −0.05 0.08 0.01 0.23 0.27 2.61
9 0.02 0.09 0.01 0.20 0.33 2.95
10 0.15 0.10 0.01 0.20 0.46 4.16

Panel B: Spreads based on MGMT

0 0.37 0.05 0.02 −0.17 0.27 3.63
1 0.32 0.05 0.02 −0.14 0.25 3.09
2 0.12 0.05 0.03 −0.13 0.06 0.77
3 0.14 0.06 0.02 −0.11 0.11 1.18
4 0.02 0.05 0.02 −0.11 −0.02 −0.23
5 0.09 0.04 0.02 −0.12 0.03 0.38
6 0.11 0.04 0.01 −0.11 0.05 0.55
7 0.04 0.03 0.02 −0.10 −0.01 −0.14
8 0.02 0.01 0.02 −0.10 −0.04 −0.43
9 0.05 0.02 0.02 −0.06 0.03 0.34
10 0.03 0.03 0.02 −0.06 0.02 0.18
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Table 5
Decomposing Fama-French five-factor alphas

The table decomposes alphas with respect to the five-factor model of Fama and French (2015) for

spreads formed using PERF scores (Panel A) and MGMT scores (Panel B). The spreads contain

large-cap stocks (exceeding the NYSE’s 70th percentile), and each spread’s long (short) leg contains

stocks in the bottom (top) 30% of that sample’s scores lagged from 1 month (year 0) up to 120 months

(year 10). Summing, within a row, the ExRet column (spread’s average return) and the subsequent

columns of −β×factor mean (contributions of factor exposures) gives the α column (spread’s monthly

percent alpha). The last column reports the alpha’s t-statistic. The sample period is from 1/1968

to 12/2018.

Year ExRet −βMKTMKT −βSMBSMB −βHMLHML −βCMACMA −βRMWRMW α t(α)

Panel A: Spreads based on PERF

0 0.21 0.11 −0.00 0.31 −0.10 −0.10 0.42 3.39
1 0.02 0.10 0.01 0.30 −0.01 −0.07 0.34 3.69
2 0.01 0.09 0.01 0.26 0.01 −0.07 0.31 3.30
3 0.08 0.07 0.01 0.26 −0.05 −0.05 0.32 3.29
4 0.08 0.07 0.01 0.27 −0.07 −0.05 0.31 3.05
5 0.03 0.07 0.00 0.26 −0.06 −0.04 0.26 2.63
6 0.08 0.07 0.01 0.27 −0.08 −0.02 0.32 3.02
7 0.07 0.06 0.01 0.27 −0.09 −0.04 0.28 2.49
8 −0.05 0.06 0.01 0.27 −0.09 −0.05 0.15 1.47
9 0.02 0.06 0.00 0.25 −0.09 −0.08 0.17 1.49
10 0.15 0.08 −0.00 0.25 −0.11 −0.08 0.29 2.62

Panel B: Spreads based on MGMT

0 0.37 0.01 0.02 −0.07 −0.23 −0.05 0.05 0.76
1 0.32 0.01 0.02 −0.04 −0.21 −0.06 0.04 0.53
2 0.12 0.02 0.02 −0.07 −0.15 −0.06 −0.11 −1.28
3 0.14 0.03 0.01 −0.03 −0.17 −0.07 −0.10 −1.06
4 0.02 0.02 0.01 −0.04 −0.16 −0.09 −0.25 −2.88
5 0.09 0.01 0.01 −0.05 −0.16 −0.08 −0.19 −2.10
6 0.11 0.01 −0.00 −0.05 −0.14 −0.07 −0.14 −1.50
7 0.04 −0.00 0.00 −0.02 −0.17 −0.08 −0.23 −2.47
8 0.02 −0.01 0.01 −0.06 −0.10 −0.06 −0.19 −1.79
9 0.05 0.00 0.01 −0.02 −0.10 −0.07 −0.12 −1.29
10 0.03 0.01 0.01 −0.03 −0.09 −0.06 −0.12 −1.29
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Table 6
Decomposing Hou-Xue-Zhang Q4 alphas

The table decomposes alphas with respect to the four-factor “Q4” model of Hou, Xue, and Zhang

(2015) for spreads formed using PERF scores (Panel A) and MGMT scores (Panel B). The spreads

contain large-cap stocks (exceeding the NYSE’s 70th percentile), and each spread’s long (short) leg

contains stocks in the bottom (top) 30% of that sample’s scores lagged from 1 month (year 0) up

to 120 months (year 10). Summing, within a row, the ExRet column (spread’s average return) and

the subsequent columns of −β × factor mean (contributions of factor exposures) gives the α column

(spread’s monthly percent alpha). The last column reports the alpha’s t-statistic. The sample period

is from 1/1968 to 12/2018.

Year ExRet −βMKTMKT −βSMBSMB −βROEROE −βIAIA α t(α)

Panel A: Spreads based on PERF

0 0.21 0.09 −0.01 −0.31 0.26 0.26 1.61
1 0.02 0.08 0.03 −0.19 0.36 0.30 2.33
2 0.01 0.08 0.04 −0.10 0.37 0.40 3.26
3 0.08 0.07 0.03 −0.07 0.29 0.40 3.28
4 0.08 0.06 0.02 −0.09 0.27 0.35 2.62
5 0.03 0.07 0.02 −0.07 0.27 0.32 2.48
6 0.08 0.07 0.02 −0.06 0.26 0.37 2.83
7 0.07 0.06 0.03 −0.07 0.26 0.34 2.46
8 −0.05 0.06 0.04 −0.09 0.25 0.20 1.54
9 0.02 0.07 0.02 −0.11 0.22 0.22 1.60
10 0.15 0.08 0.02 −0.11 0.20 0.33 2.35

Panel B: Spreads based on MGMT

0 0.37 0.03 0.03 0.00 −0.37 0.05 0.71
1 0.32 0.02 0.02 −0.06 −0.33 −0.02 −0.31
2 0.12 0.02 0.03 −0.07 −0.29 −0.18 −2.01
3 0.14 0.04 0.02 −0.05 −0.25 −0.10 −1.00
4 0.02 0.03 0.01 −0.11 −0.26 −0.30 −2.98
5 0.09 0.02 0.01 −0.08 −0.26 −0.21 −1.90
6 0.11 0.02 −0.00 −0.06 −0.23 −0.16 −1.44
7 0.04 0.01 0.01 −0.07 −0.24 −0.24 −2.20
8 0.02 0.00 0.01 −0.08 −0.20 −0.25 −2.05
9 0.05 0.01 0.02 −0.07 −0.13 −0.12 −1.07
10 0.03 0.02 0.02 −0.06 −0.13 −0.12 −1.15
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Table 7
Decomposing alphas with respect to Q4 plus HML

The table decomposes alphas with respect to the four-factor “Q4” model of Hou, Xue, and Zhang

(2015), augmented by the HML factor of Fama and French (2015), for spreads formed using PERF

scores (Panel A) and MGMT scores (Panel B). The spreads contain large-cap stocks (exceeding the

NYSE’s 70th percentile), and each spread’s long (short) leg contains stocks in the bottom (top) 30%

of that sample’s scores lagged from 1 month (year 0) up to 120 months (year 10). Summing, within a

row, the ExRet column (spread’s average return) and the subsequent columns of −β × factor mean

(contributions of factor exposures) gives the α column (spread’s monthly percent alpha). The last

column reports the alpha’s t-statistic. The sample period is from 1/1968 to 12/2018.

Year ExRet −βMKTMKT −βSMBSMB −βROEROE −βIAIA −βHMLHML α t(α)

Panel A: Spreads based on PERF

0 0.21 0.11 −0.01 −0.24 −0.02 0.24 0.29 2.27
1 0.02 0.09 0.02 −0.11 0.06 0.25 0.34 3.59
2 0.01 0.10 0.04 −0.04 0.11 0.21 0.43 4.50
3 0.08 0.08 0.03 −0.00 0.03 0.22 0.44 4.64
4 0.08 0.07 0.02 −0.02 −0.01 0.24 0.38 3.72
5 0.03 0.08 0.02 0.00 −0.00 0.23 0.35 3.60
6 0.08 0.08 0.02 0.01 −0.01 0.23 0.41 3.87
7 0.07 0.07 0.03 −0.01 −0.01 0.23 0.38 3.29
8 −0.05 0.07 0.03 −0.03 −0.01 0.22 0.23 2.10
9 0.02 0.08 0.02 −0.05 −0.02 0.20 0.25 2.11
10 0.15 0.09 0.01 −0.05 −0.05 0.21 0.36 3.16

Panel B: Spreads based on MGMT

0 0.37 0.03 0.03 −0.03 −0.26 −0.09 0.04 0.57
1 0.32 0.02 0.02 −0.07 −0.25 −0.06 −0.03 −0.45
2 0.12 0.02 0.03 −0.09 −0.19 −0.08 −0.20 −2.35
3 0.14 0.04 0.02 −0.07 −0.18 −0.06 −0.11 −1.11
4 0.02 0.02 0.02 −0.13 −0.16 −0.08 −0.31 −3.37
5 0.09 0.02 0.01 −0.10 −0.16 −0.08 −0.22 −2.14
6 0.11 0.02 0.00 −0.08 −0.13 −0.08 −0.17 −1.65
7 0.04 0.01 0.01 −0.08 −0.17 −0.06 −0.25 −2.34
8 0.02 −0.00 0.01 −0.11 −0.10 −0.09 −0.26 −2.34
9 0.05 0.01 0.02 −0.09 −0.06 −0.06 −0.13 −1.17
10 0.03 0.02 0.02 −0.08 −0.05 −0.06 −0.13 −1.29
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Table 8
Decomposing alphas with respect to the CAPM plus BAB

The table decomposes alphas with respect to the CAPM, augmented by the betting-against-beta

(BAB) factor of Frazzini and Pedersen (2014), for spreads formed using PERF scores (Panel A)

and MGMT scores (Panel B). The spreads contain large-cap stocks (exceeding the NYSE’s 70th

percentile), and each spread’s long (short) leg contains stocks in the bottom (top) 30% of that

sample’s scores lagged from 1 month (year 0) up to 120 months (year 10). Summing, within a

row, the ExRet column (spread’s average return) and the subsequent columns of −β × factor mean

(contributions of factor exposures) gives the α column (spread’s monthly percent alpha). The last

column reports the alpha’s t-statistic. The sample period is from 1/1968 to 12/2018.

Year ExRet −βMKTMKT −βBABBAB α t(α)

Panel A: Spreads based on PERF

0 0.21 0.08 0.08 0.38 2.24
1 0.02 0.05 0.22 0.29 2.12
2 0.01 0.05 0.24 0.29 2.16
3 0.08 0.04 0.24 0.36 2.84
4 0.08 0.04 0.23 0.35 2.57
5 0.03 0.04 0.24 0.31 2.44
6 0.08 0.04 0.24 0.36 2.71
7 0.07 0.04 0.22 0.33 2.25
8 −0.05 0.04 0.18 0.17 1.19
9 0.02 0.05 0.14 0.21 1.48
10 0.15 0.06 0.16 0.38 2.71

Panel B: Spreads based on MGMT

0 0.37 0.11 −0.20 0.28 2.61
1 0.32 0.09 −0.20 0.21 2.10
2 0.12 0.09 −0.24 −0.04 −0.35
3 0.14 0.09 −0.22 0.01 0.07
4 0.02 0.09 −0.26 −0.15 −1.50
5 0.09 0.08 −0.26 −0.09 −0.93
6 0.11 0.07 −0.21 −0.03 −0.36
7 0.04 0.06 −0.23 −0.14 −1.36
8 0.02 0.05 −0.23 −0.16 −1.48
9 0.05 0.05 −0.19 −0.09 −0.89
10 0.03 0.06 −0.19 −0.11 −1.08
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Table 9
Large stocks’ HML betas regressed on their PERF characteristics

The table reports the coefficient estimates from a monthly Fama-Macbeth regression of large
stocks’ HML betas on their scores for the characteristics that constitute PERF: profitability,
financial health, and momentum. A stock’s profitability score is calculated as the simple
average of its percentile rankings for two profitability measures, ROE and gross profitability
(high scores indicating high ROE and high gross profitability). The financial-health score is
the simple average of the percentile rankings of two distress measures, failure probability and
O-scores (high scores indicating low failure probability and low O-scores). The momentum
score is the percentile ranking of past 12-month returns, omitting the most recent month.
HML betas are estimated based on the five-factor model of Fama and French (2015), using
the prior 60 months of monthly data. The sample period is from 1/1968 to 12/2018.

Characteristic Coefficient

Profitability −0.0087
(−8.87)

Financial health −0.0019
(−1.81)

Momentum 0.0008
(0.70)
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Table 10
Effects on alpha of persistence in mispricing scores

The table reports the CAPM alphas for spreads based on PERF and MGMT scores, condi-
tional on the degree to which the stocks’ current scores have persisted. The universe consists
of large stocks (above the NYSE’s 70th percentile) and is first divided into quintiles based
on the most recent PERF scores or MGMT scores. Within the top and bottom quintiles of
those mispricing scores, we rank stocks based on Persistencei,t, which measures the degree
to which a stock’s score in past years has been similar to the current level. Specifically, with
the past window truncated at 10 years,

Persistencei,t = [I(Qi,t = 5)− I(Qi,t = 1)]×
120∑
τ=13

ωτ [Mi,t−τ − 0.5] ,

where Qi,t is stock i’s quintile of PERF or MGMT score in month t, I(Qi,t = k) equals 1 if
Qi,t = k and 0 otherwise, ωτ = [10− int((τ − 1)/12)] /9, and Mi,t−τ is the rank percentile
of stock i based on its PERF or MGMT score in month t − τ . For different quintiles of
Persistencei,t, the table reports the monthly percent CAPM alpha for PERF and MGMT
spreads (20% most underpriced minus 20% most overpriced), with t-statistics in parentheses.
The sample period is from 1/1968 to 12/2018.

Least Least
Among stocks whose current scores have persisted minus All minus
Least Next 20% Next 20% Next 20% Most most stocks all

PERF spreads 0.89 0.65 0.44 0.19 0.24 0.66 0.40 0.50
(3.57) (2.81) (2.03) (0.94) (1.02) (2.29) (2.22) (2.69)

MGMT spreads 0.50 0.85 0.86 0.64 0.62 −0.11 0.64 −0.14
(3.19) (4.82) (4.89) (3.84) (3.36) (−0.49) (5.75) (−0.91)
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Table 11
Large stocks’ book-to-market ratios regressed on decade-old PERF

characteristics and book-to-market ratios

The table reports the coefficient estimates and t-statistics (in parentheses) from a monthly
Fama-Macbeth regression of large stocks’ book-to-market (BM) ratios on values 120 months
earlier of BM ratios and scores for the characteristics that constitute PERF: profitability,
financial health, and momentum. A stock’s profitability score is the simple average of its
percentile rankings for two profitability measures, ROE and gross profitability (high scores
indicating high ROE and high gross profitability). The financial-health score is the simple
average of the percentile rankings of two distress measures, failure probability and O-scores
(high scores indicating low failure probability and low O-scores). The momentum score is the
percentile ranking of past 12-month returns, omitting the most recent month. The sample
period is from 1/1968 to 12/2018.

Characteristic Coefficient

Profitability −0.0082
(−3.51)

Financial health 0.0017
(2.06)

Momentum 0.0003
(0.35)

Book-to-market 0.1539
(1.22)
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Table 12
Pricing tests using current and decade-old industry BM

The table reports estimated monthly alphas (in percent) and t-statistics (in parentheses) for
spreads between value-weighted portfolios of stocks in the bottom and top 30% of stocks sorted
by the most recent month’s industry BM (Panel A) and industry BM lagged ten years (Panel
B). Results are shown for the total stock universe as well as mega-cap stocks (largest 200) and
three market-cap segments formed using NYSE percentiles as breakpoints: large (above 70th),
medium (70th to 20th), and small (below 20th). The models tested are the CAPM of Sharpe
(1964) and Lintner (1965), the three- and five-factor models of Fama and French (1993, 2015),
denoted FF3 and FF5, the four-factor model of Hou, Xue, and Zhang (2015), denoted Q4, and
CAPM+BAB, where “BAB” denotes the betting-against-beta factor of Frazzini and Pedersen
(2014). The last column tests joint equality to zero of the three element vector containing the
alphas for Large, Medium, Small size segments. The test is that of Gibbons, Ross, and Shanken
(1989) but with a heteroskedasticity- and autocorrelation-consistent covariance matrix. The
sample period is 1/1968 to 12/2018.

L/M/S
Mega-cap Large Medium Small All stocks GRS p-value

Panel A: Spreads based on current industry BM

CAPM −0.28 −0.17 −0.04 0.00 −0.15 0.4872
(−1.93) (−1.17) (−0.23) (0.02) (−1.05)

FF3 −0.61 −0.52 −0.47 −0.33 −0.52 < 0.0001
(−5.14) (−4.74) (−3.93) (−2.48) (−4.74)

FF5 −0.67 −0.63 −0.72 −0.50 −0.64 < 0.0001
(−5.63) (−5.48) (−6.43) (−3.93) (−5.51)

Q4 −0.59 −0.53 −0.57 −0.39 −0.51 0.0007
(−4.13) (−3.65) (−3.38) (−2.28) (−3.35)

CAPM+BAB −0.53 −0.46 −0.47 −0.33 −0.46 0.0090
(−3.63) (−3.08) (−2.39) (−1.73) (−2.96)

Panel B: Spreads based on decade-old industry BM

CAPM −0.16 −0.14 −0.09 −0.22 −0.08 0.4826
(−1.22) (−1.10) (−0.64) (−1.39) (−0.64)

FF3 −0.31 −0.29 −0.26 −0.44 −0.23 0.0062
(−2.33) (−2.42) (−1.91) (−2.98) (−1.97)

FF5 −0.33 −0.32 −0.48 −0.62 −0.30 < 0.0001
(−2.45) (−2.54) (−3.42) (−3.83) (−2.51)

Q4 −0.28 −0.25 −0.42 −0.57 −0.24 0.0011
(−1.91) (−1.82) (−2.63) (−3.47) (−1.83)

CAPM+BAB −0.34 −0.33 −0.41 −0.49 −0.27 0.0017
(−2.45) (−2.49) (−2.63) (−3.02) (−2.10)
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