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1. Introduction

The joint-hypothesis problem posed by Fama (1970) is central to empirical investigations of

market efficiency. Fama (1991) expresses the inherent challenge as follows:

We can only test whether information is properly reflected in prices in the context

of a pricing model that defines the meaning of “properly.”

In this study, we test whether a model can be the one correctly defining “properly.” Such
a model offers the best benchmark for assessing market efficiency and gauging mispricing.
Models that capture expected returns empirically could be identifying mispricing in an in-
efficient market or compensated risks in an efficient market.! Which pricing models, among
prominent candidates, could not describe expected stock returns if there were no mispricing?

That is the question we address in this paper.

To address the joint hypothesis problem, tests of market efficiency traditionally seek
to control for the equilibrium model of expected returns or identify situations where the
underlying equilibrium model differences out (such as examining deviations from the law of
one price, e.g., Lamont and Thaler, 2003, Du, Tepper, and Verdelhan, 2018, Hu, Pan, and
Wang, 2013). Conversely, we seek to avoid having market inefficiency confound tests of asset

pricing models.

To implement this idea empirically, we attempt to plausibly identify when mispricing is
absent. Our key assumption is that any mispricing of currently available information about a
stock gets corrected in less than ten years. Regardless of how investors interpret information
or how arbitrage is impeded, we assume the forces of learning and arbitrage are strong enough
over 10 years to correct any mispricing. In U.S. equity markets, a 10-year horizon seems, if
anything, a conservative assumption. Under this assumption, if a long-short spread based on
decade-old information produces a significant alpha with respect to a given pricing model,
that alpha would not reflect mispricing. Instead it would reveal that the model does not
describe expected stock returns in the absence of mispricing. To be clear, our assumption

is that decade-old information is not mispriced, but this does not mean a stock could not

Prominent empirical models in asset pricing have received numerous interpretations from both sides of
the market efficiency debate. An inexhaustive list of rational and behavioral theories includes Fama and
French (1993, 1995, 2015), Gomes, Kogan, and Zhang (2003) , Zhang (2005), Li, Livdan, and Zhang (2009),
Belo (2010), Li and Zhang (2010), Liu and Zhang (2008), Berk, Green, and Naik (1999), Johnson (2002), Sagi
and Seasholes (2007), Liu, Whited, and Zhang (2009), and Hou, Xue, and Zhang (2015) on the rational, no
mispricing side and Lakonishok, Shleifer, and Vishny (1994), Daniel and Titman (1997), Daniel, Hirshleifer,
and Subrahmanyam (1998), Barberis, Shleifer, and Vishny (1998), Hong and Stein (1999), and Stambaugh
and Yuan (2017) on the behavioral, mispricing side.



be mispriced for 10 years or longer. Such a scenario would simply reflect the mispricing of

information that arrived more recently than a decade earlier.

In many ways, finding settings where information must surely be reflected in prices is an
easier task than identifying the right pricing model (or finding deviations from the law of
one price). While our plausible (and conservative) assumption avoids mispricing, a potential
drawback is low power. Tests where we can confidently rule out mispricing may also be tests
that have low power to discriminate among pricing models. For instance, while decade-old
information should be reflected correctly in today’s prices, much of that information may
relate little to the current values of multifactor betas that pricing models either omit or
include. The betas of long-short spreads based on such information could then be essentially
zero, as if stock positions were chosen randomly. Our test would then have little power to
discriminate among models. Thus, we aim to find information among a set of test assets
that is plausibly not mispriced and is related to the current values of betas in popular asset

pricing models.

The decade-old information with which we illustrate our test is a return forecast based
on the well-known 3-factor model of Fama and French (1993), hereafter FF3. FF3 includes
factors based on size and value, which have long been recognized as fundamental stock
characteristics in both academic research and investment practice. The FF3 expected return
gives a natural univariate measure incorporating those familiar properties while avoiding

arbitrary selections of stock characteristics from the ever-expanding “factor zoo.”

For each pricing model, our test’s null hypothesis is that the model assigns zero alpha to
investment strategies formed using only decade-old information. For a long-short strategy
based on stocks’ decade-old FF3 predictions, our test does not reject the CAPM but does
reject prominent multifactor models: the three-, five- and six-factor models of Fama and
French (1993, 2015, 2018), the four-factor model of Hou et al. (2015), and the five-factor
model of Hou, Mo, Xue, and Zhang (2021). Not only does the CAPM pass our test, but
so do various extensions augmenting that model with a single factor, such as the betting-
against-beta (BAB) factor of Frazzini and Pedersen (2014)? and the liquidity factor of Pdstor
and Stambaugh (2003). Even a model with no factors, implying equal expected returns across
assets, passes our test. Certainly our approach is not powerful enough to identify a unique

model as the “proper” no-mispricing benchmark for tests of market efficiency. Nevertheless,

2A positive premium on the latter factor, theoretically motivated, implies positive (negative) CAPM
alphas on assets with low (high) betas. Black (1972) and Fama (1976) provide earlier theoretical motivations
for augmenting the CAPM with such a beta factor, and Black, Jensen, and Scholes (1972) and Fama and
MacBeth (1973) provide related evidence.



the overall message seems clear: simpler is better. The prominent models we consider with
three or more factors seem unsuitable for the role of equilibrium pricing in an efficient market,
at least when even an inefficient market would price decade-old information correctly. Hence,
our test can rule out various models as the proper no-mispricing benchmark, but it cannot

narrow the field to just one model.

Our results admit a simple explanation. Multifactor betas can help capture stocks’ actual
expected returns, which can include mispricing. Some of those multifactor betas, however,
can persist longer than the stocks’ mispricing. If a multifactor beta gets included in a pricing
model to help explain expected returns that in part reflect mispricing, then persistence in that
beta injects unhelpful distortions into stocks’ implied expected returns after the mispricing
corrects. When a security’s mispricing is more transitory than its multifactor betas, the
latter will distort the security’s expected return when mispricing is absent. By excluding

those multifactor betas, the CAPM and other simple models avoid such distortions.

With this premise in mind, we conduct our tests separately within different firm size
segments, for a number of reasons. Consider the largest firms, for example. Our assumption
that mispricing disappears within 10 years seems especially plausible for the largest stocks,
which are liquid and well-monitored. Large stocks should be those least likely to have persis-
tent market frictions impeding price correction over periods as long as a decade. Correctly
pricing large stocks thus seems the purest test for any proper benchmark model to clear.
Moreover, our test relies on decade-old information being related to current multifactor be-
tas, and betas seem likely to be more stable over time for the largest firms. We empirically
confirm that larger stocks have more persistent and more precise multifactor betas. The
type of securities affording our test the most power are those with 1) no mispricing based on
10-year old information and 2) persistent and reliable multifactor betas. The largest firms

embody these characteristics.

Consider instead the smallest stocks. Because they are less heavily followed and face
greater market frictions, small stocks are probably subject to the greatest misprising. In
that sense they present salient targets for multifactor models aiming to fit average short-
run returns. Small stocks could therefore offer our test an especially informative sample
for distinguishing such models from the proper no-mispricing benchmark. Offsetting this
potential advantage, however, is that multifactor betas are less stable and less reliable for
small stocks, making the link between decade-old information and current betas weaker.
Because determinants of our test’s informativeness could differ across firm size, we allow

each segment to speak separately in the data.



We find that results differ meaningfully across firm size. When run on just the smallest
stocks (below the 20th NYSE percentile), our test generally does not reject any of the models
considered. When run on the remaining stocks, even just the largest ones, the test generally
rejects the models with three or more factors as being the no-mispricing benchmark. The
rejections for even the largest firms provide compelling support for the notion that multifactor
models pick up temporary mispricing that then distorts expected returns that should only
reflect underlying risk premia. In other words, the largest firms would seem to present the
strongest test of what model should be the proper benchmark for addressing questions about

market efficiency (Fama, 1991).

Models failing our hurdle for a no-mispricing benchmark can perform well by the usual
empirical metrics that assess a pricing model’s ability to describe expected returns condi-
tional on any available information. Those models potentially capture mispricing well, and
some of them are even cast explicitly in those terms (e.g., Stambaugh and Yuan, 2017). Such
models can be quite useful in designing trading strategies, for example, but they are less use-
ful for providing the benchmark model of expected returns to which “properly” applies in
the sense of Fama (1991).

Our test and insights are very different from the recent literature on the persistence of
stock characteristics and the predictability of asset returns over various horizons (Keloharju,
Linnainmaa, and Nyberg, 2020 and Baba-Yara, Boons, and Tamoni, 2024). We are not
interested in, nor have anything to say about, the best model for expected long-term returns.
Rather, our goal is simply to find models that satisfy the no-mispricing benchmark of Fama
(1991), which is a model for short-term expected returns in the absence of mispricing. Even
the CAPM, which passes our test for such a model, could be a bad model for long-term
expected returns in the absence of mispricing. For example, if market betas converge in
the long-run, then the CAPM with current betas could be a bad long-term no-mispricing
benchmark, while a no beta/factor model could be a better long-term model. All of this
is to say that our objective is very different from the literature on short- versus long-term
return predictability. The fact that we use 10-year-old information to implement our test
creates an apparent connection to this literature but is fundamentally unrelated. Had we
come up with information unrelated to horizon, potentially correlated with multifactor betas,
and still reasonably assumed to be correctly priced (we welcome suggestions!), the apparent

connection to this literature would disappear.

The rest of the paper is organized as follows. Section 2 motivates our test and discusses

its power. Section 3 describes our empirical setting and presents test results for various



pricing models. Section 4 concludes.

2. A simple test of pricing without mispricing

In the absence of mispricing, the proper benchmark asset pricing model should deliver zero
alpha for any investment strategy. This implication motivates the canonical test of market
efficiency, but it is plagued by the joint hypothesis problem identified by Fama (1970): any
test of efficiency is a joint test of the pricing model. The proper model for testing efficiency
is one that characterizes prices in an equilibrium wherein (public) information is correctly
reflected in prices. Such an equilibrium may be just hypothetical in a market with noise
traders or other frictions that hinder information from being incorporated immediately into
prices. Nevertheless, the “proper” model is the one relevant to the joint hypothesis problem
posed by Fama (1970). Under this view, non-zero alphas imply mispricing or an incorrect
model, while zero alphas imply no mispricing or, again, an incorrect model. In the latter case,
the incorrect model captures mispricing but not expected returns in the absence thereof. In
other words, the model is not a useful empirical benchmark for gauging the extent of market

inefficiencies.

Rather than investigate potential market inefficiencies, we explore the other side of the
joint hypothesis. That is, we ask which asset pricing models could capture expected returns
in the absence of mispricing. To do so, we assume that decade-old information is correctly
reflected in prices today, however inefficient the market may be in reflecting current informa-
tion. Specifically, we test the abilities of various models to produce zero alpha for strategies
based on decade-old information. Such a test, we argue, is unlikely to be contaminated by

information inefficiency.?

The test’s inherent challenge is achieving power. We seek to discriminate among pricing
models that include or omit various factors. For many assets, however, current betas on
those factors may have little or no relation to decade-old information. Our test relies on
finding assets and information for which the relation between the assets’ current betas and

lagged information is strong enough to provide power. We expect the greatest power to be

3As pointed out earlier, this assumption does not mean a security cannot be mispriced for 10 years or
more, but rather any mispricing associated with any security cannot come from information that has been
around for at least 10 years. In other words, if a security is persistently mispriced even beyond 10 years,
that mispricing must come from more recent information that is less than 10 years old. A security could
persistently underreact to its earnings news forever and be consistently mispriced, however that security’s
mispricing is not related to earnings news from 10 years ago, but rather more recent earnings news.



offered by assets most likely to have stable betas.

To understand better the nature of our test and its potential power, let f; denote the
vector of returns in month ¢ on the factor portfolios associated with a given asset pricing

model. Consider the time-series regression,
re=a+ [ fi +e, (1)

where 7, is the excess return in month ¢ on an investment strategy whose portfolio weights
in month ¢ are determined by sorting a given universe of assets, A, on the values in a vector
x of an asset-specific information variable observed (publicly) in month ¢ — 7. The value of
« depends on the identity of the information, x, its lag length, 7, the set of factors, f, and

the asset universe, A. We represent this dependence via the functional notation,
a=az,T, f,A). (2)

Let f* denote the factors in the proper pricing model that captures expected return in the

absence of mispricing. Our test assumes
ax,120, f*,A) =0 (3)

for any information x. If the market is efficient, then a(z, 1, f*, A) = 0 for any z. In an

inefficient market, various choices of z can make a(z, 1, f*, A) # 0.4

A model can fail as the no-mispricing benchmark by omitting a relevant factor or by
including an irrelevant one. Omitting a relevant factor from a pricing model is a possibil-
ity long recognized in the literature. In an inefficient market, however, there is a distinct
possibility that models are developed with factors that are irrelevant in the absence of mis-
pricing. This is the key point of our test and one that has not received much attention in
the literature. The factors in prominent pricing models are generally returns on portfolios
formed using recent information, unavailable before month ¢ — 1. In an inefficient market, a

set of such factors, f, can be useful in making
a(r, 1, f, A) = 0 (4)

for various choices of x. To reject such a model as being the correct no-mispricing benchmark,

our test relies on detecting
a(#,120, f, A) # 0, (5)

40r, more generally, in an efficient market a(z, 7, f*, A) = 0 and in an inefficient market various choices
of x can make oz, 7 < 120, f*, A) # 0.



for a given asset universe, A = A, and a given x = Z.

Suppose that the model is not the no-mispricing benchmark because f incorrectly includes
or excludes a given factor, f;. Let 5;(z,, f , 121) denote the factor’s corresponding element
of 8 in equation (1) if f includes fj. Otherwise, let §;(z,, 1, /Al) denote the factor’s slope
coefficient in that regression when f is augmented by fj- A necessary condition for (5) to

obtain, and thus for our test to have power, is that that

The nonzero beta in (6), when multiplied by the non-zero mean (factor premium) of f;,
then represents the component of expected return that is incorrectly included or excluded,
resulting in the nonzero alpha in (5). The challenge faced by our test, noted earlier, is that for
many asset universes and information choices, there may be essentially no relation between
individual assets’ decade-old values in @ and their current betas on f;. In that scenario, a
long-short strategy based on those values in Z is likely to produce 5;(z, 120, f , fl) = 0, the
same as one would expect if the assets in the long and short legs were just randomly selected.
Settings more likely to avoid this no-power scenario are those in which f;(z, 1, f , 121) =% 0 and
the individual assets’ betas on f; are stable over time. The latter condition, in turn, seems
more likely when the selected universe, fl, comprises assets tending to have more stable

factor betas.

3. Empirical setting and test results

As explained earlier, for the information vector & we use E containing assets’ return forecasts
from the FF3 model. Specifically, for stock ¢ in month ¢, we compute the decade-old quantity
Ezt 120 = ft 1205” 120, Where f,_199 contains the historical averages of the FF3 factors
through month ¢ — 120, and Bi,t,lgo contains ten-year-ahead forecasts of the stock’s factor
betas. We construct Biyt,lgo as follows. For each factor £ and month ¢ — 120, we first run a
cross-sectional multiple regression in which the i-th observation of the dependent variable is
Bi,k,t_lgo and the three independent variables are Bfnd(i)7j7t_240, 7 =1,2,3, where Bfnd(i),jvt_ﬂo
is the average value of Bn,k,t,gzm for all stocks n whose industry classification in month ¢ — 240
is the same as that of stock 7 in month ¢t — 120. Each B”” is estimated using months s — 35
through s, and the 49 industry classifications follow Fama and French (1997). We then
compute the three elements of Bm_lgo by applying the coefficients from the corresponding

multiple regressions to the values of B[nd(i),j,t_lgo, 7=1,23.



The above procedure for computing the values of EAi,t_lgo is applied separately within three
segments of market capitalization. Using NYSE market-cap percentiles as break points, and
using market values at the end of month ¢t — 120 (so all information is 10-years old), we form
three subsamples consisting of all NYSE, AMEX, and NASDAQ stocks (i) above the 70th
percentile, (ii) between the 70th and 20th percentiles, and (iii) below the 20th percentile. For

7w

labeling ease, we denote these segments as “large,” “medium,” and “small,” while recognizing
that other terms can be applied. For example, one might instead use “microcaps” to label

the stocks below the 20th percentile, following Fama and French (2008).°

Computing Ei7t_120 using decade-old industry betas, rather than individual-stock betas,
allows us to include more stocks in our test portfolios. Sorting in month ¢ on Ei’t_lgo can be
applied, at best, only to stocks that also existed in month ¢ — 120, an age requirement that
already reduces the sample nontrivially. Using individual-stock betas to compute EAM_HO
would further reduce the sample, as the stocks eligible to be sorted would then be only those
that also existed for an earlier N-month period ending in month ¢ — 120, where N is the
length of the period used to estimate betas (36 months in our case). Computing Ei,t—lQO
using Bz‘7t_120, i.e., month-t betas predicted ten years earlier, rather then simply using the
industry betas in month ¢t — 120, allows Ei’t_lgo in part to reflect persistence in betas, which

is the source of our test’s power.

Table 1 reports the average value of R-squared in multiple regressions of month-¢ in-
dividual stock betas on decade-old individual stock betas, in Panel A, and on decade-old
industry-average betas, in Panel B. For comparability, the samples in both panels are lim-
ited only to stocks for which the results in Panel A can be computed, meaning stocks existing

in month ¢ that also have a 36-month sample ending in month ¢ — 120.

One consistent result in Table 1 is that the R-squared values are higher for large stocks.
In part, this result likely reflects small stocks’ greater volatility, and thus noisier betas, but
the result is also consistent with large stocks having more persistent betas. By virtue of their
size, large firms are likely to have greater inertia, taking longer to change course in ways
that would significantly impact their characteristics relevant to factor exposures. (Aircraft
carriers turn more slowly than destroyers.) Greater persistence in large-cap betas is likely
to endow our test with more power within that segment. Our test results, discussed later,
are consistent with that interpretation. Table 1 also reveals that using industry betas, which

allows our test to include more stocks, appears to sacrifice little, if any, explanatory power

5Stocks between the 70th and 20th NYSE percentiles essentially combine categories that are often denoted
as “mid-cap” and “small-cap.” In that respect, readers should not misinterpret our “small” labeling.



relative to using stock-specific betas. In fact, the largest R-squared (0.139), occurs when

forecasting ten-year-ahead HML betas using lagged industry-average FF3 betas.

To conduct our main test, we compute return spreads between the bottom and top 20%
of stocks sorted by Ei7t,120, value weighting the stocks in each leg. The value weighting uses
market caps as of month ¢ —120, so that only decade-old information is used to construct the
long-short spread. Of course, we use the information that a stock exists in the most recent
month, ¢, but that information is identical for all stocks in the strategy. The designation
of the bottom 20% of Ei,t_lgo as the long leg is motivated by the possibility that part of
E could reflect the FF3 model’s ability to capture mispricing of current information. If so,
and if that mispriced information eventually gets priced correctly within a decade, then a
high (low) value of EAM,HO would predict too high (low) a return in month ¢ + 1. Thus, the
long-short strategy would have a positive alpha with respect to FF3 and other models that

also help capture whatever mispricing FF3 does.

We apply our test to 11 different pricing models. The first five models, which contain at
least three factors, include the three-, five- and six-factor models of Fama and French (1993,
2015, 2018), denoted FF3, FF5 and FF6, the four-factor model of Hou et al. (2015), denoted
Q4, and the five-factor model of Hou et al. (2021), denoted Q5. The next five models include
the CAPM of Sharpe (1964) and Lintner (1965) plus four models that augment the CAPM
with a single factor: the betting-against-beta (BAB) factor of Frazzini and Pedersen (2014),
a 12-month momentum factor (UMD from Fama and French (2018)), the traded liquidity
factor (LIQ) of Pastor and Stambaugh (2003), and the size factor (SMB) of Fama and French
(1993). Finally, we include a model with no factors, which simply equates expected returns

across all stocks.

We form spreads separately within the large-, medium-, and small-cap segments as well
as within the whole universe and just the largest 200 (“mega-cap”) stocks. The first five
columns of Table 2 report the alphas and t-statistics with respect to each pricing model
across mega-cap, large, medium, small, and all stocks categories. The last column reports
the p-value for a test of whether the alphas for the disjoint size segments (large, medium,

small) are jointly equal to zero.

The first row of Table 2 reports alphas for the FF3 model across the size groups. The
first column reports a 41 basis point (bp) alpha for the mega-cap stocks (largest 200) with
a statistically significant 2.62 t-statistic (using White (1980)-corrected errors), indicating
that the FF3 model yields significant abnormal returns for a portfolio of mega-cap stocks

sorted on 10-year old information, where there should be no mispricing. This non-zero alpha



indicates that the FF3 model is not a proper benchmark for equilibrium asset pricing in the

sense of Fama (1991), if decade-old information represents the absence of mispricing.

The remaining columns report alphas with respect to the FF3 model for the other size
groups. For large-cap stocks, the alpha is a significant 37 bps (¢-statistic = 2.70), for medium
cap stocks it is a marginally significant 22 bps (¢-statistic = 1.71), and for small-cap stocks
the alpha is an insignificant —11 bps. These results are consistent with betas being more
precise and more persistent among larger stocks: small stocks have noisy and unstable betas,
and using 10-year-old information to forecast them results in noise. The portfolio sort then
yields no reliable differences in current loadings on the factors. These findings are supported
by the results in Table 1 that show little persistence in betas for small caps. The second-
to-last column reports the alpha for all stocks in the investment universe, which is 39 bps
(t-statistic = 3.17). Finally, the last column reports the p-value of a Gibbons, Ross, and
Shanken (1989) F-test (with a White (1980) heteroskedasticity-consistent covariance matrix)
of whether the alphas of the large, medium, and small-cap segments are jointly zero. The
p-value of 0.0143 indicates that the test for alphas being jointly zero is rejected, confirming

that the FF3 model produces significant alphas when mispricing is absent.

The next four rows report the analysis for the FF5, FF6, Q4, and Q5 models, who each
produce positive alphas (of 22 to 38 bps) among medium- and large-cap stocks, and zero
alphas among small caps. The GRS (1989) joint test of alphas being zero across the size
segments rejects for all four models, indicating that each of these multifactor models, which
are prominently used in the asset pricing literature, are likely not good candidates for the

no-mispricing benchmark of Fama (1991).

The next row reports results for the single factor CAPM. Here, the GRS (1989) test that
the alphas are jointly zero fails to reject (p-value = 0.2337). Hence, the CAPM passes our
test and could be a viable candidate for the equilibrium asset pricing model in the absence
of mispricing. However, our test cannot tell whether the CAPM is the right no-mispricing
benchmark, just that it does not fail our test of pricing decade-old information, as the other
multifactor models do. This is an important distinction. Our test is useful in ruling out
the multifactor models as viable candidates for the model of expected returns in an efficient

market with no mispricing. However, our test does not identify what that model is.

To illustrate the point, consider various modifications of the CAPM. The next four rows
of Table 2 report results from our test applied to the CAPM plus the addition of one other
factor: the betting-against-beta (BAB) factor of Frazzini and Pedersen (2014), a 12-month
momentum factor (UMD from Fama and French (2018)), the traded liquidity factor (LIQ)

10



of Pastor and Stambaugh (2003), and the size factor (SMB) of Fama and French (1993). All
of these modifications to the CAPM also pass our test and hence are consistent with being
the proper benchmark in an efficient market. But, we have no power to detect which of these
models best fills that role. Take the CAPM + MOM model, for example. This model passes
our test, but a substantial literature links MOM to mispricing, suggesting CAPM + MOM is
unlikely to be the no-mispricing benchmark. Our test has no power to reject CAPM + MOM
if MOM reflects mispricing, because our test uses decade-old information to implement the
no mispricing condition. Decade-old information has little to say about current momentum,
which is a relatively short-term characteristic having little predictability beyond a year. A
model of the CAPM plus short-term reversals would face the same issue. In fact, the CAPM
plus noise would also satisfy our test, but it would not be a good description of equilibrium
returns in an efficient market. To distinguish among these models, we would need a test
with more power, e.g., a test among securities immune to MOM. In other words, if one could
come up with other plausible conditions where mispricing is absent and there is power to
detect the potential influences of MOM (or BAB, LIQ, SMB), then we could conduct similar

tests and possibly distinguish among these models.

Finally, the last row of Table 2 reports results from our test on a no-factor model. Our
test fails to reject this model as well, which is to say that sorting on 10-year old predictions
from the FF3 model produces no reliable differences in average raw returns. Despite passing
our test, the no factor model has little theoretical appeal as a model of short-run expected
return in an efficient market. The no-factor model could, however, be a good description of
expected long-horizon returns in a CAPM world if betas are expected to compress in the
long run. In general, our test has little to say about long-term expected return models and
therefore does not have much relevance for the recent literature on short- versus long-term
signals in asset pricing.® The fact that we use decade-old information as our condition for

ruling out mispricing may seemingly provide a link, but our motivation is wholly different

SHaving said that, our framework may provide some additional clarity to the results from the literature.
For example, Cho and Polk (2020) find that the CAPM describes the cross-section of prices better than it
describes expected short-horizon returns. Since price levels of stocks depend more on discount rates applied
in the long run, if mispricing gets corrected in the short run, the cross-section of prices will be less affected
by mispricing, which is consistent with our results on the CAPM, too. Keloharju, Linnainmaa, and Nyberg
(2020) find that persistent differences in firm characteristics do not predict stock returns, a result that they
argue is consistent with long-term expected returns not varying across stocks. Our findings suggest that
the reason persistent characteristics fail to have long-term return consequences is perhaps because they
help identify mispricing, which dissipates faster than the characteristics change. Baba-Yara, Boons, and
Tamoni (2024) examine the returns to 56 characteristic-sorted portfolios using the most recent information
about a characteristic and its lag (up to five years). They find that 2/3 (1/3) of the characteristics contain
more return predictability from newer (older) information and that the CAPM does better at pricing older
sorts, while popular multifactor models do better at pricing newer sorts, consistent with our results and the
assumption that older information is not mispriced.
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and we have little to say about short- versus long-term predictability. Put differently, had we
found another condition or assumption, besides decade-old information, where mispricing is
plausibly absent, there would be no seeming link to the literature on short- versus long-term

expected returns or the persistence of signals.

Our test rejects each of the models with three or more factors as being the no-mispricing
benchmark model, and it fails to reject the CAPM and two-factor variations of the CAPM. To
understand better the source of these rejections (and lack of rejections), Table 3 decomposes
the alphas reported in Table 2. Specifically, the alpha at each lag is decomposed into the
average return spread minus the product of the spread’s estimated beta times the sample-

average factor premium for each factor in the model.

The first set of results in Table 3 pertain to the FF3 model. Rejection of the model
for mega- and large-cap stocks is driven by the persistence in market beta and HML beta,
that when multiplied by their return premia result in unhelpful variation in average returns
that generates the positive alpha leading to rejection. The raw return spread between the
long and short legs of the portfolio sorted on decade-old return predictions for mega- and
large-cap stocks is 9 bps (statistically insignificant from zero). But when these returns are
regressed on the FF3 model, negative betas on the market and HML show up, which when
multiplied by the market and HML premia, result in a more positive alpha. Specifically,
for mega caps, this exposure adds 31 more bps of returns to the 9 bp spread, resulting in a
significant 41 bp alpha that leads to the FF3 model’s rejection. For large caps, these residual
exposures add 28 bps of return to yield a significant 37 bp alpha. For small stocks, there
is no reliable factor exposure, consistent with small stocks having less persistent and less

reliable betas, and therefore no power to reject.

The story is nearly identical for the FF5 and FF6 models: persistent exposure to the
market and HML among large stocks long after mispricing has abated leads to unhelpful
factor exposure a decade later, inflating the alpha and leading to rejection of the model. For
the Q4 and Q5 models, which replace the FF factors with ME, IA; ROW and (in the case of
Q5) EG, all of the action is driven by the TA factor instead of HML. Persistent exposure to
[A a decade later inflates the zero alpha raw return spread by 12 to 16 bps when adjusting

returns for these models.

Interestingly, the FF3, 5, and 6 models as well as the Q4 and Q5 models are motivated
by and couched in terms of equilibrium risk premia consistent with an efficient market, and
hence have been suggested as candidates for the proper benchmark in the sense of Fama

(1991). Our test’s rejection of these models casts doubt on that interpretation, suggesting

12



that these models are not good descriptions of expected returns in the absence of mispricing.
The fact that these models fail to price the largest, most liquid stocks in particular is even
further testament to that claim. Such stocks should be subject to the least mispricing,
especially based on decade-old information, and they have the most reliable and stable

factor exposures, giving our test the most power.

The remaining entries in Table 3 pertain to the CAPM and its variants, where we don’t
find rejection of the models. Hence, these models pass our test and could be viable candidates
for the proper equilibrium benchmark in an efficient market per Fama (1991). However,
as discussed previously, this does not necessarily mean they provide good descriptions of
equilibrium returns with no mispricing. We would need more powerful tests to find the best

model among the set of candidate models that pass our test.

4. Conclusion

In an efficient market, public information is properly reflected in prices, but assessing ef-
ficiency rests on having a pricing model that defines “properly” (Fama, 1970, 1991). We
investigate whether prominent asset pricing models appear suitable for that role. We assume
prices properly reflect at least the information the market has had ten years to evaluate and
exploit, whether or not the market is efficient. With this assumption, a model suitable as the
no-mispricing benchmark should clear the seemingly modest hurdle of assigning zero alphas

to long-short spreads based on decade-old information.

We find a number of prominent asset pricing models fail that test, assigning significant
alphas to spreads formed using ten-year lags of FF3 expected return forecasts. Such models
include the FF3, FF5, FF6 models and the Q4 and Q5 models of Hou, Xue, and Zhang (2015)
and Hou et al. (2021). In contrast, the same long-short spreads do not produce significant
alphas with respect to the traditional CAPM of Sharpe (1964) and Lintner (1965) and
simple variations of this model. Hence, such models emerge as viable candidates for the

no-mispricing benchmark, with more powerful tests required to discriminate among them.

While it seems reasonable that spreads based on decade-old information should receive
zero alpha with respect to the no-mispricing benchmark, the main challenge faced by our
test is achieving power. For many stocks, current values of factor betas may be unrelated to
decade-old information. However, we show that large stocks have the most stable multifactor

betas, thus offering our test the most power. Moreover, to have large stocks play the strongest
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role in our test underscores the economic importance of the result. For these stocks, which are
the backbone of the US economy, prominent multifactor models evidently distort expected
returns purged of mispricing. The stronger results of our test among large stocks reveal what
seems to be an economically significant shortcoming of popular multifactor models. These
models fail significantly in capturing expected returns on strategies based on decade-old
information. Our assumption that such information should be fully reflected in prices seems
especially reasonable for the market’s largest and most liquid stocks. The CAPM and its
simpler variants, in contrast, fare well in this regard, emerging as better candidates for the

no-mispricing benchmark model.

The relatively parsimonious set of models we consider is far from exhaustive. In an initial
attempt to compare the abilities of pricing models to serve as the no-mispricing benchmark,
we believe the models we consider present a horserace with interesting entrants. We certainly
acknowledge that there are other horses out there. Seeking refinements of our approach that
potentially offer more power also seems a worthy research objective and may help better

identify which models serve best as the proper efficient benchmark.

Of course, another worthy and parallel objective for research in asset pricing is to continue
building models that better describe actual expected returns, whether or not the prices
determining those expected returns include mispricing. Although such models may be less
useful for gauging the extent of market inefficiencies or understanding risk premia, they can

be otherwise useful, such as in designing investment strategies.
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Table 1
R-squared when regressing individual-stock betas on

decade-old individual-stock or industry betas

The table reports the average R-squared value in a multiple regression of the current individual-stock OLS
beta with respect to a given FF3 factor on decade-old estimates of betas with respect to the three FF3 factors.
The decade-old estimates are either OLS estimates for individual stocks (Panel A) or within-industry averages
of those estimates (Panel B). The regressions and the industry averaging are performed separately within
three (decade-old) market-cap segments formed using NYSE percentiles as breakpoints: large (above 70th),
medium (70th to 20th), and small (below 20th). The R-squared values are averaged over the sample period
for current betas, 1/1968 to 12/2024. The beta estimates for a given month use the past 36 months of data.

Dependent variable:
individual-stock Market-cap segment
OLS beta Large Medium Small

Panel A. Independent variables: decade-old
individual-stock OLS betas

BMKT 0.128  0.096  0.058
BsmB 0.073  0.061  0.024
BumL 0.113  0.054  0.015

Panel B. Independent variables: decade-old
industry-average OLS betas

BMmKT 0.114  0.082  0.038
BsmB 0.069  0.066  0.026
Bamr 0.139  0.080  0.019
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Table 2

Pricing tests using decade-old return predictions

The table reports estimated monthly alphas (in percent) and ¢-statistics (in parentheses) for spreads between
value-weighted portfolios of stocks in the bottom and top 20% of stocks sorted by decade-old return predictions
from the three-factor model of Fama and French (1993). The return predictions use industry-level betas to
predict stocks’ betas ten years later. Results are shown for the total stock universe as well as mega-cap stocks
(largest 200) and three market-cap segments formed using NYSE percentiles as breakpoints: large (above
70th), medium (70th to 20th), and small (below 20th). The models tested are the three-, five- and six-factor
models of Fama and French (1993, 2015, 2018), denoted FF3, FF5 and FF6, the four- and five-factor models
of Hou et al. (2015) and Hou et al. (2021), denoted Q4 and Q5, the CAPM of Sharpe (1964) and Lintner
(1965), and the latter model augmented by various single factors: the betting-against-beta (BAB) factor of
Frazzini and Pedersen (2014), a 12-month momentum factor (UMD from Fama and French (2018)), the traded
liquidity factor (LIQ) of Péstor and Stambaugh (2003), and the size factor (SMB) of Fama and French (1993).
Also included is a model with no factors. The last column tests joint equality to zero of the three element
vector containing the alphas for the large, medium, small size segments, using the test of Gibbons, Ross, and
Shanken (1989) but with a White (1980) heteroskedasticity-consistent covariance matrix (also used to compute
the t-statistics). The sample period for computing alphas is 1/1968 to 12/2024.

L/M/S

Mega-cap Large Medium Small  All stocks p-value

FF3 0.41 0.37 0.22 -0.11 0.39 0.0143
(2.62) (2.70)  (1.71)  (-0.77) (3.17)

FF5 0.30 0.26 0.38 -0.20 0.28 0.0058
(1.76)  (1.81) (2.97) (-1.31)  (2.25)

FF6 0.25 0.22 0.34 -0.20 0.24 0.0232
(1.42) (1.45)  (2.55)  (-1.23) (1.78)

Q4 0.28 0.26 0.34 -0.24 0.29 0.0189
(1.56)  (1.70)  (2.43) (-1.37)  (2.07)

Q5 0.20 0.19 0.34 -0.33 0.24 0.0288
(1.05) (1.19)  (2.31) (-1.77) (1.66)

CAPM 0.25 0.23 0.18 0.00 0.24 0.2337
(1.50)  (1.60) (1.47)  (0.03)  (1.63)

CAPM+BAB 0.22 0.19 0.25 -0.30 0.21 0.0701
(1.17) (1.18)  (1.80)  (-1.86) (1.32)

CAPM+MOM 0.15 0.14 0.15 0.03 0.13 0.5807
(0.84) (0.90)  (1.13) (0.18) (0.87)

CAPM~+LIQ 0.21 0.20 0.19 0.01 0.21 0.2856
(1.26) (1.37)  (1.54) (0.04) (1.38)

CAPM+SMB 0.25 0.23 0.18 0.00 0.24 0.2346
(1.50)  (1.60) (1.47)  (0.01)  (1.76)

No factors 0.09 0.09 0.04 -0.10 0.03 0.8370

(0.52)  (0.57) (0.32) (-0.66)  (0.18)
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Table 3

Alpha components for spreads formed with decade-old return predictions

The table reports the components (in percent) that sum to the estimated monthly alphas for spreads between
value-weighted portfolios of stocks in the bottom and top 20% of stocks sorted by decade-old return predictions
from the three-factor model of Fama and French (1993). The return predictions use industry-level betas to
predict stocks’ betas ten years later. Results are shown for the total stock universe as well as mega-cap stocks
(largest 200) and three market-cap segments formed using NYSE percentiles as breakpoints: large (above
70th), medium (70th to 20th), and small (below 20th). The models tested are the three-, five- and six-factor
models of Fama and French (1993, 2015, 2018), denoted FF3, FF5 and FF6, the four- and five-factor models
of Hou et al. (2015) and Hou et al. (2021), denoted Q4 and Q5, the CAPM of Sharpe (1964) and Lintner
(1965), and the latter model augmented by various single factors: the betting-against-beta (BAB) factor of
Frazzini and Pedersen (2014), a 12-month momentum factor (UMD from Fama and French (2018)), the traded
liquidity factor (LIQ) of Péstor and Stambaugh (2003), and the size factor (SMB) of Fama and French (1993).
The sample period for computing alphas is 1/1968 to 12/2024.

Model Alpha components Mega-cap Large Medium Small  All stocks

F average spread 0.09 0.09 0.04 -0.10 0.03
—Burr X MKT 0.19 0.17 0.14 0.05 0.18
—Bsyup X SMB 0.00 0.00 0.01 0.03 0.06
—Braymr x HML 0.12 0.11 0.03 -0.09 0.12
total: « 0.41 0.37 0.22 -0.11 0.39
FF5
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrr X MKT 0.18 0.16 0.16 0.05 0.16
—Bsyup X SMB -0.01 -0.00 0.03 0.02 0.08
—Brmr X HML 0.14 0.13 -0.02 -0.10 0.12
—Bryuw X RMW -0.08 -0.06 0.08 -0.09 -0.04
—Boma X CMA -0.03 -0.06 0.10 0.02 -0.06
total: « 0.30 0.26 0.38 -0.20 0.28
FF6
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrgr X MKT 0.17 0.15 0.15 0.05 0.15
—Bsmp X SMB -0.01 -0.00 0.03 0.02 0.08
—Bumr X HML 0.13 0.12 -0.03 -0.10 0.11
—Bryuw X RMW -0.07 -0.05 0.08 -0.09 -0.04
—Boma X CMA -0.03 -0.05 0.10 0.02 -0.05
—Brrom X MOM -0.04 -0.04 -0.03 -0.01 -0.04
total: « 0.25 0.22 0.34 -0.20 0.24
Q4
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrgr X MKT 0.18 0.16 0.15 0.04 0.16
—BmE X ME -0.01 -0.00 0.04 0.04 0.12
—Bra x IA 0.16 0.12 0.08 -0.13 0.08
—Brore X ROE -0.14 -0.11 0.04 -0.09 -0.11
total: « 0.28 0.26 0.34 -0.24 0.29
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Table 3 (continued)

Alpha components for spreads formed with decade-old return predictions

Model Alpha components Mega-cap Large Medium Small  All stocks
Q5
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrr X MKT 0.18 0.16 0.15 0.03 0.16
—BmE X ME -0.01 -0.01 0.04 0.03 0.12
—Bra x IA 0.16 0.13 0.08 -0.12 0.08
—Bror X ROE -0.12 -0.09 0.04 -0.07 -0.09
—Bra x EG -0.10 -0.08 -0.00 -0.10 -0.05
total: « 0.20 0.19 0.34 -0.33 0.24
CAPM
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrxr X MKT 0.16 0.15 0.14 0.10 0.21
total: « 0.25 0.23 0.18 0.00 0.24
CAPM+BAB
average spread 0.09 0.09 0.04 -0.10 0.03
—Bmrr X MKT 0.16 0.14 0.15 0.09 0.21
—BpaB X BAB -0.03 -0.04 0.07 -0.29 -0.03
total: « 0.22 0.19 0.25 -0.30 0.21
CAPM+MOM
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrr X MKT 0.15 0.13 0.14 0.11 0.20
—Brrom X MOM -0.09 -0.08 -0.03 0.02 -0.09
total: « 0.15 0.14 0.15 0.03 0.13
CAPM+LIQ
average spread 0.09 0.09 0.04 -0.10 0.03
—Bmrr X MKT 0.16 0.15 0.14 0.10 0.21
—Brig x LIQ -0.04 -0.03 0.01 0.00 -0.03
total: « 0.21 0.20 0.19 0.01 0.21
CAPM-+SMB
average spread 0.09 0.09 0.04 -0.10 0.03
—Bymrr X MKT 0.16 0.15 0.13 0.07 0.15
—Bsmp X SMB -0.00 -0.00 0.01 0.03 0.06
total: « 0.25 0.23 0.18 0.00 0.24
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