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1. Introduction

The joint-hypothesis problem posed by Fama (1970) is central to empirical investigations of

market efficiency. Fama (1991) expresses the inherent challenge as follows:

We can only test whether information is properly reflected in prices in the context

of a pricing model that defines the meaning of “properly.”

In this study, we test whether a model can be the one correctly defining “properly.” Such

a model offers the best benchmark for assessing market efficiency and gauging mispricing.

Models that capture expected returns empirically could be identifying mispricing in an in-

efficient market or compensated risks in an efficient market.1 Which pricing models, among

prominent candidates, could not describe expected stock returns if there were no mispricing?

That is the question we address in this paper.

To address the joint hypothesis problem, tests of market efficiency traditionally seek

to control for the equilibrium model of expected returns or identify situations where the

underlying equilibrium model differences out (such as examining deviations from the law of

one price, e.g., Lamont and Thaler, 2003, Du, Tepper, and Verdelhan, 2018, Hu, Pan, and

Wang, 2013). Conversely, we seek to avoid having market inefficiency confound tests of asset

pricing models.

To implement this idea empirically, we attempt to plausibly identify when mispricing is

absent. Our key assumption is that any mispricing of currently available information about a

stock gets corrected in less than ten years. Regardless of how investors interpret information

or how arbitrage is impeded, we assume the forces of learning and arbitrage are strong enough

over 10 years to correct any mispricing. In U.S. equity markets, a 10-year horizon seems, if

anything, a conservative assumption. Under this assumption, if a long-short spread based on

decade-old information produces a significant alpha with respect to a given pricing model,

that alpha would not reflect mispricing. Instead it would reveal that the model does not

describe expected stock returns in the absence of mispricing. To be clear, our assumption

is that decade-old information is not mispriced, but this does not mean a stock could not

1Prominent empirical models in asset pricing have received numerous interpretations from both sides of
the market efficiency debate. An inexhaustive list of rational and behavioral theories includes Fama and
French (1993, 1995, 2015), Gomes, Kogan, and Zhang (2003) , Zhang (2005), Li, Livdan, and Zhang (2009),
Belo (2010), Li and Zhang (2010), Liu and Zhang (2008), Berk, Green, and Naik (1999), Johnson (2002), Sagi
and Seasholes (2007), Liu, Whited, and Zhang (2009), and Hou, Xue, and Zhang (2015) on the rational, no
mispricing side and Lakonishok, Shleifer, and Vishny (1994), Daniel and Titman (1997), Daniel, Hirshleifer,
and Subrahmanyam (1998), Barberis, Shleifer, and Vishny (1998), Hong and Stein (1999), and Stambaugh
and Yuan (2017) on the behavioral, mispricing side.
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be mispriced for 10 years or longer. Such a scenario would simply reflect the mispricing of

information that arrived more recently than a decade earlier.

In many ways, finding settings where information must surely be reflected in prices is an

easier task than identifying the right pricing model (or finding deviations from the law of

one price). While our plausible (and conservative) assumption avoids mispricing, a potential

drawback is low power. Tests where we can confidently rule out mispricing may also be tests

that have low power to discriminate among pricing models. For instance, while decade-old

information should be reflected correctly in today’s prices, much of that information may

relate little to the current values of multifactor betas that pricing models either omit or

include. The betas of long-short spreads based on such information could then be essentially

zero, as if stock positions were chosen randomly. Our test would then have little power to

discriminate among models. Thus, we aim to find information among a set of test assets

that is plausibly not mispriced and is related to the current values of betas in popular asset

pricing models.

The decade-old information with which we illustrate our test is a return forecast based

on the well-known 3-factor model of Fama and French (1993), hereafter FF3. FF3 includes

factors based on size and value, which have long been recognized as fundamental stock

characteristics in both academic research and investment practice. The FF3 expected return

gives a natural univariate measure incorporating those familiar properties while avoiding

arbitrary selections of stock characteristics from the ever-expanding “factor zoo.”

For each pricing model, our test’s null hypothesis is that the model assigns zero alpha to

investment strategies formed using only decade-old information. For a long-short strategy

based on stocks’ decade-old FF3 predictions, our test does not reject the CAPM but does

reject prominent multifactor models: the three-, five- and six-factor models of Fama and

French (1993, 2015, 2018), the four-factor model of Hou et al. (2015), and the five-factor

model of Hou, Mo, Xue, and Zhang (2021). Not only does the CAPM pass our test, but

so do various extensions augmenting that model with a single factor, such as the betting-

against-beta (BAB) factor of Frazzini and Pedersen (2014)2 and the liquidity factor of Pástor

and Stambaugh (2003). Even a model with no factors, implying equal expected returns across

assets, passes our test. Certainly our approach is not powerful enough to identify a unique

model as the “proper” no-mispricing benchmark for tests of market efficiency. Nevertheless,

2A positive premium on the latter factor, theoretically motivated, implies positive (negative) CAPM
alphas on assets with low (high) betas. Black (1972) and Fama (1976) provide earlier theoretical motivations
for augmenting the CAPM with such a beta factor, and Black, Jensen, and Scholes (1972) and Fama and
MacBeth (1973) provide related evidence.
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the overall message seems clear: simpler is better. The prominent models we consider with

three or more factors seem unsuitable for the role of equilibrium pricing in an efficient market,

at least when even an inefficient market would price decade-old information correctly. Hence,

our test can rule out various models as the proper no-mispricing benchmark, but it cannot

narrow the field to just one model.

Our results admit a simple explanation. Multifactor betas can help capture stocks’ actual

expected returns, which can include mispricing. Some of those multifactor betas, however,

can persist longer than the stocks’ mispricing. If a multifactor beta gets included in a pricing

model to help explain expected returns that in part reflect mispricing, then persistence in that

beta injects unhelpful distortions into stocks’ implied expected returns after the mispricing

corrects. When a security’s mispricing is more transitory than its multifactor betas, the

latter will distort the security’s expected return when mispricing is absent. By excluding

those multifactor betas, the CAPM and other simple models avoid such distortions.

With this premise in mind, we conduct our tests separately within different firm size

segments, for a number of reasons. Consider the largest firms, for example. Our assumption

that mispricing disappears within 10 years seems especially plausible for the largest stocks,

which are liquid and well-monitored. Large stocks should be those least likely to have persis-

tent market frictions impeding price correction over periods as long as a decade. Correctly

pricing large stocks thus seems the purest test for any proper benchmark model to clear.

Moreover, our test relies on decade-old information being related to current multifactor be-

tas, and betas seem likely to be more stable over time for the largest firms. We empirically

confirm that larger stocks have more persistent and more precise multifactor betas. The

type of securities affording our test the most power are those with 1) no mispricing based on

10-year old information and 2) persistent and reliable multifactor betas. The largest firms

embody these characteristics.

Consider instead the smallest stocks. Because they are less heavily followed and face

greater market frictions, small stocks are probably subject to the greatest misprising. In

that sense they present salient targets for multifactor models aiming to fit average short-

run returns. Small stocks could therefore offer our test an especially informative sample

for distinguishing such models from the proper no-mispricing benchmark. Offsetting this

potential advantage, however, is that multifactor betas are less stable and less reliable for

small stocks, making the link between decade-old information and current betas weaker.

Because determinants of our test’s informativeness could differ across firm size, we allow

each segment to speak separately in the data.

3



We find that results differ meaningfully across firm size. When run on just the smallest

stocks (below the 20th NYSE percentile), our test generally does not reject any of the models

considered. When run on the remaining stocks, even just the largest ones, the test generally

rejects the models with three or more factors as being the no-mispricing benchmark. The

rejections for even the largest firms provide compelling support for the notion that multifactor

models pick up temporary mispricing that then distorts expected returns that should only

reflect underlying risk premia. In other words, the largest firms would seem to present the

strongest test of what model should be the proper benchmark for addressing questions about

market efficiency (Fama, 1991).

Models failing our hurdle for a no-mispricing benchmark can perform well by the usual

empirical metrics that assess a pricing model’s ability to describe expected returns condi-

tional on any available information. Those models potentially capture mispricing well, and

some of them are even cast explicitly in those terms (e.g., Stambaugh and Yuan, 2017). Such

models can be quite useful in designing trading strategies, for example, but they are less use-

ful for providing the benchmark model of expected returns to which “properly” applies in

the sense of Fama (1991).

Our test and insights are very different from the recent literature on the persistence of

stock characteristics and the predictability of asset returns over various horizons (Keloharju,

Linnainmaa, and Nyberg, 2020 and Baba-Yara, Boons, and Tamoni, 2024). We are not

interested in, nor have anything to say about, the best model for expected long-term returns.

Rather, our goal is simply to find models that satisfy the no-mispricing benchmark of Fama

(1991), which is a model for short-term expected returns in the absence of mispricing. Even

the CAPM, which passes our test for such a model, could be a bad model for long-term

expected returns in the absence of mispricing. For example, if market betas converge in

the long-run, then the CAPM with current betas could be a bad long-term no-mispricing

benchmark, while a no beta/factor model could be a better long-term model. All of this

is to say that our objective is very different from the literature on short- versus long-term

return predictability. The fact that we use 10-year-old information to implement our test

creates an apparent connection to this literature but is fundamentally unrelated. Had we

come up with information unrelated to horizon, potentially correlated with multifactor betas,

and still reasonably assumed to be correctly priced (we welcome suggestions!), the apparent

connection to this literature would disappear.

The rest of the paper is organized as follows. Section 2 motivates our test and discusses

its power. Section 3 describes our empirical setting and presents test results for various

4



pricing models. Section 4 concludes.

2. A simple test of pricing without mispricing

In the absence of mispricing, the proper benchmark asset pricing model should deliver zero

alpha for any investment strategy. This implication motivates the canonical test of market

efficiency, but it is plagued by the joint hypothesis problem identified by Fama (1970): any

test of efficiency is a joint test of the pricing model. The proper model for testing efficiency

is one that characterizes prices in an equilibrium wherein (public) information is correctly

reflected in prices. Such an equilibrium may be just hypothetical in a market with noise

traders or other frictions that hinder information from being incorporated immediately into

prices. Nevertheless, the “proper” model is the one relevant to the joint hypothesis problem

posed by Fama (1970). Under this view, non-zero alphas imply mispricing or an incorrect

model, while zero alphas imply no mispricing or, again, an incorrect model. In the latter case,

the incorrect model captures mispricing but not expected returns in the absence thereof. In

other words, the model is not a useful empirical benchmark for gauging the extent of market

inefficiencies.

Rather than investigate potential market inefficiencies, we explore the other side of the

joint hypothesis. That is, we ask which asset pricing models could capture expected returns

in the absence of mispricing. To do so, we assume that decade-old information is correctly

reflected in prices today, however inefficient the market may be in reflecting current informa-

tion. Specifically, we test the abilities of various models to produce zero alpha for strategies

based on decade-old information. Such a test, we argue, is unlikely to be contaminated by

information inefficiency.3

The test’s inherent challenge is achieving power. We seek to discriminate among pricing

models that include or omit various factors. For many assets, however, current betas on

those factors may have little or no relation to decade-old information. Our test relies on

finding assets and information for which the relation between the assets’ current betas and

lagged information is strong enough to provide power. We expect the greatest power to be

3As pointed out earlier, this assumption does not mean a security cannot be mispriced for 10 years or
more, but rather any mispricing associated with any security cannot come from information that has been
around for at least 10 years. In other words, if a security is persistently mispriced even beyond 10 years,
that mispricing must come from more recent information that is less than 10 years old. A security could
persistently underreact to its earnings news forever and be consistently mispriced, however that security’s
mispricing is not related to earnings news from 10 years ago, but rather more recent earnings news.
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offered by assets most likely to have stable betas.

To understand better the nature of our test and its potential power, let ft denote the

vector of returns in month t on the factor portfolios associated with a given asset pricing

model. Consider the time-series regression,

rt = α+ β′ft + ϵt, (1)

where rt is the excess return in month t on an investment strategy whose portfolio weights

in month t are determined by sorting a given universe of assets, A, on the values in a vector

x of an asset-specific information variable observed (publicly) in month t− τ . The value of

α depends on the identity of the information, x, its lag length, τ , the set of factors, f , and

the asset universe, A. We represent this dependence via the functional notation,

α = α(x, τ, f, A). (2)

Let f ∗ denote the factors in the proper pricing model that captures expected return in the

absence of mispricing. Our test assumes

α(x, 120, f ∗, A) = 0 (3)

for any information x. If the market is efficient, then α(x, 1, f ∗, A) = 0 for any x. In an

inefficient market, various choices of x can make α(x, 1, f ∗, A) ̸= 0.4

A model can fail as the no-mispricing benchmark by omitting a relevant factor or by

including an irrelevant one. Omitting a relevant factor from a pricing model is a possibil-

ity long recognized in the literature. In an inefficient market, however, there is a distinct

possibility that models are developed with factors that are irrelevant in the absence of mis-

pricing. This is the key point of our test and one that has not received much attention in

the literature. The factors in prominent pricing models are generally returns on portfolios

formed using recent information, unavailable before month t− 1. In an inefficient market, a

set of such factors, f̃ , can be useful in making

α(x, 1, f̃ , A) ≈ 0 (4)

for various choices of x. To reject such a model as being the correct no-mispricing benchmark,

our test relies on detecting

α(x̂, 120, f̃ , Â) ̸= 0, (5)

4Or, more generally, in an efficient market α(x, τ, f∗, A) = 0 and in an inefficient market various choices
of x can make α(x, τ < 120, f∗, A) ̸= 0.
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for a given asset universe, A = Â, and a given x = x̂.

Suppose that the model is not the no-mispricing benchmark because f̃ incorrectly includes

or excludes a given factor, fj. Let βj(x̂, τ, f̃ , Â) denote the factor’s corresponding element

of β in equation (1) if f̃ includes fj. Otherwise, let βj(x̂, τ, f̃ , Â) denote the factor’s slope

coefficient in that regression when f̃ is augmented by fj. A necessary condition for (5) to

obtain, and thus for our test to have power, is that that

βj(x̂, 120, f̃ , Â) ̸= 0. (6)

The nonzero beta in (6), when multiplied by the non-zero mean (factor premium) of fj,

then represents the component of expected return that is incorrectly included or excluded,

resulting in the nonzero alpha in (5). The challenge faced by our test, noted earlier, is that for

many asset universes and information choices, there may be essentially no relation between

individual assets’ decade-old values in x̂ and their current betas on fj. In that scenario, a

long-short strategy based on those values in x̂ is likely to produce βj(x̂, 120, f̃ , Â) = 0, the

same as one would expect if the assets in the long and short legs were just randomly selected.

Settings more likely to avoid this no-power scenario are those in which βj(x̂, 1, f̃ , Â) ̸= 0 and

the individual assets’ betas on fj are stable over time. The latter condition, in turn, seems

more likely when the selected universe, Â, comprises assets tending to have more stable

factor betas.

3. Empirical setting and test results

As explained earlier, for the information vector x̂ we use Ê, containing assets’ return forecasts

from the FF3 model. Specifically, for stock i in month t, we compute the decade-old quantity

Êi,t−120 = f̄ ′
t−120β̃i,t−120, where f̄t−120 contains the historical averages of the FF3 factors

through month t − 120, and β̃i,t−120 contains ten-year-ahead forecasts of the stock’s factor

betas. We construct β̃i,t−120 as follows. For each factor k and month t− 120, we first run a

cross-sectional multiple regression in which the i-th observation of the dependent variable is

β̂i,k,t−120 and the three independent variables are β̂Ind(i),j,t−240, j = 1, 2, 3, where β̂Ind(i),j,t−240

is the average value of β̂n,k,t−240 for all stocks n whose industry classification in month t−240

is the same as that of stock i in month t− 120. Each β̂i,k,s is estimated using months s− 35

through s, and the 49 industry classifications follow Fama and French (1997). We then

compute the three elements of β̃i,t−120 by applying the coefficients from the corresponding

multiple regressions to the values of β̂Ind(i),j,t−120, j = 1, 2, 3.
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The above procedure for computing the values of Êi,t−120 is applied separately within three

segments of market capitalization. Using NYSE market-cap percentiles as break points, and

using market values at the end of month t− 120 (so all information is 10-years old), we form

three subsamples consisting of all NYSE, AMEX, and NASDAQ stocks (i) above the 70th

percentile, (ii) between the 70th and 20th percentiles, and (iii) below the 20th percentile. For

labeling ease, we denote these segments as “large,” “medium,” and “small,” while recognizing

that other terms can be applied. For example, one might instead use “microcaps” to label

the stocks below the 20th percentile, following Fama and French (2008).5

Computing Êi,t−120 using decade-old industry betas, rather than individual-stock betas,

allows us to include more stocks in our test portfolios. Sorting in month t on Êi,t−120 can be

applied, at best, only to stocks that also existed in month t− 120, an age requirement that

already reduces the sample nontrivially. Using individual-stock betas to compute Êi,t−120

would further reduce the sample, as the stocks eligible to be sorted would then be only those

that also existed for an earlier N -month period ending in month t − 120, where N is the

length of the period used to estimate betas (36 months in our case). Computing Êi,t−120

using β̃i,t−120, i.e., month-t betas predicted ten years earlier, rather then simply using the

industry betas in month t− 120, allows Êi,t−120 in part to reflect persistence in betas, which

is the source of our test’s power.

Table 1 reports the average value of R-squared in multiple regressions of month-t in-

dividual stock betas on decade-old individual stock betas, in Panel A, and on decade-old

industry-average betas, in Panel B. For comparability, the samples in both panels are lim-

ited only to stocks for which the results in Panel A can be computed, meaning stocks existing

in month t that also have a 36-month sample ending in month t− 120.

One consistent result in Table 1 is that the R-squared values are higher for large stocks.

In part, this result likely reflects small stocks’ greater volatility, and thus noisier betas, but

the result is also consistent with large stocks having more persistent betas. By virtue of their

size, large firms are likely to have greater inertia, taking longer to change course in ways

that would significantly impact their characteristics relevant to factor exposures. (Aircraft

carriers turn more slowly than destroyers.) Greater persistence in large-cap betas is likely

to endow our test with more power within that segment. Our test results, discussed later,

are consistent with that interpretation. Table 1 also reveals that using industry betas, which

allows our test to include more stocks, appears to sacrifice little, if any, explanatory power

5Stocks between the 70th and 20th NYSE percentiles essentially combine categories that are often denoted
as “mid-cap” and “small-cap.” In that respect, readers should not misinterpret our “small” labeling.
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relative to using stock-specific betas. In fact, the largest R-squared (0.139), occurs when

forecasting ten-year-ahead HML betas using lagged industry-average FF3 betas.

To conduct our main test, we compute return spreads between the bottom and top 20%

of stocks sorted by Êi,t−120, value weighting the stocks in each leg. The value weighting uses

market caps as of month t−120, so that only decade-old information is used to construct the

long-short spread. Of course, we use the information that a stock exists in the most recent

month, t, but that information is identical for all stocks in the strategy. The designation

of the bottom 20% of Êi,t−120 as the long leg is motivated by the possibility that part of

Ê could reflect the FF3 model’s ability to capture mispricing of current information. If so,

and if that mispriced information eventually gets priced correctly within a decade, then a

high (low) value of Êi,t−120 would predict too high (low) a return in month t+ 1. Thus, the

long-short strategy would have a positive alpha with respect to FF3 and other models that

also help capture whatever mispricing FF3 does.

We apply our test to 11 different pricing models. The first five models, which contain at

least three factors, include the three-, five- and six-factor models of Fama and French (1993,

2015, 2018), denoted FF3, FF5 and FF6, the four-factor model of Hou et al. (2015), denoted

Q4, and the five-factor model of Hou et al. (2021), denoted Q5. The next five models include

the CAPM of Sharpe (1964) and Lintner (1965) plus four models that augment the CAPM

with a single factor: the betting-against-beta (BAB) factor of Frazzini and Pedersen (2014),

a 12-month momentum factor (UMD from Fama and French (2018)), the traded liquidity

factor (LIQ) of Pástor and Stambaugh (2003), and the size factor (SMB) of Fama and French

(1993). Finally, we include a model with no factors, which simply equates expected returns

across all stocks.

We form spreads separately within the large-, medium-, and small-cap segments as well

as within the whole universe and just the largest 200 (“mega-cap”) stocks. The first five

columns of Table 2 report the alphas and t-statistics with respect to each pricing model

across mega-cap, large, medium, small, and all stocks categories. The last column reports

the p-value for a test of whether the alphas for the disjoint size segments (large, medium,

small) are jointly equal to zero.

The first row of Table 2 reports alphas for the FF3 model across the size groups. The

first column reports a 41 basis point (bp) alpha for the mega-cap stocks (largest 200) with

a statistically significant 2.62 t-statistic (using White (1980)-corrected errors), indicating

that the FF3 model yields significant abnormal returns for a portfolio of mega-cap stocks

sorted on 10-year old information, where there should be no mispricing. This non-zero alpha
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indicates that the FF3 model is not a proper benchmark for equilibrium asset pricing in the

sense of Fama (1991), if decade-old information represents the absence of mispricing.

The remaining columns report alphas with respect to the FF3 model for the other size

groups. For large-cap stocks, the alpha is a significant 37 bps (t-statistic = 2.70), for medium

cap stocks it is a marginally significant 22 bps (t-statistic = 1.71), and for small-cap stocks

the alpha is an insignificant −11 bps. These results are consistent with betas being more

precise and more persistent among larger stocks: small stocks have noisy and unstable betas,

and using 10-year-old information to forecast them results in noise. The portfolio sort then

yields no reliable differences in current loadings on the factors. These findings are supported

by the results in Table 1 that show little persistence in betas for small caps. The second-

to-last column reports the alpha for all stocks in the investment universe, which is 39 bps

(t-statistic = 3.17). Finally, the last column reports the p-value of a Gibbons, Ross, and

Shanken (1989) F -test (with a White (1980) heteroskedasticity-consistent covariance matrix)

of whether the alphas of the large, medium, and small-cap segments are jointly zero. The

p-value of 0.0143 indicates that the test for alphas being jointly zero is rejected, confirming

that the FF3 model produces significant alphas when mispricing is absent.

The next four rows report the analysis for the FF5, FF6, Q4, and Q5 models, who each

produce positive alphas (of 22 to 38 bps) among medium- and large-cap stocks, and zero

alphas among small caps. The GRS (1989) joint test of alphas being zero across the size

segments rejects for all four models, indicating that each of these multifactor models, which

are prominently used in the asset pricing literature, are likely not good candidates for the

no-mispricing benchmark of Fama (1991).

The next row reports results for the single factor CAPM. Here, the GRS (1989) test that

the alphas are jointly zero fails to reject (p-value = 0.2337). Hence, the CAPM passes our

test and could be a viable candidate for the equilibrium asset pricing model in the absence

of mispricing. However, our test cannot tell whether the CAPM is the right no-mispricing

benchmark, just that it does not fail our test of pricing decade-old information, as the other

multifactor models do. This is an important distinction. Our test is useful in ruling out

the multifactor models as viable candidates for the model of expected returns in an efficient

market with no mispricing. However, our test does not identify what that model is.

To illustrate the point, consider various modifications of the CAPM. The next four rows

of Table 2 report results from our test applied to the CAPM plus the addition of one other

factor: the betting-against-beta (BAB) factor of Frazzini and Pedersen (2014), a 12-month

momentum factor (UMD from Fama and French (2018)), the traded liquidity factor (LIQ)
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of Pástor and Stambaugh (2003), and the size factor (SMB) of Fama and French (1993). All

of these modifications to the CAPM also pass our test and hence are consistent with being

the proper benchmark in an efficient market. But, we have no power to detect which of these

models best fills that role. Take the CAPM + MOM model, for example. This model passes

our test, but a substantial literature links MOM to mispricing, suggesting CAPM + MOM is

unlikely to be the no-mispricing benchmark. Our test has no power to reject CAPM + MOM

if MOM reflects mispricing, because our test uses decade-old information to implement the

no mispricing condition. Decade-old information has little to say about current momentum,

which is a relatively short-term characteristic having little predictability beyond a year. A

model of the CAPM plus short-term reversals would face the same issue. In fact, the CAPM

plus noise would also satisfy our test, but it would not be a good description of equilibrium

returns in an efficient market. To distinguish among these models, we would need a test

with more power, e.g., a test among securities immune to MOM. In other words, if one could

come up with other plausible conditions where mispricing is absent and there is power to

detect the potential influences of MOM (or BAB, LIQ, SMB), then we could conduct similar

tests and possibly distinguish among these models.

Finally, the last row of Table 2 reports results from our test on a no-factor model. Our

test fails to reject this model as well, which is to say that sorting on 10-year old predictions

from the FF3 model produces no reliable differences in average raw returns. Despite passing

our test, the no factor model has little theoretical appeal as a model of short-run expected

return in an efficient market. The no-factor model could, however, be a good description of

expected long-horizon returns in a CAPM world if betas are expected to compress in the

long run. In general, our test has little to say about long-term expected return models and

therefore does not have much relevance for the recent literature on short- versus long-term

signals in asset pricing.6 The fact that we use decade-old information as our condition for

ruling out mispricing may seemingly provide a link, but our motivation is wholly different

6Having said that, our framework may provide some additional clarity to the results from the literature.
For example, Cho and Polk (2020) find that the CAPM describes the cross-section of prices better than it
describes expected short-horizon returns. Since price levels of stocks depend more on discount rates applied
in the long run, if mispricing gets corrected in the short run, the cross-section of prices will be less affected
by mispricing, which is consistent with our results on the CAPM, too. Keloharju, Linnainmaa, and Nyberg
(2020) find that persistent differences in firm characteristics do not predict stock returns, a result that they
argue is consistent with long-term expected returns not varying across stocks. Our findings suggest that
the reason persistent characteristics fail to have long-term return consequences is perhaps because they
help identify mispricing, which dissipates faster than the characteristics change. Baba-Yara, Boons, and
Tamoni (2024) examine the returns to 56 characteristic-sorted portfolios using the most recent information
about a characteristic and its lag (up to five years). They find that 2/3 (1/3) of the characteristics contain
more return predictability from newer (older) information and that the CAPM does better at pricing older
sorts, while popular multifactor models do better at pricing newer sorts, consistent with our results and the
assumption that older information is not mispriced.
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and we have little to say about short- versus long-term predictability. Put differently, had we

found another condition or assumption, besides decade-old information, where mispricing is

plausibly absent, there would be no seeming link to the literature on short- versus long-term

expected returns or the persistence of signals.

Our test rejects each of the models with three or more factors as being the no-mispricing

benchmark model, and it fails to reject the CAPM and two-factor variations of the CAPM. To

understand better the source of these rejections (and lack of rejections), Table 3 decomposes

the alphas reported in Table 2. Specifically, the alpha at each lag is decomposed into the

average return spread minus the product of the spread’s estimated beta times the sample-

average factor premium for each factor in the model.

The first set of results in Table 3 pertain to the FF3 model. Rejection of the model

for mega- and large-cap stocks is driven by the persistence in market beta and HML beta,

that when multiplied by their return premia result in unhelpful variation in average returns

that generates the positive alpha leading to rejection. The raw return spread between the

long and short legs of the portfolio sorted on decade-old return predictions for mega- and

large-cap stocks is 9 bps (statistically insignificant from zero). But when these returns are

regressed on the FF3 model, negative betas on the market and HML show up, which when

multiplied by the market and HML premia, result in a more positive alpha. Specifically,

for mega caps, this exposure adds 31 more bps of returns to the 9 bp spread, resulting in a

significant 41 bp alpha that leads to the FF3 model’s rejection. For large caps, these residual

exposures add 28 bps of return to yield a significant 37 bp alpha. For small stocks, there

is no reliable factor exposure, consistent with small stocks having less persistent and less

reliable betas, and therefore no power to reject.

The story is nearly identical for the FF5 and FF6 models: persistent exposure to the

market and HML among large stocks long after mispricing has abated leads to unhelpful

factor exposure a decade later, inflating the alpha and leading to rejection of the model. For

the Q4 and Q5 models, which replace the FF factors with ME, IA, ROW and (in the case of

Q5) EG, all of the action is driven by the IA factor instead of HML. Persistent exposure to

IA a decade later inflates the zero alpha raw return spread by 12 to 16 bps when adjusting

returns for these models.

Interestingly, the FF3, 5, and 6 models as well as the Q4 and Q5 models are motivated

by and couched in terms of equilibrium risk premia consistent with an efficient market, and

hence have been suggested as candidates for the proper benchmark in the sense of Fama

(1991). Our test’s rejection of these models casts doubt on that interpretation, suggesting
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that these models are not good descriptions of expected returns in the absence of mispricing.

The fact that these models fail to price the largest, most liquid stocks in particular is even

further testament to that claim. Such stocks should be subject to the least mispricing,

especially based on decade-old information, and they have the most reliable and stable

factor exposures, giving our test the most power.

The remaining entries in Table 3 pertain to the CAPM and its variants, where we don’t

find rejection of the models. Hence, these models pass our test and could be viable candidates

for the proper equilibrium benchmark in an efficient market per Fama (1991). However,

as discussed previously, this does not necessarily mean they provide good descriptions of

equilibrium returns with no mispricing. We would need more powerful tests to find the best

model among the set of candidate models that pass our test.

4. Conclusion

In an efficient market, public information is properly reflected in prices, but assessing ef-

ficiency rests on having a pricing model that defines “properly” (Fama, 1970, 1991). We

investigate whether prominent asset pricing models appear suitable for that role. We assume

prices properly reflect at least the information the market has had ten years to evaluate and

exploit, whether or not the market is efficient. With this assumption, a model suitable as the

no-mispricing benchmark should clear the seemingly modest hurdle of assigning zero alphas

to long-short spreads based on decade-old information.

We find a number of prominent asset pricing models fail that test, assigning significant

alphas to spreads formed using ten-year lags of FF3 expected return forecasts. Such models

include the FF3, FF5, FF6 models and the Q4 and Q5 models of Hou, Xue, and Zhang (2015)

and Hou et al. (2021). In contrast, the same long-short spreads do not produce significant

alphas with respect to the traditional CAPM of Sharpe (1964) and Lintner (1965) and

simple variations of this model. Hence, such models emerge as viable candidates for the

no-mispricing benchmark, with more powerful tests required to discriminate among them.

While it seems reasonable that spreads based on decade-old information should receive

zero alpha with respect to the no-mispricing benchmark, the main challenge faced by our

test is achieving power. For many stocks, current values of factor betas may be unrelated to

decade-old information. However, we show that large stocks have the most stable multifactor

betas, thus offering our test the most power. Moreover, to have large stocks play the strongest
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role in our test underscores the economic importance of the result. For these stocks, which are

the backbone of the US economy, prominent multifactor models evidently distort expected

returns purged of mispricing. The stronger results of our test among large stocks reveal what

seems to be an economically significant shortcoming of popular multifactor models. These

models fail significantly in capturing expected returns on strategies based on decade-old

information. Our assumption that such information should be fully reflected in prices seems

especially reasonable for the market’s largest and most liquid stocks. The CAPM and its

simpler variants, in contrast, fare well in this regard, emerging as better candidates for the

no-mispricing benchmark model.

The relatively parsimonious set of models we consider is far from exhaustive. In an initial

attempt to compare the abilities of pricing models to serve as the no-mispricing benchmark,

we believe the models we consider present a horserace with interesting entrants. We certainly

acknowledge that there are other horses out there. Seeking refinements of our approach that

potentially offer more power also seems a worthy research objective and may help better

identify which models serve best as the proper efficient benchmark.

Of course, another worthy and parallel objective for research in asset pricing is to continue

building models that better describe actual expected returns, whether or not the prices

determining those expected returns include mispricing. Although such models may be less

useful for gauging the extent of market inefficiencies or understanding risk premia, they can

be otherwise useful, such as in designing investment strategies.
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Table 1

R-squared when regressing individual-stock betas on

decade-old individual-stock or industry betas

The table reports the average R-squared value in a multiple regression of the current individual-stock OLS
beta with respect to a given FF3 factor on decade-old estimates of betas with respect to the three FF3 factors.
The decade-old estimates are either OLS estimates for individual stocks (Panel A) or within-industry averages
of those estimates (Panel B). The regressions and the industry averaging are performed separately within
three (decade-old) market-cap segments formed using NYSE percentiles as breakpoints: large (above 70th),
medium (70th to 20th), and small (below 20th). The R-squared values are averaged over the sample period
for current betas, 1/1968 to 12/2024. The beta estimates for a given month use the past 36 months of data.

Dependent variable:
individual-stock Market-cap segment
OLS beta Large Medium Small

Panel A. Independent variables: decade-old
individual-stock OLS betas

βMKT 0.128 0.096 0.058
βSMB 0.073 0.061 0.024
βHML 0.113 0.054 0.015

Panel B. Independent variables: decade-old
industry-average OLS betas

βMKT 0.114 0.082 0.038
βSMB 0.069 0.066 0.026
βHML 0.139 0.080 0.019
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Table 2

Pricing tests using decade-old return predictions

The table reports estimated monthly alphas (in percent) and t-statistics (in parentheses) for spreads between
value-weighted portfolios of stocks in the bottom and top 20% of stocks sorted by decade-old return predictions
from the three-factor model of Fama and French (1993). The return predictions use industry-level betas to
predict stocks’ betas ten years later. Results are shown for the total stock universe as well as mega-cap stocks
(largest 200) and three market-cap segments formed using NYSE percentiles as breakpoints: large (above
70th), medium (70th to 20th), and small (below 20th). The models tested are the three-, five- and six-factor
models of Fama and French (1993, 2015, 2018), denoted FF3, FF5 and FF6, the four- and five-factor models
of Hou et al. (2015) and Hou et al. (2021), denoted Q4 and Q5, the CAPM of Sharpe (1964) and Lintner
(1965), and the latter model augmented by various single factors: the betting-against-beta (BAB) factor of
Frazzini and Pedersen (2014), a 12-month momentum factor (UMD from Fama and French (2018)), the traded
liquidity factor (LIQ) of Pástor and Stambaugh (2003), and the size factor (SMB) of Fama and French (1993).
Also included is a model with no factors. The last column tests joint equality to zero of the three element
vector containing the alphas for the large, medium, small size segments, using the test of Gibbons, Ross, and
Shanken (1989) but with a White (1980) heteroskedasticity-consistent covariance matrix (also used to compute
the t-statistics). The sample period for computing alphas is 1/1968 to 12/2024.

L/M/S
Mega-cap Large Medium Small All stocks p-value

FF3 0.41 0.37 0.22 -0.11 0.39 0.0143
(2.62) (2.70) (1.71) (-0.77) (3.17)

FF5 0.30 0.26 0.38 -0.20 0.28 0.0058
(1.76) (1.81) (2.97) (-1.31) (2.25)

FF6 0.25 0.22 0.34 -0.20 0.24 0.0232
(1.42) (1.45) (2.55) (-1.23) (1.78)

Q4 0.28 0.26 0.34 -0.24 0.29 0.0189
(1.56) (1.70) (2.43) (-1.37) (2.07)

Q5 0.20 0.19 0.34 -0.33 0.24 0.0288
(1.05) (1.19) (2.31) (-1.77) (1.66)

CAPM 0.25 0.23 0.18 0.00 0.24 0.2337
(1.50) (1.60) (1.47) (0.03) (1.63)

CAPM+BAB 0.22 0.19 0.25 -0.30 0.21 0.0701
(1.17) (1.18) (1.80) (-1.86) (1.32)

CAPM+MOM 0.15 0.14 0.15 0.03 0.13 0.5807
(0.84) (0.90) (1.13) (0.18) (0.87)

CAPM+LIQ 0.21 0.20 0.19 0.01 0.21 0.2856
(1.26) (1.37) (1.54) (0.04) (1.38)

CAPM+SMB 0.25 0.23 0.18 0.00 0.24 0.2346
(1.50) (1.60) (1.47) (0.01) (1.76)

No factors 0.09 0.09 0.04 -0.10 0.03 0.8370
(0.52) (0.57) (0.32) (-0.66) (0.18)
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Table 3

Alpha components for spreads formed with decade-old return predictions

The table reports the components (in percent) that sum to the estimated monthly alphas for spreads between
value-weighted portfolios of stocks in the bottom and top 20% of stocks sorted by decade-old return predictions
from the three-factor model of Fama and French (1993). The return predictions use industry-level betas to
predict stocks’ betas ten years later. Results are shown for the total stock universe as well as mega-cap stocks
(largest 200) and three market-cap segments formed using NYSE percentiles as breakpoints: large (above
70th), medium (70th to 20th), and small (below 20th). The models tested are the three-, five- and six-factor
models of Fama and French (1993, 2015, 2018), denoted FF3, FF5 and FF6, the four- and five-factor models
of Hou et al. (2015) and Hou et al. (2021), denoted Q4 and Q5, the CAPM of Sharpe (1964) and Lintner
(1965), and the latter model augmented by various single factors: the betting-against-beta (BAB) factor of
Frazzini and Pedersen (2014), a 12-month momentum factor (UMD from Fama and French (2018)), the traded
liquidity factor (LIQ) of Pástor and Stambaugh (2003), and the size factor (SMB) of Fama and French (1993).
The sample period for computing alphas is 1/1968 to 12/2024.

Model Alpha components Mega-cap Large Medium Small All stocks

FF3
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.19 0.17 0.14 0.05 0.18

−βSMB × SMB 0.00 0.00 0.01 0.03 0.06

−βHML ×HML 0.12 0.11 0.03 -0.09 0.12
total: α 0.41 0.37 0.22 -0.11 0.39

FF5
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.18 0.16 0.16 0.05 0.16

−βSMB × SMB -0.01 -0.00 0.03 0.02 0.08

−βHML ×HML 0.14 0.13 -0.02 -0.10 0.12

−βRMW ×RMW -0.08 -0.06 0.08 -0.09 -0.04

−βCMA × CMA -0.03 -0.06 0.10 0.02 -0.06
total: α 0.30 0.26 0.38 -0.20 0.28

FF6
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.17 0.15 0.15 0.05 0.15

−βSMB × SMB -0.01 -0.00 0.03 0.02 0.08

−βHML ×HML 0.13 0.12 -0.03 -0.10 0.11

−βRMW ×RMW -0.07 -0.05 0.08 -0.09 -0.04

−βCMA × CMA -0.03 -0.05 0.10 0.02 -0.05

−βMOM ×MOM -0.04 -0.04 -0.03 -0.01 -0.04
total: α 0.25 0.22 0.34 -0.20 0.24

Q4
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.18 0.16 0.15 0.04 0.16

−βME ×ME -0.01 -0.00 0.04 0.04 0.12

−βIA × IA 0.16 0.12 0.08 -0.13 0.08

−βROE ×ROE -0.14 -0.11 0.04 -0.09 -0.11
total: α 0.28 0.26 0.34 -0.24 0.29
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Table 3 (continued)

Alpha components for spreads formed with decade-old return predictions

Model Alpha components Mega-cap Large Medium Small All stocks

Q5
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.18 0.16 0.15 0.03 0.16

−βME ×ME -0.01 -0.01 0.04 0.03 0.12

−βIA × IA 0.16 0.13 0.08 -0.12 0.08

−βROE ×ROE -0.12 -0.09 0.04 -0.07 -0.09

−βEG × EG -0.10 -0.08 -0.00 -0.10 -0.05
total: α 0.20 0.19 0.34 -0.33 0.24

CAPM
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.16 0.15 0.14 0.10 0.21
total: α 0.25 0.23 0.18 0.00 0.24

CAPM+BAB
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.16 0.14 0.15 0.09 0.21

−βBAB ×BAB -0.03 -0.04 0.07 -0.29 -0.03
total: α 0.22 0.19 0.25 -0.30 0.21

CAPM+MOM
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.15 0.13 0.14 0.11 0.20

−βMOM ×MOM -0.09 -0.08 -0.03 0.02 -0.09
total: α 0.15 0.14 0.15 0.03 0.13

CAPM+LIQ
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.16 0.15 0.14 0.10 0.21

−βLIQ × LIQ -0.04 -0.03 0.01 0.00 -0.03
total: α 0.21 0.20 0.19 0.01 0.21

CAPM+SMB
average spread 0.09 0.09 0.04 -0.10 0.03

−βMKT ×MKT 0.16 0.15 0.13 0.07 0.15

−βSMB × SMB -0.00 -0.00 0.01 0.03 0.06
total: α 0.25 0.23 0.18 0.00 0.24
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