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1 Introduction

Exchanging goods over borders involves more than production and consumption: shipping,

transshipping, and distribution can include multiple agents and additional countries beyond

producers and consumers. These activities are concentrated at entrepôts, trading hubs which

goods travel through—from other origins and bound for other destinations. The idea that

entrepôts are integral to the trade network and are engines of growth has been the impetus

behind many policies aimed at attaining or maintaining entrepôt status (Financial Times, 2015;

Reuters, 2016; Wall Street Journal, 2021).

This paper studies entrepôts, the trade network they form, and their impact on international

trade. Using novel data on the trade network and developing a quantitative general equilibrium

spatial trade model, we answer the following questions: (1) How do goods move from their

origins to their destinations and what role do entrepôts play in facilitating this process? (2)

What trade costs and scale economies can explain the observed routes that goods take and the

existence of entrepôts? and (3) How does this pattern of trade through entrepôts impact global

and regional trade as well as welfare?

We start by constructing a new dataset mapping the journeys containerized shipments take

through the global trading network. This microdata allows us to observe indirect trade, which

we define as trade journeys that make stops with the shipment either on-board or transshipped—

transferred onto a ship—at additional countries beyond the shipment’s origin and destination.

Our first contribution is to establish two stylized facts about the global trade network.

Our first stylized fact is that the majority of trade—80%—is shipped indirectly. The median

shipment stops at two additional countries before reaching its destination. The majority of

trade is also transshipped via an additional country before its destination. This indirectness is

not incidental—increasing shipping times and distances by 30%.

Our second stylized fact is that indirectness is incredibly concentrated, with over 90% of

indirect trade channelled through a small number of entrepôts, establishing a hub-and-spoke

network. These facts highlight a trade-off and trace the existence of a potential scale-cost

relationship: indirect trade concentrated through entrepôts increases the observable distance

and time costs of trade, but by revealed preference it implies lower trade costs, especially for

the spokes of the network which disproportionately choose to ship via entrepôts.

In order to rationalize the documented direct and indirect trade through the global trading
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network, we build a general equilibrium model of trade with entrepôts and endogenous trade

costs which flexibly accommodates input-output linkages. Producers choose shipping routes

and compete for foreign consumers in a generalized Ricardian setting. Low-cost routes can

involve indirect shipping through additional countries, and entrepôts endogenously arise where

trade costs are lowest. We allow for both scale economies and dis-economies to govern shipping

costs on these network links.

Our second contribution is to use our model to estimate a global set of indirect-shipping

consistent trade costs and the economies of scale in shipping. Expanding from our microdata

to global seaborne container shipping and trade data, our estimation yields trade costs for each

link of the global shipping network and a global set of model-consistent origin-destination trade

costs that are distinct from typical distance-based costs. We establish the validity of both

our estimates and modeling approach by finding a tight match between our estimated trade

costs and external freight rate data, as well as between our model-predicted network flows and

microdata on shipment journeys. Our trade cost estimates are publicly available online.

We use a geography-based instrument to identify the causal effect of increasing shipping

volumes on decreasing trade cost using an instrumental variable approach. Embedded in our

model is the intuition that some links have inherently higher traffic because of their geographic

position in the network. For example, links that include Singapore are close to the lowest-

distance route between many European and Asian countries due to Singapore’s location in

the Straits of Malacca. For each link, we compute the distance to and from the link relative

to the shortest distance between each origin and destination, recovering a weighted average

of each link’s proximity to global trade. Increasing traffic volume on a link by 1% reduces

costs by 0.06%. As the median journey in our microdata has 3 links, a 10% increase in overall

origin-destination trade translates into a 0.17% decrease in trade costs.

Our third contribution uses our estimates and model to quantify the impact of the trade

network on global trade and welfare, highlighting how trade cost changes at node countries—

entrepôts and non-entrepôts—as well as links can have widespread impacts through the network

that are subsequently magnified due to scale economies. Our main counterfactual quantifies

the trade and welfare benefits of transport infrastructure improvements for each country in our

sample. Entrepôts are pivotal to the global trade network: welfare impacts of infrastructure

investment are on average 10 times higher at entrepôts than non-entrepôts. Conflating trans-

port and non-transport trade costs impact estimated welfare effects by an order of magnitude.
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This is especially true at entrepôts, which differentially concentrate infrastructure improvement

benefits locally relative to non-entrepôts. Scale economies in transportation further concentrate

these gains locally at and around entrepôts—highlighting that scale economies in transporta-

tion act as a source of agglomeration. We establish that Egypt (and the Suez Canal) is the

most pivotal location in the trade network, as reflected by the strain in global supply chains

when it was blocked in March 2021 (Wall Street Journal, Financial Times, AP News, 2021).

Our second counterfactual investigates how non-transportation cost changes at an entrepôt

can have widespread impacts beyond the countries that are directly impacted through endoge-

nous adjustments in trade network. We illustrate this by studying the ramifications of worsening

trade relations between one hub, the United Kingdom (UK), and its trading partners—Brexit.

When only considering the direct impact of increased non-transportation trade costs, Brexit’s

consequences are largely proportional to a country’s direct trade exposure with the UK. When

our analysis accounts for the impact of scale economies on the trade network, we find that

smaller countries like Ireland and Iceland that use the UK as an entrepôt to access all other

trading partners are disproportionately hurt (as recognized in Financial Times, 2020). This il-

lustrates how trade network and scale interactions can lead to distinct distributional outcomes

in welfare even when the initial changes are unrelated to transport.

Our last counterfactual evaluates the importance of endogenous trade costs by demonstrat-

ing the welfare and trade impacts from the two endogenous mechanisms in our model: (1)

network effects—allowing countries to ship indirectly and (2) scale effects—allowing countries

to ship indirectly and take advantage of scale economies. To illustrate this, we study the effects

of opening up the Arctic Ocean to regular year-round shipping, connecting countries in East

Asia and Europe. Allowing for network effects double the welfare relative to a näıve exogenous

trade cost case with no network effects and allowing for scale economies triples the welfare

relative to the network effects case.

This paper ties two broad literatures together, combining detailed microdata on the flow

of goods through the trade network with a structural model of trade and transportation. The

first dives deeply into the technology underpinning the fundamentals of international trade,

such as container shipping and infrastructure investment (Coşar and Demir, 2018). The second

considers the geography and cost structures of transportation networks within a class of gravity

models (Head and Mayer, 2014; Allen and Arkolakis, 2019).

With regards to the technologies underpinning trade, we make two contributions. First,
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a wide literature shows how both containerization and infrastructure investments have local

outcomes (Heiland et al., 2019; Ducruet et al., 2019; Wong, 2020; Coşar and Demir, 2018;

Bernhofen, El-Sahli and Kneller, 2016; Rua, 2014).1 We demonstrate the global welfare impacts

of the container shipping network, which accounts for two-thirds of annual trade moved by

sea (World Shipping Council). Using our general equilibrium spatial trade framework, our

counterfactuals show how endogenous changes in trade costs propagate via the network and

through entrepôts as well as quantify their trade and welfare impacts. Allowing for network

effects double the welfare relative to a baseline case with no network effects and allowing for

the effect of scale economies further triples welfare impacts.2

Second, we explore the general equilibrium effects of scale economies in shipping. For the

median route into the US, our leg-level scale economy implies that a 10% increase in volume

leads to a 1.7% decrease in costs.3 The role of localized scale economies in production is well

known in general (Allen and Arkolakis, 2014; Allen and Donaldson, 2018), and in the context

of trade in particular (Lashkaripour and Lugovskyy, 2019; Bartelme et al., 2019; Kucheryavyy,

Lyn and Rodŕıguez-Clare, 2019). In these settings, scale economies typically generate agglom-

erations by acting on local productivity. By contrast, in our setting, scale economies generate

agglomerations by affecting trade costs. Our counterfactuals find that, by acting on endogenous

transport costs over the network, scale economies further concentrate transportation as well as

trade and welfare gains at entrepôts.

With respect to the geography and structure of the trade network, we make two contribu-

tions. First, we provide empirical evidence for a growing quantitative literature investigating

1Hummels, Lugovskyy and Skiba (2009),Grant and Startz (2020), and Asturias (2020) study transport costs
in the context of market power. While container shipping firms may hold market power, we generalize away
from the profits of the shipping companies. Models allowing for leg-level oligopoly, fixed costs and endogenous
entry competition fit within our framework (Sutton, 1991), but we leave the study of how market power works
through the hub-and-spoke network for future study.

2Allen and Arkolakis (2019) studies the endogeneity of trade costs to traffic congestion on highways. In
our ocean shipping context, we find the presence of scale economies instead. Brancaccio, Kalouptsidi and
Papageorgiou (2020) studies two aspects of trade cost endogeneity for the network of dry bulk ships carrying
homogeneous commodities where all trade is direct: the loading opportunities of dry bulk ships after delivering
their cargo relative to the country’s trade balance (the equilibrium bargaining position of these ships), and the
trade balance of neighboring countries (the network effects). Wong (2020) focuses on the round trip effect from
container shipping: a bilateral trade cost endogeneity between a country’s imports and exports with a specific
trading partner due to containerships serving round trip routes.

3Our estimate is about three-quarters of the estimates in Asturias (2020) and Skiba (2017). Asturias (2020)
reports an origin-destination country trade-volume trade-cost elasticity of 0.23 while Skiba (2017) reports an
elasticity of 0.26 using product-level import data from Latin America. See also Alder (2015); Holmes and Singer
(2018); Anderson, Vesselovsky and Yotov (2016).
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the role of trade networks (Allen and Arkolakis, 2019; Fajgelbaum and Schaal, 2020; Red-

ding and Turner, 2015). We provide the first and systematic documentation of indirect trade

through the containerized shipping network and the pivotal role that entrepôts play within this

network.4 Our microdata on the movement of shipments through the trade network documents

widespread nature of indirect trade and its concentration. In contemporaneous work, Heiland

et al. (2019) study the impact of the Panama Canal expansion on global ship movements and

use model-based imputations to estimate the physical movement of goods. We further esti-

mate a set of network-consistent trade costs, distinct from and more predictive of trade than

distance. Finally, our counterfactuals demonstrate how transport costs behave differently from

non-transport costs, particularly at entrepôts. For example, Egypt ranks first in terms of global

welfare impacts from infrastructure improvements, while it is not among the top 20 in terms of

the welfare impacts from non-transportation trade cost reductions.

Second, our model embeds transportation networks within a class of gravity models (Head

and Mayer, 2014). We extend the Armington framework in Allen and Arkolakis (2019)—

where route cost shocks are born by consumers—to a general Ricardian setting—where traffic

volumes reflect both route choice and head-to-head competition on prices at destinations and

demonstrate how to estimate the model in a multi-industry setting with non-transport barriers

to trade and in the presence of unobserved traffic flows. Methodologically, we adopt an approach

from the literature on marginal cost estimation (Ackerberg et al., 2007), combining market level

data and exogenous instruments with equilibrium assumptions—the indirect routing of trade

in our case, or market conduct in the Industrial Organization literature’s case—to recover

unobserved costs. We establish that our estimates reflect actual costs and indirect flows by

comparing our model predictions to external cost estimates, ship sizes, and observed trade

routes in our microdata. These results serve as a check to the validity of the Allen and Arkolakis

(2019) framework in the trade setting.

2 Data

Our paper uses two distinct sets of data. To establish the stylized facts of the international

trade network (Section 3), we use a microdata on the detailed journey of US-bound shipments.

To estimate global trade costs that are network-consistent (Section 5), we use global data on

4The emergence of entrepôts as hubs in geographically advantageous locations is consistent with the findings
of Barjamovic et al. (2019).
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trade and shipping traffic.

To construct the microdata on US shipments, we merge two proprietary data sets: global

ports of call data for containerships, which allows us to reconstruct the routes taken by spe-

cific ships, and United States bill of lading data for containerized imports, which gives us

shipment-level information on US imports. Independently, these datasets partially describe the

global shipping network. Merged, they reconstruct the journey of individual shipments as they

navigate the trade network, from their origin to their US port of entry. To our knowledge,

we provide the most comprehensive reconstruction of the global trading network and routes

undertaken by individual shipments into the US.5

Our ports of call data captures vessel movements using Automatic Identification System

(AIS) transponders.6 For each vessel, this data captures the vessel’s characteristics, time-

stamped ports of call, capacity, and height in the water before and after stopping at each port.

The latter two pieces of information indicates the vessel’s load at these ports, allowing us to

observe volumes shipped between port pairs.

Our sample covers 4,986 unique container ships with a combined capacity of 18.1 mil-

lion twenty-foot equivalent container units (TEUs)—over 90% of the global container shipping

fleet—making 429,868 calls at 1,203 ports from April to October 2014. Figure 1 shows the

coverage of the shipping network in our port of call data. Each line represents a containership

journey. We use this global data along with CEPII global trade data when estimating our

model in Section 5.

With this port of call data alone, shipment journeys within the trading network remain

unobserved. We do not observe containers being loaded or unloaded. To remedy this, we merge

the port of call data with US bills of lading data, which captures shipment-level information

for all containerized imports. We observe each shipment’s origin country, the port where they

are loaded onto containerships (also known as port of lading), and the US port where they are

unloaded (port of unlading). We observe the name and identification number of the contain-

ership which transported the shipment as well as the shipment’s weight, number of containers

(TEUs), and product information. Over the same six months period, we see a total of 14.8

million TEUs weighting 106 million tons were imported into the US from 227 origin countries

5Data Appendix A.1 explains both data sets and their merge procedure in detail.
6Port receivers collect and share AIS transponder information (including ship name, speed, height in water,

latitude and longitude). Using Astra Paging data, we track global port entry and exit data.
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Figure 1: Global Network of Ships, Ports of Call Data

Notes: Each dot represents a port (total of 1,203 ports). Each line represents a journey between port pairs
undertaken by a containership (total of 4,986 ships).

and loaded onto US-bound containerships (laded) in 144 countries.

Using details on containerships, ports, and arrival times, we reconstruct each shipment’s

journey from its foreign origin to US destination by matching each shipment to the contain-

ership that it was transported on. Over 90% of containerized TEUs entering the US can be

matched to routes using this method (Appendix Figure A.1 visualizes this merge).7 While the

shipments’ exact journey between origin and the first stop (the port where they are loaded onto

containerships) remain unobserved, this initial portion can either take place overland (by trucks

or rail) or by sea on another containership because they are containerized. Not observing this

portion in fact leads us to under-count the overall level of indirectness. We empirically deal

with unobserved transit in Section 5.

3 Stylized Facts

We analyze the international trade network and the routes taken by goods entering the US

along that network. We find that the majority of trade takes place indirectly in a manner

which is costly—increasing both shipping time and distance travelled. We further show that

the global trade network is a hub and spoke system, concentrating a large number of shipments

through a small number of entrepôts.

7See Appendix A.1 for further details on each of these datasets as well as the merge process.
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3.1 The Majority of Trade is Indirect

Panel (A) in Figure 2 reports the distribution of the number of observed country stops made

by each shipment, weighted by TEU containers. Only 20% of containers are exported to the

US directly from their origin countries—making no stops in between. The average container

entering the US stops at around two third-party-countries who are neither the origin nor des-

tination.8 The map in Figure 2, Panel (B) shows that this is also true at the country level:

the majority of US trading partners export to it indirectly. Only shipments from 9 countries

typically enter the US directly.9 Similarly, the average shipment from a majority of US trading

partners is transshipped in a third-party country—over 60% of US trading partners transship

more than 90% of their US-bound goods.10 Figure A.5 reports the percent of goods that are

transshipped at third-party countries.

We explore the high degree of variation in connectivity in Appendix B.4, showing that this

variation is in part explained by traditional gravity variables. We show that there is substantial

variation in routes from unique origins into the US, which is an important assumption in our

model and is used in our validity checks (Figure A.9, Panel (B)).

Indirect trade increases shipping distances and time. Are the additional country

stops simply incidental stops along the way, or do they constitute a trip that is distinct from a

“direct” path? One possibility is that the observed indirectness is optimal but only incidental—

perhaps additional stops only have small effects on costs, and so may be optimal even if the

benefit of indirectness is small. As an example, goods transiting the Straits of Malacca can

perhaps stop at Singapore since it is “on-the-way.” However, the significant additional distance

and time incurred by indirect travel relative to the direct path, documented here, implies this

is unlikely to be the case.

On average, the actual traveled distance between a shipment’s origin and its US destination

is 31% more than its direct ocean distance (Panel (A) in Figure 3). Panel (B) shows the actual

traveled distance between the location where the shipment was last loaded onto a ship and its

8Mean of 1.5 and s.d. of 1.3. Landlocked countries are excluded. The average number of port stops is higher
(Figure A.3, mean of 4.6 and standard deviation of 3.5). This result is robust for shipment weight and value
(Figure A.4). Multiple stops at the same third-party country are not counted.

9These countries are Canada, Mexico, Panama, Japan, South Korea, Spain, Portugal, South Africa, and
New Zealand. We treat Mainland China, Hong Kong, Taiwan, and Macau as separate locations.

10Both on-board stops and transshipment are important measures of indirect trade. For completeness, all
results are broken out here or in the appendix using transshipment only. Examples of countries transshipping
more than 90% of goods include Denmark, Bangladesh, Cambodia, and Ecuador.
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Figure 2: Indirect Trade Distributions, by Container and Country

(A) Country Stops per Container
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Notes: Panel (A) shows the distribution of containers by the number of unique third-party countries the
containers visited. In Panel (B), for each origin country, we calculate the average number of third-party
country. The destination country (US) is excluded (in white). Plots are at the shipment level and weighted by
the aggregate exported containers (TEU). Landlocked countries are also excluded (in white), since they would
mechanically need to stop at a coastal country. 34 of the shipment origin countries are landlocked accounting
for 1.6 percent of total TEUs. The missing remaining countries are excluded either due to lack of overall trade
with the US (e.g. Somalia) or due to the merge process (e.g. Namibia).

final destination. Here the remaining gap is still substantial at 14%. Table A.1 further eval-

uates the relationship between indirectness and journey length. Controlling for direct journey

length or origin-by-destination fixed effects, doubling the number of stops adds 10% to distance

travelled and 33% to time travelled. These distance and time costs do not include pecuniary

costs of transshipment. Consequently, this indirectness is meaningful in the sense that it is

costly. These longer shipping routes imply a cost reduction from indirectness that is over and

above the additional time and distance costs. From these results, we can summarize our first

stylized fact:

Stylized Fact 1. The majority of containerized trade into the US is indirect and results in a

significant increase in shipping distance and time.
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Figure 3: Difference Between Traveled Distance and Direct Distance

(A) Shipment Origin to Destination (B) Place of Loading (Stop 1) to Destination

Notes: These figures show only indirect shipments, with different direct and observed distances. Dots are
shipments, shaded by TEU. Panel (A) compares the direct shipping distance from the shipment’s origin
country to the US, to the actual route travelled. Panel (B) compares the direct distance from the place a
shipment was last loaded onto a US-bound ship (Stop 1 in Appendix Figure A.1), to the actual route
travelled. Sea distances for observed and direct routes are calculated using Dijkstra’s algorithm. The local
linear fit line is a locally weighted regression of the observed on direct pair-wise distance.

3.2 Indirect Trade Is Routed Through Entrepôts

When shipments stop in third-party-countries, how are they routed? We show that the stops

along indirect shipping routes are not arbitrarily distributed throughout the world. Instead,

they are channelled through a small number of hubs, which disproportionately service shipments

originating in other countries.

Panel (A) of Figure 4 plots each country’s share of total third-party-country stops against its

share of total US trade. Some locations are both popular stopping points and major countries of

origin for goods like China, Germany, and Japan. Key countries like Korea, Singapore, Panama,

and Egypt disproportionately participate as third-party-countries in US-bound shipments.11

This leads to our measure of entrepôt activity:

Entrepôtl,j ≡ πlj − πl,j (1)

where country j’s usage of entrepôt l for its imports is the difference between πlj, the share of

j’s imports flowing through l, and πl,j the share of j’s imports originating at l. This captures

11Figure A.6 tabulates the percent of all goods entering the US stopping in that country, broken into goods
originated there and elsewhere.
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the use of location l above and beyond its role as an exporter to j.12

Figure 4: Concentration of Indirect Shipments

(A) US Microdata: Transit Volume vs Percent
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Notes: Panel (A) uses US microdata to compare, for each country, the share of shipments to the US that
originated in a country (x-axis) to the the share that passed through that country (y-axis), weighted by TEU.
For readability, China is omitted in Panel (A). Panel (B) replicates Panel (A) using global port of call and
trade data with adjustments made for unobserved overland traffic as discussed in Section 5.

Panel (B) of Figure 4 repeats the exercise in (A) using global traffic minus trade shares.13

While the results are broadly consistent with the microdata in Panel (A), some countries such

as Canada and Panama which are specifically integral to the US network are now below or closer

to the 45 degree line. In both panels, third-party-country stops (the Y-axes) are significantly

more concentrated than trade (the X-axis).14 Our measure of entrepôt activity in Equation (1)

is the distance to the 45-degree line. Appendix Table A.2 lists our measure for all the countries

and territories in our data, normalized by the value of the country with the lowest measure,

the US.

12Entrepôtl,j is directly proportional to the total volume of goods moving through l that do not originate at
l. Appendix C shows how this measure arises from our model as the difference between l’s on-board marginal
cost selling to j and its network relation to j, and that lowering location l’s leg-level transport costs to other
origins increases Entrepôtl,j . Our results here and throughout are be robust to other functional forms—for
example log differences.

13We subtract country l’s share of observed global containerized trade πl from its observed share of global
container traffic πl, with an adjustment for unobserved overland traffic as described in Section 5. Appendix C
clarifies how this is a consistent aggregation of the country-level measure in Equation 1.

14Table A.3 reports the concentration ratios for trade, transshipment, and third-party-country stops, which
are high by most standards. The 99-50 ratio is 400 for third-country stops, 480 for transshipment, and 96 for
trade. For comparison, the same ratio for employment in the concentrated IT-sector across US cities is 300
(Moretti, 2019).
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Definition of Entrepôts We define the top 15 countries using this metric as our set of

global entrepôts, a natural break after which the measure rapidly flattens (Appendix Table A.2).

This list of 15 includes several well-known global hubs, but our results are robust to changes in

this threshold as well as to using a continuous measure.15 This threshold and definition will be

used again in counterfactual analyses, where we explore the impacts of cost changes at these

hubs. For US shipments, we see 72% of all shipments pass through at least one entrepôt. Of

indirect shipments, 90% pass through an entrepôt.

Additionally, we find that smaller origin countries disproportionately use entrepôts. They

are simultaneously more likely to ship their goods indirectly and more likely to use entrepôts (see

Appendix B.3 and Figure A.7 for further details). Jointly, this confirms that smaller countries

are spokes which disproportionately use entrepôts for their trade.16 These relationships can be

summarized in our second stylized fact:

Stylized Fact 2. Indirect shipping routes are concentrated through entrepôts. International

trade occurs over a hub-and-spoke network.

Our two facts outline an inherent trade-off: indirectness increases observable distance and

time costs of trade, but by revealed preference implies lower costs, especially for the spokes of

the network which disproportionately choose to send goods indirectly through entrepôts.17 The

goal of our empirical estimation is to measure this trade-off within the context of the full global

trading network by finding a set of node-to-node costs which describe the shipping network and

is consistent with the indirect trade we observe.

These facts also trace the existence of a size-cost relationship: shipment along high-concentration

entrepôts routes appears by revealed preference to be cost-reducing. As with any scale-cost rela-

tionship, both directions of causation may be operational. We model the shipping decision in a

way which allows for but does not impose a reduced-form scale economy, and in our estimation,

identify the causal impact of scale on costs.

15Our set of global entrepôts are: Egypt, Singapore, Netherlands, Hong Kong, Belgium, Taiwan, Spain, Saudi
Arabia, South Korea, the United Arab Emirates, Morocco, Panama, Malta, Portugal, and the United Kingdom.

16Section 5 addresses the extent to which exogenous characteristics like geography are responsible for lower
costs at, hence higher concentration of shipments through, entrepôts.

17While some entrepôts lie along lowest-cost routes, routes stopping at entrepôts are 3-8% longer. This is
true even when comparing shipments sent from the same origin, to the same destination, and using the same
total number of stops, and comparing total distance travelled as well as distance from port of lading to US
destination.
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4 Theoretical Framework

We present a model of global trade where shipments are sent indirectly through an endogenously

formed transport network. We embed the Allen and Arkolakis (2019) route selection model

in a generalized Eaton and Kortum (2002) framework where production technologies in each

industry and country are non-stochastic, but idiosyncratic variation in the products’ optimal

route generates random variation in product-origin pair prices.

Entrepôts emerge as locations where goods pass through, but are neither the goods’ origin

nor their destination. Throughout, we maintain a production and consumption setting that is

as general as possible, allowing for any number of goods, industries, and input-output linkages.

This model is agnostic to scale economies or dis-economies in transportation costs, which could

work to either amplify or attenuate shipments through entrepôts. Restrictions on route cost

heterogeneity generate moment conditions that can be matched to the data to yield estimates

of link-specific shipping costs.

4.1 Setup

Consumption and Production In each country j, consumers consume goods ωn ∈ Ωn

from each n of N industries according to function Uj = Uj(Cj), where Uj(·) is a continuous,

twice differentiable function and Cj is a matrix of quantities of an arbitrarily large number of

goods ωn in industry n ∈ N in country j.18 Within each industry and product category, goods

are homogeneous and normal.19

Goods are produced using a variety of traded and non-traded inputs including labor, capital,

and traded and non-traded varieties from any industry. The production technology for good ω

is common for all goods in the same industry n, and includes a vector of factor inputs L, as well

as inputs of other goods.20 Production functions can vary across industries and countries. Cost

minimization results in identical production costs among competitive firms within an industry

18We allow for the utility function to vary across destinations, and the number of goods in each industry need
not be a continuum but can be.

19The model and empirics can accommodate arbitrarily fine industry classifications in order to ensure this
assumption holds.

20The production function is given by qin(ω) = fin(zin, Lin, Qin) where fin(·) is a continuous and twice dif-
ferentiable country-industry-specific production function, zin is the production technology common to industry
n and country i, Lin is a vector of non-tradable factor inputs, and Qin is a country-industry specific matrix of
inputs of other goods ω from all industries. All inputs are treated as homogeneous.
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in each country. The marginal cost of a good ω is

cin ≡ cin(zin,Wi, Pi),

where Pi is the matrix of prices of all goods ω in industries n in country i and Wi is the vector

of factor prices in country i. Because producers in the same industry and country share the

same input prices and production function, costs are shared within country-industries. These

costs correspond to the classic Ricardian comparative advantage.

Pricing To sell goods abroad at any destination j ∈ J , a firm producing product ω in

industry n must pay non-transport trade costs κijn and iceberg transport costs τijnr(ω) after

optimally choosing the route r between i and j to minimize the shipping costs incurred. Com-

petitive firms in i selling to j price their goods at marginal cost. The observed prices for these

products at j are

pijn(ω) = cinκijnτijnr(ω),

where purchasers of good ω in industry n at j source the lowest cost supplier globally.

Shipping Producers seek to minimize shipping costs, choosing the lowest cost shipping

route available. Shipping route r is comprised of Kr legs of a journey with Kr−1 stops along

the way between the origin, i (or k = 1), and destination, j (or k = Kr).

Following Allen and Arkolakis (2019), moving from stop to stop involves iceberg transport

costs as well as product- and route-level idiosyncratic cost shocks εijnr(ω).21 We place minimal

structure on these direct leg-level costs tkr−1,kr(·) between locations kr−1 and kr, allowing them

to be a function of exogenous and endogenous variables:

tkr−1,kr = f(Ξ, εkr−1,kr) (2)

where Ξ is a matrix of endogenous containerized traffic over the entire network and εkr−1,kr

reflects exogenous transportation cost elements such as distance.

Route-specific idiosyncratic shocks are drawn from the Fréchet distribution such that Fijn(ε),

21Because of the max-stable property of the Frechét distribution, an isomorphic specification would have
firm-specific cost shocks with a finite mass of potential competitive firms in each country. This would affect
the interpretation of the source of idiosyncratic variation (firm variation or product variation) and of shape
parameter θ.
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the cumulative distribution function of the idiosyncratic draws is as follows:22

Fijn(ε) ≡ Pr{εijnr(ω) ≤ ε} = exp
{
−ε−θ

}
where shape parameter θ > 0 captures the randomness or dispersion in the choice of routes

from i to j.23 Higher εijnr(ω) draws mean industry n has lower costs for route r.

Accordingly, product ω’s shipping cost along route r from country i to country j is:

τijnr(ω) =
1

εijnr(ω)

Kr∏
k=1

tkr−1,kr(Ξ, εkr−1,kr) ≡
1

εijnr(ω)
τ̃ijr, (3)

where τ̃ijr is the product of all leg-specific costs tkr−1,kr(Ξ, εkr−1,kr) and is common to all products

taking route r. Product ω in industry n’s realized shipping cost from i to j is that of the

transport-cost minimizing route from the set of all routes from i to j.24 We treat tkr−1,kr in

Equation (3) as ad valorem, corresponding to the iceberg costs typically considered in the

literature (Allen and Arkolakis, 2019; Fajgelbaum and Schaal, 2020). To test the validity of

this modeling approach, we consider the fit between our cost estimates with two sets of external

data and find significant correlations (Section 7).25

This structure is consistent with a host of mechanisms, including but not limited to port-level

effects and leg-level scale economies.26 With regards to market power, we do not directly model

the decision of shipping firms. Instead, our equilibrium can be considered as an overall industry

equilibrium within a Sutton (1991) framework, where larger markets induce more entrants and

lower marginal costs, with profits being absorbed by fixed costs.27 Differences between these

mechanisms will not impact the model estimation but will manifest in the interpretation of

scale economies and for counterfactual predictions.

4.2 Equilibrium

Route volume Firms from origin i select the lowest-cost route before consumers in j select

the lowest-cost intermediate good supplier across all the origins countries. We observe ω being

22This distribution is identical across industries so product-industry subscript n is dropped.
23This dispersion assumption is reflected in our microdata (Panel (B) in Figure A.9, Appendix B.4) Almost

70 percent of origin countries have fairly low concentration of routes (HHI less than 1500).
24The price of a product ω in industry n from i to j conditional on route r is pijnr(ω) = cinκijnτijnr(ω).
25Using an additive cost assumption through the network, Allen and Arkolakis (2019) derives a similar

expression for the iceberg cost structure (Appendix D.1, Allen and Arkolakis (2019)).
26It also allows for spatial correlation in link costs, say between tkl and tlm.
27We omit discussion of the optimal shipping network from the perspective of a firm with market power, and

focus on leg-level scale instead. In our time period (2014), most ports do not appear to be at capacity and we
do not exhibit port-level congestion effects.
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shipped on route r from i to j only if the final price of ω, which includes both the marginal

cost of production and shipping cost on route r from i to j (pijnr(ω)), is lower than all other

prices of good ω from all other origin country-route combinations.

We then consider the probability that a given country and route r′ will be selected as the

lowest cost route-supplier combination for good ω conditional on price p:

Gjnω(p) ≡ Pr

{
min

i∈I,r∈Rij\r′
pijnr(ω) > p

}
= 1− exp

−pθ ·∑
i

(cinκijn)−θ ·
∑
r∈Rij

τ̃−θijr

 .

We can define the joint probability that a route r is the lowest-cost route from i to j for good

ω and that country i is the lowest-cost supplier of good ω to j as:

πijnrω ≡ Pr

{
pijnrω ≤ min

i′∈I\i, r′∈Rij\r
pi′jnr′ω

}
=

[
cinκijn · τ̃ijr

]−θ∑
i′∈I

[
(ci′nκi′jn)−θ ·

∑
r′∈Ri′j

τ̃−θi′jr′
] . (4)

By the law of large numbers, this is also the share of goods sold in j in industry n coming from

i and taking route r.28 Introducing auxiliary matrix An = [t−θijn(Ξ, εij)] where each element is a

function of the leg-specific transport cost, we define the expected transport cost matrix as[
τijn
]
≡
[(
I − An (Ξ, ε)

)−1
]◦(−θ)

, (5)

where ◦ is the element-by-element Hadamard power.29 Substituting the definition of τ̃ijr (Equa-

tion (3)) into Equation (4) and summing across routes r that pass between leg k to l, we can

express the share of imports in industry n in destination j that come from origin i which passes

through leg kl as:

πklijn =
[
cinκijn · τikn (Ξ, ε) · tkln (Ξ, ε) · τljn (Ξ, ε)

]−θ
Φ−1
jn , (6)

where Φjn =
∑

i′

[
ci′nκi′jn · τi′jn (Ξ, ε)

]−θ
is the key distinction from Allen and Arkolakis (2019)—

a multilateral resistance term that accounts for average costs, openness, and connectivity of

competitors from all other countries i′. With optimal route selection and competition on price

both accounted for, Equation (6) is the realized and observable share of traffic that flows through

leg kl from i to j.

Next, the model yields a gravity equation. The sum of products sold in j in industry n from

28Recall that the number of goods in each industry is set so the law of large numbers holds.

29The expected transport cost from i to destination j is also τijn = γ−1/θ
(∑

r∈Rij
τ̃−θijr

)−1/θ
where γ is the

function Γ(t) =
∫∞
0
xt−1 exp−x dx evaluated at

(
(1 + θ) /θ

)−θ
.
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country i equals the share of products sold in j in industry n coming from i and taking route

r, summed across all r routes:

πijn ≡
∑
r

[
cinκijn · τ̃ijr

]−θ∑
i′∈I

[
(ci′nκi′jn)−θ ·

∑
r′∈Ri′j

τ̃−θi′jr′
] =

(
cinκijn · τij (Ξ, ε)

)−θ
Φjn

. (7)

Equations (6) and (7) will jointly generate our estimation equation in Section 5.

Finally, we derive an expression for the share of global shipping passing through kl:

πkl =
∑
n

∑
j

∑
i

πklijn =
∑
n

tkln (Ξ, ε)−θ ·
∑
j

Θjnτljn (Ξ, ε)−θ · Φkn

Φjn

, (8)

where Θjn is j’s global consumption share of industry n. Because optimal route selection and

competition on price are both accounted for, Equation (8) corresponds to the observable shares

of all goods passing through leg kl, including shipments bound for l and those continuing onward

to other destinations. In Section 7, we compare our model-implied leg-level trade flows to those

observed in the US microdata. We find high correlations which also hold true for higher levels

of aggregation across origins and levels as well.

In Appendix C.2, we show how a change in the leg cost between k and l (tkl(Ξ, εkl)) can

affect trade volumes between an origin i and destination j through the trade network.

Closing the model In order to close the model, we require markets to clear for factors

and goods as well as the balanced trade condition. Unnecessary for estimation, we defer them

to Section 8 when we conduct counterfactuals.

5 Estimation

We now show how to link our model to real world data, use the model to recover the trade

costs underlying the global trade network, and estimate a scale elasticity in shipping.

5.1 Taking the Model to Data

Using equations (6) and (7) we can calculate the probability of any good traveling through

link kl conditional on being sold from origin i to destination j. With the total value of trade

between origin i and destination j in industry n (Xijn), we can express the total volume of

traffic between k and l in a given industry n (Ξkln) as:

Ξkln ≡
∑
i

∑
j

Xijn ·
(
τikntklnτljnτijn

−1
)−θ

. (9)
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In our setting, expensive trade routes suffer from Ricardian selection at destination markets—

the route’s impact on prices make them less competitive relative to other routes. Yet, this

does not impact the trade cost estimation as seen in Equation (9), which is identical to

Allen and Arkolakis (2019), despite differences in framework. While Ricardian selection, non-

transportation trade costs such as tariffs, and multilateral resistance all reduce total trade,

they do not differentially favor one route from an origin i to a destination j. Instead, they

reduce traffic flows proportionally along all links kl. Accordingly, conditioning on the total

observed origin-destination trade values Xijn, the trade between i and j contributing to the

traffic between k and l is invariant to multilateral resistance, tariffs, or technology.

Mapping our model into the data we make one final assumption: for a set of industries N̄ ,

trade costs are identical and all origin-destination trade
(
XN̄ ≡

∑
n∈N̄ Xn

)
and link-level traffic(

ΞN̄ ≡
∑

n∈N̄ Ξkln

)
are observable. Summing Equation (9) over industries n ∈ N̄ yields:

ΞklN̄ ≡
∑
i

∑
j

XijN̄ ·
(
τikN̄ tklnτljN̄τijN̄

−1
)−θ

. (10)

Equation (9) tells us that to accurately measure transport costs, we only need data on origin-

destination trade and link-level traffic for all goods in an industry. Equation (10) tells us that

we can use traffic across multiple industries so long as we have the correct trade aggregate,

we see all traffic for those industries, and we can assume transport costs are identical in those

industries. We implement equation (10) using observed total containerized traffic and trade in

containerized industries, where transportation costs are likely similar, and apply it in estimation

only to legs where all traffic is observed.

5.2 Recovering Scale Elasticities

The cost–scale relationship The existence of a scale economy in shipping implies that

perturbations to the global shipping network that affect traffic volumes will in turn impact the

link cost matrix estimated in the next section. Such effects must be accounted for in order to

correctly estimate counterfactual adjustments.

Using leg-level trade costs from Equations (5) and (10), we consider the regression:

ln(t̂−θkl − 1) = α0 + α1 · ln Ξdata
kl + α2 · ln dkl + εkl, (11)

where α0 is a constant, Ξdata
kl is the traffic volume between link kl which we observe in the

ports call data, α1 is the relationship between price and quantity (traffic volumes), α2 · ln dkl is
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the coefficient and measure of log sea-distance from k to l respectively. (t̂−θkl − 1) allows us to

interpret α1 as the elasticity between cost and traffic volumes to a trade elasticity θ. That is,

to interpret results from Equation (11) as elasticities, they are deflated by trade elasticity θ.

Of course, this relationship cannot be taken as causal. Lower cost legs may face larger

demand precisely because unobserved cost-reducers induce higher levels of demand on those

legs. Essentially, we wish to observe the supply elasticity, but we have only market-clearing

prices and quantities. We therefore need a demand shifter.

Geography-Based Instrument We use the intuition of our model to construct a geography-

based instrument for demand. Demand for a given leg will be higher, all else equal, if the

leg lies along the most direct route between an origin and a destination. For example, con-

sider routes from origin South Korea to destination the Netherlands. Routes that include a

China-Singapore link are closer to the direct Korea-Netherlands route compared to routes that

include the China-Australia link. As such, more Korea-Netherlands trade should flow through

the China-Singapore leg than the China-Australia leg, which would involve a longer detour.

Links that are effectively out of the way for most journeys should, all else equal, face lower

demand, such as Australia on routes between East Asia and Europe compared to Singapore.

Operationalizing this intuition, we relate the direct sea-distance between an origin and a

destination to the distance of two legs as part of a three-leg journey, where the omitted middle

leg is the object of interest. We calculate the instrument zkl as:

zkl =
∑
i\k,l

Popi,1960

∑
j\{k,l}

Popj,1960

d2
ij

(dik + dlj)2
, (12)

where dij is the sea distance between origin i and destination j, and the square of the relative

excess distance between links ik and lj (dik + dlj) is weighted by the year 1960 population at

each origin i and destination j, Popi,1960 and Popj,1960.30 Figure 5 shows the robust first-stage

relationship between our instrument and traffic.

For plausible identification, our demand shifter instrument has to be generally uncorrelated

with unobserved changes in cost determinants for a particular leg controlling for its sea-distance

(corr(εkl, ln zkl) = 0). Locations that are close in sea distance are also close in land distance

and may have easier access to other modes of transportation like road or rail. As a robustness

301960 Population here stands in place of GDP, which may be endogenous to the trade costs in our model.
The year is chosen because immigration and populations prior to 1960 could not plausibly be impacted by 2014
containerized shipping costs.
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Figure 5: Residualized Plot of Correlation Between Instrument and Traffic

Coef=0.157, Robust SE=0.037
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Notes: The figure shows a binned scatter plot of 1,947 observations of link kl with the natural log of sea
distance between k and l is included as a control. The x-axis is the natural log of the instrument zkl. The
y-axis is the natural log of traffic on leg kl. The standard error printed is clustered two ways by nodes k and l.

check, we recalculate our instrument in equation (12) in a simplified setting by omitting the

shortest 10 percentile distances for each origin i and destination j respectively and find similar

results.

As previously noted, the observed scale economy in our setting can be generated by a

number of mechanism, including but not limited to internal or external scale economies and

market power. These mechanisms may generate different out of sample results, and further

work should be done to isolate and test for these. In order to accommodate this multitude

of mechanisms simultaneously, we implement a model-consistent and agnostic approach in our

estimation of scale. Formally, we construct moments m1 (α, β) = Zε
(
α, t̂
)

based on Equation

(11) with vector α and matrix of trade costs t̂. First, however, we need to recover leg-level

trade costs t̂kl.

5.3 Recovering Trade Costs

We require two observable objects in order to recover a global set of trade costs: origin-

destination trade values and link-level traffic volumes (Equation 10).31 Our traffic data comes

31This procedure is agnostic to the exact specification of any particular trade model that generates trade value
flows X. We control for all origin, destination, and origin-destination factors by conditioning our estimation on
trade flows X. In particular, items such as all origin-destination tariffs and non-tariff barriers are accounted for.
This does not mean that we can disentangle the two, rather we can directly account for these factors collectively.
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from our global port of call AIS shipping data.32 We use aggregate origin-destination trade

data from Centre d’études Prospectives et d’Informations Internationales (CEPII) and their

BACI international database for 2014, segregating containerized and non-containerized com-

modities.33 Note that we do not rely on the merged US microdata in our estimation.

In an ideal world, estimation would recover the trade costs that directly rationalize observed

bilateral containerized traffic flows—a just identified case. While we directly observe ocean con-

tainerized traffic, our data omits movement of containers overland, across and within borders.

We overcome this limitation by assuming a functional form that allows for estimation without

requiring the direct observation of overland links. We consider the mapping:34

t̂−θij =
1

1 + exp (Yβ)
∈ [0, 1] ,

where the matrix Y is a vector defined as

Yβ = β0 + β1 log sea distanceij + β2 log trafficij + β3 log traffici

+ β4 log trafficj + β51backhaul + β61 {i, j ∈ Land Borders} ,

where β0 is an intercept, β1 considers the sea distance between the nearest principal ports,35

and β2 considers port-to-port traffic. β3 and β4 consider the total incoming and outgoing traffic

at ports i and j respectively. β5 considers the role of the backhaul problem from Wong (2020),

where ship capacity is fixed by the shipping direction with the higher demand. Finally, β6 is

an indicator for a shared land border.36

It is crucial to note two things. First, while the equations above posit relationships between

observables, our objective at this stage is not the vector β of coefficients—which may reflect

endogenous variables—but the resulting predictions for t̂ij. Instead, we seek to fully saturate

the variation in the data in order to generate the closest empirical prediction for the matrix of

32Units for traffic is in TEU. Recall we estimate ship-by-leg TEUs by combining reported ship draught and
maximum TEU. This process does not rely on the merged US Customs data.

33We use 2014 US Customs data on containerized and non-containerized shipments to construct the share of
each HS 4-digit commodity code that is transported by container. All commodities with a containerized share
above 80% are labeled as containerized. This procedure shuts down the substitution between containerized and
non-containerized transport. In practice we find a bimodal distribution, with some commodities being never
containerized (e.g. oil and iron ore) and others always containerized (e.g. washing machines and children’s
toys). This process is documented in Appendix A.3.

34This functional form maps from the real numbers to the unit interval as is required by our theory.
35For each country pair, we calculate the volume-weighted mean sea distance across all port pairs. These

data are available for download from our websites.
36We do not estimate within-country trade costs directly due to data constraints and assume that they do

not change in the counterfactual.
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trade costs relative to the just-identified case, which yields the model-perfect estimates of trade

costs for each link. This allows us to recover the trade costs while remaining agnostic to their

underlying determinants, including potential economies of scale as well as possible geographic

indicators. Secondly, while the parameters for β yield estimates of every trade cost t̂ij, we need

not discipline β by comparing traffic on every link. This allows us to still recover estimates of

t̂ij although we do not observe within-country traffic as well as between countries traffic that

share overland routes.

We create a moment m2 that finds the vector β that minimizes the difference between the

matrix of expected traffic, Ξ̂
(
β|X,Y, θ

)
, and observed traffic Ξdata for countries that do not

share a land border:

m2 (β) =
(

Ξ̂
(
β|X,Y, θ

))
−
(

Ξdata
)

where expected traffic is a function of β, trade elasticity θ, as well as observed trade values X.

As noted, we do not fully observe the traffic flows of containerized goods on geographically

contiguous legs, and we do not perform our estimation procedure using traffic data from these

legs. Instead, our trade cost estimates, even for overland links, are disciplined by the observed

traffic flows of sea-only legs that do not share a land border.

5.4 Joint Estimation

We combine our scale estimation and recovery of trade costs into a single stage:

m1 (α, β) = Zε
(
α, t̂(β)

)
m2 (β) =

(
Ξ̂
(
β|X,Y, θ

))
−
(

Ξdata
)

We conduct a two-stage GMM procedure, using optimal instrumental variable weights estima-

tion for the first set of moments m1, which accounts for our casual estimates of scale, and trade

volumes on the second set of moments m2, which rationalizes a global set of link-level trade

costs tkl conditional on observable origin-destination trade values X and link-level traffic flows

Ξdata. We reiterate that we only conduct inference on the parameters α. We treat β as a set of

incidental parameters, important for estimation, but not for inference.37

37The second stage computes an optimal weighting matrix using the first stage results.
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5.5 Simultaneous Identification of Scale and Trade Costs

Our approach parallels the Industrial Organization literature, which seeks to recover unobserved

cost structures, and identification depends both on instrumental variables and behavioral as-

sumption. For example, Ackerberg et al. (2007) take market level data and instruments to

recover demand and then use equilibrium assumptions on behavior to recover marginal costs,

which are then projected on product attributes. Similarly, we rely jointly on the structure of

equilibrium shipping flows embedded in the (Allen and Arkolakis, 2019) framework and our

demand-shifting instrument.

However, this approach opens the door for a mechanically-driven result. Specifically, we are

concerned with estimating the causal scale impact of traffic volumes on trade cost (Equation 11)

while, at the same time, our cost estimates are themselves recovered from our model prediction

which is a function of traffic volumes (Equation 10). This circularity can introduce a mechanical

correlation if, for example, measurement error in traffic feeds both into trade cost estimates

and traffic.

We approach this problem through multiple methods. First, we establish how this issue can

arise due to measurement error in our context. We show how this error can be considered a form

of omitted variable bias, and the conditions under which an instrumental variable can correct

for this bias. Second, we run Monte Carlo simulations that confirm the existence of this bias in

the presence of measurement error and show how our instrument eliminates it. Third, we use

external data on freight costs to estimate potential traffic-correlated errors, both to illustrate

the potential bias in the OLS and show how our instrument removes this bias. Finally, we run

a parallel scale estimation purely on our external freight costs and find similar results. See

Appendix D.2 for full details.

Figure 6 summarizes our findings using Monte Carlo Simulations. First we show that with

true trade costs, typical measurement error in traffic volumes would bias ordinary least squares

(OLS) estimates downward (purple dot-dash line). If measurement error in traffic affects the

trade cost estimates, the OLS estimates would bias upward (red dash line), since the dependant

variable (trade costs) is partially derived from the independent variable (traffic). However, a

valid instrumental variable can correct for this bias (blue solid line). Appendix D.2 further

elaborates on the simulation procedure and each specification.

It is not possible to directly test the validity of our exclusion restriction and the conditions
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Figure 6: Monte Carlo Simulations Illustrating Estimation Biases
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Notes: The figure shows 500 simulated estimates. The blue solid line is our preferred instrumental variable
estimator. Our instrument is correlated with the true shipping traffic on a particular route. The purple
dot-dash line illustrates classic measurement error in the independent variable (shipping traffic on a route),
leading to classic attenuation bias in OLS. The red dash line illustrates our principle worry, an upward bias in
OLS, due to our recovered trade costs being a function of observed shipping traffic that could be measured
with error. A valid IV can correct for this bias (blue solid line). See Appendix D.2 for full details.

Figure 7: Balancing Test
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(A) Approximated Error vs
Observed Traffic
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(B) Approximated Error vs
Instrument
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Notes: Figures are scatter plots of, on the X-axis, the natural log of the estimated leg costs in Section 5, the
observed traffic, and the geography-based instrument used in Section 5, in Panels (A), (B), and (C),
respectively, against the difference between the natural logs of the estimated leg costs in Section 5 and from
Wong (2020) on the Y-axis, residualized after controlling for sea-distance for 209 legs for which both costs
exist. Standard errors are clustered two-ways by the nodes on each link. See Appendix D.2 for full details.

derived in Appendix D.2 under which our instrument eliminates this bias: no correlation be-

tween the error in our estimated trade costs and the instrument. However, we can show the

lack of correlation between our instrument and an approximation of the error, estimated as

the difference between our measured costs and external measures of freight costs from Wong

(2020). Details for this exercise are found in Appendix D.2.

Panels (A) and (B) of Figure 7 show a positive and negative correlation between this ap-
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proximation of the error and estimates link costs and link traffic, respectively, controlling for

distance, consistent with the circularity bias in Appendix D.2 and the Monte Carlo. Panel (C)

shows a weak and insignificant correlation between this residualized approximation of the error

and our instrument, again controlling for sea-distance. The lack of correlation is consistent with

an instrument which is uncorrelated with the true error. While this is insufficient to validate

our instrument, it performs the same role as a balancing test, showing an absence of evidence

of exclusion restriction violations.

6 Results

Scale Economy Table 1 reports our instrumented scale elasticity from our scale moments

(Equation (11)). For the widely used trade elasicity value of θ = 4 (Simonovska and Waugh,

2014), the interpretation of our causal estimate is that increasing traffic volume on a leg by

1% would reduce costs by 0.06%. As the median journey in our microdata has 3 legs, this

translates into a 0.17% decrease in overall origin-destination trade costs.38 These results lend

support to our initial hypothesis that a major role of entrepôts is their facilitation of scale

through concentration of shipments.

Table 1: GMM Estimation Results

(1)
ln (ckl)

ln
(
Ξdata
kl

)
-0.29
(0.13)

ln (dkl) 0.57
(0.03)

Constant 4.24
(1.45)

Notes: We conduct a two-stage GMM procedure, first using optimal instrumental variable weights estimation
the first set of moments and the inverse of trade volumes on the second set of moments. The second stage
computes an optimal weighting matrix W using the first stage results. ln(ckl) is the natural log of
transportation trade cost on leg kl. lnΞdatakl is the natural log of traffic volume on leg kl. ln(dkl) is the natural
log of sea distance between k and l computed using Dijkstra’s algorithm.

38This leg-level elasticity is more modest, but broadly consistent with the strong scale economies from ship
size in Cullinane and Khanna (2000), which measure origin-destination elasticites that would compound, on
average, three leg level elasticites. Asturias (2020) reports an origin-destination country trade-volume trade-
cost elasticity of 0.23 while Skiba (2017) reports an elasticity of 0.26 using product-level import data from Latin
America. We search for but do not find evidence of a declining scale elasticity at higher volumes.
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Link and average bilateral trade costs Appendix Figure A.11 graphs our resulting

matrix of pairwise trade costs. We present the vector β estimates in the Appendix Table A.5

as purely predictive parameters, not fundamentals that we can alter in the counterfactuals

(see Appendix D.1 for further details). Instead, we simply need to know if our β estimates

can predict containerized traffic that reflects the actual observed traffic volumes. With a full

link-level trade cost matrix [tkl], we also can generate an average bilateral transport cost be-

tween locations [τij]. We provide our network-consistent trade-link and origin-destination cost

estimates to researchers, and they are available for download on our websites. Appendix Table

A.11 compares these network-consistent bilateral trade costs to more commonly used distance

measures. Our cost measures have more predictive power than distance alone and both are

significant in a combined specification, implying that both measures have distinct predictive

power for trade.

Model Fit Figure 8 compares our model-predicted traffic and trade values against their

observed counterparts in the data. In Panel (A), we compare actual observed global container

traffic shares with the our model-predicted shares using our estimated trade costs. We include

both a best fit line and a 45 degree line. We fit the data extremely well, with a correlation

between the observed and predicted shares (in logs) of 0.97. Panel (B) compares our estimated

trade shares to actual observed trade shares, which we do not target.39 We fit the data well

here as well with a correlation (in logs) of 0.73.

Alternative Data Definitions Our estimates of trade costs tij are at the country-level.

Estimation of a port-level cost matrix is possible. However, that requires a global set of sub-

national trade data X, which is not broadly available. Using port traffic and national trade

data, we can impute bilateral port-to-port trade data and run a version of the estimation above.

Results from the port-level estimation are broadly in line with results of our main estimation,

with a correlation between weighted port-pair costs and country-pair costs of 0.6. However,

due to the speculative assumptions required to generate sub-national trade flows, we view the

country-level estimates as more accurate.

39To generate trade flows, we close the model using the full setup in Section 8.
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Figure 8: Model Fit Comparisons

(A) Traffic Volumes (Targeted) (B) Trade Value (Untargeted)

Notes: Panel (A) compares our targeted moment: predicted container traffic volumes from any two ports
(y-axis) to the actual container traffic volumes (x-axis, normalized as a share to total world container traffic).
Panel (B) compares untargeted aggregate trade shares (x-axis) versus predicted trade shares for containerized
traffic (y-axis), where predicted trade shares are computed using the full model described in Section 8.

7 Comparison of Model-Predicted Estimates to Data

We compare our model’s results with three separate sets of data external to our estimation.

First, we link our results to ship size estimates to highlight one possible scale-economy mecha-

nism. Second, we compare our trade cost estimates with freight rates. Third, we compare our

model-predicted traffic flows for US-bound shipments to our US microdata. In each, we find

high correlations between our model estimates and these external data.

7.1 Symptoms of Scale Economies: Ship Size

Using our model, we estimate leg-level shipping scale economies. A number of mechanisms

can generate the cost reductions that coincide with these scale economies. Internal or external

scale economies in shipping and competition among shippers could all generate a negative

relationship between volume and costs, as could factors such as port infrastructure.40 Lacking

data to directly test these mechanisms, we turn to one symptom of a scale economy observable

in our US microdata which lends further credibility to our results: ship size. Relying on the

idea that larger ships enable lower shipping costs (Cullinane and Khanna, 2000), we consider

the correlations between ship sizes, trade volumes, and our recovered leg-level trade costs and

40High-traffic routes are served by many carriers, using ships capable of carrying 25,000 containers with
automated loading and unloading.
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then investigate the relationship between indirect shipping and ship size.

Ship Sizes, Traffic Volumes, and Recovered Trade Costs In Panel (A) of Figure 9,

we show a strong positive relationship between the average containership size on a route and

the traffic volume on that route, controlling for the distance between origin and destination.

Using the route-level containership size measure, we show a strong positive link between ship

size and our corresponding recovered trade costs (Panel (B), Figure 9). Routes with more

container traffic use larger ships; a 10% increase in route volumes correspond to a 2% increase

in ship size. Routes with lower trade costs use larger ships. A 10% decrease in our estimated

iceberg trade costs corresponds to 6% increase in ship sizes.41

Figure 9: Link Between Recovered Trade Costs and Ship Size

(A) Route Volume and Ship Size
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Notes: Figures are bin-scatter plots over all observed containership routes, with 100 bins. We control for the
log(sea distance) between origin and destination ports, but add variable means back for the plots. Panel (A)
plots the relationship between the total containers on a route and the average containership’s size on that
route (weighted by utilized capacity). Panel (B) plots the relationship between the estimated trade cost tkl
with θ = 4 and the average containership’s size on that route. Containership size reflects the size of the ship
for the average container on that route.

Ship Size and Indirect Trade Figure 10 further investigates the relationship between

entrepôt usage and ship size, plotting ship size (x-axis) against US-bound traffic volume (y-axis)

by country of origin, separately for traffic that is routed through an entrepôt and traffic that is

41Appendix Section D.3 reports shipment-level regressions controlling for origins, destinations, and without
route distance controls. Results are similar.
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not, such that each origin country is associated with two data points. Larger origins transport

goods to the US on larger ships. However, shipments from smaller origins routed through

entrepôts also arrive on large ships, such that indirect shipping through entrepôts appears to

close the ship-size gap for smaller origins.42

Figure 10: Link Between Indirect Trade and Ship Size
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Notes: The x-axis shows the total exports from an origin country to the United States. The y-axis shows the
average ship size which arrives from an origin country to the United States. Each country is represented by
two data points, a blue and a red circle. The red circle indicates the corresponding information for trade from
an origin that is routed through an entrepôt while the blue circle is for trade that is not. Circle size denotes
shipping volume. Note that trade that is not routed through an entrepôt (blue circle) could either be shipped
directly to the United States or shipped via a non-entrepôt.

7.2 Cost Estimates with Freight Rates Data

Next, we compare our expected trade cost estimates τij at the origin-destination level with

container freight rates from Wong (2020). These rates are the costs paid by firms to transport

a standard full container load between port pairs and include the base ocean rate, fuel surcharge,

as well as terminal handling charges at both origin and destination. They are for the largest

ports globally which handle more than 1 million containers annually and account for about 73

percent of global container volumes during this time period (World Bank). While we are only

comparing a subset of the cost estimates from our entire sample with these freight rates, we

find a correlation of 0.71 (Figure 11).

42For shipments with the same origin, US destination, and controlling for the total number of stops, shipments
stopping at entrepôts arrive on ships that are on average 15% larger. For shipments with the same origin and
US destination, shipments sent directly arrive on ships that are on average 8% smaller ships. Further shipment
level analysis in Appendix Section D.4 confirms the positive relationships between shipment volume and ship
size and robustness to different notions of origin, lading, and transshipment.
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Figure 11: Correlation Between Cost Estimates With Actual Freight Rates
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Notes: Data points compare origin-destination predicted costs τij to average freight rates from Wong (2020)
(210 observations). Circle size are weights for container volumes (TEU). The slope of line is the weighted
regression coefficient.

7.3 Traffic Estimates with US Microdata

In order to assess our model’s ability to capture actual shipment journeys and trade indirectness,

we compare our model predictions for the paths of US-bound shipment traffic to the actual

observed paths in our US microdata. Our estimation, which uses global traffic data rather

than the US microdata, delivers predictions for how US-bound shipments travel through the

shipping network. Equations (6) and (7) imply

π̂kliUS = [τiktklτljτ
−1
ij ]−θ (13)

as the ratio of all shipments from i to the US that are observed flowing through leg k, l.

We compare our model-predicted value of Equation (13) to the proportion of goods coming

into the US from any origin i on leg kl, which we call πkliUS,Data, by aggregating shipments

using link kl in our microdata. Note that while our microdata is described in Section 2 and

used to generate our stylized facts in Section 3, it is not used to estimate our trade costs in

Section 5. Column (1) of Table 2 reports the univariate regression outcome between these

two measures, weighted by total origin TEU. We find that a significantly positive relationship,

with a coefficient of 1 in the confidence interval. Over half of the variation in the observed

distribution can be explained using the predicted probabilities.

Next, summing the predicted probabilities in Equation (13) across all origins i, the model
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Table 2: Correlation Between Traffic Estimates With Microdata

(1) (2) (3) (4) (5) (6)

π̂kliUS Ξ̂kl π̂lUS − π̂l,US π̂kliUS Ξ̂kl π̂lUS − π̂l,US
πkliUS,Data 0.846 0.872

(0.119) (0.121)
Ξkl
Data 1.225 1.241

(0.128) (0.126)
πlUS,Data − πl,US,Data 0.945 0.967

(0.111) (0.115)
Observations 13813 652 95 366010 2153 186
Data All All All
R2 0.513 0.659 0.410 0.513 0.669 0.415
F 50.54 91.60 22.91 51.75 96.88 22.53

Notes: π̂kliUS is the model-predicted share of goods from origin i to US destination flowing through leg k, l, Ξ̂kl
is the model-predicted total US-bound traffic on a given leg k, l, and π̂lUS − π̂l,US is the model-predicted total
excess US-bound traffic through node l. Their corresponding variables observed in the compiled microdata are
indicated with subscript “Data”: πkliUS,Data, Ξkl,Data, and πlUS,Data − πl,US,Data. Columns (1) to (3) are
restricted to nonzero traffic volumes in the US microdata while Columns (4) to (6) include journeys with zero
traffic volumes in the US microdata (All Data). Columns (1) and (4) results are robust to tobit specifications
which allow for lower and upper censoring limits. Standard errors clustered by origin and destination
countries.

delivers a prediction for the total amount of US-bound traffic on a given leg kl:

Ξ̂kl =
∑
i

XiUS · π̂kliUS

where XiUS is the total trade flow from origin i to the US. Column (2) compares this to the

total volume of shipments moving between a given leg in the microdata, which we call Ξkl
Data,

again finding a positive, significant coefficient with 1 in the confidence interval.

Finally, summing probabilities in Equation (13) across origins i and nodes k, we obtain the

total traffic through node l. Subtracting volume of exports from l, we obtain the entrepôt usage

of l for US-bound shipments:

π̂lUS − π̂l,US ∝
∑
k

Ξ̂kl −Xl,US =
∑
k

∑
i

XiUS · π̂kliUS −Xl,US

Column (3) compares this to its counterpart in the microdata, which we call πlUS,Data−πl,US,Data,

finding a positive and significant result with 1 within the confidence interval as well.

In the microdata, a number of legs have zero traffic volumes. However, our model predicts

that there should be some small amount of traffic on every leg. Columns (4) through (6),

re-run the regressions for each corresponding predicted traffic estimate including legs with zero
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observed volumes. Accordingly, there is a big jump in the number of observations. Including

these links do not significantly change our results because our model predicts extremely low

volumes on these legs.

Our paper provides a new set of global trade costs which accounts for the trade network. The

tight matches between our estimates—trade costs and traffic—and separate sets of observed

data external to our estimation demonstrates that our estimates reflect actual costs and indirect

traffic flows in the trade network. Additionally, these results serve as a check to the validity

of our modeling approach and the Allen and Arkolakis (2019) framework. Allen and Arkolakis

(2019) impute traffic and trade flows within the US highway system for their estimation.43

Despite the strong structural assumptions made and the limited data requirements, our checks

curtail the risk that our estimates are wildly off the mark. In addition to our leg and origin-

destination cost estimates, we provide model-implied indirectness measures for ocean shipping

as well as resulting market access measures to researchers on our websites.

8 Counterfactuals

In three counterfactual exercises, we quantify the welfare importance of the trade network and

the specific role entrepôts play within that network.

In our first counterfactual, we demonstrate that (1) transportation improvements at en-

trepôts have significant global welfare impacts (not including their own gains), as well as local-

ized benefits for nearby neighboring countries as a result of the trade network, (2) the global

impact of transportation improvements differs meaningfully from non-transportation improve-

ments for all countries—not just, but especially for especially entrepôts—due to the network

structure of trade, and (3) scale economies in transportation further magnifies these impacts.

In our second counterfactual, we illustrate how non-transportation cost changes at an en-

trepôt generate widespread impacts through the trade network—beyond directly impacted

countries—by considering the impact of a negative trade shock on an entrepôt node country in

the form of the United Kingdom leaving the European Union. Changes to the trade network

due to scale economies generate different consequences for Brexit, both in effects’ magnitudes

and their distributions.

43They assume that the observed traffic for a link is proportional to the underlying value of trade on that
link. This assumption is later on verified by comparing their predicted trade flows to actual flows from the
Commodity Flow Survey.
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Our third counterfactual evaluates the welfare and trade impacts of the two endogenous

mechanisms in our model: (1) network effects—allowing countries to ship indirectly and (2)

scale effects—allowing countries to ship indirectly and take advantage of scale economies. To

illustrate this, we study the effects of the Arctic opening up to trade between the Pacific and

Atlantic Oceans, bypassing the Suez and Panama canals and decreases in trade cost on specific

links.

To estimate these counterfactuals, we first introduce structural assumptions into our general

framework as well as factor and goods market clearing and balanced trade conditions in order

to deliver a quantifiable general equilibrium model.

8.1 Counterfactual Methodology

Closing the model We adopt the Caliendo and Parro (2015) framework. We assume

there are three sectors (N = 3): containerized tradables c, non-containerized tradables nc, and

nontradables nt (n ∈ [c, nc, nt]), all three of which are used as final goods and intermediates in

roundabout production. See Appendix E for full details.

Equilibrium in changes Defining the general equilibrium using hat algebra, we consider

two sets of changes: (1) link-level transport costs t̂kl = t′kl/tkl, which change expected trade

costs τ̂ijn = τ ′ijn/τijn, and (2) changes in non-transportation trade costs κ̂kl = κ′kl/κkl. Both

alter the endogenous costs of production, price indices, wage levels, trade flows, and welfare.44

We solve for how wages and prices change
{
ŵi, P̂i

}
as a function of changes to model primitives,{

τ̂ijn, ẑin, κ̂ijn
}

, and compute changes in marginal costs ĉin and trade volumes X̂ij.
45

Additional Data We combine our trade volume data with country-level input-output

data from the EORA database aggregating over three sectors: non-traded goods, container-

shipped traded goods and non-container traded goods. We use country-level consumption and

production data to compute Cobb-Douglas shares η and γ. This gives us a sample size of 136

countries. We follow the literature and conservatively set θ = 4 (Simonovska and Waugh, 2014).

Procedure Changes to transport costs are implemented as changes to link costs t̂kl, which,

translated through the model, generate changes in the expected trade cost between every bilat-

44As in the literature we assume that trade is balanced up to a constant deficit shifter.
45We use hat notation here in a different context than previous sections, where it denoted estimated and

model-derived results.
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eral trading pairs in our data—even those that are not directly connected with each other. Once

calculated, these bilateral changes enter isometrically to changes in bilateral non-transportation

costs. For analysis which includes the impact of scale, we model a new equilibrium in the short-

to-medium run, by following an iterated procedure in Algorithm 1 in Appendix F.1. In this

procedure, we start at today’s equilibrium and allow all shippers to optimize their transporta-

tion patterns. We then recalculate trade costs at new volumes according to Equation (11). We

iterate, allowing re-optimization until a new stable equilibrium is reached. Our model theo-

retically admit multiple equillibria (as in (Brancaccio, Kalouptsidi and Papageorgiou, 2020)),

however we focus on the unique equilibrium from our current starting point—the world today.46

8.2 Importance of Entrepôts in the Trade Network

Overview We consider the role of the shipping network in international trade and the

specific importance of entrepôts in that network. We run two types of counterfactuals. For all

countries, we consider the impact of transportation infrastructure investment in the form of a 1%

reduction in transportation costs (tkl) to and from a targeted country. We contrast this with a

1% reduction in non-transportation trade costs (κij) to and from the targeted country, such as a

unilateral tariff reduction or reduction in information frictions. For each type of counterfactual,

we evaluate two cases—equilibrium changes with and without accounting for the endogenous

impact of scale economies on transport costs throughout the shipping network. Reductions in

κij without scale effects consider changes in a manner which ignores the shipping network, while

the other three cases involve exogenous and/or endogenous changes to the shipping network. In

each of these 4 cases, we consider welfare and bilateral trade changes to the targeted country as

well as to all other impacted countries, and focus specifically on differences between entrepôts

and non-entrepôts. With 136 targeted countries and 4 cases, we have 544 counterfactuals.

Which Countries are Pivotal to the Trade Network? Our general equilibrium model

yields a convenient metric for how pivotal a country or node is within the trade network: the

impact of changes at the country on global welfare excluding a country’s own. Pivotal locations

are those which generate the largest adjustments throughout the network. Panel (A) in Figure

12 lists the global welfare impact of infrastructure improvements at the 20 most pivotal nodes

46Kucheryavyy, Lyn and Rodŕıguez-Clare (2019) establishes a common mathematical structure that charac-
terizes the unique equilibrium in multi-industry gravity trade models with industry-level external economies of
scale. Their structure requires that the product of the trade and scale elasticities to be not higher than one,
which is satisfied in our case.
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in the network excluding countries’ own welfare change, for both cases with and without scale

responses. Our 15 entrepôts dominate this list. Egypt tops it, evocative of the strain in

global supply chains when the Suez Canal was blocked in March 2021 (WSJ, FT, AP).47 Scale

economies’ impact on the transportation network (overlaid grey bars) further augment the

differential impact of entrepôts.48 Infrastructure investments at entrepôts generate on average

10 times the global welfare impact relative to investment elsewhere.49

Figure 12: Most Pivotal Countries in the Network: Change in Global Welfare

(A) Transportation Improvements: Highest Global
Welfare Changes

0 2 4 6 8

Canada
Morocco

Saudi Arabia
UAE

Belgium-Lux
Russia

Italy
South Korea

Japan
Hong Kong

France
Spain

Taiwan
Germany

USA
China

Netherlands
United Kingdom

Singapore
Egypt

Change in Aggregate Welfare, basis points

No Scale Response
With Scale Response

(B) Transportation vs Non-Transportation
Improvements

CHN

DEU

USA

JPNFRA
ITA

CAN
MEX

RUS

CHE
MYSINDSWE

AUT

THA
BRA

POLIDNAUS
CZEDNK
TUR

IRLFINPHLNORZAF
UKRARGROUISR

NZLCHL
GRC
IRNKAZSVNVENPAKVNMCOLBGRLTUPERDZANGABGDHRVTUNESTQATLKADOMLVACRIIRQCUBECUOMNURYAGOKWTMACLBNGTMISLSYRGHABHRPRYKENBOLTTOHNDGUYCIVCYPKHMLBYMUSSENCMRBLRJAMBRNGEOPRKMNGPNGALBGABMDGTZA

BHSCOGNICMRTNCLLAOHTIMOZSURBRBGINGRLTGOBENMDVMNECYMBLZSLELBRCPVABWATGERIDJIGMBSOM

GBR

KOR

NLD

BEL

ESP

SGP

HKG
TWN

PRT
ARESAUMAR

EGY

PANMLT

0
50

10
0

15
0

20
0

25
0

W
or

ld
 W

el
fa

re
 In

cr
ea

se
 fr

om
Tr

an
sp

or
t C

os
t R

ed
uc

tio
n

0 20 40 60
World Welfare Increase from

Non-Transport Cost Reduction

Notes: Panel (A) shows absolute values for aggregate net change in global welfare after infrastructure
investment in the targeted country, excluding the country’s own welfare change, for the 20 countries with the
largest global impact calculated without scale economies. Overlaid grey bars represent welfare changes allowing
for the network’s endogenous response to scale economies. Panel (B) compares, for each country, the change in
world welfare, excluding the country’s own welfare, from a 1% decrease in non-transportation costs (X-axis) vs
a 1% decrease in transportation costs (Y-axis). Markers are ISO Country codes. Entrepôts are in red.

When Does Accounting for the Trade Network Matter? Panel (B) of Figure 12

plots the average welfare impact, excluding the targeted country’s own welfare change, of a

transportation cost reduction (as in Panel (A)) against the same for non-transportation trade

costs. While, driven by gravity, there is a strong overall relationship between the two coun-

terfactuals, the average difference is roughly an order of magnitude (100-160 log points): the

effects of one type of counterfactuals will be a poor predictor of the other for any given country.

47Within drybulk shipping, Brancaccio, Kalouptsidi and Papageorgiou (2020) finds that removing the Suez
Canal has the highest impact on welfare decline relative to the Panama Canal and Strait of Gibraltar.

48Panel (A) of Appendix Figure A.14 repeats the exercise for cases with non-transportation cost reductions,
finding that the top 20 list is dominated by the largest economies instead.

49Appendix Tables A.12 and A.13 examines raw and conditional mean differential impact of targeting en-
trepôts.
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For entrepôts, (red in Panel (B)), the 1-to-1 relationship is violated. For example, Egypt ranks

first in terms of global impact from infrastructure improvements, while it is not among the top

20 in terms of non-transportation trade cost reductions. While the effect of non-transportation

cost reductions in Egypt has a similar global welfare effect to that of Colombia, Egypt’s impact

is larger than that of the US in the transportation cost reduction exercise.50 The pivotal nature

of the entrepôts are specific to their role in the trade network.

Ignoring the trade network impacts of policy rolls the quantitatively large network impacts

into the effects of non-transportation cost changes. On the one hand, the impact from any one

individual trade cost change will be highly non-predictive. On the other hand, this may not

qualitatively impact analysis at the spokes of the network—those origins or destinations which

do not significantly participate in trade as third countries— but substantially obfuscates the

role of entrepôts in trade.

The impact of entrepôts are localized To account for the differential impacts of en-

trepôts, we drill down to one particular margin at which the impact appears most distinct:

locally. Figure 13 is a binned scatter plot considering the welfare effects on the impacted

country (y-axis) relative to its distance from the targeted country (x-axis), adjusting for the

impacted country fixed effects. Nearly overlapping blue and green dots in Figure 13 Panel

(B) show a nearly identical distance gradient for non-entrepôts and entrepôts respectively for

counterfactual non-transportation cost reductions without scale economies. The blue and green

dots in Figure 13 Panel (A) show the overall larger impact of infrastructure investments at en-

trepôts is relatively more localized—decaying at 5 times the rate. Scale economies amplify the

localization, with orange dots decaying at 7-times the rate compared to red.51

Scale economies concentrate gains to entrepôts Finally, we turn our attention to

how these cost reductions differentially affect the impacted countries when they are entrepôts

versus non-entrepôts. Figure 14 plots the differential welfare gains to entrepôts relative to non-

entrepôts, as impacted countries, controlling for impacted country size, distance between tar-

geted and impacted countries, as well as targeted country fixed effects. Without scale economies,

50Panel (B) Appendix Figure A.14 finds similar results comparing non-transportation cost reductions with and
without an endogenous scale response. Country-pair bilateral trade results are qualitatively and quantitatively
similar.

51The orange dots in Panel (B) which include the endogenous scale response through the transportation
network, echo these results.
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Figure 13: Spatial Decay of Benefits By Entrepôt Status

(A) Decrease in Transportation Costs
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(B) Decrease in Non-Transportation Costs
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Notes: Panel (A) shows binned scatter residual for welfare effects on impacted countries of transportation
infrastructure in targeted countries vs distance between the targeted and impacted countries. Blue and red
dots are the no-scale and scale cases for counterfactuals where targeted countries are not entrepôts,
respectively. Green and orange dots are no-scale and scale cases, respectively, for counterfactuals where the
targeted countries are entrepôts. Panel (B) presents the same for reductions in non-transportation trade costs.

we find that the welfare gains for both entrepôts and non-entrepôts are not significantly dif-

ferent (in blue). However, the differential benefits to entrepôts is significant and large when

allowing for scale economies (in red). Scale economies disproportionately accrue gains to en-

trepôts as impacted countries. The coefficient on the entrepôt dummy is 0.15 (SE of 0.06) and

0.13 (SE of 0.05) for transportation and non-transportation counterfactuals, respectively. The

pairwise difference between the two cases (in green) is statistically significant. These results—

that scale economies in transportation concentrate gains locally at and around hubs—highlight

scale economies in transportation as a source of agglomeration.

8.3 Impact of Non-Transport Trade Costs on the Network

In order to illustrate the trade network consequences of non-transportation trade cost changes

on a node, we study the effects of Brexit—a 5% increase in non-transportation trade costs for

goods that originate or are destined for the UK. We assume these increases will not be charged

to goods that temporarily stop or are transshipped at British ports. For example, Irish exports

destined for Britain will face higher tariff costs, while Irish exports destined for the United

States will not—even if those goods stop in Felixstowe en route.

We model two cases: first without, then with the impact of scale on the trade network. In
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Figure 14: Differential Welfare Gains of Impacted Countries by Entrepôts Status
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Notes: Figure plots the coefficients (dots) and confidence intervals (lines) for indicators for entrepôt status
from a country-pair level regression of impacted countries’ log percent welfare gains from a transportation cost
reduction or an infrastructure improvement (left panel) or non-transportation trade cost reduction (right
panel) at targeted countries. Regressions control for impacted country GDP, distance to targeted country, and
targeted country fixed effects. Standard errors are clustered by the targeted country. The blue dots represent
the welfare gains for cases without scale economies. The red dots represent the welfare gains allowing for the
network’s endogenous response to scale economies. The green dots use the difference in logs between the two
cases on the left-hand side.

our first case, as in a traditional model, outcomes are only affected through changes in trade

with the UK or multilateral resistance. However, with scale economies, the decrease in UK

trade will raise trade costs of neighboring countries through the trade network. Lower trade

volumes lead to increased transport costs, not only for the UK, but also countries that use the

UK as an entrepôt. Irish exports to the US will now be more costly, as they will either pay the

increased costs of travelling through Britain, use an alternative entrepôt, or take a low-volume,

more costly direct trip.

Panel (A) of Table 4 reports aggregate effects. The direct effect decreases global welfare by

2.3 basis points (Column (1)). The introduction of scale economies leads to a more than 4 times

decrease of 10 basis points. Trade volumes follow a similar pattern. Figure 15 highlights the

distributional effects in terms of welfare (see Appendix Figure A.16 for trade volumes). Scale

economies amplify the Brexit impact, especially for European countries. Notably, the impact of

scale is not well-predicted by the non-scale case (Panel (B), Figure 15). We document significant

negative welfare impacts on Ireland, Iceland and other Nordic countries, many of which rely on
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Table 3: Welfare and Trade Outcomes from Improvements in Transportation and
Non-Transportation Costs, Basis Points

Non-Transportation Transportation
Improvement Improvement

Baseline Effect
Total Effect

Network Effect
Total Effect

(Network & Scale) (Network & Scale)
(1) (2) (3) (4)

∆ Average Global Welfare
Mean 0.08 0.26 0.20 0.58
Standard Deviation (0.20) (0.59) (0.47) (1.41)

∆ Container Trade Volumes
Mean 0.87 2.93 2.31 6.62
Standard Deviation (2.22) (6.74) (5.31) (16.00)

Notes: This table reports results for our first counterfactual, transportation and non-transportation cost
declines for each of 136 countries. Columns (1) and (2) present results for cases where non-transportation
trade costs are reduced. Columns (3) and (4) present results for cases where transportation costs are reduced
(infrastructure improvements). The top panel presents aggregate welfare changes. The bottom panel presents
changes to aggregate container trade. Columns (1) and (3) correspond to cases where no scale economy
feedback loops are allowed. Columns (2) and (4) present results allowing for scale economy feedback.

UK feeder routes to get their goods to large vessels that ply transoceanic trade with Shanghai

and New York (Table A.15). Its trade not easily routed through alternatives, Ireland is most

affected outside of the UK (as recognized in FT 2020).

Table 4: Welfare and Trade Impact of Brexit and Artic Passage Opening, Basis Points

Direct Effect Network Effect
Total Effect

(Network & Scale)
(1) (2) (3)

Panel (A) Brexit: Impact of Non-Transport Trade Costs

∆ Average Global Welfare -2.3 -10.0
∆ Container Trade Volumes -24.5 -112.7

Panel (B) Arctic Passage: Impact of Endogenous Trade Costs

∆ Average Global Welfare 1.5 3.3 8.9
∆ Container Trade Volumes 17.4 38.2 101.8

Notes: Panel (A) presents results for Brexit, a 5% increase in non-transportation trade costs κij between the
UK and its trading partners. The direct effect of Brexit only accounts for the changes in direct trade with the
UK or multilateral resistance. The total effect allows for the change in direct UK trade to impact trade costs
with neighboring countries through the trade network. Panel (B) presents results for the Arctic Passage
counterfactual. The direct effect of the passage opening only accounts for direct changes in physical distance
between countries. The network effect results allow for indirect shipping through the trade network as a result
of the passage opening. The total effect adds in the impact of the scale.
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Figure 15: Welfare Changes - Brexit

(A) Direct Effect from Tariff Change

(B) Total Effect: Full Trade Network and Scale Effects

Notes: These two plots show the percent change in welfare (the relative price index) of a simulated 5%
increase in trading costs with the United Kingdom for all countries in our dataset. Darker reds reflects a
greater increase and blue represents no change. Omitted countries are white. Panel (A) reflects changes if
shipping costs remain constant, reflecting only welfare changes due to changes in prices. Panel (B) allows for a
scale economy feedback loop on transportation costs for all countries.

8.4 Impact of Endogenous Trade Costs on the Network

We evaluate the importance of endogenous trade costs by demonstrating the welfare and trade

impacts from the two endogenous mechanisms in our model: (1) network effects—allowing

countries to ship indirectly and (2) scale effects—allowing countries to ship indirectly and take

advantage of scale economies. We achieve this by studying the physical trade route changes

due to the opening of the once-fabled Northeast and Northwest Passages through the Arctic

Ocean between North America, Northern Europe and East Asia as a viable shipping route

due to global warming. For example, a ship traveling from South Korea to Germany would

take roughly 34 days via the Suez Canal but only 23 days via the Northeast and Northwest
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Passages (Economist, 2018). For every link within the network, we compute the difference in

sea distance using Dijkstra’s algorithm between world maps with and without arctic ice caps

(Appendix A.2). Panel (A) of Figure 16 compares the top 150 existing shipping routes today

and shortest ocean-going distance of these routes after the Arctic sea passage is viable. New

routes going through the Arctic passage are in red, non-changing routes are in brown, and

abandoned routes are in blue.

Figure 16: The Opening of the Artic Passage

(A) Shipping Routes: Before and After (B) Welfare Changes for Top 20 Countries
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Notes: The red lines in Panel (A) indicate counterfactual shipping. Blue lines in indicate existing shipping.
Their overlap is brown. Route width reflects the number of containers (TEU). Panel (B) shows the percent
change in welfare of the simulated opening of the Nordic Passage for the 20 countries with the largest welfare
changes. The first bar reflects only the trade cost changes on routes that are directly affected from the
opening. The second bar allows for the trade costs to affect indirect trade with network effects while the third
bar allows for the endogenous response to scale economies.

We compare three different cases. First, we consider a network-naive exogenous trade cost

case where we only allow for changes in origin-destination trade costs between country pairs for

which the direct bilateral distance decreased. Note that we do not allow third-party-countries

to take advantage of these reductions. Second, we lower tkl for all observed links with positive

traffic according to α2 in Equation (11) calculating new distances with the option of traveling

through the Arctic Passage. Here, even countries that do not ship directly to each other—e.g.

China and Ukraine—experience changes in expected transport trade costs due to the trade

network effects.52 Third, we repeat the second case accounting for the impact of scale: as trade

52For countries affected in cases one and two, the magnitude of changes are mechanically identical.
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costs change, trade volumes change, reducing trade costs further.

Assuming exogenous trade costs with our input-output structure, Column (1) of Table

4 Panel (B) shows that the network-naive and direct effects of the Arctic Passage are posi-

tive, with aggregate welfare increasing 1.5 basis points, and container trade volumes increas-

ing 17 basis points. Endogenizing trade costs to allow for the trade network impact of the

passage—including indirect shipping—doubles the aggregate welfare effect to 3.3 basis points

and increases worldwide container volumes by 38 basis points (Column (2), Table 4 Panel (B)).

Allowing for both scale and network effects triples and doubles the welfare and trade impact

relative to the network results (9 basis points welfare gain and 102 basis points increase in

trade, Column (3)).

Panel (B) in Figure 16 plots the top 20 most impacted countries, showing gains are par-

ticularly pronounced in East Asian entrepôts like Hong Kong and Singapore which dispro-

portionately benefit from the scale economy. Scandinavian countries also gain due to their

geography. Denmark and Finland, which in the baseline first case have zero or a small trade

diversion impact, gain due to the ability to leverage the trade network and scale response from

the opening.

Figure 17 show changes in the relative wage-adjusted price index (interpreted as national

welfare, if we omit the costs of climate change) across the three cases.53 In the baseline scenario

in Panel (A), we see increases from trade between countries that are along the Northeast passage,

and small spillover impacts at countries not directly impacted—reflecting classic multilateral

resistance and cascading effects from value chains. Figure 17 Panel (B) shows how, through

indirect trade, the benefits of the passage pass on to nearby countries not directly impacted.

In Panel (C), scale economies amplify these effects.

9 Conclusion

This paper studies entrepôts, the trade network they form, and their impact on international

trade. We characterize the global container shipping network as a hub-and-spoke system by

documenting that the majority of trade is indirect and flows from origins to destinations through

entrepôts (hubs). To rationalize these novel and salient facts, we develop a general equilibrium

model of world trade with endogenous trade costs and entrepôts, estimating both the underlying

53Appendix Figure A.18 shows related changes in country-by-country containerized exports.
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Figure 17: Welfare Changes - Arctic Passage

(A) Only Directly Affected Routes (Exogenous Trade Costs)

(B) Full Trade Network Effects

(C) Full Trade Network Effects and Scale Economies

Notes: Plots show the percent change in welfare (the relative price index). Darker reds reflects a greater
increase and blue represents no change. Omitted countries are white. Panel (A) reflects changes only allowing
trade costs to decrease on routes whose distance is directly reduced to the Arctic Passage. Panel (B) reflects
changes allowing all countries to indirectly access the Arctic Passage through the trade network. Panel (C)
allows for the network’s endogenous response to scale economies.
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trade costs on all routes, and scale economies. We quantify the impact of the trade network

on global trade and welfare, highlighting how changes at nodes operate through the network,

entrepôts, and scale economies to create widespread impacts. We find that infrastructure

investments at entrepôts generate on average 10 times the global welfare impact relative to

investment elsewhere.

While the focus of this paper is on the general equilibrium effects of the trade network, there

are two aspects that lend themselves to further study. First, while we are singularly focused on

containerized shipping because containerized trade accounts for the majority of global seaborne

trade, the hub and spoke network is not specific to just containerized trade (Rodrigue, Comtois

and Slack, 2013). Such networks are also prevalent in freight services like UPS or DHL in

addition to air transport. Second, our estimates of scale economies are agnostic to underlying

mechanisms. Future work should especially be done to consider mechanisms the roles of fixed

costs in enabling the scale economies in containerized shipping, such as the costs incurred by

potential oligopolies in setting shipping networks and the endogenous creation of firm-specific

hub-and-spoke networks.54 While sector-specific research has been done on these networks,

fruitful research should take into consideration a tractable general equilibrium framework to be

able to quantify welfare effects.
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