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1 Introduction

Exchanging goods over borders involves more than production and consumption: ship-

ping, transshipping, and distribution can include multiple agents and additional countries

beyond producers and consumers. These activities are concentrated at entrepôts, trading

hubs which goods travel through—from other origins and bound for other destinations.

The idea that entrepôts are integral to the trade network and are engines of growth have

been the impetus behind many policies aimed at attaining or maintaining entrepôt status

(Financial Times (FT) 2015, Reuters 2016, Wall Street Journal (WSJ) 2021).

This paper studies entrepôts, the trade network they form, and their impact on in-

ternational trade. We seek to answer the following questions: (1) How do goods move

from their origins to their destinations and what role do entrepôts play in facilitating this

process? (2) What trade costs can explain the observed routes that goods take and the

existence of entrepôts? and (3) How does this pattern of trade through entrepôts impact

global and regional trade as well as welfare?

Our first contribution documents that trade is indirect and flows from origins to desti-

nations through entrepôts. We construct and merge two new datasets that jointly map the

journeys of containerized shipments from their origins to US destinations including stops

in other countries. This microdata grants us a unique, comprehensive look at how goods

move through the global trading network. Previous work observed origin-destination

trade alone or aggregated ship movements, and was unable to examine indirect trade,

which we define as trade journeys that make stops with the shipment either on-board or

transshipped—transferred onto a ship—at additional countries (third-party countries).

We document two stylized facts. First, the majority of trade—80%—is shipped in-

directly.1 The median shipment stops at two additional countries before its destination.

On average, most countries trade with the US indirectly. We further show that indirect

trade increases shipping time and distance by 30%. Second, this indirectness is incred-

ibly concentrated, with over 90% of indirect trade channelled through a small number

of entrepôts. This establishes that international trade takes place over a hub-and-spoke

network. These facts highlight an inherent trade-o↵. Indirectness increases the distance

and time costs of trade, but by revealed preference it lowers costs, especially for the

spokes of the network which disproportionately choose to ship via entrepôts.

1The majority of trade is also transshipped via a third-party country before its destination.
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Our second contribution estimates the trade costs that rationalize the documented

direct and indirect trade through the global trading network. To achieve this, we build

a general equilibrium model of trade with entrepôts and endogenous trade costs which

flexibly accommodates input-output linkages. Producers choose shipping routes and com-

pete for consumers in destination countries in a generalized Ricardian setting. Low-cost

routes can involve shipments through third-party countries, and entrepôts endogenously

arise at locations through which shipping costs are lowest. Crucially, we allow for both

scale economies and dis-economies to govern shipping costs on these network links.

Expanding beyond the US to include global data on shipment flows, we estimate these

trade costs for each leg of the network, generating a new set of origin-destination trade

costs that is consistent with the global trade network. An advantage of our model is

that we need to make very few assumptions on the production and consumption settings;

we recover a trade cost matrix that best rationalizes the observed link-level tra�c given

the observed origin-destination-level trade flows. An important contribution is that we

establish the validity of both our estimates and modeling approach by finding a tight

match between our estimated trade costs and external freight rate data, as well as be-

tween our predicted network flows and microdata on US-bound shipment journeys. Our

measures of indirectness, estimates of leg- and origin-destination-level trade costs, as well

as resulting market access measures are available online to researchers.

Our estimation finds the presence of bilateral scale economies—the causal e↵ect of

increasing shipping volumes on decreasing trade cost—using an instrumental variable ap-

proach. Embedded in our model is the intuition that some legs have inherently higher

tra�c (higher demand) because they are geographically closer to the shortest path be-

tween origins and destinations. For example, Singapore lies along the Straits of Malacca,

close to the lowest-distance route between many European and Asian countries.2 We use

this variation to construct an instrument for shipping quantities: for each leg, we compute

the distance to and from the leg relative to the shortest distance between each origin and

destination, recovering a weighted average of each leg’s proximity to global trade. We

find that increasing tra�c volume on a leg by 1% would reduce costs by 0.06%. As the

median journey in our microdata has 3 legs, a 10% increase in overall origin-destination

trade translates into a 0.17% decrease in trade costs.

Our third contribution is to quantify the global trade and welfare impact of the trade

2The emergence of entrepôts as hubs in geographically advantageous locations is consistent with the
findings of Barjamovic et al. (2019).
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network. Our main counterfactual quantifies the regional and global trade, and welfare

benefits of transport infrastructure improvements for each country in our sample. We

show that entrepôts are pivotal to the global trade network: welfare impacts of infras-

tructure investment are on average ten times higher at entrepôts than non-entrepôts.

Conflating transportation and non-transportation trade costs, or failing to account for

the endogenous response of the network to changes in non-transportation trade costs,

impact estimated e↵ects by an order of magnitude on average. This is especially true

for entrepôts, which di↵erentially concentrate the benefits of infrastructure improvements

regionally relative to non-entrepôts. We find that scale economies amplify the concen-

tration of benefits, highlighting how scale economies in transportation can be a source

of agglomeration. We establish that Egypt (and the Suez Canal) is the most pivotal

location in the trade network, as reflected by the strain in global supply chains when it

was blocked in March 2021 (Wall Street Journal, Financial Times, AP News, 2021).

Our next two counterfactuals illustrate the magnitude and distributional e↵ects of

transportation network changes, first through the network’s endogenous response to

non-transportation trade cost changes and then through direct changes to the trans-

portation network. Our second counterfactual investigates the ramifications of worsening

trade relations between one hub, the United Kingdom (UK), and its trading partners—

Brexit. In our baselines analysis which only considers the direct impact of increased

non-transportation trade costs, we find that outcomes are a↵ected through direct trade

with the UK or multilateral resistance. When our analysis accounts for the interaction of

network trade costs and scale economies, we find that smaller countries like Ireland and

Iceland that use the UK as an entrepôt to access all other trading partners are dispropor-

tionately hurt (as recognized in Financial Times, 2020), illustrating how such interactions

can lead to di↵erent distributional outcomes even when the initial changes are unrelated

to transport. Our third counterfactual studies the e↵ects of opening up the Arctic Ocean

to regular year-round shipping, connecting countries in East Asia and Europe. We find

that the network structure of trade distributes gains beyond directly impacted countries

with pre-existing shipping routes. Network spillovers are an order of magnitude above

those observed from input-output linkages, and global welfare impacts are further tripled

by the feedback loop imposed by scale economies.

This paper ties two broad literature together, combining detailed microdata on the

flow of goods through the trade network with a structural model of trade and trans-
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portation. The first dives deeply into the technology underpinning the fundamentals of

international trade, such as container shipping and infrastructure investment (Coşar and

Demir, 2018). The second considers the geography and cost structures of transporta-

tion networks (Allen and Arkolakis, 2019). After documenting novel aspects of the trade

network by tracing the path of shipments, we estimate the cost structures and scale

economies that are consistent with the technologies underpinning these fundamentals in

order to quantify the global and local welfare e↵ects of the network.

With regards to the technologies underpinning trade, a wide literature shows how

both containerization and infrastructure investments have local outcomes (Heiland et al.,

2019; Ducruet et al., 2019; Wong, 2020; Coşar and Demir, 2018; Bernhofen, El-Sahli

and Kneller, 2016; Rua, 2014).3 We model transport costs as part of a global network

of container shipping routes, a setting which accounts for two-thirds of annual trade

moved by sea (World Shipping Council).4 Using our general equilibrium spatial trade

framework, our counterfactuals show how endogenous changes in trade costs propagate

via the network and through entrepôts as well as quantify their trade and welfare impacts.

Our modeling embeds trade networks within a class of gravity models (Head and

Mayer, 2014). We provide empirical evidence for a growing quantitative literature inves-

tigating the role of trade networks (Allen and Arkolakis, 2019; Fajgelbaum and Schaal,

2017; Redding and Turner, 2015).5 We extend the Armington framework in Allen and

Arkolakis (2019)—where route cost shocks are born by consumers—to a general Ricardian

setting—where tra�c volumes reflect both route choice and head-to-head competition on

prices at destinations and demonstrate how to estimate the model in a multi-industry

setting in the presence of unobserved tra�c flows. Finding a tight match between our

model predictions and external cost estimates, ship sizes, and a sample of observed trade

routes, we establish that our estimates reflect actual costs and indirect flows in the trade

network in addition to serving as a check to the validity of our modelling approach as

3Hummels, Lugovskyy and Skiba (2009),Grant and Startz (2020), and Asturias (2020) study transport
costs in the context of market power. While container shipping firms may hold market power, we
generalize away from the profits of the shipping companies. Models allowing for leg-level oligopoly, fixed
costs and endogenous entry competition fit within our framework (Sutton, 1991), but we leave the study
of how market power works through the hub-and-spoke network for future study.

4Brancaccio, Kalouptsidi and Papageorgiou (2017) estimate endogenous trade costs arising from
search frictions for dry bulk ships carrying homogeneous commodities, where all trade is direct.

5We provide the first and systematic documentation of indirect trade through the containerized ship-
ping network. Previous work have either imputed indirect trade or just used port of call data alone
(Heiland et al., 2019; Wang and Wang, 2011; Kojaku et al., 2019; Lazarou, 2016). Relative to these
papers, we also quantify the welfare and trade impacts of the trade network using a general equilibrium
model with endogeneous trade costs.
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well as the Allen and Arkolakis (2019) framework.

One important aspect of transportation technology in our model is the scale econ-

omy in shipping. For the median route into the US, our leg-level scale economy implies

that a 10% increase in volume leads to a 1.7% decrease in costs, which is about three-

quarters of the estimates in Asturias (2020) and Skiba (2017).6 While Lashkaripour and

Lugovskyy (2019) and Bartelme et al. (2019) both consider the trade consequences of

production scale economies, we consider scale in transportation. Our paper shows how

scale economies in transportation can interact with the global trade network to concen-

trate economic activity. In this respect, we are also related to a literature in economic

geography which considers the role of localized scale economies in the emergence of ag-

glomerations (Allen and Arkolakis, 2014; Allen and Donaldson, 2018). Scale economies

typically generate agglomerations by acting on the volume of economic activity at loca-

tions. Our counterfactuals show that scale economies can concentrate trade and welfare

gains at entrepôts by acting on transportation costs over a network.

2 Data

We combine two proprietary data sets in this project: global ports of call data for con-

tainerships, which allows us to reconstruct the routes taken by specific ships, and United

States bill of lading data for containerized imports, which gives us shipment-level informa-

tion on US imports. Independently, these datasets partially describe the global shipping

network. Merged, they reconstruct the journey of individual shipments as they navigate

the trade network, from their origin to their US port of entry. To our knowledge, we

provide the most comprehensive reconstruction of the global trading network and routes

undertaken by individual shipments into the US.7

Our ports of call data captures vessel movements using Automatic Identification Sys-

tem (AIS) transponders.8 For each vessel, this data captures the vessel’s characteristics,

time-stamped ports of call, capacity, and height in the water before and after stopping at

each port. The latter two pieces of information indicates the vessel’s load at these ports,

allowing us to observe volumes shipped between port pairs.

6Asturias (2020) reports an origin-destination country trade-volume trade-cost elasticity of 0.23 while
Skiba (2017) reports an elasticity of 0.26 using product-level import data from Latin America. See also
Alder (2015); Holmes and Singer (2018); Anderson, Vesselovsky and Yotov (2016).

7Data Appendix A.1 explains both data sets and their merge procedure in detail.
8Port receivers collect and share AIS transponder information (including ship name, speed, height in

water, latitude and longitude). Using Astra Paging data, we track global port entry and exit data.
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Figure 1: Map of Global Port of Call Network

Notes: Each dot represents a port (total of 1,203 ports). Each line represents a journey between port
pairs undertaken by a containership (total of 4,986 ships).

Our sample covers 4,986 unique container ships with a combined capacity of 18.1

million twenty-foot equivalent shipping units (TEUs)—over 90% of the global container

shipping fleet—making 429,868 calls at 1,203 ports from April to October 2014. Figure 1

shows the coverage of the shipping network in our port of call data. Each line represents

a containership journey. We use this global data along with CEPII global trade data

when estimating our model in Section 5.

With this port of call data alone, shipment journeys within the trading network remain

unobserved. To remedy this, we merge the port of call data with US bills of lading data,

which captures shipment-level information for all containerized imports. We observe

each shipment’s origin country, the port where they are loaded onto containerships (also

known as port of lading), and the US port where they are unloaded (port of unlading). We

observe the name and identification number of the containership which transported the

shipment as well as the shipment’s weight, number of containers (TEUs), and product

information. Over the same six months period, we see a total of 14.8 million TEUs

weighting 106 million tons were imported into the US from 227 origin countries and

loaded onto US-bound containerships (laded) in 144 countries.

Using details on containerships, ports, and arrival times, we reconstruct each ship-

ment’s journey from its foreign origin to US destination by matching each shipment to

the containership that it was transported on. Over 90% of containerized TEUs entering

the US can be matched to routes using this method (Appendix Figure A.1 visualizes this

merge).9 While the shipments’ exact journey between origin and the first stop (the port

9See Appendix A.1 for further details on each of these datasets as well as the merge process.
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where they are loaded onto containerships) remain unobserved, this initial portion can

either take place overland (by trucks or rail) or by sea on another containership because

they are containerized. Not observing this portion in fact leads us to under-count the

overall level of indirectness. We empirically deal with unobserved transit in Section 5.

3 Stylized Facts

We analyze the international trade network and the routes taken by goods entering the US

along that network. We find that the majority of trade takes place indirectly in a manner

which is costly—increasing both shipping time and distance travelled. We further show

that the global trade network is a hub and spoke system, concentrating a large number

of shipments through a small number of entrepôts.

3.1 The Majority of Trade is Indirect

Panel (A) in Figure 2 reports the distribution of the number of observed country stops

made by each shipment, weighted by TEU containers. Only 20% of containers are ex-

ported to the US directly from their origin countries—making no stops in third-party-

countries. The average container entering the US stops at around two third-party-

countries.10 The map in Figure 2, Panel (B) shows that this is also true at the country

level: the majority of US trading partners export to it indirectly. Only shipments from

9 countries typically enter the US directly.11 Similarly, the average shipment from a ma-

jority of US trading partners is transshipped in a third-party country—over 60% of US

trading partners transship more than 90% of their US-bound goods.12 Figure A.5 reports

the percent of goods that are transshipped at third-party countries.

We explore the high degree of variation in connectivity in Appendix B.4, showing that

this variation is in part explained by traditional gravity variables. We show that there

is substantial variation in routes from unique origins into the US, which is an important

assumption in our model and is used in our validity checks (Figure A.9, Panel (B)).

10Mean of 1.5 and s.d. of 1.3. Landlocked countries are excluded. The average number of port stops
is higher (Figure A.3, mean of 4.6 and standard deviation of 3.5). This result is robust for shipment
weight and value (Figure A.4). Multiple stops at the same third-party country are not counted.

11These countries are Canada, Mexico, Panama, Japan, South Korea, Spain, Portugal, South Africa,
and New Zealand. We treat Mainland China, Hong Kong, Taiwan, and Macau as separate locations.

12Both on-board stops and transshipment are important measures of indirect trade. For completeness,
all results are broken out here or in the appendix using transshipment only. Examples of countries
transshipping more than 90% of goods include Denmark, Bangladesh, Cambodia, and Ecuador.
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Figure 2: Indirect Trade Distributions, by Container and Country

(A) Country Stops per Container
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Notes: Panel (A) shows the distribution of containers by the number of unique third-party countries
the containers visited. In Panel (B), for each origin country, we calculate the average number of
third-party country. The destination country (US) is excluded (in white). Plots are at the shipment
level and weighted by the aggregate exported containers (TEU). Landlocked countries are also excluded
(in white), since they would mechanically need to stop at a coastal country. 34 of the shipment origin
countries are landlocked accounting for 1.6 percent of total TEUs. The missing remaining countries are
excluded either due to lack of overall trade with the US (e.g. Somalia) or due to the merge process (e.g.
Namibia).

Indirect trade increases shipping distances and time. Are the additional coun-

try stops simply incidental stops along the way, or do they constitute a trip that is distinct

from a “direct” path? As an example, do goods transiting the Straits of Malacca stop

at Singapore since it is “on-the-way,” or are goods making lengthier detours during their

stops? One possibility is that the observed indirectness is optimal but only incidental—

perhaps additional stops only have small e↵ects on costs, and so may be optimal even if

the benefit of indirectness is small. However, the significant additional distance and time

incurred by indirect travel, documented here, implies this is unlikely to be the case.

On average, the actual traveled distance between a shipment’s origin and its US des-

tination is 31% more than its direct ocean distance (Panel (A) in Figure 3). Panel (B)

shows the actual traveled distance between the location where the shipment was last

loaded onto a ship and its final destination. Here the remaining gap is still substantial
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at 14%. Table A.1 further evaluates the relationship between indirectness and journey

length. Controlling for direct journey length or origin-by-destination fixed e↵ects, dou-

bling the number of stops adds 10% to distance travelled and 33% to time travelled. These

distance and time costs do not include pecuniary costs of transshipment. Consequently,

this indirectness is meaningful in the sense that it is costly. These longer shipping routes

imply a cost reduction from indirectness that is over and above the additional time and

distance costs. From these results, we can summarize our first stylized fact:

Stylized Fact 1. The majority of containerized trade into the US is indirect and results

in a significant increase in shipping distance and time.

Figure 3: Di↵erence Between Traveled Distance and Direct Distance

(A) Shipment Origin to Destination (B) Place of Loading (Stop 1) to Destination

Notes: These figures show only indirect shipments, with di↵erent direct and observed distances. Dots
are shipments, shaded by TEU. Panel (A) compares the direct shipping distance from the shipment’s
origin country to the US, to the actual route travelled. Panel (B) compares the direct distance from the
place a shipment was last loaded onto a US-bound ship (Stop 1 in Appendix Figure A.1), to the actual
route travelled. Sea distances for observed and direct routes are calculated using Dijkstra’s algorithm.
The local linear fit line is a locally weighted regression of the observed on direct pair-wise distance.

3.2 Indirect Trade Is Routed Through Entrepôts

When shipments stop in third-party-countries, how are they routed? We show that the

stops along indirect shipping routes are not arbitrarily distributed throughout the world.

Instead, they are channelled through a small number of hubs, which disproportionately

service shipments originating in other countries.

Panel (A) of Figure 4 plots each country’s share of total third-party-country stops

against its share of total US trade. Some locations are both popular stopping points

and major countries of origin for goods like China, Germany, and Japan. Key countries

9



like Korea, Singapore, Panama, and Egypt disproportionately participate as third-party-

countries in US-bound shipments.13 This leads to our measure of entrepôt activity:

Entrepôtl,j ⌘ ⇡l
j � ⇡l,j (1)

where country j’s usage of entrepôt l for its imports is the di↵erence between ⇡l
j, the

share of j’s imports flowing through l, and ⇡l,j the share of j’s imports originating at l.

This captures the use of location l above and beyond its role as an exporter to j.14

Panel (B) of Figure 4 repeats the exercise in (A) using global tra�c minus trade

shares.15 Results are broadly consistent with the microdata in Panel (A), while some

countries such as Canada and Panama which are specifically integral to the US network

are now below or closer to the 45 degree line. We define the top 15 countries as entrepôts.16

In the microdata, 72% of all shipments pass through at least one entrepôt. Of indirect

shipments, 90% pass through an entrepôt. In both panels, third-party-country stops (the

Y-axes) are significantly more concentrated than trade (the X-axis).17

Which countries disproportionately use entrepôts? We find that smaller origin coun-

tries are simultaneously more likely to go indirectly and more likely to use entrepôts (see

Appendix B.3 for further details). Jointly, these figures confirm that smaller countries

are spokes which disproportionately use entrepôts for their trade.18 These relationships

can be summarized in our second stylized fact:

Stylized Fact 2. Indirect shipping routes are concentrated through entrepôts. Interna-

tional trade occurs over a hub-and-spoke network.

Our two facts outline an inherent trade-o↵: indirectness increases distance and time
13Figure A.6 tabulates the percent of all goods entering the US stopping in that country, broken into

goods originated there and elsewhere.
14Entrepôtl,j is directly proportional to the total volume of goods moving through l that do not

originate at l. Appendix C shows how this measure arises from our model as the di↵erence between l’s
on-board marginal cost selling to j and its network relation to j, and that lowering location l’s leg-level
transport costs to other origins increases Entrepôtl,j . Our results here and throughout are be robust to
other functional forms—for example log di↵erences.

15We subtract country l’s share of observed global containerized trade ⇡l from its observed share of
global container tra�c ⇡l, with an adjustment for unobserved overland tra�c as described in Section 5.
Appendix C clarifies how this is a consistent aggregation of the country-level measure in Equation 1.

16Our set of global entrepôts are: Egypt, Singapore, Netherlands, Hong Kong, Belgium, Taiwan,
Spain, Saudi Arabia, South Korea, the United Arab Emirates, Morocco, Panama, Malta, Portugal, and
the United Kingdom.

17Table A.2 reports the concentration ratios for trade, transshipment, and third-party-country stops,
which are high by most standards. The 99-50 ratio is 400 for third-country stops, 480 for transshipment,
and 96 for trade. For comparison, the same ratio for employment in the concentrated IT-sector across
US cities is 300 (Moretti, 2019).

18Section 5 addresses the extent to which exogenous characteristics like geography are responsible for
lower costs at, hence higher concentration of shipments through, entrepôts.
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Figure 4: Concentration of Indirect Shipments

(A) US Microdata: Transit Volume vs Percent
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Notes: Panel (A) uses US microdata to compare, for each country, the share of shipments to the US
that originated in a country (x-axis) to the the share that passed through that country (y-axis),
weighted by TEU. For readability, China is omitted in Panel (A). Panel (B) replicates Panel (A) using
global port of call and trade data with adjustments made for unobserved overland tra�c as discussed
in Section 5.

costs of trade, but by revealed preference should imply lower costs, especially for the

spokes of the network which disproportionately choose to send goods indirectly through

entrepôts.19 The goal of our empirical estimation is to measure this trade-o↵ within the

context of the full global trading network by finding a set of node-to-node costs which

describe the shipping network and is consistent with the indirect trade we observe.

These facts also trace the existence of a size-cost relationship: shipment along high-

concentration entrepôts routes appears by revealed preference to be cost-reducing. As

with any scale-cost relationship, both directions of causation may be operational. We

model the shipping decision in a way which allows for but does not impose a reduced-

form scale economy, and in our estimation, identify the causal impact of scale on costs.

4 Theoretical Framework

We present a model of global trade where shipments are sent indirectly through an en-

dogenously formed transport network. We embed the Allen and Arkolakis (2019) route

selection model in a generalized Eaton and Kortum (2002) framework where production

technologies in each industry and country are non-stochastic, but idiosyncratic variation

in the products’ optimal route generates random variation in product-origin pair prices.

19While some entrepôts lie along lowest-cost routes, routes stopping at entrepôts are 3-8% longer. This
is true even when comparing shipments sent from the same origin, to the same destination, and using
the same total number of stops, and comparing total distance travelled as well as distance from port of
lading to US destination.
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Entrepôts emerge as locations where goods pass through, but are neither the goods’

origin nor their destination. Throughout, we maintain a production and consumption

setting that is as general as possible, allowing for any number of goods, industries, and

input-output linkages. This model is agnostic to scale economies or dis-economies in

transportation costs, which could work to either amplify or attenuate shipments through

entrepôts. Restrictions on route cost heterogeneity generate moment conditions that can

be matched to the data to yield estimates of leg-specific shipping costs.

4.1 Setup

Consumption and Production In each country j, consumers consume goods !n 2

⌦n from each n of N industries according to function Uj = Uj(Cj), where Uj(·) is a

continuous, twice di↵erentiable function and Cj is a matrix of quantities of an arbitrarily

large number of goods !n in industry n 2 N in country j.20 Within each industry and

product category, goods are homogeneous and normal.21

Goods are produced using a variety of traded and non-traded inputs including labor,

capital, and traded and non-traded varieties from any industry. The production technol-

ogy for good ! is common for all goods in the same industry n, and includes a vector of

factor inputs L, as well as inputs of other goods.22 Production functions can vary across

industries and countries. Cost minimization results in identical production costs among

competitive firms within an industry in each country. The marginal cost of a good ! is

cin ⌘ cin(zin,Wi, Pi),

where Pi is the matrix of prices of all goods ! in industries n in country i and Wi is the

vector of factor prices in country i. Because producers in the same industry and country

share the same input prices and production function, costs are shared within country-

industries. These costs correspond to the classic Ricardian comparative advantage.

Pricing To sell goods abroad at any destination j 2 J , a firm producing product

! in industry n must pay non-transport trade costs ijn and iceberg transport costs

20We allow for the utility function to vary across destinations, and the number of goods in each industry
need not be a continuum but can be.

21The model and empirics can accommodate arbitrarily fine industry classifications in order to ensure
this assumption holds.

22The production function is given by qin(!) = fin(zin, Lin, Qin) where fin(·) is a continuous and twice
di↵erentiable country-industry-specific production function, zin is the production technology common to
industry n and country i, Lin is a vector of non-tradable factor inputs, and Qin is a country-industry
specific matrix of inputs of other goods ! from all industries. All inputs are treated as homogeneous.
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⌧ijnr(!) after optimally choosing the route r between i and j to minimize the shipping

costs incurred. Competitive firms in i selling to j price their goods at marginal cost. The

observed prices for these products at j are

pijn(!) = cinijn⌧ijnr(!),

where purchasers of good ! in industry n at j source the lowest cost supplier globally.

Shipping Producers seek to minimize shipping costs, choosing the lowest cost ship-

ping route available. Shipping route r is comprised of Kr legs of a journey with Kr�1

stops along the way between the origin, i (or k = 1), and destination, j (or k = Kr).

Following Allen and Arkolakis (2019), moving from stop to stop involves iceberg

transport costs as well as product- and route-level idiosyncratic cost shocks ✏ijnr(!).23

We place minimal structure on these direct leg-level costs tkr�1,kr(·) between locations

kr�1 and kr, allowing them to be a function of exogenous and endogenous variables:

tkr�1,kr = f(⌅, "kr�1,kr) (2)

where ⌅ is a matrix of endogenous containerized tra�c over the entire network and "kr�1,kr

reflects exogenous transportation cost elements such as distance.

Route-specific idiosyncratic shocks are drawn from the Fréchet distribution such that

Fijn(✏), the cumulative distribution function of the idiosyncratic draws is as follows:24

Fijn(✏) ⌘ Pr{✏ijnr(!)  ✏} = exp
n
�✏�✓

o

where shape parameter ✓ > 0 captures the randomness or dispersion in the choice of

routes from i to j.25 Higher ✏ijnr(!) draws mean industry n has lower costs for route r.

Accordingly, product !’s shipping cost along route r from country i to country j is:

⌧ijnr(!) =
1

✏ijnr(!)

KrY

k=1

tkr�1,kr(⌅, "kr�1,kr) ⌘
1

✏ijnr(!)
⌧̃ijr, (3)

where ⌧̃ijr is the product of all leg-specific costs tkr�1,kr(⌅, "kr�1,kr) and is common to all

products taking route r. Product ! in industry n’s realized shipping cost from i to j

is that of the transport-cost minimizing route from the set of all routes from i to j.26

23Because of the max-stable property of the Frechét distribution, an isomorphic specification would
have firm-specific cost shocks with a finite mass of potential competitive firms in each country. This would
a↵ect the interpretation of the source of idiosyncratic variation (firm variation or product variation) and
of shape parameter ✓.

24This distribution is identical across industries so product-industry subscript n is dropped.
25This dispersion assumption is reflected in our microdata (Panel (B) in Figure A.9, Appendix B.4)

Almost 70 percent of origin countries have fairly low concentration of routes (HHI less than 1500).
26The price of a product ! in industry n from i to j conditional on route r is pijnr(!) = cinijn⌧ijnr(!).
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The multiplicative functional form for tkr�1,kr in Equation (3) allows for an analytical

solution to the routing problem. Section 7 subsequently establishes a tight fit between

our estimates and two sets of external data, helping alleviate misspecification concerns.

This structure is consistent with a host of mechanisms, including but not limited to

port-level e↵ects and leg-level scale economies.27 With regards to market power, we do not

directly model the decision of shipping firms. Instead, our equilibrium can be considered

as an overall industry equilibrium within a Sutton (1991) framework, where larger markets

induce more entrants and lower marginal costs, with profits being absorbed by fixed

costs.28 Di↵erences between these mechanisms will not impact the model estimation but

will manifest in the interpretation of scale economies and for counterfactual predictions.

4.2 Equilibrium

Route volume Firms from origin i select the lowest-cost route before consumers in

j select the lowest-cost intermediate good supplier across all the origins countries. We

observe ! being shipped on route r from i to j only if the final price of !, which includes

both the marginal cost of production and shipping cost on route r from i to j (pijnr(!)),

is lower than all other prices of good ! from all other origin country-route combinations.

We then consider the probability that a given country and route r0 will be selected as

the lowest cost route-supplier combination for good ! conditional on price p:

Gjn!(p) ⌘ Pr

(
min

i2I,r2Rij\r0
pijnr(!) > p

)
= 1� exp

8
<

:�p✓ ·
X

i

2

4(cinijn)
�✓ ·

X

r2Rij

⌧̃�✓
ijr

3

5

9
=

; .

We can define the joint probability that a route r is the lowest-cost route from i to j for

good ! and that country i is the lowest-cost supplier of good ! to j as:

⇡ijnr! ⌘ Pr

(
pijnr!  min

i02I\i, r02Rij\r
pi0jnr0!

)
=

⇥
cinijn · ⌧̃ijr

⇤�✓

P
i02I

h
(ci0ni0jn)�✓ ·

P
r02Ri0j

⌧̃�✓
i0jr0

i . (4)

By the law of large numbers, this is also the share of goods sold in j in industry n coming

from i and taking route r.29 Introducing auxiliary matrix An = [t�✓
ijn(⌅, "ij)] where each

element is a function of the leg-specific transport cost, we define the expected transport

27It also allows for spatial correlation in link costs, say between tkl and tlm.
28We omit discussion of the optimal shipping network from the perspective of a firm with market

power, and focus on leg-level scale instead.
29Recall that the number of goods in each industry is set so the law of large numbers holds.
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cost matrix as

⇥
⌧ijn

⇤
⌘
h�
I � An (⌅, ")

��1
i�(�✓)

, (5)

where � is the element-by-element Hadamard power.30 Substituting the definition of ⌧̃ijr

(Equation (3)) into Equation (4) and summing across routes r that pass between leg k

to l, we can express the share of imports in industry n in destination j that come from

origin i which passes through leg kl as:

⇡kl
ijn =

⇥
cinijn · ⌧ikn (⌅, ") · tkln (⌅, ") · ⌧ljn (⌅, ")

⇤�✓
��1

jn , (6)

where �jn =
P

i0

⇥
ci0ni0jn · ⌧i0jn (⌅, ")

⇤�✓
is the key distinction from Allen and Arkolakis

(2019)—a multilateral resistance term that accounts for average costs, openness, and

connectivity of competitors from all other countries i0. With optimal route selection and

competition on price both accounted for, Equation (6) is the realized and observable

share of tra�c that flows through leg kl from i to j.

Next, the model yields a gravity equation. The sum of products sold in j in industry

n from country i equals the share of products sold in j in industry n coming from i and

taking route r, summed across all r routes:

⇡ijn ⌘
X

r

⇥
cinijn · ⌧̃ijr

⇤�✓

P
i02I

h
(ci0ni0jn)�✓ ·

P
r02Ri0j

⌧̃�✓
i0jr0

i =

�
cinijn · ⌧ij (⌅, ✏)

��✓

�jn
. (7)

Equations (6) and (7) will jointly generate our estimation equation in Section 5.

Finally, we derive an expression for the share of global shipping passing through kl:

⇡kl =
X

n

X

j

X

i

⇡kl
ijn =

X

n

tkln (⌅, ")
�✓ ·

X

j

⇥jn⌧ljn (⌅, ")
�✓ · �kn

�jn
, (8)

where ⇥jn is j’s global consumption share of industry n. Because optimal route selection

and competition on price are both accounted for, Equation (8) corresponds to the observ-

able shares of all goods passing through leg kl, including shipments bound for l and those

continuing onward to other destinations. In Section 7, we compare our model-implied

leg-level trade flows to those observed in the US microdata. We find high correlations

which also hold true for higher levels of aggregation across origins and levels as well.

In Appendix C.2, we show how a change in the leg cost between k and l (tkl(⌅, "kl))

30The expected transport cost from i to destination j is also ⌧ijn = ��1/✓
⇣P

r2Rij
⌧̃�✓
ijr

⌘�1/✓
where �

is the function �(t) =
R1
0 xt�1 exp�x dx evaluated at

�
(1 + ✓) /✓

��✓
.
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can a↵ect trade volumes between an origin i and destination j through the trade network.

Closing the model In order to close the model, we require markets to clear for

factors and goods as well as the balanced trade condition. Unnecessary for estimation,

we defer them to Section 8 when we conduct counterfactuals.

5 Estimation

We now show how to link our model to real world data, use the model to recover the trade

costs underlying the global shipping network, and estimate a scale elasticity in shipping.

5.1 Linking the Model with Data

Using equations (6) and (7) we can calculate the probability of any good traveling through

leg kl conditional on being sold from origin i to destination j. With the total value of

trade between i and j in industry n (Xijn), we can express the total volume of tra�c

between k and l in a given industry n as:

⌅kl
n ⌘

X

i

X

j

Xijn ·
�
⌧ikntkln⌧ljn⌧ijn

�1
��✓

. (9)

Equation (9) is identical to Allen and Arkolakis (2019), despite di↵erences in framework.

In particular, expensive trade routes here su↵er from Ricardian selection at destina-

tion markets, where the route’s impact on prices make them less competitive. Yet, this

does not impact the trade cost estimation. Intuitively, while Ricardian selection, non-

transportation trade costs such as tari↵s, and multilateral resistance all reduce total trade,

they do not di↵erentially favor one route from an origin i to a destination j, instead they

reduce tra�c flows proportionally along all leg-level kl-pairs. Accordingly, conditioning

on the observed trade values Xijn, the contribution of trade between i and j to the tra�c

between k and l is invariant to multilateral resistance, tari↵s, or technology.

Mapping our model into the data we make one final assumption: for a set of industries

N̄ , trade costs are identical and all trade
�
XN̄ ⌘

P
n2N̄ Xn

�
and tra�c

�
⌅N̄ ⌘

P
n2N̄ ⌅kl

n

�

are observable. Summing Equation (9) over industries n 2 N̄ yields:

⌅kl
N̄ ⌘

X

i

X

j

XijN̄ ·
�
⌧ikN̄ tkln⌧ljN̄⌧ijN̄

�1
��✓

. (10)

Equation (9) tells us that to accurately measure transport costs, we only need data

on trade and tra�c for all goods in an industry. Equation (10) tells us that we can use

tra�c across multiple industries so long as we have the correct trade aggregate, we see
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all tra�c for those industries, and we can assume transport costs are identical in those

industries. We implement equation (10) using observed total containerized tra�c and

trade in containerized industries, where transportation costs are likely similar, and apply

it in estimation only to legs where all tra�c is observed.

5.2 Recovering Scale Elasticities

The cost–scale relationship The existence of a scale economy in shipping implies

that perturbations to the global shipping network that a↵ect tra�c volumes will in turn

impact the leg cost matrix estimated in the next section. Such e↵ects must be accounted

for in order to correctly estimate counterfactual adjustments.

Using leg-level trade costs from Equations (5) and (10), we consider the regression:

ln(t✓kl � 1) = ↵0 + ↵1 · ln⌅kl + ↵2 · ln dkl + "kl, (11)

where ↵0 is a constant, ↵1 is the relationship between price and quantity, ↵2 · ln dkl is the

coe�cient and measure of log sea-distance from k to l respectively. (t�✓
kl � 1) allows us

to interpret ↵1 as the elasticity between cost and tra�c volumes to a trade elasticity ✓.

That is, to interpret results from Equation (11) as elasticities, they must be deflated by

trade elasticity ✓.

Of course, this relationship cannot be taken as causal. Lower cost legs may face larger

demand precisely because unobserved cost-reducers induce higher levels of demand on

those legs. Essentially, we wish to observe the supply elasticity, but we have only market-

clearing prices and quantities. We therefore need a demand shifter.

Geography-Based Instrument We use the intuition of our model to construct a

geography-based instrument for demand. Demand for a given leg will be higher, all else

equal, if the leg lies along the most direct route between an origin and a destination.

For example, consider routes from origin South Korea to destination the Netherlands.

Routes that include the leg China-Singapore are closer to the direct Korea-Netherlands

route compared to routes that include the leg China-Australia. As such, more Korea-

Netherlands trade should flow through the China-Singapore leg than the China-Australia

leg, which would involve a longer detour. Links that are e↵ectively out of the way for

most journeys should, all else equal, face lower demand, such as Singapore vs Australia

on routes between East Asia and Europe.

Operationalizing this intuition, we relate the direct sea-distance between an origin
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and a destination to the distance of two legs as part of a three-leg journey, where the

omitted middle leg is the object of interest. We calculate the instrument zkl as:

zkl =
X

i\k,l

Popi,1960
X

j\{k,l}

Popj,1960
d2ij

(dik + dlj)2
, (12)

where dij is the sea distance between origin i and destination j, and the square of the

relative excess distance between legs ik and lj (dik + dlj) is weighted by the year 1960

population at each origin i and destination j, Popi,1960 and Popj,1960.31 Figure 5 shows

the robust first-stage relationship between our instrument and tra�c.

Figure 5: Residualized Plot of Correlation Between Instrument and Tra�c
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Notes: The figure shows a binned scatter plot of 1,947 observations of link kl with the natural log of
sea distance between k and l is included as a control. The x-axis is the natural log of the instrument
zkl. The y-axis is the natural log of tra�c on leg kl. The standard error printed is clustered two ways
by nodes k and l.

For plausible identification, our demand shifter instrument has to be generally uncor-

related with unobserved changes in cost determinants for a particular leg controlling for

its sea-distance (corr("kl, ln zkl) = 0). Locations that are close in sea distance are also

close in land distance and may have easier access to other modes of transportation like

road or rail. As a robustness check, we recalculate our instrument in equation (12) in a

simplified setting by omitting the shortest 10 percentile distances for each origin i and

destination j respectively and find similar results.

As previously noted, the observed scale economy in our setting can be generated by a

number of mechanism, including but not limited to internal or external scale economies

and market power. These mechanisms may generate di↵erent out of sample results, and

311960 Population here stands in place of GDP, which may be endogenous to the trade costs in our
model. The year is chosen both because immigration and populations prior to 1960 could not plausibly
be impacted by 2014 containerized shipping costs.
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further work should be done to isolate and test for these. In order to accommodate this

multitude of mechanisms simultaneously, we implement a model-consistent and agnostic

approach in our estimation of scale. Formally, we construct moments m1 (↵) = Z" based

on Equation (11). First, however, we need to recover leg-level trade costs tkl.

5.3 Recovering Trade Costs

We require two observable objects in order to recover trade costs: trade values and

tra�c volumes (Equation 10).32 Our tra�c data comes from our global port of call

AIS shipping data.33 We use aggregate trade data from Centre d’études Prospectives et

d’Informations Internationales (CEPII) and their BACI international database for 2014,

segregating containerized and non-containerized commodities.34

In an ideal world, estimation would recover the trade costs that directly rationalize

observed bilateral containerized tra�c flows—a just identified case. While we directly

observe ocean containerized tra�c, our data omits movement of containers overland,

across and within borders. We overcome this limitation by assuming a functional form

that allows for estimation without requiring the direct observation of overland links. We

consider the mapping:35

t�✓
ij =

1

1 + exp (Y �)
2 [0, 1] ,

where the matrix Y is a vector defined as

Y � = �0 + �1 log sea distanceij + �2 log tra�cij + �3 log tra�ci

+ �4 log tra�cj + �51backhaul + �61 {i, j 2 Land Borders} ,

where �0 is an intercept, �1 considers the sea distance between the nearest principal

ports,36 and �2 considers port-to-port tra�c. �3 and �4 consider the total incoming

32This procedure is agnostic to the exact specification of any particular trade model that generates
trade value flows X. We control for all origin, destination, and origin-destination factors by conditioning
our estimation on trade flows X. In particular, items such as all origin-destination tari↵s and non-tari↵
barriers are accounted for. This does not mean that we can disentangle the two, rather we can directly
account for these factors collectively.

33Units for tra�c is in TEU. Recall we estimate ship-by-leg TEUs by combining reported ship draught
and maximum TEU. This process does not rely on the merged US Customs data.

34We use 2014 US Customs data on containerized and non-containerized shipments to construct the
share of each HS 4-digit commodity code that is transported by container. All commodities with a
containerized share above 80% are labeled as containerized. This procedure shuts down the substitution
between containerized and non-containerized transport. In practice we find a bimodal distribution, with
some commodities being never containerized (e.g. oil and iron ore) and others always containerized (e.g.
washing machines and children’s toys). This process is documented in Appendix A.3.

35This functional form maps from the real numbers to the unit interval as is required by our theory.
36For each country pair, we calculate the volume-weighted mean sea distance across all port pairs.

These data are available for download from our websites.
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and outgoing tra�c at ports i and j respectively. �5 considers the role of the backhaul

problem from Wong (2020), where ship capacity is fixed by the shipping direction with

the higher demand. Finally, �6 is an indicator for a shared land border.37

It is crucial to note two things. First, while the equations above posit relationships

between observables, our objective at this stage is not the vector � of coe�cients—which

may reflect endogenous variables—but the resulting predictions for tij. Instead, we seek to

fully saturate the variation in the data in order to generate the closest empirical prediction

for the matrix of trade costs relative to the just-identified case, which yields the model-

perfect estimates of trade costs for each link. This allows us to recover the trade costs

while remaining agnostic to their underlying determinants, including potential economies

of scale as well as possible geographic indicators. Secondly, while the parameters for �

yield estimates of every trade cost tij, we need not discipline � by comparing tra�c on

every link. This allows us to still recover estimates of tij although we do not observe

within-country tra�c as well as between countries tra�c that share overland routes.

We create a moment m2 that finds the vector � that minimizes the di↵erence between

expected tra�c, ⌅̂
�
t(�);Y

�
, and observed tra�c ⌅data for countries that do not share a

land border:

m2 (�) =
⇣
⌅̂kl

�
�|X,Y, ✓

�⌘
�
⇣
⌅data
kl

⌘

where expected tra�c is a function of �, trade elasticity ✓, as well as trade data X.

As noted, we do not fully observe the tra�c flows of containerized goods on geograph-

ically contiguous legs, and we do not perform our estimation procedure using tra�c data

from these legs. Instead, our trade cost estimates, even for overland links, are disciplined

by the observed tra�c flows of sea-only legs that do not share a land border.

5.4 Joint Estimation

We combine our scale estimation and recovery of trade costs into a single stage:

m1 (↵, �) = Z"
�
↵, t(�)

�

m2 (�) =
⇣
⌅̂kl (�)

⌘
�
⇣
⌅data
kl

⌘

We conduct a two-stage GMM procedure, using optimal instrumental variable weights

estimation for the first set of momentsm1, which accounts for our casual estimates of scale,

and the inverse of trade volumes on the second set of moments m2, which rationalizes

37We do not estimate within-country trade costs directly due to data constraints and assume that they
do not change in the counterfactual.
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leg-level trade costs tkl conditional on observable world trade X and tra�c flows ⌅. We

reiterate that we only conduct inference on the parameters ↵. We treat � as a set of

incidental parameters, important for estimation, but not for inference. The second stage

computes an optimal weighting matrix W using the first stage results.

6 Results

Scale Economy Table 1 reports our instrumented scale elasticity from our scale

moments (Equation (11)). For the widely used trade elasicity value of ✓ = 4 (Simonovska

and Waugh, 2014), the interpretation of our causal estimate is that increasing tra�c

volume on a leg by 1% would reduce costs by 0.06%. As the median journey in our

microdata has 3 legs, this translates into a 0.17% decrease in overall origin-destination

trade costs.38 These results lend support to our initial hypothesis that a major role of

entrepôts is their facilitation of scale through concentration of shipments.

Table 1: GMM Estimation Results

(1)
ln (ckl)

ln (⌅kl) -0.29
(0.13)

ln (dkl) 0.57
(0.03)

Constant 4.24
(1.45)

Notes: We conduct a two-stage GMM procedure, first using optimal instrumental variable weights
estimation the first set of moments and the inverse of trade volumes on the second set of moments. The
second stage computes an optimal weighting matrix W using the first stage results. ln(ckl) is the
natural log of transportation trade cost on leg kl. ln⌅kl is the natural log of tra�c volume on leg kl.
ln(dkl) is the natural log of sea distance between k and l computed using Dijkstra’s algorithm.

Link and average bilateral trade costs Appendix Figure A.11 graphs our result-

ing matrix of pairwise trade costs. We present the vector � estimates in the Appendix

Table A.4 as purely predictive parameters, not fundamentals that we can alter in the

counterfactuals. Instead, we simply need to know if our � estimates can predict con-

tainerized tra�c that reflects the actual observed tra�c volumes. With a full link-level
38This leg-level elasticity is more modest, but broadly consistent with the strong scale economies

from ship size in Cullinane and Khanna (2000), which measure origin-destination elasticites that would
compound, on average, three leg level elasticites. Asturias (2020) reports an origin-destination country
trade-volume trade-cost elasticity of 0.23 while Skiba (2017) reports an elasticity of 0.26 using product-
level import data from Latin America. We search for but do not find evidence of a declining scale
elasticity at higher volumes.
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trade cost matrix [tkl], we also can generate an average bilateral transport cost between

locations [⌧ij]. We provide our network-consistent trade-link and origin-destination cost

estimates to researchers, and they are available for download on our websites. Appendix

Table A.8 compares these network-consistent bilateral trade costs to more commonly used

distance measures. Our cost measures have more predictive power than distance alone

and both are significant in a combined specification, implying that both measures have

distinct predictive power for trade.

Model Fit Figure 6 compares our model-predicted tra�c and trade values against

their observed counterparts in the data. In Panel (A), we compare actual observed global

container tra�c shares with the our model-predicted shares using our estimated trade

costs. We include both a best fit line and a 45 degree line. We fit the data extremely well,

with a correlation between the observed and predicted shares (in logs) of 0.97. Panel (B)

compares our estimated trade shares to actual observed trade shares, which we do not

target.39 We fit the data well here as well with a correlation (in logs) of 0.73.

Figure 6: Model Fit Comparisons

(A) Tra�c Volumes (Targeted) (B) Trade Value (Untargeted)

Notes: Panel (A) compares our targeted moment: predicted container tra�c volumes from any two
ports (y-axis) to the actual container tra�c volumes (x-axis, normalized as a share to total world
container tra�c). Panel (B) compares untargeted aggregate trade shares (x-axis) versus predicted
trade shares for containerized tra�c (y-axis), where predicted trade shares are computed using the full
model described in Section 8.

Alternative Data Definitions Our estimates of trade costs tij are at the country-

level. Estimation of a port-level cost matrix is possible. However, that requires a global

set of sub-national trade data X, which is not broadly available. Using port tra�c

and national trade data, we can impute bilateral port-to-port trade data and run a

39To generate trade flows, we close the model using the full setup in Section 8.
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version of the estimation above. Results from the port-level estimation are broadly in line

with results of our main estimation, with a correlation between weighted port-pair costs

and country-pair costs of 0.6. However, due to the speculative assumptions required to

generate sub-national trade flows, we view the country-level estimates as more accurate.

7 Comparison of Model-Predicted Estimates to Data

We compare our model’s results with three separate sets of data external to our estima-

tion. First, we link our results to ship size estimates to highlight a possible scale-economy

mechanism. Second, we compare our trade cost estimates with freight rates. Third, we

compare our model-predicted tra�c flows for US-bound shipments to our US microdata.

In each, we find high correlations between our model estimates and these external data.

7.1 Symptoms of Scale Economies: Ship Size

Using our model-guided estimation, we recovered leg-level shipping scale economies. A

number of mechanisms can generate the cost reductions that coincide with the concentra-

tion of shipments through entrepôts. Internal or external scale economies in shipping and

competition among shippers could all generate a negative relationship between volume

and costs, as could factors such as port infrastructure.40 Lacking data to directly test

these mechanisms, we turn to one symptom of a scale economy observable in our US

microdata which lends further credibility to our results: ship size. Relying on the idea

that larger ships enable lower shipping costs (Cullinane and Khanna, 2000), we consider

the correlations between ship sizes, trade volumes, and our recovered leg-level trade costs

and then investigate the relationship between indirect shipping and ship size.

Ship Sizes, Tra�c Volumes, and Recovered Trade Costs In Panel (A) of

Figure 7, we show a strong positive relationship between the average containership size

on a route and the tra�c volume on that route, controlling for the distance between

origin and destination. Using the route-level containership size measure, we show a

strong positive link between ship size and our corresponding recovered trade costs (Panel

(B), Figure 7). Routes with more container tra�c use larger ships; a 10% increase in

route volumes correspond to a 2% increase in ship size. Routes with lower trade costs

use larger ships. A 10% decrease in our estimated iceberg trade costs corresponds to 6%

40High-tra�c routes are served by many carriers, using ships capable of carrying 25,000 containers
with automated loading and unloading.
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increase in ship sizes.41

Figure 7: Link Between Recovered Trade Costs and Ship Size

(A) Route Volume and Ship Size
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Notes: Figures are bin-scatter plots over all observed containership routes, with 100 bins. We control
for the log(sea distance) between origin and destination ports, but add variable means back for the
plots. Panel (A) plots the relationship between the total containers on a route and the average
containership’s size on that route (weighted by utilized capacity). Panel (B) plots the relationship
between the estimated trade cost tkl with ✓ = 4 and the average containership’s size on that route.
Containership size reflects the size of the ship for the average container on that route.

Ship Size and Indirect Trade Figure 8 further investigates the relationship be-

tween entrepôt usage and ship size, ploting ship size (x-axis) against US-bound tra�c

volume (y-axis) by country of origin, separately for tra�c that is routed through an en-

trepôt and tra�c that is not, such that each origin country is associated with two data

points. Larger origins transport goods to the US on larger ships. However, shipments

from smaller origins routed through entrepôts also arrive on large ships, such that indirect

shipping through entrepôts appears to close the ship-size gap for smaller origins.42

7.2 Cost Estimates with Freight Rates Data

Next, we compare our expected trade cost estimates ⌧ij at the origin-destination level

with container freight rates from Wong (2020). These rates are the costs paid by firms to

41Appendix Section D.2 reports shipment-level regressions controlling for origins, destinations, and
without route distance controls. Results are similar.

42For shipments with the same origin, US destination, and controlling for the total number of stops,
shipments stopping at entrepôts arrive on ships that are on average 15% larger. For shipments with
the same origin and US destination, shipments sent directly arrive on ships that are on average 8%
smaller ships. Further shipment level analysis in Appendix Section D.3 confirms the positive relation-
ships between shipment volume and ship size and robustness to di↵erent notions of origin, lading, and
transshipment.
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Figure 8: Link Between Indirect Trade and Ship Size
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Notes: The x-axis shows the total exports from an origin country to the United States. The y-axis
shows the average ship size which arrives from an origin country to the United States. Each country is
represented by two data points, a blue and a red circle. The red circle indicates the corresponding
information for trade from an origin that is routed through an entrepôt while the blue circle is for trade
that is not. Circle size denotes shipping volume. Note that trade that is not routed through an entrepôt
(blue circle) could either be shipped directly to the United States or shipped via a non-entrepôt.

transport a standard full container load between port pairs and include the base ocean

rate, fuel surcharge, as well as terminal handling charges at both origin and destination.

They are for the largest ports globally which handle more than 1 million containers

annually and account for about 73 percent of global container volumes during this time

period (World Bank). While we are only comparing a subset of the cost estimates from

our entire sample with these freight rates, we find a correlation of 0.71 (Figure 9).

Figure 9: Correlation Between Cost Estimates With Actual Freight Rates
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Notes: Data points compare origin-destination predicted costs ⌧ij to average freight rates from Wong
(2020) (210 observations). Circle size are weights for container volumes (TEU). The slope of line is the
weighted regression coe�cient.
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7.3 Tra�c Estimates with US Microdata

In order to assess our model’s ability to capture actual shipment journeys and trade

indirectness, we compare our model predictions for the paths of US-bound shipment

tra�c to the actual observed paths in our US microdata. Our estimation, which uses

global tra�c data rather than the US microdata, delivers predictions for how US-bound

shipments travel through the shipping network. Equations (6) and (7) imply

d⇡kl
iUS = [⌧iktkl⌧lj⌧

�1
ij ]�✓ (13)

as the ratio of all shipments from i to the US that are observed flowing through leg k, l.

We compare our model-predicted value of Equation (13) to the proportion of goods

coming into the US from any origin i on leg kl, which we call ⇡kl
iUS,Data, by aggregating

shipments using link kl in our microdata. Note that while our microdata is described in

Section 2 and used to generate our stylized facts in Section 3, it is not used to estimate our

trade costs in Section 5. Column (1) of Table 2 reports the univariate regression outcome

between these two measures, weighted by total origin TEU. We find that a significantly

positive relationship, with a coe�cient of 1 in the confidence interval. Over half of the

variation in the observed distribution can be explained using the predicted probabilities.

Table 2: Correlation Between Tra�c Estimates With Microdata

(1) (2) (3) (4) (5) (6)
d⇡kl
iUS

c⌅kl b⇡l
US � b⇡l,US

d⇡kl
iUS

c⌅kl b⇡l
US � b⇡l,US

⇡kl
iUS,Data 0.846 0.872

(0.119) (0.121)
⌅kl
Data 1.225 1.241

(0.128) (0.126)
⇡l
US,Data � ⇡l,US,Data 0.945 0.967

(0.111) (0.115)
Observations 13813 652 95 366010 2153 186
Data All All All
R2 0.513 0.659 0.410 0.513 0.669 0.415
F 50.54 91.60 22.91 51.75 96.88 22.53

Notes: [⇡kl
iUS is the model-predicted share of goods from origin i to US destination flowing through leg

k, l, c⌅kl is the model-predicted total US-bound tra�c on a given leg k, l, and b⇡l
US � b⇡l,US is the

model-predicted total excess US-bound tra�c through node l. Their corresponding variables observed
in the compiled microdata are indicated with subscript “Data”: ⇡kl

iUS,Data, ⌅kl,Data, and

⇡l
US,Data � ⇡l,US,Data. Columns (1) to (3) are restricted to nonzero tra�c volumes in the US microdata

while Columns (4) to (6) include journeys with zero tra�c volumes in the US microdata (All Data).
Columns (1) and (4) results are robust to tobit specifications which allow for lower and upper censoring
limits. Standard errors clustered by origin and destination countries.

Next, summing the predicted probabilities in Equation (13) across all origins i, the
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model delivers a prediction for the total amount of US-bound tra�c on a given leg kl:

c⌅kl =
X

i

XiUS · d⇡kl
iUS

where XiUS is the total trade flow from origin i to the US. Column (2) compares this to

the total volume of shipments moving between a given leg in the microdata, which we call

⌅kl
Data, again finding a positive, significant coe�cient with 1 in the confidence interval.

Finally, summing probabilities in Equation (13) across origins i and nodes k, we

obtain the total tra�c through node l. Subtracting volume of exports from l, we obtain

the entrepôt usage of l for US-bound shipments:

b⇡l
US � b⇡l,US /

X

k

c⌅kl �Xl,US =
X

k

X

i

XiUS · d⇡kl
iUS �Xl,US

Column (3) compares this to its counterpart in the microdata, which we call ⇡l
US,Data �

⇡l,US,Data, finding a positive and significant result with 1 within the confidence interval

as well.

In the microdata, a number of legs have zero tra�c volumes. However, our model

predicts that there should be some small amount of tra�c on every leg. Columns (4)

through (6), re-run the regressions for each corresponding predicted tra�c estimate in-

cluding legs with zero observed volumes. Accordingly, there is a big jump in the number

of observations. Including these links do not significantly change our results because our

model predicts extremely low volumes on these legs.

Our paper provides a new set of global trade costs which accounts for the trade

network. The tight fit between our estimates—trade costs and tra�c—and separate

sets of observed data external to our estimation demonstrates that our estimates reflect

actual costs and indirect tra�c flows in the trade network. Additionally, these results

serve as a check to the validity of our modeling approach and the Allen and Arkolakis

(2019) framework. Allen and Arkolakis (2019) impute tra�c and trade flows within the

US highway system for their estimation.43 Despite the strong structural assumptions

made and the limited data requirements, our checks curtail the risk that our estimates

are wildly o↵ the mark. In addition to our leg and origin-destination cost estimates,

we provide model-implied indirectness measures for ocean shipping as well as resulting

market access measures to researchers on our websites.
43They assume that the observed tra�c for a link is proportional to the underlying value of trade on

that link. This assumption is later on verified by comparing their predicted trade flows to actual flows
from the Commodity Flow Survey.
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8 Counterfactuals

We explore three sets of counterfactuals with the goal of quantifying the global trade and

welfare impact of the trade network. Our primary counterfactual highlights the impor-

tance of modeling network-consistent trade costs by comparing a reduction in transport

costs to and from a country—equivalent to an improvement to its local transportation

infrastructure—versus a reduction in traditional non-transportation costs for the same

country—like a unilateral tari↵ liberalization or reduction in information frictions. We

then consider two illustrative scenarios. The first considers the role of a negative trade

shock, the United Kingdom leaving the European Union. The second studies the e↵ects

of global warming decreasing trade costs, with the Arctic opening up to trade between

the Pacific and Atlantic Oceans, bypassing the Suez and Panama canals.

To estimate these counterfactuals, we first introduce structural assumptions into our

general framework as well as factor and goods market clearing and balanced trade con-

ditions in order to deliver a quantifiable general equilibrium model.

8.1 Counterfactual Methodology

Closing the model We adopt the Caliendo and Parro (2015) framework. We assume

there are three sectors (N = 3): containerized tradables c, non-containerized tradables

nc, and nontradables nt (n 2 [c, nc, nt]), all three of which are used as final goods and

intermediates in roundabout production. See Appendix E for full details.

Equilibrium in changes Defining the general equilibrium using hat algebra, we

consider two sets of changes: (1) link-level transport costs t̂kl = t0kl/tkl, which change

expected trade costs ⌧̂ijn = ⌧ 0ijn/⌧ijn, and (2) changes in non-transportation trade costs

̂kl = 0
kl/kl. Both alter the endogenous costs of production, price indices, wage levels,

trade flows, and welfare.44 We solve for how wages and prices change
n
ŵi, P̂i

o
as a

function of changes to model primitives,
�
⌧̂ijn, ẑin, ̂ijn

 
, and compute changes in marginal

costs ĉin and trade volumes X̂ij.

Additional Data We combine our trade volume data with country-level input-

output data from the EORA database aggregating over three sectors: non-traded goods,

container-shipped traded goods and non-container traded goods. We use country-level

consumption and production data to compute Cobb-Douglas shares ⌘ and �. This gives

44As in the literature we assume that trade is balanced up to a constant deficit shifter.
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us a sample size of 136 countries. We follow the literature and conservatively set ✓ = 4

(Simonovska and Waugh, 2014).

Procedure Changes to transport costs are implemented as changes to link costs tkl,

which, translated through the model, generate changes in the expected trade cost between

every bilateral trading pairs in our data—even those that are not directly connected with

each other. Once calculated, these bilateral changes enter isometrically to changes in

bilateral non-transportation costs. For analysis which includes the impact of scale, we

model a new equilibrium in the short-to-medium run, by following an iterated procedure

in Algorithm 1 in Appendix F.1. In this procedure, we start at today’s equilibrium and

allow all shippers to optimize their transportation patterns. We then recalculate trade

costs at new volumes according to Equation (11). We iterate, allowing re-optimization

until a new stable equilibrium is reached. There may be alternative equilibria, however

we focus on the unique equilibrium from our current starting point—the world today.45

8.2 The Global Impact of Local Infrastructure Improvements

Overview We consider the role of the shipping network in international trade and

the specific importance of entrepôts in that network. We run two types of counterfactuals.

For all countries, we consider the impact of transportation infrastructure investment in

the form of a 1% reduction in transportation costs (tkl) to and from a targeted country.

We contrast this with a 1% reduction in non-transportation trade costs (ij) to and from

the targeted country, such as a unilateral tari↵ reduction or reduction in information

frictions. For each type of counterfactual, we evaluate two cases—equilibrium changes

with and without accounting for the endogenous impact of scale economies on transport

costs throughout the shipping network. Reductions in ij without scale e↵ects consider

changes in a manner which ignores the shipping network, while the other three cases

involve exogenous and/or endogenous changes to the shipping network. In each of these

4 cases, we consider welfare and bilateral trade changes to the targeted country as well

as to all other impacted countries, and focus specifically on di↵erences between entrepôts

and non-entrepôts. With 136 targeted countries and 4 cases, we have 544 counterfactuals.

45Kucheryavyy, Lyn and Rodŕıguez-Clare (2019) establishes a common mathematical structure that
characterizes the unique equilibrium in multi-industry gravity trade models with industry-level external
economies of scale. Their structure requires that the product of the trade and scale elasticities to be not
higher than one, which is satisfied in our case.
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Which Countries are Pivotal to the Trade Network? Our general equilibrium

model yields a convenient metric for how pivotal a country or node is within the trade

network: the impact of changes at the country on global welfare excluding a country’s

own. Pivotal locations are those which generate the largest adjustments throughout the

network. Panel (A) in Figure 10 lists the global welfare impact of infrastructure im-

provements at the 20 most pivotal nodes in the network excluding countries’ own welfare

change, for both cases with and without scale responses. Our 15 entrepôts dominate this

list. Egypt tops it, evocative of the strain in global supply chains when the Suez Canal

was blocked in March 2021 (WSJ, FT, AP). Scale economies’ impact on the transporta-

tion network (overlaid grey bars) further augment the di↵erential impact of entrepôts.46

Infrastructure investments at entrepôts generate on average 10 times the global welfare

impact relative to investment elsewhere.47

Figure 10: Most Pivotal Countries in the Network: Change in Global Welfare
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Notes: Panel (A) shows absolute values for aggregate net change in global welfare after infrastructure
investment in the targeted country, excluding the country’s own welfare change, for the 20 countries
with the largest global impact calculated without scale economies. Overlaid grey bars represent welfare
changes allowing for the network’s endogenous response to scale economies. Panel (B) compares, for
each country, the change in world welfare, excluding the country’s own welfare, from a 1% decrease in
non-transportation costs (X-axis) vs a 1% decrease in transportation costs (Y-axis). Markers are ISO
Country codes. Entrepôts are in red.

When Does Accounting for the Transportation Network Matter? Panel

(B) of Figure 10 plots the average welfare impact, excluding the targeted country’s own

46Panel (A) of Appendix Figure A.14 repeats the exercise for cases with non-transportation cost
reductions, finding that the top 20 list is dominated by the largest economies instead.

47Appendix Tables A.9 and A.10 examines raw and conditional mean di↵erential impact of targeting
entrepôts.
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welfare change, of a transportation cost reduction (as in Panel (A)) against the same

for non-transportation trade costs. While, driven by gravity, there is a strong overall

relationship between the two counterfactuals, the average di↵erence is roughly an order

of magnitude (100-160 log points): the e↵ects of one type of counterfactuals will be a

poor predictor of the other for any given country. For entrepôts, (red in Panel (B)), the

1-to-1 relationship is violated. At the extreme, while the e↵ect of non-transportation

cost reductions in Egypt has a similar global welfare e↵ect to that of Colombia, Egypt’s

impact is larger than that of the US in the transportation cost reduction exercise.48 The

pivotal nature of the entrepôts are specific to their role in the trade network.

Ignoring the trade network impacts of policy rolls the quantitatively large network

impacts into the e↵ects of non-transportation cost changes. On the one hand, the impact

from any one individual trade cost change will be highly non-predictive. On the other

hand, this may not qualitatively impact analysis at the spokes of the network—those

origins or destinations which do not significantly participate in trade as third countries—

but substantially obfuscates the role of entrepôts in trade.

The impact of entrepôts are localized To account for the di↵erential impacts

of entrepôts, we drill down to one particular margin at which the impact appears most

distinct: locally. Figure 11 is a binned scatter plot considering the welfare e↵ects on

the impacted country (y-axis) relative to its distance from the targeted country (x-axis),

adjusting for the impacted country fixed e↵ects. Nearly overlapping blue and green dots

in Figure 11 Panel (B) show a nearly identical distance gradient for non-entrepôts and

entrepôts respectively for counterfactual non-transportation cost reductions without scale

economies. The blue and green dots in Figure 11 Panel (A) show the overall larger impact

of infrastructure investments at entrepôts is relatively more localized—decaying at 5 times

the rate. Scale economies amplify the localization, with orange dots decaying at 7-times

the rate compared to red.49

Scale economies concentrate gains to entrepôts Finally, we turn our attention

to how these cost reductions di↵erentially a↵ect the impacted countries when they are

entrepôts versus non-entrepôts. Figure 12 plots the di↵erential welfare gains to entrepôts

48Panel (B) Appendix Figure A.14 finds similar results comparing non-transportation cost reductions
with and without an endogenous scale response. Country-pair bilateral trade results are qualitatively
and quantitatively similar.

49The orange dots in Panel (B) which include the endogenous scale response through the transportation
network, echo these results.
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Figure 11: Spatial Decay of Benefits By Entrepôt Status
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(B) Decrease in Non-Transportation Costs
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Notes: Panel (A) shows binned scatter residual for welfare e↵ects on impacted countries of
transportation infrastructure in targeted countries vs distance between the targeted and impacted
countries. Blue and red dots are the no-scale and scale cases for counterfactuals where targeted
countries are not entrepôts, respectively. Green and orange dots are no-scale and scale cases,
respectively, for counterfactuals where the targeted countries are entrepôts. Panel (B) presents the
same for reductions in non-transportation trade costs.

relative to non-entrepôts, as impacted countries, controlling for impacted country size,

distance between targeted and impacted countries, as well as targeted country fixed ef-

fects. Without scale economies, we find that the welfare gains for both entrepôts and

non-entrepôts are not significantly di↵erent (in blue). However, the di↵erential bene-

fits to entrepôts is significant and large when allowing for scale economies (in red). Scale

economies disproportionately accrue gains to entrepôts as impacted countries. The coe�-

cient on the entrepôt dummy is 0.15 (SE of 0.06) and 0.13 (SE of 0.05) for transportation

and non-transportation counterfactuals, respectively. The pairwise di↵erence between

the two cases (in green) is statistically significant. These results—that scale economies in

transportation concentrate gains locally at and around hubs—highlight scale economies

in transportation as a source of agglomeration.

8.3 Brexit

Further illustrating the trade network consequences of bilateral trade cost changes, we

study the e↵ects of Brexit—as a 5% increase in trade costs for goods that originate or

are destined for the UK. We assume these increases will not be charged to goods that

temporarily stop or are transshipped at British ports. For example, Irish exports destined

for Britain will face higher tari↵ costs, while Irish exports destined for the United States

will not—even if those goods stop in Felixstowe en route.

32



Figure 12: Di↵erential Welfare Gains of Impacted Countries by Entrepôts Status
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Notes: Figure plots the coe�cients (dots) and confidence intervals (lines) for indicators for entrepôt
status from a country-pair level regression of impacted countries’ log percent welfare gains from a
transportation cost reduction or an infrastructure improvement (left panel) or non-transportation trade
cost reduction (right panel) at targeted countries. Regressions control for impacted country GDP,
distance to targeted country, and targeted country fixed e↵ects. Standard errors are clustered by the
targeted country. The blue dots represent the welfare gains for cases without scale economies. The red
dots represent the welfare gains allowing for the network’s endogenous response to scale economies.
The green dots use the di↵erence in logs between the two cases on the left-hand side.

We model two cases: first without, then with the impact of scale on the trade network.

In our first case, as in a traditional model, outcomes are only a↵ected through changes in

trade with the UK or multilateral resistance. However, with scale economies, the decrease

in UK trade will raise trade costs of neighboring countries through the transportation

network. Lower trade volumes lead to increased transport costs, not only for the UK,

but also countries that use the UK as an entrepôt. Irish exports to the US will now be

more costly, as they will either pay the increased costs of travelling through Britain, use

an alternative entrepôt, or take a low-volume, more costly direct trip.

Panel (B) of Table 3 reports aggregate e↵ects. The direct e↵ect decreases global

welfare by 2.3 basis points. The introduction of scale economies leads to a more than

4 times decrease of 10 basis points. Trade volumes follow a similar pattern. Figure

13 highlights the distributional e↵ects in terms of welfare (see Appendix Figure A.16

for trade volumes). Scale economies amplify the Brexit impact, especially for Europe.

Notably, the impact of scale is not well-predicted by the non-scale case. We document

significant negative welfare impacts on Ireland, Iceland and other Nordic countries, many

of which rely on UK feeder routes to get their goods to large vessels that ply transoceanic
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Table 3: Aggregate Counterfactual Outcomes, Basis Points

Welfare Container Trade

�kl �kl �tkl �tkl �kl �kl �tkl �tkl
Scale Scale Scale Scale

(1) (2) (3) (4) (5) (6) (7) (8)

(A): Local Trade Cost Reductions

Global Changes
Mean 0.08 0.26 0.20 0.58 0.87 2.93 2.31 6.62
Standard Deviation (0.20) (0.59) (0.47) (1.41) (2.22) (6.74) (5.31) (16.00)

(B): Brexit

Global Changes -2.3 -10.0 -24.5 -112.7

(C): Opening of the Arctic Passage

Global Changes 1.5 3.3 8.9 17.4 38.2 101.8

Notes: Columns (1)-(4) present aggregate welfare changes. Columns (5)-(8) present changes to
aggregate container trade. Odd columns correspond to cases where no scale economy feedback loops
are allowed. Even columns present results allowing for scale economy feedback. Panel (A) reports
results for our first counterfactual, transportation and non-transportation cost declines for each of 136
countries. Columns (1), (2), (5), and (6) present results for cases where non-transportation trade costs
are reduced. Columns (3), (4), (7), and (8) present results for cases where transportation costs are
reduced (infrastructure improvements). Panel (B) presents results for Brexit, a 5% increase in
non-transportation trade costs ij between the UK and its trading partners. Case 1 of Brexit
corresponds to Columns (1) and (5), while Case 2 corresponds to Columns (2) and (6). Panel (C)
presents results for the Arctic Passage counterfactual. Case 1, naive impacts on origin-destination
pairs, corresponds to Columns (1) and (5). Case 2, allowing for network trade, corresponds to Columns
(3) and (7). Case 3, adding in the impact of the scale, correspond to Columns (4) and (8).

trade with Shanghai and New York (Table A.15). Its trade not easily routed through

alternatives, Ireland is most a↵ected outside of the UK (as recognized in FT 2020).

8.4 Opening the Arctic Passage

To consider the role of the trade network in reflecting physical trade route changes,

we model the opening of the once-fabled Northeast and Northwest Passages through

the Arctic Ocean between North America, Northern Europe and East Asia as a viable

shipping route due to global warming. For example, a ship traveling from South Korea

to Germany would take roughly 34 days via the Suez Canal but only 23 days via the

Northeast and Northwest Passages (Economist, 2018). For every kl pair, we compute

the di↵erence in sea distance using Dijkstra’s algorithm between world maps with and

without arctic ice caps (Appendix A.2). Panel (A) of Figure 14 compares the top 150

existing shipping routes today and shortest ocean-going distance of these routes after the

Arctic sea passage is viable. New routes going through the Arctic passage are in red,
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Figure 13: Welfare Changes - Brexit

(A) Tari↵ Change, No Network Scale E↵ects

(B) Full Trade Network E↵ects and Scale Economies

Notes: These two plots show the percent change in welfare (the relative price index) of a simulated 5%
increase in trading costs with the United Kingdom for all countries in our dataset. Darker reds reflects
a greater increase and blue represents no change. Omitted countries are white. Panel (A) reflects
changes if shipping costs remain constant, reflecting only welfare changes due to changes in prices.
Panel (B) allows for a scale economy feedback loop on transportation costs for all countries.

non-changing routes are in brown, and abandoned routes are in blue.

We compare three di↵erent cases. First, we consider a network-naive case where we

only allow for changes in origin-destination trade costs between country pairs for which

the direct bilateral distance decreased.50 Second, we lower tkl for all observed links with

positive tra�c according to ↵2 in Equation (11) calculating new distances with the option

of traveling through the Arctic Passage. Here, even countries that do not ship directly

to each other—e.g. China and Ukraine—experience changes in expected transport trade

costs.51 Third, we repeat the second case accounting for the impact of scale: as trade

costs change, trade volumes change, reducing trade costs further.

Column (1) of Table 3 Panel (C) shows that the direct e↵ects of the Arctic Passage are

positive, with aggregate welfare increasing 1.5 basis points, and container trade volumes

50We do not allow third-party-countries to take advantage of these reductions.
51For countries a↵ected in cases one and two, the magnitude of changes are mechanically identical.
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Figure 14: The Opening of the Artic Passage

(A) Shipping Routes: Before and After (B) Welfare Changes for Top 20 Countries
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Notes: The red lines in Panel (A) indicate counterfactual shipping. Blue lines in indicate existing
shipping. Their overlap is brown. Route width reflects the number of containers (TEU). Panel (B)
shows the percent change in welfare of the simulated opening of the Nordic Passage for the 20 countries
with the largest welfare changes. The first bar reflects only the trade cost changes on routes that are
directly a↵ected from the opening. The second bar allows for the trade costs to a↵ect indirect trade
with network e↵ects while the third bar allows for the endogenous response to scale economies.

increasing 17 basis points. Case two, accounting for the full trade network impact of

the passage including indirect shipping, doubles the aggregate welfare e↵ect to 3.3 basis

points and increases worldwide container volumes by 38 basis points. Allowing for scale

economies triples and doubles the welfare and trade impact relative to the network results

(9 basis points welfare gain and 102 basis points increase in trade).

Panel (B) in Figure 14 plots the top 20 most impacted countries, showing gains are

particularly pronounced in East Asian entrepôts like Hong Kong and Singapore which

disproportionately benefit from the scale economy. Scandinavian countries also gain due

to their geography. Denmark and Finland, which in the baseline first case have zero or

a small trade diversion impact, gain due to the ability to leverage the trade network and

scale response from the opening.

Figure 15 show changes in the relative wage-adjusted price index (interpreted as na-

tional welfare, if we omit the costs of climate change) across the three cases.52 In the

baseline scenario in Panel (A), we see increases from trade between countries that are

along the Northeast passage, and spillover impacts at countries not directly impacted—

reflecting classic multilateral resistance and cascading e↵ects from value chains. Some

countries see small trade diversion e↵ects (Panel (B), Figure 14). Figure 15 Panel (B)

52Appendix Figure A.18 shows related changes in country-by-country containerized exports.
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Figure 15: Welfare Changes - Arctic Passage

(A) Only Directly A↵ected Routes

(B) Full Trade Network E↵ects

(C) Full Trade Network E↵ects and Scale Economies

Notes: Plots show the percent change in welfare (the relative price index). Darker reds reflects a
greater increase and blue represents no change. Omitted countries are white. Panel (A) reflects changes
only allowing trade costs to decrease on routes whose distance is directly reduced to the Arctic Passage.
Panel (B) reflects changes allowing all countries to indirectly access the Arctic Passage through the
trade network. Panel (C) allows for the network’s endogenous response to scale economies.

shows how, through indirect trade, the benefits of the passage pass on to nearby countries

not directly impacted. In Panel (C), scale economies amplify these e↵ects.
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9 Conclusion

This paper studies entrepôts, the trade network they form, and their impact on interna-

tional trade. We characterize the global container shipping network as a hub-and-spoke

system by documenting that the majority of trade is indirect and flows from origins to

destinations through entrepôts (hubs). To rationalize these novel and salient facts, we

develop a general equilibrium model of world trade with endogenous trade costs and en-

trepôts, estimating both the underlying trade costs on all routes, and scale economies.

We quantify the impact of the trade network on global trade and welfare, highlighting

how changes at nodes operate through the network, entrepôts, and scale economies to

create widespread impacts.

While the focus of this paper is on the general equilibrium e↵ects of the trade network,

there are two aspects that lend themselves to further study. First, while we are singularly

focused on containerized shipping because containerized trade accounts for the majority

of global seaborne trade, the hub and spoke network is not specific to just containerized

trade (Rodrigue, Comtois and Slack, 2013). Such networks are also prevalent in freight

services like UPS or DHL in addition to air transport. Second, our estimates of scale

economies are agnostic to underlying mechanisms. Future work should especially be

done to consider mechanisms the roles of fixed costs in enabling the scale economies

in containerized shipping, such as the costs incurred by potential oligopolies in setting

shipping networks and the endogenous creation of firm-specific hub-and-spoke networks.53

While sector-specific research has been done on these networks, fruitful research should

take into consideration a tractable general equilibrium framework to be able to quantify

welfare e↵ects.
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Ducruet, César, Réka Juhász, Dávid Krisztián Nagy, and Claudia Steinwen-
der. 2019. “All aboard: The aggregate e↵ects of port development.” Working paper.

Eaton, Jonathan, and Samuel Kortum. 2002. “Technology, geography, and trade.”
Econometrica, 70(5): 1741–1779.

Fajgelbaum, Pablo D, and Edouard Schaal. 2017. “Optimal transport networks in
spatial equilibrium.” National Bureau of Economic Research.

Grant, Matthew, and Meredith Startz. 2020. “Cutting Out the Middleman: The
Structure of Chains of Intermediation.” Working Paper.

Head, Keith, and Thierry Mayer. 2014. “Gravity Equations: Workhorse, Toolkit,
and Cookbook.” Handbook of International Economics, 4: 131.

Heiland, Inga, Andreas Moxnes, Karen Helene Ulltveit-Moe, and Yuan Zi.
2019. “Trade From Space: Shipping Networks and The Global Implications of Local
Shocks.” CEPR.

Holmes, Thomas J, and Ethan Singer. 2018. “Indivisibilities in Distribution.” Na-
tional Bureau of Economic Research.

Hummels, David, Volodymyr Lugovskyy, and Alexandre Skiba. 2009. “The trade
reducing e↵ects of market power in international shipping.” Journal of Development

Economics, 89(1): 84–97.
International Maritime Authority. 2003. “AIS Guidelines.”
Kojaku, Sadamori, Mengqiao Xu, Haoxiang Xia, and Naoki Masuda. 2019.
“Multiscale core-periphery structure in a global liner shipping network.” Scientific re-

ports, 9(1): 404.
Kucheryavyy, Konstantin, Gary Lyn, and Andrés Rodŕıguez-Clare. 2019.
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