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1 Introduction

Transportation plays a crucial role in urban spatial structure and the organization of economic activity (Allen

and Arkolakis, 2019; Tsivanidis, 2019; Heblich et al., 2020; Gorback, 2020). In most fast-growing developing

countries, rapid urbanization and motorization together with poor infrastructure have created unprecedented

traffic congestion with severe consequences for economic outcomes (Akbar et al., 2018; Harari, 2020).1 To

address this challenge, local governments around the world have implemented a suite of policies, includ-

ing driving restrictions, gasoline taxes, public transit investment, and congestion pricing. In the short term,

the effectiveness of these policies crucially hinges on the substitutability among travel modes and the sen-

sitivity of travel demand to changes in the cost of commuting and availability of alternative modes. In the

medium to long run, these policies are likely to have broader impacts on the urban spatial structure through

residential location adjustment, which, in turn, could mediate the effectiveness of these policies and have im-

portant distributional consequences. This paper aims to understand the efficiency and equity impacts of urban

transportation policies while accounting for the interaction between these policies and residential location

decisions. To do so, we jointly model residential locations and travel mode choices in an equilibrium sorting

framework with endogenous congestion.

The empirical context of our study is Beijing, which has a population of 21.5 million and has been rou-

tinely ranked as one of the most congested cities in the world. Severe congestion has major implications

for air pollution and misallocation of time and negatively affects the quality of urban life (Kahneman and

Krueger, 2006; Anderson et al., 2016). Beijing’s municipal government has adopted several policy interven-

tions to aggressively combat traffic congestion and air pollution. It has adopted a driving restriction policy

since 2008 that restricts vehicles from driving one day per week during weekdays based on the last digit of

the license plate. It also invested a staggering $100 billion in transportation infrastructure between 2007 and

2018 and added 16 new subway lines with a total length of 523 kilometers and more than 200 additional

bus lines, a major upgrade of Beijing’s public transit network. Despite these efforts, Beijing has only seen

a modest reduction of peak-hour traffic congestion since 2015. The city’s experience, common among ur-

ban centers around the world, echos long-standing concerns from economists that without appropriate road

pricing, effective congestion management is unlikely (Vickrey, 1959, 1963).

Beijing’s policies to combat congestion – driving restrictions and subway expansion – together with its

proposed policy on congestion pricing embody three general approaches to the regulation of unpriced exter-

nalities: command-and-control, supply-side, and market-based approaches, respectively. To understand the

primary channels by which these policies affect travel mode and residential location choices, we proceed

in several steps. We first develop a stylized theoretical model based on LeRoy and Sonstelie (1983) and

1Based on real-time GPS traffic data in 403 cities from 56 countries in 2018, the TomTom Traffic Index shows that the 10 most
congested cities were all from developing and emerging economies. The top five cities were Mumbai, Bogota, Lima, New Delhi, and
Moscow. Drivers in Mumbai spent 65% more commuting time on average than they would have under the free flow condition, while
drivers in Beijing (the number 30 on the list) spent 40% extra time on the road. Four cities in China were among the top 30 on the
list. Los Angeles, the most congested city in the US, was ranked 24th with a congestion index of 41%. The full ranking based on the
TomTom Traffic index 2018 is available at https://www.tomtom.com/en_gb/traffic-index/ranking.
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Brueckner (2007) while accounting for endogenous congestion and heterogeneity in income and commuting

technologies. The model illustrates differential impacts of urban transportation policies on the spatial pattern

of residential locations and highlights countervailing forces at play between travel mode choices and housing

location. It also suggests that the general equilibrium effects of transportation policies on the housing market

can have efficiency and distributional consequences. Lastly, the model highlights the ambiguity in qualitative

comparative statics even for simple models with two income types and two commuting technologies, demon-

strating the need for subsequent empirical analysis to understand how these factors play out in an actual urban

setting.

Our empirical analysis leverages fine spatial resolutions from two unique data sets that allow us to jointly

model the residential locations and commuting choices. The first is the Beijing Household Travel Survey

(BHTS) from 2010 and 2014, a large representative survey that records households’ home and work loca-

tions, trips made in a 24-hour window and other demographic and transportation-related information. We

complement this data by constructing the counterfactual commuting distance from home to work using his-

torical Geographical Information System (GIS) maps and the Application Programming Interface (API) from

online mapping services. This exercise allows us to calculate commuting routes, travel times, distances and

pecuniary travel costs for each trip-mode combination (walking, biking, taking a bus, subway, car, or taxi).

The second data set contains mortgage transactions from a government-run mortgage program and provides a

large representative sample of Beijing home buyers. Critical to our analysis, the housing data contain not only

home location information but also work locations of both the primary and secondary borrowers. Using this

information, we construct over 12 million hypothetical trip-mode combinations of the home-work commute

for both the primary and second borrowers using the same GIS and API procedure as was done for the travel

survey data.

We then estimate an equilibrium model of residential sorting with endogenous congestion, while incorpo-

rating preference heterogeneity and allowing for general equilibrium feedback effects between housing and

commuting decisions. In the model, households choose housing units based on their preference for hous-

ing attributes, neighborhood amenities (e.g., schools and parks), and ease-of-commuting from home to work

(separately for each working household member). We allow the traffic congestion level in Beijing to be an

equilibrium outcome that arises from location choices and travel decisions of all households. Once esti-

mated, the model allows us to conduct counterfactual simulations to predict new equilibrium outcomes for

both marginal and non-marginal policy changes in terms of travel mode choices, household locations, the

congestion level and housing prices.

We use a two-step strategy to estimate the equilibrium sorting model. The first step is to recover consumer

preferences for travel time and cost (therefore the value of time) using the household travel survey data and

the time and pecuniary cost information of all hypothetical commuting trips that we construct. We utilize the

estimated parameters from this step to construct a measure on the work-commute attractiveness for each home

and each buyer in our mortgage dataset, which we call the “ease-of-commuting” attribute of a housing choice.

The proximity to public transit and the level of traffic congestion in different parts of the city play a key role in
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determining the extent of ease-of-commuting. For a given home and a potential buyer, the ease-of-commuting

attribute corresponds to the expected maximum utility of commuting from home to the buyer’s work location

via available travel modes. It accounts for preference heterogeneity and takes into consideration upgrades

in the transportation system at the time of home purchase. For married couples with two jobs, we include a

separate attribute for each spouse, allowing for preference heterogeneity on the work commute by gender.

The second step recovers preference for housing attributes in a housing demand model. The ease-of-

commuting index is included as an observed (buyer-specific) home attribute. The key identification challenge

in the housing demand model is the potential correlation between unobserved housing attributes and housing

price as well as the ease-of-commuting index. The latter two variables are equilibrium outcomes determined

by observed and unobserved housing attributes. To address this challenge, we construct three sets of instru-

mental variables in the spirit of Berry et al. (1995) and Bayer et al. (2007): average housing and neighborhood

attributes of homes at a reasonable distance from a given home, the number of homes sold in a three-month

window around the sale date, and the time-varying odds of winning a license lottery to purchase a vehicle.

The lottery’s time-varying winning odds is a powerful IV and shifts demand for houses in premium locations

(close to subways and the city center). We allow both observed and unobserved preference heterogeneity,

control for home fixed effect, and estimate parameters through maximum-likelihood estimation with a nested

contraction mapping that is combined with IVs (Train and Winston, 2007).

Utilizing these estimates, we then simulate equilibrium housing and transportation outcomes based on the

three policies of interest in our study: the license plate-based driving restriction, subway expansion from 2008

to 2014, and congestion pricing. Since the first two policies have been enacted, we begin with a no-policy

counterfactual and then compare this no-policy baseline to each policy as well as their combinations. We also

compare partial equilibrium outcomes that do not allow residential sorting to a general equilibrium that allows

households to relocate in response to the transportation policy. Our simulations also account for adjustments

in housing supply in response to changes in equilibrium housing prices and congestion.

Our policy simulations yield four key findings. First, although different transportation policies can attain

the same level of congestion reduction, they exhibit different and even opposite impacts on the housing market

and the spatial pattern of residential locations. Both the driving restriction and congestion pricing increase

the price premium of homes near the city center and subway stations, as high-income households outbid low-

income households for these locations. As a result, the driving restriction reduces the distance to work for

high-income households but increases that for low-income households. In contrast, distance-based congestion

pricing reduces distance to workplace for both income groups, while subway expansion leads to the opposite

effect.

Second, residential sorting can either strengthen or undermine the congestion-reduction potential of trans-

portation policies as well as the welfare impacts. Sorting strengthens the impact of congestion pricing in

both congestion reduction and welfare gains as households are incentivized to live closer to work locations

and drive less. On the other hand, sorting in response to subway expansion would lead to a larger separation

between housing and work locations, damping the congestion reduction effect and welfare gains from infras-
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tructure investment. The implication of sorting on the effectiveness of driving restrictions is more nuanced

and depends on the extent of reduction in average commuting distance and the increased propensity of driving

for more distant trips. Our analysis finds that sorting only slightly weakens the effectiveness of the driving

restriction.

Third, transportation policies generate equity impacts and could either exacerbate or alleviate economic

inequality (Waxman, 2017; Akbar, 2020). Congestion pricing provides a larger welfare gain for low-income

households than high-income households if its revenue can be uniformly recycled. Without recycling, how-

ever, congestion pricing is regressive and leads to a larger welfare loss for low-income households. This

distributional concern is an important impediment to congestion pricing adoption in practice. The driving

restriction policy is progressive as it leads to less distortion on travel decisions for low-income households,

potentially explaining the wider adoption of this policy than congestion pricing around the world.

Finally, the actual and hypothetical transportation policies have different implications on aggregate wel-

fare. Beijing’s rapid subway expansion from 2008 to 2014 led to an increase in consumer surplus and aggre-

gate welfare despite modest congestion reduction. In contrast, driving restriction is welfare reducing despite

a larger congestion reduction. Congestion pricing and subway expansion in tandem deliver the largest im-

provement in traffic speed and welfare gain. In addition, the revenue from congestion pricing could fully

finance the capital and operating costs of subway expansion, eliminating the need to fund the expansion from

other distortionary taxes. These results showcase the sorting model’s strength in capturing various adjustment

margins and its ability to compare different policy scenarios in a unified framework that accounts for general

equilibrium welfare effects with preference heterogeneity.

Our study makes three main contributions to the literature. First, while quantitative spatial economics

has made considerable advances to explore the role of transportation in urban systems (see Redding and

Rossi-Hansberg (2017) for a review), there has been little attempt in the empirical urban literature to explore

the role of preference heterogeneity and congestion externalities in mediating the welfare effects of different

transportation policies. As the urban literature has long pointed to “wasteful commuting” that results in

equilibrium housing and transportation choices deviating from the social optimum (Hamilton and Röell, 1982;

Cropper and Gordon, 1991), accounting for preference heterogeneity could be crucial for understanding the

equilibrium and distributional impacts of urban policies. With growing concerns about the role of location in

economic opportunity (Chetty et al., 2014), the rich preference heterogeneity incorporated in our framework

allows us to identify winners and losers from urban transportation policies, in the spirit of the theoretical and

reduced form work by LeRoy and Sonstelie (1983), Glaeser et al. (2008) and Brueckner et al. (1999). As

some more recent quantitative spatial models (Allen and Arkolakis, 2019; Fajgelbaum and Gaubert, 2020),

we explicitly model endogenous congestion to capture its increasing marginal external cost, as highlighted by

Anderson (2014). Critically, our dual-market approach provides a micro-foundation for the hedonic models

that study the capitalization of transportation investment in the housing market (Baum-Snow and Kahn, 2000;

Gibbons and Machin, 2005; Zheng and Kahn, 2013) and demonstrates considerable distributional impacts.

Second, our analysis contributes to a large equilibrium residential sorting literature by incorporating en-
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dogenous work commuting decisions in residential location choices. Sorting models have been used to study

consumer preferences for local public goods and urban amenities (e.g., air quality, school quality, and open

space) and evaluate policies that address economic, social and environmental challenges (Epple and Sieg,

1999; Kuminoff et al., 2013).2 Most existing papers use the distance to work to measure ease-of-commuting

and treat it as an exogenous attribute, even though ease-of-commuting is endogenously determined by both

residential locations and equilibrium traffic congestion. Our approach is perhaps closest to Kuminoff (2012)

which allows for households to make decisions in both the work and housing markets and take into account

the work commute. However, it treats congestion as exogenous and the commuting time is affected solely by

the distance. Our paper is to our knowledge the first in the empirical sorting literature that explicitly models

congestion as an equilibrium outcome that is simultaneously determined by household locations and travel

mode choices.

Third, our paper relates to the literature on transportation policies that address the negative congestion

externality (Parry et al., 2007).3 Studies in this literature commonly focus on short-run or partial equilibrium

effects of transportation policies on travel choices, traffic congestion, and air pollution. By characterizing

the underlying travel and housing choices, our equilibrium sorting framework provides a micro-foundation

for the reduced-form impact evaluation studies. More importantly, the unified framework offers a common

yardstick to evaluate actual and counterfactual policies over a wide range of outcomes including congestion

reduction, urban spatial structure, social welfare, and distributional consequences. A few studies examine the

general equilibrium feedback effects through housing location, such as Anas and Kim (1996) and Langer and

Winston (2008) that evaluate transportation policies taking into account their impacts on land use. Compared

with the calibrated computable general equilibrium analysis, our approach is internally consistent in that the

estimation of structural parameters and the policy simulations are based on the same model.

Section 2 uses a stylized model to explain the key forces underlying the interaction between housing and

transportation. Section 3 describes the data and provides reduced-form evidence on the effect of Beijing’s

driving restriction on the housing market to motivate and ground subsequent analysis. Section 4 lays out

the equilibrium sorting model and the estimation strategy. Estimation results are presented in Section 5.

Section 6 conducts simulations to examine the impacts of transportation policies and compare their welfare

consequences. Section 7 concludes.

2See for example Bayer et al. (2007); Ferreyra (2007); Epple and Ferreyra (2008); Epple et al. (2012) on school quality, Sieg
et al. (2004); Bayer et al. (2009); Kuminoff (2009); Tra (2010); Bayer et al. (2016) on air quality, Timmins and Murdock (2007);
Walsh et al. (2007); Klaiber and Phaneuf (2010) on open space and recreation, Bajari and Kahn (2005); Bayer et al. (2007); Bayer
and McMillan (2012); Hwang (2019) on racial and ethnic composition, Calder-Wang (2020) on the distributional impacts of the
sharing economy in the housing market. Several recent studies seek to incorporate dynamic models of housing demand into sorting,
allowing for households to make choices based on expectations about the evolution of location amenities, prices and wages over time
on endogenous amenities as a bundle (Almagro and Domínguez-Iino, 2020; Murphy, 2015; Wang, 2020). We do not incorporate
dynamics into our model but consider their influence in our interpretation of the results.

3Various policies have been evaluated. See Parry and Small (2005); Bento et al. (2009); Knittel and Sandler (2013); Li et al.
(2014) on gasoline taxes, Bento et al. (2005); Parry and Small (2009); Duranton and Turner (2011); Anderson (2014); Basso and
Silva (2014); Li et al. (2019); Severen (2019); Gu et al. (2020) on public transit subsidies and expansion, Davis (2008); Viard and Fu
(2015); Carrillo et al. (2016); Zhang et al. (2017) on driving restrictions, and Langer and Winston (2008); Anas and Lindsey (2011);
Hall (2018); Yang et al. (2019); Kreindler (2018) on congestion pricing.
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2 Theoretical Framework

We motivate our setup with a graphical presentation of the welfare effects of two transportation policies that

are examined in our empirical analysis: congestion pricing and driving restrictions. There are two dimensions

of this effect captured: that in the primary market for commuting reflecting the direct effect of an unpriced

externality on the marginal social cost of driving, and a secondary effect on a related market, housing, where

changes in commuting costs are capitalized into housing prices and can induce changes in commuting mode

choice and housing location.4

Figure 1 illustrates the welfare effects of these two policies in the primary “market” for vehicle road

traffic. Here, the economic cost induced by congestion can be demonstrated in terms of the level of traffic

volume, V as the difference between marginal social cost (MSC) and Average Social Cost (ASC) and the

unpriced externality created by the marginal external cost of congestion (MEC). Both congestion pricing and

a driving restriction result in a reduction of traffic volumes from the unregulated level, V 0, to the socially

optimal level, V ∗. However, congestion pricing reduces the trips with the lowest marginal benefit while the

driving restriction, due to the fact that its design does result in sorting based on differences in the value of

time, could reduce trips with various levels of marginal benefit.5 If the length of commuting trips are reduced

in a random manner, the driving restriction will lead to welfare loss equivalent to the blue triangle in Figure 1.

The size of the triangle is positively related to the degree of heterogeneity in the marginal benefit of trips. The

figure illustrates that while congestion pricing leads to welfare gain, the welfare impact of a driving restriction

is ambiguous.

However, Figure 1 is only a partial equilibrium analysis that does not take into account the potential impact

of transportation policies on proximate markets. It also tells us little about differences in these incomes across

individuals. To understand these additional effects, consider a monocentric city model where households with

different incomes sort into different locations in response to transportation policies based principally on their

deterministic preferences for housing, other goods and time.6 This model includes three key components of

recent applied work in urban economics: endogenous congestion, mode choice, and residential sorting. We

fully develop this model in Appendix A including presenting key comparative statics building on the approach

from Brueckner (2007), but here we summarize some key properties, standard in this class of models, and

elaborate on a set of stylized outcomes that illustrate heterogeneous welfare effects via capitalization.

Model Primitives Here are the key model primitives:

• The monocentric city is linear with a fixed population (N) of rich, NR, and poor, NP, residents.

4Following Roback (1982), there is also a capitalization in the labor market but this lies outside the scope of our study.
5In this sense, driving restrictions correspond to classic command-and-control or mandate-based quantity restriction form of

environmental policy. On the other hand, congestion pricing corresponds to a traditional market-based approach. We use these
designations interchangeably in this paper.

6In our empirical analysis, we will relax assumptions of monocentricity and allow for random utility.
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• All residents work at the urban center (CBD) at location 0, where wage income for the rich is larger:

yR > yP.7

• The rest of urban space is occupied by homes with lot sizes normalized to 1 and where land rents are

remitted to absentee landlords.

• Households maximize utility via housing and non-housing consumption subject to a budget constraint

that includes commuting costs and varies between rich and poor based on their value of time (higher

for the rich).

• Housing consumption (in square meters) is provided by perfectly competitive developers.

• Beyond the residential area is agricultural land, which returns rental value pa.

Commuting Technology Several key features characterize the nature of commuting technology:

• Two commuting modes exist in the city: personal vehicles with higher fixed costs and lower variable

costs relative to the alternative commuting mode, subway.

• Variable costs, denoted wd,m(x) for mode m = car,subway and group d = R,P, include time and pecu-

niary costs.

• Travel time is monetized by the value of time (VOT): νR > νP.8

• We begin by assuming that the subway network covers the entire urban area and then relax this assump-

tion when considering the role of public transportation infrastructure.

• Car commuting suffers from endogenous congestion determined by the commuting choices of all other

households in the city. We ignore the role of congestion in public transportation and focus solely on its

effect on car travel.

• The model is a closed-city model with intracity, but not intercity migration.9

A feature of the model that usefully simplifies the analysis is that changes in commuting cost will not

affect the overall size of the city as reflected by the location of the urban boundary, x̄, since the population is

fixed and land use per household is also fixed.

7Given the linear structure of the city, we assume roads take up no space and all land goes towards housing.
8We also assume that fixed commuting costs are larger but variable costs (without congestion) are lower for car relative to subway.
9Public transit congestion and closed-city assumptions could be relaxed without affecting the key predictions of the model.

Brueckner (1987) provides an analysis of a monocentric city model with a perfectly competitive supply side for both cases of a
closed and open city.
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Equilibrium Properties Given a mass of rich and poor households residing and working in the city, a

spatial equilibrium is determined by a bid rent function p∗(x) that is the envelope of individual willingness-

to-pay for housing based on mode and housing type at each point, x, in the city,10 keeping the utility for each

income type fixed at ūd , d = R,P:

p∗(x) = max
d,m

{
p(yd−θm−wd,m(x), ūd)

}
d = R,P;m = car,subway. (1)

For subway commuters, who are assumed to experience no congestion, the slope of the bid rent function

does not change. In residential regions with car commuting, moving from right to left across the region means

adding additional car commuters, further increasing per kilometer commuting time costs and steepening the

bid rent function.

Model Calibration and Policy Analysis In the Appendix A, we explain and show the result of calibration

yielding the urban configuration presented in Figure 2: rich subway commuters live closest to the CBD, then

poor subway commuters, then rich car commuters, then poor subway commuters. This outcome is not unique

and is purely illustrative to yield a pattern of sorting that roughly approximates the qualitative pattern for

Beijing described in section 3.11

In Figure 2, we show the effect of two transportation policies, congestion pricing and a driving restriction,

on the equilibrium bid-rent envelope corresponding to (1). Colored lines in Figure 2 reflect the gradient of

housing prices in equilibrium after the indicated transportation policy, where the colors correspond to the

bid-rent for the group of commuters indicated below the horizontal axis. Gray lines in both panels reflect the

same no-policy baseline price gradient.

The additional welfare effects of transportation policies in the housing market is reflected by the areas

between these envelopes. A key principle in urban economics underlying the Rosen (1974) and Roback

(1982) approach as well as the Henry George Theorem is that investments in public goods or reductions in

negative externalities should be capitalized into housing values and so comparing differences in the sum of

housing values can be used to approximate welfare changes under housing and land markets characterized by

perfect competition.

Key Model Takeaways In Figure 2, we can see two principal effects of both congestion pricing and driving

restrictions on rents and therefore the capitalization of transportation policies: one, the value of proximity to

the CBD (i.e., workplace) rises for those nearby (specifically subway commuters), while for those farthest

away, it falls. Capitalization gains are larger than losses for congestion pricing (where revenues are recycled

lump-sum) because wealthy drivers gain from time savings net of tolls, while the poor who move to the

10The full set of market clearing conditions are presented in the Appendix A.
11In reality, Beijing does not have a single CBD and there are varying patterns of proximity of relatively wealthy to relatively less

wealthy across Beijing.

8



subway commuting area benefit from revenue recycling and shorter commutes net of higher housing costs.12

Two, rent losses for longer commutes are larger under the driving restriction. This is because those who would

ordinarily drive are forced to take the subway for very long commutes on restricted days of the week.

In summary, while the primary effect of transportation policies on commuting costs in the market for

driving is straightforward, the secondary effect on housing via price capitalization can be large and depends on

relative differences in the marginal cost of commuting, income heterogeneity and preferences for housing and

time. While illustrative, this simple model ignores a host of important features important for understanding the

economic effects of transportation policies in Beijing such as polycentricity of the city, travel modes beyond

driving and subway, and variation in the availability of housing across the city. For these reasons, we now

turn to our equilibrium sorting model to empirically evaluate these policies.

3 Policy Background, Data Description and Reduced-form Evidence

3.1 Policy Background

During the last four decades, China has witnessed the largest rural to urban migration in human history: urban

population increased from 171 million (about 18% of total population) in 1978 to 823 million (nearly 60% of

total population) by the end of 2018. After the turn of the century, vehicle ownership increased dramatically:

total sales of new passenger vehicles grew from 0.7 million units in 2001 to nearly 24 million units in 2018.

The rapid growth in urbanization and vehicle ownership has overwhelmed the road infrastructure and public

transit, leading to serious traffic congestion and exacerbating severe air pollution in all major urban areas

across the country. Similar challenges are observed in large cities in other developing and especially fast-

growing countries as well. Beijing has been ahead of most other urban centers in China in terms of growth

in population, household income, and vehicle ownership. Between 2001 and 2018, Beijing experienced a 56

percent increase in population while household disposable income grew from about $1,500 to nearly $9,000

per year, and the vehicle stock increased from one million to over six million.13

The central and municipal governments in China have pursued a series of policies to address traffic con-

gestion. In Beijing, these policies include a driving restriction, a vehicle purchase restriction, and a massive

subway and rail transportation infrastructure investment boom. The driving restriction started as part of Bei-

jing’s effort to prepare for the 2008 Summer Olympics. It initially restricted half of the vehicles from driving

on a given weekday based on their license plate. After the Olympics concluded, the restriction was relaxed to

one day a week during weekdays depending on the last digit of the license plate number.14 In an attempt to

12Panel (a) shows a small, but negligible loss of rents for poor car commuters reflecting the fact that given low values of time,
congestion reduction may not fully compensate for the fee.

13The consumer price index increased by 50% from 2001 to 2018. Among the six million vehicles in Beijing, about five million
are owned by households. The household vehicle ownership rate is about 0.6 cars per household in Beijing, compared to 0.46 in New
York city and 1.16 in the U.S. based on the 2010 U.S. Census.

14Police vehicles, buses, municipal street cleaning vehicles, and taxi are exempt from the policy. Athens, Greece implemented
the first of driving restrictions in 1982 and since then, at least a dozen other large cities in the world have adopted similar policies
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curb the growth in vehicle ownership, the Beijing municipal government adopted a purchase quota system for

new vehicles in 2011 by capping the number of new vehicle sales. About 20,000 new licences were distributed

each month through non-transferable lotteries during 2011 and 2013 and the monthly quota was reduced to

about 12,000 after 2013. Winning the lottery became increasingly difficult: the winning odds decreased from

1:10 in early 2012 to nearly 1:2000 in 2018 as the pool of lottery participants increased dramatically while

the number of licenses fell over time (Xiao et al., 2017; Li, 2018; Liu et al., 2020). Along with demand-

side strategies, the Beijing municipal government also invested heavily in public transportation infrastructure.

From 2007 to 2018, 16 new subway lines were built with a combined length of over 500km (See Appendix

Figure A1 for subway maps over time). By the end of 2019, the Beijing Subway is the world’s longest and

busiest subway system with a total length of nearly 700km, and daily ridership over 10 million.15

Despite these policy efforts, traffic congestion continues to be a pressing issue in Beijing: the average

traffic speed was 24.6km/h during peak hours (7-9am and 5-7pm) in 2019 according to the 2020 Beijing

Transportation Report. From a neoclassical microeconomic perspective, the aforementioned policies fail to

directly address the root cause of traffic congestion: the mispricing of road capacity. By recognizing traffic

congestion as a classic externality, (Vickrey, 1959, 1963) proposed congestion pricing as the first-best policy to

address traffic congestion. Despite being continuously advocated by economists since then, congestion pricing

has only limited adoption in practice with many failed attempts around the world largely due to technical

feasibility and especially political acceptability.16 The Beijing municipal government recently announced a

plan to introduce road pricing in the near future while soliciting feedback from experts and the general public

(Yang et al., 2019).

3.2 Data Description

To compare the impacts of different transportation policies on commuting and housing location decisions, we

construct the most comprehensive data on work-commute travels and housing transactions ever used in the

context of equilibrium sorting models. We rely on two main data sets for our analysis: Beijing Household

Travel Survey in 2010 and 2014 and housing mortgage data over 2006-2014 with detailed information on

household demographics as well as the work address of home buyers.

including Bogotá, Mexico City and New Delhi. The impacts of these policies on reducing congestion and air pollution have been
mixed (Davis, 2008; Viard and Fu, 2015; Carrillo et al., 2016; Zhang et al., 2017).

15Many other cities in China are also rapidly building and expanding their subway systems. The number of cities with a subway
system in mainland China increased from four to over 40 from 2000 to 2019, and the total urban rail network reached over 6,700
kilometers of by the end of 2019. One intended effect of these expansions is to slow the growth of personal vehicle use by making
public transportation more accessible. See Anderson (2014); Yang et al. (2018); Gu et al. (2020) for recent analysis on the impact of
subway expansion on traffic congestion.

16Vickrey (1963) asserted: “... in no other major area are pricing practices so irrational, so out of date, and so conducive to waste
as in urban transportation.” This statement remains largely true today. Singapore first adopted congestion pricing in 1975 and is now
transitioning to the 4th generation GPS-based system in 2020. During the last 15 years, several European cities (London, Milan,
Stockholm, and Gothenburg) have successfully implemented various congestion pricing schemes. After several proposals over the
years, New York State legislature has approved a congestion pricing plan for New York City. Pending approval by the Federal
Highway Administration, New York City will become the first city in the US to enact congestion pricing, potentially as soon as late
2021.
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Beijing Household Travel Survey We utilize two rounds of the Beijing Household Travel Survey (BHTS)

that are collected in 2010 and 2014 by the Beijing Transportation Research Center (BTRC), an agency of the

Beijing municipal government. The survey is designed to inform transportation policies and urban planing. It

includes individual and household demographic and occupational information (e.g., household size, vehicle

ownership, home ownership, age, gender, occupation), availability of transportation options (vehicles, bikes,

etc.), and a travel diary for the preceding 24 hours. The diary includes information on all trips taken including

the origin and destination, the departure and arrival time, the trip purpose and mode used.

Our analysis focuses on 73,154 work commuting trips (home to work and work to home). Work trips

are likely to be the most important trips in housing purchase decisions. They account for 53% and 59% of

weekday trips among the working-age respondents and 62% and 75% of total travel distances in 2010 and

2014, respectively.

Table 1 provides summary statistics for variables used in the analysis by the survey year. Household

income increased dramatically from 2010 to 2014, with the share of the lowest income group (< 50k annually)

decreasing from 48 to 18 percent while shares for higher income groups grew. Vehicle ownership increased

from 44 to 62 percent. Both the share of respondents living within the 4th ring road (which proxies for the

city center) and that working within the 4th ring road decreased by about 10 percentage points from 2010 to

2014, reflecting the increased spatial dispersion of housing and work locations. Other individual attributes

(gender, age, and education) are similar across the two years.

To understand a commuter’s travel mode choices, we need attributes for all travel modes in his choice

set. We focus on six travel modes: Walk, Bike, Bus, Subway, Car, and Taxi, as other modes (motorcycles,

company shuttles, and unlicensed taxis) collectively account for less than 4% of all trips. The travel survey

only reports the actual mode that is taken. We complement the travel survey and construct commuting time,

distance, and cost for each of the six modes and validate our calculations using information from reported

trips.

Appendix Figures A3 and A4 provide two illustrations. We use Baidu Map API to calculate the travel time

and distance for walking, biking, car and taxi. Baidu maps incorporate predicted congestion level based on

the time of day and day of week. We query Baidu API at the same departure time that is recorded in the travel

survey (e.g., 7am). To account for changes in the average congestion level between the survey year and the

year we queried Baidu API, we adjust the predicted travel time based on the annual traffic congestion index

across different regions in Beijing. For bus travel time, we use Gaode Map API as Baidu does not provide

information on the number of transfers and walking time between bus stops, which can be substantial for

longer trips. To take into account the subway expansion in our sample period, we use historical subway maps

and an GIS software to reconstruct the historical subway network. The subway travel time is calculated based

on the published time schedules of subway lines. Our calculation assumes that commuters use the subway

stations that are closest to their trip origin and destination and incorporates the walking distance to the subway

stations as well as the corresponding time in the total trip distance and duration. Appendix ?? provides more

details on the full procedure.
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Figure 3 plots each travel mode’s observed share of commuting trips, as well as the constructed travel

time, cost, and distance by each mode. Panel (a) contrasts travel patterns in 2010 with those in 2014 and

presents several notable patterns. First, walking account for a significant share of all commuting trips: 15.0%

and 13.5% in 2010 and 2014, respectively. These trips take 51 and 40 minutes on average with a distance

of 4.9 and 3.7 kilometers. Second, from 2010 to 2014, the shares of walk, bike, and especially bus see a

reduction while the share of car (i.e., driving) and subway have increased, reflecting the increase in vehicle

ownership and the expansion of the subway network. Third, walking and subway trips are the longest in

duration, while the subway and car trips are longest in distance. While car trips have slightly longer duration

and distance than taxi trips, they are cheaper. Overall, the trade-off between time and cost is clear: trips by

walking are slowest but also the cheapest. Car and tax trips are faster but more expensive than other modes.

Panel (b) of Figure 3 shows the data by high- and low-income groups. High-income households are

more likely to drive, use subway, take taxis and less likely to use other modes, compared with low-income

households. As a percentage of the hourly wage, car and taxi trips are much more expensive for low-income

households than for high-income households. In terms of travel distance, there is very little difference across

the two income groups except among car trips. This is consistent with the housing data below that display no

evidence on strong income-delineated residential sorting patterns.

Housing Transactions Data Data on housing transactions come from a major government-sponsored mort-

gage program in Beijing from July 2006 to July 2014. As is reflective of the housing supply in urban China,

almost all of the housing units are within housing complexes analogous to condominiums in the United States.

The interest rate for this mortgage program is subsidized and more than 30% lower than the commercial mort-

gage rates for eligible borrowers. Virtually all home buyers apply for mortgages through this program first

before going to other loans. There are no refinancing activities and each mortgage contract represents a

housing transaction.

The final data set includes 79,884 mortgage transactions. Table 2 provides summary statistics of the

data.17 The mortgage data include information on household demographics including income, age, marital

status, residency status (hukou), and critically for our analysis, the work address for the primary borrower

(and that of the co-borrower if present). The data also contain information on housing attributes such as the

size, home age, street address, transaction price, and date when the mortgage was signed. We geocode the

home and work locations. The mortgage data represent a subset of housing transactions and may be subject to

selection issues. Hence, we re-weight the mortgage data to match the population distribution of housing price,

size, age, and distance to city center using entropy balancing (Hainmueller, 2012). Appendix B.2 discusses

the re-weight procedure in more detail and additional data patterns (such as differences in commuting distance

by gender). We use the weighted sample in our benchmark analysis and the unweighted sample in robustness

17We remove transactions with missing or zero reported price, price per square meter less than Y5,000, buyers with no reported
income, and an address outside of the 6th ring road. The data set for the structural analysis is slightly smaller than this as we lose
some data in constructing the choice set.

12



checks.

Appendix Figures A5 maps the location of all home transactions in the mortgage data overlaid with black

ring roads and blue subway lines (as of 2015). Beijing’s spatial structure largely represents a monocentric

city possessing multiple ring roads, with some notable exceptions. The expanding set of concentric ring roads

layouts the city center. For example, the 2nd ring road largely traces out the contour of the old Beijing prior to

the 1980s. On the other hand, there are several large work clusters across the city, such as the financial cluster

between the 2nd and 4th ring roads on the east side of the city and a high-tech cluster towards the northwest

between the 3rd and 5th ring roads. Government-designated signature schools are denoted by red stars and

the government designated parks by green areas, which are important amenities that affect housing purchase

decisions.18 Signature schools are concentrated within the 4th ring road while the parks are more dispersed

across the city. Beijing has a total of 18 districts, each containing on average 8 Jiedaos (or neighborhoods).

Figure 4 shows the spatial pattern of housing and household attributes by Traffic Analysis Zone (TAZs)

based on the mortgage transactions from 2006 and 2014, with a warmer color representing a higher value.

TAZs are spatial units defined by the government used for Beijing transportation planning purposes. They

are one to two square kilometers on average and smaller when they are closer to the center of Beijing. There

are 2050 TAZs in 2014. Housing prices tend to be higher in the city center while housing size smaller, as

predicted by the classical monocentric city models. Distance to work is shorter for those living close to the

city center, reflecting a higher concentration of work closer to the city center. There are exceptions: some

TAZs in the northwest outside the 5th ring road exhibit short work distance, due to a high-tech center in that

area as shown in Figure A6. Relative to housing price, housing size, and commuting distance, the pattern of

household income is more mixed. Some high-income households opt to live in larger homes with a lower

unit price to the north of the city center, reflecting the classic distance-housing size tradeoff illustrated in the

monocentric city model in Section 2. In addition, the northern parts of the city attract high-income households

with better amenities and more work opportunities (Appendix Figures A5 and A6).

To incorporate commuting into housing decisions, we need to construct work commute attributes (i.e.,

time and out-of-pocket costs). In theory, one could construct the attributes of different travel modes for each

potential housing choice for a given home buyer/work location as illustrated in Appendix Figure A3. However,

this is technically infeasible given the vast number of home-work-mode pairs and the query restrictions by

the Baidu and Gaode APIs. The large choice set is a common empirical challenge in the housing demand

literature, and in our case, it is further compounded by the fact that there are multiple travel modes associated

with each potential housing choice. To reduce the computational burden, we use a choice-based sampling

strategy to limit the size of the housing choice set following McFadden (1978), Wasi and Keane (2012), and

Guevara and Ben-Akiva (2013). The choice set for a given transaction in the mortgage data is composed of

the purchased home and a one percent sample of homes randomly chosen from those sold during a two-month

18There are 65 signature schools in Beijing that are designated by the Beijing municipal government as the ‘key’ elementary
schools. These schools have better resources and better student performance. The enrollment in these schools in most cases guarantees
a seat in the the top middle schools and subsequently top high schools.
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window (30 days before and after) around the purchase date. Beijing’s real estate market was fluid during our

data period: the median days-on-market for a home seller is only 8 and 13 in 2013 and 2014, respectively,

with the average days on market 22 and 38 days. For each home in a household’s choice set, we construct

the travel mode attributes for both the male borrower’s and the female borrower’s work commute, based on

their respective work locations. The construction of the mode attributes involves over 13 million route-mode

combinations.

3.3 Reduced-form Evidence

Before proceeding to the structural sorting model, we examine whether changes in the transportation system

are capitalized into housing prices and the residential sorting in response to these changes is meaningful.

Specifically, we examine the housing market response to the car driving restriction policy (CDR). The CDR

was implemented in July 2008 and prohibited car-owners from driving one day a week based on the last

digit of their license plates. The theoretical model in Section 2 predicts both an adjustment in travel choices

(substitution away from driving towards the public transportation) and relocation of residential locations.

Driving restrictions induce greater demand for homes closer to the public transportation, increasing the price

of these homes. In addition, wealthier households with potentially higher values of time are more likely to

sort into these units, the so-called transit-induced gentrification.

Figure 5 shows scatter plots of home prices in Y1,000/m2 against the distance to the nearest subway sta-

tion before and after the CDR.19 The top panel uses raw data, while the bottom panel shows residualized plots

after controlling for year-by-month and neighborhood fixed effects.20 The price gradient becomes steeper post

CDR, suggesting that homes close to subways command a higher price premium after the policy. Consistent

with theoretical predictions, the driving restriction increases the price premium of the homes near subway

stations. Appendix Section C provides an event study analysis, a falsification test and additional evidence.

We next examine residential sorting by regressing the distance from home to subway (and distance be-

tween home and work) on the interaction between the CDR dummy and household income (Appendix Section

C. Driving restriction policy reduced the distance to the nearest subway station and distance to work much

more for high income households. This provides suggestive evidence that high-income households sorted

closer to premium locations and low-income households sorted away, potentially because they were priced

out.

The reduced-form analyses above confirm the importance of the housing market capitalization and sorting

in response to transportation policies. We now turn to an equilibrium sorting model of housing demand

and commuting choice that features preference and spatial heterogeneity to quantify the channels by which

19We focus on two years before and two years after the starting date of the program in balancing the tradeoff between the sample
size and the potential for confounding changes in housing and transportation.

20A neighborhood is defined as a Jiedao, an administrative unit that is similar to a census tract and is 2.8 square kilometers in size
on average. Each district of Beijing contains an average of 8 Jiedaos. We use Jiedao to denote neighborhoods where homes share
similar observed and unobserved amenities.
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transportation policies affect these choices. This allows us to analyze the efficiency and equity impacts of

different policies in a unified framework.

4 Empirical Sorting Model

We now lay out an empirical equilibrium sorting model that incorporates commuting choices into housing

decisions. We first describe the model and then discuss identification and estimation of model parameters.

4.1 Model Overview

Our sorting model characterizes the determinants of individual commuting choices and residential location

decisions. It also specifies the joint equilibrium conditions for the traffic congestion (a key amenity in our

analysis) and the housing market. On the one hand, residential locations determine households’ commute

distances and affect the driving demand and hence traffic congestion. On the other hand, traffic congestion in

turn affects the attractiveness of a residential location and consequently the housing demand. For example,

high congestion levels increase demand for premium locations (places close to subways and the city center).

The equilibrium nature of our sorting model allows for counterfactual simulations and provides direct com-

parative statics of housing prices, residential locations, and congestion levels from marginal or non-marginal

policy changes.

In practice, the choice of housing location could be part of a joint decision of work and home locations

that may be simultaneous or sequential. We assume they are sequential and take work locations as given

in our analysis for three reasons. First, for many households, the choice of work location is likely to be the

outcome of a longer-term process of labor supply and migration decisions. Second, employment opportunities

in the same industry tend to be clustered in Beijing and switching jobs may not entail meaningful changes of

work locations. Third, while the mortgage data provide rich information on locations of housing and current

employment, they do not have information on job opportunities (e.g., available job openings at the time of

searching). Therefore, incorporating work location decisions would necessitate additional data. Similarly, we

do not model firm locations which could be affected by transportation policies in the long run. Our analysis

therefore does not model the potential positive spillovers from the agglomeration of firms as modeled in some

recent studies using the quantitative spatial models.21

Our approach contrasts with the emerging literature using quantitative spatial models that have made

considerable advances in modeling the joint processes of work and residential locations. Improvements in

the transportation system could translate into higher productivities (through better allocation of time and la-

bor market matching), a margin of adjustment not incorporated in our model. This literature uses observed

worker flows and wages to recover iceberg commuting costs via a gravity equation framework. However, with

21Diamond (2016) is a micro-founded study that bridges this gap by incorporating housing and labor markets into the evaluation of
the heterogeneous welfare consequences of the movement of workers between US cities, although it does not endogenize congestion
from the transportation sector.
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few exceptions (Fajgelbaum and Gaubert, 2020), this literature tends to recover the cost of commuting through

an origin-destination-specific disamenity rather than incorporating individual commuting decisions and con-

gestion externality. In contrast, While taking work locations as given, our equilibrium sorting framework

can predict the endogenous congestion level and welfare impacts from unpriced externality across commuters

under different policy scenarios.22

4.2 Housing Demand

We specify a characteristics-based housing demand model, in which preferences over housing are parameter-

ized as a function of both observed and unobserved household attributes (Lancaster, 1971; McFadden, 1978;

Berry et al., 1995). Our data are longitudinal, but we suppress time t to ease exposition. Conditioning on the

work locations, utility for household i choosing home unit j can be written as:

max
{ j∈J}

Ui j = αi p j +x jβi +∑
k

φikEVi jk +ξ j + εi j, (2)

where J is the choice set for household i and the construction of the choice set is discussed below. The

household-specific price coefficient αi is related to the log of household income yi:

αi = α1 +α2 ∗ ln(yi).

We use p j to denote the price of home j, x j to denote a vector of housing attributes such as size and the

number of bedroom, and βi to denote household preferences over housing attributes. The marginal utility for

each housing attribute is decomposed into an individual-specific component and a population average, i.e., for

each element s in βi:

βis = β̄s + ziβs,

where zi are household demographics. ξ j captures unobserved housing attributes and εi j is an i.i.d. error term

that reflects unobserved preferences over each housing choice.

Household members with commuting needs are denoted by k ∈ {Male,Female}. EVi jk is the expected

utility for member k in household i that is derived from the best commuting alternative. It characterizes the

attractiveness of home j in terms of member k’s work commute. This ease-of-commute term is constructed

from a discrete choice model of commuting mode that we describe below. It is affected by the congestion

level, which is determined in equilibrium by all households’ travel mode choices and residential locations.

Preference for ease-of-commute φik differs across gender and households and is characterized by random

22One limitation of the quantitative spatial model is that welfare improvements only result from changes in real income due to gains
from trade via an increase in market access. This benefit is mediated directly through the elasticity of imports with respect to variable
trade costs (Arkolakis et al., 2012). In the context of urban transportation, this seems potentially limiting because spatial mismatch
and wasteful commuting due to pre-existing distortions, like congestion, may leave open opportunities for Pareto improvements
without a change in the level of market access.

16



coefficients:

φik = φ̄k +φkνik,k ∈ {Male,Female}, and(
νi,male

νi, f emale

)
∼ N

[(
0

0

)
,

(
1 0

0 1

)]
.

In subsequent formulations, we suppress subscript k for the ease of exposition and use EVi j to denote the

commuting utility for both household members ∑k φikEVi jk. The commuting utility is the key innovation

relative to residential sorting models that incorporate commuting based on fixed distances. It allows for a joint

consideration of the heterogeneous impact of transportation policies on commuting costs across individuals

and homes.

4.3 Travel Mode

Utility-maximizing individuals within a household choose a commuting mode based on the time and financial

cost associated with each of the six modes: Walk, Bike, Bus, Subway, Car, and Taxi. In this subsection,

we abuse the notation and use i to denote an individual within a household rather than a household. This

is consistent with the level of aggregation in the travel survey that reports the travel mode choices for each

commuting member within a household.23 Preferences vary across individuals, such as the enjoyment of

driving a car, perceived “greenness” of using public transportation, or health benefits of biking and walking.

We include mode-specific random coefficients to account for these considerations. Individual i’s utility of

commuting from home j to work using mode choice m is specified as:

max
m∈Mi j

ui jm = θm + γ1itimei jm + γ2costi jm/yi +wi jmη + εi jm, (3)

where Mi j is the set of transportation modes available to individual i. We allow for a mode-specific random

coefficient, θm, that has a normal distribution with mean µm and variance σm. The mode-specific random co-

efficient for walking is normalized to zero. These random-coefficients capture heterogeneous mode-specific

(dis)amenities, scheduling or inconvenience costs that do not scale with the time or distance traveled. Vari-

able timei jm denotes the commute duration between i’s work location and home j via mode m. Note that

driving time timei j,car is affected by the congestion level, an endogenous outcome as discussed above.24 Time

preference γ1i follows a chi-square distribution with three degrees of freedom and mean µγ . The chi-square

23For the purpose of our analysis we consider the mode choices of different individuals within a household as independent be-
cause of limited information on the joint decision processs. When it comes to housing location, we are also modeling hypothetical
commutes, for which the exact process of trip-chaining is not likely to be ex-ante clear to most households. Rather they may have a
general sense of the relative cost of commuting for one home relative to another as specified in the EV term.

24Road congestion affects travel times for buses in addition to driving and taxi, however this effect is more complicated as it
depends on the local characteristics of the roadway, the design of bus schedules, and location of bus stops. For the purpose of our
analysis we treat buses as if they were in dedicated lanes unaffected by congestion, which may result in a an over-prediction of bus
mode shares from our estimates.
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distribution allows all individuals to have a positive value of time. The monetary cost of the trip is denoted as

costi jm. Individual’s sensitivity to the monetary costs of commuting is assumed to decrease in income: γ2/yi.

Finally, variable wi jm captures mode-commuter specific controls (such as the driving dummy interacted with

commuter’s gender) and εi jm is the i.i.d. error term.

The utility function makes it straightforward to calculate the value of time (VOT), which is γ1i
γ2
· yi. In

this formulation, the financial burden of travel scales with income and VOT can be conveniently expressed

as a share of hourly income. VOT is a fundamental concept in transportation analysis and its empirical mea-

surement is crucial for travel demand analysis and the evaluation of public policies. Under Becker (1965)’s

framework of time allocation, the travel time should be valued relative to the after-tax wage rate assuming

that time can be freely transferred between work and non-work activities (e.g., leisure or travel).

Expected utility from commuting, EVi j in equation (2), is defined as the following:

EVi j = Eεi j

(
max
m∈Mi j

ui jm

)
, (4)

where the expectation is over the set of i.i.d. draws εi jm across travel modes. Once we obtain the expected

commuting utility for all commuting members within a household, we aggregate it to the household level and

use it to measure house location j’s ease-of-commute given individual/household i’s work locations.

4.4 Market Clearing Conditions and the Sorting Equilibrium

This section defines the sorting equilibrium and the market clearing conditions for two interrelated markets

in our model: the housing market and the market for driving. In the housing market, choices of individual

households aggregate to the total housing demand. Housing prices adjust to equate demand and supply (hous-

ing supply is specified in Section 6.1). In the market for driving, the equilibrium driving speed and hence

congestion level is jointly determined by driving demand through all individuals’ travel mode choices and

road capacity (the supply of the driving market). The two markets interact in two dimensions: the spatial

location of households affects the distance of work commute and the travel mode, and hence the market for

driving. At the same time, the level of traffic congestion that is determined in the driving market affects the

attractiveness of residential locations through the ‘ease of commuting’ index as discussed above, and in turn

the spatial distribution of households.

Commuting Mode Choice Conditional on home location j, the probability that individual/household i

chooses mode m for his work commute is defined as:

Ri jm|i, j = r(costi j/yi, timei j(vi j),wi jm;θ) (5)

where costi j/yi and timei j(vi j) denote the vector of travel cost as a share of individual i’s hourly wage and the

vector of travel time for each travel mode, respectively. The travel time by cars is a function of the driving
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speed between individual i’s work location and home location j: vi j, which is endegeneously determined in

equilibrium.25 Lastly, wi jm captures all other individual-trip-mode specific characteristics and θ denotes all

relevant parameters in travel mode choices: θ = {{θm}m,γ1i,γ2,η}. We use R = {Ri jm|i, j} to denote all

households’ commuting mode choices.

Housing Choice The probability that household i chooses home j is determined by the distribution of

random utility as specified in the housing demand model and is denoted as:

Pi j = h(EVi(v),p,X,ξξξ ,zi), (6)

where EVi(v) is a vector of the ‘ease-of-commute’ index for all potential home locations giving household

i’s work locations. It links the housing market with the commuting mode choices, whose element is defined

above in equation (4). We have made it explicit that the ease-of-commute index depends on driving speed

v. The following triplet, p, X, and ξξξ , denotes prices, observed housing attributes, and unobserved housing

quality for all homes in household i’s choice set. The last term, zi, represents household i’s demographic

attributes. We use P = {Pi j} to denote all households’ residential choice probabilities.

The aggregation of households’ choice probabilities Pi j gives rise to the aggregate housing demand: D j =

∑i Pi j(p,v),∀ j. Note that the aggregate housing demand depends on both housing prices p and driving speed v
through the east-of-commute index. Housing market clears when the aggregate demand is equal to aggregate

supply (that also depends on housing price):

D j = ∑
i

Pi j(p,v) = S j,∀ j (7)

Driving Speed Demand for driving is determined by both housing locations and travel mode choices. Intu-

itively, mode choices determines the extensive margin of the driving demand (to drive or not), while housing

choices determines the intensive margin of the driving demand (the commuting distance). Total driving de-

mand and hence traffic density is the aggregation of all households’ location and commuting decisions, which

ultimately depends on the housing price p and driving speed v:

Dv = ∑
i

∑
j

Ri j,car ·disti j,car ·Pi j = g(p,v) . (8)

where Ri j,car is the driving probability for household i living in location j, disti j,car is the commuting distance,

and Pi j is the probability that household i chooses location j.

25Specifically, timei j,drive =
disti j,drive

vi j
. Note that timei jdrive in wi j is also determined by vi j.
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For a fixed road capacity, the driving speed v decreases in traffic density:26

v = f (Sv)

Intuitively, to sustain a higher travel speed, a transportation system has to limit the traffic density to a greater

extent. Traffic market clears when the aggregate traffic demand equals to traffic supply:

Dv = g(p,v) = Sv(v) (9)

Sorting Equilibrium A sorting equilibrium is defined as a set of housing choice probabilities P∗, the vector

of housing prices p∗, a set of travel choice probabilities R∗, and speed, v∗, such that:

1. The housing market clears according to equations (6) and (7), and

2. The travel market clears according to equations (8) and (9).

Our model follows the class of equilibrium horizontal sorting models with local spillovers studied in Bayer

and Timmins (2005) and more closely in Bayer et al. (2004). If the error terms in both the housing equation

(2) and the commuting mode choice equation (3) are from continuous distributions (such as the type I extreme

value distribution), then the equation system (6), and (7), (8), (9) is continuous. The existence of such a sorting

equilibrium follows from Brouwer’s fixed point theorem. Intuitively, a unique vector of housing prices (up to

a scalable constant) p∗ solves the system of equations defined by equations (6) and (7), conditional on a set

of observed and unobserved housing attributes (X and ξξξ ) as well as EV s. At the same time, (8), (9) implicitly

define traffic speed v as a continuous mapping of a compact and convex set. Any fixed point of this mapping

determines EV s and is associated with a unique vector of housing prices p∗. The equilibrium housing choice

probabilities P∗ and travel choice probabilities R∗ directly follow from the sorting equilibrium.

In this class of sorting models, the presence of a negative spillover due to traffic congestion leads to a

unique equilibrium. In the simplest example when the driving speed is uniform across all locations (though

the speed level negatively depends on the density of cars), this is a traditional demand system with a unique

allocation (choice probabilities), as shown in Berry (1992). With heterogeneous congestion effects that differ

across space, one can show that the equation system (6), and (7), (8), (9) remains a contraction mapping,

and hence accommodates a unique fixed points (i.e., a unique equilibrium). It is worth noting that if there

are positive spillovers (e.g., agglomeration effects), uniqueness is not guaranteed. Sufficiently strong positive

spillovers could alter the rank-order of the location choices and give rise to multiple equilibria. A proof of

existence and uniqueness is provided in Appendix D.27

26This gives rise to a congestion externality, because the driving decisions of others reduce the driving speed for household i.
Figure 1 depicts the congestion externality and how the equilibrium congestion level is determined. We formulate the parametric
relationship between driving speed and traffic density in Section 6.1.

27The proof follows Bayer and Timmins (2005). In the presence of positive spillovers, the unique equilibrium is more likely to
arise with strong consumer heterogeneity, weak spillover effects, or a larger number of choices.
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4.5 Identification and Estimation

Choice Set We first expand on the construction of the housing choice set discussed in Section 3.2. Compu-

tational and data limitations often, and in our case, require a restriction on the number of alternatives included

for empirical estimation. Nevertheless, overly restrictive culling of the choice set can be problematic as doc-

umented by Banzhaf and Smith (2007). While it may be logical to restrict the choice set to a set of affordable

or nearby homes, this literature suggests that this approach may unnecessarily bias estimation due to unob-

served heterogeneity in the choice set definition, and so we eschew any restriction of the choice set based on

attributes. In our implementation, we rely on choice-based sampling by taking one percent random sample

from homes on the market 30 days before and after the sale date of the chosen home.28 The consistency

of choice-based sampling methods in multinomial logit and mixed logit models is formalized in McFadden

(1978), Wasi and Keane (2012), and Guevara and Ben-Akiva (2013).

Identification & Estimation in Travel Mode Model To estimation of the parameters specified in the hous-

ing demand and travel choice models follows a two-stage process. In the first stage, we estimate the mode

choice model via simulated maximum likelihood estimation (MLE) based on household travel survey data.

The key parameters of interest are preferences for time and monetary costs. We include mode-specific random

coefficients to control for mode-specific (dis)amenities or qualities that do not scale with the time or distance

traveled. To further control for unobservables that could be correlated with travel time and monetary costs, the

model also includes mode-specific fixed effects interacting with year fixed effects, district fixed effects, and

household demographics (income categories, age). These interactions control for a rich set of time-varying

and location specific unobservables by travel mode.

The key identification assumption in estimating mode choices is that the error term is not correlated with

time and monetary costs. This assumption would be violated if, for example, the route-specific quality of

public transit service (e.g., in terms of delay, comfort, or safety) is correlated with the route-specific monetary

cost or travel time. Cost is likely to be exogeneous because the public transit is run by Beijing’s public transit

authority which sets bus and subway fares according to a uniform rule across all routes. Although some bus

or subway routes are more congested than others, the fares do not vary by the level of congestion on-board.

In addition, time is unlikely to correlated with unobserved shocks because during our sample period (2010

and 2014) real-time traffic apps are not widely used so people may be more likely to make travel decisions

based on ex-ante estimate of travel time. This ex-ante estimate is likely orthogonal to the realization of traffic

shocks on a particular day, hence requires no instruments.

Identification & Estimation in Housing Location Choice Model In the second stage, we first construct

the ease-of-commuting index EVi j for every house j in household i’s choice set using the logsum expression

in Equation (4) and parameter estimates from travel mode choices. This step consists of a large set of EVi j,

28To reduce the computational burden, we treat each year as a distinct market and this allows us to conduct the contraction mapping
year by year. The average size of the choice set is 27 with a range of 3 to 56. We drop households with a choice set less than 5.
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one for each home-work pair, including pairs between i’s work location and homes that they did not choose

but considered. The calculation of EVi j is computationally intensive, requiring us to construct travel time and

cost for all available modes for each home location, following the discussion in the household travel survey

and Appendix Figure A3. While the application of this two-stage approach to residential sorting is new to

our knowledge, similar approaches of nesting the logsum values from random utility models have been used

by Capps et al. (2003) and Phaneuf et al. (2008) in healthcare and recreational demand respectively. The

estimated ÊV i j enters the housing choice model as an observed housing attribute.

The parameters in the housing demand model themselves are estimated using a two-step procedure, with

the first step being a simulated MLE with a nested contraction mapping and the second step being a linear

IV/GMM. The two-step strategy follows Berry et al. (1995) and Bayer et al. (2007) in order to address un-

observed attributes that could be correlated with housing prices. Unobserved attributes (e.g., quality) ξ j in

Equation (2) could render the price variable endogeneous and bias the price coefficient toward zero. The

nested contraction mapping algorithm isolates price endogeneity into a linear framework which permits the

usage of the IV strategy. Following the structural demand literature we re-organize Equation (2) into a sum

of household-specific utility µi j and mean utility δ j (or alternative-specific constants) which absorbs variation

from unobserved housing attributes ξ j:

Ui j = µi j(θ2)+δ j(θ1)+ εi j (10)

µi j(θ2) = α2ln(yi)p j +∑
k

X jkzikβk +φmEVi jm +φ f EVi j f (11)

δ j(θ1) = α1 p j +x jβ̄ +ξ j. (12)

Further details about the estimation can be found in Appendix E.

Once θ2 and δ j are estimated, we then use linear regressions to estimate preference parameters (θ1) in

mean utilities δ j as specified in Equation (12) using three different sets of variables. First, the average housing

and neighborhood attributes (excluding price and the EV term) within 3 kilometers outside the same complex

sold within two-month time window from a given house. The identification assumption is that the average

attributes of housing choices outside the same complex from housing choice j are not correlated with the

unobserved housing attributes ξ j and have no direct effect on the utility from housing choice j. But due to the

housing market competition, they are correlated with the price of housing choice j. Consider, for example,

two identical housing choices in the same neighborhood being sold at two different points in time (or from

two different neighborhoods with the same amenities but sold at the same time), prices may be different due

to varying intensity of competition (e.g., the availability of other housing choices) on the market faced by the

two housing choices at the time of their sales.

The second set of instruments is the interaction between the first set of IVs and the winning odds of the

vehicle licence lottery policy. The winning odds have decreased dramatically from 9.4% in Jan. 2011 to 0.7%

by the end of 2014. The interaction terms capture the likely impact of license lottery policy on the nature of
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housing market competition and price setting. Decreasing winning odds push up demand (and hence prices)

for houses in desirable locations, such as places close to the subways or the city center. The third set of IVs

is the number of homes sold in the real-estate listing dataset in the two-month time window of a given home,

which is also a proxy for market competition.

5 Estimation Results

We begin by presenting estimation results for the commuting mode choice model. Then we construct the

ease-of-commuting index, which captures the value of commuting options for work trips based on home and

work locations. Taking the ease-of-commuting index as an observed housing attribute, we then estimate the

housing demand model.29

5.1 Commuting Mode Choice

We assume that the error terms in both the housing equation (2) and the commuting mode choice equation (3)

have the type I extreme value distribution. Table 3 presents parameter estimates for six specifications of the

multinomial logit model based on work commutes from household travel survey in 2010 and 2014. The first

three specifications do not have random coefficients and the heterogeneity comes only from the interaction

between the travel cost and income. The last three specifications include random coefficients on travel time to

capture unobserved consumer heterogeneity. The value of time is represented as the percentage of the hourly

wage, and is defined by the ratio of the parameter on travel time and that on travel cost.

Column (1) begins with interactions between year dummies (2010 or 2014) and mode-specific constants

(car, taxi, bus, subway, walking, and biking). The implied VOT from these estimates is 0.757 times the hourly

wage. Column (2) adds the interactions between mode-specific constants and trip characteristics including

trip distance and ring road dummies of the trip origin and destination. Trip distance could affect mode choices

because important trip characteristics such as uncertainty in travel time will likely scale with the length of a

trip. This uncertainty, typically called travel time reliability in the transportation literature, has been shown to

be an important factor in travel decisions (Brownstone and Small, 2005; Small et al., 2005; Tseng et al., 2009).

Ring road dummies for trip origin and destination may also capture differences in the frequency or quality of

the public transit, which could affect travel model choice. Including these sets of interactions dramatically

affects the coefficient estimate on the travel cost variable, resulting an implied VOT being 0.342 of the hourly

wage.

Column (3) further adds the interactions of model-specific constants with household demographics in-

cluding age, gender, education, vehicle ownership, the number of workers, and household size. Adding these

29A key assumption underlying our approach is that, after accounting for location and demographic differences, preferences for
commuting mode choice from the travel survey are representative of those for home buyers in the mortgage data. A large literature
in environmental economics considers conditions under which the approach of transferring preferences for non-market amenities is
valid (Boyle and Bergstrom, 1992; Rosenberger and Loomis, 2003).
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variables greatly improves the fit of the model and better captures the heterogeneity in mode choices across

demographic groups. The VOT estimate is 33.9% of hourly wage. Columns (4) to (6) use a chi-square distri-

bution with three degrees of freedom to approximate heterogeneous preference on travel time following Petrin

(2002).30 In addition to the random coefficient on travel time, Column (5) also allows a random coefficient

on the mode of driving. Column (6) further incorporates random coefficients for each of the five travel modes

(with walking as the reference group).

Our preferred specification is Column (6). The preference heterogeneity for different travel modes is

assumed to be i.i.d. normal and captures the impact of unobserved demographics on mode choices. For

example, some commuters choose driving or taxi not because of their high VOT but because of scheduling

constraints. Some commuters choose walking or biking for their exercise benefit. The dispersion on the

preference parameters for all transit modes is quite large, suggesting significant heterogeneity for different

modes. Adding these random coefficients leads to much stronger consumer sensitivity to travel cost. The

average (median) VOT estimate is 95.6% (84.6%) of hourly wage and these estimates are within the range

typically found in the recent literature.31

5.2 Housing Location Choice

We now turn to the estimation results of the housing demand model described in Section 4.2. We first construct

the ease of commuting (EVi j) for each member within household i based on parameter estimates from the

travel choice model:

EVi jk =Eεi jk

(
max

m∈Mi jk
ui jkm

)
= log

(
∑

m∈Mi jk

exp
[
θm + γ1iktimei jkm + γ2costi jkm/yi +wi jkmη

])
,k∈{Male,Female}.

For each home in household i’s choice set, we generate this measure separately for male (61% main borrower)

and female (39% main borrower) members based on their work locations.32 These two variables enter the

housing demand as additional household-specific attributes. We first present the MLE estimates of household-

specific preference parameters, and then discuss the IV estimates for coefficients in the mean utility.

30We winsorize the top and bottom 5% of the distribution to bound the distribution and to minimize the impact of outliers. The
three degrees of freedom provide the best model fit.

31Appendix Figure A11 depicts the histogram of the VOT estimate in our sample. The empirical estimates of VOT in the literature
vary as they come from different contexts and methodology. In the context of travel demand, the estimates typically range between
30% and 100% of hourly income (Small et al., 2007; Small, 2012). The US Department of Transportation recommends 50% of the
hourly income as VOT for local personal trips (e.g.,work commute and leisure but not business trips) to estimate the value of travel
time savings (VTTS) for transportation projects (USDOT, 2015). Using a discrete choice framework similar to ours, Small et al.
(2005) estimate the median VOT at 93% of hourly wage for commuters in Los Angeles based on data from both travel surveys and
choice experiments. Leveraging the tradeoff between vehicle driving speed and gasoline usage, Wolff (2014) estimates the average
VOT of 50% of hourly wage based on traffic speed data in eight rural locations in Washington State. Buchholz et al. (2020) use
the tradeoff between wait time and price among users on a large ride-hail platform in Prague and find the average VOT to be equal
to users’ wage during work hours. Goldszmidt et al. (2020) find an average (median) VOT of 75% (100%) of hourly (after-tax)
wage based on a large-scale field experiment by the ridesharing company Lyft in 13 US cities by leveraging the random variation in
customer wait time and fare.

32If a family member is unemployed, we set EVi j = 0 for that member, effectively ignoring this term in the decision process.
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Table 4 reports the estimates of heterogeneous preference parameters for three specifications: without the

EV terms, with the EV terms, and with random coefficients on the EV terms. The coefficient estimates from

these three specifications are by and large similar, except for the coefficient on the interaction between age

great than 45 and distance to key schools. Housing price is interacted with household income, which is used

as an proxy for household wealth.33 As expected, high-income households tend to be less price sensitive.

Both EV terms in the second and third specifications have positive and significant coefficients estimates.

The log-likelihood value increases substantially from Column (1) to Columns (2) and (3), indicating strong

explanatory power of the EV terms. The estimates imply that households prefer homes with better ease-of-

commute measures, i.e., more convenient for work trips, for both family members. The coefficient estimates

in our preferred specification (3) suggest that an average household is willing to pay Y18,000 (21,000) more

on a home to save Y1 in the male (female) member’s work commute, or Y185,000 (219,000) more to shorten

the male (female) member’s work commute by 10 minutes. The coefficient estimate on the EV term for the

female member is 18% larger than that for the male member, suggesting that households prioritize the female

member’s ease-of-commute in housing choices. This is consistent with the descriptive evidence that females

tend to live closer to their work locations (Appendix Figure A7). In addition, there is significant preference

heterogeneity across households on the EV terms, e.g., due to unobserved household demographics.

We interact the age group dummies with the distance to the nearest signature elementary school. Enroll-

ment to these top schools is restricted to the residents in the corresponding school district, and homes in these

districts command a high premium. The baseline group is those with the primary borrower younger than age

30. The interaction coefficients in all specifications are negative and highly significant, though borrowers

between age 30 and 45 exhibit the strongest preference for proximity to key schools, as they are most likely

to have school age children.

We do not observe the household size. To capture preference heterogeneity on home size due to variation

in household size, we use the age of the primary borrower as a proxy and interact age group dummies with

home size. Older households have stronger preference for home size. The group with age over 45 has

the strongest preference, likely due to the presence of both children or elderly grandparents living in the

household, a common household structure in China.

Estimates for coefficients in the mean utility are reported in Table 5. Columns (1) and (2) use OLS,

while columns (3)-(6) are from IV regressions. All regressions month-of-sample interacted with district fixed

effects to capture time-varying changes in market conditions and amenities that could vary across the 18

districts in Beijing. Columns (2)-(6) also include neighborhood (158 different jiedaos) fixed effects to capture

unobserved time-invariant neighborhood amenities. We use the three sets of IVs for housing prices that are

discussed in Section 4.5: the average attributes of the homes within 3km outside the sample complex sold in

a two-month time window of a given home; the interaction between the first set of IVs and the winning odds

of the vehicle licence lottery; the number of homes sold in a two-month window. Our preferred specification

33The interaction itself only captures part of the consumer price sensitivity since housing price also enters the mean utilities
(household-invariant utilities).
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is Column (6) with all instruments. The first stage F- statistics is 14.22, and the over-identification test cannot

be rejected at 10% level.

Across all columns, the price coefficient estimate is negative and statistically significant. The IV estimates

are larger (in magnitude) than the OLS estimates, consistent with the findings in the demand literature that

unobserved product attributes bias OLS estimate toward zero. The average price elasticities vary from -1.34 to

-1.94 in Columns (4)-(6), suggesting elastic housing demand.34 The coefficient estimates from IV regressions

in columns (3) to (6) are all intuitively signed. Households prefer larger homes and homes closer to the

signature schools, but dislike older buildings and homes that are far away from parks.

Based on parameter estimates from the last columns in 4 and 5, the sample average of the implied income

elasticity of housing demand and the income elasticity of marginal driving cost is 0.10 and 0.78, respectively.

To our knowledge, these are the first estimates of the two elasticities based on data from China. Our estimate

of the income elasticity of demand for housing size is somewhat smaller than those based on the US data

while the elasticity of marginal driving cost is largely consistent with the literature. Using 2003 American

Housing Survey, Glaeser et al. (2008) find the elasticity of lot size to be from 0.25 to 0.5 and they argue that

these estimates likely provide an upper bound on the true income elasticity of land demand with respect to

housing prices. In addition, our elasticity of housing demand is with respect to the (condo) interior size rather

than the lot size.

6 Counterfactual Simulations

We now utilize the estimates from the housing and travel mode choices to conduct counterfactual simulations.

We examine five policy scenarios: the driving restriction, congestion pricing, subway expansion, driving re-

striction and subway expansion, and congestion pricing and subway expansion. The first two are demand-side

policies while the third is a supply-side policy. The last two counterfactual analyses examine combinations

of different policy mix. The driving restriction scenario follows the actual policy employed in Beijing during

our sample: a vehicle is prohibited from driving in one of the five working days. Under congestion pricing,

which is hypothetical, we choose a distance-based congestion charge to achieve the same level of congestion

reduction as the driving restriction to facilitate comparison. The key difference between these two policies is

that driving restriction is a command-and-control approach while congestion pricing is a market-based policy

that affects the price that drivers pay. The subway expansion simulation compares the subway network in

2008 and 2014. During this period, the length of the subway network increased from 100km to 486km, with

8 new lines opened for operation. The details of the simulation approach are provided in Appendix F.

Before we present simulation results, we first validate the structural model by comparing the model’s

34To evaluate the impact of ignoring the work commuting attribute (the EV terms) on price elasticities, Appendix Table A4 reports
the second-stage regression results based on the first specification without the EV terms in Table 4. The price coefficient estimates
and the price elasticities are smaller in magnitude, consistent with the downward bias due to unobserved attributes. Timmins and
Murdock (2007) find a 50% downward bias in the estimation of consumer welfare from recreation sites when congestion on site is
ignored in demand estimation.
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predictions to the mortgage data. We simulate the market equilibrium under the 2008 subway network with

and without the driving restriction. Then we examine the effect of the driving restriction on the housing price

gradient with respect to the subway access using the model’s predicted equilibrium housing price. The results

are reported in Appendix Table A5. Consistent with the reduced-form evidence in Table A1 based on observed

data, the driving restriction steepens the price gradient with respect to subway access. The coefficient estimate

on the interaction between subway distance and the driving restriction policy dummy is -0.01 compared with

-0.023 (with a standard error of 0.013) in the regression with observed data.

6.1 Travel and Housing Choices and Equilibrium Prices

We begin by considering the simulation results with sorting in Table 6. To incorporate sorting, we allow

households to re-optimize their housing locations and solve for the new market equilibrium under each sce-

nario. The first three columns are under the 2008 subway network, while the next three are under the 2014

subway network, reflecting the effect of subway expansion. Column (1) shows the baseline results while

columns (2) to (6) present the differences relative to the no-policy baseline in column (1). Panel A reports

changes in the share of mode choices and equilibrium traffic speed under each scenario, Panel B displays key

housing market outcomes, and Panel C presents the welfare results. The results are shown separately for two

income groups: households with income above the median (rich) and those with income below the median

(poor) to reflect distributional considerations following Section 2.

Several features of endogenous congestion and household sorting have important implications on the

policy effectiveness in terms of congestion relief. Sorting introduces two countervailing forces under a driving

restriction. On one hand, a driving restriction incentivizes households to live closer to work. This reduction

in the driving distance further magnifies the alleviation of congestion as a result of travel mode changes when

households substitute away from driving. On the other hand, congestion reduction from the driving restriction

improves the driving speed, makes driving less costly, and hence disproportionally increases driving among

those with a long commute. As the equilibrium congestion is affected by both intensive and extensive margins,

the increase in the extensive margin dampens the effectiveness of a driving restriction policy.

In contrast, as a distance-based policy, congestion pricing affects driving in the same direction for both

the intensive and extensive margins and delivers a larger congestion reduction with sorting.35 Congestion

pricing induces mode shifting in the same directions as a driving restriction, but there are two key differences.

First, while congestion pricing generates a modest driving reduction among high-income households, it leads

to a much bigger reduction among low-income households. The large response from the low-income group

is driven by the fact that low-income households are more sensitive to the travel cost and hence to congestion

charges. Second, although the level of congestion reduction is the same under the two policies, the share of

commuting trips via driving remains higher under congestion pricing. This is because distance-based con-

gestion pricing reduces congestion through an intensive margin by disproportionally reducing longer driving

35We set the congestion price to be Y0.92/km to achieve the same congestion reduction as that under a driving restriction.
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trips.

Despite the large increase in subway usage, subway expansion leads to the smallest congestion reduction.

Column (4) presents the impact of subway expansion from the 2008 network to the 2014 network. Traffic

speed increases by about 7 percent with sorting, only about 40% of what is achieved under the driving re-

striction and congestion pricing, the two demand-side policies. Our estimate is lower than what is implied

by recent empirical studies that focus on the short-run impact of the subway system on traffic congestion

(Anderson, 2014; Yang et al., 2018; Gu et al., 2020).36 Our analysis shows that the effectiveness of subway

expansion is attenuated by sorting as illustrated in Figure 6. Both income groups move farther away from

work and commute longer distances with a more extensive subway network. This additional induced travel

demand from transportation infrastructure investment undermines the objective of congestion reduction, a re-

sult consistent with the previous literature (Downs, 1962; Vickrey, 1969; Duranton and Turner, 2011). The

results on the further separation of workplace and residence from subway expansion corroborate with the

evidence in Gonzalez-Navarro and Turner (2018) and Heblich et al. (2020).

Nonetheless, the expansion dramatically increased subway access for both income groups: the distance to

the nearest subway station from home is reduced by about 80% for both groups. As a result, the expansion

increases subway ridership by 51% and 56% among high- and low-income groups, respectively. Subway

expansions reduce the share of all other travel modes, though the reduction in taxi and bus trips is more

pronounced. Low-income groups are much more likely to substitute from other travel modes toward subway,

due to their larger price sensitivity. Overall, the reduction in the driving share of commuting trips as a result of

the subway expansions is about 43% of that observed under driving restriction and congestion price, leading

to smaller congestion relief. While the substitution away from bus, bike, and walk trips toward subway trips

does not alleviate traffic congestion, it improves welfare by offering quicker and hence better commuting

choices for some trips.

We calibrate the congestion charge so that both congestion pricing and driving restrictions achieve the

same level of congestion reduction under the 2008 subway network. At the same level of congestion charges,

congestion pricing is more effective than driving restrictions under the 2014 subway network. That is, the

market-based demand policy and the supply side policy exhibit complementarity by producing a stronger

aggregate impact.37 The results reflect two underlying countervailing forces. On the one hand, subway

expansion increases the attractiveness of using subways and hence reduces the share of driving. This leaves

a smaller room for and reduces the impact of demand-side policies among an average driver. On the other

hand, the demand-side policy could be more effective in affecting the infra-marginal drivers who now have a

better subway network to switch to. The first force appears to dominate under the driving restriction but the

36Using a regression discontinuity (in time) approach, Anderson (2014) finds a 47% increase in highway traffic delays during the
peak hours from the shutdown of the Los Angeles bus and rail lines for 35-days. Yang et al. (2018) shows that the subway expansion
in Beijing from 2009 to 2015 reduces traffic congestion by 15% on average using a 120-day window surrounding subway opening.
Using a difference-in-differences framework, Gu et al. (2020) estimate that one new subway line increases traffic speed by 4% during
peak hours on nearby roads based on 45 subway lines opened across 42 Chinese cities during 2016 and 2017.

37As demonstrated in Akbar et al. (2018), the supply-side constraint (poor transport infrastructure) is a key determinant in traffic
speed across cities India, highlighting the importance of transport infrastructure provision.
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second force is stronger under congestion pricing. Congestion pricing affects both the extensive and intensive

margins, both of which could be reinforced by the subway expansion.

Column (5) presents the results from the combination of subway expansion and driving restriction while

column (6) shows the combination of subway expansion and congestion pricing. The impacts on driving under

each of these two columns are similar to the sum of the impacts from the two individual policies. There are

two countervailing forces at play under the combination of supply-side and a demand-side policies. First, the

policies could have redundant impacts in reducing driving trips: some of the driving trips would be reduced

under either the supply-side or the demand-side policy, leading to a smaller aggregate impact than the sum of

the impacts from individual policies. Second, the supply-side policy could enhance the demand-side policy

in that the larger subway network makes substitution away from driving easier under driving restriction or

congestion pricing. Indeed, as the subway becomes a more attractive option, both driving restriction and

especially congestion pricing lead to a larger substitution from driving to subway under the 2014 network

than the 2008 network.

It is instructive to compare these results to those without sorting that are presented in Appendix Ta-

ble A6.38 The comparison illustrates that sorting reinforces the impact of congestion pricing on congestion

reduction but weakens the impact of subway expansion. Finally, the optimal congestion price (with revenue

recycling) that maximizes consumer surplus is Y1.2/km (the speed increase is 3.81km/h) without sorting com-

pared to Y1.4/km (the speed increase is 4.70km/h) with sorting under the 2014 subway network (as shown in

Panel (b) of Figure 8 below).

Spatial Distribution of Changes While driving restrictions and congestion pricing both reduce congestion,

the impacts on the spatial distribution of households differ under sorting. Consistent with the reduced-form

evidence, a driving restriction induces high-income households to move closer to subway, while pushing low-

income households to move farther away from work and subway. In contrast, congestion pricing induces both

high- and low-income groups to move closer to work, hence reducing “wasteful commuting” for both groups.

As congestion pricing is distance-based, it induces a stronger sorting than driving restriction. As illustrated

in Figure 6, driving restrictions lead to small changes in commuting distance and often in opposite directions

across neighborhoods, but congestion pricing leads to a larger reduction in commuting distance in nearly all

neighborhoods relative to the no-policy scenario. In terms of subway access, both driving restrictions and

congestion pricing make high-income households move closer to the subway while low-income households

move further away from the subway compared to the baseline scenario. The exact opposite effect on distance

between home and subway for the two income groups is driven by the fact that the subway network is the

same for all households and therefore households have to compete for the closeness to subways in a zero-sum

game, but work locations differ across households so a Pareto improvement in commuting distance is possible.

In Figure 7, while both driving restriction and congestion pricing increase the prices of homes that are

closer to work centers, the impact is stronger under congestion pricing driven by the distance-based nature of

38The congestion price is kept at Y0.92/km as in Table 6 with sorting to facilitate comparison.
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congestion pricing. Under congestion pricing, housing prices in northwest parts of the city (near work centers)

would increase by about 2,000 Y/m2 while those in some parts of southeast that are far from work centers

and public transit would decrease by 2000 Y/m2 (from a baseline average price at 24022 Y/m2). Subway

expansion has opposite spatial impacts on housing price: the price increase is mainly observed among homes

farther away from the city center (where the public transportation is poor prior to the expansion) but also along

the new subway lines as shown by the green lines in Panel (c). Home prices increase by as much as 4000

Y/m2 in some southwest parts of the city, where the subway expansion is greatest and the prices have been

the lowest historically. With both the subway expansion and congestion pricing, the price impacts of subway

expansion dominate those from congestion pricing.

To understand the differential impact on home prices with respect to access to subway, Appendix Figure

A12 plots the the housing price gradient with respect to the subway distance for 2008 subway network, and

2014 subway network, respectively. The bid-rent curve is steeper under the 2014 network (-Y1900/m2 per

km) than 2008 network (-Y700/m2 per km) because the 2014 network is larger and hence the proximity to this

network is more valuable to commuters. The bid-rent curve under the 2014 network shifts down, reflecting

the composition change of the homes whereby the subway expansion reaches to cheaper homes farther away

from the city center.39

With Sorting and Supply Adjustment Finally, we present the results with sorting in Table 7 and addition-

ally allowing the housing supply to adjust. Housing supply is modeled as a constant elasticity function of

local home prices.40 To fix ideas of how incorporating the supply-side changes our previous findings, think

about a home whose price increases after a policy. Now housing supply of that home will increase. Hence

in the new equilibrium, we expect part of housing price changes to be absorbed by the increasing housing

supply. The additional increases in the housing supply of attractive homes will allow more efficient sorting,

hence magnifying the sorting effects compared to the case when the housing supply is fixed.

This intuition is supported by our simulation results. In terms of the driving speed, housing supply ad-

justments make the congestion pricing policy more effective (the driving speed improvement increases from

3.13km/h to 3.26 km/h), while attenuating the gains from subway constructions (from 1.49km/h to 1.13 km/h).

These changes could be driven by both the intensive and the extensive margin. With a varying housing sup-

ply, distance to work under congestion pricing further decreases relative to the case where the supply is fixed

(from -0.15km to -0.26 km for high-income male member and from -0.07 km to -0.19 km for low-income

male member), while the distance to work under subway constructions increases relative to the case where the

39Similarly, from Figure A13, we find change in the subway price gradient from congestion pricing is larger (-Y80/m2 per km) than
that from driving restriction (-Y10/m2 per km). While the driving restriction makes homes close to the subway more attractive for
everyone, congestion pricing, being a distance-based policy, makes homes close to subway more attractive for those who live far from
work, and for those who are sensitive to a cost increase. The differential impact across households from congestion pricing therefore
steepens the bid-rent curve more. We also find that the increase in the price premium from subway proximity due to congestion
pricing is smaller under the 2014 network than that under the 2008 network under either policy. As the subway network becomes
more attractive, fewer commuters use driving as the travel mode under 2014 network, implying less competition for the homes close
to the subway.

40We set the elasticity to be 0.52 following Wang et al. (2012)’s estimates on housing supply elasticity in Beijing.
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supply is fixed (from +0.33 km to +0.76 km for high-income male member and from +0.15 km to +0.61 km for

low-income male member). Driving probability, on the other hand, does not change significantly when supply

adjustment is allowed. Hence we conclude that the changes in speed should mostly be contributed to intensive

margin. In other words, the supply-side adjustment under congestion pricing increases the supply of homes

in the city center and allows people to live even closer to their work, which shortens their commuting trips

and magnifies the anti-sprawling effects. The supply-side adjustment under subway construction increases

the supply of homes in suburban areas, making people live farther away from their work and exacerbating the

sprawling effects. We elaborate on the welfare consequences of the supply adjustment in the next section.

6.2 Welfare Analysis

Panel C in Table 6 and 7 as well as Appendix Tables A6 presents the welfare results under the five scenarios,

relative to the baseline scenario of no policy and the 2008 subway network. To construct net welfare, we

keep a balanced government budget. Subway construction and operation are funded by a head tax while the

revenue from congestion pricing is recycled back to households via a lump sum. The discussion in this section

focuses on our benchmark results that are presented in Table 6.

Since transportation infrastructure such as subways are durable, we assume a 30-year time-span during

which the capital cost should be recouped. The choice of the time span matters for the magnitude of the

welfare but does not qualitatively affect the comparison across the policy scenarios. To be conservative,

we assume that households only benefit from commuting trips and ignore utilities they derive from non-

commuting trips.41 A related issue is the utility function specification where the total housing price rather

than rental price is used. So the numbers on consumer surplus reported below should be considered as a

discounted lifetime utility over a period of 30 years.42

There are several key findings. First, driving restrictions reduce consumer welfare especially for the

high-income group despite the reduction in traffic congestion in both Table 6 and Table A6.43 There are two

opposing effects as illustrated in Figure 1. On the one hand, the policy should reduce the deadweight loss

from congestion relief. On the other hand, the policy leads to losses in consumer surplus as it removes the

choice of driving from households’ choice set one day a week (equivalent to shifting the driving demand

curve downward). The second effect dominates: driving restrictions are associated with a Y92 thousand loss

per household. The welfare loss is larger for high-income households because they are more likely to have

cars and commute via driving (a Y165 thousand loss per high-income household and a Y18 thousand loss

per low-income household). Sorting exacerbates the welfare loss by 1% and 2% for high- and low-income

groups, respectively.

41Work trips account for about 60% of all trips and 75% of the total travel distance in the 2014 travel survey.
42Our parameter estimates suggest a much larger marginal utility of housing price than the marginal utility of (per-trip) travel costs.

On average, a 30-year housing tenure would imply 467 trips per year for male borrower ad 577 trips for female borrower. The implied
trip numbers are plausible.

43The average household income in Beijing is about Y167k in 2014. The average is Y204k and Y110k for high- and low-income
groups, respectively.
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In contrast to the driving restriction policy, congestion pricing disproportionally affects low-income house-

holds more in mode choices and consumer surplus given that these households are more price-sensitive. This

distributional concern could hinder the political acceptability of congestion pricing and explain the limited

adoption of congestion pricing despite it being continuously advocated by economists and urban planners.

With the recycling of the congestion revenue that is uniform across income groups, congestion pricing leads

to a welfare gain overall. This highlights the role that revenue from congestion pricing can play in addressing

equity concerns. Sorting strengthens congestion reduction (an additional 0.13 km/h increase with sorting, a

4% increase) and enhances welfare gain from congestion pricing (an additional Y5.8 thousand per house-

hold from sorting, a 10% increase), consistent with the finding in Langer and Winston (2008) based on a

cross-section analysis for 98 US cities.

Figure 8 shows the welfare gain from different levels of congestion pricing under different assumptions.

The optimal congestion price is 1.6 Y/km and 1.4 Y/km under the 2008 and 2014 subway networks, respec-

tively. At the optimal levels of congestion pricing, sorting would increase consumer welfare by 20%-30%, and

supply adjustment contributes to another 10%-20%. The additional gain of sorting and supply-side adjust-

ment both stems from the reduced deadweight loss from the congestion externality due to the further increase

in traffic speed. This result highlights another reason for incorporating sorting to understand the impacts and

cost-effectiveness of different transportation policies. Sorting also shifts the optimal congestion pricing level

to the right, achieving higher level of equilibrium traffic speed (26.2 km/h with sorting versus 25.3 km/h with-

out sorting). The figure also shows that under a wide range of levels of congestion pricing (<Y2.5/km) and

different sorting assumptions, consumer welfares are always positive. This indicates that congestion pricing

is likely to be an effective tool even when governments cannot gauge the exact optimal pricing level a priori.

In our simulation table, we assume away the implementation cost of the congestion pricing system in

Beijing because the congestion pricing has yet to be implemented. Singaporean government’s implementa-

tion of a satellite based road pricing system in 2021 provides a back of envelope calculation on the cost of a

congestion toll system.44 The system costs Singaporean government around $ 400 million, which is roughly

what would cost Beijing to adopt a similar system. This cost translates into around 1,000 RMB per house-

hold in Beijing, likely to be negligible in our welfare analysis (under optimal pricing, one-year operation of

congestion pricing will create 3,000 RMB toll revenue per household, already enough to cover the cost).

Third, although subway expansion from 2008 to 2014 does not achieve the same level of congestion

reduction as driving restriction and congestion pricing, it leads to a larger increase in consumer surplus,

especially for the high-income group with and without sorting. The large increase in consumer surplus is

consistent with the fact that the share of subway trips increases more than half after the expansion. Sorting

slightly reduces the aggregate welfare gain due to the reduction in traffic speed. To gauge the magnitude

of net consumer surplus, we calculate the construction cost and the operating cost during a 30-year period.

Assuming that the cost are financed through a uniform lump-sum tax across households, consumer surplus for

44For more information on Singapore’s road pricing syste, refer to https://www.zdnet.com/article/
singapore-readies-satellite-road-toll-system-for-2021-rollout/
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high-income households exceeds their tax burden in both with-sorting and without-sorting scenarios, while

consumer surplus of low-income households exceeds their tax burden without sorting, and marginally get hurt

with sorting.

Fourth, the combination of congestion pricing and subway expansion achieves the largest congestion

reduction and has the potential to achieve the largest welfare gain across five policy scenarios. The results in

Column (6) of Table 6 also show that the revenue from congestion pricing (107.8 thousand Yper household)

could fully cover the costs of subway expansions (103.0 thousand Yper household). Earlier studies have

shown that the revenue from optimal road pricing could be used to fully finance the capital and operating

costs of transportation infrastructure under the condition that capacity and (pavement) durability costs are

jointly characterized by constant returns to scale (Mohring and Harwitz, 1962; Winston, 1991; Verhoef and

Mohring, 2009). In our simulation, the cost of subway construction can indeed be covered by congestion

pricing. The comparison highlights the advantage of congestion pricing from congestion reduction, welfare,

and fiscal perspectives.

7 Conclusion

Transportation plays a critical role in determining residential locations, while at the same time, the pattern

of residential locations affects the efficiency of the transportation system and policies. This study provides,

to our knowledge, the first unified equilibrium sorting framework with endogenous congestion to empirically

evaluate the efficiency and equity impacts of various transportation policies taking into account the interac-

tion between the transportation system and the housing market. Our empirical analysis leverages spatially

disaggregate data on travel behavior and housing transactions with information on residential and work loca-

tions in Beijing from 2006 to 2014. We first estimate a flexible travel mode choice model and then construct

measures of ease-of-commuting for different homes based on the job locations of each working members.

This home-work pair specific measure is determined by traffic congestion and transportation infrastructure,

and enters the housing demand model as an observed housing attribute. Based on the estimates of model pa-

rameters, we conduct counterfactual simulations to examine the impacts and welfare consequences of various

transportation policies from both the demand- and supply- sides: a driving restriction, congestion pricing,

subway expansion, and combinations of demand-side and supply-side policies.

The parameter estimates from the flexible travel mode choice model imply the median value of time being

two thirds of the hourly wage. The estimates from housing demand illustrate the importance of incorporating

work commute in the model: doing so improves the model fit dramatically and affects preference estimates

on other housing attributes. An average households is willing to pay 20% more in exchange for an easier

work commute for the female member than for an equivalent improvement for the male member. The optimal

congestion pricing taking into account sorting and supply-side responses is estimated to be Y1.6/km and

1.4/km under 2008 and 2014 subway network, respectively. Allowing for equilibrium sorting could have

significant implications on welfare estimates of urban transportation policies: sorting accounts for over 20-
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30% of the welfare gain from optimal congestion pricing.

While different policies can be designed to attain the same level of congestion reduction, they lead to

different spatial patterns of residential location. A driving restriction leads to an income-stratified structure

that favors high-income households with respect to access to subways and work, which could disadvantage

low-income households in the long run. Congestion pricing incentivizes residents to live closer to their work

locations and the equilibrium sorting leads to a more compact city with shorter commutes to work for both

income groups. Subway expansion does the opposite by increasing the separation of residence and workplace.

In addition to residential locations, different policies generate drastically different efficiency and equity

consequences. While the driving restriction reduces social welfare due to the large distortion in travel choices,

congestion pricing is welfare improving for both income groups with a uniform recycling of congestion rev-

enue. A driving restriction generates a larger welfare loss among high-income households, while congestion

pricing hurts low-income households more in the absence of revenue recycling, pointing to the underlying

difference in political acceptability between the two policies. These results underscore both the distributional

concern and the efficiency gain from congestion pricing relative to the driving restriction. The combination

of congestion pricing and subway expansion stands out as the best policy among all policy scenarios from

congestion reduction, social welfare, and fiscal perspectives. With the congestion pricing of Y0.92/km and

the observed subway expansion from 2008 to 2014, the policy mix generates the largest improvement in both

traffic speed (about 25%) and welfare (Y43,000 per household). In addition, it is self-financing in that the

revenue from congestion pricing could fully cover the cost of the subway expansion.

Our analysis does not consider the potential impacts of policies on intercity migration and the labor mar-

ket. Both could be additional margins of adjustments that affect traffic congestion and urban spatial structure.

Future research could relax these assumptions to capture even broader general equilibrium effects. Incorpo-

rating these channels in our current framework with rich heterogeneity and endogenous congestion would

necessitate additional data and computational resources. Nevertheless, such a framework would allow the ex-

istence of both congestion and agglomeration forces, which could affect the nature of the interaction between

transportation policies and urban spatial structure.
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Figure 1: Traffic under Congestion Pricing and Driving Restriction
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Note: The figure illustrates the welfare impacts of optimal congestion pricing and driving restriction. The x-axis denotes traffic

volume (or throughput measured in the number of cars per hour passing the point). The marginal private benefit MPB curve

represents the demand curve for driving (willingness to pay for driving). The average social cost ASC curve reflects the private

cost of driving, which is experienced based upon the average time cost across the vehicles on the road. The difference between

ASC and the marginal social cost, MSC, is the congestion externality (or the marginal external cost of congestion, MEC). In the

absence of any intervention, equilibrium occurs at V 0 compared to the social optimal level of traffic volume is V ∗. The shaded

area on the right (red area) shows the deadweight loss due to excess congestion. A Pigouvian tax, τ , can be imposed to achieve

the optimal level V ∗. Alternatively, a driving restriction can be adopted to achieve the same level of congestion reduction but

it would incur a welfare loss denoted by the shaded area on the left (blue area) assuming that the reduction of trips is random

among all privately beneficially trips. Therefore, the welfare impact of the driving restriction is ambiguous a priori.
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Figure 2: Welfare Effects of Transportation Policies with Sorting

(a) Congestion Pricing

x

p

Rent gains

xAx′A
xB x′B

xC x′C x̄

pa

Rich Sub
Poor Sub

Rich Car
Poor Car

(b) Driving Restriction

x

p

Rent gains

Rent losses

xA x′A
xB x′B

xCx′C x̄

p0
a

Rich Sub
Poor Sub

Rich Car
Poor Car

Note: This figure illustrates the capitalization of commuting cost changes into the housing market with sorting. A full exposition of the individual bid-rent curves in the diagram is

provided in the Appendix as well as the underlying assumptions and equilibrium conditions. The left panel shows the effect of a distance-based congestion charge. Colored lines refer

to the equilibrium bid rent functions lying along the envelope corresponding to rich subway, poor subway, rich driving, poor driving moving from the CBD to the urban boundary.

Grey lines correspond to the no-policy baseline bid-rent envelope. The boundaries marked with a prime indicate the change in spatial structure induced by sorting, namely that fewer

rich and more poor take the subway. The area between the policy and no-policy bid-rent envelopes reflects the capitalization effect of transportation policies, which corresponds to

net welfare improvement. Congestion pricing induces a welfare increase for subway commuters, based largely on the effect of recycled revenues. It also induces a improvement

in welfare for rich drivers reflecting the impact of lower congestion net of the cost of the congestion fee. It also induces an almost negligible decrease in welfare for poor drivers

reflecting their smaller values of time. In contrast, the driving restriction in the right panel shows how the rich are induced to increase subway commuting and the poor do, albeit

by a trivial amount. The driving restriction induces a gain for subway commuters, but a larger loss for those driving because of the time costs associated with using subway on long

commuters during restricted days.
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Figure 3: Travel Patterns for Commuting Trips from Beijing Household Travel Survey

(a) 2010 vs. 2014

(b) High income vs. Low Income

Note: This figure plots trip share, time, and costs by different modes for work commuting trips in the Beijing Household Travel

Survey of 2010 and 2014. There are six main trip modes: walk, bike, bus, subway, car, and taxi. For bus and subway trips, they could

include segments with other modes but we characterize them as the bus and subway trips. Trips using both bus and subway are rare

(less than 3% in the data and we drop them in the analysis.) The mode shares are based on chosen modes in the data. Travel time,

cost (defined as % of hourly wage), and distance are constructed as shown in Appendix ??. The numbers in the figures are for the

chosen modes. High-income households are defined as households whose income level is greater than the median in the survey year.
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Figure 4: Housing and Household Attributes from Housing Mortgage Data

(a) Housing Price (Y/m2) (b) Housing Size (m2)

(c) Distance to Work (m) (d) Monthly Household Income (Y)

Note: This figure plots the averages of key housing and household attributes by Traffic Analysis Zone (TAZ) based on mortgage data

from 2006 to 2014. The values are the averages across homes in the TAZ from the mortgage data during the data period. Distance

to work is the driving distance to work for all borrowers in the data (including primary and secondary borrowers when both are

present). Monthly household income is based on the income of the households at the time of purchase in the given TAZ. Values

are classified into five quintiles: the red color corresponds to larger values while the blue color for low values. The white color

represents no observations in the TAZ.
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Figure 5: Reduced Form Evidence: Housing Price Gradient before and after Driving Restriction
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Notes: These binned scatterplots show housing price per square meter against distance to subway before and after the driving
restriction goes into effect in Beijing. The sample spans 24 months before and after the policy starting point (July 2008). The top
panel is the binned scatter plot based on the raw data of price per m2 and the distance to the nearest subway station. The bottom
panel controls for neighborhood fixed effects, and year by month fixed effects. The slopes denoted on the figure are based on
quadratic fits.
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Figure 6: Changes in Commuting Distance from Simulated Policies (in meters)

(a) Driving Restriction (b) Congestion Pricing

(c) Subway Expansion (d) Subway Expansion+ Congestion Pricing

Note: This figure illustrates simulated changes in commuting distance under different counterfactual policy scenarios (relative to

the baseline scenario of no policy). The results are based on the simulations in Table 6. Each cell represents a TAZ. A warm color

corresponds to an increase in distance while a cold color represents a decrease. Cells in white have no observations in the simulation

sample period in the TAZ. Green lines represent new subway lines from year 2008 to 2014.

48



Figure 7: Changes in Housing Prices from Simulated Policies (Y/m2)

(a) Driving Restriction (b) Congestion Pricing

(c) Subway Expansion (d) Subway Expansion+ Congestion Pricing

Note: This figure illustrates simulated changes in home prices under different counterfactual policy scenarios (relative to the baseline

scenario of no policy). The results are based on the simulations shown in Table 6. Each cell represents a TAZ. Warmer colors

corresponds to an increase in price while a cold color represents a decrease. Cells in white have no observations in the simulation

sample period in the TAZ. Green lines represent new subway lines from year 2008 to 2014.
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Figure 8: Optimal Congestion Pricing under 2008/2014 Subway Network

(a) 2008 Subway Network

(b) 2014 Subway Network

Note: The plot shows the welfare change with respect to congestion pricing under 2008/2014 subway network, without sorting (PE

scenario, yellow dotted line), with sorting (GE scenario, orange solid line), or with sorting and supply adjustment (blue dashed

line). Without sorting, the optimal congestion pricing is Y1.4/km for 2008 subway system and Y1.2/km for 2014. Sorting shifts the

optimal toll to the right. The optimal congestion pricing is Y1.6/km for 2008 subway system and Y1.4/km for 2014 under sorting.

The difference of "with sorting" and "without sorting" welfare shows the welfare gain from household sorting. The difference of

"with sorting" and "without sorting and supply adjustment" welfare shows the welfare gain from supply adjustment.
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Table 1: Summary Statistics of Household Travel Survey

2010 2014
N Mean SD N Mean SD

Respondent characteristics
Income: <50k 14780 0.48 0.50 20573 0.18 0.38
Income: [50k, 100k) 14780 0.39 0.49 20573 0.44 0.50
Income: >=100k 14780 0.13 0.34 20573 0.38 0.49
Having a car (=1) 14780 0.44 0.50 20573 0.62 0.49
Female (=1) 14780 0.44 0.50 20573 0.43 0.50
Age (years) 14780 37.59 10.28 20573 38.47 9.84
College or higher (=1) 14780 0.61 0.49 20573 0.64 0.48
Home within 4th ring (=1) 14780 0.51 0.50 20573 0.41 0.49
Workplace within 4th ring (=1) 14780 0.59 0.49 20573 0.50 0.50
Trip related variables
Travel time 30334 0.87 1.06 42820 0.74 0.98
Travel cost 30334 2.47 5.55 42820 3.83 6.96
Distance<2km 30334 0.25 0.43 42820 0.24 0.43
Distance within 2-5km 30334 0.27 0.45 42820 0.26 0.44

Note: The table reports respondent and trip characteristics of all work commuting trips within the 6th ring road from 2010 and
2014 Beijing Household Travel Survey.Travel time and travel cost variables are those associated with the chosen modes, and are
constructed as shown in Appendix ??. Distance<2km and Distance within 2-5km denotes straight-line distance and captures short to
medium-distance commuting trips. The travel mode shares are shown in Figure 3.

Table 2: Summary Statistics of Housing Data

Mean SD Min Max

Housing attributes
Transaction year 2011 1.89 2006 2014
Price/m2 (Y’000s) 19.83 9.56 5.00 68.18
Unit size (m2) 92.68 40.13 16.71 400.04
Household annual income (Y’000s) 159.71 103.34 6.24 2556.90
Primary borrower age 33.99 6.62 20.00 62.00
Housing complex attributes
Distance to key school (km) 6.05 5.61 0.03 23.59
Complex vintage 2004 8 1952 2017
Green space ratio 0.32 0.06 0.03 0.85
Floor to land area ratio 2.56 1.12 0.14 16.00
No. of units 1972 1521 24 13031
Home-work travel variables
Walking distance (km) 14.10 9.51 0.00 62.92
Driving distance (km) 16.13 10.87 0.00 85.22
Home to subway distance (km) 2.13 2.31 0.04 28.37
Subway route distance (km) 15.17 10.70 0.00 68.40

Note: This table reports statistics from the mortage dataset over 2006-2014. The number of housing transactions is 79,884,
all of which are within the 6th ring road. The dataset is weighted to match the statistics of real-estate listings. Housing
complex is defined as a group of building in the same development. Distance to key school is the distance of home to the
nearest elementary school with a key school designation. Distance to park is the distance to the nearest park or green space.
Home-work travel variables are constructed following the same method as outlined in the household travel survey. Home to
subway distance is the distance from home to the nearest subway station. Subway route distance is the distance between the
two subway stations that are closest to home and work locations.
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Table 3: Estimation Results of Travel Mode Choices

Logit Random Coefficient

(1) (2) (3) (4) (5) (6)

Travel Time (γ1) -1.194 -0.270 -0.191
(0.082) (0.006) (0.006)

Travel Cost/Hourly Wage (γ2) -1.578 -0.788 -0.565 -1.411 -1.424 -2.531
(0.324) (0.028) (0.034) (0.041) (0.052) (0.065)

Random coefficients on travel time (µγ )
Travel Time -0.955 -0.885 -0.931

(0.008) (0.008) (0.012)
Random coefficients on mode-specific constants (σm)
Driving 3.394 3.391

(0.049) (0.054)
Subway 4.470

(0.142)
Bus 3.851

(0.056)
Bike 3.887

(0.054)
Taxi 4.203

(0.353)

Mode*Year FE Yes Yes Yes Yes Yes Yes
Mode*Trip related FE Yes Yes Yes Yes Yes
Mode*Demographic FE Yes Yes Yes Yes
Log-likelihood -116287 -109929 -91119 -87353 -85099 -77706

Implied mean VOT 0.757 0.342 0.339 1.760 1.615 0.956
Implied median VOT 0.757 0.342 0.339 1.557 1.429 0.846

Note: The number of observations are 73,154. All six specifications include a rich set of fixed effects interacting with mode-specific
constants (travel model dummies). Trip related FE includes trip distance bins and the origin and destination dummies (e.g., if the
origin is within 2nd ring row). Demographics FE includes respondent’s age, gender, education, and car ownership. The first three
specifications are multinomial logit while the last three add random coefficients to the model. 200 randomized Halton draws are
used to estimate the random coefficients in the last three specifications. The distribution of the preference on time in the last three
specifications is specified as a chi-square distribution (winsorized at 5th and 95th percentile) with degrees of freedom equals three:
µγ χ2(3) so as to capture the long tail of VOT distribution. The estimates of µγ are provided in the table. The random coefficients on
travel mode dummies (driving, subway, bus, bike, and taxi) are assumed to have normal distribution (walking is taken as the baseline
group). The estimates of σm of those normal distributions for each travel mode are provided in the table. The last row provides the
implied median value of time for each specification. Standard errors clustered at the respondent level are below estimates: ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

52



Table 4: Estimation Results of Housing Choices - Nonlinear Parameters

No EV With EV EV and Random Coef.
Para SE Para SE Para SE

Demographic Interactions
Price (in 1 million RMB)*ln(income) 0.965 0.007 1.005 0.008 1.030 0.016
Age in 30-45*ln(distance to key school) -0.329 0.004 -0.391 0.005 -0.420 0.010
Age > 45*ln(distance to key school) -0.074 0.009 -0.111 0.010 -0.123 0.021
Age in 30-45*ln(home size) 1.343 0.014 1.443 0.015 1.486 0.029
Age > 45*ln(home size) 2.394 0.028 2.665 0.031 2.746 0.061
EVMale 0.709 0.026 0.755 0.006
EVFemale 0.833 0.026 0.893 0.006
Random Coefficients
σ (EVMale) 0.379 0.013
σ (EVFemale) 0.482 0.012

Log-likelihood -206829 -170057 -168808

Note: The estimation uses weighted mortgage plan data from Year 2008-2014. The number of observations is 79,884. The results
are from MLE. The first specification does not include EV (ease of commuting); the second specification does; the third specification
further controls random coefficients on EV terms. EV is constructed by taking observed household demographics into travel model
estimates (Column 6 of Table 3). The big decrease in log-likelihood from the first to the second specification indicates strong
explanatory power of EV term.

Table 5: Estimation Results of Housing Choices - Linear Parameters

OLS OLS IV1 IV1+IV2 IV3 All
(1) (2) (3) (4) (5) (6)

Price (million RMB) -2.240*** -2.191*** -6.283*** -6.454*** -7.091*** -6.596***
(0.186) (0.184) (0.867) (0.583) (1.640) (0.534)

Ln(home size) -3.648*** -3.797*** 3.331** 3.631*** 4.721 3.879***
(0.257) (0.261) (1.505) (1.022) (2.927) (0.969)

Building age -0.043*** -0.029*** -0.125*** -0.129*** -0.144*** -0.132***
(0.007) (0.006) (0.020) (0.014) (0.040) (0.013)

Floor to Area Ratio -0.006 -0.009 -0.023 -0.023 -0.019 -0.023
(0.034) (0.025) (0.032) (0.033) (0.036) (0.034)

Ln(dist. to park) 0.210*** 0.074 -0.389*** -0.408*** -0.475** -0.424***
(0.069) (0.057) (0.117) (0.101) (0.222) (0.103)

Ln(dist. to key school) 0.950*** 0.782*** 0.323** 0.304** 0.210 0.288**
(0.080) (0.137) (0.139) (0.121) (0.213) (0.118)

Year-Month-District FE Y Y Y Y Y Y
Neighborhood FE Y Y Y Y Y

First-stage F 10.5 14.2 9.9 14.2

Avg. Price elasticity 2.96 2.96 -1.04 -1.34 -1.94 -1.44

Note: The number of observations is 79,884. The dependent variable is the mean utilities recovered from the first stage. The first two
columns are from OLS and the last four are from IVs. The floor-area ratio of the complex, a measure of complex density, is the size
of the total floor area over the size of the parcel that the complex is located on. Distance to key school is the distance to the nearest
key elementary school. Column (3) and (4) use IV1 as price instruments, i.e. the average attributes of homes (building size, age, log
distance to park, and log distance to key school) that are within 3km outside the same complex sold in a two-month time window
from a given home. Column (4) and (6) additionally use IV2, i.e. the interaction between the distance related instruments defined in
Column (3) and the winning odds of the vehicle licence lottery as instruments. The winning odds decreased from 9.4% in Jan. 2011
to 0.7% by the end of 2014. Column (5) uses number of homes transacted in the three-month time window in the real estate listings
dataset. Standard errors clustered at the neighborhood-year level are in parentheses: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.53



Table 6: Simulation Results: with Sorting

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing No Policy Driving restriction Congestion pricing
Baseline levels ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Household Income Relative to Median High Low High Low High Low High Low High Low High Low

Panel A: Travel outcomes
Drive 41.65 21.44 -6.07 -2.59 -2.90 -4.54 -2.14 -1.66 -7.44 -3.84 -4.59 -5.60
Subway 9.02 10.77 1.09 0.66 0.75 0.89 4.62 6.06 5.59 6.42 5.12 6.70
Bus 22.44 30.47 1.51 0.26 0.42 0.96 -1.54 -2.53 -0.06 -1.95 -0.92 -1.28
Bike 15.96 24.01 1.54 0.63 0.63 1.48 -0.80 -1.64 0.52 -1.08 -0.27 -0.38
Taxi 2.20 1.32 0.70 0.34 0.51 0.46 -0.16 -0.11 0.42 0.17 0.29 0.27
Walk 8.74 11.99 1.23 0.70 0.59 0.74 0.02 -0.13 0.98 0.28 0.37 0.29
Speed 21.49 3.13 3.13 1.49 4.44 4.61

Panel B: Housing market outcomes
Male member’s distance to work (km) 19.45 18.88 0.01 0.02 -0.15 -0.07 0.33 0.15 0.37 0.15 0.15 0.08
Female member’s distance to work (km) 17.54 11.95 0.01 0.01 -0.12 -0.05 0.39 0.21 0.43 0.21 0.24 0.17
Distance to subway (km) 5.33 4.30 -0.03 0.03 -0.02 0.02 -4.14 -3.44 -4.14 -3.44 -4.14 -3.44

Panel C: Welfare analysis per household (thousand Y)
Consumer surplus (+) -165.3 -19.6 -76.8 -61.3 220.3 100.0 47.8 77.6 131.9 40.2
Toll revenue (+) 115.9 115.9 107.8 107.8
Subway cost (–) 103.0 103.0 103.0 103.0 103.0 103.0
Net welfare -165.3 -19.6 39.1 54.5 117.3 -3.0 -55.2 -25.4 136.7 44.9

Note:Simulated results based on estimated model parameters in Column (6) of Table 3 and Column (6) of Table 5. The simulation shows counterfactual results for 2014 sample
households and homes. The detailed simulation procedure can be found in F. This table shows results with sorting and supply adjustment. In particular, we allow housing supply to
adjust with a price elasticity of two (implying that a Y1,000 price increase would induces a 0.12% increase in housing supply on average). Column (1) shows the baseline results
while columns (2) to (6) shows the differences from column (1). Driving restriction prohibits driving in one of five work days. Congestion pricing is Y0.92 per km to generate same
reduction as driving restriction. High-income household are those with income above the median household income. Subway cost per household includes the construction cost and
the 30-year operating cost equally shared among 7.2 million households. We apportion 100% of it to work commute in our welfare analysis. Toll revenue is the revenue per household
from congestion pricing during a 30-year period (to keep a balanced government budget, the toll revenue is recycled uniformly to each household). Net welfare is consumer welfare
per household after revenue recycling or tax-funded subway construction and operation.
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Table 7: Simulation Results: with Sorting and Housing-Supply Response

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing No Policy Driving restriction Congestion pricing
Baseline levels ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Household Income Relative to Median High Low High Low High Low High Low High Low High Low

Panel A: Travel outcomes
Drive 41.65 21.44 -6.08 -2.60 -2.90 -4.52 -2.32 -1.80 -7.55 -3.93 -4.71 -5.72
Subway 9.02 10.77 1.10 0.68 0.78 0.94 5.00 6.57 5.98 6.95 5.42 7.13
Bus 22.44 30.47 1.52 0.27 0.38 0.87 -1.52 -2.48 -0.06 -1.91 -0.92 -1.25
Bike 15.96 24.01 1.54 0.62 0.62 1.45 -0.86 -1.78 0.42 -1.26 -0.33 -0.51
Taxi 2.20 1.32 0.70 0.34 0.51 0.47 -0.20 -0.15 0.38 0.13 0.27 0.24
Walk 8.74 11.99 1.23 0.69 0.62 0.80 -0.10 -0.36 0.83 0.02 0.28 0.10
Speed 21.49 3.13 3.26 1.13 4.04 4.39

Panel B: Housing market outcomes
Male member’s distance to work (km) 19.45 18.88 0.02 0.03 -0.26 -0.19 0.76 0.61 0.84 0.63 0.47 0.44
Female member’s distance to work (km) 17.54 11.95 0.02 0.02 -0.21 -0.14 0.76 0.60 0.82 0.62 0.52 0.48
Distance to subway (km) 5.33 4.30 -0.04 0.01 -0.09 -0.06 -4.13 -3.45 -4.14 -3.44 -4.14 -3.45

Panel C: Welfare analysis per household (thousand Y)
Consumer surplus (+) -165.4 -18.7 -65.7 -59.1 187.4 105.3 18.3 84.8 108.4 45.9
Toll revenue (+) 115.2 115.2 108.9 108.9
Subway cost (–) 103.0 103.0 103.0 103.0 103.0 103.0
Net welfare -165.4 -18.7 49.5 56.0 84.4 2.3 -84.7 -18.2 114.3 51.9

Note: Simulated results based on estimated model parameters using 2014 housing data. We allow housing supply to adjust with a price elasticity of two (implying that a Y1,000 price
increase would induces a 0.12% increase in housing supply on average). Column (1) shows the baseline results while columns (2) to (6) show the differences from column (1). The
driving restriction prohibits driving in one of five workdays. Congestion pricing is Y0.92 per km to generate the same reduction as the driving restriction. High-income household are
those with income above the median household income. Subway cost per household includes the construction cost and the 30-year operating cost equally shared among 7.2 million
households. We apportion 100% of it to work commute in our welfare analysis. Toll revenue is the revenue per household from congestion pricing during a 30-year period (to keep a
balanced government budget, the toll revenue is recycled uniformly to each household). Net welfare is consumer welfare per household after revenue recycling or tax-funded subway
construction and operation.
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