
NBER WORKING PAPER SERIES

EXPLOITING SYMMETRY IN HIGH-DIMENSIONAL DYNAMIC PROGRAMMING

Mahdi Ebrahimi Kahou
Jesús Fernández-Villaverde

Jesse Perla
Arnav Sood

Working Paper 28981
http://www.nber.org/papers/w28981

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2021

We would like to thank Benjamin Bloem-Reddy, Samira Ebrahimi Kahou, Kevin Leyton-Brown,
Yaniv Plan, Kevin Song, and Vincent Michalski for useful comments. The views expressed
herein are those of the authors and do not necessarily reflect the views of the National Bureau of
Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2021 by Mahdi Ebrahimi Kahou, Jesús Fernández-Villaverde, Jesse Perla, and Arnav Sood. All
rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without
explicit permission provided that full credit, including © notice, is given to the source.

Exploiting Symmetry in High-Dimensional Dynamic Programming
Mahdi Ebrahimi Kahou, Jesús Fernández-Villaverde, Jesse Perla, and Arnav Sood
NBER Working Paper No. 28981
July 2021
JEL No. C02,E00

ABSTRACT

We propose a new method for solving high-dimensional dynamic programming problems and
recursive competitive equilibria with a large (but finite) number of heterogeneous agents using
deep learning. The "curse of dimensionality" is avoided due to four complementary techniques:
(1) exploiting symmetry in the approximate law of motion and the value function; (2)
constructing a concentration of measure to calculate high-dimensional expectations using a single
Monte Carlo draw from the distribution of idiosyncratic shocks; (3) sampling methods to ensure
the model fits along manifolds of interest; and (4) selecting the most generalizable over-
parameterized deep learning approximation without calculating the stationary distribution or
applying a transversality condition. As an application, we solve a global solution of a multi-firm
version of the classic Lucas and Prescott (1971) model of "investment under uncertainty." First,
we compare the solution against a linear-quadratic Gaussian version for validation and
benchmarking. Next, we solve nonlinear versions with aggregate shocks. Finally, we describe
how our approach applies to a large class of models in economics.

Mahdi Ebrahimi Kahou
Department of Economics
University of British Columbia
Vancouver
Canada
mahdi.ebk@gmail.com

Jesús Fernández-Villaverde
Department of Economics
University of Pennsylvania
The Ronald O. Perelman Center
 for Political Science and Economics
133 South 36th Street Suite 150
Philadelphia, PA 19104
and CEPR
and also NBER
jesusfv@econ.upenn.edu

Jesse Perla
Vancouver School of Economics
University of British Columbia
jesse.perla@ubc.ca

Arnav Sood
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213
arnav@arnavsood.com

1 Introduction

We propose a new method for solving high-dimensional dynamic programming problems and

recursive competitive equilibria with a large (but finite) number of heterogeneous agents. The key

to our approach is to exploit symmetry in dynamic programming and concentration of measure

to build a deep neural network that is particularly efficient and easy to train.

Models with many finite agents are very popular in economics. Think about models of in-

dustry dynamics with many firms, models with many regions or countries, or models with many

households. In fact, one can argue that we only use models with a continuum of agents in macroe-

conomics or international trade as a convenient abstraction: the U.S. economy had around 128.45

million households in 2020, not an infinite number of them.

Unfortunately, dealing with multi-agent models is challenging, as we quickly bump into the

“curse of dimensionality” (Bellman, 1958, p. ix). As soon as we have more than a few agents, it

becomes nearly impossible to solve these models or take them to the data. As noted by Powell

(2007), there are two sources for the “curse of dimensionality” in dynamic programming. First,

the cardinality of the state space is enormous. Second, it is difficult to compute highly-dimensional

conditional expectations.

To illustrate these two sources, consider a simple economy. We start with the case that there

is only one agent that produces a single perishable good. Since the good is perishable, there are

no savings. The agent can have high or low productivity in every period and work with high

or low effort. Productivity has persistence: high productivity today makes high productivity

tomorrow more likely. Work effort yesterday affects the disutility of effort today: high effort

yesterday means higher disutility today. The dynamic programming problem of this agent is

trivial. The state has a cardinality of 4 (low productivity today with low work effort yesterday,

low productivity today with high work effort yesterday, high productivity today with low work

effort yesterday, and high productivity today with high work effort yesterday). The agent only

needs to decide whether to work with high or low effort in each of these 4 states.

Let us next modify the model. We will have N agents, with the same environment as before,

except that now each agent produces a differentiated, perishable good but consumes all the N

goods in the economy (to simplify, we assume that each agent behaves parametrically with respect

to all prices, including the price of the good she produces). By introducing many agents, we have

gone from having 4 states to having 4N states. Each agent needs to keep track of the individual

states of all the N agents in the economy: these states determine the current supply and prices of

goods and the (conditional) future distribution of productivities and work effort. Without that

information, the agent cannot make an optimal decision regarding her work effort today (and

hence, her disutility tomorrow). If the economy has 133 agents (a small village), the cardinality

of the state space is 4133, which is larger than the Eddington number, the estimate of protons in

the universe, of 1080.

2

However, not only must the agent keep track of 4N states, but she also must compute the

conditional expectation of her continuation value function over these 4N states. This computation

requires either large sums (if the states, as here, are finite) or complex highly-dimensional integrals

(if the states are continuous). Both tasks become prohibitively expensive as soon as N grows

above the single digits.

This simple example might seem discouraging: we cannot even compute a simple economy!

But it also suggests intriguing possibilities. For example, does an agent need to keep track of

the states of every single agent? Under an appropriate symmetry assumption, it might only be

necessary to keep track of how many agents are in each of the 4 individual states. Imagine, for

instance, that all the goods enter into the agent’s utility function with equal weight. The only

information the agent requires, beyond her own states, is how many agents are in each of the four

possible states. The indices (e.g., whether agent 45 or 79 is the one who has high productivity

today with high or low work effort yesterday) are irrelevant. The cardinality of the new state

space when N = 133 is ≈ 1.56 million points, something we can easily handle with a laptop.

We will show that this result is much more general: it holds in each case where we can find

symmetry in the problem. Since we can include heterogeneity among the agents (e.g., different

discount factors or utility weights) in the definition of the states, there will be plenty of cases

where symmetry holds. In fact, most heterogeneous agent models in economics have a latent but

obvious symmetry imposed by the presence of a Walrasian auctioneer. In general equilibrium,

the auctioneer collects all the excess supply of each agent, aggregates them, and sells them.

This aggregation removes the indices of agents in the economy and the solution of the model

is invariant under all the permutations of other agents’ states. Mathematically speaking, any

function representing the solution belongs to the family of symmetric functions, i.e., the solution

is a function on a set rather than on a vector space (see Macdonald, 1998, for an introduction to

symmetric functions).

Notice that, for symmetry to hold, we do not require agents to have the same state values.

We only require that they behave the same when they happen to have the same state values. To

formalize this idea, we will introduce the notion of permutation-invariant dynamic programming

and describe how we can use powerful results to represent functions invariant to permutations.

But our argument goes even further. Suppose we have many agents and there is an underlying

symmetry assumption. Will we not have something that resembles a law of large numbers when

computing the conditional expectation of the next-period value function? Intuitively, suppose the

continuation utility does not depend too much on the states of any given agent. In that case, the

continuation utility will become essentially constant for all draws of (independent) idiosyncratic

shocks. Hence, we can calculate it with a single Monte Carlo draw from the distribution of

idiosyncratic shocks.

We can show this possibility more carefully by relying on some recent developments in high-

3

dimensional probability theory, concentration of measure.1 Loosely speaking, concentration of

measure states that a “well-behaved” (Lipschitz continuous) function that depends on lots of

independent random variables is essentially constant. Applying this idea to the expected con-

tinuation value function, if we have many agents and their idiosyncratic shocks are independent,

each draw from the distribution of idiosyncratic shocks will deliver, approximately, the same re-

sult. In models with a continuum of heterogeneous agents, we use an extreme form of this result:

usually, we assume that a law of large numbers holds in the economy regarding the idiosyncratic

shocks.2

The beauty of this result is that it reduces an N + 1 dimensional integration (each of the N

idiosyncratic shocks plus the aggregate shock) to a two-dimensional integration: the idiosyncratic

shock of the agent of interest and the aggregate shock. The argument works, a fortiori, when

the idiosyncratic shock is a multidimensional vector, not a scalar. This drastic dimensionality

reduction allows us to use deterministic integration methods such as Gaussian quadrature, as

opposed to Monte Carlo methods, on the remaining variation in the aggregate shock. In other

words: while normally we think of a high-dimensional state space as making integrals more

difficult, we show that a large number of shocks make expectations easier to calculate.

Finally, we train the neural network that implements the permutation-invariant dynamic

programming by choosing training points inspired by the symmetry of the problem. For instance,

consider an economy where the profit is a function of linear aggregate demand. In this case,

a firm’s profit is invariant under the permutation of other firms’ production level: the profit

isoquants are hyperplanes in a simplex. Hence, the sampling is reduced to a two-dimensional

problem: sampling from the space of the firm of interest and the space of hyperplanes in a

simplex. In this paper, we can sample from those hyperplanes by simulating the aggregate

dynamics from initial conditions of interest—and using the equilibrium policy for the dynamics

of each agent. In such a way, our sampling process provides an especially accurate approximation

starting from a finite set of (distributional) initial conditions.

With all these results, we define a general class of recursive competitive equilibrium models

with heterogeneous agents, called permutation-invariant economies, and establish that the value

function and optimal policy of each agent are invariant under permutation of other agents in

the economy. We provide a theorem on how to represent permutation-invariant functions that

can lead to a substantial reduction in the dimensionality of the state space. This functional

1See Vershynin (2018) and Barvinok (2005) for an introduction to high-dimensional probability theory and
concentration of measure.

2As we will explain in detail at the end of Section 3, drawing from the distribution of idiosyncratic shocks,
even just once, is the right thing to do. Instead, setting the shocks to zero (as a naive intuition would suggest if
the idiosyncratic shocks are Gaussian) would miss the typical set of the distribution, which in high dimensions
does not include the mode of the distribution (i.e., zero). Also, notice that our argument of drawing once from
the distribution of idiosyncratic shocks, thanks to concentration of measure, is different from Judd et al. (2017),
who propose precomputing the integrals required in Bellman or Euler equations.

4

representation sheds light on why in some heterogeneous agent models, such as Krusell and Smith

(1998), the first moment of the aggregate distribution is enough to explain the perceived law of

motion, and provides an extension for models that requires more information on the distribution

of aggregates. The spirit of our method is, therefore, to take the ‘big K, little k’ approach and

generalize it to a ‘many big K, one little k’ where each ‘k’ can accurately forecast functions of

the evolution of the other ‘K’ that are invariant to relabeling and permutation.

We illustrate our arguments with a variation of the classic Lucas and Prescott (1971) model of

investment under uncertainty. We pick this model for two reasons. First, this model generates one

of the simplest nontrivial recursive competitive equilibria. For instance, Ljungqvist and Sargent

(2018, ch. 7) use this model to introduce recursive competitive equilibria to students. Thus, the

model is very well understood. Second, a particular case of this model, when the pricing function

is linear, has a known linear-quadratic (LQ) solution, which gives us a classical optimal control

solution against which we can benchmark our results and verify the numerical error. The classical

control solution (which ignores symmetry) requires computations that scale with the cube of the

number of variables (i.e., O(N3)), whereas our approximation method is independent of the scale

(i.e., O(1) for reasonable N).

Furthermore, we can solve the global solution of the LQ model by only fitting it to two data

points, regardless of the number of firms. Given that the closed-form model with linearity only

requires two parameters, this should not be a surprise. The interesting point is that we can do

so even in cases where the guessed solution is heavily over-parameterized (e.g., if we pretend

not to know the exact functional form of the solution and, instead, we try to fit a nonlinear

solution with 10,000 parameters). An even more exciting result is that this solution is found

without directly applying a transversality condition or even using a stationary solution as a

special case of a boundary. Despite possibly tens of thousands of parameters, the process finds

the “right” equilibrium, which generalizes well outside of the small number of points used in the

approximation.3

We also use the LQ solution to show the concentration of measure and permutation invariance

exactly. While, ex-post, these results should not be surprising, they are more general than one

might suspect. To show this, we solve a non-LQ version of the model using neural networks to

represent the optimal policy and value function. This strategy is justified by the observation

that neural networks are universal approximators, i.e., they can get ε-close to any continuous

function (Cybenko, 1989, and Hornik, 1991). Also, neural networks are flexible in their design,

and we have efficient and fast software (e.g., Pytorch and TensorFlow) and hardware (e.g., GPUs)

platforms for training them. Notice, nonetheless, that the neural networks do not cause reduction

3The mathematical theory of highly over-parameterized models (when the number of parameters � the data
points) shows that this class of models, when fitted with stochastic optimization algorithms, generalize by con-
verging to a minimum-norm solution within the space of approximating functions (see Belkin et al., 2019, and
Advani et al., 2020). This minimum-norm solution coincides with the equilibrium we are interested in.

5

of dimensionality: symmetry does.

To frame our paper within the literature, remember that symmetry is a property of a mathe-

matical system that remains invariant under a set of operations or transformations. The existence

of symmetry in a problem can lead to a reduction in dimensionality and, thus, alleviate the curse

of dimensionality, enhance accuracy, and reduce complexity. For instance, symmetry plays a

crucial role in reducing of dimensionality in studying ordinary and partial differential equations

(Walcher, 2019, and Bluman et al., 2010).

Symmetry has been applied in economics before. For instance, Hartford et al. (2016) use

permutation-equivariant symmetry in order to reduce dimensionality to study the best responses

in a normal form game. Sato (1985) and Samuelson (1990) use the Lie groups symmetry to

reduce the dimensionality of income space required to describe aggregate demand. Symmetry is

also implicitly used every time economists solve models with a mean-field approximation whenever

a continuum of agents is assumed.4

But it has been the recent developments in the machine learning literature that have proved

that exploiting symmetry can significantly alleviate the curse of dimensionality in regression and

classification problems. This has been done for data augmentation and designing architectures

for neural networks.

Regarding data augmentation, we can create pseudo-data that reflect the symmetry of the

problem. For instance, if the function of interest is invariant to any permutation of its inputs, the

pseudo-data are all the permutations of independent variables with the same dependent variable.

Chen et al. (2019) provide a comprehensive group-theoretical treatment of data augmentation.

In terms of architecture design, we can design a parametric approximating family of functions

to preserve the symmetry of the problem, such as a neural network that is invariant under the

rotation of its input arguments. This design reduces the size of the set of parameters in the

optimization problem and alleviates over-fitting.5

Our use of permutation-invariant symmetry falls under the architectural approach. We follow

the recent developments in the representation of functions that are invariant under permutation

groups. Zaheer et al. (2017) establish that using permutation invariance and equivariant sym-

metry can lead to a significant reduction in dimensionality. Yarotsky (2018) provides a detailed

treatment of representing permutation-invariant functions with neural networks and provides a

representation that is a universal approximator for permutation-invariant functions. Wagstaff

et al. (2019) illustrate cases where this functional representation fails to reduce dimensional-

ity. Our choice of functional representation is also closely linked to the literature of symmetric

4The Walrasian auctioneer uses symmetry, which manifests as an equilibrium condition on a distribution rather
than individual states. Thus, agents can use the forecast of the distribution to forecast the scalar prices they care
about. Similarly, without aggregate shocks, the evolution of the distribution is deterministic. Hence, agents can
forecast the scalar functions of the distribution imposed by the auctioneer perfectly.

5Lyle et al. (2020) compares the benefits of data augmentation versus architectural design for deep neural
networks.

6

functions, see Prasad (2018) and Zabrocki (2015).

Exploiting symmetry in Markov decision processes (MDPs) to reduce dimensionality was in-

troduced by Ravindran and Barto (2001), who treat symmetry as a homomorphism between two

MDPs that commutes with transition dynamics and preserves the reward function. Similarly,

in our work, the permutation symmetry can be thought of as a homomorphism between two

economies. However, earlier work regarding symmetry has mainly focused on discovering sym-

metries in MDPs rather than exploiting a priori knowledge of symmetry; see Narayanamurthy

and Ravindran (2008).6

Using neural networks as a family of approximating functions to solve a stochastic dynamic

problem in economics can be traced back to Duffy and McNelis (2001). Due to recent sub-

stantial hardware and software advances in training deep neural networks, this method has be-

come popular in solving dynamic models in economics. See, among others, Maliar et al. (2019),

Fernández-Villaverde et al. (2019), Duarte (2018), and Azinovic et al. (2019).

The rest of the paper is organized as follows. Section 2 formally introduces the ideas of

permutation-invariant dynamic programming and concentration of measure. Section 3 presents

our application. Section 4 solves the special case with a linear inverse-demand using the classic

control solution using LQ Gaussian techniques. Section 5 introduces our deep learning imple-

mentation to solve both the LQ and non-LQ cases. Finally, Section 6 explores the full generality

of these techniques.

2 Permutation-Invariant Dynamic Programming and Con-

centration of Measure

This section describes the two ideas that will efficiently tackle highly-dimensional dynamic

programs: permutation-invariant dynamic programming and concentration of measure. Permu-

tation invariance will give us a structure in the solution of dynamic programming problems that

we can exploit, even when the number of states is large. Concentration of measure will let us deal

with the complex conditional expectations that appear in highly-dimensional dynamic programs.

In Section 3, we will present a model of investment under uncertainty where we can apply these

two ideas.

But, before introducing permutation invariance and concentration of measure, we briefly

discuss the concept of a permutation matrix and the associated symmetric group of permutation

matrices under matrix multiplication.

6There is also an emerging literature in deep reinforcement learning that uses symmetry to reduce dimension-
ality (van der Pol et al., 2020).

7

2.1 The symmetric group of permutation matrices

We denote a column vector of length N of 1s or 0s as 1N and 0N respectively. Similarly, we

write matrices of size M × N of 0s or 1s as 0MN and 1MN respectively, and an identity matrix

of size N as IN . Notice that 1NN = 1N1>N , a result that will be helpful momentarily.

A permutation matrix is a square matrix with a single 1 in each row and column and ze-

ros everywhere else. These matrices are called “permutation” because, when they premultiply

(postmultiply) a conformable matrix A, they permute the rows (columns) of A.

Let SN be the set of all n! permutation matrices of size N ×N . For example,

S2 =

{[
1 0

0 1

]
,

[
0 1

1 0

]}
.

The first element of S2 is the identity matrix, which leaves rows and columns of a multiplied

matrix A unchanged, while the second element swaps the rows or columns of A. The set SN
forms a symmetric group under matrix multiplication. See Appendix A for further notation.

2.2 Permutation-invariant dynamic programming

We want to study a class of dynamic programming problems where the aggregate state vector

X can be permuted. To do so, we start by defining a general dynamic programming problem for

environments with many agents and using recursive notation.

Definition 1 (A ‘big X, little x’ dynamic programming problem). Consider the dynamic pro-

gramming problem:

v(x,X) = max
u

{
r
(
x, u,X

)
+ βE [v(x′, X ′)]

}
(1)

s.t. x′ = g(x, u) + σw + ηω (2)

X ′ = G(X) + ΩW + ηω1N . (3)

Here, x is the individual state of the agent, X is a vector stacking the individual states of all of

the N agents in the economy, u is the control, w is random innovation to the individual state of

the agent, which gets stacked in W ∼ N (0N , IN) where, without loss of generality w = W1, and

ω ∼ N (0, 1) is a random aggregate innovation to all the individual states. Also, v : RN+1 → R
is the value function, r : RN+2 → R is the return function, g : R2 → R is the deterministic

component of the law of motion for x, G : RN → RN is the the deterministic component of the

law of motion for X, and E [·] is the conditional expectations operator.

Extending the previous notation to the case where every agent has several state or control

variables is straightforward but tedious. To simplify derivations, from now on, we focus on the

8

case where r(·), g(·), and G(·) are differentiable.

Definition 2 (Permutation-invariant dynamic programming). A ‘big X, little x’ dynamic pro-

gramming problem is a permutation-invariant dynamic programming problem if, for all (x,X) ∈
RN+1 and all permutations π ∈ SN , the reward function r is permutation invariant:

r(x, u, πX) = r(x, u,X), (4)

the deterministic component of the law of motion for X is permutation equivariant:

G(πX) = πG(X), (5)

and the covariance matrix of the idiosyncratic shocks satisfies

πΩ = Ωπ. (6)

The intuition behind the previous definition is that we are interested in dynamic programming

problems where we care, for example, about the distribution of capital among the agents in the

economy, but not whether the rich agent is agent 12 or agent 27. If agent 12 swaps her capital with

agent 27 (and other relevant states such as her preference shock or income level), the equilibrium

dynamics of the economy would still be the same.

The next proposition shows a basic property of permutation-invariant dynamic programming.

Proposition 1 (Permutation invariance of the optimal solution). The optimal solution of a

permutation-invariant dynamic programming problem is permutation invariant. That is, for all

π ∈ SN :

u(x, πX) = u(x,X) (7)

and

v(x, πX) = v(x,X). (8)

Proof. Appendix C.1

Building on our previous example, Proposition 1 tells us that, if the equilibrium dynamics

of the economy do not change if agent 12 swaps her capital with agent 27, the policy and value

functions of agent 1 will not change either. This straightforward property allows us to write the

solution of the problem using a remarkable result regarding the representation of permutation-

invariant functions.

Proposition 2 (Representation of permutation-invariant functions). Let f : RN+1 → R be a

9

continuous permutation-invariant function under SN , i.e., for all (x,X) ∈ RN+1 and all π ∈ SN :

f(x, πX) = f(x,X).

Then, there exist L ≤ N and continuous functions ρ : RL+1 → R and φ : R→ RL such that:

f(x,X) = ρ

(
x,

1

N

N∑
i=1

φ(Xi)

)
.

Proof. The proof can be found in Wagstaff et al. (2019).

This result is powerful: if we can find functions ρ and φ with a small L, we can represent

highly-dimensional functions, such as the policy and value functions of models with high N

in a much more efficient way and, therefore, exploit the symmetric structure of the dynamic

programming problem to solve it quickly and accurately.

2.3 Concentration of measure

We complete this section by introducing the idea of concentration of measure. First, we need

to have an appropriate notion of boundedness and how it applies to gradients of functions of

Gaussian random variables.

Definition 3 (Bounded functions in N). Let:

H(M) ≡ {y ∈ RN : |yi| ≤M ∀i = 1, ..., N}

be an N-dimensional hypercube in RN . A function f : RN → R is bounded in N if for every M

there exists KM such that

sup
y∈H(M)

|f(y)| < KM

where KM is a constant that does not depend on N , but may depend on M .

A simple example of a symmetric function fulfilling Definition 3 is the mean, f(X) = 1
N

∑N
i=1Xi

since supy∈H(M) |f(y)| < M for all N . The main purpose of this definition is to reject functions

that explode in the number of states, such as the f(X) =
∑N

i=1Xi since supy∈H(M) |f(y)| = NM .

Definition 4 (Expected gradient bounded in N). Let f : RN → R be a bounded function in N

and z ∼ N (0N , IN) be a normalized Gaussian random vector. The function f has its expected

gradient bounded in N if there exists a C such that:

E
[
‖∇f(z)‖2

]
≤ C

N
.

10

where C does not depend on N .

Loosely speaking, Definition 4 tells us that a function has an expected gradient bounded in

N when its value does not change too fast when its Gaussian random arguments vary by a small

amount.

The next proposition delivers the intuitive result that, for a large N , a function f(·) with an

expected gradient bounded in N is essentially a constant. That is, the measure of its values is

“concentrating.”

Proposition 3 (Concentration of measure when expected gradients are bounded in N). Suppose

z ∼ N (0N ,Σ), where the spectral radius of Σ, denoted by ρ(Σ), is independent of N and f :

RN → R is a function with expected gradient bounded in N . Then:

P
(∣∣f(z)− E [f(z)]

∣∣ ≥ ε
)
≤ ρ(Σ)C

ε2
1

N
.

Proof. Appendix C.2

As Ledoux (2001) puts it: “A random variable that depends in a Lipschitz way on many

independent variables (but not too much on any of them) is essentially constant.”

3 An Application: A Model of Investment

To illustrate how permutation-invariant dynamic programming and concentration of measure

operate in a common economic application, we propose an extension of the classic model of

investment under uncertainty by Lucas and Prescott (1971). We will consider an industry with

a large number of firms and follow the recursive formulation in Prescott and Mehra (1980). In

contrast to Lucas and Prescott (1971), we will not require that all firms have symmetric states,

just that they have symmetric policy functions.

More concretely, we study an industry consisting of N ≥ 1 price-taking firms, each producing

a single good using capital under constant returns to scale. By picking appropriate units, we can

consider that a firm i produces output x with x units of capital. We can stack the production

(or capital) of the whole industry in the vector X ≡ [x1, . . . xN]>.

The capital of the firm depreciates at a rate δ ∈ [0, 1], is increased by investment u, and

is shifted by an i.i.d. idiosyncratic shock w ∼ N (0, 1) and a single i.i.d. aggregate shock,

ω ∼ N (0, 1), common to all firms (adding persistence for the shocks is trivial but complicates

notations). Thus, the law of motion for capital is:

x′ = (1− δ)x+ u+ σw + ηω.

Due to adjustment frictions, investing u has a cost, in valuation terms, c(u) = γ
2
u2.

11

We assume that the (inverse) demand function for the industry is, for some ν > 0 and ζ > 0:

p(X) = α0 − α1

(
1

N

N∑
i=1

max{0, xi}ν
)ζ

. (9)

When ζ = 1, this function –an affine transformation of the power-mean– is differentiable almost

everywhere. The max operator ensures the inverse demand function is well defined even for

negative outputs.

Since we will be looking at competitive equilibria where a firm is a price taker, the firm does

not consider the impact of its individual decisions on p(X). Also, all firms use their cash flow to

finance their investment, u. Hence, the period profits of firm x are:

profits = p(X)x− γ

2
u2.

The dynamic problem of the firm is to choose u to maximize the expected present discounted

value of the firm at discount rate β.

Since the firm is a price taker, its Bellman equation takes the evolution of X as given and

determined by the equilibrium policy of all firms, including itself. In the case of a single repre-

sentative firm, where N = 1, this formulation nests the classic ‘big K, little k’ approach.

First, we write such a Bellman equation considering X as a vector, as it is the most common

practice in economics.

Bellman equation with vector X The firm of interest with capital x takes a symmetric

policy û(·, X) as given for all other firms in X. Without loss of generality, we assume that the

firm is the first in the vector, i.e., x = X1. With this assumption, we can write the recursive

problem of the firm taking the exogenous policy û(·, X) as:

v(x,X) = max
u

{
p(X)x− γ

2
u2 + βE [v(x′, X ′)]

}
(10)

s.t. x′ = (1− δ)x+ u+ σw + ηω (11)

X ′i = (1− δ)Xi + û(Xi, X) + σWi + ηω, for i ∈ {2, ..., N} (12)

X ′1 = (1− δ)X1 + û(X1, X) + σw + ηω. (13)

Four points deserve further explanation. First, the expectation in equation (10) is taken over

the i.i.d. idiosyncratic shocks {w,W2, . . .WN} and the aggregate shock ω. Second, equation (11)

is just the law of motion of capital of the firm given its control u. Third, equation (12) is the

forecast the firm makes over the evolution of the distribution of capital of all firms given the

exogenous policy. Fourth, equation (13) takes care of the contribution of the firm’s own policy

to the aggregate state X. When σ > 0, we can let the firm consider that w = W1. When N is

12

sufficiently large, this last point becomes irrelevant for the optimal u and we could remove the

special case of that correlated shock, combining (13) into (12). In the case of N = 1 and µ = 0,

this formulation exactly nests the textbook ‘big-K, little-k’ example derived in Ljungqvist and

Sargent (2018), Section 7.2.

Next, we show that it is easy to rewrite the previous problem considering X as a set. While

both formulations look similar cosmetically, the conditions for treating the aggregate distribution

as a set rather than a vector are essential to our method.

Bellman equation with Set X To use our results, we need to show that the investment

model described in (10) to (13) satisfies all the conditions of a permutation-invariant dynamic

programming problem in Definition 2.

First, to show that the payoff is permutation invariant according to equation (4), it is sufficient

for the p(X) function in equation (9) to be permutation invariant. This is easily shown since the

function is an affine transformation of a power mean.

Second, the law of motion must be permutation equivariant according to equation (5). This

is shown more formally in Appendix D.1, but the intuition is that, conditional on a permutation-

invariant û(·, X), we can reorder any of the indices in equations (12) and (13), i.e., X ′i = (1−δ)Xi+

û(Xi, X) toX ′j = (1−δ)Xj+û(Xj, πX) for the permutation matrix π since û(Xj, πX) = û(Xj, X).

Finally, to show that the covariance matrix fulfills condition (6) from equations (12) and (13),

notice that the idiosyncratic shocks of other agents are embodied in the identity matrix times σ.

Therefore, for all permutation π ∈ SN , πσIN = σIN .

Hence, by Proposition 1, the solution to the investment model (u, v) is permutation invariant

and can be treated as a function on sets rather than a vector space (i.e., the ordering of the inputs

does not matter). If we create a tuple of the states and the corresponding shocks as (X,W), the

set equivalent of equations (12) and (13) becomes:

X ′ = {(1− δ)x̂+ û(x̂, X) + σŵ + ηω for all (x̂, ŵ) ∈ (X,W) \ (x,w)}
∪ {(1− δ)x+ û(x,X) + σw + ηω} . (14)

As before, the special case of the x in expression (14) is to ensure the firm does not take

its choice into account when forecasting the evolution, but can still allow for the correlation of

shocks when calculating expectations. While this is important for correctness with very small N

–and in particular nesting the N = 1 case– it has almost no quantitative impact as N increases.

For that reason, we will drop the special case in further calculations in this section, effectively

decoupling x from the set X. Since the forecast X ′ is only used for expectations, this is equivalent

to assuming that the firm does not take into account that its contribution to X is correlated with

its own shock when calculating expectations of X ′.

13

Using this simplification, we can rewrite equations (10) to (13) as:

v(x,X) = max
u

{
p(X)x− γ

2
u2 + βE [v(x′, X ′)]

}
(15)

s.t. x′ = (1− δ)x+ u+ σw + ηω (16)

X ′ = {(1− δ)x̂+ û(x̂, X) + σŵ + ηω for all (x̂, ŵ) ∈ (X,W)} . (17)

The expectation in (15) is taken over w ∈ R, ω ∈ R, and W ∈ RN , all independent normal

shocks. This reformulation allows us to solve for the equilibrium with functions on sets rather

than vectors and to use the representation in Proposition 2.

Since the problem fulfills the requirements of Definition 2 for any permutation-invariant û(·, ·),
Proposition 1 tells us that we have a permutation-invariant optimal solution. Since in the sym-

metric equilibrium every agent solves the same policy, the û(x,X) is also permutation invariant,

which we needed to ensure for the law of motion, (5), to be equivariant. Thus, we are ready to

define a symmetric competitive equilibrium.

Definition 5. An equilibrium is a v(x,X) and û(x,X) such that:

• Given û(x,X), v(x,X) is the value function solving (15) for each agent and u(x,X) is the

optimal policy function.

• The optimal policy is symmetric, i.e., u(x,X) = û(x,X)

In this paper, we focus on problems that the optimal solution is unique and can be found via

a well-defined Euler equation, though our techniques are not specific to that class of models.

Proposition 4. For a permutation-invariant p(X), the Euler equation takes the form:

γu(X) = βE [P (X ′) + γ(1− δ)u(X ′)] (18)

X ′ = {(1− δ)x̂+ u(X) + σŵ + ηω, for (x̂, ŵ) ∈ (X,W)} . (19)

Proof. See Appendix C.3.

The economic interpretation of the Euler equation (18) is standard. The firm weighs the

marginal cost of an additional unit of investment, γu(X), against the benefit of additional profits

from that marginal increase in output at a price p(X ′) plus the value of investment after de-

preciation. In this application, the policy becomes independent of x. That result is, however,

incidental. If we had some curvature on x in the revenue function (as we will have in an extension

in Section 6.1), the policy will not be independent of x.

Later, we will solve our model by minimizing the Euler residuals, using equation (19) for the

law of motion of X ′:

ε(x,X) ≡ γu(x,X)− βE [P (X ′) + γ(1− δ)u(x′, X ′)] . (20)

14

Dimensionality and intuition on the problem structure While seemingly simple, the

dimensionality of the Euler equation (18) is nontrivial. Consider if N was a thousand, then

u(x,X) is a policy function on a thousand and one dimensional state-space. Furthermore, even

given a u(x,X) function, the expectation is taken over a thousand dimensions of ŵ ∈ W draws

and a single dimension for ω, correlated in the evolution of each agent state. It is not feasible to

solve this problem with standard methods.

But hope is not lost. First, think about the expectation in the simple case of η = 0 but σ > 0:

while considering a thousand individual forecasts of x′ from (19) is computationally intractable,

since N is large, a firm may have an accurate forecast of functions of the distribution of x′. In

fact, the firm does not care about the individual x′ unless its u(·, X) depends a great deal on a

single x̂ (hence the important of boundedness of the gradient for the concentration of measure).

In the case where firms do not care about the individual x′, a forecast of the distribution

is good enough. Furthermore, when η = 0 and N is large, the distribution evolves almost

deterministically. Similarly, even when there are aggregate shocks, an agent may have an accurate

forecast of functions of the distribution conditional on an aggregate shock realization.7

Next, consider the structure of u(·, X). Since the price function was invariant to permutations,

we know that the policy function will be invariant as well. Hence, even if the firm cannot

accurately predict an individual x̂ ∈ X without large amounts of computations, it only needs to

predict the general distribution of X ′ rather than each element in it. This is the essence of the

permutation invariance, i.e., u(·, πX) = u(·, X) for any permutation π of X.

The interaction of these provides the intuition for how to simplify the expectations. If u(·)
and p(·) are functions of a large number of random x̂′ ∈ X ′, but do not depend too much on

any individual one of them (as defined by the notion of bounded gradients, Definition 4), then

the expectation conditional on the aggregate shock may be close to a deterministic function.

Conditional on any aggregate shocks, the distribution evolves close to a deterministic function,

and the p(X ′) and u(·, X ′) are functions of the distribution, so they are fully predictable. In

practice, this means that if we do a Monte Carlo expectation drawing random X ′ consistent with

the law of motion, then for a large enough N , we only need a single draw of individual shocks

according to Proposition 3.

In the case of a linear p(·), we can set the draw of all ŵ ∈ W and ω to be zero, which relies

on certainty equivalence. However, in the more general cases, we will need to draw a random W .

The intuition is that, in high dimensions, the typical set of a measure does not include the mode of

the distribution (i.e., the N -dimensional zero). For example, an N -dimensional Gaussian random

variable concentrates on a hypersphere of radius
√
N , rather than at the origin. Furthermore,

the distance between the typical set and the origin increases with the dimensionality of the

7The extreme case of this result appears in models à la Aiyagari-Krusell-Smith. With a continuum of agents,
we only care about the distribution, not the position of each agent on it.

15

distribution. See Vershynin (2018) and Fernández-Villaverde and Guerrón-Quintana (2020) for

a formal definition of a typical set, examples, and more details.

4 A Symmetric Linear-Quadratic Model of Investment

In this section, we focus on the case where the aggregate price p(X) has a linear structure

and the revenue has linear dependency on the agents’ states, i.e., ν = ζ = 1. This choice of

parameters reduces the problem to a linear-quadratic (LQ) dynamic programming problem as

described in Ljungqvist and Sargent (2018, Section 7.2)—except with N ≥ 1 firms.8

The LQ formulation helps us along two dimensions. First, this simple environment lets

us formally demonstrate some of the fundamental symmetry and concentration of measure in

Section 2 that we will exploit in solving this model with neural network approximations for the

non-LQ version of the model. Second, this formulation will provide us with an accurate solution

using classical optimal control techniques against which we can benchmark our solution method.

4.1 The linear-quadratic regulator formulation

We start by working with a vector. While this is unlike Proposition 4, it simplifies our notation.

As before, without loss of generality, assume that the x in (16) is the first element of X. Denote

the state of all firms and a constant term as ~x ≡
[
1 x X>

]>
≡
[
1 x x X2 . . . XN

]>
∈

RN+2 and the vector of all Gaussian shocks as ~w ≡
[
ω W>

]>
=
[
ω w W2 . . . WN

]>
∼

N (0, IN+1).

Next, define π ∈ S to be a permutation represented by a (N + 2) × (N + 2) permutation

matrix where the lower-right N×N block is in SN , i.e., holding the first and second entries fixed.

That is, we are looking at permutations of the form

π =

 1 0

0 1

0>N
0>N

0N 0N πN

 , (21)

where πN ∈ SN as defined in Section 2.1.

8Anderson et al. (1996) offer a detailed mathematical treatment of LQ dynamic programming, dealing with
topics such as existence, uniqueness, and convergence.

16

If we define the matrices:

A ≡

 1 0 0>N
0 1− δ 0>N

H01N 0N (1− δ)IN + H1

N
1N1>N

 (22)

B ≡
[

0 1 0>N

]>
(23)

C ≡
[

η σ 0>N−1

η1N σIN

]
(24)

R ≡

 0 α0

2
0>N

α0

2
0 − α1

2N
1>N

0N − α1

2N
1N 0N0>N

 (25)

Q ≡
[
γ
2

]
, (26)

we can write the problem as an LQ optimal regulator as derived in Appendix D.1.9

Proposition 5 (LQ formulation). Taking H0 and H1 as given, each firm solves:

v(~x) = max
u

{
−~x>R~x− u>Qu+ βE [v(~x)]

}
(27)

s.t.~x′ = A~x+Bu+ C ~w (28)

With solutions characterized by a P , d, and F :

v(~x) = −~x>P~x− d (29)

u(~x) = −F~x. (30)

A symmetric recursive competitive equilibrium is defined as H0 and H1 such that:

F = −
[
H0 0 H1

N
H1

N
. . . H1

N

]>
= −

[
H0 0 H1

N
1>N

]>
. (31)

Furthermore, both the control u(·) and value function v(·):

1. are invariant to permutations π ∈ S as defined by (21);

2. have expected gradients bounded in N , according to Definition 4:

∇Wu(~x′) =
σH1

N
1N ; (32)

9See also Ljungqvist and Sargent (2018, Ch. 5 and 7), in particular, Section 5.3 and exercises 5.11, 5.12, 7.1,
and 7.2.

17

3. have a concentration of measure according to Proposition 3 when calculating with a Monte

Carlo draw rather than certainty equivalence, which leads to —for some Cv independent of

N :

P
(∣∣u(~x′)− E [u(~x′) | w, ω, ~x]

∣∣ ≥ ε
)
≤ σ2H2

1

ε2
1

N
(33)

P
(∣∣v(~x′)− E [v(~x′) | w, ω, ~x]

∣∣ ≥ ε
)
≤ σ2C2

v

ε2
1

N
; (34)

Besides, the Euler residual ε(X;u) is a Gaussian random variable, when calculating with a Monte

Carlo draw rather than certainty equivalence, as follows

ε(X;u) ∼ N
(

0,
β2σ2

[
α1 − γ(1− δ)H1

]2
N

)
. (35)

Proof. See Appendix D.1 for the proof using classic LQ-Gaussian control, Appendix D.2 for

permutation invariance, and Appendix D.3 for concentration of measure

As a demonstration of some of the symmetry properties, we will sketch out the proof for u(·)
in Proposition 5, where we take the functional form of F as given.

1. Since F as defined in (31) is identical for all but the first two elements, it aligns with the

block structure of the permutations. Hence, for any of the π in (21), πF = F , which ensures

that u(·) is symmetric in all changes to the X vector.

2. The gradient of an affine function is constant. Hence, for any ~w, the policy next period is

u(A~x+Bu+ C ~w). Given the block structure of F and C, we differentiate with respect to

W in the ~w to find:

∇Wu(A~x+Bu+ C ~w) =
σH1

N
1N (36)

Therefore, the square of the norm of the gradient of the policy can be bounded as:

E
[
‖∇Wu(~x′)‖2

]
=

(
N∑
i=1

σH1

N

)2

=
σ2H2

1

N
. (37)

3. Since W ∼ N (0N , IN), the spectral radius of IN is 1 and the concentration of measure

follows from (32) and Proposition 3.

Recall that, in classic LQ control, certainty equivalence allows us to calculate the policy u(·)
setting ~w = 0N+2 in the maximization (27), while the variance of the shock only enters into the d

18

of the solution (29). The d can be decomposed into a component related to the ω aggregate shock

and another for the W associated with the finite number of firms. Consistent with intuition, as

N goes to infinity, the component of d associated with the idiosyncratic shocks goes to 0. That

is, conditioning on the aggregate shock, the firm can get closer and closer to the deterministic

forecast of the distribution of X ′, at which point certainty equivalence is no longer necessary.

Given that we know the exact solution, certainty equivalence gives us a closed-form expression

for the numerical error associated with using a single Monte Carlo draw for the expectation, which

can serve as a guide for the quality of the approximation in the many cases of interest where

certainty equivalence would not hold.

To illustrate some of these ideas, we fix the model parameters at conventional levels. Unless

stated otherwise, we will have σ = 0.005, η = 0.001, α0 = 1, α1 = 1, β = 0.95, γ = 90, ζ = 1, ν = 1,

and µ = 0. In terms of solving for an equilibrium in Proposition 5, we guess an H0 and H1, solve

the LQ problem as a matrix Ricatti equation, and then find the fixed point of H0 and H1.

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of ε(X; u)

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of u(X ′) Errors

Figure 1: The concentration of Euler residuals ε(X;u) and the optimal policy u(X ′) for ν = ζ = 1.

The left panel of Figure 1 plots the standard deviation of the Euler residuals ε(X;u) induced

by the concentration of measure approximation as we increase the number of firms in the industry

and we solve the model with the algorithm described above. By the time we get to 10,000 firms,

the standard deviation of the Euler errors is 2.4× 10−4. In the right panel of Figure 1, we draw

the standard deviation of the optimal policy u(X ′) for the linear aggregate prices given the same

Monte Carlo approximation and find the standard deviation of the policy error is 2.5× 10−6 for

N = 10, 000 and 2.2× 10−5 for our baseline of N = 128.

19

4.2 Why do we need a functional representation?

While the algorithm outlined in the previous subsection works in delivering accurate solutions,

as N becomes large, it is too slow, as it requires computations of order O(N3)). In comparison,

the specialized algorithms we will introduce in Section 5 that exploit the symmetry of the dynamic

programming problem will only require computations of order O(1) for reasonable N .

For instance, if it is known that optimal policy is permutation invariant, linear, and does not

depend on x0, Proposition 2 tells us that:

u(x,X) = H0 +
1

N
H1

N∑
i=1

Xi (38)

= ρ

(
1

N

N∑
i=1

φ(Xi)

)
. (39)

In other words, φ : R → R1 (i.e., L = 1) is the identity function φ(X) =
[
X
]

and ρ : R1 → R
such that ρ(y) = H0 + H1y for some undetermined H0 and H1. In this case, regardless of the

number of firms N , the problem is two dimensional in the space of parameters. See Appendix D.4

for the functional representation of v(x,X).

We move now to provide a detailed treatment of the representation of the optimal policy

function when the only a priori knowledge available is the permutation invariance of the optimal

policy function, but while certainty equivalence is not assumed or does not hold.

5 A Deep Learning Implementation

Our goal is to search for a policy function, u(X), that satisfies Proposition 4 and works much

faster than the standard LQ solution. We are interested in a global solution that is not just

accurate in a ball around some particular Xss ∈ X (usually, but not necessarily, the steady

state of the model), but beyond it as well. However, we will not require that the solution

needs to be accurate for any X ∈ X . In particular, we want the u(·) to generalize well on

paths
{
X1
t , X

2
t , . . . X

J
t

}T
t=0

that are likely were we to start from a particular (or finite number)

of distributional initial conditions
{
X1

0 , X
2
0 , . . . X

J
0

}
. An extreme version of this idea would be

to focus our effort on getting an accurate solution along the transition path after an unexpected

shock. Fortunately, we will see that the solutions will do much better in many cases and will be

accurate in a much larger set of points.

20

5.1 Solution method

Our solution algorithm assumes a function form u(X; θ). A common choice might be a

polynomial with a set of weights θ. Then, we pick points in the X space and minimize a loss

function (e.g., mean squared error of the Euler residuals, as in equation (20)) with respect to θ.

The points can be some collocation nodes, simulated points à la Rust, or many others.

Thus, the algorithm starts by following the spirit of the classical collocation-style approaches.

We diverge in using relatively few points in X and in ignoring stationarity in both the simulation

and the solution. In particular, we use the concentration of measure described in Appendix B

to calculate the integral over the W shocks in (18). To do so, though, we must condition on the

aggregate ω shock to ensure that Definition 4 holds.

5.2 Symmetric approximations

We will consider any parametric specification for the u(·) function that can be implemented

in a machine learning framework as a neural network. It can be as simple as a 2-parameter

specification to find the H0 and H1 that implement the affine ρ and φ in equation (38), or it can

be flexible representations with many parameters. Symmetry within this model is encoded in the

structure of the approximating function. For example, the LQ solution in equation (38) has a

built-in symmetry on the X vector by taking its mean. We will use the representation theorem in

Proposition 2 to implement approximations where the functional form is not known and choose

L, and neural networks for ρ and φ separately.

Symmetry will allow us to tackle a potential problem of deep learning: its reliance on heavily

over-parameterized models, indexed by a number of parameters frequently several orders of mag-

nitude greater than the number of available data points. Recall that deep learning approximates a

function f(·; θ) by composing a set of activation functions. For example, we can choose the activa-

tion functions {f1(·; θ1), f2(·; θ2), f3(·; θ3)} and then approximate f(·; θ) ≡ f1(f2(f3(·); θ3); θ2); θ1).
Suppose we can impose some structure on the approximation. In that case, we can get a nesting

of functions that is considerably more efficient than blind nesting.10

Symmetry is one clear example of structure we can encode in the approximation by using

the representation theorem in Proposition 2 to design our neural network. For instance, we

can use rectified linear units (ReLU), a common nonlinear specification in deep learning, to

approximate the functions φ and ρ. In particular, our (one-layer) approximating function will

be f(x; θ1, θ2) = θ1 max (θ2x, 0), where the max is the point-wise maximum, θ2 ∈ RN×M and

10For instance, Krizhevsky et al. (2012) use the fact that images are invariant under translational and reflection
transformations to increase the accuracy of image recognition algorithms (e.g., a mirror image of a cat must be a
cat). Clark and Storkey (2015) substantially enhance the performance of learning Go by encoding symmetry under
rotation in their algorithm since Go is a board game where the board is invariant under rotation. Hartford et al.
(2016) use permutation-equivariant symmetry to reduce dimensionality in the approximation of best responses in
a normal form game.

21

θ1 ∈ RM×1 are matrices of unknown coefficients found in the fitting procedure, and M ≥ N is

the width of the model. To make the network “deeper,” we could have multiple layers of these,

e.g., f(x; θ1, θ2, θ3) = θ1 max (θ3 max (θ2x, 0)).11

A surprising benefit of a high-dimensional approximation is the “double-descent” phenomenon

in machine learning (see Belkin et al., 2019, and Advani et al., 2020). In classical statistics, the

bias-variance trade-off tells us that the generalization error of a function approximation becomes

large when the number of free parameters approaches the number of data points (at the limit,

when the number of free parameters is equal to the number of data points, we have a simple

interpolation). For that reason, one typically wants to choose a smaller number of free parameters

than the number of data points. The double-descent phenomenon, which is shown with many

machine learning algorithms, is that if one further increases the number of parameters far above

this interpolation threshold, then the generalization error begins to decrease again. That is, often

the cure to over-fitting is to add more parameters. We explore this topic in Section 5.5, where

we consider the lack of treatment of transversality conditions and stationarity in more detail.

5.3 Solving the LQ case with neural networks

Now, we solve our investment model in the LQ case using a neural network that takes ad-

vantage of symmetry. Then, we will compare that solution against the closed-form LQ solution

solved using classic control in Section 4. Finally, we will use the same neural network for the case

that is not LQ.

First, we will consider an approximation with φ as a finite set of moments in the same spirit

as Krusell and Smith (1998) or the deep-learning model of Fernández-Villaverde et al. (2019).

Second, we consider approximating φ by a flexible ReLU network. In both cases, ρ is left as a

highly parameterized neural network. This model is fit using simulations from a single initial

condition and only 16 trajectories from t = 0 to 63 (including both aggregate and idiosyncratic

shocks). Interestingly, it is not important that the transition is very close to any stationary

solution (i.e., this does not require a hidden transversality condition or some form of backward

induction from a steady state) or that a small or large number of trajectories are used. In fact,

in Section 5.5, we solve a version with only a few of those data points.

Baseline specifications We call the approximation of φ using the first moment φ(Identity),

using the higher moments (four in our case), φ(Moments), and the more flexible ReLU-based

neural networks (with two layers each with 128 nodes) φ(ReLU). Across all of their layers,

the baseline φ(Identity), φ(Moments), and φ(ReLU) have 49.4K, 49.8K, and 66.8K parameters

respectively. In these three approximations, ρ is represented by a neural network with four layers,

11Experience suggests it is better to be deep than wide for the same number of parameters, though the computer
science theory explaining this result is in its infancy.

22

each with 128 nodes.

Our first check is on the accuracy of the solution. Figure 2 shows the mean squared error

of the Euler residuals at each time step on the equilibrium path (averaged over 256 different

simulated trajectories) and the corresponding 95th percentile bandwidth of those errors, and

linear demand (i.e., ν = ζ = 1). The left panel shows the results for φ(Identity), the center

panel shows the results for φ(Moments), and the right panel shows the result for φ(ReLU). Both

models are highly accurate. However, the model with ReLU is especially stable. This result can

be interpreted as the function generalizing very consistently because of —rather than in spite

of— the extra parameters.

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(Moments)

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(Identity)

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(ReLU)

4

6

×10−7

Figure 2: The Euler residuals for ν = ζ = 1 and N = 128 for φ(Identity), φ(Moments), and
φ(ReLU). The dark blue curve shows the average residuals along equilibrium paths for 256
different trajectories. The shaded areas depict the 2.5th and 97.5th percentiles.

To interpret the scale of this Euler error, Figure 3 compares a simulated economy with aggre-

gate shocks using the same approximations as in Figure 2 and the analytical solution provided

by the algorithm described in Section 4.1. The red dashed trajectory provides the analytical

solution, the orange trajectory depicts the solution obtained by φ(Moments), the blue trajectory

depicts the solution obtained by φ(ReLU), and the green trajectory depicts the solution obtained

by φ(Identity). All four policies are almost identical.

While these figures show that the solution is very accurate, we need to gauge whether the

performance is practical, and—in particular—whether the “curse of dimensionality” has been

sidestepped. Figure 4 shows the performance for φ(ReLU) as a function of N . The left panel

shows the computation time in seconds.12 The right panel shows the MSE of Euler residuals

12The time is calculated from the beginning of the fitting process until the mean squared Euler error reaches
1 × 10−6, which is chosen to be in the same order of magnitude as the error coming from the concentration of
measure approximation of the integral in Figure 1 when N =128.

23

0 10 20 30 40 50 60
Time(t)

0.024

0.026

0.028

0.030

0.032

0.034

u(Xt) with φ(ReLU) and φ(Moments): Equilibrium Path

u(Xt), φ(ReLU)

u(Xt), φ(Moments)

u(Xt), φ(Identity)

u(Xt), Analytical

54 55 56

0.0340

0.0341

Figure 3: Comparison between baseline approximate solutions and the LQ-regulator solution
(Section 4.1) for the case with ν = ζ = 1 and N = 128.

(i.e., ε) on the test data. The reported numbers are the median values of 21 trials with different

seeds. The algorithm is finding the global solution of the model with high accuracy in just around

a minute. Furthermore, this computation is not a systematic function of N . The variation in

solution time is largely due to the use of random initial conditions in a high dimensional space

(the 66.8K parameters), which is—counterintuitively—essential for convergence when fitting deep

learning models.

100 101 102 103 104 105

N

80

90

100

Computation time(seconds)

100 101 102 103 104 105

N

2

3

4

5

×10−7 Mean Test Loss(ε)

Figure 4: Performance of the φ(ReLU) for different N .

Finally, Table 1 shows the results for different variations in the approximations, φ(Identity),

φ(ReLU), and φ(Moments). The columns are as follows: Time is measured in seconds. Params

24

represents the number of parameters (θ) in functional approximation, in thousands. Train MSE

reports the mean squared error of the Euler residuals for the simulated trajectories used for

training. Test MSE documents the mean squared error of the Euler residuals on simulated data

after the training is complete, and which internally uses the approximation itself during the

simulation. Val MSE displays the mean squared error on the validation data, that is, trajectories

used to check the quality of the generalization during the training process, but where the data

are not used to fit the model directly. Policy error (
∣∣u− uref∣∣) is the mean absolute value of the

approximate solution and the accurate solution (uref) on the test data. Policy error
(
|u−uref|
uref

)
is the mean absolute value of the relative error of the approximate solution and the accurate

solution (uref) on the test data. The results in Table 1 are the median among 21 trials with

different seeds. See Table 2 in Appendix E.1 for additional experiments.

Table 1: Performance of Different Networks in Solving the Linear Model

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

Policy Error
(|u− uref|)

Policy Error(
|u−uref|
uref

)
group description

φ(Identity)
Baseline 42 49.4 4.1e-06 3.3e-07 3.3e-07 2.9e-05 0.10%

Thin (64 nodes) 33 12.4 3.7e-06 2.7e-07 2.7e-07 3.4e-05 0.10%

φ(ReLU)

Baseline 107 66.8 3.7e-06 3.3e-07 3.3e-07 2.7e-05 0.09%

L = 2 86 66.3 1.3e-05 2.1e-07 2.2e-07 2.6e-05 0.08%

L = 16 91 69.9 5.5e-06 1.5e-07 1.5e-07 2.1e-05 0.07%

Shallow(φ : 1 layer, ρ : 2 layers) 79 17.7 2.0e-06 5.5e-07 5.5e-07 3.2e-05 0.11%

Deep(φ : 4 layers, ρ : 8 layers) 242 165.1 2.1e-03 2.2e-03 2.1e-03 2.7e-03 8.50%

Thin(φ, ρ : 64 nodes) 87 17.0 1.1e-05 4.5e-07 4.5e-07 3.0e-05 0.10%

φ(Moments)

Baseline 55 49.8 1.4e-06 7.6e-07 7.6e-07 2.8e-05 0.09%

Moments (1,2) 211 49.5 2.4e-06 1.1e-06 2.3e-06 4.4e-05 0.14%

Very Shallow(1 layer) 241 0.6 1.1e-05 8.4e-06 7.9e-06 1.1e-02 34.00%

Thin (64 nodes) 82 12.6 1.6e-06 9.1e-07 9.2e-07 3.8e-05 0.12%

The first lesson from Table 1 is that the results are mainly robust to variations in the net-

works’ architecture. However, for small networks, as can be seen in the case of the Very Shallow

example in φ(Moments), sometimes the optimization procedure finds a local minimum that is

not close to the global minimum solution. Not coincidentally, this is the model with the fewest

number of parameters—which should give us pause since it is still orders of magnitude above the

dimensionality of 2 parameters required for the analytical solution.

The second lesson from Table 1 is that the results are, in general, good when we use a larger

number of moments (equivalently, a higher dimension of L) than when we use only the first

moment (L = 1, which we know from the analytical solution is a sufficient statistic for payoff-

relevant values). Compare, for example, the φ(Identity) case with φ(ReLU(L = 16)). The latter

solves the model with many more parameters, but the neural network finds the lower-dimensional

manifold in about the same amount of time.

25

5.4 Nonlinear demand function

In this section, we move to the case where ν > 1, i.e., the (inverse) demand function is

nonlinear. In this situation, the LQ solution and certainty equivalence no longer hold and we

do not have an analytical solution. We find the solution to this nonlinear case using exactly the

same algorithm, code, and functional approximations as in Section 5.3. As before, we fit the

model and then check its generalization with a set of simulated trajectories.

0 25 50
Time(t)

10−10

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(Moments)

0 25 50
Time(t)

10−10

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(ReLU)

0.75

1.00

1.25

1.50

×10−6

Figure 5: The Euler residuals for ν = 1.5, ζ = 1.0, and N = 128 for φ(Identity), φ(Moments),
and φ(ReLU). The dark blue curve shows the average residuals along equilibrium paths for 256
different trajectories. The shaded areas depict the 2.5th and 97.5th percentiles.

Figure 5 shows the average Euler residuals over 256 simulated trajectories, with the corre-

sponding 95th percentile bandwidth. The economy uses ζ = 1, ν = 1.5, and N = 128. The left

panel shows the results for baseline φ(Moments). The right panel shows the results for baseline

φ(ReLU). As in Figure 2, the mean squared error is fairly low and tight. Table 3 in Appendix E.2

provides additional information on this experiment and different variations on it. The main con-

clusion is that the performance is roughly the same as in the linear case because it is using the

same algorithm.

We can also investigate the qualitative behavior of the approximate optimal solution, u(·),
along the transition path as ν approaches one, which coincides with the linear case where an

accurate solution exists. Figure 6 depicts the optimal policy along the equilibrium paths for

ν = [1.0, 1.05, 1.1, 1.5] and ζ = 1, for an economy with N = 128. In this experiment, the baseline

φ(ReLU) is utilized to approximate the optimal policies. Figure 6 shows how the optimal policy

for a trajectory smoothly approaches the known analytical solution as ν approaches one.

26

0 10 20 30 40 50 60
Time(t)

0.025

0.030

0.035

u(Xt) with φ(ReLU): Equilibrium Path

ν = 1.0

ν = 1.05

ν = 1.1

ν = 1.5

Figure 6: The optimal policy u along the equilibrium paths for prices, ν = [1.0, 1.05, 1.1, 1.5],
ζ = 1, and N = 128. Each path shows the optimal policy for a single trajectory.

5.5 Generalization: Where is the transversality condition?

Intriguingly, to get our approximation, we neither applied a transversality condition nor solved

a stationary problem. While we fitted the data to a T where the equilibrium was getting close to

some ergodic distribution, we did not use that behavior as a special case. However, in general, we

can have many candidate solutions that satisfy the first-order conditions of a dynamic model if we

do not constrain the long-run behavior of these solutions in one form or another. In fact, that is

what we did to get the LQ solution: the classic control solutions implicitly applied a transversality

condition.13 And, yet, in Section 5.3, we saw that our neural networks achieved the same solution

as the LQ one, i.e., they consistently picked the solution that generalizes best.14 Why would we

so carelessly disregard what has been thought of as an essential boundary condition for solving

models?

This question can be recast in terms of generalization and regularization. First: Why would

our algorithm choose the “right” solution to the functional equation in the absence of explicit

handling of the long-run behavior? Second, if the algorithm chooses a particular solution (rather

than a random one), is it the one we want (as measured by its ability to generalize)?

In terms of answering the first question, one might suspect that this is simply because we

are simulating with a great deal of data, but this turns out not to be the case. To show this,

we can conduct an even more extreme example of over-parameterization by fitting a nonlinear

network with a parameter vector in R17700 using only 3 random data points in R512 for the linear

13Or, alternatively, we could think of this as being a guess-and-verify approach where we assumed a functional
form consistent with a transversality condition.

14Of course, with shorter simulations, the generalization error for very large t > T becomes worse. But that
is a consequence of there being insufficient numbers of data points in a domain of interest, not a consequence of
whether the system is ergodic or not.

27

demand function. In this case, the solution consistent with a transversality condition or imposing

a stationary solution boundary condition only needs 2 points to interpolate.

0 200 400

Step

10−5

10−3

10−1

Validation MSE ε

0 200 400

Step

10−5

10−3

10−1

Training MSE ε

Figure 7: Training and validation loss of the Euler residuals ε. The training procedure utilizes 3
data points in the state space for an economy with ν = ζ = 1 and N = 512.

The results are shown in Figure 7. In this experiment, we fit a model with both ρ and φ rep-

resented by a neural network with two and one hidden layers, each with 128 nodes and ν = ζ = 1.

The output dimension of φ is L = 4. Each step is one gradient updating in stochastic gradient

descent optimization. We draw 3 random data points within R512 from simulated trajectories.

The model fits using random “batches” of data of size 2, where the randomization in the op-

timization algorithm (e.g., stochastic gradient descent) is an essential part of regularizing the

solutions. The right panel of Figure 7 shows the convergence of the MSE of the training data,

which the optimizer is minimizing. The left panel of Figure 7 shows the MSE of the Euler errors

on “validation” data, i.e., random data used to test the generalization error during training, but

which does not enter the optimization objective directly. The training error drops to within the

numerical tolerance, as expected. But rather than over-fitting, the validation error also drops to

less than 5× 10−5, which corresponds to a relative policy error of 0.06%, despite a large number

of parameters and the minimal data.

While the theoretical understanding of this over-fitting phenomenon is still an active area of

research within computer science, it is robustly found in many functional approximation prob-

lems. In application after application, using stochastic optimization methods with highly over-

parameterized models tends to robustly find solutions that fulfill a minimum norm solution in the

space of approximating functions. Recent work in understanding convergence and generalization

28

of over-parameterized models includes Arora et al. (2018), Allen-Zhu et al. (2019), and Nakkiran

et al. (2019).

For our specific problem, the minimum norm solution seems to coincide with the most general-

izable solution—and in particular, it seems to automatically fulfill the boundary-value conditions

(e.g., transversality or imposing a boundary at a terminal period) we often need to apply directly

when approximating with lower-dimensional models.

6 Extensions and Generalizations

Did we choose a setup that was particularly amenable to our methods? In this section, we

consider how these general techniques can be used for a much larger class of models. Most

broadly, our tools are useful for solving any high-dimensional functional equations with some

degree of symmetry—and are especially useful when they contain high-dimensional expectations.

The functional equation could come from static problems, Bellman equations, or Euler equations,

and can be solved by various approximation techniques.15

6.1 Decreasing returns to scale

The constant returns to scale in production and the linear marginal cost of investment in

equation (15) led to the value function in Proposition 4 being independent from x. As the

primary interest was in analyzing the high-dimensional state, this was a convenient result.

But what if the value function (10) has decreasing returns to scale and, thus, the policy

becomes a function of x? Imagine, for example:

profits = p(X)
x1−µ

1− µ −
γ

2
u2.

This formulation leads to an Euler equation:

γu(x,X) = βE
[
P (X ′)x−µ + γ(1− δ)u(x′, X ′)

]
.

Given this equation, the solution techniques are identical except that E [·] now depends

strongly on the idiosyncratic shock associated with state x. Extending the previous approach

where we condition on random variables that strongly influence the gradient, as defined by Def-

inition 4, the expectation can be approximated by a two-dimensional Gaussian quadrature in w

and Ω, where the W for the aggregate evolution is still performed with a Monte Carlo draw.

15For example, we could also use reinforcement learning (also known as approximate dynamic programming or
neuro-dynamic programming). See Sutton and Barto (2018) and Bertsekas (2019) for a survey of methods, and
van der Pol et al. (2020) for an example applying symmetry to reinforcement learning.

29

The only other modification required is to ensure we are using a representation in Proposition 2

where ρ(x, y) and φ(x) where y ∈ RL.

0 10 20 30 40 50 60
Time(t)

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(Moments)

Figure 8: The Euler residuals for ν = ζ = 1, µ = 0.05, and N = 128, over 256 different
trajectories. The shaded areas depict the 2.5th and 97.5th percentiles. In this case, the baseline
φ(Moments) is used to approximate the optimal policy.

Figure 8 depicts the average Euler residuals along the equilibrium path (averaged over 256

trajectories) and the corresponding 95th percentile bandwidth for an economy with ν = ζ = 1,

µ = 0.05, and N = 128. In this experiment baseline φ(Moments) is used to approximate the

optimal policy. The generalization properties are excellent, and the mean squared Euler error is

on the order of 1× 10−6 for most of the trajectories and periods.

6.2 Multiple productivity types

We consider now the case when firms have profitsj = ζjp(X)x
1−µ

1−µ −
γ
2
u2 for some finite set

of productivities, e.g., ζ1, ζ2. Then, rather than having permutation invariance based on the

entire X, we could group them such that the policy becomes u(x,X1, X2), where X1 contains all

firms with ζ1, etc. That is, the elements of X could be symmetric in blocks, and this could be

implemented in the network with a representation such as

u(x,X1, X2) ≈ ρ

(
x,

1

N1

N1∑
i=1

φ1(X
1
i),

1

N2

N2∑
i=1

φ2(X
2
i)

)
.

30

If there were reasons in the problem structure to think that the φ1 and φ2 could be proportional

to each other, then the representation might even be

u(x,X1, X2) ≈ ρ

(
x,

1

N1

N1∑
i=1

φ(X1
i),

1

N2

N2∑
i=1

φ(X2
i)

)
.

6.3 Complex idiosyncratic states

Next, we study the case where firms also have a stochastic productivity y, such that the firm is

identified by the tuple z ≡ (x, y) and the aggregate state is a collection of tuples Z ≡ {(Xi, Yi)}Ni=1.

We can apply our techniques by considering that it is the symmetry with respect to the z tuple

of states, rather than permutation within that tuple, that is required. We can then implement

this symmetry in an approximation along the lines of

u(x, y, Z) ≈ ρ

(
x, y,

1

N

N∑
i=1

φ(Xi, Yi)

)
,

for some φ : R2 → RL and (x, y) the idiosyncratic state of interest.16 Hence our techniques are

easily applyed to models with exchangeable “agents” containing a finite number of states.

Our approach can even be extended to cases where the collection of underlying states is itself

exchangeable. For example, consider if, in addition to its x, each firm has up to M customers of

varying sizes, yj, where those customers are otherwise exchangeable in the firm’s payoffs.17 Then

we can denote the customers themselves as a set, and use z ≡ (x, {yj}Mj=1) as an individual firm’s

state. If we let Yi ≡
{
yji
}M
j=1

, the aggregate distribution is Z ≡ {Xi, Yi}.
A neural network imposing this symmetry might be

u(x, Y, Z) ≈ ρ1

(
x,

1

M

M∑
j=1

φ1(y
j),

1

N

N∑
i=1

ρ2

(
Xi,

1

M

M∑
j=1

φ2(Y
j
i)

))
,

where the training process would fit parameters for ρ1, φ1, ρ2, and φ2, and the ρ2 function itself

could have a latent dimension greater than one. This last example demonstrates why deep

learning, in the sense of many layers of highly-parameterized functions, is so important for dealing

with symmetry. Without modern (and easily available) machine learning software, it would be

impractical to fit this nested approximation.

Given the flexibility of working with states that are themselves complicated structures, a

natural application of these methods is to solve dynamic models with networks—expanding the

computational feasibility of solving extensions of models surveyed in Carvalho and Tahbaz-Salehi

16In a model with a continuum of agents, this would simply lead to a two-dimensional distributional state, and
the modeler would typically write payoffs as expectations using that distribution.

17See Hartford et al. (2018) for methods to represent permutation equivariance with interactions between sets.

31

(2019). In particular, it holds the promise of making multi-period dynamic programming in

models such as Oberfield (2018) possible by enabling network connections as a persistent state

variable and enabling firms to form expectations of the network’s evolution.

6.4 Global solutions with transitions and aggregate shocks

In many applications, researchers use a continuum of agents. Unfortunately, as soon as we

add several aggregate shocks to them, these models are difficult to tackle. Since the distributional

state becomes a stochastic partial differential equation (or its discrete-time equivalent), agents

need to solve optimal control problems with an infinite-dimensional state, which in turn depends

on their decisions. The forward equation for the evolution is difficult enough to simulate, even

as an initial value problem, but becomes intractable when it is part of an infinite-dimensional

optimal control problem. The continuum approximation is then the source of the numerical

intractability rather than the solution to it, hinting that leaving things discrete might help.

In that sense, our methods offer a path forward by offering the possibility of simulating

economies with a large number of finite agents (on the order of thousands or tens of thousands),

without even having to worry about stationarity properties. In comparison, in perturbation

solutions such as Kaplan et al. (2018) in continuous time and Den Haan (2010) in discrete time

one would require appropriate stationarity properties.

This insight might be particularly fruitful when solving growth models with heterogeneous

agents, which often have steady states and balanced growth paths that are notoriously sensitive

to parameters, multiplicity of equilibria, and hysteresis (i.e., they may not even be ergodic). By

using a finite number of agents—along the models discussed in Buera and Lucas (2018)—models

with endogeneity of both innovation and diffusion as in Benhabib et al. (2021) without ergodicity

could be solved from arbitrary initial conditions.

7 Conclusion

In this paper, we have shown how to exploit symmetry in dynamic programming problems and

the solution of recursive competitive equilibria with a large (but finite) number of heterogeneous

agents using deep learning. Symmetry, together with concentration of measure, allowed us to

break the “curse of dimensionality.” The method is easy to implement using standard, open-

source software libraries and fast to run on a standard laptop. Our results open the door to many

applications of interest, including macro, finance, international finance, industrial organization,

and other fields.

32

References

Advani, M. S., A. M. Saxe, and H. Sompolinsky (2020): “High-dimensional dynamics of

generalization error in neural networks,” Neural Networks, 132, 428–446.

Allen-Zhu, Z., Y. Li, and Z. Song (2019): “A convergence theory for deep learning via

over-parameterization,” in International Conference on Machine Learning, PMLR, 242–252.

Anderson, E. W., E. R. McGrattan, L. P. Hansen, and T. J. Sargent (1996): “Me-

chanics of forming and estimating dynamic linear economies,” Handbook of Computational

Economics, 1, 171–252.

Arora, S., R. Ge, B. Neyshabur, and Y. Zhang (2018): “Stronger generalization bounds

for deep nets via a compression approach,” in Proceedings of the 35th International Conference

on Machine Learning, ed. by J. Dy and A. Krause, vol. 80, 254–263.

Azinovic, M., L. Gaegauf, and S. Scheidegger (2019): “Deep equilibrium nets,” Available

at SSRN 3393482.

Barvinok, A. (2005): “Math 710: Measure concentration,” Lecture notes.

Belkin, M., D. Hsu, S. Ma, and S. Mandal (2019): “Reconciling modern machine-learning

practice and the classical bias–variance trade-off,” Proceedings of the National Academy of

Sciences, 116, 15849–15854.

Bellman, R. (1958): Dynamic Programming, Princeton University Press.

Benhabib, J., J. Perla, and C. Tonetti (2021): “Reconciling models of diffusion and

innovation: A theory of the productivity distribution and technology frontier,” Econometrica

(Forthcoming).

Bertsekas, D. P. (2019): Reinforcement Learning and Optimal Control, Athena Scientific.

Bluman, G. W., A. F. Cheviakov, and S. C. Anco (2010): Applications of Symmetry

Methods to Partial Differential Equations, Springer.

Boucheron, S., G. Lugosi, and P. Massart (2013): Concentration Inequalities: A

Nonasymptotic Theory of Independence, Oxford University Press.

Buera, F. J. and R. E. Lucas (2018): “Idea flows and economic growth,” Annual Review of

Economics, 10, 315–345.

Carvalho, V. M. and A. Tahbaz-Salehi (2019): “Production networks: A primer,” Annual

Review of Economics, 11, 635–663.

33

Chen, S., E. Dobriban, and J. H. Lee (2019): “Invariance reduces variance: Understanding

data augmentation in deep learning and beyond,” arXiv preprint arXiv:1907.10905.

Clark, C. and A. Storkey (2015): “Training deep convolutional neural networks to play

Go,” in International Conference on Machine Learning, 1766–1774.

Cybenko, G. (1989): “Approximation by superpositions of a sigmoidal function,” Mathematics

of Control, Signals and Systems, 2, 303–314.

Den Haan, W. J. (2010): “Comparison of solutions to the incomplete markets model with

aggregate uncertainty,” Journal of Economic Dynamics and Control, 34, 4–27.

Duarte, V. (2018): “Machine learning for continuous-time finance,” Tech. rep., Gies College of

Business.

Duffy, J. and P. D. McNelis (2001): “Approximating and simulating the stochastic growth

model: Parameterized expectations, neural networks, and the genetic algorithm,” Journal of

Economic Dynamics and Control, 25, 1273–1303.

Fernández-Villaverde, J. and P. A. Guerrón-Quintana (2020): “Estimating DSGE

Models: Recent Advances and Future Challenges,” Working Paper 27715, National Bureau of

Economic Research.

Fernández-Villaverde, J., S. Hurtado, and G. Nuño (2019): “Financial frictions and

the wealth distribution,” Working Paper 26302, National Bureau of Economic Research.

Hartford, J., D. R. Graham, K. Leyton-Brown, and S. Ravanbakhsh (2018): “Deep

models of interactions across sets,” arXiv preprint arXiv:1803.02879.

Hartford, J. S., J. R. Wright, and K. Leyton-Brown (2016): “Deep learning for pre-

dicting human strategic behavior,” in Advances in Neural Information Processing Systems,

2424–2432.

Hornik, K. (1991): “Approximation capabilities of multilayer feedforward networks,” Neural

Networks, 4, 251–257.

Judd, K. L., L. Maliar, S. Maliar, and I. Tsener (2017): “How to solve dynamic stochas-

tic models computing expectations just once,” Quantitative Economics, 8, 851–893.

Kaplan, G., B. Moll, and G. L. Violante (2018): “Monetary policy according to HANK,”

American Economic Review, 108, 697–743.

34

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012): “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Processing Systems,

1097–1105.

Krusell, P. and A. A. Smith, Jr (1998): “Income and wealth heterogeneity in the macroe-

conomy,” Journal of Political Economy, 106, 867–896.

Ledoux, M. (2001): The Concentration of Measure Phenomenon, 89, American Mathematical

Society.

Ljungqvist, L. and T. J. Sargent (2018): Recursive Macroeconomic Theory, MIT Press, 4

ed.

Lucas, R. E. and E. C. Prescott (1971): “Investment under uncertainty,” Econometrica,

659–681.

Lyle, C., M. van der Wilk, M. Kwiatkowska, Y. Gal, and B. Bloem-Reddy (2020):

“On the Benefits of Invariance in Neural Networks,” arXiv preprint arXiv:2005.00178.

Macdonald, I. G. (1998): Symmetric Functions and Hall Polynomials, Oxford University

Press.

Maliar, L., S. Maliar, and P. Winant (2019): “Will artificial intelligence replace compu-

tational economists any time soon?” Tech. Rep. 14024, C.E.P.R. Discussion Papers.

Nakkiran, P., G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever

(2019): “Deep double descent: Where bigger models and more data hurt,” arXiv preprint

arXiv:1912.02292.

Narayanamurthy, S. M. and B. Ravindran (2008): “On the hardness of finding symmetries

in Markov decision processes,” in Proceedings of the 25th International Conference on Machine

Learning, 688–695.

Oberfield, E. (2018): “A theory of input-output architecture,” Econometrica, 86, 559–589.

Powell, W. B. (2007): Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality, vol. 703, John Wiley & Sons.

Prasad, A. (2018): “An introduction to Schur polynomials,” arXiv preprint arXiv:1802.06073.

Prescott, E. C. and R. Mehra (1980): “Recursive competitive equilibrium: The case of

homogeneous households,” Econometrica, 48, 1365–1379.

35

Ravindran, B. and A. G. Barto (2001): Symmetries and Model Minimization in Markov

Decision Processes, University of Massachusetts.

Samuelson, P. A. (1990): “Law of conservation of the capital-output ratio in closed von

Neumann systems,” in Conservation Laws and Symmetry: Applications to Economics and

Finance, ed. by R. Sato and R. V. Ramachandran, Springer Netherlands, 53–56.

Sato, R. (1985): “The invariance principle and income-wealth conservation laws: Application

of Lie groups and related transformations,” Journal of Econometrics, 30, 365–389.

Sutton, R. S. and A. G. Barto (2018): Reinforcement Learning: An Introduction, MIT

press.

van der Pol, E., D. E. Worrall, H. van Hoof, F. A. Oliehoek, and M. Welling

(2020): “MDP homomorphic networks: Group symmetries in reinforcement learning,” arXiv

preprint arXiv:2006.16908.

Vershynin, R. (2018): High-Dimensional Probability: An Introduction with Applications in

Data Science, vol. 47, Cambridge university press.

Wagstaff, E., F. B. Fuchs, M. Engelcke, I. Posner, and M. Osborne (2019): “On

the limitations of representing functions on sets,” arXiv preprint arXiv:1901.09006.

Walcher, S. (2019): “Symmetries of ordinary differential equations: A short introduction,”

arXiv preprint arXiv:1911.01053.

Yarotsky, D. (2018): “Universal approximations of invariant maps by neural networks,” arXiv

preprint arXiv:1804.10306.

Zabrocki, M. (2015): “Introduction to symmetric functions,” unpublished work http://garsia.

math. yorku. ca/ghana03/mainfile. pdf.

Zaheer, M., S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and

A. J. Smola (2017): “Deep sets,” in Advances in Neural Information Processing Systems,

3391–3401.

36

Appendix A Mathematics Definitions and Background

Definition 6 (The permutation group and the permutation operator). Define:

• A permutation group is a group G whose elements are permutations of a given set I and

whose group operation is the composition of permutations in G.

• A symmetric group of a set I is the group of all permutations of set I, denoted by SI.

Definition 7 (Permutation invariance). A function f : RN → R is permutation invariant if, for

all permutations π ∈ SN :

f(πX) = f(X).

Definition 8 (Permutation equivariance). A function f : RN → RN is permutation equivariant

if, for all permutations π ∈ SN :

f(πX) = πf(X).

Proposition 6. Let X be a compact subset of RN and f : X ⊆ RN → R be a continuous

permutation invariant function under SN, i.e., for all ~Y ∈ RN and all π ∈ SN:

f(π~Y) = f(~Y).

Then, there exist L ≤ N , and continuous functions % : RL → R and ϕ : R→ RL, such that

f
(
~Y
)

= %

(
1

N

N∑
i=1

ϕ(yi)

)
.

Proof. See Wagstaff et al. (2019) and Zaheer et al. (2017).

Appendix B Concentration of Measure

Proposition 7 (Gaussian Poincaré inequality). Suppose f : RN → R is a continuously differen-

tiable function and z ∼ N (0N , IN) is a standard Gaussian random vector. Then:

Var[f(z)] ≤ E
[
‖∇f(z)‖2

]
,

Moreover, if z ∼ N (0N ,Σ) is a Gaussian random vector with mean zero and covariance matrix

Σ, then:

Var[f(z)] ≤ E
[
∇f>(z)Σ∇f(z)

]
.

Proof. See Boucheron et al. (2013), Theorem 3.20.

37

Appendix C Proofs

C.1 Proof of Proposition 1

Proof. Let π ∈ SN be a permutation and ~Y ≡ πX. The Bellman equation can be written as:

v(x, ~Y) = max
u

{
r(x, u, ~Y) + βE

[
v(x′, ~Y ′)

]}
(C.1)

s.t. x′ = g(x, u) + σw + ηω (C.2)

~Y ′ = G(~Y) + ΩπW + ηωπ1N . (C.3)

Assuming ∂g(x,u)
∂u
6= 0, the Euler equation can be written as

ru
(
x, u(x, ~Y), ~Y

)
gu
(
x, u(x, ~Y)

) + βE

[
rx
(
x′, u(x′, ~Y ′), ~Y ′

)
− ru

(
x′, u(x′, ~Y ′), ~Y ′

)gx(x′, u(x′, ~Y ′)
)

gu
(
x′, u(x′, ~Y ′)

)] = 0,

where ru ≡ ∂r
∂u

, rx ≡ ∂r
∂x

, gx ≡ ∂g
∂x

, and gu ≡ ∂g
∂u

. Since r is permutation invariant with respect to

X, we have

ru
(
x, u(x, ~Y), ~Y

)
= ru

(
x, u(x, ~Y), X

)
rx
(
x, u(x, ~Y), ~Y

)
= rx

(
x, u(x, ~Y), X

)
.

Using the fact that G(~Y) = πG(X) and Ωπ = πΩ

~Y ′ = π
(
G(X) + ΩW + ηω1N

)
= πX ′. (C.4)

Defining u(x, πX) = u ◦ π(x,X) ≡ uπ(x,X), the Euler equation becomes:

ru
(
x, uπ(x,X), X

)
gu
(
x, uπ(x,X)

) + βE

[
rx
(
x′, uπ(x′, X ′), X ′

)
− ru

(
x′, uπ(x′, X ′), X ′

)gx(x′, uπ(x′, X ′)
)

gu
(
x′, uπ(x′, X ′)

)] = 0,

where:

x′ = g(x, u) + σw + ηω (C.5)

X ′ = G(X) + ΩW + ηω1N . (C.6)

Since the solution of the Euler equation is unique, then:

uπ(x,X) = u(x, πX) = u(x,X).

38

Given the permutation invariant optimal policy, u, and reward function, r, the Bellman equation

can be written as:

v(x, ~Y) = r
(
x, u(x,X), X

)
+ βE

[
v(x′, ~Y ′)

]
,

where x′ and ~Y ′ are described by equations (C.2) and (C.3). Using equation (C.4) and defining

v(x, πX) = v ◦ π(x,X) ≡ vπ(x,X), the Bellman equation can be written as:

vπ(x,X) = r
(
x, u(x,X), X

)
+ βE [vπ(x′, X ′)] ,

where x′ andX ′ are described by equations (C.5) and (C.6). By the contraction mapping theorem,

the solution of the Bellman equation is unique. Therefore:

vπ(x,X) = v(x, πX) = v(x,X).

C.2 Proof of Proposition 3

Proof. By the Chebyshev’s inequality:

P
(∣∣f(z)− E [f(z)]

∣∣ ≥ ε
)
≤ Var

[
f(z)

]
ε2

.

By the Gaussian Poincaré inequality (Proposition 7):

Var
[
f(z)

]
≤ E

[
∇f(z)>Σ∇f(z)

]
.

Therefore:

P
(∣∣f(z)− E [f(z)]

∣∣ ≥ ε
)
≤ 1

ε2
E
[
∇f(z)>Σ∇f(z)

]
.

Since a covariance matrix is symmetric and positive semi-definite, there exists an orthogonal

matrix U (i.e. U> = U−1) and a diagonal matrix Λ such that:

Σ = UΛU>,

where Λ is the diagonal matrix of the eigenvalues of Σ. Hence:

∇f(z)>Σ∇f(z) =
N∑
i=1

λi
[
U>∇f(z)

]2
i
≤ max

i=1,..,N
{λi}‖∇f(z)‖2 = ρ(Σ)‖∇f(z)‖2,

39

where ρ(Σ) ≡ max
i=1,..,N

{λi} is the spectral radius of Σ. Therefore,

P
(∣∣f(z)− E [f(z)]

∣∣ ≥ ε
)
≤ ρ(Σ)C

ε2
1

N
.

C.3 Proof of Proposition 4

Proof. Since the price function p(X) is permutation invariant and û is differentiable, the agent

problem can be written as:

v(x,X) = max
u

{
p(X)

x1−µ

1− µ −
γ

2
u2 + βE [v(x′, X ′)]

}
(C.7)

s.t. x′ = (1− δ)x+ u+ σw + ηω (C.8)

X ′ = {(1− δ)x̂+ û(x̂, X) + σŵ + ηω for all (x̂, ŵ) ∈ (X,W)} . (C.9)

The first-order condition is:

−γu+ βE
[
∂v(x′, X ′)

∂x′

]
= 0. (C.10)

Given that the other agents’ law of motion is independent of the agent of interest’s choice,

the envelope condition is:

∂v(x′, X ′)

∂x′
= P (X ′)(x′)−µ + γ(1− δ)u′, (C.11)

where u′ is the optimal policy in the next period. Combining the first-order condition (C.10) and

the envelope condition (C.11) yields:

−γu(x,X) + βE
[
P (X ′)(x′)−µ + γ(1− δ)u(x′, X ′)

]
= 0. (C.12)

In a symmetric equilibrium, all the agents use the same policy function, i.e., û(., .) = u(., .), and

the laws of motion can be rewritten as:

x′ = (1− δ)x+ u+ σw + ηω (C.13)

X ′ = {(1− δ)x̂+ u(x̂, X) + σŵ + ηω for all (x̂, ŵ) ∈ (X,W)} . (C.14)

40

For the case of µ = 0, the Euler equation becomes:

−γu(x,X) + βE [P (X ′) + γ(1− δ)u(x′, X ′)] = 0. (C.15)

In this case, the x drops out of the Euler equation. Hence, u does not depend on x, and the

Euler equation can be rewritten as:

−γu(X) + βE [P (X ′) + γ(1− δ)u(X ′)] = 0, (C.16)

and the law of motion for X is described by equation (C.9).

Appendix D LQ Formulations

This section solves the special case of the LQ model. The purpose is to demonstrate the

symmetry and concentration of measure when we know the closed-form solution of the problem.

D.1 Proof of Proposition 5: Linear-quadratic Gaussian control

With an LQ Gaussian model, we know that the policy will be affine. Therefore, û for other firms

can be written as

û(Xi, X) = H0 +H2Xi +
H1

N

N∑
i=1

Xi i = 1, ..., N, (D.1)

for some undetermined H0, H1, and H2. As shown in Proposition 4, in a permutation invariant

symmetric equilibrium, u(x̂, X) does not depend on x̂ and, hence, H2 = 0. The symmetric

constants, which we arbitrarily define as H1

N
for all of the X vector, are the only ones that can

fulfill permutation invariance with respect to the π permutations defined in equation (21). The

law of motion for ~x is then:

~x′ = A~x+Bu+ C ~w (D.2)

where A, B, and C are defined in equations (22), (23), and (24). The reward and policy u of the

firm of interest at state ~x take the form:

−~x>R~x− u>Qu, (D.3)

where R and Q are defined in equations (25) and (26).

41

For a given pair of (H0, H1), the solution of this LQ problem has the form:

~v(~x) = −~x>P~x− d (D.4)

~u(~x) = −F~x, (D.5)

where P solves the following discounted algebraic matrix Riccati equation:

P = R + βA>PA− β2A>PB
(
Q+ βB>PB

)−1
B>PA, (D.6)

d can be found via:

d =
β

1− β trace
(
PCC>

)
, (D.7)

and F satisfies:

F = β
(
Q+ βB>PB

)−1
B>PA. (D.8)

Ljungqvist and Sargent (2018, ch. 5) derive equations (D.6), (D.7), and (D.8).

D.2 Proof of Proposition 5: Permutation invariance

Now, we illustrate the permutation invariance of the optimal policy and value function of the

linear quadratic model described in Proposition 5. Define ~y ≡ π~x. The value function associated

with ~y in (29) can be written as:

v(~y) = −~y>P~y − d = −~x>
(
π>Pπ

)
~x− d,

where P solves the discounted algebraic Riccati equation:

P = R + βA>PA− β2A>PB
(
Q+ βB>PB

)−1
B>PA. (D.9)

Sandwiching both sides of Equation (D.9) by π> and π and using the fact that R is permutation

invariant (i.e., π>Rπ = R) yields:

π>Pπ = R + βπ>A>PAπ − β2π>A>PB
(
Q+ βB>PB

)−1
B>PAπ.

Since the deterministic part of the laws of motion A is permutation equivariant (i.e., Aπ = πA)

and the vector B remains unchanged under a permutation (i.e., πB = B), the above equation

42

can be rewritten as:

π>Pπ = R + βA>
(
π>Pπ

)
A− β2A>

(
π>Pπ

)
B
[
Q+ βB>(π>Pπ)B

]−1
B>(π>Pπ)A. (D.10)

Notice that π>Pπ solves the same discounted algebraic Riccati equation (D.9) as P . Since

the solution of equation (D.9) is unique:

π>Pπ = P.

The constant term d can be written as

d = β(1− β)−1trace(PπCC>π>)

= β(1− β)−1trace(π>PπCC>)

= β(1− β)−1trace(PCC>). (D.11)

As shown above, d remains unchanged under permutation and, therefore:

v(~y) = v(π~x) = v(~x).

The optimal policy ~u(~y) can be written as

u(~y) = −β
(
Q+ βB>PB

)−1
B>PA~y = −β

(
Q+ βB>PB

)−1
B>(π>Pπ)A~x.

Since (π>Pπ) = P , then:

u(~y) = u(π~x) = u(~x).

Structure of the P Quadratic Form. When solving for Proposition 5, you can further find

that the permutation invariant matrix P is of the form

P ≡

 p1 p2
p3
N

1>N
p2 0 p4

N
1>N

p3
N

1N
p4
N

1N
p5
N2 1N1>N

 (D.12)

for some p1, . . . p5. The lower block of this matrix is p5
N2 1N1>N (the N ×N matrix of 1s is then the

outer-product 1N1>N .) This shows the symmetry with respect to the i = 2, . . . N states in ~x due

to the block structure similar to than in equation (21), and the magnitude of their interaction

(i.e., the lower block decreases at rate N2 rather than N).

43

D.3 Proof of Proposition 5: Concentration of measure

The optimal policy for ~x′ can be written as:

u(~x′) = −F~x′ = −F (A~x+Bu+ C ~w).

The optimal policy defined in Proposition 5 for a given H0 and H1 is u(~x) = H0 + H1

N

∑N
i=1Xi =

H0 +H1E [x], and, hence, a bounded function in N according to Definition 3. For any finite H1

(including the equilibrium value), the gradient of u(~x′) with respect to the idiosyncratic shocks

W ≡ {W1, . . .WN} becomes:

∇Wu(~x′) =
σH1

N
1N .

Therefore, the square of the norm of the gradient of the policy can be bounded by:

E
[
‖∇Wu(~x′)‖2

]
=
σ2H2

1

N
.

Using Proposition 3 and conditioning on the aggregate shock ω:

P
(∣∣u(~x′)− E [u(~x′) | w, ω, ~x]

∣∣ ≥ ε
)
≤ σ2H2

1

ε2
1

N
. (D.13)

For the µ = 0 case, the optimal policy u(·) does not depend on x and, thus, conditioning on the

idiosyncratic shock of the firm of interest is not required.

The value function can be written as:

v(~x′) = −~x′>P~x′ − d. (D.14)

Recall that the vector of all states next period within the ~x′ is X ′ ≡
[
x′1 . . . x′N

]>
. Given the

symmetry in equations (31) and (D.12), we will drop the vector notation and instead use the

~x′ ≡
[
1 x′ X ′

]
notation where possible (i.e., let x′0 = x′ for the firm of interest).

Using the chain rule and additive structure of the idiosyncratic shocks, the gradient of the

value function is:

∇Wv(~x′) = −2σ(p3 + p4x
′)

N
1N −

2p5σ

N2
1N1>NX

′,

and then:

‖∇Wv(~x′)‖2 =

[
2σ(p3 + p4x

′)
]2

N
+

8σ2p5(p3 + p4x
′)

N2
1>NX

′ +
(2σp5)

2

N3
X ′>1N1>NX

′.

44

Since conditional on (w, ω, ~x), x′ it is not a stochastic variable, we have:

E
[
‖∇Wv(~x′)‖2

∣∣ w, ω, ~x] =

[
2σ(p3 + p4x

′)
]2

N
+

8σ2p5(p3 + p4x
′)

N2
1>NE [X ′ | w, ω, ~x](

2σp5
)2

N3
E
[
X ′>1N1>NX

′ ∣∣ w, ω, ~x] .
Since X ′ is a normal random vector with conditional mean E [X ′ | w, ω, ~x] = X +

(
u(X) +

ηω
)
1N and conditional covariance cov (X ′ | w, ω, ~x) = σ2IN , we have:18

E
[
‖∇Wv(~x′)‖2

∣∣ w, ω, ~x] =

[
2σ(p3 + p4x

′)
]2

N
+

8σ2p5(p3 + p4x
′)

N

[1>NX
N

+ u(X) + ηω
]

(2σp5)
2

N

[
trace

(
σ21N1>N

)
N2

+
(1NX
N

+ u(X) + ηω
)2]

.

Since INX
N

and u(X) are bounded functions in N (Definition 3), there exists K1 such that:

∣∣1NX
N

+ u(X) + ηω
∣∣ ≤ K1.

Also note that:
trace

(
σ21N1>N

)
N2

=
σ2

N
≤ σ2

Therefore, by the Cauchy-Schwarz inequality, there exists a positive Cv such that

E
[
‖∇Wv(~x′)‖2

∣∣ w, ω, ~x] ≤ σ2C2
v

N
.

Hence, by Proposition 3:

P
(∣∣v(~x′)− E [v(~x′) | w, ω, ~x]

∣∣ ≥ ε
)
≤ σ2C2

v

ε2
1

N
. (D.15)

The inequalities in (D.13) and (D.15) show that even with a single draw, we can calculate

the expectation as N increases. A high-dimensional state space is a help rather than a hindrance

when calculating expectations (as long as there is sufficient independence in the states) because

of the concentration of measure phenomenon. Inequality (33) shows that, with a single draw

of ~w, we know the precise distribution of the deviation from the expectation, and with a large

enough N , it converges to 0. We could take multiple draws if required. But since Monte Carlo

integration converges very slowly in general, the gains in extra accuracy will be minor even if we

increase the number of draws substantially.

18If ~z is a random vector with mean ~m and covariance matrix Σ, then, for any matrix Λ, E
[
~z>Λ~z

]
= trace(ΛΣ)+

~m>Λ~m.

45

The Euler residuals for a linear policy of the form u(X) = H0 + H1

N

∑N
i=1Xi are:

ε(X, u) =γu(X)− β
[(
α0 −

α1

N

N∑
i=1

Xi + u(X) + σwi
)
+

γ(1− δ)
(
H0 +

H1

N

N∑
i=1

Xi + u(X) + σwi
)]
.

From the Euler equation, equation (19) becomes:

γu(X)− β
[(
α0 −

α1

N

N∑
i=1

Xi + u(X)
)

+ γ(1− δ)
(
H0 +

H1

N

N∑
i=1

Xi + u(X)
)]

= 0.

The Euler residuals are then:

ε(X, u) = βσ
[
α1 − γ(1− δ)H1

] 1

N

N∑
i=1

wi.

Using the fact that wi ∼ N (0, 1), the Euler residual is a Gaussian random variable

ε(X, u) ∼ N
(
0,
β2σ2

[
α1 − γ(1− δ)H1

]2
N

)
.

D.4 Representation of the v function

If it is known that the LQ problem satisfies certainty equivalence and the value function is

quadratic and permutation invariant, v can be represented as:

v(x,X) = −
(
p1 + d+ 2p2x+ 2p3

∑N
i=1Xi

N
+ 2p4x

∑N
i=1Xi

N
+ p5

(∑N
i=1Xi

N

)2)
= ρv

(
x,

1

N

N∑
i=1

φv(Xi)
)

In other words, φv : R→ R1 (i.e., L = 1) is the identity function φv(X) =
[
X
]
, and ρv : R×R1 →

R such that:

ρv(x, y) = −(p1 + d+ 2p2x+ 2p3y + 2p4xy + p5y
2).

46

Appendix E Additional Numerical Results

E.1 More network variations

Table 2 reports a more complete list of experiments, including those of Table 1.

Table 2: Linear Model Performance in Additional Experiments

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

Policy Error
(|u− uref|)

Policy Error(
|u−uref|
uref

)
group description

φ(Identity)

Baseline 42 49.4 4.1e-06 3.3e-07 3.3e-07 2.9e-05 0.10%

Thin (64 nodes) 33 12.4 3.7e-06 2.7e-07 2.7e-07 3.4e-05 0.10%

Shallow (2 layers) 159 16.6 3.7e-06 7.8e-07 7.6e-07 9.4e-03 33.53%

φ(ReLU)

Baseline 107 66.8 3.7e-06 3.3e-07 3.3e-07 2.7e-05 0.09%

L = 1 88 66.0 1.8e-05 2.3e-07 2.4e-07 2.8e-05 0.10%

L = 2 86 66.3 1.3e-05 2.1e-07 2.2e-07 2.6e-05 0.08%

L = 8 70 67.8 3.0e-05 5.9e-07 5.9e-07 3.3e-05 0.11%

L = 16 91 69.9 5.5e-06 1.5e-07 1.5e-07 2.1e-05 0.07%

Shallow(φ : 1 layer, ρ : 2 layers) 79 17.7 2.0e-06 5.5e-07 5.5e-07 3.2e-05 0.11%

Shallow(φ : 1 layer) 58 50.4 8.7e-06 1.5e-07 1.5e-07 2.5e-05 0.08%

Shallow(ρ : 2 layers) 89 34.0 3.1e-06 4.2e-07 4.2e-07 2.7e-05 0.09%

Deep(φ : 4 layers, ρ : 8 layers) 242 165.1 2.1e-03 2.2e-03 2.1e-03 2.7e-03 8.50%

Very Thin(φ, ρ : 16 nodes) 45 1.2 1.2e-05 4.9e-07 4.9e-07 3.2e-05 0.10%

Thin(φ, ρ : 64 nodes) 87 17.0 1.1e-05 4.5e-07 4.5e-07 3.0e-05 0.10%

Wide(φ, ρ : 256 nodes) 115 264.7 5.4e-06 4.0e-07 4.0e-07 4.1e-05 0.13%

φ(Moments)

Baseline 55 49.8 1.4e-06 7.6e-07 7.6e-07 2.8e-05 0.09%

Moments (1,2) 211 49.5 2.4e-06 1.1e-06 2.3e-06 4.4e-05 0.14%

Very Shallow(1 layer) 241 0.6 1.1e-05 8.4e-06 7.9e-06 1.1e-02 34.00%

Shallow (2 layers) 137 17.0 1.6e-06 9.9e-07 9.5e-07 1.8e-02 59.41%

Deep(8 layers) 241 115.3 2.8e-06 1.2e-06 1.0e-06 5.2e-05 0.16%

Thin (64 nodes) 82 12.6 1.6e-06 9.1e-07 9.2e-07 3.8e-05 0.12%

Wide (256 nodes) 61 197.9 1.8e-06 8.7e-07 8.0e-07 4.3e-05 0.13%

E.2 Nonlinear demand function

The results in Table 3 confirm the conventional wisdom in the deep learning literature. First,

Very Shallow in φ(ReLU), and Very Shallow and Shallow in φ(Moments) highlight the role of

depth and generalizability. In these experiments, the MSE of the Euler residuals on both the

training and validation data is very low. However, as seen in Test MSE (ε), the approximated

policy is incapable of generalization. Second, for cases where there is nonlinearity in the function

of interest, depth plays a more important role than pure capacity (number of parameters). For

instance, in φ(Moments), Thin has way fewer parameters than Shallow, but it has more depth.

Thin has an extraordinarily higher generalization power than Shallow.

47

Table 3: Nonlinear Model Performance

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

group description

φ(ReLU)

Baseline 60 67.1 1.4e-05 4.7e-06 3.3e-06

L = 1 109 66.3 9.4e-06 1.3e-05 4.5e-06

L = 2 73 66.6 1.0e-05 3.3e-06 2.3e-06

L = 8 73 68.1 1.1e-05 4.9e-06 2.0e-06

L = 16 72 70.2 1.5e-05 5.4e-06 1.7e-06

Very Shallow(φ, ρ : 1 layer) 136 1.4 8.9e-06 4.8e+06 4.9e-06

Shallow(φ, ρ : 2 layers) 47 34.3 1.0e-05 9.2e-06 2.8e-06

Thin(φ, ρ : 32 nodes) 52 4.5 1.3e-05 6.0e-06 2.7e-06

φ(Moments)

Baseline 26 49.8 6.0e-06 5.0e-06 3.8e-06

Moments (1) 24 49.4 2.7e-05 6.5e-06 3.4e-06

Moments (1,2) 27 49.5 8.0e-06 5.1e-06 3.6e-06

Very Shallow (1 layer) 252 0.6 8.3e-06 1.4e+00 5.0e-06

Shallow (2 layers) 35 17.0 5.8e-06 1.2e+00 4.4e-06

Thin (32 nodes) 66 3.2 1.1e-05 9.7e-06 4.4e-06

48

	Introduction
	Permutation-Invariant Dynamic Programming and Concentration of Measure
	The symmetric group of permutation matrices
	Permutation-invariant dynamic programming
	Concentration of measure

	An Application: A Model of Investment
	A Symmetric Linear-Quadratic Model of Investment
	The linear-quadratic regulator formulation
	Why do we need a functional representation?

	A Deep Learning Implementation
	Solution method
	Symmetric approximations
	Solving the LQ case with neural networks
	Nonlinear demand function
	Generalization: Where is the transversality condition?

	Extensions and Generalizations
	Decreasing returns to scale
	Multiple productivity types
	Complex idiosyncratic states
	Global solutions with transitions and aggregate shocks

	Conclusion
	Mathematics Definitions and Background
	Concentration of Measure
	Proofs
	Proof of prop:PIDP-optimal-sol-PI
	Proof of prop:concentrate-sobolev-func
	Proof of prop:invariant-euler

	LQ Formulations
	Proof of prop:lin-quad: Linear-quadratic Gaussian control
	Proof of prop:lin-quad: Permutation invariance
	Proof of prop:lin-quad: Concentration of measure
	Representation of the v function

	Additional Numerical Results
	More network variations
	Nonlinear demand function

