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1 Introduction

What predicts changes in interest rates? The literature has come a long way from the

expectations hypothesis distinguishing between statistical, risk-adjusted, and subjective ex-

pectations. Regardless of the channel, the shape of the yield curve has emerged as a key

source of information (e.g., Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005; Piazzesi

et al., 2015). The Global Financial Crisis of 2008/2009 led to unchartered territory for the

yield curve, with short-term rates constrained by the zero lower bound (ZLB) and long-term

rates affected by unconventional monetary policies. In such an environment, interest rate

risk was generally perceived to be tilted to the upside, but the slope of the yield curve did

not capture this. By contrast, interest rate skewness implied by Treasury options signaled

substantial upside risk to yields, suggesting that implied skewness might be a useful forward

looking measure to assess interest rate risk.

In this paper we argue that skewness is crucial for understanding yield dynamics and bond

risk premia over the last three decades, and not just during ZLB episodes. Because condi-

tional skewness measures the asymmetry in the distribution of future rate changes, it is a

natural candidate for capturing changes in the balance of interest rate risks. By contrast,

measures of interest rate volatility or uncertainty in general do not contain directional in-

formation. We study model-free measures of the skewness of Treasury yields during the

period from 1990 to 2021, and document substantial and persistent time variation that is

closely related to the business cycle and the stance of monetary policy. Importantly, skew-

ness contains useful information about the outlook for interest rates: it helps predict excess

bond excess returns, high-frequency interest rate changes around FOMC announcements,

and survey forecast errors for interest rates. Incorporating the information in conditional

yield skewness reveals an important role for expectational errors in driving measures of sta-

tistical bond risk premia. Our evidence is consistent with a theoretical environment where

some economic agents have biased beliefs.

A large literature has documented pronounced negative skewness of stock returns and the

implications for asset pricing and investment management (see, e.g., Neuberger, 2012, and

the references therein). In stark contrast, there is a dearth of evidence on the asymmetry

of the distribution of interest rates and bond returns. Even papers on non-normality of
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interest rates and its links to monetary policy generally assume zero conditional skewness

and treat the effects of FOMC announcements as symmetric (e.g., Johannes, 2004; Piazzesi,

2001). There is a sound empirical reason for the extant perspective: the sample skewness of

Treasury yield changes is essentially zero. That is, the unconditional distribution of interest

rates is symmetric.

Our first question is whether and when asymmetries are important for the conditional dis-

tribution of future interest rates. Specifically, we investigate the time variation and drivers

of conditional skewness, which we measure in two different ways. The first measure, realized

skewness, is based on realized moments of yield changes that are calculated from daily data.

The second, implied skewness, uses risk-neutral moments of yields as implied by Treasury

option prices. The two measures are qualitatively similar in our case, their difference reflect-

ing a skewness risk premium and measurement noise. For most of our empirical analysis, we

focus on option-implied skewness, which has several advantages including its forward-looking

nature, daily availability, and high statistical precision.

We document pronounced and economically interesting time variation in conditional skew-

ness over the past 30 years. The variation is persistent and, in stark contrast to unconditional

yield skewness, indicates extended periods of both substantial upward and downward skew

in the balance of interest rate risk. Option-implied skewness predicts a substantial share

of the variation in realized skewness, establishing formal statistical evidence for the time

variation in conditional skewness. The variation in conditional skewness is strongly cyclical

and driven by macroeconomic state variables: skewness is closely related to the shape of the

yield curve, the stance of monetary policy, and the business cycle. In particular, skewness

tends to be high when the Fed has been easing the stance of monetary policy and the yield

curve is upward-sloping, and low when the Fed has been tightening and the yield curve is

flat or inverted.

Our second question is whether measured conditional skewness contains useful information

about the future outlook for interest rates, in addition to the macroeconomic and financial

variables that drive skewness or those that are commonly used as predictors in this context.

We find that indeed it contains substantial additional information. Skewness exhibits highly

significant predictive power for excess returns on Treasury bonds, and this finding is robust
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to controlling for the shape of the yield curve and a wide range of other predictors. In

fact, skewness is particularly informative about future bond returns when considered jointly

with the yield curve, in violation of the spanning hypothesis for bond markets (Duffee,

2011; Bauer and Hamilton, 2018). The COVID episode is a powerful illustration: implied

skewness signaled the increased downside risk to rates at the onset of the pandemic and then

anticipated the steep rise in long-term Treasury yields starting in mid-2021.

Monetary policy appears to be an important factor underlying the predictive power of skew-

ness, which on the whole is even more pronounced for changes in short-term rates. Skewness

is highly informative about high-frequency money market futures rate changes around up-

coming FOMC announcements, that is, it correctly predicts a substantial portion of “mon-

etary policy surprises.” This finding is mainly driven by the fact that negative skewness

captures downside risk early on in monetary easing cycles and successfully predicts the large

dovish surprises that typically occur during those phases. The risk of monetary policy sur-

prises is asymmetric, and skewness correctly captures this asymmetry.

The evidence on FOMC surprises suggests that the predictive power of skewness is highest at

monetary policy turning points, a time when disagreement among forecasters is particularly

high. Because predictability of asset returns may arise from time-varying risk premia or

expectational errors in survey forecasts, we next study the relation between these errors and

conditional skewness. Using the Blue Chip Financial Forecasts and Survey of Professional

Forecasters, we document that skewness measured at the time of the surveys is highly infor-

mative for the forecast errors for future interest rates. This finding, which extends across all

forecast horizons and is robust to controlling for the shape of the yield curve, suggests that

expectational errors may be important for the predictability of excess bond returns.

To quantify this channel we use a decomposition of statistical risk premia into (survey-based)

subjective risk premia and expectational errors. Conditioning only on information in the

yield curve leads to the mistaken conclusion that subjective risk premia are the main source

of variation in statistical bond risk premia. But conditioning on yield skewness uncovers the

quantitatively important role of variation in expectational errors, which explains more than

half of the variance of statistical bond risk premia for bonds with maturities between one and

five years. This evidence supports the view that time-varying differences between statistical
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and subjective expectations, or biased beliefs, play an important role for explaining the

predictive power of skewness for interest rates. Skewness appears to be a proxy for the bias

in beliefs about future interest rates.

That observation offers a clue about a possible economic mechanism behind the evidence.

One needs a framework where some agents have biased beliefs. We adopt the heterogeneous

beliefs two-agent framework (Basak, 2005; Ehling et al., 2018) by assuming that one agent

knows the true distribution of the state, while the other one has erroneous beliefs. As a

result, the usual measure of disagreement in these models becomes a measure of bias in

beliefs. The model directly speaks to our evidence and is consistent with our findings on

time-varying skewness, predictability, and expectational errors. The economic mechanism is

straightforward: as investors differ in beliefs about future consumption they take different

bond positions, with the more optimistic investor selling bonds to the pessimistic investor.

Ex ante, each investor expects to capture wealth from the other investor and, hence, both

expect future consumption to be higher than without disagreement. As a result, interest

rates depends nonlinearly on the dispersion in beliefs between the agents, and are non-

normally distributed even though the state variables are Gaussian. Yield skewness arises

endogenously and varies over time with changes in beliefs. Bond yields do not linearly span

expected excess returns, leaving an important role for expectational errors and skewness to

explain statistical bond risk premia. Skewness is negative when belief dispersion is high, as

is the case around turning points of monetary policy, when low skewness tends to anticipate

easing surprises.

Our paper is related to several strands of the macro-finance literature. It builds on a long

tradition of research on predictability in bond markets (e.g., Campbell and Shiller, 1991,

Cochrane and Piazzesi, 2005, Ludvigson and Ng, 2009, and Cieslak and Povala, 2015, among

many others). Recent work has revisited this predictability allowing for deviations from the

benchmark of full information rational expectations (FIRE). In particular, Piazzesi et al.

(2015), Cieslak (2018), Schmeling et al. (2021), Buraschi et al. (2021) and Nagel and Xu

(2021) use survey forecasts of interest rates to study the contributions of subjective bond

risk premia and expectational errors to the predictability of excess returns, i.e., to variation

in statistical risk premia. We document that conditional yield skewness captures system-

atic errors in interest rate expectations (and indeed may be their source), and in this way
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substantially contributes to return predictability.

Giacoletti et al. (2021) (GLS) show that survey disagreement in yield forecasts predicts ex-

cess bond returns, and attribute this result to learning about interest rate dynamics. Our

predictability results are robust to controlling for the GLS measure of disagreement. GLS

argue that their evidence is inconsistent with heterogeneous beliefs about macro fundamen-

tals, since they find no relationship between disagreement about inflation and yields (see also

Singleton, 2021). The mechanism that we emphasize with our heterogeneous beliefs model

is distinct from the one explored by GLS. In our model, disagreement is closely connected

to biases in beliefs about fundamentals. We document supportive evidence in the form of

predictability of survey forecast errors for GDP growth using conditional skewness. Thus,

in the data skewness is connected to biased beliefs about both fundamental and financial

variables, consistent with the heterogeneous beliefs framework.

A very large empirical literature studies the interaction of monetary policy and bond mar-

kets, including Balduzzi et al. (1997), Ang and Piazzesi (2003), and Piazzesi (2005). Since

Kuttner (2001) an important focus has been on the effects of surprises in monetary pol-

icy announcements on asset prices (e.g., Gürkaynak et al., 2005, Nakamura and Steinsson,

2018). Brooks et al. (2020) document that FOMC announcement surprises cause a persistent

drift in Treasury yields. Our results show that high-frequency rate changes around FOMC

announcements are predictable with the information in conditional skewness, questioning

their use as exogenous monetary policy surprises. Our findings are consistent with related

evidence on this type of predictability using information in macroeconomic and financial

variables (Cieslak, 2018; Bauer and Swanson, 2021).

Our paper also connectes to studies on the importance of asymmetries in the macro-financial

outlook (Barro, 2006; Conrad et al., 2013; Adrian et al., 2019). Recent work on the “Fed put”

by Cieslak and Vissing-Jorgensen (2021) documents the predictive power of downside risk

in the stock market for Fed easing actions, which is related to our finding that asymmetric

risk perceptions in the bond market predict market moves around FOMC announcements.

A large literature in macroeconomics and finance studies belief formation and deviations from

rational expectations. Prominent examples include “natural expectations” (Fuster et al.,

2010), “diagnostic expectations” (Bordalo et al., 2018), and, more generally, extrapolative
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expectations (Barberis et al., 2015). Our evidence and model supports the view that interest

rate expectations deviate from the FIRE assumption, but we do not take a stand on the

precise nature of this deviation or on a specific type of belief formation. Our theoretical

results show the implications of a deviation from FIRE, and thus biases in beliefs, for interest

rates and bond risk premia.

In terms of using options to measure skewness, the methodology follows that of Bakshi

and Madan (2000) and Neuberger (2012). Trolle and Schwartz (2014) is a paper close to

ours as it also measures skewness in fixed-income markets using the Neuberger approach

and documents some time-variation in swaption-implied conditional skewness. However, the

sample period is relatively short, 2002-2009, and the authors do not relate skewness to bond

returns or survey-based forecasts of yields.

Some other empirical work looks at interest rate skewness from different perspectives: Hattori

et al. (2016) demonstrate that unconventional monetary policy has reduced option-implied

tail risks for the stock and bond markets. Mertens and Williams (2021) use option-implied

distributions during the 2008-2015 ZLB period to distinguish between the constrained and

unconstrained monetary policy equlibria. Li (2021) documents the connection between

option-implied Treasury skewness and recessions between 2000 and 2018. Diercks et al.

(2021) measure the skewness in subjective distributions for the future federal funds rate

derived from the New York Fed’s Survey of Primary Dealers. Their series, which starts in

2011, exhibits broadly similar patterns as option-implied skewness for Treasury yields.

The early work on heterogeneous beliefs is Harrison and Kreps (1978) and Detemple and

Murthy (1994). Heterogeneous beliefs-based asset pricing applications are reviewed in Basak

(2005). Xiong and Yan (2010) is the first application of heterogeneous beliefs to Treasury

bonds. Our contribution to this literature is to uncover a link between dispersion in beliefs

and non-normality of yields. Disagreement and biased beliefs about fundamentals generates

skewness in interest rates, a connection we document both in theory and in the data.

2 Time variation in interest rate skewness

Interest rate skewness captures the degree of asymmetry in the probability distribution of

changes in interest rates. Given that average interest rate changes are close to zero, positive
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skewness indicates that large rate increases are more likely than large rate declines, which

implies that the balance of risk is tilted to the upside, and vice versa.

Unconditional interest rate skewness—the sample skewness of Treasury yield changes over

long periods of time—has been essentially zero. In this section we document that this

contrasts with pronounced shifts and large cyclical swings over the last three decades in

conditional skewness, measured either as realized skewness (using short rolling windows

of Treasury yield changes) or option-implied skewness (using model-free moments implied

by Treasury options). The statistical evidence for this time variation is that option-implied

skewness strongly predicts realized skewness. The variation is strongly cyclical, and skewness

is closely related to the slope of the yield curve and stance of monetary policy. Periods when

the slope is high (low) or when the Fed has been easing (tightening) the stance of monetary

policy are characterized by high (low) option-implied skewness. The orthogonal component

of skewness still exhibits cyclical variation, which our subsequent analysis will show to contain

substantial additional predictive information.

2.1 Data

The data we use in this analysis are Treasury yields, as well as Treasury futures and options.

Our Treasury yields are the daily “GSW” smoothed Treasury yield curves from Gürkaynak

et al. (2007). When we need a monthly data frequency we take monthly averages. Most of

our analysis focuses on the 10-year yield.

The Treasury derivative prices are from CME group. In particular, we use end-of-day prices

of the 10-year T-Note futures contract, and options written on this contract. Both types

of contracts are among the most actively traded Treasury derivatives, with high liquidity

(in terms of open interest and volume) and long available price histories. The deliverable

maturities for this futures contract are between 6.5 and 10 years. Changes in futures prices

are closely associated with negative yield changes in the cheapest-to-deliver (CTD) Treasury

security. Because skewness is scale invariant, we can take the negative of the skewness of

futures price changes as a measure of skewness of yield changes for the CTD bond. Details

are in Appendix A.

7



Our sample period is from the beginning of January 1990 to the end of May 2021. The

starting date is dictated by the availability of options data allowing us to consistently calcu-

late option-based moments using prices across many contracts/strikes. While the historical

Treasury options data starts in May 1985, there are only few contracts and prices available

during the early years.

2.2 Sample statistics and unconditional skewness

The top panel of Table 1 reports summary statistics for quarterly changes (using the last

month of the quarter) in the 10-year yield, including the mean, median, variance and third

central moment. We report the statistics for the full sample and the first and second half of

the sample. In addition to sample statistics, we also calculate 90%-confidence intervals using

a simple bootstrap, since yields are highly persistent and the serial correlation of their changes

is close to zero. The mean and median are negative and, like the variance, have changed

little between the first and second sub-sample. By contrast, the third sample moment of

quarterly yield changes shifted: over the first half of the sample, the third moments is zero,

while over the second half it has turned negative.

The middle and bottom panels of Table 1 report the sample skewness coefficient for yield

changes and (negative) futures price changes, respectively, and we report skewness for dif-

ferent frequences, ranging from one-month to twelve-month changes. The results for bond

yields and futures are similar: For the full sample, sample skewness of interest rate changes

is statistically close to zero. Its value in split samples depends on the frequency, but it is

typically higher and positive over the first half of the sample and negative over the second

half of the sample. The magnitude ranges between -1 and 0.5, depending on the specific

sample and frequency, is comparable to the skewness estimates for foreign currency and

equity index returns reported in the literature (e.g., Chernov et al., 2018, Table 1).

Thus, while the mean and variance of yield changes have not changed, the shape of the

asymmetry has shifted noticeably. While the skew of the distribution generally appears

slightly positive from 1990 to 2004, it has shifted significantly negative for the period from

2005 to 2021. This empirical pattern suggests that an unconditional, full-sample perspective

on skewness may miss interesting features of the distribution of interest rates. Therefore we

8



Table 1: Summary statistics for changes in 10-year Treasury yield

Full sample 1990-2004 2005-2021

Summary statistics of quarterly yield changes

Mean -0.05 (-0.13, 0.01) -0.07 (-0.18, 0.03) -0.04 (-0.14, 0.05)

Median -0.02 (-0.10, 0.04) -0.04 (-0.18, 0.13) -0.02 (-0.14, 0.06)

Variance 0.23 (0.18, 0.28) 0.23 (0.18, 0.29) 0.23 (0.16, 0.31)

Third moment -0.03 (-0.06, 0.01) 0.00 (-0.04, 0.04) -0.05 (-0.11, 0.01)

Skewness of m-month yield changes

m = 1 0.03 (-0.41, 0.52) 0.52 (0.12, 0.96) -0.49 (-1.20, 0.16)

m = 2 -0.41 (-1.27, 0.36) 0.46 (0.15, 0.79) -1.05 (-2.52, -0.20)

m = 3 -0.24 (-0.56, 0.05) 0.01 (-0.35, 0.34) -0.46 (-1.05, -0.02)

m = 6 0.03 (-0.30, 0.37) 0.27 (-0.20, 0.77) -0.27 (-0.71, 0.19)

m = 12 0.36 (-0.10, 0.84) 0.40 (-0.30, 1.10) 0.37 (-0.19, 1.17)

Skewness of m-month (negative) futures price changes

m = 1 -0.14 (-0.63, 0.41) 0.40 (0.02, 0.81) -0.69 (-1.47, 0.04)

m = 2 -0.20 (-0.66, 0.30) 0.32 (0.05, 0.61) -0.72 (-1.55, -0.01)

m = 3 -0.16 (-0.39, 0.06) 0.15 (-0.07, 0.40) -0.45 (-0.84, -0.14)

Notes: Summary statistics for changes in 10-year Treasury yield and futures prices. Sample period: January

1990 to May 2021.

next turn to conditional yield skewness.

2.3 Realized and implied skewness

In order to measure the skewness of the conditional distribution of yields,

Et(yT − EtyT )3/(V artyT )3/2,

we require estimates of second and third conditional moments. We follow the literature on

skewness in stock returns and use both realized and option-implied moments for Treasury

futures price changes, using the negative of price skewness to measure yield skewness. We
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calculate realized skewness (RSK) at a monthly frequency using daily changes in prices and

implied volatility for Treasury futures (Neuberger, 2012, equation 5). Figure 1A plots this

time series of RSK, as well as a 12-month moving average. Monthly realized yield skewness

is volatile and on average close to zero, but exhibits some persistence and pronounced time

variation. During three episodes skewness was markedly negative: the dot-com bubble 1998-

2000, the financial crisis of 2007-2009, and the period since 2015 when the Fed lifted its

policy rate off the ZLB. Skewness declines sharply in the wake of the COVID-19 pandemic

in early 2020 but then reaches historical high level in the wake of global fiscal and monetary

stimulus.

Realized skewness allows us to gauge time variation but it is noisy, available only at lower

frequencies, and backward-looking. Implied skewness (ISK) does not suffer from these draw-

backs. It measures the conditional, risk-neutral skewness of future yield changes based on the

conditional moments implied by options on Treasury futures. Details of how we construct

ISK are in Appendix A. On every trading day we calculate ISK for each futures contract

expiration. For most of our analysis, we then use ISK for the most active option contract,

namely the shortest quarterly contract, which has a maturity between about 1 and 3 months.

Figure 1B shows a time series of implied skewness that is linearly interpolated to a constant

horizon of 2.4 months (the average horizon of all option contracts). Over the full sample,

the average level of ISK is positive, with a mean of 0.10 that is significantly different from

zero, and a standard deviation of 0.30. But this average level of skewness masks substantial

variation in risk perceptions about for future Treasury yields. Similar to realized skewness,

ISK has exhibited pronounced cyclical swings over the course of our sample, but the vari-

ation is more cyclical and more persistent—the first-order autocorrelation of ISK is 0.95.

Particularly striking is the behavior during the first ZLB episode, when the Fed’s policy

rate was near zero. Between 2009 and 2014, ISK averaged 0.35, while outside of this period

the average was only 0.04. Before liftoff from the ZLB in 2015 skewness shifted markedly

negative, and it averaged -0.21 between 2015 and the end of the sample. As is the case

with RSK, the COVID stimulus has changed that with ISK reaching levels of around 1.0 in

mid-2020.

More formal statistical analysis is helpful to better understand the time variation that is

visually evident in these figures. Specifically, we want to test whether time variation in
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Figure 1: Yield skewness

(A) Realized skewness, RSK (B) Implied skewness, ISK
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Notes: Panel (A) displays monthly realized Treasury yield skewness, calculated from changes in daily Trea-

sury futures prices and implied volatilities, with a 12-month moving average (blue line). Panel (B) plot daily

implied Treasury yield skewness, calculated from options on Treasury futures and interpolated to a constant

horizon of 0.2 years, with a 250-day moving average (blue line). Panel (C) shows residual skewness from a

regression of monthly implied skewness on yield-curve factors (specification 2 in Table 3), with a 12-month

moving average (blue line). Sample period: January 2, 1990, to May 28, 2021.

option-implied skewness is statistically and economically significant. One straightforward

way to do so is to assess whether it predicts realized skewness. In Table 2 we present

results for various regression specifications, predicting monthly realized skewness with its
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Table 2: Predicting realized skewness

(1) (2) (3) (4) (5) (6) (7)

RSK 0.43∗∗∗ 0.20∗∗∗ 0.40∗∗∗ 0.19∗∗∗

(0.04) (0.06) (0.05) (0.06)

ISK 2.05∗∗∗ 1.51∗∗∗ 2.04∗∗∗ 1.52∗∗∗

(0.22) (0.27) (0.23) (0.27)

Level −0.02 −0.02 −0.02 −0.02

(0.06) (0.04) (0.04) (0.03)

Slope 0.27∗∗∗ 0.14∗∗ 0.05 0.04

(0.08) (0.06) (0.06) (0.06)

Curvature 0.08 0.15 −0.48 −0.31

(0.55) (0.33) (0.34) (0.31)

Constant 0.08 −0.09 −0.06 −0.39 −0.18 0.07 0.06

(0.07) (0.08) (0.07) (0.47) (0.32) (0.29) (0.26)

Observations 376 376 376 376 376 376 376

R2 0.18 0.23 0.26 0.05 0.19 0.24 0.26

Notes: Predictive regressions for one-month realized skewness (RSK). ISK is option-implied yield skewness;

RSK is realized yield skewness based on daily changes in futures prices and implied volatilities, following

Neuberger (2012); Level, Slope and Curvature are the first three principal components of Treasury yields

from one to ten years maturity (appropriately scaled). All predictors are measured at the end of the previous

month. Sample: monthly observations from January 1990 to May 2021. Newey-West standard errors with

automatic bandwidth selection are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance

at the 10%, 5% and 1% levels, respectively.

own lag, option-implied skewness or the shape of the yield curve, all measured at the end

of the previous month. To guard against serial correlation due to the persistence of RSK

we report Newey-West standard errors (with automatic bandwidth selection). RSK exhibits

significant autocorrelation, but lagged values of ISK have even stronger predictive power

than lagged values of RSK itself. In a regression that includes both predictors, both are

strongly significant (see column 3). The slope of the yield curve has some explanatory

power for future RSK, but once we include ISK this is driven out and the information in

the yield curve becomes irrelevant. In sum, there is strong evidence for time variation in
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the conditional expectation of RSK, and that much of this variation is captured by ISK.

This establishes that conditional yield skewness varies over time, and that ISK is a useful

forward-looking measure of this conditional skewness.

2.4 Skewness and the yield curve

We now turn to the cyclical nature of the variation in skewness and its macro-financial

drivers. First, to provide a visual impression of the relationship between interest rates and

skewness, Figure 2 plots annual moving averages of implied skewness and the slope of the

Treasury yield curve (calculated as explained below). Skewness tends to increase when the

yield curve is steep or steepening. This pattern is most striking during the episodes in 2002-

2003 and 2008-2013. In other words, the slope of the yield curve is positively related to yield

skewness.

We formalize the evidence on the relationship between skewness and other macro-financial

variables by a series of regressions reported in Table 3. In all specifications, the dependent

variable is conditional implied skewness, ISK.1 We use monthly averages of skewness and in-

terest rates. Newey-West standard errors (with automatic bandwidth selection) are reported

in parentheses.

The first column in Table 3 reports estimates for a regression on the level and slope of the

yield curve. These are calculated as the first two principal components of yields from one to

ten years maturity, normalized such that high level/slope are associated with high yields/an

upward sloping yield curve. The numbers confirm that the slope is important for skewness:

an upward-sloping yield curve is associated with high skewness. Level, by contrast, does not

have a statistically significant relationship with skewness.

Including an interaction between level and slope adds substantial explanatory power. The

reason is that the slope exhibited a stronger relationship with skewness when the level of

yields was low (later in the sample) than when it was high (early in the sample). This

1To save space, we do not report results for specifications including contemporaneous RSK. Since RSK
and ISK are highly correlated, including RSK substantially raises R2, but it does not materially affect the
statistical relationships documented in Table 3.
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Figure 2: Skewness and interest rates
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Notes: Option-implied yield skewness (left axis) and the slope of the Treasury yield curve (the second

principal component of Treasury yields, right axis). Annual moving averages of daily values. Green/orange

shaded areas indicate monetary policy easing/tightening cycles (based on changes in the fed funds rate).

Sample period: January 1990 to May 2021.

pattern is partly driven by the 2008-2015 ZLB period, when the level of yields was low and

both skewness and the slope of the yield curve were generally high.

Figure 1C plots the residual from a regression of ISK on level, slope and a level-slope in-

teraction, that is, from the regression specification in column 2 of Table 3. Accounting for

the shifts in the yield curve dampens the large cyclical swings, compared to the original

series. However, this unexplained portion still has interesting cyclical variation, which we

show below to contain substantial relevant information about future yields.
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Table 3: Explaining the level of conditional yield skewness

(1) (2) (3) (4) (5) (6) (7)

Level 0.004 0.06 0.02 0.02 0.08∗∗∗

(0.02) (0.04) (0.02) (0.02) (0.03)

Slope 0.10∗∗∗ 0.20∗∗∗ −0.01 0.04 0.15∗∗

(0.03) (0.06) (0.04) (0.04) (0.07)

Level*Slope −0.03∗∗ −0.03∗∗

(0.01) (0.01)

Easing 0.23∗∗∗ 0.29∗∗∗

(0.08) (0.10)

Tightening −0.16∗∗ −0.13

(0.08) (0.08)

Unemployment rate 0.08∗∗∗ 0.07∗∗ 0.07∗∗

(0.02) (0.03) (0.03)

Constant −0.11 −0.32 0.07 −0.02 −0.33∗∗ −0.45∗∗∗ −0.68∗∗∗

(0.14) (0.19) (0.06) (0.15) (0.14) (0.16) (0.19)

Observations 377 377 377 377 377 377 377

R2 0.15 0.19 0.31 0.33 0.20 0.25 0.29

Notes: Regressions for the level of option-implied yield skewness of the ten-year Treasury yield, using

monthly data from January 1990 to May 2021. Level and Slope are the first two principal components of

Treasury yields from one to ten years maturity, scaled to correspond to level and slope of the yield curve;

Easing and Tightening are dummy variables indicating whether the Federal Reserve was easing or tightening

monetary policy one year ago (based on observed changes in the policy rate). Newey-West standard errors

(with automatic bandwidth selection) are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical

significance at the 10%, 5% and 1% levels, respectively.

2.5 Skewness and the ZLB

Over most of the ZLB period beginning in 2008, and since mid-2020, implied skewness was

significantly higher than over the rest of the sample. One might hypothesize that skewness

generally tends to be high when interest rates are low and close to the ZLB, because lower

bound might truncate the left tail, thus making the right tail comparatively longer and
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skewness positive. But the following observations suggest that this kind of ZLB effect was

not quantitatively important for variation in skewness.

First, if conditional yield skewness depended on the proximity of yields to the ZLB, then

this should imply a negative relationship between skewness and the level of the yield curve.

By contrast, the estimates in Table 3 suggest either a non-existent or positive relationship,

depending on the specification. Furthermore, skewness is time-varying and sign-switching

in our sample prior to 2008, without any apparent time trend despite the secular downward

trend in interest rates (Bauer and Rudebusch, 2020). For example, yields were lower in 2016

than during most of the first ZLB period, yet skewness was mainly negative in 2016.

Second, skewness behaved very differently during the two ZLB episodes in our sample. Skew-

ness turned positive when the ZLB was reached in 2008 and remained mainly positive for

several years, but then switched to negative in 2014, more than a year before the Fed lifted

its policy rate off the ZLB. During the most recent period, skewness remained negative for

several months after the ZLB was reached, but then turned positive in mid-2020 before

long-term Treasury yields commenced a pronounced increase, as discussed in Section 3.5.

Third, a closer investigation of the entire option-implied density of future yields during the

two ZLB episodes shows no evidence of a mechanical ZLB explanation of positive skew-

ness. Figure 3 shows, for two different dates, the implied densities for yields at the option

expiration date, obtained from (i) the bond derivative prices, (ii) a normal-inverse-gamma

distribution that matches the first four option-implied moments (Eriksson et al., 2009), (iii)

an approximate mapping from bond price changes to yield changes (see Appendix A), and

(iv) the current CTD bond yield.2

The first date is December 31, 2012, a day with a particularly low yield level (1.14 percent)

and a high level of skewness (0.8). The density shows the conditional distribution of yields

on February 22, 2013, the expiration date. Even for this extreme example of low yields and

high skewness during this episode, the 1st percentile of the distribution is comfortably above

the ZLB, at 0.6 percent. This suggests that the left tail is not thinner because it is cut off

2One could also infer the entire risk-neutral distribution from option prices directly using non-parametric
methods. That approach, however, is quite sensitive to measurement errors and outliers in the options data,
and to the implementation details and specific smoothing techniques (e.g., Ait-Sahalia and Duarte, 2003,
Bondarenko, 2003).
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Figure 3: Densities for future yields at ZLB
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by the ZLB, but instead because investors perceived an upward tilted balance of risk and

large right tail.3

The second date is June 16, 2020, a day with extremely low yields and negative skewness,

which was not uncommon during this episode. For this distribution, pertaining to the yield

level on August 21, the 1st percentile is deeply negative, at -0.6 percent, suggesting that the

ZLB does not eliminate left tails and mechanically lead to positive skewness, at least not

during this episode.

The presence of the ZLB certainly affects some aspects of the distribution of interest rates

including its skewness. But overall our evidence here and the predictability results in Section

3 suggest that proximity to the ZLB is not an important driver of skewness, and that high

conditional skewness during ZLB episodes was not due to a mechanical truncation effect.

3Even a counterfactual distribution with an equally large negative skewness, at -0.8, still has a 1st
percentile quite a bit above the ZLB, at 0.3 percent.
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Instead, other factors likely affected risk perceptions during this episode, such as perceptions

about the likely future course of monetary policy and the risk that long-term yields might

return to higher levels. Conditional skewness mainly reflects changes in the outlook of

interest rate risk, to which we turn next.

2.6 Monetary policy and the business cycle

Figure 2 also shades monetary policy easing and tightening cycles, which we identify based

on changes in the federal funds rate, since shifts in monetary policy are a key driver of shifts

in the yield curve (Piazzesi, 2005). This shows that conditional skewness tends to increase

during or after monetary easing cycles, most prominently during the easing after the 2000

dot-com bust and during the Great recession and ZLB period. Vice versa, tightening episodes

coincide with or precede episodes of falling skewness. We now dig deeper into the relationship

between skewness and monetary policy cycles.

To this end, we estimate regressions that include indicator variables for monetary easing and

tightening cycles. Cross-correlations reveal that one-year lags of the indicator variables for

easing and tightening episodes have the strongest correlation with skewness, so we include

these lags instead of contemporaneous indicators in our regressions. Columns 6 and 7 of

Table 3 show the results.

Conditional skewness has a statistically strong and economically intuitive relationship with

the monetary policy cycle. A regression of ISK on the cyclical indicators, shown in column

6, demonstrates their substantial explanatory power, with an R2 of 0.31. A third of the

variation in conditional yield skewness is explained by the monetary policy cycle. Skewness

is high during and soon after monetary easing cycles. Intuitively, these are episodes of

upward-tilted interest risk because the Fed has been lowering rates and the next monetary

tightening cycle is likely to begin soon. Vice versa, skewness is low during and early after

monetary tightening cycles, periods where investors are turning their attention to downward

risk to interest rates. Thus, skewness appears to capture the changing balance of interest

rate risk over the business cycle.4

4We have also found evidence for the cyclical behavior of skewness using various business cycle variables,
including NBER recession dummies, industrial production grpwth, the output gap, the Chicago Fed National

18



The relationship of skewness with the monetary policy cycle is so strong to even drive out

the relationship with the yield curve. When we add these indicators to a regression with

RSK and the yield-curve variables, the slope becomes insignificant, as shown in column 7 of

Table 3. This finding may be understood in light of the fact that the slope of the yield curve

mainly reflects the stance of monetary policy (Rudebusch and Wu, 2008). Our two cylical

indicators apparently provide a more nuanced measure of the monetary policy cycle.

Of course, the stance of monetary policy is ultimately determined by macroeconomic condi-

tions. In particular, cyclical indicators like the output gap or the unemployment rate tend

to be strongly correlated with the slope of the yield curve (Rudebusch and Wu, 2008). Con-

sistent with this evidence, we have found that ISK is also closely related to such cyclical

indicators. Table 3 shows that changes in the unemployment rate explain about 20 per-

cent of the variation in ISK. The coefficient on the unemployment rate remains statistically

significant even after adding yield curve variables.

Overall, we find strong contemporaneous correlations with the slope of the yield curve, the

stance of monetary policy, and the business cycle. In particular, when the yield curve is

upward-sloping as a result of monetary easing during economic downturns, then ISK tends

to be high, and vice versa. One take-away from these results is that changes in conditional

skewness plausibly represent shifts in perceptions about the future balance of interest rate

risk. In addition, the strong contemporaeous correlations with macroeconomic and financial

variables make it important to control for these skewness drivers in the following predictive

analysis.

3 The information in conditional skewness

Our evidence so far has established the cyclical variation in skewness and linked it to eco-

nomic driving forces and the business cycle. We now turn to the question whether yield

skewness contains useful forward-looking information for interest rates. Consider the link

Activity Index, among others. The two cyclical indicators in Table 3 are so closely related to skewness that
when we include them, other macroeconomic variables generally become insignificant. We omit these results
for the sake of brevity.
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between expected bond returns and risk premia:

Et(RX
(n)
t+1) = Et(RX

(n)
t+1)− Es

t (RX
(n)
t+1)−

Covst (Mt+1, RX
(n)
t+1)

Es
t (Mt+1)

, (1)

where RX
(n)
t+1 = P

(n−1)
t+1 /P

(n)
t − 1/P

(1)
t is the one-period excess gross return on an n−period

bond with price P
(n)
t , Mt+1 is the stochastic discount factor (SDF), and the superscript s

refers to subjective probability.5 This representation is helpful because it demonstrates that

predictability of excess returns can arise from variation in risk premia and from a time-

varying bias in beliefs, i.e., from changes in systematic expectational errors. Variation in

risk premia has traditionally been the common explanation of empirical results documenting

predictability of bond returns or interest rate changes. Recent work, however, has emphasized

the possibility that such empirical correlations could be due to the failure of the often implicit

assumption of full information rational expectations (FIRE), i.e., to changing biases in beliefs

captured by the first two terms in equation (1) (e.g., Bauer and Swanson, 2021, Bacchetta

et al., 2009, Buraschi et al., 2021, Cieslak, 2018, Piazzesi et al., 2015).

This representation guides our empirical work. We first establish whether skewness predicts

excess returns. We implement that analysis in two different ways: conventional predictive

regressions for excess returns on Treasury bonds, similar to Cochrane and Piazzesi (2005)

and many others, and an analysis of high-frequency interest rate changes around FOMC

announcements, i.e., monetary policy surprises.6 Next, we disentangle the source of pre-

dictability by using consensus survey forecasts as a proxy for subjective expectations.

3.1 Bond returns

We begin with conventional predictive regressions for excess returns on Treasury bonds,

similar to Cochrane and Piazzesi (2005) and many others. We work with monthly data and

follow common practice by using end-of-month interest rates. For the holding period we

5Excess gross returns allow for the cleanest decomposition, while our empirical analysis below uses excess
log returns, as is common in this literature. The two are very similar in the data, and our empirical results
are essentially unchanged if we use excess gross returns.

6High-frequency interest changes closely correspond to (negative) excess bond returns, since the risk-free
return at such frequencies is close to zero.
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choose one quarter, because ISK is based on derivative contracts with expiration of about

1-4 months in the future; annual excess returns are more common in empirical work, but we

want to match the horizons of option contracts and bond returns. Log excess returns are

calculated as rx
(n)
t,t+3 = p

(n−3)
t+3 −p

(n)
t −y

(3)
t where p

(n)
t = −ny(n)t is the log price of a zero-coupon

bond with n months to maturity and continuously compounded yield y
(n)
t , and the risk-free

rate y
(3)
t is taken to be the three-month T-bill rate. Our main predictive regressions are:

rxt,t+3 = β′Xt + εt,t+3, (2)

where rxt,t+3 =
∑10

j=1 rx
(12j)
t,t+3/(10j) is the weighted average log excess return across maturities

from one to ten years, and εt,t+3 is the serially correlated prediction error.7

A vector of predictors, Xt, is observable at the end of month t. We are most interested

in the predictive power of option-implied yield skewness, thus Xt contains ISK. We use the

average of ISK over the last five business days of the month to smooth out the high-frequency

movements in this series. The predictors in Xt in most cases also include, besides a constant,

the level, slope and curvature of the yield curve, which we calculate as the first three principal

components of yields with annual maturities from one through ten years. Controlling for the

shape of the yield curve is important since a natural null is the hypothesis that it reflects all

the information that is relevant for expectations of future interest rates, i.e., the spanning

hypothesis investigated by Duffee (2011) and Bauer and Hamilton (2018), among many

others. For more reliable statistical inference in this setting with multi-period overlapping

returns we calculate standard errors using the reverse regression delta method of Hodrick

(1992) and Wei and Wright (2013).

Table 4 reports estimates of Equation (2) for different sets of predictors. The first column

displays results for level, slope, and curvature alone. The coefficients on level and slope are

statistically significant, although for the slope only marginally so. The slope coefficient is

positive, in line with previous work that found a high slope to predict falling long-term yields

and high bond returns (Campbell and Shiller, 1991, Cochrane and Piazzesi, 2005).

Adding ISK roughly doubles the predictive power relative to the yields-only specification

7As in Cieslak and Povala (2015), we scale excess returns by maturity so that all excess returns have the
same duration and similar volatility.
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Table 4: Predicting excess returns

(1) (2) (3) (4) (5) (6) (7) (8)

Level 0.003∗∗ 0.004∗∗ 0.004∗∗ 0.004∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.002) (0.002) (0.001) (0.002) (0.01) (0.002)

Slope 0.02∗ 0.03∗∗∗ 0.03∗∗ 0.03∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Curvature 0.03 0.004 0.04 0.01 −0.05 −0.02

(0.06) (0.06) (0.06) (0.06) (0.07) (0.06)

ISK −0.34∗∗∗ −0.19∗ −0.28∗∗ −0.27∗∗∗ −0.32∗∗∗ −0.29∗∗

(0.12) (0.10) (0.13) (0.10) (0.12) (0.14)

RSK −0.06∗∗∗ −0.02

(0.02) (0.02)

CF 1.12∗∗∗

(0.30)

i∗ −0.26∗∗

(0.12)

GLS −0.39∗∗

(0.17)

Constant −0.07 −0.15∗ 0.19∗∗∗ −0.11 −0.15 0.01 0.26 −0.03

(0.10) (0.09) (0.04) (0.09) (0.09) (0.06) (0.18) (0.14)

Observations 374 374 374 374 374 374 374 347

R2 0.06 0.11 0.02 0.09 0.11 0.11 0.13 0.14

Notes: Predictive regressions for three-month excess bond returns (average of duration-normalized excess

returns on Treasury bonds with one to ten years maturity) using monthly data from January 1990 to May

2021. Predictors: Level, Slope and Curvature are the first three principal components of end-of-month

Treasury yields from one to ten years maturity (appropriately scaled); ISK is option-implied yield skewness

averaged over the last five business days of the month; RSK is monthly realized yield skewness based on

daily changes in futures prices and implied volatilities, following Neuberger (2012); CF is the cycle factor of

Cieslak and Povala (2015); i* is an estimate of the trend component of nominal interest rates from Bauer and

Rudebusch (2020); GLS is survey disagreement about future ten-year yields from Giacoletti et al. (2021).

Standard errors based on the reverse regression delta method of Wei and Wright (2013) are reported in

parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.
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(measured by R2). The coefficient on ISK is negative and highly significant, indicating that

high skewness predicts low bond returns and thus rising yields. Compared to the yields-

only specification, the coefficient on the slope is larger and more strongly significant. The

fact that conditional yield skewness has significant predictive power even controlling for the

information yields—i.e., that the predictive power of ISK is not subsumed by the shape of

the yield curve—indicates a violation of the spanning hypothesis.

As a more reliable method of inference that accounts for potential small-sample problems,

Bauer and Hamilton (2018) propose a bootstrap method to test the spanning hypothesis in

predictive regressions for bond returns. Using their bootstrap procedure leads to a small-

sample p-value on the coefficient of ISK that is below 1%. The fact that this small-sample test

leads to the same result as the asymptotic standard errors in Table 4 is due to the fact that

ISK exhibits only moderate autocorrelation in monthly data (the first-order autocorrelation

coefficient is 0.72), which alleviates problems with inference for persistent predictors.

The third column reports estimates for a univariate specification with only ISK. The coef-

ficient is still negative and marginally significant, but the predictive power is substantially

weaker than for the specification which includes information in current yields. Comparing

the results in columns (2) and (3) strongly supports the case that ISK contains additional

information about future returns relative to the current yield curve: including yield-curve

variables improves the predictive power of the regression, and at the same time raises the

absolute magnitude of the coefficient on ISK and its t-statistic. In addition, the whole

(the R2 for the joint specification in column 2) is larger than the sum of its parts (the

R2’s in columns 1 and 3), which shows that combining the information in the yield curve

and in option-implied yield skewness is key to taking full advantage of these two sources of

forward-looking information. Consistent with this view, a regression that includes as its only

predictor residual skewness, i.e., ISK orthogonalized with respect to the information in the

yield curve, yields a highly significant coefficient of -0.34 and R2 of about five percentage

points. This confirms that the new information in conditional skewness is statistically and

economicaly significant for future bond returns.

Column (4) adds RSK to the yield curve variables, instead of ISK. Realized skewness also

has economically and statistically significant predictive power for bond returns. However, it
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is somewhat less powerful than implied skewness, as evidenced by the slightly lower R2 in

column (4) than in column (2). To investigate whether both ISK and RSK are important

for return predictions, we estimate a regression that includes both of them, shown in column

(5). In this specification, in addition to the yield curve predictors, it is only ISK that exhibits

significant predictive power, but not RSK.

Long-run trends in interest rates are an important issue for estimation of bond risk premia, as

first documented by Cieslak and Povala (2015). They detrended yields using a slow-moving

average of past inflation, and showed that a linear combination of detrended yields, which

they called a “cycle factor,” is an excellent predictor of excess bond returns. In column

(6), we control for this cycle factor, which optimally combines the information in both the

current yield curve and the underlying inflation trend.8 The coefficient on ISK remains

highly significant, and the R2 is similar to the specification including the standard yield

curve predictors in column (2).

Another way to account for long-run rate trends in bond return predictions is to include the

trend proxy as an additional regressor. Column (7) controls for an estimate for the trend

component of nominal interest rates, or i∗, suggested by Bauer and Rudebusch (2020). This

trend variable includes proxies for both the inflation trend emphasized by Cieslak and Povala

(2015) and the trend in real interest rates that has been the focus of much macroeconomic

research since Laubach and Williams (2003), consistent with a long-run Fisher equation

i∗t = π∗t + r∗t . Accounting for the slow-moving interest rate trend in this way further raises

the predictive power for future bond returns relative to the specification with only the yield

curve. Importantly, the coefficient on ISK remains highly statistically significant.

The last column explores the relation between ISK and the survey disagreement about the

10-year yield advocated by Giacoletti et al. (2021) (GLS). The sample for this regression is

shorter because the GLS variable is currently available only until November of 2018. The

estimates show that ISK continues to be significant when combined with yield disagreement,

and that both variables add forecasting power for future bond returns.

8We estimate the cycle factor by detrending one- through ten-year yields with a moving average of core
CPI inflation, predicting rxt,t+3 using the one-year and the average yield cycles, and calculating the fitted
values.
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Estimates for individual excess bond returns are shown in Appendix Table B.1. ISK contains

additional information about future returns for all bond maturities from one to ten years.

Interestingly, the predictive power of ISK for excess returns is even stronger for short than

for long bond maturities.

An important question about all of these results is how robust they are across sample periods.

To address it we estimate our baseline predictive regression—including yield curve predictors

and ISK—for a variety of different sample periods, and the results are shown in Appendix

Table B.2. Overall, the predictive power of ISK is robust across different samples. Of

particular interest is the role of the first ZLB episode is, since during that time yield skewness

was substantially elevated, and Treasury yields increased after the Fed lifted the policy rate

off the ZLB, at least for some time. Table B.2 includes results for a pre-ZLB subsample,

that is, the sample period ending in November 2008, before the Fed lowered the policy rate

to a level near zero. In this subsample the predictive power of conditional skewness was even

stronger, indicating that the ZLB episode does not play a unique role in explaining our main

results.

In additional, unreported analysis we have investigated further predictive models that control

for other variables. First, our earlier estimates in Section 3 documented a strong contempora-

neous relationship with implied skewness for a level-slope interaction effect and for indicator

variables capturing the state of the monetary policy cycle. Including these variables in the

excess return regressions has no material effect on the predictive power of ISK, supporting the

view that the variation in ISK orthogonal to the yield curve and business cycle indicators—

the residual we plotted in Figure 1C—contains relevant information for the future course

of interest rates. Second, in recent work Crump and Gospodinov (2019) documented that

option-implied skewness in equity markets, measured by the CBOE skew index, predicts

Treasury bond returns. We find that in predictive regressions including both the skew index

and ISK, the coefficients on both variables are highly significant. Furthermore, in regres-

sions that also include yield-curve factors, ISK is strongly significant while the skew index

is insignificant. Lastly, the asset pricing literature has focused on the role option-implied

variance (e.g., Choi et al., 2017). Such a measure captures the market uncertainty but does

not posses directional information. Indeed, our findings are unchanged when controlling for

option-implied variance or volatility using measures calculated from our Treasury options or
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the TYVIX index.

Our interest rate data are the smoothed GSW Treasury yields of Gürkaynak et al. (2007), but

we have also run predictive regressions using the popular unsmoothed Fama-Bliss Treasury

yields. Cochrane and Piazzesi (2005) famously documented in this dataset that a single linear

combination of forward rates captures essentially all of the predictive power of the yield curve

for future excess returns across bond maturities. Our evidence with the Fama-Bliss data,

which we omit for the sake of brevity, also shows that ISK strongly and robustly predicts

future bond returns, for both the averaged bond return as well as for individual returns for

2-5 years bond maturities. Importantly, this finding is robust to controlling for the usual

yield factors, all five annual forward rates, or the powerful Cochrane-Piazzesi factor.

3.2 Monetary policy surprises

We now zoom in on an important source of new information for bond markets: FOMC

announcements. Going back to Kuttner (2001), an extensive literature has studied the

reaction of interest rates to the surprise change in short-term interest rates. Such monetary

policy surprises are typically calculated based on intraday changes in money market futures

rates over a tight window around the FOMC announcements (Gürkaynak et al., 2005).

Several recent papers have found that these high-frequency rate changes are predictable

using publicly available macroeconomic data, possibly due to incomplete information of

market participants about the Fed’s implicit policy reaction function (Bauer and Swanson,

2021; Cieslak, 2018).9

We measure the policy “surprise” as the first principal component of intraday rate changes

around the announcement that are derived from changes in Fed funds and Eurodollar futures

prices, following Nakamura and Steinsson (2018). This surprise, denoted below by st, is a

univariate summary of the shift in short- and medium-term interst rates—the change in

the expected path of future policy rates, up to a term premium component. Appendix

B.2 contains additional results for other measures of monetary policy surprises used in the

9Monetary policy surprises may also contain so-called “information effects” and directly impact beliefs
about macroeconomic fundamentals, as argued by Campbell et al. (2012), Nakamura and Steinsson (2018),
Cieslak and Schrimpf (2019), and others. In contrast, the evidence in Bauer and Swanson (2021) supports
the view that information effects are likely to be small.
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literature, including the target and path factors of Gürkaynak et al. (2005). We report

estimates for predictive regressions

st = β′Xt−1 + εt, (3)

where t are days with FOMC announcements, Xt−1 are predictors observed on the day

before the announcement and εt is a prediction error. For statistical inference, we report

White heteroskedasticity-robust standard errors, because εt is not serially correlated between

FOMC announcements. Our sample contains 213 FOMC announcements from the beginning

of 1994 (when the FOMC first started publicly stating a target for the policy rate) to

June 2019 (where our data for intradaily policy surprises ends). The sample includes both

scheduled and unscheduled FOMC announcements, but our results are not sensitive to the

exclusion of unscheduled announcements.

Table 5 shows results for these regressions. Information in the yield curve alone does not

have any predictive power, as evident from the specification in column (1) where Xt contains

only the level, slope and curvature of the yield curve. Column (2) shows estimates of a

univariate regression. ISK alone has significant predictive power and explains close to six

percent of the variance in the monetary policy surprise.10 When combining the information

in ISK and the yield curve, both the slope and ISK are highly statistically significant, and

the R2 is about 10%, as shown in column (3). The slope’s coefficient is statistically negative,

while the coefficient of ISK is significantly positive, mirroring the findings for the return

regressions in Table 4.

If instead of ISK we include RSK as a predictor, it is also found to exhibit significant

predictive power, as shown in colum (4). But in this case, the R2 is only around 3%.

Column (5) includes both ISK and RSK with the yield curve factors. The slope and ISK

are the most significant predictors in this specification, and the predictive power is similar

to the specification without RSK. Similarly to return regressions, the information in implied

skewness appears more relevant for predicting future rate changes than the information in

10ISK is taken as the mean of the daily ISK observations over these 22 days, or roughly one month, before
the FOMC meeting. RSK is calculated as in Section 2 but based on sums over the 22 trading days before the
FOMC meeting (instead of a calendar month). Moderate changes to these window lengths do not materially
affect our results.
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Table 5: Predicting FOMC surprises with ISK and RSK

(1) (2) (3) (4) (5)

Level −0.0002 −0.001 −0.001 −0.001

(0.001) (0.001) (0.001) (0.001)

Slope −0.001 −0.007∗∗∗ −0.003 −0.007∗∗∗

(0.002) (0.003) (0.002) (0.003)

Curvature −0.016 −0.025∗ −0.015 −0.029∗∗

(0.013) (0.014) (0.013) (0.014)

ISK 0.030∗∗∗ 0.043∗∗∗ 0.059∗∗∗

(0.009) (0.012) (0.016)

RSK 0.004∗∗ −0.005∗

(0.002) (0.003)

Constant 0.003 −0.010∗∗∗ 0.018∗∗ 0.008 0.017∗

(0.007) (0.003) (0.009) (0.008) (0.009)

Observations 213 213 213 213 213

R2 0.009 0.056 0.099 0.027 0.112

Notes: Predictive regressions for the monetary policy surprise around FOMC announcements from January

1994 to June 2019. The dependent variable is the first principal component of 30-minute futures rate changes

around the announcement for five different contracts with up to about one year maturity. Level, Slope

and Curvature are the first three principal components of Treasury yields from one to ten years maturity

(appropriately scaled) measured on the day before the announcement; ISK is option-implied yield skewness,

RSK is realized yield skewness based on daily changes in futures prices and implied volatilities, following

Neuberger (2012), both implied and realized skewness use data over the month (22 trading days) before the

FOMC announcement. White heteroskedasticity-robust standard errors are reported in parentheses, and ∗,
∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.

realized skewness.

Some previous studies have documented predictive power of macroeconomic and financial

variable for FOMC policy surprises. Useful predictors include the federal funds rate and

employment growth (Cieslak, 2018), as well as macroeconomic news, such as the surprise

component in the monthly nonfarm payrolls number (Bauer and Swanson, 2021). Appendix

B.2 shows that ISK retains its predictive power even if we control for the other variables.
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Figure 4: Skewness and monetary policy surprises
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Notes: Horizontal axis: residual of ISK (averaged over month preceding each FOMC announcement) after

regressing on level, slope and curvature of the yield curve. Vertical axis: monetary policy surprise. Sample:

213 FOMC announcements from January 1994 to June 2019. Top ten most influential observations are shown

in blue and labeled.

These results raise the question what type of monetary policy decisions the information in

ISK helps predict. Importantly, monetary policy surprises tend to be asymmetric. Whether

measured against survey forecasts or the expectations in money market futures, the Fed’s

policy decisions have more often been easing surprises than tightening surprises, and the

largest surprises are typically dovish (Cieslak, 2018; Schmeling et al., 2021). The scatter

plot in Figure 4 reveals that most of the predictive power of ISK arises from its correlation

with upcoming easing surprises. It plots the monetary policy surprise against the residual

ISK after projecting out the level, slope and curvature of the yield curve. The correlation
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in this plot thus captures the information that ISK adds to the information in the yield

curve (compare to specification in column 3 in Table 5). A univariate regression for these

observations yields an R2 of nine percent and a t-statistic on the slope coefficient of 3.6

(using White standard errors). The ten most influential observations, as measured by the

contribution to the slope coefficient, are shown in blue and labeled with the month containing

the FOMC announcement. All ten of these observations are for large dovish surprises, which

generally occured early on in monetary easing cycles, including those starting in January 2001

and September 2007. Essentially all of these surprises were partly anticipated by unusually

low levels of skewness ahead of the announcements. An important part of the predictive

power of ISK clearly stems from its ability to anticipate dovish surprises during Fed easing

cycles.

These turning points for monetary policy are particularly uncertain times. There is am-

ple evidence in the literature that disagreement and uncertainty about the macroeconomic

outlook, measured in a number of ways, tend to be high during recessions and easly in mone-

tary easing cycles (e.g., Patton and Timmerman, 2010; Dovern et al., 2012; Schmeling et al.,

2021). This raises the possibility that expectational errors may be part of the explanation,

which we will investigate next.

3.3 Survey forecast errors

The evidence on interest-rate predictability in Sections 3.1 and 3.2 speaks to time variation

in expected excess bond returns, that is, in the left-hand side of equation (1). Under the

FIRE hypothesis, the only explanation for these results are changes in (subjective) bond risk

premia. However, more generally the established predictability may also arise in part from

systematic forecast errors that are related to skewness, as indicated by the right-hand side of

equation (1). To investigate this possibility, we use survey forecasts as proxies for subjective

expectations.

Specifically, we calculate survey forecast errors for interest rates using the Blue Chip Fi-

nancial Forecasts (BCFF). This is a monthly survey that contains forecasts for the current

quarter (nowcasts) and each of the next five quarters.11 The survey respondents provide

11The surveys conducted before 1997 extend out only four quarters.
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their forecasts for the future quarterly averages for a number of different interest rates. We

consider both the ten-year Treasury yield, which is a natural starting point since implied

skewness is based on options for Treasury securities with maturities between 6.5 and 10

years, and the federal funds rate, motivated by the central role of the Fed’s policy rate for

bond markets and influential previous work on these forecast errors by Cieslak (2018). For

both interest rates we obtain daily values from FRED and calculate forecast errors as the

difference between the quarterly average realized value and the consensus forecast, which is

the arithmetic mean of the individual forecasts.

For each forecast horizon from h = 0 to 5 quarters we run monthly predictive regressions

of the forecast errors on information available at the time of the survey. Specificially, we

estimate the regression

yq(t,h) − ŷ(h)t = β′Xt + ε
(h)
t ,

where t indexes the month of the survey forecast, yq(t,h) is the average interest rate over

quarter q(t, h) that contains the month t+ 3h, ŷ
(h)
t is the forecast for the average in quarter

q(t, h), Xt are predictors observable at the time the survey forecasts are made, and ε
(h)
t

is a forecast error.12 We measure the predictors on the day of the BCFF survey deadline

to ensure that they are observable at the time the forecast is made.13 The forecast errors

of these regressions are necessarily serially correlated due to both the monthly frequency

and also overlapping observations. Because of the latter, Hansen-Hodrick standard errors

are preferable to Newey-West standard errors, see Cochrane and Piazzesi (2005). We use

3(h+ 1) lags to estimate the covariance matrix of the parameter estimates.

Table 6 shows the results. When we predict the forecast error for the ten-year yield with

ISK alone, the coefficient is positive and statistically significant for short forecast horizons

out to two quarters. In predictive regressions that also include yield factors, the coefficient

on ISK is larger than in the univariate specification, and statistically significant at the five-

percent level for all horizons. As before, the slope of the yield curve has a coefficient with the

opposite sign, which is marginally statistically significant for horizons of three quarters and

12For example, in January, February, and March, forecasts for h = 1 are for the average over the second
quarter (April to June).

13The surveys are conducted between the 23rd and 26th of the preceding month; the January survey is
conducted between the 17th and the 21st of December.
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Table 6: Predicting Blue Chip forecast errors

(A) Ten-year yield Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead 5Q ahead

ISK 0.13∗∗∗ 0.29∗∗∗ 0.29∗ 0.29 0.38 0.36

(0.04) (0.11) (0.17) (0.23) (0.27) (0.29)

Constant −0.07∗∗∗ −0.23∗∗∗ −0.39∗∗∗ −0.54∗∗∗ −0.72∗∗∗ −0.94∗∗∗

(0.02) (0.05) (0.08) (0.11) (0.13) (0.16)

R2 0.03 0.04 0.02 0.02 0.02 0.03

ISK 0.13∗∗∗ 0.33∗∗∗ 0.37∗∗ 0.43∗∗ 0.58∗∗∗ 0.70∗∗∗

(0.04) (0.10) (0.15) (0.17) (0.18) (0.17)

Level 0.004 0.01 0.01 0.02 0.03 −0.02

(0.01) (0.02) (0.04) (0.04) (0.04) (0.07)

Slope −0.005 −0.05 −0.09 −0.15∗ −0.20∗ −0.31∗∗

(0.02) (0.04) (0.06) (0.09) (0.10) (0.13)

Curvature −0.01 0.14 0.32 0.35 0.39 0.29

(0.10) (0.22) (0.27) (0.39) (0.50) (0.48)

Constant −0.07 −0.21 −0.35∗ −0.45 −0.56 −0.40

(0.05) (0.13) (0.19) (0.28) (0.39) (0.56)

R2 0.03 0.05 0.06 0.07 0.10 0.18

(B) Federal funds rate Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead 5Q ahead

ISK 0.07∗∗∗ 0.31∗∗∗ 0.57∗∗∗ 0.85∗∗∗ 1.13∗∗ 1.36∗∗

(0.03) (0.11) (0.20) (0.30) (0.44) (0.53)

Constant −0.05∗∗∗ −0.18∗∗∗ −0.37∗∗∗ −0.58∗∗∗ −0.82∗∗∗ −1.02∗∗∗

(0.01) (0.05) (0.11) (0.19) (0.27) (0.36)

R2 0.03 0.07 0.08 0.09 0.09 0.12

ISK 0.10∗∗∗ 0.41∗∗∗ 0.80∗∗∗ 1.22∗∗∗ 1.57∗∗∗ 1.81∗∗∗

(0.04) (0.11) (0.19) (0.24) (0.29) (0.39)

Level 0.001 −0.02 −0.06 −0.09 −0.13 −0.14

(0.003) (0.02) (0.04) (0.07) (0.09) (0.16)

Slope −0.01 −0.04 −0.10 −0.14 −0.18 −0.24

(0.01) (0.03) (0.07) (0.11) (0.15) (0.17)

Curvature −0.14∗∗ −0.42∗∗ −0.68∗ −1.11∗∗ −1.50∗∗∗ −1.62∗∗∗

(0.07) (0.17) (0.36) (0.52) (0.58) (0.63)

Constant 0.02 0.12 0.30 0.48 0.59 0.50

(0.03) (0.10) (0.22) (0.34) (0.48) (0.56)

R2 0.08 0.14 0.16 0.19 0.20 0.22

Observations 372 371 368 365 362 276

Notes: Predictive regressions for Blue Chip forecast errors for the ten-year Treasury yield (panel A) and the

federal funds rate (panel B), for monthly surveys from January 1990 to January 2021. Horizons are quarterly

from 0 to 5. Hansen-Hodrick standard errors with 3(h+ 1) lags are reported in parentheses, and ∗, ∗∗, and
∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.



beyond. The R2 of these regressions increases with the horizon from three to 18 percent.14

Previous work has documented that systematic expectational errors are particularly pro-

nounced for short-term yields (Cieslak, 2018; Brooks et al., 2020; Schmeling et al., 2021).

The results for the federal funds rate in the bottom panel of Table 6 confirm this finding.

They show that conditional skewness is a very powerful predictor of short rate forecast er-

rors. Even univariate regressions have R2 ranging from seven to twelve percent for forecasts

beyond the current quarter, and adding information in the yield curve raises this to 14 to 22

percent. In the multivariate regressions, the coefficient on the slope has the opposite sign as

the coefficient on ISK, as usual. Curiously, the coefficient on the curvature is quite strongly

significant, although this factor typically explains only a small fraction of yield variation.

In any event, ISK has strong predictive power for the fed funds rate in both univariate and

multivariate regressions. Our R2 are even larger than in Cieslak (2018), who predicted fed

funds rate forecast errors using the level of the funds rate and employment growth and found

R2 from three to 18 percent. Cieslak used quarterly observations and a different sample pe-

riod, from 1984:Q3 to 2011:Q3. We cannot start before 1990 when our ISK series starts,

but using a quarterly sample that ends in 2011:Q3 our R2 range from 16 to 22 percent for

univariate predictions and from 24 to 30 percent for predictions including the yield curve.

An important robustness check relates to the issue is the role of ex-ante survey forecast

revisions and informational rigidities. Coibion and Gorodnichenko (2015) found forecast

revisions to be strong predictors of macroeconomic forecast errors, suggesting an important

role of informational rigidities for the expectation formation process. In additional, unre-

ported analysis we found that for the ten-year Treasury yield, ex-ante survey revisions do

not have any predictive power for ex-post forecast errors. By contrast, in the case of the

federal funds rate, survey revisions do contain relevant information for future forecast errors.

These findings line up with the suggestion by Coibion and Gorodnichenko that informational

rigidities play a larger role for less persistent time series, since short-term rates are less per-

sistent than long-term rates. Importantly, for both the ten-year yield and the federal funds

rate, including ex-ante survey revisions as additional predictors leaves our results materially

14Appendix B.3 present results for a similar analysis using the consensus forecasts in the Survey of Pro-
fessional Forecasters. There we also find strong predictive power of conditional skewness for survey forecast
errors at all forecast horizons.
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unchanged.15

Under the FIRE hypothesis, forecast errors should be unpredictable using information that

was publicly available at the time the forecast was made. In line with other recent work, our

results indicate that this hypothesis is unlikely to hold for interest rate forecasts. Importantly,

our evidence suggests that the correlation of ISK with future interest rates documented

in Sections 3.1– 3.2 is unlikely to be due entirely to its correlation with (subjective) risk

premia. Instead, it appears that conditional yield skewness is systematically related to the

difference between subjective and true/statistical expectations about future yields and bond

returns, that is, to persistently biased beliefs of investors. Specifically, we have run predictive

regressions for yt+h−Es
t (yt+h), where yt is a generic interest rate, and the results have shown

that Et(yt+h)− Es
t (yt+h) varies strongly over time. This indicates that variation in the first

term on the righ-hand side of equation (1), changes in expectational errors, contribute to

time variation in statistical bond risk premia and the predictive power of conditional yield

skewness.

Another take-away from our results is that improvements in forecasts about the course of

monetary policy appear to be the main source of the predictive power of conditional skewness

for interest rates. From Table 6 it is clear that ISK has more information about the future

federal funds rate than about long-term Treasury yields.16 Consistent with these findings, our

predictive regressions for excess bond returns for different maturities, reported in Appendix

Table B.1, showed the largestR2 for the one-year bond, the shortest maturity in that analysis.

Finally, the results for monetary policy surprises around FOMC announcements also support

the same conclusion. Overall, our evidence suggests that ISK has the strongest predictive

power for short-term interest rates, and in particular for declines in short-term rates the

resulted from dovish surprises in the Fed’s policy actions during easing cycles.

15Cieslak (2018) also found that the “predictability of FFR forecast errors cannot be explained with
information rigidities such as sticky or noisy information” (fn. 14).

16We have carried out similar analysis for yields of shorter maturities (1y, 2y, 5y), omitted for the sake
of brevity, which showed that the predictive power of ISK systematically increases when the maturity gets
shorter.
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3.4 Subjective risk premia vs. expectational errors

Since we have documented predictability of interest rate forecast errors, the logical next

question is whether this is quantitatively important for measured bond risk premia. Specif-

ically, to which extent is the variation in statistical bond risk premia driven by changes in

subjective risk premia and shifting bias in beliefs?

The expected h-period log excess return on a bond with maturity n, Etrxt,t+h = Etp
(n−h)
t+h −

p
(n)
t − y

(h)
t , can be written as

Etrx
(n)
t,t+h = Es

t rx
(n)
t,t+h + (n− h)

(
Es
t y

(n−h)
t+h − Ety(n−h)t+h

)
︸ ︷︷ ︸

eet

,

where the first term on the right hand side corresponds to subjective risk premia, and the

second term to expectational errors, denoted by eet for short (see also Piazzesi et al., 2015).17

This decomposition corresponds to a log version of equation (1). To quantify the importance

of these two terms, we use the following variance decomposition:

V ar(Etrx
(n)
t,t+h) = Cov(Es

t rx
(n)
t,t+h, Etrx

(n)
t,t+h) + Cov(eet, Etrx

(n)
t+h).

For our empirical implementation of this decomposition, we use quarterly data, one-quarter

holding periods, and one-quarter-ahead yield expectations from the BCFF consensus fore-

cast. Thus t indexes quarters and h = 1. The maturities n we consider are 5, 9, 21

and 41 quarters, so that we can use the survey forecasts of 1, 2, 5 and 10 year yields

for Es
t y

(n−1)
t+1 . Subjective expected excess returns are calculated using survey forecasts as

Es
t (rx

(n)
t+1) = −(n−1)Es

t (y
(n−1)
t+1 )+ny

(n)
t −y

(1)
t .18 To estimate statistical expectations Ety

(n−1)
t+1 ,

17Schmeling et al. (2021) denote as “expectation errors” the difference of expected future interest rates
and survey expectations, which explains a large share of realized excess returns (on fed funds futures). This
differs from our definition and empirical approach: We call such a difference a “survey forecast error” and
reserve the term expectational error as the (scaled) difference between survey expectations and statistical
expectations of future interest rates. Since we decompose expectations, the surprise component yt −Etyt+h

is not part of our calculations.
18This calculation ignores the fact that excess returns are based on zero-coupon yields while survey forecasts

pertain to (constant-maturity) yields on coupon bonds, but the two are highly correlated in the data. Nagel
and Xu (2021) use a different methodology in which they calculate subjective expected returns from survey-
implied zero-coupon yields.
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which are used in the calculations both of expectational errors eet and of statistical bond

risk premia Etrx
(n)
t,t+1, we estimate predictive regressions with information available at time t.

Our interest naturally lies in the role played by ISK and we therefore compare results for re-

gression specifications with time-t yield curve information that either include or exclude this

additional predictor. All observed yields with maturities of one year or longer are calculated

from the GSW yield curves, and the one-quarter yield is the three-month T-bill rate.

Table 7: Risk premia and expectational errors

Yields only With ISK

Mat. V ar(E
(n)
t rx

(n)
t+1) RP (%) EE (%) V ar(Etrx

(n)
t+1) RP (%) EE (%)

1y 0.022 91 9 0.035 40 60

2y 0.074 80 20 0.117 34 66

5y 0.469 88 12 0.718 45 55

10y 1.510 112 -12 2.324 72 28

Notes: Variance of statistical bond risk premia, i.e., of expected excess returns Etrx
(n)
t+1, and relative con-

tributions, in percent, of survey-based subjective risk premia (RP), Es
t rx

(n)
t+1, and expectational errors (EE),

eet = (n − h)
(
Es

t y
(n−h)
t+h − Ety

(n−h)
t+h

)
. Relative contributions are calculated as ratios of covariances to the

variance of expected excess returns. In the “yields only” case, statistical expectations of future yields,

Ety
(n−h)
t+h , are calculated using predictive regressions with only time-t yields, whereas under “with ISK” we

also include implied yield skewness as a predictor. Data are quarterly and the holding period h is one quarter.

For details see text.

Table 7 shows the results of our variance decomposition. When only information in current

yields is used to calculate statistical expectations and risk premia, it would appear that

expectational errors account for very little of the variation in bond risk premia. The largest

contribution is 20 percent, estimated for two-year yields (i.e., for expected excess returns on

bonds with initial maturity of nine quarters). However, when ISK is added to the information

set, expectational errors contribute a much larger share of the variation: The fraction of the

variance of statistical risk premia explained by expectational errors is larger than 50% for

maturities up to five years. In other words, more than half of the variation in these expected

excess returns is explained by shifting biases in beliefs. To uncover this important role for

expectational errors, it is crucial to condition on implied skewness of interest rates.
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3.5 Skewness during the COVID pandemic

As we noted earlier, skewness has reached all-time high values in the wake of the COVID

pandemic. A natural question is whether the unusual circumstances have disrupted the

properties of skewness established in this paper. The answer is no. In fact, the period

immediately preceding the COVID lockdown and the COVID period itself serve as a nice

showcase of our findings.

Figure 5 displays the main actors in the reported evidence: ISK, the ten-year Treasury

yield and its survey forecasts from BCFF, and the slope of the yield curve, measured as the

difference between the ten-year and three-month Treasury yields. We see that skewness was

negative throughout 2019, and, in fact, sharply dropped to -1.5 in early 2020 as the pandemic

was taking hold. After that, coincident with aggressive monetary and fiscal stimulus, it

started climbing back and ultimately reached historically high values around 1.0 in the

second half of 2020. Was skewness helpful in predicting 10-year yields during this period?

Was it related to expectational errors of forecast surveys?

Early 2019 and late 2020 are two episodes where the slope was close to zero in both cases,

predicting low bond returns and rising interest rates. But the level of skewness differed

substantially, negative during the first and positive during the second episode. In 2019 the

signal from the slope turned out to be incorrect, as yields dropped precipitously. This was

correctly anticipated by the implied skewness. In 2020 the prediction of the flat yield curve

for rising long-term rates turned out to be correct, but the slope was essentially unchanged

over most of the year, so that it was of little use as a timely indicator of interest rate

risk. Skewness, by contrast, all of a sudden rose subtantially in the middle of the year,

correctly anticipating the rising long-term yields. Both of these episodes highlight the extra

information in skewness that is not present in the current yield curve.

Large swings in skewness during this period indicate large expectational errors. Consistent

with our regression results in Table 6, forecasters were overshooting yields in the beginning of

the pandemic and then undershooting later in this episode. In fact, in late 2020 expectational

errors were large as Treasury yields began a sustained ascent from historical lows (from 0.5%

to 1.5%). At the time market observers were surprised by the development. Again, this was

correctly predicted by skewness, which started rising in advance of the rise in yields.

37



Figure 5: Skewness and interest rates since 2019
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Notes: Ten-year Treasury yield, yield forecasts from Blue Chip Financial Forecasts, option-implied yield

skewness, and slope of the yield curve (measured as difference between ten-year and three-month yield).

Sample period: January 2, 2019, to May 28, 2021.

The COVID episode was unique in many respects including extreme rate volatility. However,

the information content of conditional skewness remained intact, and correctly anticipated

both the dramatic decline in long-term Treasury yields in 2019 and early 2020, as well as

their pronounced increase starting in the middle of the COVID pandemic.

4 A potential explanation: heterogeneous beliefs

We have documented the following empirical facts. First, Treasury yields exhibit time-

varying conditional skewness, which is related to the shape of the yield curve. Second,

a simple measure of the skewness, ISK, contains substantial predictive power for future

bond returns. Third, this predictive power is particularly strong when both the yield curve
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and ISK are included in forecasting regressions, violating the spanning hypothesis. Fourth,

ISK also predicts interest rate forecast errors based on surveys of professional forecasters,

with expectational errors being quantitatively important for statistical bond risk premia, in

violation of the FIRE hypothesis. Fifth, information in skewness is particularly useful for

predicting dovish monetary easing surprises early on in recessions, when disagreement about

the economic outlook is particularly high.

A natural question is whether all this evidence is consistent with an economic mechanism.

We show that this is indeed the case, using a simple two-agent heterogeneous-beliefs (HB)

model along the lines of Basak (2005). As a novel result, we show that although the funda-

mental shocks of the model are Gaussian, time-varying skewness arises endogenously in this

framework. Differences in beliefs are directly linked to expectational errors, giving rise to

a time-varying wedge between subjective and objective beliefs. We derive the bond pricing

implications using tools from Ehling et al. (2018), and show that the model implies that

yields are non-linear functions of state variables thereby generating non-normal distribution

of yields and breaking the linear spanning of bond excess returns with yields. Time-varying

skewness is directly linked to bond risk premia, consistent with our evidence.

In what follows we describe the main assumptions of the model and key results. Details and

derivations are provided in Appendix C. The model is set in continuous time. Consumption

is exogenous and follows a geometric Brownian motion,

dCt/Ct = µdt+ σdzt.

There are two agents in the economy who disagree about the true dynamics of consumption

growth, specifically about the mean growth rate µ. Agent 1 knows the true value of µ, and

thus has rational expectations. Agent 2, on the other hand, does not know this and has to

form beliefs µst . Our interpretation is that agent 1 represents true, statistical expectations,

while agent 2 represents the consensus survey forecasts which are inconsistent with FIRE.19

By assuming that agent 1 has rational expectations, we directly link disagreement to ex-

pectational errors, µ− µst , i.e., to the difference between (true) statistical expectations and

(biased) survey-based expectations about consumption growth.

19This perspective is consistent with Reis (2020) who posits that bond traders are better informed than
the general public, which is proxied by surveys.
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We assume that subjective beliefs follow

dµst = κ(µ− µst)dt+ δdzt.

Such a specification encompasses many mechanisms of beliefs formation explored in the liter-

ature, including Bayesian learning (e.g., Basak, 2005, in which case κ and δ are deterministic

functions of time), sentiment (e.g., Dumas et al., 2009), diagnostic expectations (e.g., Bor-

dalo et al., 2018), and other forms of extrapolative expectations. The exact form of belief

formation of agent 2 is not important for our results, so we do not need to take a stand on

which specific mechanism is at play.20 What is important for our model is that the agents

disagree about expected consumption growth, which they generally will since FIRE does not

hold for agent 2.

Disagreement, which corresponds to the bias in agent 2 beliefs, is measured as

∆t ≡
µ− µst
σ

,

and becomes they key state variable of our model. Gaussian dynamics of µst translate into

Gaussian dynamics of ∆t.

We assume that agents have power utility with risk aversion γ. The appendix derives the

equilibrium consumption allocations and solves for the real interest rate, bond yields, and

risk premia. The expression for the real short rate helps understand the basic intuition of

the model:

rt = ρ+ γµ− 1

2
γ(γ + 1)σ2 +

1

2

(
1− γ−1

)
f(λt)(1− f(λt))∆

2
t .

The terms in the expression for rt are (i) the rate of time preference, (ii) consumption

smoothing, (iii) precautionary savings, and (iv) the key “risk-sharing” effect, arising when-

ever γ 6= 1. This last term involves the likelihood ratio λt and the nonlinear sharing rule

f(λ), both of which are defined in the appendix. It is this risk-sharing effect that is new in

the HB model and generates skewness.

20Our evidence is based on the consensus forecasts, and one would need evidence about both consensus
and individual forecasts to distinguish between information rigidities and diagnostic expectations, as argued
by Bordalo et al. (2020).
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The intuition is as follows: When ∆t 6= 0, the investor who thinks output will be high sells

the bonds short, and an investor with the opposite view matches the position on the other

side to clear the markets. Ex ante, each investor expects to capture wealth from the other

investor and, hence, both expect future consumption to be higher than without disagreement

about output. It is for this reason that the real interest rate and bond yields depend on the

dispersion in beliefs between the agents.

Bond yields are generally a quadratic function of ∆t and are non-normally distributed de-

spite the Gaussian state variables. Thus, yields have time-varying skewness, and conditional

skewness is related to expectational errors. Furthermore, the appendix shows that disagree-

ment and expectational errors are connected to bond risk premia. The effect is non-linear

because of the non-linear dependence of yields on ∆t, thus a linear combination of yields

cannot span bond excess returns. These features of the model are qualitatively consistent

with the empirical evidence summarized above.

To understand how skewness is related to expectational errors, we have to resort to simu-

lations. For each initial value ∆0, ranging from zero to two, we simulate 100,000 paths of

the bias in beliefs ∆t and the real interest rate rt, over a one-quarter horizon that matches

maturity of options in our data. We calibrate the parameters as follows: Risk aversion is

γ = 5, annualized volatility of consumption growth is 3.5%, σ = 0.035, and the persistence

of biased beliefs, captured by the mean-reversion coefficient, is κ = 0.1. We calculate the

sample skewness coefficient of the interest rate changes over one quarter conditional on ∆0.

Figure 6 plots this skewness coefficient against the dispersion in beliefs, ∆2
0.

Yield skewness depends on the dispersion in beliefs about mean endowment in a non-linear

but monotone way. If ∆2
0 is small, skewness is positive. Skewness then turns negative for

values of ∆2
0 exceeding 1. For ∆2

0 = 4, meaning that µst = µ ± 2σ, skewness reaches about

-1.75. Thus, for reasonable values of disagreement/bias in beliefs about consumption growth,

our model is capable of generating interest rate skewness in the range observed in the data.

In light of this tight connection between skewness and disagreement, it becomes clear that

the model qualitatively matches the evidence we have documented in this paper. Conditional

skewness of interest rates is time-varying as a result of changes in disagreement and biases

in beliefs, ∆t. Bond risk premia are related to ∆t and skewness, but in a non-linear fashion
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Figure 6: Bias in beliefs and skewness
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Notes: Sample skewness of interest rates simulated from HB model. For each starting value of disagreement,

∆0, 100,000 paths of the real short rate are simulated over a one-quarter horizon, using daily time increments,

and the skewness coefficient is calculated for the distribution of the final value of the short rate. Parameter

settings are risk aversion γ = 5, volatility of consumption growth σ = 0.035, and persistence of biased beliefs

captured by the mean-reversion coefficient κ = 0.1.

so that the spanning hypothesis does not hold and information in both the yield curve and

skewness is required to capture changes in risk premia. Finally, there is an important role

for expectational errors, which are directly tied to disagreement and risk premia.

The model assumes heterogeneous, biased beliefs about expected consumption growth in

order to link expectational errors to interest rate skewness and bond risk premia. Table 8

provides empirical support for this assumption. It documents that survey forecast errors for

real GDP growth are predictable based on interest rate skewness, measured by ISK. Fore-
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Table 8: Predicting real GDP forecast errors

(1) (2) (3)

Level 0.16 0.15

(0.12) (0.11)

Slope 0.13 −0.02

(0.22) (0.20)

Curvature −1.39 −1.94∗∗

(0.94) (0.86)

ISK 1.77∗∗∗ 1.34∗

(0.60) (0.71)

Revision −0.51 −0.17 −0.34

(0.82) (0.69) (0.34)

Observations 123 123 123

R2 0.06 0.10 0.03

Notes: Regressions of forecast errors for four-quarter real GDP growth (over the current and subsequent three

quarters) in the Survey of Professional Forecasters, using surveys from monthly surveys from January 1990

to May 2021. ISK is option-implied yield skewness, averaged over the month preceding the survey deadline;

Level, Slope and Curvature are the first three principal components of end-of-month Treasury yields from

one to ten years maturity, measured on the day of the survey deadline. Hansen-Hodrick standard errors with

4 lags are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1%

levels, respectively.

cast errors are calculated as the difference between realized GDP growth over the current

and next three quarters and the consensus (median) expectation in the Survey of Profes-

sional Forecasters. As in the earlier results, predictability using ISK is stronger when it is

used jointly with the yield curve. This evidence suggests that expectational errors about

macroeconomic fundamentals, and real growth in particular, are quantitatively important,

and supports the model-implied channel connecting biased beliefs about consumption growth

with non-normality of bond yields and bond risk premia.

Finally, our model also matches the empirical pattern that the predictive power of skewness

is strongest around turning points of monetary policy, when disagreement and uncertainty
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about the economic outlook is particularly high.21 We documented in Section 3.2 that ISK

tends to be unusually low during those times and successfully anticipates Fed easing surprises.

According to our model, times of high macroeconomic disagreement indeed coincide with

low/negative interest rate skewness, as shown in Figure 6. In other words, this important

cyclical empirical pattern in disagreement, skewness, and predictions for interest rates is very

much consistent with our model.

5 Conclusion

Our paper makes three contributions to the macro-finance literature. First, we document

novel empirical patterns for the conditional skewness of Treasury yields, including a tight

empirical relationship between conditional skewness and the shape of the yield curve, the

business cycle, and the stance of monetary policy. Second, we show that option-based yield

skewness contains useful forward-looking information for interest rates, including predictive

power for survey forecast errors. The evidence suggests that conditional skewness captures

biased beliefs about future interest rates. Third, we argue that our empirical findings can

be rationalized by a simple theoretical framework with heterogeneous beliefs.

Our results have implications for asset pricing, macroeconomic forecasting, and investment

practice. Forecasters and investment managers in particular are likely to benefit from pay-

ing attention to implied yield skewness. Implied rate skewness—which is available in real

time, does not require any model or estimation, and can be calculated reliably at a daily

frequency—enables forecasters and investors to better gauge the current balance of interest

rate risk, improving their forecasts and investment decisions that are predicated on the rates

outlook.

21A subtle issue is that in our model, disagreement is between the biased belief (consensus survey forecast)
and the true expectation, and the latter cannot be measured directly. Our implicit assumption is that high
disagreement at policy turning points is associated with elevated expectational errors.
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Appendix

A Option-implied moments of Treasury yields

Our Treasury derivatives data are end-of-day prices of Treasury futures and options from CME.22

We focus on the 10-year T-note futures contract (or “TY”). The deliverable securities for the TY
contract are “U.S. Treasury notes with a remaining term to maturity of at least six and a half
years, but not more than 10 years” (according to the CME contract specifications). The contract
expirations are at the end of each calendar quarter, and at each point in time three consecutive
quarterly contracts are available; the exact delivery date is roughly in the third week of the month.
The first quarterly contract is the most active, until about 2-3 weeks before expiration when trading
in the subsequent quarterly contract becomes more active. Therefore, when working with futures
prices (e.g., for calculating sample moments or realized moments of price changes), we always use
the first quarterly expiration that is not in the current calendar month (e.g., we use the March
contract until the end of February, and the June contract starting in the beginning of March).

The options on the TY contract are available for three quarterly and three serial (monthly) expi-
rations, and they each exercise into the next futures contract. For example, February and March
options exercise into the March futures contract, and April options exercise into June futures con-
tract. The last trading day for each options contract is the “2nd last business day of the month
prior to the contract month” so that trading for the March options ends at the end of February. We
denote by t the current trading day and by T the last trading day (or expiration date) of an options
contract. For most of our analysis we focus on the first quarterly option expiration. In some cases
we linearly interpolate option-implied moments to a constant horizon, and then we use 0.2 years
as the horizon which is about the average maturity of all option contracts (across all expirations,
strikes and put/call prices), and interpolate based on the data for the two expirations surrounding
this horizon.

Based on option prices on day t for the contract expiration T we can calculate conditional market-
based/risk-neutral moments for the price of the underlying futures contract at the time of the
option expiration, FT . The implied risk-neutral variance is

V artFT = Et(FT − Ft)2 = 2

[∫ ∞
Ft

C(K)dK +

∫ Ft

0
P (K)dK

]
= 2

∫ ∞
0

C(K)−max(0, FT −K)dK

where all moments are under the time-T forward measure, we treat Ft as the forward price for
simplicity, and the forward call and put prices for options with strike K are C(K) and P (K).

22For details see https://www.cmegroup.com/trading/interest-rates/us-treasury.html.
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Because expectations are under the T -forward measure, EtFT = Ft, C(K) = Et max(0, FT−K) and
P (K) = Et max(0,K−FT ). The second line follows from put call parity, C(K)−P (K) = FT −K.
The implied third moment is

Et(FT − Ft)3 = 6

[∫ ∞
Ft

(K − Ft)C(K)dK −
∫ Ft

0
(Ft −K)P (K)dK

]
= 6

∫ ∞
0

(K − Ft)(C(K)−max(0, FT −K))dK.

See also Trolle and Schwartz (2014) who use similar formulas for calculating swaption-implied
moments for future swap yields. The implied skewness coefficient is

skewFt,T =
Et(FT − Ft)3

(V artFT )3/2

We now describe how we implement these measures empirically. In what follows σ is the normal
implied volatility (IV) for at-the-money options. Normal IV, the most common way to measure
IV in bond markets, is based on the Bachelier model and measures the volatility of future price
changes under the assumption that they are Gaussian. First, we filter our options data to reduce
the impact of measurement error and eliminate data errors, similar to Beber and Brandt (2006).
Specifically, we exclude options that

� have maturity of at most two weeks

� have prices of at most two ticks (2/64)

� have relative moneyness greater than 15, i.e., (Ft−K)/
√

(T − t)σ2 is at most 15 in absolute
value (options that are further out of the money tend to have unreliable/implausible IVs),

� are too far out of the money, with absolute moneyness of less than -15 (the absolute moneyness
is F −K for calls and K − F for puts),

� have distinct duplicate prices for the same strike (using the IVs and other prices we can
eliminate the erroneous price by hand),

� have prices which are not monotone across strikes, or

� violate the no-arbitrage condition that the price is no lower than the intrinsic value.

Then we calculate implied moments for each pair (t, T ) if we observe at least five option prices
(puts and calls across all strikes) in the following way:

1. We select all option prices that are ATM/OTM
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2. We calculate the normal IVs for these observed prices.

3. We fit a curve in strike-IV space by linearly interpolating IVs and, outside the range of
observed prices, using IVs at the endpoints of the range.

4. We obtain a continuous price function C(X) by mapping the IVs back to call prices using
the Bachelier pricing formula.

5. We approximate the required integrals using trapezoid rule for grid of strike prices from
Ft − 10 to Ft + 10 with 200 grid points (see also Jiang and Tian, 2005).

As a result we have, for each trading day t and option expiration T , conditional model-implied
variances and skewness coefficients for the change in the futures price between t and T .

With the moments for futures prices in hand we can also calculate certain moments for changes
in the yields of the cheapest-to-deliver (CTD) bond. The reason is that for small changes, the
relationship between changes in futures prices and changes in the CTD yield is approximately
linear. The “dollar value of a basis point” (DV01) is the negative sensitivity of the futures price (in
points) to a change in the CTD yield (in basis points). Denoting the change in the futures price as
∆F and the change in the CTD yield by ∆y, we have

∆y ≈ − ∆F

DV 01
.

Under the assumption that the change in the CTD yield until expiration, yT −yt, is small, and that
DV 01 remains approximatley unchanged between t and T , we can obtain risk-neutral moments for
future yields as

V artyT ≈
V artFT
(DV 01)2

, Et(yT − yt)3 ≈ −
Et(FT − Ft)3

(DV 01)3
, skewyt,T ≈ −skew

F
t,T

The DV 01 data, as well as any information about the CTD bonds, becomes available on Bloomberg
in 2004. But this information is not required for the skewness coefficient, since skewness of yield
changes is approximately equal simply to the negative of the skewness of futures price changes.

Our derivation and implementation abstracts from the fact that Treasury options are American
options on futures contracts, and not, as assumed, European options on forward contracts. Existing
results suggest that accounting for early exercise would lead to only minor adjustments; see Bikbov
and Chernov (2009) and Choi et al. (2017). In addition, since we only use out-of-the-money options
any adjustment for early exercise would be minimal, since there are no dividends and the early-
exercise premium increases with the moneyness of options.
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B Additional results for Section 3

B.1 Additional results for Treasury bond returns

Table B.1 shows predictive regressions for excess returns on bonds of different maturities. The
predictive power is a substantially higher for shorter than for longer maturities. For example, the
R2 for the one-year maturity is about twice as large as for the ten-year maturity. In additional
analysis we have found that the predictive power of univariate regressions with only ISK also
decreases with maturity. The fact that ISK is more powerful for short maturities is somewhat
surprising, given that the underlying securities for our implied skewness measure are futures on
ten-year Treasury bonds (with maturity of the cheapest-to-deliver bonds ranging between 7 and 10
years).

Table B.1: Predicting excess returns: individual bond maturities

1y 2y 3y 5y 7y 10y

ISK −0.38∗∗∗ −0.37∗∗∗ −0.36∗∗∗ −0.35∗∗∗ −0.34∗∗∗ −0.30∗∗∗

(0.14) (0.14) (0.14) (0.13) (0.12) (0.11)
Level 0.01∗∗∗ 0.01∗∗∗ 0.004∗∗ 0.003∗∗ 0.003∗ 0.002

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002)
Slope 0.02∗∗ 0.03∗∗ 0.03∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Curvature −0.08 −0.02 0.01 0.03 0.02 0.01

(0.06) (0.07) (0.07) (0.07) (0.07) (0.06)
Constant −0.25∗∗∗ −0.18∗ −0.14 −0.12 −0.13 −0.14

(0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

Observations 374 374 374 374 374 374
R2 0.18 0.12 0.10 0.09 0.09 0.09

Predictive regressions for three-month excess returns on Treasury bonds with maturities ranging from one
to ten years, using monthly data from January 1990 to May 2021. Predictors: ISK is option-implied yield
skewness averaged over the last five business days of the month; Level, Slope and Curvature are the first
three principal components of end-of-month Treasury yields from one to ten years maturity (appropriately
scaled). Reverse regression standard errors, using the reverse regression delta method of Wei and Wright
(2013), are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and
1% levels, respectively.

Table B.2 reports estimates of our baseline specification—including yield curve predictors and
ISK—over a variety of different samples. The predictive power of ISK is generally robust across
different samples.
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Table B.2: Predicting excess returns: different sample periods

Full Pre-2000 Post-2000 Pre-ZLB Post-crisis Pre-2018

(1) (2) (3) (4) (5) (6)

ISK −0.34∗∗∗ −0.98∗∗ −0.33∗∗∗ −0.75∗∗∗ −0.24∗∗ −0.30∗∗

(0.12) (0.44) (0.12) (0.24) (0.10) (0.15)
Level 0.004∗∗ 0.02∗∗∗ 0.01∗∗ 0.01∗∗∗ 0.01∗∗ 0.004∗∗∗

(0.002) (0.01) (0.003) (0.003) (0.01) (0.002)
Slope 0.03∗∗∗ 0.03 0.03∗∗ 0.03∗∗ 0.03∗ 0.04∗∗∗

(0.01) (0.02) (0.01) (0.02) (0.02) (0.01)
Curvature 0.004 0.23∗ −0.02 0.09 −0.10 −0.01

(0.06) (0.13) (0.07) (0.11) (0.08) (0.07)
Constant −0.15 −1.09∗ −0.22∗ −0.27 −0.31∗∗ −0.27∗∗

(0.10) (0.60) (0.12) (0.29) (0.15) (0.12)

Observations 374 120 254 227 134 336
R2 0.11 0.25 0.16 0.14 0.20 0.11

Predictive regressions for three-month excess bond returns (average of duration-normalized excess returns
on Treasury bonds with one to ten years maturity) using different monthly sub-samples: Full is Jan-1990 to
May-2021, Pre-2000 is Jan-1990 to Dec-1999, Post-2000 is Jan-2000 to May-2021, Pre-ZLB is Jan-1990 to
Nov-2008, Post-crisis is Jan-2010 to May-2021, Pre-2018 is Jan-1990 to Dec-2017. Predictors: ISK is option-
implied yield skewness averaged over the last five business days of the month; Level, Slope and Curvature
are the first three principal components of end-of-month Treasury yields from one to ten years maturity
(appropriately scaled). Reverse regression standard errors, using the reverse regression delta method of Wei
and Wright (2013), are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5% and 1% levels, respectively.

B.2 Additional results for FOMC announcement surprises

Since Gürkaynak et al. (2005) the literature on high-frequency event studies of FOMC announce-
ments has focused on two measures of the policy surprises: a target surprise which, similar to the
original measure proposed by Kuttner (2001), measures the surprise change in the federal funds
rate, and a path surprise which captures the change in the expected policy path that is orthogonal to
the target surprise. The two surprises are the first two principal components of the high-frequency
changes in different money market futures rates, appropriately rotated and scaled (for details see
Gürkaynak et al., 2005).

More recently, Gertler and Karadi (2015) used changes in individual money market futures rates,
which they found to be powerful instruments in monetary VARs. We consider these measures
as well. Specifically, we include FF1, FF4, and ED4 as measures of monetary policy surprises:
changes in the rates on the current-month fed funds futures contract, the three-month-ahead fed
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funds futures contract, and the four-quarter Eurodollar futures contract.

Table B.3: Predicting different monetary policy surprises

PC1 Target Path FF1 FF4 ED4

ISK 0.03∗∗∗ 0.03∗ 0.03∗∗∗ 0.02∗∗ 0.04∗∗∗ 0.05∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01)
Constant −0.01∗∗∗ −0.003 −0.004 −0.01∗∗ −0.01∗∗∗ −0.02∗∗∗

(0.003) (0.01) (0.004) (0.003) (0.004) (0.01)
R2 0.06 0.03 0.03 0.03 0.05 0.06

ISK 0.04∗∗∗ 0.05∗∗ 0.05∗∗∗ 0.03∗∗ 0.05∗∗∗ 0.08∗∗∗

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02)
Level −0.001 −0.004 0.001 −0.002 −0.002 −0.001

(0.001) (0.002) (0.002) (0.001) (0.002) (0.002)
Slope −0.01∗∗∗ −0.01 −0.01∗∗∗ −0.001 −0.01∗∗ −0.01∗∗∗

(0.003) (0.004) (0.005) (0.003) (0.003) (0.01)
Curvature −0.02∗ −0.04∗ −0.01 −0.03∗ −0.03 −0.04∗

(0.01) (0.03) (0.02) (0.02) (0.02) (0.02)
Constant 0.02∗∗ 0.04∗∗ 0.02 0.01 0.02∗ 0.03∗

(0.01) (0.02) (0.01) (0.01) (0.01) (0.02)
R2 0.10 0.06 0.08 0.06 0.08 0.11

Predictive regressions for alternative measures of monetary policy surprises: PC1 is the same measure used
in Tables 5, the first principal component of five futures rate changes; Target and Path are the target and
path factors of the policy surprise from Gürkaynak et al. (2005); FF1 is the change in the current-month fed
funds futures rate; FF4 is the change in the three-month-ahead fed funds futures rate; ED4 is the change in
the four-quarter Eurodollar futures rate. The sample contains 213 FOMC announcements from January 1994
to June 2019. For a description of the predictors see the notes to Table 5. White heteroskedasticity-robust
standard errors are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%,
5% and 1% levels, respectively.

Table B.3 shows estimates of predictive regressions for these different monetary policy surprises.
In all cases, the dependent variable is based on the changes in the 30-minute window around
FOMC announcements. The top panel shows results for a univariate specification using only ISK,
and the bottom panel for regressions that also add the usual yield-curve variables. Overall, the
predictive power of ISK for monetary policy surprises is very robust across different measures of
these surprises.

Table B.4 considers specifications with macroeconomic variables that have been found to predict
FOMC surprises in previous studies. In column (1) we include the predictors considered by Cieslak
(2018): the average federal funds rate over the month preceding the FOMC meeting, and annual
employment growth, measured as the 12-month log-change in total nonfarm payroll employment,
appropriately lagged so that it is known by the day before the FOMC announcement. In this
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Table B.4: Predicting FOMC surprises with ISK and macro variables

(1) (2) (3) (4)

ISK 0.031∗∗∗ 0.028∗∗∗ 0.032∗∗∗ 0.021∗∗∗

(0.009) (0.009) (0.009) (0.008)
FFR −0.001

(0.001)
Annual employment growth 0.455∗∗∗

(0.169)
BBK index 0.010∗∗

(0.004)
Change in employment 0.057∗∗∗

(0.018)
S&P 500 return 0.135∗∗∗

(0.049)
Constant −0.013∗∗∗ −0.008∗∗∗ −0.016∗∗∗ −0.011∗∗∗

(0.004) (0.003) (0.004) (0.003)

Observations 213 213 213 213
R2 0.084 0.107 0.130 0.128

Notes: Predictive regressions for the monetary policy surprise around FOMC announcements from January
1994 to June 2019. The dependent variable is the first principal component of 30-minute futures rate changes
around the announcement for five different contracts with up to about one year maturity. ISK is option-
implied yield skewness averaged over the month (22 trading days) before the FOMC announcement; FFR
is the average federal funds rate over the calendar month preceding the meeting, and Annual employment
growth is the 12-month log-change in total nonfarm payroll employment (appropriately lagged), as used
by Cieslak (2018); BBK index is the Brave-Butters-Kelley business cycle indicator form the Chicago Fed,
Change in employment is the change in non-farm payrolls released in the most recent employment report,
and S&P 500 return is the stock return over the three months (65 days) up to the day before the FOMC
announcement, as used by Bauer and Swanson (2021). White heteroskedasticity-robust standard errors are
reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels,
respectively.

specification, employment growth but not the Federal Funds rate exhibits predictive power. The
lack of predictive power of the funds rate is partly due to our different sample period and partly due
to the different policy surprise measure than in the estimates of Cieslak (2018). Using Cieslak’s exact
sample and regression specification we are able to replicate her results, and we still find that when
we add ISK to the regression it significantly raises the predictive power. Columns (2) to (4) add
the macroeconomic variables considered by Bauer and Swanson (2021): the Brave-Butters-Kelley
business cycle indicator produced by the Chicago Fed, the change in nonfarm payroll employment
in the previous month (again appropriately accounting for the publication lag), and the return of
the S&P 500 stock index over the three months preceding the FOMC announcement. In all three
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cases, both ISK and the Bauer-Swanson predictor exhibit statistically significant explanatory power
for the FOMC policy surprise.

B.3 Additional results for SPF forecast errors

Here we present additional evidence using the quarterly Survey of Professional Forecasters (SPF).
As in the BCFF, the forecast target is the quarterly average for the constant-maturity 10-year yield
from the Fed’s H.15 statistical release. Forecasts are reported for the current quarter (nowcasts)
and each of the subsequent four quarters. As the SPF consensus forecast we take the median of
the individual forecasts.

We run predictive regressions of the form

yt+h − ŷ
(h)
t = β′Xt + εt,t+h, (B.1)

where t indexes the quarterly SPF surveys, yt is the average 10-year yield in quarter t, ŷ
(h)
t is

the survey consensus forecast made in quarter t for the average 10-year yield in quarter t + h, h
ranges from 0 to 4, Xt is a vector with predictors, and εt,t+h is a forecast error. To ensure that
the predictors Xt are observable at the time the forecast is made, we take observations on the day
before the response deadline of the survey. Because the forecast errors εt,t+h are serially correlated
we use Hansen-Hodrick standard errors with h lags.

Table B.5 shows the results. For each forecast horizon, we estimate two specifications, one with
ISK only, and one that also includes yield factors. We find that ISK has statistically significant
predictive power for all forecast horizons. The specifications that also include yield curve factors
show that the slope tends to have additional predictive power for h > 0. As before, we find that
the slope has a negative coefficient while ISK has a positive coefficient.

C A model of biased beliefs

The subjective innovation to the beliefs of agent 2 is

dzst =
1

σ
(dCt/Ct − µstdt) = dzt +

µ− µst
σ

dt.

which yields
dzst − dzt = ∆tdt.

The dynamics the expectational error ∆t are:

d∆t = −κ∆tdt−
δ

σ
dzt.
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Table B.5: Predicting yield forecast errors in the SPF

Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ISK 0.16∗∗∗ 0.19∗∗∗ 0.48∗∗∗ 0.56∗∗∗ 0.57∗∗∗ 0.69∗∗∗ 0.57∗∗∗ 0.75∗∗∗ 0.59∗ 0.83∗∗∗

(0.04) (0.04) (0.12) (0.10) (0.18) (0.17) (0.19) (0.26) (0.33) (0.29)
Level 0.002 −0.003 −0.01 0.005 0.02

(0.01) (0.03) (0.03) (0.06) (0.06)
Slope −0.01 −0.05∗ −0.10∗∗ −0.12 −0.16

(0.01) (0.03) (0.05) (0.08) (0.10)
Curve −0.17∗∗ −0.13 0.04 −0.04 0.02

(0.09) (0.17) (0.26) (0.38) (0.46)
Constant −0.08∗∗∗ −0.01 −0.25∗∗∗ −0.09 −0.40∗∗∗ −0.20 −0.54∗∗∗ −0.30 −0.69∗∗∗ −0.45

(0.02) (0.04) (0.06) (0.10) (0.08) (0.15) (0.07) (0.27) (0.14) (0.38)

Observations 118 118 117 117 116 116 115 115 114 114
R2 0.09 0.14 0.08 0.10 0.07 0.09 0.05 0.08 0.04 0.09

Predictive regressions for forecast errors in the h-quarter ahead median forecast for the ten-year Treasury
yield in the Survey of Professional Forecasters, using quarterly surveys from 1992:Q1 to 2020:Q3. The
forecast horizon h ranges from 0 (current/nowcast) to 4. ISK is option-implied yield skewness, Level, Slope
and Curvature are the first three principal components of Treasury yields from one to ten years maturity
(appropriately scaled), measured on the day before the survey deadline. All predictors are measured on the
day before the survey deadline. Hansen-Hodrick standard errors with h lags are reported in parentheses,
and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.

In particular the equation implies that ∆t is Gaussian variable. In our simulation exercise below,
we will assume that δ = κσ (which would hold if there was constant-gain learning).

Let P and Ps denote the true and subjective probability measures, respectively. Let ξt and ξst
denote the state-price density (SPD) under P and Ps, respectively. Es is the expectation taken
under Ps. Agents 1 and 2 solve their consumption-savings problems given by, respectively,

maxE

(∫ T

0
e−ρtu(C1

t )dt

)
s.t. E

(∫ T

0
ξt/ξ0 · C1

t dt

)
≤ w1

0,

maxEs
(∫ T

0
e−ρtu(C2

t )dt

)
s.t. Es

(∫ T

0
ξst /ξ

s
0 · C2

t dt

)
≤ w2

0,

where it is assumed that the agents have identical power utility functions

u(C) ≡ C1−γ/(1− γ).
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Consumption allocations and state price densities. Denote the likelihood ratio by λt = dP/dPs =
y−1ξt/ξ

s
t , where y = y2/y1, and yi is the constant Lagrange multiplier from the respective budget

constraint. Optimal consumption allocations are

C1
t = f(λt)Ct, C2

t = (1− f(λt))Ct, f(λt) = (1 + (yλt)
1/γ)−1.

The state price densities are:

ξt = (y1)−1e−ρtC−γt f(λt)
−γ

= (y1)−1e−ρtC−γt (1 + (yλt)
1/γ)γ

=

γ∑
k=0

(
γ

k

)
(y1)−1e−ρtC−γt (yλt)

k/γ ,

ξst = (y2)−1e−ρtC−γt (1− f(λt))
−γ .

Note that yi and y cancel out in the SDF, ξiT /ξ
i
t. Lastly,

dλt = −∆tλtdzt.

Bond pricing. Set y = 1 w.l.o.g. The real bond price is, for integer γ,

Bt,T = Et(ξT /ξt) =

γ∑
k=0

w
(k)
t Et

[
e−ρ(T−t)

(
CT
Ct

)−γ (λT
λt

)k/γ]
=

γ∑
k=0

w
(k)
t Et

[
ξ
(k)
T

ξ
(k)
t

]
,

w
(k)
t =

(
γ

k

)
λ
k/γ
t (1 + λ

1/γ
t )−γ ,

ξ
(k)
t = e−ρtC−γt λ

k/γ
t .

Then

dξ
(k)
t /ξ

(k)
t = −r(k)t dt−

[
γσ + γ−1k∆t

]
dzt, (C.1)

r
(k)
t = ρ+ γµ− 1

2
γ(γ + 1)σ2 +

1

2

k

γ

(
1− k

γ

)
∆2
t .

These expressions imply exponentially quadratic form in the state ∆t. Thus, bond prices are
weighted averages of exponentially quadratic functions of a Gaussian state variable. The weights

w
(k)
t , which add up to 1, are affected by the bias in beliefs via λt. The real short rate is obtained

by applying Ito’s lemma to ξt and picking out the drift of the result.

Bond risk premia. If ∆t = 0, the risk premia in the economy are constant due to the constant

volatility of the log SDF, as can be seen from the evolution equation for the SPD ξ
(k)
t in (C.1). To
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demonstrate the dependence of the bond risk premium on ∆t, we first write the real bond price as

Bt,T =

γ∑
k=0

w
(k)
t B

(k)
t,T ,

where B
(k)
t,T are the artificial (exponential quadratic) bond prices corresponding to the SPD ξ

(k)
t .

Then,

Et

(
dBt,T
Bt,T

)
=

γ∑
k=0

B(k)
t,T

Bt,T
Et

(
dw

(k)
t

)
+ w

(k)
t Et

dB(k)
t,T

Bt,T


=

γ∑
k=0

w
(k)
t

B
(k)
t,T

Bt,T
· Et

dB(k)
t,T

B
(k)
t,T

 .

The expected bond return in each artificial economy k is going to be the corresponding risk-free

rate, r
(k)
t , plus a linear function of the price of risk, with is affine in disagreement, γσ + γ−1k∆t.

Continuing the previous expression, one can then write:

1

dt
Et

(
dBt,T
Bt,T

)
=

γ∑
k=0

w
(k)
t B

(k)
t,T

Bt,T
·
(
r
(k)
t + α

(k)
t + β

(k)
t (γσ + γ−1k∆t)

)
,

where α, and β reflect sensitivities of a bond price w.r.t. to its factors (see, e.g., Ahn et al., 2002
for explicit expressions). Thus, the risk premium is:

1

dt
Et

(
dBt,T
Bt,T

− rtdt
)

=

γ∑
k=0

w
(k)
t B

(k)
t,T

Bt,T
×[

α̃
(k)
t + β

(k)
t γ−1k∆t +

(
k

γ

(
1− k

γ

)
−
(

1− 1

γ

)
f(λt)(1− f(λt))

)
∆2
t

2

]
.

This expression has two implications central to our findings. First, it connects non-normality of
bond yields and, in particular, their skewness to the bond risk premiums via ∆t. Second, the
expression explains the evidence about the violations of the bond spanning hypothesis. Indeed,
expected excess return is a non-linear function of ∆t. Thus, it cannot be captured by a linear
combination of yields
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