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ABSTRACT

Tracking is widespread in U.S. education. In post-secondary education alone, at least 71% of 
colleges use a test to track students. However, there are concerns that the most frequently used 
college placement exams lack validity and reliability, and unnecessarily place students from 
under-represented groups into remedial courses. While recent research has shown that tracking 
can have positive effects on student learning, inaccurate placement has consequences: students 
face misaligned curricula and must pay tuition for remedial courses that do not bear credits 
toward graduation. We develop an alternative system to place students that uses predictive 
analytics to combine multiple measures into a placement instrument. Compared to colleges’ 
existing placement tests, the algorithm is more predictive of future performance. We then conduct 
an experiment across seven colleges to evaluate the algorithm’s effects on students. Placement 
rates into college-level courses increased substantially without reducing pass rates. Adjusting for 
multiple testing, algorithmic placement generally, though not always, narrowed gaps in college 
placement rates and remedial course taking across demographic groups. A detailed cost analysis 
shows that the algorithmic placement system is socially efficient: it saves costs for students while 
increasing college credits earned, which more than offsets increased costs for colleges. Costs 
could be reduced with improved data digitization, as opposed to entering data by hand.
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1. Introduction 

Tracking students by prior test scores is widespread in U.S. education. In higher 

education alone, at least 71% of post-secondary institutions use a test to track students 

(Fields & Parsad, 2012; National Center for Public Policy and Higher Education & 

Southern Regional Education Board, 2010). These rates are higher in two-year colleges, 

which enroll nearly half of post-secondary students but graduate 39% of their students 

(Fields & Parsad, 2012; Chen, 2016).1 While recent research has demonstrated large 

potential benefits of tracking (Card & Giuliano, 2016; Duflo, Dupas, & Kremer, 2011), 

inaccurate placement has consequences: students face misaligned curriculum and, in 

higher education, must pay tuition for remedial courses that do not bear credits toward 

graduation. Inaccurate placement is a concern because there is evidence that placement 

exams lack validity and reliability, and they unnecessarily track students from under-

represented groups into remedial courses (Rothstein, 2004; Scott-Clayton et al., 2014).2 

Given most placement tests aim to predict students’ readiness for college-level courses, 

additional measures, such as high school GPA, when combined with predictive analytics, 

could mitigate concerns about validity and fairness (Rothstein, 2004; Scott-Clayton et al., 

2014; Mullainathan & Spiess, 2017).3  

 In this paper, we develop a placement algorithm that combines multiple measures 

using predictive analytics and implement it via an experiment with 12,544 students. To 

do so, we recruited seven community colleges across New York and gathered historical 

 
1 This is the graduation rate within six years. 
2 See Heubert & Hauser (1999) for more information about key characteristics for sound testing instruments. 
3 Alternatively, a measure could be constructed to predict treatment effects of specific course placements as 
opposed to pass rates or readiness. In practice, targeting treatment effects does not seem to be how colleges 
explicitly try to optimize placement systems. 
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data on their students to estimate models predicting students’ likelihood of passing 

college-level math and English courses. These predictions incorporated measures such as 

placement-exam scores, high school GPA, high school rank, diploma status, and time 

since high school graduation. We created college-specific placement algorithms for math 

and English that placed students into a remedial course if a student’s predicted 

probability of passing a college-level course was below a cut point chosen by each college. 

We then randomly assigned students to either colleges’ business-as-usual placement 

system or the placement algorithm. 

 For several reasons, it is unclear what impacts this algorithm will have on student 

outcomes. Improving the validity and the reliability of the placement instrument could 

help place students into courses better aligned to their incoming skills. Measures such as 

high school GPA reflect a wider array of cognitive and non-cognitive skills than test 

scores alone (Kautz, et al., 2014; Kautz & Zanoni, 2014; Borghans, Golsteyn, & Heckman, 

2016).4 However, estimating the algorithm requires overcoming the selective labels 

problem (Kleinberg et al., 2018). Selection into college-level courses is based on 

observables, but the algorithm’s predictions still rely on extrapolations that could reduce 

their validity. Experimental evaluation of algorithmic placement is important for testing 

how well it performs in practice. 

 The algorithm also helps colleges choose cut points for placements into the college-

level courses, which affect the number of students placed into these courses and their 

expected pass rates conditional on placement. This choice means algorithmic placement 

does not necessarily imply that placement rates will change either on net or for a given 

individual. At particular thresholds (e.g., the extremes), it is possible that the placements 

 
4 GPA also has a high degree of reliability, but there are concerns that grading standards too school-specific 
for it to be useful (Bacon & Bean, 2006). 
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assigned by the algorithm and the test score will be the same. But if colleges choose to 

maintain pass rates, the algorithm may place more students into college-level courses 

(Scott-Clayton et al., 2014), which could increase students’ credit accumulation and save 

students money if the algorithm’s predictions are sufficiently accurate. 

 We show how colleges implemented the placement algorithm, how it affected students’ 

placement outcomes, and what impacts this had on credit accumulation and costs. We 

find that colleges generally chose cut points to hold pass rates constant. This resulted in 

large changes in placement rates: relative to colleges’ business as usual, 20% of math 

placements changed and 40% of English placements changed. Compared to what would 

have occurred using the business-as-usual placement tests, the algorithm placed 12% into 

a higher-level math class and 34% into a higher-level English course. The algorithm placed 

8% of students into a lower-level math course and a 6% lower-level English course.  

 Placement via the algorithm led to immediate increases in enrollment into college-level 

courses. Algorithmic placement yielded first-term enrollment increases in college-level 

math by 2.6 percentage points and in college-level English by 13.6 percentage points 

relative to the control group. Roughly two-thirds of the treatment group complied with 

their algorithmic placement recommendation. 

 Algorithmic placement also led to reductions in remedial course taking and increases 

in college credits earned—without reducing pass rates. Placement via the algorithm 

reduced remedial course taking by 1.1 credits and—using treatment as an instrument for 

compliance with their placement recommendation—by 2.3 credits for algorithmic 

placement compliers. Assignment to algorithmic placement increased college credits by 

0.53 credits and by 1.1 credits for compliers. These changes are larger for students who 
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are being tracked in both math and English: these students earned 1.2 more college 

credits and compliers earned 2.1 college credits because of algorithmic placement.5  

 The magnitude of these effects persists for our earliest cohort of students whom we 

observe for 2.5 years. Across all terms, students in this cohort earned 1.6 college credits 

more and attempted 1.2 fewer remedial credits than the control group. For students 

tracked in both math and English, college credits increased by 2.0 credits and remedial 

credits decreased by 1.2 credits. These effects are roughly 50% larger for compliers. 

 We also find evidence algorithmic placement narrows certain demographic gaps in 

placement rates. Though the algorithm increased placement into college level courses for 

all subgroups we looked at, increases were significantly larger for female students in math 

relative to male students, Black students in English relative to white students, and lower-

income students took fewer remedial credits relative to higher-income students—after 

controlling for multiple-hypothesis-testing. However, the increases in placement into 

college-level math, though positive and significant, were not as large for Hispanic students 

compared to white students.  

 The algorithmic placement system also results in cost savings for students. We 

conducted a detailed cost analysis for colleges and students, separating fixed and variable 

costs, and costs to students versus costs to colleges. We find that students saved $150, on 

average relative to the business as usual, which is due to reductions in remedial course 

taking. These savings were $310 dollars for compliers. This implies an average saving to 

students equal to $871,200 per cohort, on average. 

 For colleges to implement such a placement algorithm, decision makers must weigh 

the potential benefits to students against the costs to the colleges. We estimate that the 
 

5 Each college has automatic exemptions from taking a placement exam for a given subject, and, because 
our placement mechanism was integrated within the testing platforms, not all students could be placed by 
the algorithm for both math and English. 
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cost per student in the initial year of the study—above and beyond the business as 

usual—is $70 to $360 dollars, depending on the college. Much of these costs are driven by 

the need to hand enter data from high school transcripts; processes or technologies to ease 

this data collection would greatly reduce costs. Furthermore, the first year of 

implementation involves large fixed costs. We estimate operating costs of the placement 

algorithm are $40 dollars per student. Again, this cost would be even lower if colleges 

collected historical data from students more efficiently. College administrators asked 

whether further savings, without a loss in quality, could arise by not paying to use 

placement exams. We examine the extent to which the algorithm would place students 

differently if test scores were not used for prediction. We find that placement rates would 

change substantially more for math courses than for English courses; for English courses, 

only 5 to 8 percent of placements would change.   

 Our research contributes to a broader literature that focuses on the effects of tracking. 

Historically, tracking is controversial. Oakes (1985) argued that the evidence on tracking 

is inconsistent, and, in practice, higher-track classes tend to have higher-quality classroom 

experiences than lower-track classes. More recently, Duflo, Dupas, & Kremer (2011) 

randomized students in Kenya to schools that either tracked students by test scores or 

assigned students randomly to classrooms. They found that test scores in schools with 

tracking improved relative to the control group, both for students placed in the higher-

scoring and the lower-scoring tracks. Card and Giuliano (2016) studied a district policy in 

which students are placed into classrooms based on their test scores. This program caused 

large increases in the test scores of Black and Hispanic students.  

 A number of studies look at the effects of being placed into a higher track versus a 

lower track. Bui, Craig, and Imberman (2014) and Card and Giuliano (2014) find that 

gifted students’ placement into advanced coursework does not change test scores. Cohodes 
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(2020) and Chan (2020), however, find increases in enrollment in advanced high-school 

coursework and college.6 In higher education, the evidence that placement into remedial 

courses improves academic outcomes for marginal students is more mixed, and several 

regression-discontinuity analyses find no effects (Calcagno & Long 2008; Bettinger & Long 

2009; Boatman & Long 2010; Martorell and McFarlin 2011; Allen & Dadgar 2012; Hodara 

2012; Scott-Clayton & Rodriguez, 2015).  

 Recently, economists have argued that data-driven algorithms can improve human 

decision making and reduce biases (Mullainathan & Spiess, 2017; Li, Raymond and 

Bergman, 2020; Arnold, Dobbie and Hull, 2021). Kleinberg et al. (2018) show that a 

machine-learning algorithm has the potential to reduce bias in bail decisions relative to 

judges’ decisions alone. At the same time, others are concerned that these algorithms 

could embed biases into decision making and exacerbate inequalities (Eubanks, 2018). We 

contribute to this literature by comparing the impacts of a simple, data-driven algorithm 

to another quantitative measure, test scores. We then evaluate the algorithm by 

conducting a large-scale experiment. 

 The rest of this paper proceeds as follows. Section 2 provides further background 

information about tracking in postsecondary institutions and study implementation. 

Section 3 describes the experimental design, data and empirical strategies. Section 4 

presents our findings. Section 5 provides a detailed cost analysis, and Section 6 concludes.  

2. Background, Site Recruitment, Algorithm Implementation 

Tracking students into remedial education is a major component of the higher education 

system, both in terms of enrollment and cost. In the 2011-12 academic year, 41% of first- 

 
6 Several other studies look at the effects of placing into high-test score schools and the results are much 
more mixed (Jackson 2010; Pop-Eleches and Urquiola 2013; Abdulkadiroglu, Angrist, and Pathak 2014; 
Dobbie and Fryer 2014). 
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and second-year students at four-year institutions had taken a remedial course, while at 

two-year institutions, even more—68% of students—had taken a remedial course (Chen, 

2016). The cost of remedial education has been estimated to be as much as $2.9 billion 

annually (Strong American Schools, 2008). 

 The primary purpose of remedial education is to provide differentiated instruction to 

under-prepared students so they have the skills to succeed in college-level coursework 

(Bettinger & Long, 2009). However, there is evidence that community-colleges’ tracking 

systems frequently “under place” students—tracking them into remedial courses when 

they could have succeeded in college-level courses—and “over place” students—tracking 

them into college-level courses when they were unlikely to be successful (Belfield & 

Crosta, 2012; Scott-Clayton, 2012). 

 Most institutions administer a multiple-choice test in mathematics, reading, and 

writing to determine whether incoming students should be placed into remedial or college-

level courses. The ACCUPLACER, a computer-adaptive test offered by the College 

Board, is the most widely used college placement system in the U.S. (Barnett & Reddy, 

2017). Colleges choose a cut score for each test and place students scoring above this score 

into college-level courses and students below the cut score into various remedial courses.7 

Given the placement rules and immediate test results provided by the ACCUPLACER 

platform, students often learn their placement immediately after completing their exam.  

Site Selection and Descriptions  

All the participating colleges are part of the State University of New York (SUNY) 

system, ranging from large to small, and students’ backgrounds vary from college to 

college. Table A.3 of the Appendix provides each colleges name and an overview of their 
 

7 Certain colleges may offer exemptions from testing; for instance, this can occur for students who speak 
English as a second language or who have high SAT scores. 
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characteristics using public data. The smallest of the colleges serves roughly 5,500 

students while the largest serves over 22,000 students. As is common in community 

college settings, a large share of the student body is part-time and many are adult 

learners, with between 21% and 30% of students over the age of 25. For most of the 

colleges, the majority of students receive financial aid. The colleges have similar transfer-

out rates of between 18% and 22% and three-year graduation rates are between 15% and 

29%. The colleges also tend to serve local student populations. Lastly, all of the colleges 

have an open-door admissions policy. This means that the colleges do not have admission 

requirements beyond having graduated from high school or earned a GED. 

Creating the Placement Algorithm 

Colleges preferred that we develop college-specific algorithms. We created separate 

algorithms for each college in math and English using data on each college’s previous 

cohorts of students. 

 Five colleges in the study had been using ACCUPLACER for several years. One 

college had been using ACCUPLACER assessments for English but had transitioned from 

a home-grown math assessment to the ACCUPLACER math assessments too recently to 

generate historical data, so we tested an algorithm for English placement only at that 

college. One college in our sample had been using the COMPASS exam, which was 

discontinued by ACT shortly after this study began. The college replaced the COMPASS 

exam with the ACCUPLACER exam. At this college, we tested an algorithm that does 

not use any placement test scores against a placement system that incorporates only 

ACCUPLACER test results. 

 We worked with administrators at each college to obtain the data needed to estimate 

each algorithm. In some instances, these measures were stored in college databases. In 
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other instances, colleges maintained records of high school transcripts as digital images. 

For the latter, we had the data entered into databases by hand.  

 In order to estimate the relationships between predictors in the dataset and 

performance in initial college-level courses, we restricted the historical data to students 

who took placement tests and who enrolled in a college-level course without first taking a 

remedial course. This set of students constituted our estimation sample for developing the 

algorithm. Importantly, students were selected into college-level courses based on 

observable characteristics, but this sampling scheme does raise concerns about whether 

the relationships we estimate between variables will apply to all students. The experiment 

will test the extent to which the assumptions implicit in this estimation matter in this 

context. 

 We aimed to predict “success” in the college course for each student. We met with 

college personnel to decide how to define success, which we agreed to define as a grade of 

C or better in the initial college-level course associated with the placement decision. We 

then regressed an indicator for success in the relevant course on various sets of predictors 

using Probit and linear probability models (LPM). We used the results of the LPMs 

because we could not code non-linear models into colleges’ existing placement software. 

Nonetheless, the non-linear models yielded similar placement decisions as LPMs, especially 

around the relevant cut points that colleges chose to determine placements. 

 For each college, we estimated regressions relating placement test scores and high 

school GPA to “success” in initial college-level classes for a given subject. We added 

additional information from high school transcripts when such information was available. 

This information included the number of years that have passed since high school 

completion and whether the diploma was a standard high school diploma or a GED 

(diploma status). We also tested the benefit of including of additional variables such as 
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SAT scores, ACT scores, high school rank, indicators for high school attended, and scores 

on the New York Regents exams, when they were available (often these were missing), as 

well as interaction terms and higher-order terms for variables. When variables were 

missing, we imputed values and added indicators for missing. Identical procedures were 

followed for both English and math. 

[1] 1(C or Better)i = α + (HS GPAi)β1 + εi 

[2] 1(C or Better)i = α + (ACCUPLACERi)β1 + εi 

[3] 1(C or Better)i = α + (HS GPAi)β1 + (ACCUPLACERi)β2 + εi 

[4] 1(C or Better)i = α + (HS GPAi)β1 + (ACCUPLACERi)β2 + Xiβ3 + εi 

 The focus of this analysis was the overall predictive power of the model. As such, we 

calculated the Akaike Information Criterion (AIC) statistics for each model. The AIC is a 

penalized-model-fit criterion that combines a model’s log-likelihood with the number of 

parameters included in a model (Akaike, 1998; Burnham and Anderson, 2002; Mazerolle, 

2004).8 In practice, we did not have many variables to select from and higher-order and 

interaction terms had little effect on prediction criteria (and additional complexity was 

difficult to implement). We estimated the models on prior years of historical data 

excluding the most recent year, and then examined the fit criteria using data from that 

most recent year. 

 Placement exam scores explained very little variation in English course outcomes, 

slightly more variation in math outcomes, and including additional measures adds 

explanatory power. Figures A.1 and A.2 in the Appendix list the full set of variables used 

by each college to calculate students’ math and English algorithm scores, respectively. 

Tables A1 and A2 show typical examples of our regression results for math and English. 
 

8 Under certain conditions, choosing model specifications according to the AIC is asymptotically equivalent 
to leave-one-out-cross-validation (Stone, 1977).  
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Across colleges, explanatory power was much higher for math course grades than for 

English course grades. Placement scores typically explained less than 1% of the variation 

in passing grades for English. Test scores were better predictors for passing math grades, 

explaining roughly 10% of the variation. Adding high school grades typically explained an 

additional 10% of the variation in both subjects. Interestingly, we found that indicators 

for which high school a student attended, which could reflect different grading standards, 

added little predictive value. Overall, combining multiple measures with predictive 

analytics is no panacea for predicting future grades, but it does improve the validity of 

the placement instrument relative to test scores alone.  

Setting cut probabilities: After we selected the final models, we used the coefficients from 

the regression to simulate placement rates for each college using their historical data. 

Consider the following simplified example where a placement test score (R) and high 

school GPA (G) are used to predict success in college-level math (Y), defined as earning a 

grade of C or better. The regression coefficients combined with data on R and G can then 

predict the probability of earning a C or better in college-level math for incoming students 

(Ŷ). A set of decision rules must then be determined based on these predicted 

probabilities. A hypothetical decision rule would be: 

Placementi = {
 College Level if Ŷi ≥ 0.6

Remedial if Ŷi < 0.6
 

 For each college, we generated spreadsheets projecting the share of students that 

would place into college-level coursework at any given cut-point as well as the share of 

those students we would anticipate earning a C or better. These spreadsheets were 

provided to colleges so that faculty in the pertinent departments could set cut-points for 

students entering their programs.  
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 Figure 1 shows an abbreviated, hypothetical example of one such spreadsheet provided 

to colleges.9 The top panel shows math placement statistics and the bottom panel shows 

statistics for English. The highlighted row shows the status quo at the college and the 

percent of tested students placed into college level is shown in the second column. For 

instance, for math, the status quo placement rate is 30%. The third column shows the 

pass or success rate, which is a grade “C” or better in the first college-level course in the 

relevant subject. In this example, the status-quo pass rate for math is 50% conditional on 

placement into the college-level math course. 

 Below the highlighted row, we show what would happen to placement and pass rates 

at different cut points for placement. The first column shows these cut points (“Minimum 

probability of success”). For instance, for math, the first cut point we show is 45%, which 

implies that for a student to be placed into college-level math under the algorithm, the 

student must have a predicted probability of receiving a “C” or better in the gate-keeper 

math course of at least 45%. If this 45% cut point is used, columns two and three show 

what would happen to the share of students placed into college-level math under the 

algorithm (column two) and what would happen to the share who would pass this course 

conditional on placement (column three). In this example, for math, if the 45% cut point 

is used, the algorithm would place 40% of students into college-level math and we 

anticipate 60% of those students would pass. The cut point differs from the expected pass 

rate because the cut point is the lowest probability of passing for a given student; the cut 

point implies that every student must have that probability of passing or greater. For 

instance, if the cut point is 40%, then every student has 40% chance or greater of passing 

the college-level course. Therefore, most students placed into college-level courses 

according to this rule will have above a 40% chance of passing the course.  

 
9 In practice, we showed results from many different cut points. 



14 
 

 Faculty opted to create placement rules that kept pass-rates in college-level courses 

the same as historical pass rates. In general, this choice implied increases in the predicted 

number of students placed into college-level coursework. For instance, in the example, the 

status quo placement and pass rates for English are 60% and 40%, respectively. A cut 

point of 45% would induce the same pass rate, 60%, but would place 75% of students into 

the college-level English course. 

Installation of new placement method in college systems:  We developed two procedures 

to implement the algorithms while maintaining the timing of placement decisions. At 

colleges running our algorithm through the computerized ACCUPLACER-test platform, 

we programmed custom rules into the ACCUPLACER platform for students selected to 

be part of the treatment group.10 

 Other colleges ran their placement through a custom server built for the study. 

Student information was sent to servers to generate the probability of success and the 

corresponding placement, which was returned to the college. 

3. Experimental Design, Data, Empirical Strategy 

The sample frame consisted of entering cohorts (fall and spring) enrolling at each college 

who were required to take the placement exams from 2016 until 2018.11 Random 

assignment was at the student level and stratified by college. We integrated the 

assignment procedure into each college’s placement platform described above, such that 

upon taking their placement exams, students were randomly assigned to be placed using 

 
10 This process in particular placed constraints on the algorithm’s complexity—interaction terms and non-
linear models, for instance, are difficult to implement within the ACCUPLACER system. 
11 Colleges preferred to use alternative placement processes for English as a Second Language speakers, and 
students with high SAT scores or 4.0 GPA were sometimes exempt from placement exams. Note that, as 
these are non-selective colleges, few students take the SAT. We report exemption rates in Table 3.  
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either the business-as-usual method or the algorithm. Students and their instructors were 

blinded to their treatment assignment. If a student took both the English and math 

placement exams, they were either assigned to the business-as-usual placement for both 

subjects or the algorithm for both subjects. Some students only took a placement exam in 

one subject. After taking placement exams, students were notified of their placements 

either by an administrator or through an online portal, depending on the college.  

 This experimental design allowed for a well-powered study, given constraints. We 

interviewed faculty and staff to document any perceived changes they saw in the 

composition of classrooms and any responses to these changes. As we describe below, 

faculty did not perceive changes to their classroom compositions and so did not make 

changes to the curriculum or teaching. Given that prior evidence suggests that tracking 

can allow instructors to target instruction more effectively (cf. Card & Giuliano, 2016 and 

Duflo, Dupas, & Kremer, 2011), our results may present a lower bound on effectiveness if 

instructors were to change their behaviors in response to more significant changes in their 

classroom compositions. 

Data  

Data came from three sources: placement test records, administrative data from each 

college, and qualitative data on implementation and quantitative data on costs was 

collected from faculty, counselors, and staff using interviews and focus groups. Student-

level placement test records include indicators for each students’ placement level in math 

and English, as well as the information that would be needed to determine students’ 

placements regardless of treatment status. Placement test records from each college 

contained high school grade point averages (when available) and scores on individual 

placement tests. Additional variables included in placement test records varied by each 

college’s placement algorithm. Examples of additional variables incorporated for certain 
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colleges include the number of years between high school completion and college 

enrollment, type of diploma (high school diploma vs. GED), SAT scores, and New York 

State Regents Exam scores.  

 In addition to placement test records, college administrative data included 

demographic information, such as gender, race, age, financial aid status, and transcript 

data that provided course levels, credits attempted and earned, and course grades.  

 Table 1 shows sample baseline characteristics for students who participated in the 

study at each college and overall. Our sample consists of 12,544 first-year students across 

the seven colleges. On average, students in the sample were 43% white and 43% received 

a federal Pell Grant. There is some variation in demographic characteristics. For instance, 

Colleges 1, 2, and 3 serve more white students compared to Colleges 5 and 7, which enroll 

a higher share of Hispanic students. Using Pell Grant receipt as a proxy for income, 

average family income for study participants also varies across colleges; Pell Grant receipt 

ranges from 32 percent to 56 percent of students. Comparing these characteristics to 

Appendix Table A.3 shows that the study sample characteristics match the overall 

characteristics of students each college serves.  

 Lastly, a concern is that using a test score as the primary criterion for assignment 

systematically under places students from one demographic versus another. Figure 2 

highlights descriptive results consistent with this concern by showing the gap in 

placement rates across demographic subgroups. The first two bars show that the white 

students are placed into college-level math and English courses at rates 14 percentage 

points and 19 percentage points higher than Black students. These gaps tend be smaller 

between Hispanic and white students, and between male and female students, but also 

quite large between Pell recipients and non-Pell recipients—16 and 12 percentage points 

for math and English, respectively. The experiment will allow us to compare the 
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algorithm’s placement rates by subgroup relative to the status quo and students’ success 

rates in these courses as well. If students can be placed into college-level courses at higher 

rates without sacrificing pass rates, this would indicate students are being under placed. 

Outcomes 

We study the effects of assignment to the placement algorithm on several primary 

outcomes, by subject. First, we examine how placements changed as a result of the 

algorithm: what share of treated students had their placement changed relative to the 

status quo, and of these, what share had their placement changed from a remedial-course 

assignment to a college-level assignment, and what share had their placement changed 

from a college-level course assignment to a remedial assignment. Second, we show 

treatment effects on enrollment and pass rates for math and English separately. Lastly, 

we study college and remedial credits attempted and completed. We show these results in 

the short run—the first term after placement—as well the longer run for subsample of 

students we observe for more than two years.  

Empirical Strategy 

We use an intent-to-treat analysis to examine the impacts of using the placement 

algorithm versus the single-placement test status quo. We estimate the following model: 

[7] Yi = α + βTreatmenti + λφi + ηXi +  δZi + εi , 

where Yi are academic outcomes for student i, such as placement into a college-level 

course and passing a college-level course; Treatmenti indicates whether the individual was 

randomly assigned to be placed using the algorithm or the business as usual; φi is a vector 

of indicators for the institution (strata) a student attends; Xi is a vector of baseline 

covariates (gender, race, age, financial aid status); Zi is students’ math and English 

algorithm scores, which are baseline measures of academic preparedness, and εi is the 
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error term. The coefficient of interest is β, which is the effect of assignment to the 

placement algorithm on outcomes at the end of the first semester discussed above. We 

estimate Huber-White-Heteroskedasticity robust standard errors (Huber, 1967; White, 

1980) following the experimental design (Abadie et al., 2020).  

 As not everyone takes a placement exam in both subjects, we estimate these 

regressions for those who took any placement exam, and therefore could be assigned to 

placement by the algorithm for one or two courses, and we also estimate these regressions 

for those who took placement exams in both subjects, and therefore could be assigned to 

placement by the algorithm for two subjects.  

Treatment-on-the-Treated Analyses 

Because not everyone follows their recommended placement, we also estimate treatment-

on-the-treated effects for those who comply with their placement recommendation. 

Compliance here is an indicator equal to one for following the algorithm’s placement 

recommendation and equal to zero for the control group if they follow the business as 

usual. For students who took both math and English exams, compliance is defined as 

following the algorithm's recommendation in at least one subject. The second stage 

equation is as follows: 

[8] Yi = αiv + βivPlacement_complyi + λivφi + ηivXi + δivZi + ηi . 

We instrument the endogenous compliance variable with treatment assignment. This 

analysis will estimate local average treatment effects—effects on those who comply with 

their placement recommendation. We show control complier means in each IV results 

table. 

Subgroup Analyses 
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We also study the potential disparate impact the placement algorithm has on the 

composition of students placed into remedial and college-level courses. We estimate 

equation [7] above for each subgroup, but also test the significance of the interaction 

terms, shown below. 

[9] Yi = αk + β1kTreatmenti + β2kTreatmenti × Subgroupk + λkφi + ηkXi + δkZi + εki . 

The outcomes, Yi, are placement in college-level math, placement in college-level English, 

and credit accumulation. For each subgroup of interest, the sample is restricted to the 

reference group and the subgroup. Therefore, the coefficient β1k shows the effect for the 

reference group (listed below), and the coefficient of particular interest is the significance 

and magnitude of β2k, which indicates whether the difference between groups of students 

is widening or narrowing as a result of algorithmic placement. The subgroups of interest 

are Black students, Hispanic students (compared to white students); female students 

(compared to male students); and Pell recipients (compared to non-Pell recipients). This 

process yields many tests, which increases the likelihood of type-I errors. To control for 

the Family Wise Error Rate, we use the step-down procedure formulated by Holm (1979). 

Treatment-Control Baseline Balance 

Randomization should ensure that, in expectation, students assigned to the treatment are 

similar to those assigned to the control-group placement rules. Table 2 provides evidence 

that random assignment was successfully implemented. Participants’ demographic and 

academic characteristics are balanced across treatment and control groups. Students’ 

ACCUPLACER exam scores also are similar across both groups. Overall, the magnitudes 

of differences between treatment and control groups are small and only one is significant 

at the 5 percent level, which is expected with the more than 20 variables tested. Though 
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not shown, this balance also holds for the subgroup of students who took both the English 

and math placement exams as well.  

4. Results 

Descriptive Changes in Placements 

We begin with a descriptive summary of placement changes to show the various ways the 

algorithm changed students’ placements relative to the business as usual. As stated above, 

it is not obvious how the algorithm will change net placement rates. Table 3 summarizes 

these changes for students placed by the algorithm. Of the more than 6,000 students 

assigned to the program-group, 94% were tracked in math and 80% were tracked in 

English. Among those students who took a math placement exam, 21% experienced a 

math placement different from what would have been expected under the status quo 

placement rules. Of those with a changed math placement, 61% were placed into a higher-

level math course than would have been expected under a single test placement system, 

and 39% placed in a lower-level math course. Of those who took the English placement 

exams, approximately 50% of program-group students experienced a change in the level of 

their English level placement, of which 86% placed into a higher-level English course and 

14% placed into a lower-level course than they would have under the status quo 

placement strategy. 

 Table 4 shows compliance with placement recommendations. Overall, the 

treatment group complies with their algorithmic placement recommendation 62% of the 

time. Treatment assignment increases compliance with the algorithm’s decision relative to 

the control group by 48 percentage points. The first stage is slightly larger for the spring 

cohort, when there are fewer first-time enrollees, but is generally consistent.  

Treatment Effects on Placement, Course Taking, and Credits 
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The placement algorithm resulted in increases in all of the outcomes: placement into 

college-level courses, enrollment in college-level courses, and total college-level credits 

earned. Table 5 summarizes the first-term results. Students assigned to the placement 

algorithm are 6.6 percentage points more likely to be placed into a college-level math 

course, 2.6 percentage points more likely to enroll in a college-level math course, and 1.9 

percentage points more likely to pass a college-level math course during the first term. All 

of these results are statistically significant at the 1 percent level. One explanation for the 

difference between placement and enrollment into a college-level math course is that some 

students placing into college-level math did not have to complete a college-level math 

course prior to enrolling in other college-level courses in the first term.  

 There are positive and substantially larger effects for English placement, enrollment, 

and completion than for outcomes on math courses. Students who were placed by the 

algorithm were 32 percentage points more likely to place into a college-level English 

course, 14 percentage points more likely to enroll in a college-level English course, and 7 

percentage points more likely to pass a college-level English course in the first term. All 

results are significant at the 1 percent level. Again, the difference between placement and 

enrollment into a college-level English course may occur for the same reason as above for 

college-level math enrollment. 

 We also find reductions in total remedial credits taken—irrespective of subject—and 

increases in total college credits earned. These effects are generally larger for students who 

are placed via the algorithm in both math and English. Panel A of Table 6 shows intent 

to treat effects while Panel B shows treatment-on-the-treated effects. The first three 

columns in each panel show results for students who took any placement exam while 

columns four through six show results for students who took a placement exam in both 

subjects (and so are tracked in both courses).  
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 Panel A of Table 6 shows that algorithm assignment reduced remedial credits 

attempted by 1.1 credits relative to a mean of 3.5 credits—a 31% reduction. Panel B 

shows that, for those who complied with their placement recommendation, algorithmic 

placement reduced remedial course taking by 2.3 credits relative to a complier mean of 5.9 

credits (a 38% reduction). The reductions are slightly smaller for those who were tracked 

in both English and math: the ITT is -1.1 remedial credits and TOT is -1.7 credits. 

 Table 6 also shows there is an increase in credit accumulation of 0.53 credits for those 

tracked in at least one subject and 1.2 credits for those tracked in both subjects. For those 

who complied with their placement, these effects are 1.1 credits and 2.1 credits, 

respectively. These net positive effects reflect that students are not entirely substituting 

math and English college credits for other college-level credits. 

 The increase in college-level placement does not result in a reduction in pass rates. We 

can calculate pass rates by dividing credits earned by credits attempted. For students who 

are tracked in at least one subject, the control group passes 64% of their college-level 

credits attempted while the treatment group pass rate is 63%. For those students tracked 

in both subjects, the control group pass rate is 62% and the treatment group pass rate is 

63%.12 

 Table 7 shows these results hold over the longer run as well. It is possible that, by the 

end of two years, students in the control catch up to students in the treatment group. We 

can track our initial cohort of students from Fall 2016 for more than two years. The 

control group for this cohort has higher total credit accumulation than the overall sample, 

as expected, but the increase in total credits earned and the decrease in remedial 

education credits earned are each larger than what is observed in the short run. Thus, if 
 

12 Similarly, for those tracked in at least one subject, the complier (IV) pass rates are: 62% for the control 
group, and 61% for the treatment group. For those tracked in both subjects, the complier (IV) pass rates 
are: 62% for the control group, and 63% for the treatment group. 
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anything, the benefits appear to grow as students progress through community college. 

Subgroup Effects 

Table 8 shows the subgroup effects on placement outcomes and credit accumulation for 

each subject and subgroup. Each cell is a separate regression restricted to the subgroup 

specified in the column header. The observation count for the outcome and subgroup of 

interest is shown immediately below the standard error.  

 Treatment effects on placement into college-level math and English are large and 

positive for all subgroups, except male students in math. Remedial credits earned also 

decrease for all subgroups (including male students), and credits increase a statistically 

significant amount only for Black and female students and Pell-grant recipients. 

 College administrators were particularly interested in how the new placement system 

affected gaps in outcomes across subgroups. Given these administrators are making the 

decision to maintain the system, we focus our analysis of heterogeneous effects on the 

extent to which algorithmic placement widened or narrowed gaps in key outcomes across 

subgroups. This question implies we are interested in the interaction terms from equation 

[9], which assess whether there are differential effects for Black and Hispanic students 

(separately) relative to white students, female students relative to male students, and Pell 

recipients relative to non-Pell recipients. Including outcomes in placement for math and 

English and credit accumulation in remedial and college-level courses, there are 16 

interaction terms of interest. We use the step-down method from Holm (1979) to control 

for the Family-wise Error Rate at the five percent level.  

 Four interaction terms remain significant after this adjustment. Placement rates for 

Black students into college-level English increased relative to white students and 

placement rates for female students into college-level math relative to male students 

increased as well. Though placement rates into college-level math and English courses 
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increased for Hispanic students overall, relative to white students, the increase in math is 

smaller than it is for white students. Lastly, the decrease in remedial credits is 

significantly smaller for Pell recipients than it is for non-Pell recipients. Thus, though all 

students seem to benefit from algorithmic placement, there is evidence that most (though 

not all) of the benefits accrue to students traditionally under-represented in college 

courses.  

5. Cost Analysis  

In this section, we present the cost-effectiveness analysis for the algorithmic placement 

system and business-as-usual placement systems for six colleges using the ingredients 

method (Levin et al., 2017); we could not collect complete cost data at one college.13 The 

cost estimates reflect the annual expected cost during the first five years of implementing 

and operating the new placement system at college of similar size and organization as the 

six sample colleges. 

 The new placement method resulted in cost savings for students: students earned more 

college credits and took fewer remedial credits with a net effect of lower tuition payments. 

Relative to the business as usual, implementation and operation costs were larger for 

colleges, $140 per student; operating costs, however, are $40 per student over the status 

quo. Overall, algorithmic placement is more cost-effective from a social perspective than 

the existing placement systems. That is, while the implementation and operating costs are 

larger for colleges, the cost reduction for students more than offsets the increased cost to 

colleges, so total costs are lower for the algorithmic placement system. Moreover, costs 

could be reduced substantially if data to estimate the algorithm did not have to be hand 

 
13 What we could collect does not suggest this seventh college had costs significantly different from the 
others; personnel changes prevented us from collecting all the necessary data. 



25 
 

entered and if data collection were centralized into a single system. We detail the 

calculations underpinning these findings below. 

Defining Costs and Cost Data 

To better understand the details of our cost-effectiveness analysis, we start by defining 

several terms. First, fixed costs are those costs that do not vary with college enrollment. 

Direct costs are the costs of implementing and operating the placement system. 

Implementation costs include one-time costs incurred to develop and test the placement 

method (e.g., evaluator) and the operating costs to keep it fully functional. Operating 

costs refer to running a placement system after the initial method has been developed and 

tested (i.e., personnel, facilities, administering placement test, etc.). Indirect costs are 

associated with the price and quantity of credits attempted by the students. The total 

costs are the sum of the indirect and direct costs. Student costs include only the cost of 

the credits attempted and not the direct costs, as they do not pay for the additional costs 

of implementing the alternative method. In contrast, college costs include direct costs of 

implementing the alternative system and any costs from course offerings (e.g., changes in 

the number of remedial courses offered). Finally, cost-efficiency, in our context, compares 

the costs of the algorithmic placement system to the business-as-usual placement system 

(Levin et al., 2017). 

 We collected data on ingredients from two primary sources. One source for this 

information was from direct interviews with faculty and staff who implemented the new 

testing protocols. The second source for input prices and overhead costs was from 

secondary sources, such as the Integrated Postsecondary Education Data System 

(IPEDS), described below. 

Sources of Costs in the Placement Systems 
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Understanding the different cost components of the placement systems helps to 

distinguish fixed costs from operating costs. The initial investment to implement the 

algorithm has three components. First, data on students’ characteristics (including high 

school transcripts), placements based on test results, and subsequent college outcomes 

must be collected. In some colleges, these data are already available, but other colleges 

required more extensive data collection. Second, data must be analyzed to estimate the 

new placement algorithm. Third, resources must be allocated to create and implement the 

new system within the college, which includes training personnel. After the initial 

investment, implementation requires collecting data from entering students and personnel 

to assign students to either remedial or college-level courses. For the algorithm, one driver 

of costs was data entry. Data entry costs were lower if the college had all high school 

information pre-loaded into their databases; in contrast, data entry costs were higher if 

each student’s information had to be entered into the computing system individually. 

 For both placement systems there are costs for administering placement tests. Also, 

for both systems, future resources may be required as students progress into college-level 

courses after completing remedial coursework. If more students progress into college-level 

courses, colleges may have to shift resources toward college courses and away from 

remedial courses in conjunction with any changes in revenue per student.  

 College faculty, counselors, and administrators did not indicate significant resource 

changes with respect to instruction. Potentially, the new placement system may change 

assignments such that more students are now in college-level classes, which would require 

more college-level faculty and more sections of college-level courses. However, colleges 

indicated that faculty could be reassigned from teaching remedial classes to teaching 

college-level classes, and few changes in class size were anticipated even given the changes 

in placement rates. 
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 Along with the direct implementation and operational costs, there were also indirect 

costs associated to the different total number of credits attempted by students under the 

algorithmic placement system. To compute the indirect costs, we used IPEDS information 

on the six colleges considered in this analysis. The overall cost per college-level credit and 

remedial credit was approximately $520 (Barnett et al., 2020).  

Cost Estimates  

Indirect costs: Table A.4 shows the college-level and remedial credits earned and 

attempted (ITT and TOT). Using our estimates of costs per credit, the indirect costs for 

the business-as-usual are $5,420 per student ($7,440 for compliers) compared to $5,040 per 

student ($6,650 for compliers) for the algorithmic placement system. The lower costs of 

the latter stem from the net decrease of 0.74 (1.5 for compliers) in total credits attempted.  

Thus, the implementation of the algorithmic placement system results in an indirect cost 

reduction of $380 per student ($790 for compliers). 

 

Student costs: Students do not pay all the costs associated with each credit attempted. 

The relevant costs for students are tuition and fees paid for these credits. Using IPEDS 

data for the six colleges, the cohort-weighted average for tuition and fees is 39% of total 

expenditures per credit (Barnett et al., 2020). Therefore, of the $520 cost per credit, 

students pay $200 and public funding covers the remaining $320. Consequently, as shown 

in Table A.5, students attempted fewer credits in total with the new placement method 

relative to business-as-usual and therefore saved $150 ($310 for compliers). 

 

Direct costs: Table A.6 shows the direct costs to implement and operate the algorithmic 

placement system and the business-as-usual placement system for five years (amortized 

over cohorts). For a typical college cohort in the sample of 5,808 students, the cost of 
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implementing the algorithmic placement system is $958,810. The cost of the placement 

exam system (business as usual) is $174,240. These estimates imply an incremental cost 

per student of $140 for algorithmic placement. The remaining two columns show upper 

and lower bounds for this cost per student, which ranges from $70 to $360. This variation 

is driven by substantial fixed costs, so colleges with larger enrollments show much smaller 

per student costs. One implication of these findings is that costs could be reduced 

substantially with more efficient, centralized data collection. Minimizing hand data entry 

and centralizing high school student information into a single data system would help 

automate algorithm estimation and reduce costs. 

 

Total costs: We summarize the total costs—direct and indirect for both students and 

colleges— for each placement system in Table A.7. The total cost per student is $240 less 

($650 for compliers) for the algorithmic placement system compared to the business-as-

usual placement system. This result is a consequence of the lower indirect costs due to 

fewer total credits attempted under the algorithmic placement system, which more than 

offsets the higher direct cost relative to business-as-usual (see Table A.6). 

 The lower total costs of the algorithmic placement system suggest it is cost-effective 

from a social perspective relative to business-as-usual system: algorithmic placement is 

more effective regarding the number of college-level credits earned and its total cost is 

lower. As shown in Table A.7, the cost-per college credit earned is $100 ($220 for 

compliers) less for the new placement method relative to business-as-usual. 

 Finally, cost effectiveness from the colleges’ perspective is harder to establish. On the 

one hand, colleges must incur the higher costs to implement and operate the new 

placement method (as shown in Table A.6). On the other hand, we do not incorporate 

potential increases in net revenues from the additional coursework. These revenue changes 
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will depend on the characteristics of each institution (e.g., enrollment numbers, funding 

strategy, etc.), which makes it more difficult to determine these changes relative to the 

status quo. However, as the algorithmic placement method's total cost is lower and leads 

to greater credit accumulation, we believe this system is likely cost-effective from each 

colleges' perspective relative to the business-as-usual system as well. 

 Lastly, colleges could also save money by not purchasing the ACCUPLACER exams, 

and they asked whether students could be placed via the algorithm as accurately without 

using these test scores. We examined the extent to which the algorithm would place 

students differently if test scores were not used for prediction. We find that placement 

rates would change substantially for math courses—by 18%—however, for English 

courses, only 5% to 8% of placements would change. This finding is in line with the 

increased predictive value we find for math test scores over English test scores. 

6. Conclusion 

Our findings indicate that combining predictive analytics with multiple measures 

significantly impacted how colleges track students into either college-level or remedial 

courses. First, the placement algorithm allowed colleges to choose cut points that 

explicitly targeted predicted placement rates and pass rates. Second, the algorithm led to 

changes in the placement of students. Across the seven study colleges, more students were 

placed into college-level math and English courses—without reducing pass rates in either 

course. There were particularly large increases in college-level placements in English 

courses. 

 While the algorithm’s predictive validity was greater than placement scores alone, the 

algorithms we developed could be improved. Most notably, our model was constrained by 

implementation in several ways. To produce rapid placement decisions, we had to embed 

our algorithm into existing systems, which restricted our modeling choices. We could not 
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for instance, implement a non-linear model. Future models could also use richer transcript 

data; the colleges we worked with could not readily provide course-level high school 

grades that could be predictive of future performance as well. More generally, as colleges 

develop more consistent ways to record incoming student information, the ability to 

predict future performance could improve. 

 One question is how our results would differ if all students within a college were 

placed according to the algorithm. Our interviews with college administrators, department 

chairs, faculty and counselors at each college documented their impressions to the 

algorithm’s implementation. Generally, there was no perceived change in classroom 

composition. However, this could change if all students were placed via the algorithm, 

especially in English courses where placement changes were more significant. Prior 

research suggests this could result in improved academic outcomes for students (Duflo, 

Dupas, and Kremer, 2011).  

 Our initial results have important implications because the high cost of remedial 

education falls onto students placed into these courses and indirectly onto taxpayers 

whose money helps subsidize public postsecondary institutions. As a result, there is both a 

private and social benefit to ensuring that remedial education is correctly targeted. 

Colleges recognize this, and some have begun to implement these placement algorithms. 

Long Beach City College (LBCC) created a placement formula that uses student high 

school achievement in addition to standardized assessment scores. The formula weights 

each measure based on how predictive it is of student performance in college courses 

(Long Beach City College, Office of Institutional Effectiveness, 2013). This paper provides 

evidence that these placement systems not only affect student outcomes through changes 

in the placement instrument, but also through colleges’ improved ability to target pass 

rates explicitly. Future research could test more intricate predictive models than we could 
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implement in the current study, and perhaps focus on algorithms that predict treatment 

effects of each course rather than pass rates.  
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FIGURES 
 
 

Figure 1. Hypothetical spreadsheet provided to colleges on placement projections 
Example Community College 
Math Success: C or 
above     
Minimum Probability of 
Success 

Percent Placed into 
College Level 

Percent Passing College 
Level 

Cohort 3, Status Quo 30% 50% 
45% 40% 60% 
55% 20% 70% 
65% 10% 75% 

      
Eng. Success: C or above     
Minimum Probability of 
Success 

Percent Placed into 
College Level 

Percent Passing College 
Level 

Cohort 3, Status Quo 40% 60% 
45% 75% 60% 
55% 60% 65% 
65% 20% 70% 

Notes: This figure is a hypothetical version of the information presented to college 
faculty and administrators to help them choose a threshold for being placed into 
college-level course in math or English.  The placement algorithm outputs a 
probability of success in the college-level math and/or English course for each 
student. Colleges then choose what probability is the “minimum probability” 
acceptable for placement into the college-level course. Several possible minimum 
probabilities are shown in the leftmost column. The middle column and the 
rightmost then show the predicted percent of students placed into the college-level 
course and the predicted pass rate for those students, respectively, associated with 
the minimum probability shown in the same row.  
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Figure 2. Gaps in Placement Rates Across Demographic Groups 

 
Notes: Sample includes any student who took a placement exam in at least one subject and first 
enrolled at one of the seven study colleges in the fall of 2016. Gap in placement rate is the 
difference in placement rates into college-level math (shown in black) and English (shown in gray). 
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Table 1. Sample Demographics by College 

  Overall 
College 

1 
College 

2 
College 

3 
College 

4 
College 

5 
College 

6 
College 

7 

Female 50% 58% 54% 53% 48% 51% 55% 46% 
Race         
   White 43% 81% 69% 56% 53% 36% 41% 24% 
   Asian 2% 1% 1% 1% 2% 5% 9% 2% 
   Black 20% 9% 17% 20% 23% 21% 31% 19% 
   Hispanic 20% 5% 3% 4% 11% 28% 14% 33% 
   Native American 1% 1% 1% 1% 1% 0% 1% 1% 
   Two or more races 3% 1% 3% 4% 6% 3% 3% 3% 
Age at entry 20.93 20.82 22.91 22.04 20.23 21.51 23.02 19.92 
Pell Grant recip. 43% 52% 47% 49% 41% 32% 56% 42% 
Total 12,544 672 1,228 1,818 2,003 1,756 350 4,717 
Notes: Sample is any student who took a placement exam in at least one subject and first enrolled at one of the 
seven study colleges during the study period. 
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Table 2. Baseline Characteristics by Treatment Assignment 

  
Control 
Mean 

Treatment 
Mean 

Difference 
(T - C) 

P-value Obs. 

Enrollment 86% 85% -1% 0.26 12,544 
Female 50% 50% 1% 0.39 11,901 
Race      
   White 44% 42% -1% 0.13 12,544 
   Asian 3% 2% 0% 0.82 12,544 
   Black 19% 20% 2% 0.03 12,544 
   Hispanic 20% 20% 1% 0.43 12,544 
   Pacific Islander 0% 0% 0% 0.93 12,544 
   Native American 1% 1% 0% 0.46 12,544 
   Two or more races 4% 3% 0% 0.25 12,544 
   Race Missing 10% 10% 0% 0.57 12,544 

      
Age at entry 20.94 20.91 -0.02 0.82 12,544 
Pell Grant recip. 42% 43% 1% 0.22 12,544 
TAP Grant recip. 31% 31% 0% 0.78 12,544 
GED recip. 7% 7% 0% 0.98 12,544 
HS GPA (100 scale) 77.96 78.12 0.16 0.34 7,869 
HS GPA missing 37% 37% 0% 0.77 12,544 
ACCUPLACER Exam score     
   Arithmetic 33.6 34.0 0.4 0.43 10,191 
   Algebra 48.1 47.9 -0.2 0.75 10,191 
   College-level math 8.3 8.0 -0.3 0.61 3,656 
   Reading 58.1 58.0 -0.1 0.81 12,544 
   Sentence skills 34.9 34.6 -0.3 0.49 10,726 
   Written exam 3.9 3.9 0.0 0.69 10,979 
Total 6,141 6,403     12,544 
Notes: Sample is any student who took a placement exam in at least one subject at one of the 
study colleges during the study period. Estimates include strata fixed effects (indicators for each 
college). Observation counts vary for exam scores because students do not necessarily take all 
exams and gender and HS GPA are not available for all students. 
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Table 3. Changes in Placement for Program-Group Students 

  (1) (2) (3) (4) (5) 

 

Took 
Placement 

Exam 

Same 
Placement 

Under Business 
as Usual 

Placement 
Changed from 
Business as 

Usual 

Higher 
Placement 

than Business 
as Usual 

Lower 
Placement 

than Business 
as Usual 

  Math Placement 
% of sample 94.49% 74.67% 19.82% 12.17% 7.65% 
N 6,050 4,781 1,269 779 490 
  English Placement 
% of sample 80.43% 40.23% 40.20% 34.52% 5.68% 
N 5,150 2,576 2,574 2,210 364 
Notes: Sample is restricted to treatment group students; students who took a placement exam in at least one subject at 
one of the seven study colleges during the study period and assigned to the treatment group.  
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Table 4. Instrumental Variable 1st-Stage: 
Complied with Algorithm’s Recommendation 

  (1) (2) (3) (4) 

 Overall Sample Fall 2016 Spring 2017 Fall 2017 
     

Treatment 0.483*** 0.469*** 0.529*** 0.477*** 
 (0.0069) (0.012) (0.016) (0.001) 
     

Control Mean 0.140 0.174 0.104 0.125 
     

Observations 12,544 4,688 1,914 5,942 
Notes: Robust standard errors in parenthesis. Sample is any student who took a 
placement exam in at least one subject at one of the study colleges during the study 
period. Columns (2) to (4) restrict the sample to students tested in the corresponding 
term. All models include fixed effects for college (strata), controls for demographic 
indicators (race, gender and age, Pell recipient status), and calculated math and English 
algorithm values. Compliance is defined as following the algorithm’s recommendation and 
following the business-as-usual in the control group is considered non-compliance. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5. Effect on Math and English College Coursework 
  (1) (2) (3) (4) (5) (6) 

 
Placed 
Math 

Enrolled 
Math 

Passed 
Math 

Placed 
English 

Enrolled 
English 

Passed 
English 

 1st-Term 1st-Term 1st-Term 1st-Term 1st-Term 1st-Term 
       

Treatment 0.0663*** 0.0256*** 0.0193*** 0.322*** 0.136*** 0.0700*** 
 (0.00796) (0.00812) (0.00704) (0.00830) (0.00855) (0.00864) 
       

Control Mean 0.376 0.280 0.155 0.491 0.471 0.292 
       

Observations 9,530 9,530 9,530 10,048 10,048 10,048 
Notes: Robust standard errors shown in parenthesis. Sample is any student who took a placement exam in 
at least one subject at one of the study colleges during the study period. Estimates include strata fixed 
effects (indicators for each college). Columns (1)-(3) restricts to students who took the math exam. 
Columns (4)-(6) restricts to students who took the English exam. All models include fixed effects for 
college (strata), controls for demographic indicators (race, gender and age, Pell recipient status), and 
calculated math and English algorithm values.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6. Effect on College-Course Outcomes 
  (1) (2) (3) (4) (5) (6) 

 Panel A. Intent to Treat Estimates 
       

 

Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

       
Treatment -1.095*** 1.247*** 0.530* -1.061*** 1.893*** 1.276*** 

 (0.0714) (0.311) (0.302) (0.104) (0.418) (0.401) 
       

Control Mean 3.537 26.19 16.80 4.120 24.61 15.36 
       
 Panel B. Treatment on the Treated Estimates 
       

Placement 
Compliance 

-2.265*** 2.581*** 1.097* -1.740*** 3.106*** 2.093*** 
(0.152) (0.636) (0.622) (0.174) (0.681) (0.654) 

       
Control 
Complier Mean 5.975 29.38 18.28 6.028 29.68 18.47 

       
       

Sample All All All 

Placed in 
Math and 
English 

Placed in 
Math and 
English 

Placed in 
Math and 
English 

       
       
Observations 12,544 12,544 12,544 7,034 7,034 7,034 
Notes: Robust standard errors shown in parenthesis. Estimates include strata fixed effects (indicators for each college). 
Columns (1)-(3) is the full sample and columns (4)-(6) restricts the sample to students who were placed in both math 
and English. All models include fixed effects for college (strata), controls for demographic indicators (race, gender and 
age, Pell recipient status), and calculated math and English algorithm values. IV models of Panel B use treatment 
assignment to instrument for compliance with algorithm’s recommendation. Compliance is defined as following the 
algorithm’s recommendation and following business-as-usual in the control group is considered non-compliance. Credits 
attempted and earned are total credits attempted and earned by students. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 7. Longer-Run Effects: Fall 2016 Cohort 
  (1) (2) (3) (4) (5) (6) 

 Panel A. Intent to Treat Estimates 
       

 

Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

Remedial 
Credits 

Attempted 

College 
Credits 

Attempted 

College 
Credits 
Earned 

       
Treatment -1.181*** 2.503*** 1.618*** -1.224*** 2.692*** 2.041*** 

 (0.129) (0.605) (0.598) (0.164) (0.706) (0.688) 
       

Control Mean 3.913 32.82 21.68 4.584 30.32 19.23 
       
 Panel B. Treatment on the Treated Estimates 
       

Placement 
Compliance 

-2.516*** 5.334*** 3.448*** -1.895*** 4.168*** 3.161*** 
(0.282) (1.265) (1.259) (0.259) (1.083) (1.059) 

       
Control 
Complier Mean 6.688 35.22 22.17 6.347 35.67 22.41 

       
       

Sample All All All 

Placed in 
Math and 
English 

Placed in 
Math and 
English 

Placed in 
Math and 
English 

       
       
Observations 4,688 4,688 4,688 3,277 3,277 3,277 
Notes: Robust standard errors shown in parenthesis. Estimates include strata fixed effects (indicators for each college). 
Columns (1)-(3) is the full sample and columns (4)-(6) restricts the sample to students who were placed in both math 
and English. All models include fixed effects for college (strata), controls for demographic indicators (race, gender and 
age, Pell recipient status), and calculated math and English algorithm values. IV models of Panel B use treatment 
assignment to instrument for compliance with algorithm’s recommendation. Compliance is defined as following the 
algorithm’s recommendation and following business-as-usual in the control group is considered non-compliance. Credits 
attempted and earned are total credits attempted and earned by students. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 8. ITT by Subgroup on College-Course Outcomes 

  White Hispanic Black Male Female Pell Non-Pell 
       

Placed into 
College Math 0.106*** 0.034** 0.057*** 0.011 0.139*** 0.068*** 0.065*** 

 (0.013) (0.015) (0.019) (0.012) (0.012) (0.012) (0.011) 
        

Observations 3,810 2,116 1,802 4,420 4,486 4,117 5,413 
    

 
   

Placed into 
College English 0.296*** 0.308*** 0.386*** 0.317*** 0.333*** 0.321*** 0.323*** 

 (0.013) (0.019) (0.019) (0.012) (0.012) (0.013) (0.011) 
        
Observations 4,085 2,081 2,046 4,894 4,543 4,313 5,735 
   

 
   

College Credits 
Earned 0.000 0.712 1.131* -0.092 1.147** 1.171** 0.037 

 (0.498) (0.688) (0.622) (0.446) (0.453) (0.459) (0.392) 
        

Remedial Credits 
Attempted -0.692*** -0.792*** -0.734*** -0.555*** -0.834*** -0.887*** -0.500*** 

 (0.066) (0.114) (0.113) (0.064) (0.071) (0.078) (0.053) 
        

Observations 5,389 2,485 2,471 5,959 5,942 5,386 7,158 
Notes: Robust standard errors shown in parenthesis. Estimates include strata fixed effects (indicators for each college). 
Enrollment and pass-rate outcomes are for “ever enrolled” and “ever passed” the course indicated. Each column restricts the 
sample to the subgroup in the column header. Each cell is from a separate regression. All models include fixed effects for college 
(strata), controls for demographic indicators (race, gender and age, Pell recipient status), and calculated math and English 
algorithm values. Compliance is defined as following the algorithm’s recommendation and following business-as-usual in the 
control group is considered non-compliance. Credits attempted and earned are total credits attempted and earned by students. 
*** p<0.01, ** p<0.05, * p<0.1 
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Figure A.1. Math Algorithm Components by College 

  
HS 

GPA 

Years since 
HS 

Graduation 

 
GED 
Status 

Regents 
Math 
Score 

SAT 
Math 
Score 

Arithmetic 
Test Score 

Algebra 
Test Score 

College-
Level 

Test Math 

College 1 X X X   X X X 
College 2 X X X X X X X X 
College 3 X X X   X X  
College 4   

   
   

College 5 X X  
  X X X 

College 6         
College 7 X X X       X   
Notes: This table indicates what variables colleges used in their respective math algorithm. Test score variables are from 
ACCUPLACER placement exams. HS abbreviates high school.  

 
 
 
 

Figure A.2. English Algorithm Components by College 

  
HS 

GPA 
HS 

Rank 

Years Since 
HS 

Graduation 

 
GED 
Status 

Reading 
Score 

Sentence 
Skills Score 

Other 
Writing 
Score 

College 1 X  X X X X  
College 2 X  X X X X X 
College 3 X  X X X  X 
College 4 X X X X X X X 
College 5 X  X  X X X 
College 6 X  X X    
College 7 X   X X X     
Notes: This table indicates what variables colleges used in their respective math algorithm. Test score variables 
are from ACCUPLACER or other placement exams. HS abbreviates high school. 
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Table A.1. Math Algorithm Models 

 Model 1 Model 2 Model 3 Model 4 
HS GPA1 0.035***  0.028*** 0.030*** 
 (0.002)  (0.003) (0.002) 
Missing GPA2 2.822***  2.270*** 2.583*** 
 (0.195)  (0.209) (0.210) 
ACPL Algebra3  0.006*** 0.004*** 0.004*** 
  (0.001) (0.001) (0.001) 
ACPL Arithmetic missing2  0.056 0.038 0.065 
  (0.040) (0.041) (0.042) 
ACPL Algebra missing2  0.634*** 0.361** 0.335* 
  (0.141) (0.137) (0.140) 
ACPL college math missing2  -0.087 -0.088 -0.084 
  (0.055) (0.051) (0.051) 
Years since HS graduation    0.020*** 
    (0.004) 
HS graduation year missing2    -0.056 
    (0.068) 
GED2    -0.192** 
    (0.071) 
Missing Diploma Type2    0.121 
    (0.100) 
Constant -2.337*** 0.038 -2.048*** -2.303*** 
 (0.192) (0.122) (0.217) (0.213) 
N 1,166 1,166 1,166 1,166 
R2 0.125 0.105 0.176 0.207 
AIC 1,538.4 1,568.6 1,475.5 1,439.5 
1 100-point scale 
2 Binary indicator 
3 Test score range 20-120 
Notes: This table shows results from regression of the covariates listed on an indicator for getting a C or 
better in the college-level math course. Models 1 - 3 include different subsets of covariates, with the full 
model shown in Model 4. 
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Table A.2. English Algorithm Models 

 Model 1 Model 2 Model 3 Model 4 
HS GPA1 0.022***   0.022*** 0.024*** 

 (0.001)  (0.001) (0.001) 
Missing GPA2 1.774***  1.761*** 1.959*** 

 (0.103)  (0.103) (0.114) 
Reading3  0.001* 0.001* 0.001 

  (0.001) (0.001) (0.001) 
Sentence Skills3  0.000 0.000 0.000 

  (0.001) (0.001) (0.001) 
Written Essay4  0.000 -0.002 -0.001 

  (0.002) (0.002) (0.002) 
Missing Reading2  0.315*** 0.332*** 0.210** 

  (0.073) (0.074) (0.077) 
Missing Sentence Skills2  -0.027 -0.147* -0.154* 

  (0.077) (0.074) (0.074) 
Missing Written Essay2  0.021 0.008 0.017 

  (0.027) (0.026) (0.025) 
Years since HS graduation    0.009*** 

    (0.001) 
Missing Year of Graduation2    0.041 

    (0.087) 
GED2    -0.190* 

    (0.083) 
Missing Diploma Type2    0.032 

    (0.094) 
High School Rank Percentile    0.000 
    (0.000) 
Missing High School Rank2    -0.006 
    (0.041) 
Constant -1.147*** 0.478*** -1.218*** -1.301*** 

 (0.101) (0.060) (0.111) (0.118) 
N 3,786 3,786 3,786 3,786 
R2 0.072 0.006 0.078 0.095 
AIC 4893.2 5161.4 4879.8 4823.8 
1 100-point scale 
2 Binary indicator 
3 Test score range 20-120 
4 Test score range 1-8 
Notes: This table shows results from regression of the covariates listed on an indicator for getting a C or 
better in the college-level English course. Models 1 - 3 include different subsets of covariates, with the full 
model shown in Model 4. 
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Table A.3. College Characteristics 

 Institution 
 Cayuga Jefferson Niagara Onondaga Rockland Schenectady Westchester 

GENERAL COLLEGE INFORMATION 
Student Population 7,001 5,513 7,712 23,984 10,098 8,458 22,093 
Full-time Faculty 69 80 151 194 122 79 215 
Part-time Faculty 170 177 0 480 409 0 2 
Student/Faculty Ratio 20 18 16 23 23 23 16 
% Receiving Financial Aid 92% 91% 92% 92% 56% 92% 70% 
DEMOGRAPHICS  
Race/ethnicity:  
American Indian/Alaska Native 0% 1% 1% 1% 0% 1% 1% 
Asian 1% 2% 1% 3% 5% 7% 4% 
Black 5% 7% 11% 12% 18% 14% 21% 
Hispanic/Latino 3% 11% 3% 5% 20% 6% 32% 
Native Hawaiian or Other 0% 0% 0% 0% 0% 1% 0% 
White 85% 73% 80% 49% 39% 67% 33% 
Multi-Ethnic 2% 3% 2% 3% 2% 2% 2% 
Race/Ethnicity Unknown 3% 3% 1% 27% 15% 2% 5% 
Non-Resident Alien 1% 1% 0% 0% 1% 0% 1% 
Gender:  
Female 60% 58% 59% 52% 54% 53% 53% 
Male 40% 42% 41% 48% 46% 47% 47% 
Age:  
Under 18 30% 17% 19% 24% 10% 37% 1% 
18-24 44% 52% 60% 55% 63% 40% 69% 
25-65 26% 31% 21% 21% 26% 23% 30% 
Age Unknown 0% 0% 0% 0% 0% 0% 0% 
RETENTION/GRADUATION RATES  
Retention         
      Full-Time Students 56% 55% 63% 57% 68% 56% 64% 
      Part-Time Students 28% 30% 47% 34% 56% 50% 53% 
Three-Year Graduation Rate 24% 27% 28% 20% 29% 20% 15% 
Transfer Out Rate 18% 19% 18% 22% 19% 22% 18% 
Notes: This table shows summary statistics for all students enrolled at the seven study colleges from historical data. Data are 
from the U.S. Department of Education, National Center for Education Statistics, IPEDS, Fall 2015, Institutional 
Characteristics. 
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Table A.4. Impacts on Credits Attempted and Earned. Full Sample 
  ITT TOT 

Per-student outcomes Control Treatment  Difference Control Complier Difference 

Remedial credits:        
      Attempted 3.537 2.442 -1.095*** 5.975 3.710 -2.265*** 
      Earned 1.761 1.100 -0.661*** 2.958 1.590 -1.368*** 
College credits in 
math/English:        
      Attempted 6.890 7.248 0.358*** 8.333 9.073 0.740*** 
      Earned 3.986 4.114 0.128 4.662 4.927 0.265 

 

All models include fixed effects for college, controls for demographic indicators including race, gender 
and age, Pell recipient status, and calculated math and English algorithm values. 
*** Significant at 1%, ** 5%, and * 10%. 

 
 
 
 
 
 

Table A.5. Changes in Total Credits Attempted and Costs for Students 

      ITT TOT 

Credits attempted relative to status quo -0.737 -1.525 
Difference in credits paid by students  -$150 -$310 

 

SOURCE: Tables A.4; authors’ calculations. Cost figures rounded to nearest 10. 
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Table A.6. Costs for Implementation and Operation of the Algorithmic Placement 

System 

  Range Per College 

  
Total 

(six colleges) 

Lower Per-student 
Incremental Cost 

Bound  

Upper Per-student 
Incremental Cost 

Bound  

Students per semester 5,808 2,750 505 
Total Placement Cost:    
      Algorithm  $958,810  $268,890  $196,170  
      Business-as-Usual $174,240  $82,590  $15,150  
New placement incremental cost:   
      Per semester $784,560  $186,300  $181,020  
      Per student $140  $70  $360  
Notes: 2016 dollars. Present values (discount = 3%). Rounded to $10. Ingredients information on full-time equivalents 
is from interviews with key personnel at six colleges. Lower and upper bounds represent highest and lowest per-student 
incremental costs across the six colleges. Cost data not available for one college. Costs amortized over cohorts. Student 
cohorts rounded to nearest 10. Total placement cost includes all costs to implement and administer the placement test; 
personnel (i.e., IT, program, senior/faculty, administrative support, and evaluator’s time), fringe benefits, and 
overheads/facilities. 
IT personnel salary data from https://www.cs.ny.gov/businesssuite/Compensation/Salary-
Schedules/index.cfm?nu=PST&effdt=04/01/2015&archive=1&fullScreen. 
Program personnel annual salary (step 4, grade 13) from https://www.suny.edu/media/suny/content-
assets/documents/hr/UUP_2011-2017_ProfessionalSalarySchedule.pdf. 
Senior/faculty midpoint MP-IV https://www.suny.edu/hr/compensation/salary/mc-salary-schedule/ 
https://www.cs.ny.gov/businesssuite/Compensation/Salary-
Schedules/index.cfm?nu=CSA&effdt=04/01/2015&archive=1&fullScreen. 
Evaluator’s time estimated from timesheets. Fringe benefits uprated from ratio of fringe benefits to total salaries 
(IPEDS data (2013, 846 public community colleges). Overheads/facilities uprated from ratio of all other expenses to 
total salaries (IPEDS data (2013, 846 public community colleges). Cost to administer placement test from Rodríguez et 
al. (2014). 
New placement incremental cost is the difference between the business-as-usual and the new method’s total placement 
costs. More than two-thirds of the new placement incremental costs are implementation costs, and approximately 30% 
are operating costs ($40 per-student), which refer to running of new placement system after initial algorithm has been 
developed and tested.  
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Table A.7. Cost-Effectiveness Analysis: Social Perspective 

 ITT TOT 

Per-student Costs Control Treatment Difference Control Complier Difference 
Direct cost: Placement $30  $170  $140  $30  $170  $140  
       
Indirect cost: Attempted 
remedial credits $1,840  $1,270  -$570 $3,110  $1,930  -$1,180 
       
Indirect cost: Attempted 
math and English college 
credits $3,580  $3,770  $190  $4,330  $4,720  $390  
       
Total Cost $5,450  $5,210  -$240 $7,470  $6,820  -$650 

        
Earned college credits 3.986 4.114 0.128 4.662 4.927 0.265 

        
Cost per earned college credit $1,370  $1,270  -$100 $1,600  $1,380  -$220 

 

SOURCE: Tables A.4 and A.6 and authors’ calculations. Cost figures rounded to nearest 10. 
 
 

 

 

 

 

 

 

 

 

 




