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1 Introduction

Do ethical considerations restrict the rate at which society consumes, or its preference for the present

over the future? Economists have answered this question in different ways.

One view is that preferences, social or individual, must be taken as given. If society discounts

the future at a high rate, strongly preferring present consumption over future consumption, that

preference must be respected; and if it leads to high consumption today, declining over time, that

outcome must be accepted.

An alternative view, famously expressed by Ramsey (1928), is that at least for long-term dis-

counting over the lifetimes of multiple generations, society should not discount the future at all

because to do so is unethically to privilege the generation alive today over those yet unborn. Re-

cently, this view has found powerful expression in the Stern Review (Stern, 2006), which argues

for aggressive action to combat climate change in large part on the basis of a social rate of time

preference close to zero.

A third view is that social choices over consumption and saving should be subjected to an

external “sustainability” constraint. Sustainability was defined by the World Commission on En-

vironment and Development (1987) as a consumption plan that “meets the needs of the present

without compromising the ability of future generations to meet their own needs.” Economists in-

cluding Pezzey (1992), Solow (1993), Howarth (1995), Arrow et al. (2004), Asheim (2007), and

Llavador et al. (2015) have formalized this as a requirement that social value—the expected dis-

counted value of utility from the present to the infinite future—should not decline over time. In

the words of Solow (1993),

“A sustainable national economy is one that allows every future generation the option of

being as well off as its predecessors. The duty imposed by sustainability is to bequeath

to posterity not any particular thing . . . but rather to endow them with whatever it takes

to achieve a standard of living at least as good as our own and to look after their next

generation similarly.”

The concept of sustainability as a constraint, rather than an objective, is consistent with the
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moral philosophy of Rawls (1999).1 It can be understood as a prior principle that an ethical society

should impose on itself because it would be agreed to by an individual who does not know into

which of a sequence of generations they will be born. Since the time of birth is “morally arbitrary”,

it should not influence expected utility.

As Arrow et al. (2004) discuss, in a deterministic economy with a single form of capital that

has a constant riskless rate of return the sustainability constraint requires that the social rate of

time preference does not exceed the exogenous riskless interest rate. When the constraint binds,

the constrained rate of time preference equals the riskless interest rate, implying that society con-

sumes the riskless return generated by its wealth and leaves the capital stock unchanged. Wealth,

consumption, the utility and marginal utility of current consumption, and social value are then

all constant over time. Sustainable consumption is only feasible when the riskless interest rate is

positive, and then the constrained social rate of time preference is also positive. The sustainability

constraint responds to the availability of an investment opportunity with a positive rate of return by

allowing a greater rate of time preference and higher current consumption than would be required

by Ramsey.2

In this paper we extend the concept of sustainability to allow for risk. In a risky economy, with

an uncertain return on capital, it is not possible to guarantee that social value remains constant over

time. Instead, we impose a weaker sustainability constraint that social value—expected utility,

which is itself a random variable because it is a function of current wealth—should not be expected

to decline over time. This constraint, which has also been suggested though not formally analyzed

by Howarth (1995), acknowledges the reality that social welfare is subject to random shocks, some of

which cannot be controlled. In the deterministic case, our constraint reduces to the one considered

1Rawls (1999, §6) writes, “In justice as fairness, on the other hand, persons accept in advance a principle of equal
liberty and they do this without knowledge of their more particular ends. They implicitly agree, therefore, to conform
their conceptions of the good to what the principles of justice require, or at least not to press claims which directly
violate them. . . . The principles of right, and so of justice, put limits on which satisfactions have value; they impose
restrictions on what are reasonable conceptions of one’s good. In drawing up plans and deciding on aspirations men
are to take these constraints into account.”

2By adjusting the rate of time preference to the available rate of return, the sustainability constraint responds
to a famous critique of Ramsey made by Koopmans (1960, 1967). Koopmans (1967) summarized his argument by
writing: “The moral is, in my opinion, that one cannot adopt ethical principles without regard to . . . the anticipated
technological possibilities. Any proposed optimality criterion needs to be subjected to a mathematical screening, to
determine whether it does indeed bear on the problem at hand, under the circumstances assumed. More specifically,
too much weight given to generations far in the future turns out to be self-defeating. It does nobody any good. How
much weight is too much has to be determined in each case.”
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by Arrow et al. (2004).

We study a continuous-time model with two forms of capital, one safe and one risky, so that

society faces a portfolio choice problem as well as a consumption-savings decision. (We also consider

a special case where the safe asset is in zero net supply, so the risk premium on the risky asset must

adjust to ensure a risky portfolio share equal to one.) We assume that the assets have iid returns,

and we allow the risky return to be driven both by a Brownian motion and by a compound Poisson

jump process.3 We assume that society has a standard time-separable power utility function defined

over aggregate consumption, and we impose the sustainability constraint on this.

Our main results are as follows. First, our sustainability constraint does not distort portfolio

choice, which is always the same whether or not the constraint binds. In the absence of jumps, the

portfolio rule is the classic one derived by Merton (1969, 1971).

Second, when the sustainability constraint binds, the sustainable consumption-wealth ratio is

independent of the unconstrained time preference rate.4

Third, the sustainable consumption-wealth ratio exceeds the riskless interest rate. In the absence

of jumps, the sustainable consumption-wealth ratio is the riskless interest rate plus one-half the

squared Sharpe ratio on the risky asset divided by risk aversion. In the presence of jumps, the

solution is defined implicitly but is straightforward to calculate numerically.

Fourth, the constraint binds whenever the unconstrained social rate of time preference exceeds

the sustainable consumption-wealth ratio. The constrained solution can be implemented by reducing

the rate of time preference to equal the sustainable consumption-wealth ratio.

Fifth, the sustainable consumption-wealth ratio—equivalently, the sustainable rate of time

preference—lies between the riskless interest rate and the expected return on optimally invested

wealth. In the absence of jumps, it lies exactly at the midpoint between these two rates of return.

3Our assumption of iid returns is consistent with an endogenous growth or Ak model of capital accumulation with
constant returns. It implies that there is a unique consumption-wealth ratio at which the sustainability constraint is
binding. In a model with diminishing returns to capital, by contrast, any constant savings rate can be sustainable
although different savings rates imply different levels of steady-state consumption.

4This is consistent with the view of Rawls (1999, §45), who writes: “Of course, a present or near future advantage
may be counted more heavily on account of its greater certainty or probability . . . But none of these things justifies
our preferring a lesser present to a greater future good simply because of its nearer temporal position . . . The just
savings principle for society must not, then, be affected by pure time preference, since as before the different temporal
position of persons and generations does not in itself justify treating them differently.”

3



More generally, we characterize the position of the sustainable consumption-wealth ratio within

these bounds using methods derived from Martin (2013).

The risky model we consider is different in two fundamental ways from the riskless model con-

sidered by the previous literature. First, in the presence of risk a zero drift for social value does not

imply zero drifts for consumption, wealth, or the marginal utility of consumption. We show that

consumption, wealth, and marginal utility all have positive drifts in the constrained equilibrium.

Intuitively, this is because risky investment causes the distribution of consumption and wealth to

spread out over time, imposing more risk on later generations. To prevent risk from reducing the

welfare of later generations relative to earlier ones, later generations must be compensated by higher

average levels of consumption and wealth. This implies that our sustainability constraint is differ-

ent from the zero drifts in consumption and wealth, or log consumption and log wealth, imposed

by Campbell and Sigalov (2021). The Campbell and Sigalov constraints generally distort portfolio

choice, whereas our sustainability constraint does not.

Second, the sustainable rate of time preference is not the same as the sustainable discount

rate that society should apply to riskless investment projects. That discount rate is given by the

riskless interest rate in the sustainable equilibrium, which is lower than the sustainable rate of time

preference when the economy is exposed to risk. As a salient example, investments to mitigate

climate change can rationally be discounted at low rates if the investments are riskless and the

sustainable equilibrium has a low riskless interest rate. They should be discounted at even lower

rates if climate investments pay off in bad states of the world—that is, if they are analogous to

insurance policies—an important point emphasized by Weitzman (2009) and Gollier (2021).

Our main analysis defines utility over aggregate consumption, in effect treating each genera-

tion equally regardless of population. This is only equivalent to treating each individual equally if

population is constant over time. Population growth creates notoriously difficult issues for intertem-

poral ethics (Parfit 1984, Dasgupta 2001), particularly when population is itself a choice variable.

However we show that if population growth is exogenous and constant, then we can modify the

sustainability constraint to prevent the expected utility of an individual from declining over time.

This is equivalent to subtracting the rate of population growth from all rates of return, and therefore

from the sustainable consumption-wealth ratio and the sustainable rate of time preference.

The literature on discounting and sustainability is enormous, and we do not attempt a complete

review here. Dasgupta (2008, 2021) and Zeckhauser and Viscusi (2008) provide recent surveys.
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Within the literature on climate change, there has been debate between those such as Cline (1992)

and Stern (2006, 2016) who argue for a very low social rate of time preference, and Nordhaus

(1994) who uses a higher rate of time preference. Our analysis implies that a substantial rate of

time preference can be consistent with the ethical criterion of sustainability in a risky world.

The organization of the paper is as follows. Section 2 sets up our unconstrained continuous-time

model with portfolio choice over a safe and a risky asset. Section 3 introduces the sustainability

constraint and solves the constrained model. Section 4 imposes the equilibrium condition that the

risky asset share equals one. Section 5 extends our concept of sustainability to allow for a constant

rate of population growth. Section 6 concludes. An appendix presents details of key derivations.

2 Unconstrained Consumption and Portfolio Choice

We consider a representative investor faced with two assets, one riskless and one risky. The investor

chooses society’s aggregate consumption, Ct, and risky portfolio share, α, to maximize the expected

discounted value of a power utility function,

U0 = E

∫ ∞
0

e−ρt
C1−γ
t

1− γ
dt. (1)

We take as given this representation of utility derived from aggregate consumption. It can be

derived from individual utility of individual consumption under assumptions that permit aggregation

across consumers. For example, we could assume that individuals have a constant probability of

death following Blanchard (1985), that they have power utility defined over their own consumption,

that they are unable to annuitize their wealth, and that the wealth of those who die is allocated to

an equal number of newly born individuals. In this case utility at each point of time is both the

welfare of the generation born at that moment and the welfare of all agents alive at that time. This

microfoundation for equation (1) assumes a constant population; we consider a case with population

growth in section 5.

We assume that the rate of time preference ρ > 0. If individuals have a constant probability of

death and do not care about their descendants, then as Blanchard (1985) shows, ρ is the sum of

the pure individual rate of time preference and the probability of death. In a more general model
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with intergenerational altruism, ρ will also be affected by (and declining in) the degree of altruism.

We assume that the coefficient of relative risk aversion γ > 1. In the appendix we show that

all the results extend in the expected way to the log utility case, γ = 1. It would also be easy to

handle the case 0 < γ < 1, but as this case requires occasional sign flips in our logic below, we rule

it out to streamline the exposition.

The riskless asset has gross return Rf . It will generally be convenient to think in terms of the

log riskless rate, rf = logRf . The risky asset has expected excess return µ = log(ER/Rf ) > 0,

Brownian volatility σ, and is exposed to jumps arriving according to a Poisson counting process

Nt with constant arrival rate ω; we assume that µ, σ, and ω are each constant. We write Wt for

wealth at time t and θ = Ct/Wt for the consumption-wealth ratio. Under our assumptions, θ is also

constant. Thus
dC

C
=
dW

W
=

[
rf + α (µ+ ωEL)︸ ︷︷ ︸

µ̂

−θ
]
dt+ ασ dZ − αLdN, (2)

where we suppress time subscripts on random variables for simplicity.

Jumps are captured by the third term on the right-hand side of equation (2). When a jump

occurs, an agent who is fully invested in the risky asset loses a fraction L of her capital. We assume

that L is a random variable that is drawn in iid fashion each time a jump occurs. We also assume

(with one eye on an equilibrium in which α = 1) that L is strictly less than 1, so that someone

who invests fully in the risky asset is not bankrupted. We can allow L to take negative values;

these represent good news for the risky asset. We write µ̂ = µ+ωEL to denote the expected excess

return in the absence of jumps.

It follows from (2) that

d logC =

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ασ dZ + log (1− αL) dN. (3)

This equation is derived in the Appendix.

Integrating forwards, exponentiating, using C0 = θW0, and raising to the power 1− γ, we have

C1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
α2σ2 − θ

)
t+ α(1− γ)σZt

} Nt∏
i=1

(1− αLi)1−γ . (4)
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Writing L for a representative of the iid Li, the Appendix shows that

EC1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
γα2σ2 − θ

)
t+ ωE

[
(1− αL)1−γ − 1

]
t

}
. (5)

Hence the objective function can be evaluated explicitly, as

U0 =
W 1−γ

0

1− γ
θ1−γ

ρ− (1− γ)
(
rf + αµ̂− 1

2
γα2σ2 − θ

)
− ωE

[
(1− αL)1−γ − 1

] . (6)

The optimal investment and consumption choices are identified by maximizing (6) with respect

to α and θ. The optimal consumption-wealth ratio is

θunc =
ρ+ (γ − 1)

(
rf + αµ̂− 1

2
γα2σ2

)
− ωE

[
(1− αL)1−γ − 1

]
γ

. (7)

We assume that θunc is positive. This implies that the denominator of (6) is positive when α and θ

are chosen optimally, and hence that the integral in the definition of expected utility converges.

The optimal risky portfolio share is defined implicitly by

µ̂− αγσ2 = ωE
[
L (1− αL)−γ

]
. (8)

In the absence of jumps, where the risky asset follows a pure Brownian motion, this simplifies to

the classic Merton formula,

αBM =
µ

γσ2
. (9)

Using (8) to eliminate µ̂ in (7), we can also write

θunc =
ρ+ (γ − 1)

(
rf + 1

2
γα2σ2

)
− ωE

[
(1− αγL) (1− αL)−γ − 1

]
γ

. (10)
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3 A Sustainability Constraint

We now introduce a sustainability constraint that the representative agent may choose to impose

on herself. The constraint requires that expected utility should not be allowed to decline, in expec-

tation, over time. (Expected utility is itself a random variable, because it is a function of current

wealth.) If the representative agent is thought of as the currently living generation in an infinite

dynasty, then the constraint is appropriate if she does not want her descendants to expect a lower

quality of life than she does.

One might imagine imposing other types of constraint. We could, for example, allow for a

type of risk aversion over future expected utility by requiring that some concave function of future

expected utility should have non-decreasing expectation. This is analytically intractable in the

constant relative risk aversion (power) case, however; and indeed it is infeasible in the limit as risk

aversion over future expected utility approaches infinity, as it would require expected utility—and

hence wealth itself—to be non-decreasing, which is not possible unless society can entirely eliminate

risk.

Equation (6) shows that expected utility at time t, Ut, is proportional to W 1−γ
t /(1 − γ). We

multiply by (1− γ), which is negative under our maintained assumption that γ > 1, and work with

a rescaled variable Xt = W 1−γ
t . This follows the process

dX

X
= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

[
(1− αL)1−γ − 1

]
dN . (11)

The derivation of equation (11) is given in the Appendix.

The sustainability constraint dictates that the drift of X should be nonpositive, and hence that

θ ≤ rf + αµ̂− 1

2
γα2σ2 + ω

E
[
(1− αL)1−γ − 1

]
1− γ

, (12)

recalling that EdN = ω dt.

Let us write θcon for the case in which the constraint binds,

θcon = rf + αµ̂− 1

2
γα2σ2 + ω

E
[
(1− αL)1−γ − 1

]
1− γ

, (13)
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and θunc for the case in which the constraint does not bind, so that the optimal choice is given by

equation (10). The optimal consumption-wealth ratio is independent of ρ if the constraint binds;

this is not true of the unconstrained case.

If the constraint binds, then we can use it to eliminate θ from the objective function (6), giving

Ucon,0 =
W 1−γ

0

1− γ

(
rf + αµ̂− 1

2
γα2σ2 + ω

E[(1−αL)1−γ−1]
1−γ

)1−γ

ρ
. (14)

Conveniently, the optimal investment choice is unaffected by the presence of the sustainability

constraint. Maximizing equation (14) with respect to α, we find the same first-order condition

as before, equation (8). (As a corollary, the sustainable strategy is Pareto-efficient because it is

identical to the unconstrained-optimal strategy for some choice of ρ.)

Intuitively, it is not optimal to distort portfolio choice in the presence of a sustainability con-

straint because doing so affects expected utility in the same way in all periods. Distorting the

portfolio choice decision away from the unconstrained optimum therefore does not relax the con-

straint; nor (by definition) does it directly benefit the objective function. By contrast, in papers

such as Dybvig (1995) or Campbell and Sigalov (2021) that feature constraints on consumption

as opposed to welfare, it may be optimal to distort portfolio choice relative to the unconstrained

optimum in order to relax the constraint.

We can use the condition (8) to eliminate µ̂ from equation (13), giving

θcon = rf +
1

2
γα2σ2 + ω

E
[
(1− αγL) (1− αL)−γ − 1

]
1− γ

. (15)

When risk and the risky portfolio share are positive, the second two terms on the right hand

side of equation (15) are positive. Hence (15) shows that the constrained consumption-wealth ratio

θcon exceeds the riskfree interest rate rf in a risky economy. Conversely, it follows from conditions

(8) and (15) that θcon is less than the expected return on optimally invested wealth, rf + αµ.
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3.1 Comparing the constrained and unconstrained solutions

The optimal sustainable consumption-wealth ratio, θsus, is given by whichever of θcon and θunc is

smaller. If the unconstrained case features a lower consumption-wealth ratio, then it certainly

satisfies the constraint and delivers higher utility. If not, the unconstrained case does not satisfy

the constraint, so that θcon is the best we can do. Thus

θsus = min {θunc, θcon} . (16)

Equivalently, θcon is the highest possible sustainable consumption-wealth ratio.

It follows from equations (10) and (15) that

θunc =
1

γ
ρ+

(
1− 1

γ

)
θcon. (17)

Equations (16) and (17) have several interesting implications. First, the sustainability constraint

binds if and only if ρ > θcon, or equivalently if and only if ρ > θunc. Related to this, we can show

that in the absence of a sustainability constraint,

E0Xt = X0e
(ρ−θunc)t . (18)

If impatience is sufficiently high that ρ > θunc, then Xt = W 1−γ
t is expected to grow without limit

in an unconstrained equilibrium and expected utility is expected to decline without limit.5 The

sustainability constraint, which rules out declining expected utility, binds in this circumstance.

Second, equation (17) shows that the moderating influence of ρ makes θunc less sensitive than

θcon to changes in other parameters of the model, holding ρ fixed.

Third, equation (17) implies that the behavior of an extremely risk-averse individual is little

affected by the presence or absence of a sustainability constraint, as θunc ≈ θcon if γ is large. This

reflects the fact that highly concave utility leads an agent to choose a flat consumption path that

is close to sustainable, regardless of the level of ρ.

5Expected wealth will decline toward zero if ρ is sufficiently large; but if ρ is sufficiently close to θcon then wealth
has positive drift despite the negative drift in expected utility.
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Fourth, equations (16) and (17) show that θsus and θunc can easily be calculated from knowledge

of θcon, so we can focus our analysis on the determinants of θcon.

Finally, we note that a planner could implement the sustainable optimum by using a modified

“social discount rate” ρ̂, chosen to satisfy

θunc (ρ̂) = θsus = min {θunc (ρ) , θcon} . (19)

(The first equality defines the social discount rate. The second is equation (16). The notation

emphasizes the dependence of θunc on the discount rate.) If the sustainability constraint is not

binding, θunc (ρ) ≤ θcon, then we can set ρ̂ = ρ. If the constraint does bind, then we must ensure

that θunc (ρ̂) = θcon. By equation (17), this requires that ρ̂ = θcon. As the constraint binds precisely

when ρ > θcon, we can summarize all this by saying that we should set

ρ̂ = min {ρ, θcon} . (20)

3.2 Sustainable drifts in wealth and marginal utility

A binding sustainability constraint implies zero drift in expected utility, but this does not imply

a zero drift in wealth. Instead wealth drifts upwards over time under our assumption that γ > 1,

because
dW

W
=

{
1

2
γα2σ2 − ω

1− γ
E
[
(1− αL)1−γ − 1

]}
dt+ ασ dZ − αLdN, (21)

so the drift is

E
dW

W
=

(
1

2
γα2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1 + αL(1− γ)

])
dt, (22)

and both terms in the brackets are positive.

We can also show the stronger result that log wealth drifts upwards over time under a binding

sustainability constraint. We have

E d logW =

(
1

2
(γ − 1)α2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1− (1− γ) log(1− αL)

])
dt , (23)
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and again both terms in the brackets are positive.

These facts illustrate the distinction between our sustainability constraint and the arithmetic and

geometric constraints considered by Campbell and Sigalov (2021), which impose zero drift in wealth

or in log wealth, respectively. Their constraints distort portfolio choice, unlike the sustainability

constraint we consider.

A binding sustainability constraint also does not imply zero drift in marginal utility. The process

for marginal utility, M = W−γ, is

dM

M
=

{
1

2
γα2σ2 +

ωγ

1− γ
E
[
(1− αL)1−γ − 1

]}
dt− γασ dZ +

[
(1− αL)−γ − 1

]
dN , (24)

so the drift is

E
dM

M
=

(
1

2
γα2σ2 +

ω

1− γ
{
γE
[
(1− αL)1−γ − 1

]
+ (1− γ)E

[
(1− αL)−γ − 1

]})
dt, (25)

which is positive when γ > 1. The drift in marginal utility equals the drift in wealth in the Brownian

case where L = 0, but differs from it in the general case with jumps.

The positive drift in marginal utility in the constrained economy is another way to understand

the result that the constrained consumption-wealth ratio exceeds the riskfree interest rate. The first-

order condition for optimal investment in a riskless asset implies that discounted marginal utility

drifts downward at the riskfree interest rate, and hence that the drift in undiscounted marginal

utility is the constrained social rate of time preference (equivalently, the constrained consumption-

wealth ratio) less the riskfree interest rate. That is, we have

E
dM

M
= θcon − rf . (26)

Our solutions have this property, as can be verified by comparing the right hand sides of equations

(15) and (25).

With power utility, the driftless variable X = W 1−γ is the product of marginal utility and

wealth: X = MW . At first sight it might seem surprising that X has no drift while both M and

W have positive drift. But we must also take into account comovement in M and W , whose effect
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is visible in the product rule:
dX

X
=
dM

M
+
dW

W
+
dM

M

dW

W
. (27)

The product is
dM

M

dW

W
= −γα2σ2 dt− αL

[
(1− αL)−γ − 1

]
dN , (28)

and the fact that this quantity is negative makes it possible for X = MW to be driftless even

though M and W each have positive drift:

E
dX

X
= E

dM

M
+ E

dW

W
+ E

(
dM

M

dW

W

)
= 0 . (29)

We conclude by noting one other implication of the upwards drift in log wealth shown in equa-

tion (23). Although the sustainability constraint requires that the average future value of expected

utility Ut is the same as expected utility today, as one looks into the far-distant future expected

utility is overwhelmingly likely to be higher than its current value. This counterintuitive fact, which

echoes the result of Martin (2012), follows from the fact that logWt has positive drift, so that ex-

pected utility at time t approaches its upper bound of zero almost surely as t approaches infinity.

The invariance of expected utility to the horizon is achieved by a vanishingly small number of paths

in which expected utility in the future is arbitrarily low.

3.3 Pure Brownian motion and pure jumps

There are some cases in which we can characterize the optimal investment choice explicitly. We

can, for example, contrast the pure Brownian case, ω = 0, with the pure jump case in which σ = 0

and L ∈ (0, 1) is deterministic. In the pure Brownian case, the risky share satisfies the Merton

formula (9). Substituting into equation (15) we have

θcon,BM = rf +
1

2

µ2

γσ2
. (30)

In this case the constrained consumption-wealth ratio is the riskless interest rate plus one half the

squared Sharpe ratio of the risky asset, divided by risk aversion. This can be much larger than the

riskless interest rate: for example, if the riskless rate is 2%, the Sharpe ratio of the risky asset is

13



0.4, and risk aversion is 2, then the constrained consumption-wealth ratio is 6%. The constrained

consumption-wealth ratio only approaches the riskless rate, its value in a deterministic model, as

risk aversion becomes extremely high.

In the pure jump case, we can solve equation (8) to give

αjump =
1

L

[
1−

(
ωL

µ+ ωL

)1/γ
]
. (31)

This solution has αL invariant to L if µ/L is invariant to L. In other words, the portfolio exposure

to jumps does not alter with jump size provided that the risk premium per unit of jump risk is

constant. This is the jump equivalent of the well known property under Brownian motion that ασ

is invariant to σ if the Sharpe ratio µ/σ is invariant to σ.

The pure jump model has two free parameters, ω and L, to compare with the single parameter σ

in the Brownian case. To put them on the same footing, we choose ω and L so that variance is the

same in each case, i.e., we set ω = σ2/L2. We can imagine fixing σ and then choosing the parameter

L freely. High values of L correspond to rare extreme disasters—ω moves in the opposite direction

to L—whereas values of L close to zero correspond to frequent small jumps. Equation (31) then

becomes

αjump =
1

L

[
1−

(
σ2

µL+ σ2

)1/γ
]
, (32)

and the Appendix shows that

αjump < αBM if γ ≥ 1. (33)

When jumps are larger and rarer—with mean and variance held constant—the Appendix shows

that the investor trades less aggressively, that is,

∂αjump

∂L
< 0. (34)

Conversely, in the limit in which jumps are very small and very frequent, we recover the same

allocation as in the Brownian motion case: by l’Hôpital’s rule, limL→0 αjump = µ
γσ2 .

Substituting the expression for α given in equation (32) into the expression for θcon given in

14



Table 1: Numerical examples in the Brownian case

Baseline calibration sets rf = 1%, µ = 8%, σ = 20%.

γ θcon α E dW
W E d logW E dW−γ

W−γ

1 0.09 2 0.08 0 0.08
2 0.05 1 0.04 0.02 0.04
5 0.026 0.4 0.016 0.0128 0.016
10 0.018 0.2 0.008 0.0072 0.008

equation (15), we have

θcon = rf +
σ2

L2

(1− γ) (K−γ − 1) + γ (K1−γ − 1)

1− γ
where K =

(
σ2

µL+ σ2

)1/γ

. (35)

This tends to the corresponding expression in the pure Brownian case (30) as L→ 0.

3.4 Numerical examples

In this section we present some numerical examples to illustrate the properties we have discussed.

Table 1 reports numerical results for a Brownian model without jumps, in which the riskless interest

rate rf equals 1%, the risk premium µ equals 8%, and the standard deviation of the risky asset

σ equals 20%, implying a Sharpe ratio of 0.4. The four rows of the table consider risk aversion

coefficients γ of 1, 2, 5, and 10. The columns report the constrained consumption-wealth ratio θcon,

the risky portfolio share α , and the corresponding drifts in wealth, log wealth, and marginal utility.

In a Brownian model, the risky portfolio share is inversely proportional to risk aversion. Given

our assumed parameters an investor with log utility (γ = 1) sets α = 2, levering the risky asset two

for one. The constrained consumption-wealth ratio is 9% and the corresponding expected growth

rate of wealth is 8%. However, the expected growth rate of log wealth is zero since this is the growth

rate of utility for a log investor so the sustainability constraint sets it to zero. The expected growth

rate of marginal utility is the difference between the constrained consumption-wealth ratio and the

riskfree rate, or 8%, and in the Brownian model it also equals the expected growth rate of wealth,

as we noted earlier.
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Table 2: Numerical examples with jumps

Baseline calibration sets rf = 2%, µ = 4%, σ = 10%, ω = 4%, L = 0.4, γ = 2.

γ rf µ σ ω L θcon α E dW
W E d logW E dW−γ

W−γ

Baseline 2 0.02 0.04 0.10 0.02 0.40 0.045 1.11 0.019 0.010 0.025
High γ 5 0.031 0.49 0.009 0.007 0.011
Low γ 1 0.065 1.83 0.028 0 0.045
High rf 0.04 0.065 1.11 0.019 0.010 0.025
Low rf 0 0.025 1.11 0.019 0.010 0.025
High µ 0.08 0.10 1.56 0.045 0.026 0.080
Low µ 0.02 0.027 0.66 0.006 0.003 0.007
High σ 0.15 0.035 0.72 0.014 0.007 0.015
Low σ 0.06 0.055 1.36 0.019 0.011 0.035
High ω 0.04 0.040 0.88 0.016 0.008 0.020
Low ω 0 0.060 2.00 0.040 0.020 0.040
High L 0.60 0.037 0.72 0.012 0.007 0.017
Low L 0.20 0.056 1.73 0.034 0.017 0.036
Negative L −0.40 0.054 1.74 0.036 0.017 0.034

As risk aversion increases, the constrained consumption-wealth ratio and the risky portfolio

share both decline. For example, when γ = 2 the constrained consumption-wealth ratio is 5% and

the risky portfolio share α = 1. However, the constrained consumption-wealth ratio declines slowly

and is still 1.8%, almost twice the riskless interest rate, when γ = 10. The expected growth rates

of wealth and marginal utility also decline with risk aversion, but the expected growth rate of log

wealth is hump-shaped in risk aversion, first increasing and then ultimately declining towards zero.

Table 2 reports numerical results for a more general model allowing for jumps. Here, in the

benchmark case the riskless interest rate rf equals 2%, the risk premium µ equals 4%, and the

Brownian standard deviation of the risky asset σ equals 10%. In addition a jump of size L = 40%

occurs with a probability ω of 4% per period. The benchmark case sets γ = 2, in which case

the optimal constrained consumption-wealth ratio is 4.5% and the risky portfolio share α = 1.11.

These values are fairly close to those in the Brownian case reported in Table 1, indicating that the

calibration with jumps is broadly comparable in its overall level of risk.

The remaining rows of the table consider variations of the benchmark model with higher
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and lower risk aversion, then higher and lower riskfree rates, risk premium, Brownian volatility,

jump probability, and jump size. The results are intuitive and in all cases imply a sustainable

consumption-wealth ratio well above the riskfree interest rate, or equivalently a substantial positive

expected growth rate of marginal utility.

4 Sustainability Without a Riskless Asset

We might alternatively deal with α by requiring that it should equal one in equilibrium. In this

case we are implicitly normalizing the risky asset return to equal the return on society’s invested

wealth.

It will be convenient to write L = 1− e−J where J is a random variable that can take positive

or negative values, and whose moment-generating function we write, following Martin (2013), as

m(x) = EeJx. (Large positive J is very bad news, large negative J is very good news.) Setting

α = 1 in equation (8),

µ = γσ2 + ω {m(γ)−m(γ − 1)− [m(0)−m(−1)]} . (36)

Setting α = 1 in (15),

θcon = rf +
1

2
γσ2 + ω

[
m(γ)−m(γ − 1)− m(γ − 1)−m(0)

γ − 1

]
. (37)

The terms in square brackets on the right hand side of equation (37) are positive because m(x) is

convex. This provides a lower bound on the maximum sustainable consumption-wealth ratio, θcon,

that is greater than the riskless rate.

To derive a bound in the opposite direction, we can use equation (36) to rewrite equation (37)

as

θcon = µ+ rf −
1

2
γσ2 − ω

[
m(γ − 1)−m(0)

γ − 1
− m(0)−m(−1)

1

]
. (38)

The terms in square brackets on the right hand side of equation (38) are also positive (by the con-

vexity of m(x) once again), so equation (38) supplies an upper bound on the maximum sustainable
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consumption-wealth ratio that is lower than the return on the risky asset. To sum up, we have

rf +
1

2
γσ2 ≤ θcon ≤ µ+ rf −

1

2
γσ2. (39)

Moreover, it is possible to choose the distribution of J so that the terms in square brackets in

(38) are close to zero while the terms in square brackets in (37) are not; then the upper bound is

tight. This happens if the MGF of J is roughly flat between −1 and γ − 1 and steeply upward-

sloping from γ − 1 to γ, as can happen in the frightening case with occasional bad news jumps.6

Conversely, it is possible to arrange for the terms in square brackets in (37) to be close to zero,

while those in (38) are not; then the lower bound binds. This happens if the MGF of J is steeply

downward-sloping between −1 and 0 and roughly flat on the range [0, γ], as can happen if there are

occasional good news jumps. Meanwhile in the pure Brownian case, ω = 0 or J = 0, the sustainable

consumption-wealth ratio is the equally weighted average of rf and rf + µ:

θBM,con = rf +
1

2
γσ2. (40)

4.1 Numerical examples without a riskless asset

We illustrate these properties numerically in two different ways. Figure 1 shows the constrained

consumption-wealth ratio and the upper and lower bounds given in equation (39) for a model with

risk aversion γ = 2, an expected return on the risky asset rf +µ = 6%, Brownian volatility σ = 10%,

a jump probability ω = 2%, and jumps of deterministic size L. The horizontal axis shows different

values for L, where positive values correspond to negative jumps (losses) in wealth, and negative

values correspond to positive jumps in wealth. In the left panel, the constrained consumption-

wealth ratio θcon is plotted along with the expected risky asset return rf + µ (constant at 6%) and

the riskfree interest rate rf . The constrained consumption-wealth ratio is halfway between the two

returns in the Brownian case; it is closer to the risky asset return in the bad-jump region where

L > 0, and closer to the riskfree interest rate in the good-jump region where L < 0. In the right

panel, the constrained consumption-wealth ratio is plotted along with the upper and lower bounds

6For any given γ > 1, we can can make θcon as close as we like to either of the bounds by appropriately choosing
some very small ω and a fixed jump size J . To make the lower bound tight, we will want to choose J < 0; to make
the upper bound tight, we will want to choose J > 0.

18



-0.6 -0.4 -0.2 0.2 0.4 0.6
L

-0.02

0.02

0.04

0.06
μ+rf

θcon

rf

-0.6 -0.4 -0.2 0.2 0.4 0.6
L

-0.02

0.02

0.04

0.06
μ+rf-γσ

2/2

θcon

rf+γσ
2/2

Figure 1: θcon and the upper and lower bounds for various deterministic jump sizes L, with γ = 2,
σ = 0.1, ω = 0.02, µ + rf = 0.06. Jumps are bad news if L is positive and good news if L is
negative.

from equation (39). The bounds are tight in the Brownian case, and widen out as the absolute

jump size increases.

Table 3 reports numerical results for variations of this model. Here, in the benchmark case the

jump size L = 0.4. The constrained consumption-wealth ratio equals 4.5% and the riskfree interest

rate is only 2.6%. The remaining rows of the table consider variations of the benchmark model

with higher and lower risk aversion, then higher and lower risky asset returns, Brownian volatility,

jump probability, and jump size. The results are intuitive and in all cases imply a sustainable

consumption-wealth ratio well above the riskfree interest rate, or equivalently a substantial positive

expected growth rate of marginal utility.

5 Sustainability With Population Growth

The analysis so far has imposed sustainability on a social welfare function defined over aggregate

consumption. This is equivalent to sustainability of individual utility only if the population is con-

stant. In this section we modify our analysis to make individual utility sustainable given exogenous,

constant population growth at rate g.

If there is population growth, then wealth at time t is shared between more people. Normalizing
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Table 3: Numerical examples without a riskless asset

Baseline calibration sets µ+ rf = 6%, σ = 10%, ω = 2%, L = 0.4, γ = 2 in equilibrium with α = 1.

γ µ+ rf σ ω L θcon rf µ E dW
W E d logW E dW−γ

W−γ

Baseline 2 0.06 0.10 0.02 0.40 0.045 0.026 0.034 0.015 0.008 0.019
High γ 5 0.009 −0.085 0.145 0.051 0.043 0.094
Low γ 1 0.053 0.045 0.015 0.007 0 0.008
High µ+ rf 0.10 0.085 0.066 0.034 0.015 0.008 0.019
Low µ+ rf 0.02 0.005 −0.014 0.034 0.015 0.008 0.019
High σ 0.15 0.032 0.001 0.059 0.028 0.014 0.031
Low σ 0.06 0.051 0.039 0.021 0.009 0.005 0.012
High ω 0.04 0.039 0.012 0.048 0.021 0.011 0.028
Low ω 0 0.050 0.040 0.020 0.010 0.005 0.010
High L 0.50 0.040 0.010 0.050 0.020 0.011 0.030
Low L 0.30 0.047 0.034 0.026 0.013 0.006 0.014
Negative L −0.40 0.048 0.036 0.024 0.012 0.006 0.012

the initial population size to 1, the wealth of an average individual at time t is Wte
−gt, where

g > 0 is the population growth rate. To ensure that such an average individual’s expected utility is

nondecreasing, we require that X̃t has nonpositive drift, where X̃t = eg(γ−1)tXt.

This condition also ensures nondecreasing expected utility for any class of individuals who have

a constant share of the wealth of society. For example, a Blanchard (1985) model with population

growth implies that a newborn person has lower wealth than the average currently living person,

because more people are born than die at each instant; however, with a constant population growth

rate the wealth share of newborn individuals is constant over time. Thus, the constraint that X̃t

has nonpositive drift ensures that the expected utility of newborn individuals does not decline over

time.

Noting that

dX̃

X̃
= g(γ−1) dt+

dX

X
= (1−γ)

(
rf + αµ̂− θ − 1

2
γα2σ2 − g

)
dt+(1−γ)ασdZ+

[
(1− αL)1−γ − 1

]
dN ,

(41)
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the condition that X̃t has nonpositive drift modifies the sustainability constraint (12) to

θ ≤ rf + αµ̂− 1

2
γα2σ2 + ω

E
[
(1− αL)1−γ − 1

]
1− γ

− g. (42)

Equation (42) subtracts the population growth rate g from the previous formula for the sustain-

able consumption-wealth ratio. Sustainability of individual utility is a more demanding requirement

in the presence of population growth. However, for realistic population growth rates the central mes-

sage of the paper remains unchanged: in the presence of risk, the sustainable consumption-wealth

ratio exceeds the riskfree interest rate.

6 Conclusion

In this paper we have argued, in the spirit of Koopmans (1960, 1967), that the implication of an

ethical criterion—sustainability—for social discounting and consumption decisions depends on the

production technology available to society. Specifically, in a risky world with a binding sustainability

constraint, the sustainable social rate of time preference and consumption-wealth ratio, which equal

one another, are not equal to either the riskless interest rate or the risky return on invested wealth,

but lie in between these two. In the special case where invested wealth has only Brownian risk and

no jump risk, the sustainable social rate of time preference is the equal-weighted average of the

riskless interest rate and the risky return.

We have made this point in the context of an extremely simple model with iid returns in which the

parameters governing the distribution of returns are known. We have therefore ignored parameter

uncertainty, a phenomenon emphasized by Weitzman (2001). We have also ignored the possibility

that returns may not be iid, because expected returns or risks change over time. Models with non-iid

returns in general imply time-varying consumption growth and a term structure of discount rates.

When consumption growth is persistent, this term structure is generally downward-sloping for safe

investments and upward-sloping for risky ones as in the long-run risk model of Bansal and Yaron

(2004). Gollier (2002) emphasizes the potential importance of a downward-sloping term structure

of discount rates for social discounting. Our iid model has discount rates that are invariant to the

horizon of an investment.
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Although we have emphasized the sustainable social rate of time preference in this paper, we

conclude by noting that this is not the same as the appropriate social discount rate that should

be applied to an investment project. That discount rate depends on the project’s risk. For a

riskless project, the appropriate discount rate is the riskless interest rate, which is lower than the

sustainable social rate of time preference in a risky world; and for a project that has the same

risk as society’s invested wealth, the appropriate discount rate is the expected risky return, which

is higher than the sustainable social rate of time preference. Some previous discussions of social

discounting have obscured these distinctions by ignoring the risk that society faces. Our analysis is

deliberately simple in order to achieve clarity about these issues.
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A Appendix

Derivation of equation (3). Equation (3) follows from (2) and Itô’s formula for semimartingales.
See, for example, Proposition 8.19 of Cont and Tankov (2004). Heuristically, we can derive it by
writing

d logC =
1

C
dC − 1

2!

1

C2
(dC)2 +

1

3!

2

C3
(dC)3 − 1

4!

6

C4
(dC)4 + · · ·

and using the relationships dt dN = dZ dN = 0 and dNk = dN for all k > 0, in addition to the
standard properties of dZ and the fact that log (1 + x) = x − x2/2 + x3/3 − x4/4 + · · · if |x| < 1,
which holds when x = −αL because the agent will never risk bankruptcy.

Derivation of equation (5). The calculation exploits the fact that Nt, Zt, and Li are independent.
In particular, note that by the law of iterated expectations, the fact that Nt is a Poisson random
variable with parameter ωt, the iid nature of the Li, and the series definition of the exponential
function,

E
Nt∏
i=1

(1− αLi)1−γ = E

[
E

(
Nt∏
i=1

(1− αLi)1−γ
∣∣∣∣ Nt

)]

=
∞∑
n=0

e−ωt
(ωt)n

n!
E

n∏
i=1

(1− αLi)1−γ

=
∞∑
n=0

e−ωt
(ωt)n

n!

(
E
[
(1− αL)1−γ

])n
= exp

{
ωE
[
(1− αL)1−γ − 1

]
t
}
.
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Derivation of equation (11). We write

dX

X
= (1− γ)

dW

W
+
γ(γ − 1)

2

(
dW

W

)2

− γ(γ − 1)(γ + 1)

6

(
dW

W

)3

+ · · ·

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

+

[
(γ − 1)αL+

γ(γ − 1)

2
α2L2 +

γ(γ − 1)(γ + 1)

6
α3L3 + · · ·

]
dN

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

[
(1− αL)1−γ − 1

]
dN .

Derivation of equation (33). This follows because(
σ2

µL+ σ2

)1/γ

=

(
1− µL

µL+ σ2

)1/γ

>

(
1− µL

σ2

)1/γ

≥ 1− µL

σ2
if γ ≥ 1.

Derivation of equation (34). We differentiate equation (32) with respect to L. The result is
negative if and only if

1 +
µL

γ (µL+ σ2)
<

(
1− µL

µL+ σ2

)−1/γ
.

But this holds, because

1 +
µL

γ (µL+ σ2)
<

(
1 +

µL

µL+ σ2

)1/γ

<

(
1

1− µL
µL+σ2

)1/γ

,

where the first inequality is Bernoulli’s inequality.

The log utility case. With log utility, the investor’s objective function is

U = E

∫ ∞
0

e−ρt logCt dt , where ρ > 0.

It follows from equation (3) that

logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ασZt +

Nt∑
i=1

log (1− αLi) ,
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and hence

E logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ωE [log (1− αL)] t.

Thus the objective function can be evaluated explicitly as

U =
logW0 + log θ

ρ
+
rf + αµ̂− 1

2
α2σ2 − θ + ωE [log (1− αL)]

ρ2
.

Maximizing with respect to θ and α we find the first-order conditions for an unconstrained optimum,

θ = ρ and µ̂− ασ2 = ωE
[
L (1− αL)−1

]
.

The objective function at time t is affine in logWt, so the sustainability condition requires that
d logWt, or equivalently d logCt, is driftless, i.e. that

θ ≤ rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

We define the constrained solution as before, giving

θcon = rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

When the constraint binds, we have

U =
logW0 + log θ

ρ
,

so α is chosen to maximize the constrained consumption-wealth ratio. We end up with the same
first-order condition as in the unconstrained case. Thus the optimal investment choice is the same
in the constrained and unconstrained cases, as before. Equations (16) and (17) also hold as before.
Thus, all the results stated previously for risk aversion γ > 1 carry over to the log case where γ = 1.
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