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1 Introduction

People rely heavily on the information of others in forming their opinions and selecting
actions. The updating of beliefs based on observation of the actions of others, observation
of the consequences of these actions, or conversation with others, is called social learning.
The effect of social learning on decisions is very well-documented.

The theory of social learning in economics starts with the basic insight that if
many individuals each have conditionally independent signals about the state of the
word, then if they were to share these signals they would have almost perfect knowledge
of the state. If these agents are lined up in sequence and choose between two actions,
and each agent passes all the information that the agent possesses to the next agent,
then sufficiently late agents obtain almost perfect knowledge of state and almost surely
decide correctly.

A key further insight starting with themodels of Banerjee (1992a) and Bikhchan-
dani, Hirshleifer and Welch (1992) (henceforth BHW) comes from the fact that agents
may observe the history of actions but not the history of private signals. Filtering past
signals through past actions has a drawback, as actions do not always vary across all
possible signal values. In the terminology of Ali (2018b), there can be limited respon-
siveness of actions to signals. A lack of responsiveness limits the information that later
agents can glean from past actions.

Even worse, in using their private signals and observations of predecessors,
agents choose actions for their own purposes rather than to convey helpful information
to later agents. This information externality in information transmission hinders social
learning. For example, if an agent’s action is independent of the agent’s private signal,
there is an information cascade (defined formally in §2.2).1 An information cascade

1 An alternative term, “herding,” of Banerjee (1992a) has essentially the same meaning as “information
cascades” in BHW. However, “herding” has several different meanings in economics, and even within the
social learning literature. We therefore use the term “information cascade” for the concept introduced by
these two papers.
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blocks social learning by the next agent in the queue, and perhaps by further agents as
well. In consequence, even with many agents, decisions can often be incorrect.

Indeed, a key implication of these models is that, under appropriate conditions,
there will always be an information cascade, because the information available via social
observation grows until it overwhelms a single agent’s private signal. This makes the
agent’s action uninformative to later agents. As a result, if agents are ex ante identical,
then all later agents face the same decision problem, are also in a cascade, and take
exactly the same choice—one that may easily be incorrect.

Nevertheless, we emphasize to readers of this survey the distinction between
an information cascade, defined as a situation where an agent ignores the agent’s private
signal, and a possible consequence of information cascades—that many consecutive
agents always take the same action. That consequence (as developed in early cascades
models) is interesting and important, but does not hold in all models and interesting
applications of the concept of information cascades.

The model of BHW has a second key implication, that social outcomes are
fragile. Agents in a cascade are somewhat close to indifferent between two action
alternatives. So owing to cascades, there is a systematic tendency for later agents to
reach a resting point at which behavior is sensitive to small shocks. It follows that a
shock, such as the arrival of even low-precision public news can be enough to dislodge a
long-standing cascade. So social learning theory offers a possible explanation for why
behavior in groups is often idiosyncratic and volatile.2 This is the case even though all
individuals are fully rational, and enough information to make the correct decision is
available to society.

Moreover, in a setting in which there is a probability of the state shifting,
which changes the full-information optimal action, there can be “fads,” wherein the

2A possible example is the rise and fall of surgical fashions and quack medical treatments on the part of
physicians who rely on their colleagues’ practices (Taylor (1979), Robin (1984)). Preference or pressure
for conformity would instead tend to stabilize practices.
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probability of behavior shifting is much higher than the probability of the state shifting.
A further line of research has explored the implications of changing states on information
aggregation.

Models of social learning can help explain volatile aggregate behaviors and
dysfunctional social outcomes in a range of social and economic domains. In conse-
quence, models of information externalities and cascades have been applied in such
fields as anthropology, computer science, economics, law, political science, psychology,
sociology, and zoology.

In this survey we provide an overview of social learning theory and information
cascades in particular. We consider models with imperfectly rational updating, but with
a focus on agents who engage in either Bayesian or quasi-Bayesian updating, and who
are trying to make good choices (i.e., to optimize).

The problems of information externalities and of unresponsive actions in social
learning have led economists to several directions of inquiry. When people make decisions
in sequence and can observe each other, do they eventually make correct choices? In
other words, is dispersed information aggregated effectively? How quickly do action
choices improve over time? Can psychological bias improve social outcomes? What are
the effects of observation of payoff outcomes, of choice in how much private information
to acquire, and of observation of predecessors in general social networks?

As a benchmark case for consideration of these and other issues, in § 2 we
present what we call the Simple Binary Model (SBM). This model provides a simple
illustration of the intuition of information cascades. This setting helps isolate the
effects of alternative assumptions about signals, actions, and social observation learning
process. Under what conditions do information externalities lead to complete blockage
of learning—either temporarily or permanently—to fragility with respect to shocks,
and to better or worse social outcomes? In § 3 and § 4 we explore the effects on these
outcomes of varying the action space and the signal distribution, respectively. Another
variation is to allow agents to choose whether to act immediately or to delay, which
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offers new insight about boom and bust dynamics in investment and market entry
contexts (see § 5).

In § 6 we relax the assumption that agents observe all of their predecessors
and that agents do not observe predecessors’ payoffs. We explain there the surprising
conclusion that greater observation of predecessors can produce inferior social outcomes.

In models in which agents can acquire costly private signals there is a second
type of information externality, since acquiring private information can confer a benefit
on later observers. The availability of social information tends to reduce the incentive
to acquire private information, potentially leading to severe impairment or blockage of
social learning (see § 7).

§ 8 considers how endogenous price determination in market exchange affects
costs of adoption and thereby the social learning process.

People observe and learn from those whom they are socially connected to,
so the network of observation and communication affects social outcomes. A topic of
study has been whether the information of some subset of individuals unduly influences
society in settings with different network structures and in which agents can act either
once or repeatedly (see § 9).

Another key direction is the study of social learning with boundedly rational
agents (see especially § 6.2). Our coverage of limited rationality focuses on quasi-
Bayesian decision makers rather than mechanistic agents.

Finally, in § 10 we cover models of information cascades and social learning in
a variety of applied domains, including politics, law, product markets, financial markets,
and organizational structure. The social learning approach, by focusing on the role
of information externalities, offers new perspectives about a wide range of human
behaviors.

The formal modeling of social influence began primarily outside of economics,
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usually with mechanistic assumptions about updating rules.3 Interactions via social
networks were studied heavily in sociology, as with the influential DeGroot model
(DeGroot (1974)), and cultural evolution was studied in anthropology and other fields
(Boyd and Richerson (1985)). In the 1990s, economists started to focus upon social
learning itself, rather than just as an aspect of market or strategic interactions between
small numbers of agents. A newer element offered by the social learning literature is the
possibility that people observe or talk to others even when the target of observation has
no incentive or intent to influence others. Also integral to this literature is that many
agents act and observe sequentially, so that the learning process iterates, as is often the
case in practice.

Even without learning (the focus of this survey), social interaction can cause
behaviors to converge, owing, for example, to payoff externalities or preference interac-
tions (Arthur (1989)), reputation effects (Scharfstein and Stein (1990), Ottaviani and
Sørensen (2000)) or a preference for conformity (Bernheim (1994)). Some models also
study the dynamics of how social interaction induces convergent or divergent behaviors
(Kirman (1993)). Our focus is on convergence that derives from social learning and
information cascades. However, most applications involve the interaction of several pos-
sible factors, including information, rewards and punishments, and payoff externalities.
The integration of social learning and cascades with other factors provides a richer
palette of models to describe how society chooses technologies, ideas, governments,
organizational choices, conventions, legal precedents, and market outcomes.

For reasons of space, in this survey we omit models of social learning and
information cascades that incorporate payoff externalities or utility interactions. Other
surveys of social learning include , Gale (1996), Bikhchandani, Hirshleifer and Welch

3A highly interdisciplinary literature in mathematics, physics, and sociology studies heuristic models of
social learning with repeated actions on networks. Overviews of the mathematics and physics literatures
are provided by Castellano, Fortunato and Loreto (2009) and Boccaletti et al. (2006). In sociology, a
quantitative literature studies opinion exchanges on networks, partially motivated by the question of how
to measure network centrality (see, e.g., Katz (1953) and Bonacich (1987)).
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(1998), Chamley (2004b), Vives (2010), Acemoglu and Ozdaglar (2011), and Golub
and Sadler (2016)). Our review includes coverage of relatively new developments in the
study of social networks, repeated moves, and psychological bias in this rapidly evolving
field. Complementing our theoretical focus are several reviews with a primarily empirical
focus, such as Hirshleifer and Teoh (2009), Anderson and Holt (2008), Sacerdote (2014),
and Blume et al. (2011). These surveys cover tests of cascades theory in the experimental
laboratory (Anderson and Holt (2008)), in field experiments (Duan, Gu and Whinston
(2009)), and with archival data (Tucker, Zhang and Zhu (2013), Amihud, Hauser and
Kirsh (2003)).

2 The Simple Binary Model: A Motivating Example

We illustrate several key intuitions about social learning in a setting with binary actions,
states and signals, which we call the Simple Binary Model, hereafter, SBM. The SBM is a
modified version of the binary example of Bikhchandani, Hirshleifer and Welch (1992),
hereafter BHW.4 The SBM illustrates how information externalities cause social learning
to be severely impaired. In this setting, information cascades block social learning.
The SBM can be extended to illustrate many further concepts. Nevertheless, some of
the conclusions of the SBM are more robust than others to changes in the model. We
recurrently discuss in this survey when these effects do or do not arise in various other
social learning settings.

2.1 Basic Setup: Binary Actions, Signals, and States

Individuals I1, I2, I3, . . . make choices in sequence. Each agent In chooses one of two
actions, High (an = H) or Low (an = L). The underlying state θ, which is not observed,

4The simple binary model is the special case of the BHW model with symmetric binary signals. The
model of Banerjee (1992b) differs in several substantive ways, as described in § 3.
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Table 1: Notation Guide

Notation Base case assumption

State θ θ ∈ {L,H}

Signal sn for agent In sn ∈ {ℓ, h}

Action an for agent In an ∈ {L,H}

Utility u(θ, a) u(θ, a) =

1 if θ = a

0 otherwise

takes one of two possible values, H or L. The two states are equally likely ex ante. We
will often view the H state as one in which there is high payoff to some activity and
the L state in which there is low payoff to that activity. In such cases we call action H

“Adopt,” and action L “Reject.” Table 1 summarizes the notation used in this survey.

Each agent In receives a binary symmetric private information signal sn = h

or sn = ℓ, with probability p := P[sn = h|θ = H] > 1/2 and P[sn = h|θ = L] = 1 − p.
Signals are independent conditional on θ.

We refer to p as the signal precision. Let the belief precision of a possible belief
q about the state θ be |q − 0.5|. The greater the signal precision, the closer the belief is
to 0 or 1, implying more certainty about the state.

By Bayes’ rule, the posterior probability P[θ = H|sn = h] = p, and P[θ = H|sn = ℓ] =

1− p. By the symmetry of the SBM, h and ℓ signals have offsetting effects on posterior
beliefs, so P[θ = H|s1 = h, s2 = ℓ] = 1/2, and if an agent sees or infers certain num-
bers of predecessor h and ℓ signals, the updated belief depends only on the difference
between these numbers.

All agents have the same utility function u(θ, a), which is equal to 1 if a = θ

and to 0 otherwise. Therefore, each agent chooses the action that is more likely to
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match the state given her information. If In assigns equal probabilities to both states,
she is indifferent between the two actions, in which case we assume that she follows
her private signal, an = sn.5

We refer to social information in this survey as information derived from ob-
serving others, the social belief at any step in the sequence as the belief that an outside
observer would have based only on the social information of agent In, and an agent’s
private belief as the belief implied solely by the agent’s private signal. Each agent’s action
choice is of course based on the agent’s full information set. It is common knowledge
that each In knows the decision model and information structure of predecessors.

We contrast two regimes for social observation:

1. The Observable Signals Regime: Each agent observes both the signals and the
actions of all predecessors.6

2. The Only-Actions-Observable Regime: Each agents observes the actions but not
the private signals of all predecessors.

In the Observable Signals Regime, the pool of social information always expands,
and by the law of large numbers the social belief becomes arbitrarily close to certainty
about the correct action—Adopt if θ = H, Reject if θ = L—and thus eventually behave
alike. An outcome in which all agents behave alike forever is called a herd. We define
herds more formally in § 4.2.3.

In the Only-Actions-Observable Regime, each agent’s action depends on the
publicly observable action history and the agent’s own private signal. In this regime, the

5The qualitative properties of this model are robust to changes in the tie-breaking rule. For the purpose
of providing minimal examples, we sometimes employ different tie-breaking conventions for the behavior
of indifferent agents. Although pedagogically convenient, such ties could be eliminated, with similar
results, by slightly perturbations of the model parameters.

6Actions do not convey any additional information as a predecessor’s signal is a sufficient statistic for
her action.
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precision of the social belief is weakly increasing with n, so it is tempting to conjecture
that highly accurate outcomes will again be achieved. But in fact, the precision of the
social belief hits a finite ceiling, as we will discuss. It is easy to show that the choices of a
few early predecessors determine the actions of all later agents. In consequence, agents
still herd — but often upon the wrong action, the choice that yields a lower payoff.

Throughout this review, our default premise will be the Only-Actions-Observable
regime; we only mention assumptions when they deviate from the base set of assump-
tions of the SBM. The SBM, and variations thereof, are rich sources of insight into social
learning.

2.2 Why Information Stops Accumulating: Information Cascades

To see why outcomes are inefficient in the Only-Actions-Observable Regime, consider
each agent in sequence. Agent I1, Ann, adopts if her private signal is h and rejects if it
is ℓ. Agent I2, Bob, and all successors can infer Ann’s signal perfectly from her decision.
So if Ann adopts, and Bob’s private signal is h, he also adopts. Bob knows that there
were two h signals: he infers one from Ann’s actions and has observed one privately. If
Bob’s signal is ℓ, it exactly offsets Ann’s h, making him indifferent between adopting
and rejecting. By our tie-breaking convention, Bob follows his own signal and rejects.
In this setting, regardless of which signals Ann and Bob receive, each chooses an action
that matches his or her signal, and thus their actions reveal their signals to later agents.

Agent I3, Carol, now faces one of three possible situations: (1) Ann and Bob
both adopted (their actions were HH), (2) both rejected (LL), or (3) one adopted
and the other rejected (HL or HL). In the HH case, Carol adopts regardless of which
signal she received, since the majority of observed or inferred signals is h even if she
received an ℓ. In other words, Carol’s action is independent of her private information
signal—she is in an information cascade, defined as follows:

Definition 1. An agent is said to be in an information cascade if it is optimal for her to
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choose an action which is independent of her private signal.

We reiterate that the definition of an information cascades does not assert that
a long string of consecutive agents take the same action. In some interesting settings
cascading by one agent does implies such strings, and in some it does not. Furthermore,
in some settings without cascades there can still be realizations with identical actions
by strings of consecutive agents.7

In the model here, crucially, in the HH case, Carol’s action provides no in-
formation about her signal to her successors. Her action has not improved the public
pool of information; the social belief remains unchanged. Hence all later agents face
the same decision problem that she did. Once Carol is in an Adopt cascade, all her
successors also adopt, ultimately based only on the observed actions of Ann and Bob.
Similarly, in the second case, two Rejects (LL) put Carol and all subsequent agents into
a Reject cascade.

In the third case, Ann has adopted and Bob has rejected, or vice versa. Carol
infers that Ann and Bob observed opposite signals, so the social belief is that the two
states are equally likely. Her decision problem is therefore identical to that of Ann, so
Carol’s decision is to follow her private signal. In turn, this makes the decision problem of
agent I4, Dan, isomorphic to Bob’s—he need only pay attention to his latest predecessor.

More generally, taking agents pairwise starting from (I1, I2), the only way to
avoid an information cascade is for each pair to contain one Adopt and one Reject. If this
occurs through any even number of agents, the next agent can infer that the number of
past h and ℓ signals was equal, so that past actions can be ignored. Following any such
history of paired opposing actions, the next two agents may both receive the same signal
(which occurs with probability p2 + (1− p)2). When the next two agents observe the
same signals, they take the same action, so the next agent is in a cascade. Once an agent

7In those settings where cascading continues without a break through a string of consecutive agents,
for convenience we sometimes refer to the entire string as a cascade.
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is in a cascade, so are all successors.8 It follows that a herd also occurs. Furthermore,
since each pair has a fresh chance to start a cascade, a cascade happens eventually,
almost surely.

Cascades tend to start early—based on a small preponderance of evidence
in the social belief. Even in the least cascade-favorable scenario of very noisy signals
(p ≈ 1/2), by the time the 20th agent has to decide, the probability of not being in a
cascade is already under 0.1%, and the expected number of agents who act on private
information before a cascade starts is under four. So the private information of all but a
few agents is lost to the group.

Once a cascade starts, no new information about the state becomes public;
the accuracy of the social belief plateaus. An early preponderance of either Adopts or
Rejects causes all subsequent agents to rationally ignore their private signals. These
signals thus never join the public pool of knowledge. Agents disregard their private
signals before the social belief becomes very accurate. Specifically, as soon as the social
belief is more precise than the signal of just a single agent, the next agent falls into a
cascade. We will call this the logic of information cascades.9 The logic of information
cascades implies that cascades are often incorrect—they are idiosyncratic.

The accuracy improvement from social observation in the Only-Actions-Observable
Regime falls far short of the outcome in the Observable Signals Regime, in which even-
tually everyone makes the correct decision. Indeed, when private signals are very noisy
(e.g., p = 1/2 + ϵ), the social outcome is almost pure noise. This falls far short of perfect
information aggregation, wherein decisions for later agents would become almost per-
fectly accurate. Specifically, the increase in accuracy that agents obtain from being able

8In general, however, a cascade can occur for just one agent or can continue for any given number of
agents.

9In a setting with more than two possible signal values, two identical successive actions do not
necessarily start a cascade. The general point is that a fairly low-precision social belief can be enough to
trigger a cascade.
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to observe the actions of predecessors is negligible.10

The social outcome in the Only-Actions-Observable Regime depends heavily on
the order in which signals arrive. If signals arrive in the order hhℓℓ . . . , then a cascade
starts and everyone adopts. If, instead, the same set of signals arrives in the order
ℓℓhh . . . , everyone rejects. So cascades and welfare are path dependent.

2.3 Lessons of the Binary Model

The SBM illustrates a number of key social learning concepts that are empirically testable,
and which also obtain in some more general settings.

Conformity: People end up following the behavior of others.

The conclusion that agents conform to the actions of others—even incorrect
actions—holds in a wide array of social learning models. The SBM provides
a useful benchmark for assessing which assumptions are crucial for this conclu-
sion. In later sections we will see that a similar conclusion can hold with more
general action spaces and signal distributions, and under different assumptions
about the timing of moves, observability of others, and the decision of whether
to acquire information. However, some variations of modeling assumptions such
as unbounded private signals, certain psychological biases, and negative payoff
externalities can break this conclusion, even when information cascades still occur.

Idiosyncrasy and Path Dependence: Despite a wealth of private information, which
in the aggregate would assure the correct action if it could be made fully available
for use, the behavior of most agents often ends up being incorrect—idiosyncrasy.

10 In the Only-Actions-Observable Regime, the probability of a correct cascade (Adopt if and only if
θ = H) can be shown to be p2

p2+(1−p)2 . For a noisy signal as above, this is approximately 1/2 + 2ϵ. This is
not much better than an agent could do based solely on private information, which results in a probability
of choosing correctly of p = 1/2 + ϵ.
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Later in this survey we examine the robustness of this conclusion. Specifically,
when does society converge to correct behavior? And under what conditions is
there persistent idiosyncrasy?

A key problem in the SBM and some other social learning settings is that the
actions of a few early agents tend to be decisive in determining the actions and
success of a large numbers of successors. Social outcomes have low predictability.
In other words, outcomes are path-dependent. This problem raises the question of
whether policy can improve outcomes. As such, there has been extensive interest
in path dependence even in settings without social learning (Arthur (1989)).

Information Externality: In almost all social learning models, each agent takes an
action that is individually optimal, without consideration of the informational
benefits to later agents. A greater benefit could be conferred upon later agents if
early agents were instead to act in ways that reveal their own signals. The wastage
of private information delays or even entirely blocks learning.

In a range of social learning settings, owing to the information externality, agents
conform surprisingly quickly, blocking information aggregation. In other settings,
the information externality does not lead to complete blockage of learning. But
even in such settings, learning is much slower than in the Observable Signals
Regime (see §4.3).

Fragility: Fragility is a recurring property of many of the social learning models that
we explore in this survey. In the SBM, cascades start at a social belief that is
not much more precise than a single private signal. Hence, any comparably
informative additional (public or private) signal added to the model could dislodge
the cascade—cascades are fragile (we define fragility formally in § 6). In other
words, society spontaneously wanders to a position that is highly sensitive to small
shocks. Even with more general signal distributions than the SBM, once the social
belief is more informative than the most informative signal value, a cascade starts,
resulting in fragility.
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This contrasts with settings in which social outcomes tend to be insensitive to
small shocks (outside particular parameter values that happen to put the system
close to a knife edge; Kuran (1989)).

The SBM and the cascades model of BHW provide some surprising outcomes:
complete blockage of learning along with identical action choices. The broader intuition
is that information externality limits learning, resulting in a similar but milder possibility
that sometimes occurs in other settings: that learning becomes slow, and that actions
(even incorrect ones) become very similar.

Due to its simplicity, the SBM serves as an intuition pump for more complex
scenarios. It illustrates which assumptions are crucial and allows us to isolate the effects
of changes in assumptions. For example, using a different tie-breaking rule, or allowing
for finitely many signal values instead of two qualitatively makes no difference, as shown
by BHW. We will likewise see that allowing for endogenous signal acquisition or for
endogenous timing of decisions only strengthens the key punchlines. Various other
settings also maintain information blockage as in the SBM.

However, in other settings the key implications of the SBM do not hold. Fur-
thermore, varying model assumptions produces interesting new phenomena, such as
the endogenous sudden onset of avalanches of activity by many agents triggered by
the action of a single agent, eventual learning, or shattering of cascades after their
formation. Two insights of the SBM, information externality and herding, are preserved
in a very wide spectrum of social learning models, resulting in slow learning.11

These extensions sometimes involve relaxing the SBM’s common knowledge
assumptions, for example by allowing for privately known preferences, observations and
signal precision. In the SBM, agents observe all predecessors and no one else. In more
general models of learning in social networks, different agents may observe different
subsets of predecessors, and agents may not always know what their predecessors

11However, in the model of Vives (1997), there is an information externality but no cascades or herding,
since actions are taken in a continuum with full responsiveness to signals.
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have observed. In models with imperfect rationality, the true economic environment
is not common knowledge as agents may systematically misestimate the information
sets of predecessors. Exploring different directions for generalization, and isolating the
effects of different features of the social learning environment, is a focus of much of the
remainder of this survey.

3 The Action Space

A key insight provided by the social learning literature is that sparsity of the action
space can severely limit learning. This occurs not just for the mechanical reason that
more choices can potentially reveal more signal values. The problem is that sparsity
can further reduce the incentive of agents to take action choices that convey useful
information to others.

In the SBM, agents choose from one of two actions, and receive a utility that is
one if the action matches the state, and zero otherwise. More generally, agents choose
an action from some action set, and receive a utility that depends on the action and the
state. Cascades tend to start quickly, so that agents take actions that are independent of
their signals.

At the opposite extreme from the two-action assumption, if the set of available
actions is continuous, under reasonable assumptions even a small variation in an agent’s
belief causes a small shift in action. If so, agents’ actions always depend on their private
signals, and therefore reveal their private signals. Hence there is no cascade, and late
agents eventually learn the state with near perfection.

Between the binary and continuous extremes, the action sets that agents choose
from are large but finite. For example, firms may choose one among several technologies
to adopt. Moreover, continuous choice sets are often truncated. For example, a scooter
can be rented for different time periods, but the length is bounded below at zero.
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Furthermore, there is evidence that people sometimes discretize their choice sets, such
as restricting their investment orders (price, quantity, or market value) to round numbers
(Harris (1991), Ikenberry and Weston (2008), Hirshleifer et al. (2019)).

When agents have more available choices, they can potentially attune their
actions more finely to their private signals. This can allow later agents to learn more
from their predecessors’ actions. This in turn suggests that the problem of incorrect
cascades may diminish as the action space is enriched. Indeed, one might think that
a sufficiently rich action space will make the problems of social learning completely
vanish. We will see that this is only sometimes true.

As an example of a simple setting in which agents eventually learn the state,
suppose that the two possible states are θ = 0 or 1. Agent In chooses an action an from
the interval [0, 1] and chooses the payoff that minimizes the mean-squared error, i.e.,
the utility function is u(θ, an) = −(θ − an)

2. In this setting, In’s optimal action is strictly
increasing in her beliefs and therefore perfectly reveals her private information. More
generally, Ali (2018b) defines a notion called responsiveness, which loosely speaking
means that actions are sensitive even to small differences in beliefs. He shows that
responsiveness is a sufficient condition for eventual learning of the true state, for any
private signal distribution. Intuitively, responsiveness causes learning predecessors’
signals, as discussed earlier.

This reasoning may seem to suggest that a continuous action space always
eliminates cascades, and results in eventual learning of the state. However, even with a
continuous action space, an agent’s optimal action could be unresponsive to the signal.
This occurs if there is a particular action that is optimal at more than one belief, in
which case it is optimal at an interval of beliefs. For example, this occurs if the action
space is [0, 3/4], and the utility is, as above, u(θ, an) = −(θ − an)

2. In this case an = 3/4

is optimal for all beliefs above 3/4. Cascades can then form if the social belief rises
enough above 3/4 so that the next agent will take action an = 3/4 regardless of her
private signal.
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More generally, when there is an interval of beliefs supporting an action, it may
be that no private signal can draw the posterior belief outside the interval. Hence, no
information is revealed about private signals once this region is entered, and a cascade
starts. When the set of actions is finite this always happens, and so a cascade starts
(and never ends) almost surely (in the spirit of Proposition 1 in BHW). With positive
probability, this cascade is incorrect.

Restricting to mean squared error preferences and binary signals, and allowing
for multiple states, Lee (1993) obtains necessary and sufficient conditions for fully
revealing information cascades. A sufficient condition is that the action space be finite.
In this case, choices cannot be responsive; at least one action has the property of being
optimal for a range of probability beliefs. This makes actions less informative about
agents’ private signals. In consequence, incorrect cascades can arise, i.e., there is
idiosyncrasy.

Models with a continuum of actions usually have continuous utility functions.
An early and prominent exception is the model of Banerjee (1992b), in which incorrect
cascades occur despite a continuous action space. The unknown state θ is uniformly
distributed on [0, 1], and agents choose an action a ∈ [0, 1]. Each agent obtains a payoff
of 1 if she chooses action a = θ and a payoff of zero if a ̸= θ. Each agent receives either
no signal (and is uninformed) or one signal. An informed agent receives a signal about
θ that is either fully revealing or is pure noise (in which case it is uniform on [0, 1]). An
informed agent does not know which of these two possibilities is the case. In this model,
the optimal action is not responsive to small changes in an agent’s signal. Thus, early
agents may fix upon an incorrect action—an incorrect cascade.

An interesting question is whether a larger set of available action choices
improves social learning by making agents’ decisions more informative to later agents.
For example, does this help prevent incorrect cascades, or reduce their adverse effects
by inducing incorrect cascades that are closer to the correct action. Certainly, sometimes
adding even a few actions can increase welfare substantially (Talley (1999)), and when
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the set of actions is large enough to reveal the private belief to a high degree of accuracy,
cascades will take a long time to form, and will be likely to be correct. However, the
benefit from adding actions is non-monotonic; adding an action sometimes hastens the
onset of cascades and reduces welfare. This can occur, for example, when an attractive
intermediate action is added which agents fix upon prematurely instead of using their
private signals. This phenomenon deserves explicit exploration.

4 General Signal Distributions

Private information is often finer-grained than the binary signals of the SBM. This raise
several questions about social learning outcomes. What is the effect of the private signal
distribution on the probability of agents settling on the correct action? When do agents
eventually herd upon identical actions? For which signal distributions do information
cascades still arise? Understanding these questions requires technical specifics, so this
section is more formal than much of this survey.

As in the SBM, we assume a binary state and binary actions, and that In takes
an action an after observing I1 through In−1, with the goal of matching the state. We
also still assume that private signals sn are i.i.d. conditional on the state θ, but we now
allow a general signal distribution. We still assume that private signals are inconclusive
about the state, i.e., the private belief as defined in § 2, bn = P[θ = H|sn], is in (0, 1).
Let the social belief be defined as

Pn = P[θ = H|a1, . . . , an],

the belief held by an outsider who can observe the agents’ actions and has no private
information. It is convenient to define the social log-likelihood ratio Rn = log Pn

1−Pn
.

The social belief Pn (or, equivalently, the public log-likelihood ratio Rn) con-
verges to some probability almost surely as the number of agents becomes large, though
not necessarily to the truth. This is a general property of any sequence of beliefs of
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Bayesian agents who collect more information over time. This convergence follows from
the Martingale Convergence Theorem (MCT), and the fact that the sequence P1, P2, . . . is
a bounded martingale. More generally, the MCT is a useful tool for analyzing asymptotic
outcomes in social learning settings, as it ensures convergence of beliefs under rather
mild assumptions.

4.1 Bounded vs. Unbounded Private Signals

The distribution of private signals, and hence of the private beliefs bn, is key to under-
standing whether agents eventually learn the state, whether agents converge upon the
same action, and whether cascades occur. If agents may receive arbitrarily accurate
signals, then it is intuitive that agents will end up making very good decisions. In
contrast, bad outcomes are possible when signals are not arbitrarily accurate, as in the
SBM.

The concept of arbitrarily accurate signals is formalized with the notion of
unboundedness. We say that private signals are bounded if the resulting private belief
bn is not arbitrarily extreme, i.e., there is some ε > 0 such that the belief is supported
between ε and 1− ε:

bn > ε and bn < 1− ε almost surely.

We say that a private signal is unbounded if, for every ε > 0, the probabilities P[bn < ε]

and P[bn > 1− ε] are both non-zero. With an unbounded signal distribution, signal
realization sometimes have arbitrarily high informativeness. Boundedness is a property
of the possible beliefs induced by a signal, rather than the range of the signal values per
se.12

12An example of a bounded signal on [0, 1] is one which has density fL(s) = 3/2 − s in state L and
fH(s) = 1/2 + s in state H. If, instead, the conditional densities in the two states are fL(s) = 2− 2s and
fH(s) = 2s, then the signal is unbounded. The log-likelihood ratio log fL(s)

fH(s) (and therefore the belief)
is bounded in the first case, but can take any value in the real line in the second case.A signal can be
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As shown in Smith and Sørensen (2000), agents eventually learn the state (in a
sense to be made precise later) if and only if signals are unbounded. Kartik et al. (2022)
point out that when there are three or more states, unbounded signals (appropriately
defined for the case of multiple states) are ruled out if the signal distribution has full
support and is monotone. The authors obtain sufficient conditions on signals and utility
functions that guarantee eventual learning of the state.

4.2 Asymptotic Learning, Cascades, and Limit Cascades

Agents sometimes make incorrect decisions even in the long run, as we have seen in
the case of information cascades. To put this in a broader perspective, we now define
asymptotic learning—a situation in which the social belief becomes arbitrarily accurate.
We then consider the conditions under which asymptotic learning occurs. We also define
limit cascades, which are a variant of cascades.

4.2.1 Asymptotic Learning

We say that there is asymptotic learning if the social belief Pn almost surely tends to 1
with n when the state is H, and to 0 when the state is L. Two other possible definitions
for asymptotic learning are the following:

1. The sequence of actions a1, a2, . . . converges almost surely to θ, i.e., all agents from
some In on take the action that matches the state.

2. The probability that agent In takes an action that matches the state tends to one
with n.

In this setting both of these are equivalent to asymptotic learning. Intuitively, if beliefs
are almost perfectly accurate, so are actions. And for actions to be almost always accurate
neither bounded nor unbounded; for example, it could be the case that the private beliefs can take values
arbitrarily close to 1, but are bounded away from 0.
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under the infinite range of possible signal realization sequences, beliefs must also almost
always be highly accurate. When asymptotic learning fails, there is idiosyncrasy, as
defined informally in § 2.

4.2.2 Information Cascades and Limit Cascades

Our definition of information cascade in § 2, that the agent takes the same action
regardless of her private signal, can be rephrased as follows. An information cascade
occurs when, for some agent In, the social log-likelihood ratio Rn−1 is either so high or
so low that no private signal can influence the action, i.e., cause In’s action to depend
on In’s private signal. This occurs if and only if the social belief remains unchanged
after observing the action.

A limit cascade occurs if the agents’ actions converge, the limiting action is
sometimes incorrect, and each agent chooses either action with positive probability.
As with asymptotic learning, the probability that an agent chooses differently from
her predecessor decreases quickly enough that, with probability one, from some point
on, all agents choose the same action. As with cascades, this action is often incorrect,
i.e., the social outcome is idiosyncratic. More formally, in a limit cascade the social
log-likelihood ratio Rn tends to a limit that is not +∞ or −∞, but (unlike cascades
proper) does not reach that limit in finite time (Smith and Sørensen (2000)); Gale
(1996) provides an example of essentially the same phenomenon. Thus, the outside
observer’s belief converges to an interior point in [0, 1]. Empirically, the implication is
essentially identical to that of information cascades: society may fix upon an incorrect
action forever.

How much social information is aggregated under social learning? The Two-
Signal Principle states that under appropriate conditions, very little—less than two
reinforcing occurrences of the most informative possible private signal value (or, with
unbounded signals, the supremum of that informativeness).
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This is obviously true with unbounded signals, where the upper bound is
infinite. For the case of bounded signals, recall from § 2.1 that when the state is binary,
the precision of a possible belief r about the state θ is defined as |r − 0.5|. Consider for
simplicity a setting in which the prior belief is symmetric.

To understand the Two-Signal Principle, observe that there is no way for an
agent In’s action to reflect more than two maximally informative private signal realiza-
tions unless at least one earlier agent’s action reflects more than one such realization.
So consider any point in the sequence in which more than one maximally informative
private signal realization is incorporated into the social belief as observed by In. Then
In will follow the action implied by the social belief regardless of In’s private signal,
i.e., In is in a cascade. It follows that In’s action is not informative, which means that
it does not increase the precision of the social belief. So In+1 and all later agents are
also in a cascade, and also do not increase the precision of the social belief. In other
words, the zone of social beliefs that incorporates between one and two private signals
is impassable.

4.2.3 Conditions for the Three Possible Social Learning Outcomes

There are three possibilities for the asymptotic outcome of the process: (i) an information
cascade, (ii) a limit cascade, and (iii) neither of the two, in which agents herd on the
correct action. These three cases can be equivalently characterized by the limiting
behavior of the social belief Pn, which must converge by the Martingale Convergence
Theorem to some P∞ ∈ [0, 1]. In case (i) Pn converges in finite time to an interior point,
P∞ ∈ (0, 1). In case (ii) it again converges to an interior P∞, but not in finite time. And
in case (iii) it becomes decisive, i.e., it converges to P∞ ∈ {0, 1}. So, in this latter case
the agents converge to the correct action. Smith and Sørensen (2000) describe the
relation between signal structures and these three possible outcomes.

In the SBM, the only possible outcome is an information cascade. As shown by
BHW, this holds more generally when the set of possible signal values is finite. When
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signals are bounded but not finite, either cascades or limit cascades can occur. For
example, there are always limit cascades when private signals are distributed uniformly
on [0, 1] in state L and have density f(s) = 1/2 + s on [0, 1] in state H (Smith and
Sørensen (2000)).

When signals are unbounded, there is asymptotic learning: Almost surely Pn

converges to to either 0 or 1 and the actions converge to the state. Asymptotic learning
fails when cascades or limit cascades occur with positive probability. In this case, the
social belief converges to an interior P∞ ∈ (0, 1), and the probability that agent In
chooses correctly tends to max{P∞, 1− P∞} < 1.13

Why do bounded signals block asymptotic learning? With bounded signals,
once the social belief Pn is close enough to either 0 or 1, the private signal of agent n
cannot shift the belief enough to change the action.

Unbounded signals imply that information cascades and limit cascades are
impossible, and asymptotic learning is obtained. To see why, suppose that R∞, the limit
of Rn, is finite, so that a limit cascade or a cascade occurs. Let qn be the probability that
In chooses H conditioned only on social information. This probability depends only on
Rn, and is strictly between 0 and 1 for any Rn, since signals are unbounded. In the long
run since Rn converges to some finite R∞, qn will approach some probability 0 < q∞ < 1.
So an observer who sees the action sequence is essentially receiving an infinite stream
of binary signals of approximately constant precision. This observer’s beliefs become
perfectly accurate, which contradicts the premise that the social log likelihood ratio is
bounded.

To sum up, in this setting, there is asymptotic learning if and only if signals are
unbounded. When signals are unbounded, no matter how long past agents have been
following a mistaken action, there will eventually be an agent with a strong enough

13For example, when a cascade starts, the social belief reaches P∞. If P∞ > 0.5, the agent adopts,
and this is correct with probability P∞. Similarly, if P∞ < 0.5, the agent rejects, and this is correct with
probability 1− P∞.
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signal who will overturn that action. Conversely, when signals are bounded, then the
social belief cannot become too accurate, since a cascade would be triggered, blocking
further information aggregation.

When there is a cascade, resulting in poor information aggregation, an ad-
ditional exogenous shock can easily dislodge cascading on the action that was most
popular before the shock. So, as in the SBM, outcomes in the setting with general
bounded signal distributions can be fragile, a concept developed explicitly in § 6.

A largely unexplored question is the extent to which unbounded signals still
succeed in bringing about asymptotic learning when agents are not expected utility
maximizers. An exception is Chen (2021), in which agents know the precisions of their
own private signals but not of other agents’ signals, and are ambiguity averse with
respect to this parameter. This can deter agents from breaking a cascade, as agents may
fear the worst-case scenario (from the perspective of deviating from the cascade) that
predecessors in the cascade are very well-informed. In contrast, when contemplating
following one’s own signal, an agent is not very fearful of joining the cascade, as the
worst that happens is that the agent loses the benefit of the agent’s noisy signal. In
consequence, even when signals are unbounded, there can be information cascades and
no asymptotic learning.

A herd is a realization in which all agents behave alike from some point on.
Formally, a herd starts from agent In if all later agents take the same action, that is,
if am = an for all m ≥ n. BHW show that when private signals are finitely supported,
herding occurs with probability one. In fact this is the case with an unbounded signal
structure as well (Smith and Sørensen (2000)).

Crucially, a herd can occur even in the absence of information cascades. Herding
is an ex post realization in which all agents from some point on take the same action. In
contrast, an information cascade is an ex ante concept: for all possible signal realizations,
an agent takes the same action. This said, explicit modeling shows cascades and herding
to be connected; see, e.g., the SBM. Furthermore, in settings with limit cascades there are
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herds with substantial probability (indeed, probability one), but there are no cascades.

The crucial difference between the bounded and the unbounded signal setting
is that with unbounded signals there is asymptotic learning: from some point on, all
agents take the correct action.14 This is somewhat surprising, since each agent in the
herd has a positive probability of taking either action, i.e., there are no cascades.

4.3 Information Externalities and Speed of Learning

As mentioned in the Introduction, an information externality is a situation where an
agent makes a decision in her own interest that affects the information available to
some other agent. Information externalities reduce the rate of social learning relative
to the socially optimal one, wherein agents adjust their actions to optimally balance
the immediate benefits to themselves of choosing the best action with the benefit of
conveying information to later agents (according to some social objective).

Under some conditions, we have seen that this wastage of private information
completely blocks learning. Under others, there is asymptotic learning. Nevertheless,
since agents do not choose their actions for the purpose of conveying information to
others, a general principle is that asymptotic learning tends to be inefficiently slow
relative to the socially optimal rate.

So a natural question is: Under asymptotic learning, how long does it take for a
correct herd to form, and how do information externalities affect the speed of learning?
One measure of efficiency is whether the expected time until a correct herd forms (i.e.,

14It is largely a matter of convenience whether to model signals as unbounded, so that incorrect cascades
never occur, or bounded, so that either cascades or limit cascades occur. There is no way to empirically
distinguish a signal distribution that includes values that are extremely rare and highly informative,
versus one where such values do not exist at all. So for applications, either modeling approach is equally
acceptable. For a similar perspective, see Gale (1996) and Chamley (2004b). In many applied contexts,
it reasonable to model the signal space as finite. For example, people often obtain information signals
through casual conversation with limited nuance.
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until the last time the wrong action is taken) is infinite (Smith and Sørensen (2000)).
Whether this expectation is finite or infinite depends upon the tail of the distribution
of the private beliefs (Hann-Caruthers, Martynov and Tamuz (2018)). Rosenberg and
Vieille (2019) focus on the expectation of the first time that a correct action is taken;
this is (perhaps not obviously) very closely related to the time at which a correct herd
starts. Their very elegant main result is that this is finite conditioned on a given state if
and only if

∫
1

1−F (q)
dq is finite, where F is the cumulative distribution function of the

private belief in that state. Thus, when private beliefs have very thin tails on the “correct”
end—i.e., very low probabilities of extremely informative correct-direction signals—the
expected time can be long.

Even with continuous action spaces, which allow agents attune their actions
finely to their unbounded private signals, owing to information externalities, the learning
process may still be very slow (Vives (1993; 1997)). In these models, agents only observe
a noisy signal about the average actions of predecessors, which relaxes the assumption
that the actions of others is common knowledge. Similarly, Chamley (2004a), Acemoglu
et al. (2011) and Dasaratha and He (2019) provide models with slow convergence. The
review of Gale (1996) points out that very slow asymptotic learning, as occurs in several
models, may be observationally indistinguishable from the learning stoppages that occur
in settings with incorrect cascades.

It is also notable that that the steadiness of the rate of social learning is very
different in different settings. In some learning as measured by increase in belief
precision is steady and deterministic (e.g., Vives (1997)), whereas in others learning
proceeds in stochastic fits and starts. In settings with unsteady rates of learning, there
can be either temporary or permanent learning blockages.
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4.4 Heterogeneous Precision and Influencers

Social psychologists report that people imitate the actions of experts. When a sports star
uses a particular brand of equipment, it is an expert product endorsement likely to sway
observers, as with Roger Federer’s endorsement of Wilson tennis rackets and gear. Of
course, sports gear often has a non-utilitarian “fashion” element. However, it is plausible
that a tennis star knows how to choose an effective racket. Such endorsements may
be less compelling for products that are unrelated to the endorser’s primary domain of
expertise. However, even outside this domain, observers may still view the decisions of
an exceptionally successful individual as reflecting knowledge about what choices are
most effective.

As the tennis example illustrates, some agents may have systematically more
accurate signals than others. This raises the questions of whether small differences in
accuracy can make big differences for social outcomes, whether increasing the accuracy
of some agents necessarily improves social outcomes, and whether agents with higher
accuracy should be placed earlier or later in the decision queue (Ottaviani and Sørensen
(2001) study the latter question in a reputational learning setting).

Consider a variation of the SBM in which some agents, whomwe call influencers,
have more precise private signals than other agents. Depending on their location in
the decision queue, influencers can trigger immediate information cascades. So even
a small advantage in signal precision can have a large effect. For example, if we alter
the SBM so that Ann has a signal precision p′ > p, then even if p′ is close to p, Bob will
defer to her, as will all later agents. The resulting cascade has precision p′. In contrast,
if p′ = p, a cascade occurs only after two identical actions, which makes use of at least
two signals, and therefore is more accurate.

The outcome depends crucially on the order of moves. If the high-precision
agent, Ann, were second instead of first, there would be no immediate cascade. Placing
an influencer later allows the actions of early agents to remain informative, which
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improves the accuracy of the cascade that ultimately ensues (see also § 10.1). These
effects of influencers apply also in settings with with more general signal distributions,
even though an influencer may not immediately trigger a cascade.

The drawback of leading off with the better-informed has not been lost on
designers of judicial institutions. According to the Talmud, judges in the Sanhedrin (the
ancient Hebrew high court) voted on cases in inverse order of seniority. Similar voting
orders continue in some of today’s courts (e.g., those in the U.S. Navy). Such strategic
ordering can reduce the undue influence of older (and presumably wiser) judges.

4.5 Partial Cascades

As mentioned at the start of §3, a general feature of social learning is that a coarse action
space reduces the informativeness of an agent’s action, for both mechanical reasons and
owing to information externalities. This is seen most starkly in the logic of information
cascades: that with a coarse action space, an agent may choose an action independently
of her private signal. In consequence, her action does not add to the pool of social
information, and asymptotic learning fails. Furthermore, even in settings where there is
asymptotic learning, the improvement of social information tends to be delayed.

The mechanical effect of having a coarse action space is present whenever
the number of signal values exceeds the number of possible actions. More generally,
information loss is exacerbated by information externality; self-interested agents have
no incentive to convey information to later agents.15

To capture this more general point, Lee (1998) defines a weaker notion of
information cascade. A partial cascade is a situation where an agent takes the same
action for multiple signal values. (This terminology is due to Brunnermeier (2001);

15We mainly focus on coarseness in conjunction with information externalities. Coarseness is much less
of a problem with altruistic agents, as they could choose their actions strategically to convey their private
information to others (see Cheng, Hann-Caruthers and Tamuz (2018)).
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Lee uses the term “cascades” for this concept.) An information cascade proper is the
special case in which an agent takes one action for all the possible signal values. Partial
cascades occur trivially when there are more possible signal values than actions. But
even when the action space is rich, partial cascades (and cascades proper) can occur.

Lee applies this notion to a model of information blockage and stock market
crashes (as discussed in § 10). In the model of Hirshleifer and Welch (2002), partial
cascades result in either excessive maintenance of early actions (‘inertia”) or excessive
action shifts (“impulsiveness”). Overall, there is a wide array of settings in which partial
cascades hinder information aggregation.

5 Endogenous Timing of Actions

When faced with an irreversible decision, people often have an option to either act
immediately, or to defer their decision to a time in which more information will be at
their disposal. Examples include purchasing versus deferring the purchase of a product,
or undertaking versus deferring an investment project. In social learning settings with
the option to delay, there is the possibility of sudden booms and busts in action choices.

Consider a modification of the SBM in which, at any given date, any agent is
free to choose among three options: adopt, reject, or delay. Adopting or rejecting is
irrevocable. In this setting, there is no exogenous sequencing in the order of moves.
The benefit to delay is that an agent can glean information by observing the actions of
others. Thus, delay generates option value. The cost of delay could take the form of
deferral of project benefits. Since acting early confers a positive information externality
upon other agents, in equilibrium there can be excessive delay.

This equilibrium outcome when agents have an incentive to delay is seen most
simply when agents have heterogeneous signal precision. We consider this case in the
next subsection. We then consider a wider set of models.
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5.1 Delay with Heterogeneous Signal Precision

Consider a setting as in the SBM except that there are agent-specific values of p (either
commonly or privately known), so that agents differ in the precisions of their binary
private signals. At a given point in time, an agent can act by choosing project H or L; or
alternatively, can delay. As in the SBM, project H is optimal in state H, and L is optimal
in state L. As discussed in BHW (p. 1002), high-precision agents have less to gain from
waiting to see the actions of others—in the extreme, a perfectly-informed Ii (pi = 1) has
nothing to gain from waiting. So (without conclusively ruling out other possibilities) we
focus on equilibria in which, among agents with h signals, those with higher precision
adopt earlier than those with lower precision.16

Suppose first that each agent’s signal accuracy is known to all. Once the agent
with highest precision has acted (H or L), all remaining agents are in a cascade on the
selected action (as in § 4.4). Intuitively, the agent with second-highest precision acts
immediately rather than waiting to learn from others. Since this action is uninformative,
so does the agent with next lower precision, and so forth.

Now suppose instead that precisions are only privately known. In equilibrium,
agents can infer the signal accuracy of other agents from time elapsed with no action.
In the continuous-time model of Zhang (1997), this results in an equilibrium in which
delay fully reveals precision. Each agent has a critical maximum delay period, after
which, if there are no actions by others, she becomes the first to act. The higher the
precision, the shorter the agent’s maximum delay period. All agents wait until the
highest-precision agent acts. At that point, all other agents immediately act, choosing
the same project. The incentive to free ride on the information of others by delaying
is also present when there are continuous signals and actions, and when information

16To avoid technical issues in timing decisions, we suppose that agents have precisions drawn without
replacement from a discrete distribution, such that no two agents have the same precision. This ensures
that, if time periods are short enough, different agents act at different time periods in order of their
precisions.
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acquisition is endogenous (Aghamolla and Hashimoto (2020)).

In this model, cascades are explosive in the sense that there is an initial period
during which all agents delay, and then, once the highest-precision agent acts, others
immediately follow. Furthermore, since the cascade is based solely on one agent’s signal,
actions are highly idiosyncratic.

In the real options model of Grenadier (1999), the underlying asset value
evolves as a geometric Brownian motion with an unknown drift. Investors differ in
the accuracy of their private signals about the value of the drift. If two high-accuracy
investors with positive signals invest, all other agents are in an information cascade,
and also invest. Thus the broad insight from Zhang (1997) holds in Grenadier’s setting
as well.

The fact that less accurate agents have a greater benefit to delay suggests that
when decisions are observable to others, there can be a strategic advantage to acquiring
less information. Consistent with this, even if information acquisition is costless, agents
may choose to remain imperfectly informed, as this encourages other agents to act
earlier (Aghamolla (2018)). Moreover, even in nonstrategic settings, agents may acquire
too little information, since there are externalities in information acquisition (§ 7).

5.2 Adopt versus Delay as an Indicator of Degree of Optimism

In the setting we have discussed, delay is informative about agents’ precisions, but not
about whether their signals favor project H or L. Suppose now that precisions are
identical, that there is only a single project, and that the decision each period is whether
to adopt it or to delay. As before, adopting the project is irrevocable, but delay is not.
Then delay can be an indicator that the project is unattractive.

Symmetric pure strategy equilibria do not occur in such a setting, because
when everyone moves early there is an incentive to delay and learn from their choices,
and when everyone moves late there is an incentive for an agent with a favorable signal
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to invest earlier to advance the rewards from investing. Instead, there can be asymmetric
pure strategy equilibria in which agents delay different amounts of time (Wang (2017)).
Such an equilibrium endogenously generates sequential choice, resulting in an outcome
that is similar to having an exogenous order of moves as in the SBM, and likewise gives
rise to cascades. Alternatively, there can be mixed strategy equilibria in which agents
randomize as to whether to delay. This can lead to idiosyncratic booms or voids in
investment. Randomization in delay also occurs in the setting of Chamley and Gale
(1994), in which a subset of agents randomly receives the option to invest—an option
that can be exercised at any time. More agents receive the option to invest in better
states, so receiving the option is a favorable indicator about state.17 Furthermore, the
incentive to wait to see whether others invest generates excessive deferral (see however
Chamley (2004a)).

Overall, these models of timing decision reveal that there can be either ineffi-
cient delay, or a rush to invest even in unprofitable projects. This suggests that social
learning may generate shifts in investment activity that are reminiscent of observed
industry-wide booms and busts, or macroeconomic fluctuations.18

6 Observability Assumptions

What an agent learns from others, and the extent to which social learning is impaired by
information externalities, depends on what the agent can observe about the past history
of actions, payoffs, or even private signals. Observations of past actions can also be noisy

17The idea that information externalities result in stochastic delay is in the spirit of Hendricks and
Kovenock (1989), who examine an experimentation setting in which two firms with private information
decide how soon to drill for oil, where drilling causes the arrival of public information about the payoff
outcome.

18Models of delay in which agents can observe the payoffs of predecessors (Caplin and Leahy (1993),
Wagner (2018), Aghamolla and Guttman (2021)) have also been applied to such phenomena. Caplin and
Leahy (1994) analyze booms and busts when firms can repeatedly adopt and terminate projects.
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or limited, as with observation of only a specified subset of agents, a random sample, or
a count of adoptions or other aggregate statistics. Observability can be asymmetric (as
with greater observation of adoptions or of higher payoffs). Furthermore, agents can
also be uncertain about whom their predecessors have observed.

Some key questions, under alternative observability regimes, are whether
there is asymptotic learning, how quickly and how steadily information is aggregated,
whether incorrect information cascades form, and how sensitive social outcomes are
to the arrival of new public information. Another key question is whether greater
observability increases welfare. We consider such questions while maintaining our
convention of defaulting to SBM assumptions except where otherwise stated. We first
consider rational settings, and then turn to imperfect rationality.

6.1 Rational Models

Many different observability assumptions have been studied in the literature. Rather
than systematically covering all possible combinations, we organize the discussion in
terms of general observations.

A herd at agent Ii, as defined in § 4, is the event that all later agents do the
same thing as agent Ii.

Observation 1. Herds occur when there is sufficient observation of past social
information.

As a benchmark, with no social observation, agents act based upon their own
private signals, and there is no herd. In the other extreme, when all private signals
are observable, there is eventually a herd on the correct action. A recurring theme of
the literature is that enough social observation of actions and perhaps payoffs likewise
produces a herd, but not necessarily a correct one. Mossel et al. (2020) give sufficient
conditions for the formation of herds across a large class of social learning models.
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There are many models with sufficient social observation to generate herding,
including those of Banerjee (1992b), BHW, Smith and Sørensen (2000), Cao, Han and
Hirshleifer (2011), models with costly information acquisition discussed in § 7, and
models with social networks discussed in § 9. On the other hand, insufficient social
observation precludes herding, as in Celen and Kariv (2004a) (which we discuss again
in § 9), where each agent observes the action of the immediate predecessor only.

Observation 2. The ability to observe others’ actions or payoffs tends to cause
insufficient exploration.

A fundamental trade-off in an individual decision-making setting is between
taking actions that generate new information that is relevant for an agent’s future
actions, versus taking the myopically best action based on current beliefs. This is known
as the explore/exploit trade-off. This trade-off can also appear in social learning settings.

Consider now a setting as in the SBM except that previous payoffs are observ-
able and are stochastic given the state. Observing these payoffs provides additional
information about the state, with some actions generating more useful payoff information
than other actions.

In consequence, there are two types of information externalities. The first,
just as in the SBM, is that agents do not care that their actions convey information
about their private signal to later agents. This externality affects the aggregation of
private signals. The second type of information externality is in the generation of new
information. Agents do not take into account the benefit to later agents of observing the
payoffs derived from the chosen action. This is an externality in exploration (see, e.g.,
Rob (1991)). Owing to this externality, in a social multi-arm bandit settings with no
private information, asymptotic learning fails (Bolton and Harris (1999)). An analysis
with quasi-Bayesian agents is provided by Bala and Goyal (1998).

One could imagine that the additional information contained in the payoff
observations would preclude information cascades and result in asymptotic learning.
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However, this is not always the case, as incorrect herds can form on actions that generate
limited payoff information.

To see this, consider a setting in which all past payoffs as well as actions are
observable (Cao, Han and Hirshleifer (2011)). Suppose that the payoffs to action a are
either 1 or −1, and to action b are either 2 or −2. There are four equally likely states:
uu, ud, du and dd, where the first entry indicates a high (u) or low (d) payoff to action a

and the second entry indicates a high or low payoff to action b.

Once an action is taken, its payoff is known to all, an assumption that is
highly favorable to effective social learning. Nevertheless, a problem of inadequate
experimentation remains. If private signals and payoff information about action a are
initially favorable, whereas the prior beliefs about b are not very favorable, society can
lock into a, for an expected payoff close to 1 under the belief that ud is likely, without
ever trying b, whose payoff in state uu of 2 is even higher. So the ability to socially
acquire both types of information (about private signals and about payoffs) does not
solve the information externality problem. More generally, if payoffs are stochastic even
conditional upon the state (or observation of payoffs is noisy), there is still a strictly
positively probability that a given agent will cascade upon an incorrect action.

A possible interpretation of the payoff signal is that it is an online review posted
by an agent who has adopted. In this application, Le, Subramanian and Berry (2016)
show that the probability of an incorrect cascade can increase with the precision of the
review. A more accurate review that is favorable to one option can prematurely deter
useful exploration of the other option (see also Acemoglu et al. (2019)). When customer
heterogeneity is sufficiently high, Ifrach et al. (2019) find that there is asymptotic
learning, as there is always a chance of purchase strictly between zero and one, regardless
of the social belief.

Observation 3. Social outcomes tend to be sensitive to the arrival of modest new
public information.
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Owing to information externalities, social learning is inefficiently slow, so on
average, at any given date, the action taken by agent In is less accurately attuned to state
than would be the case under learning that is efficient according to a standard social
objective. If agents are rational, then they understand that on average they possess less
information than under efficient learning, which makes them more willing to shift their
actions in response to shocks. We call this tendency sensitivity.

Definition 2. A social learning outcome is sensitive to shocks if a hypothetical one-time
public disclosure of a signal with a distribution that is identical to that of the private signal
possessed by a single agent is more likely to shift the agent’s action than would be the case if
learning from predecessors were efficient according to a social objective such as maximizing
average utility.

This is seen in starkest form in settings in which there are information cascades.
The occurrence of even a small shock can easily dislodge a cascade. Each agent knows
that a cascade is based upon information that is only slightly more accurate than the
agent’s own private signal. Thus, as emphasized by BHW, a key implication is that even
long-standing cascades are fragile with respect to small shocks.

Definition 3. A cascade is fragile if a hypothetical one-time public disclosure of a signal
with a distribution that is identical to that of the private signal possessed by a single agent
would, with positive probability, break the cascade, i.e., causes the next agent’s action to
depend on that agent’s signal.

For example, in the SBM, once a cascade starts, it remains fragile for all
remaining agents.

Sensitivity and fragility are general concepts that could be defined in terms of
different kinds of shocks to the system. For example, instead of the arrival of a public
signal, the shock could be the arrival of a better-informed agent, or the of an agent
whose preferences are known to differ from predecessors. In each of these cases, a
long-standing cascade can easily be dislodged.
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Owing to information cascades, there is a systematic, spontaneous tendency
for the system to move to a position of precarious stability. In contrast, equilibrium is
much more stable in models in which there are sanctions upon deviants or disutility
from nonconformity (Kuran (1987)).

Observation 4. The Principle of Countervailing Adjustment: Seemingly favorable
shifts in information availability can cause agents to take less informative actions,
and do not necessarily improve average decisions or welfare.

The direct positive effect of greater availability of information to an agent
tends to be opposed by the tendency of the next agent to take actions that are less
responsive to their own private signals, to the detriment of later agents. We call this the
Principle of Countervailing Adjustment. Indeed, the greater incentive of agents to mimic
the actions of predecessors can ,make agents completely unresponsive to own-signals.
An example is the presence of an agent with even slightly better private information (an
“influencer”). As discussed in § 4.4, increasing the precision of one agent, I1, can reduce
average welfare by causing later agents to fall more readily into an incorrect cascade.
Wu (2021) applies the principle to the formation of cascades in two decision queues.

One consequence of the principle of countervailing adjustment is that disclosure
can reduce average welfare (see Result 2 of BHW). This contrasts with settings with
no social interaction, where the free disposal property property implies that extra
information never has negative value.

To see this, modify the influencer model discussed in § 4.4, so that all private
signals have identical precisions, and instead have the slightly more accurate signal
be a public disclosure made at date 0. Now agent I1 is the first in the cascade, and all
agents have lower expected utility than in the basic setting, as all now effectively act
based upon just a single signal (the public disclosure). Of course, a sufficiently accurate
early signal or public disclosure, such as conclusive information, can improve the social
outcome.
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More generally, a shift in information regime that might seem to make agents
better informed (such as higher signal precision of early agents, greater observability of
others, or greater publicly available information) can reduce average decision accuracy
in the long run and can reduce average welfare. An example of this is the possible
deleterious effect of increasing the precision of publicly posted information discussed by
Le, Subramanian and Berry (2016) above.19

Observation 5. When each agent observes only a random sample of past actions,
incorrect information cascades can occur, and may last forever.

To understand this observation, consider a sequential setting with random
sampling of past actions and with no information about the order of past actions (see
Smith and Sørensen (2020)). With bounded signals, information aggregation tends
to be self-limiting, because as actions become more informative, an agent becomes
more likely to cascade upon the preponderant action in the agent’s observation sample.
Whenever such cascading occurs, the agent’s signal is not incorporated into the action
history.

Suppose, for example, that past agents’ actions were to become so accurate
that even a single sampled H action would overwhelm the most extreme possible
opposing private signal value. Then an observer will sometimes be in a cascade upon
the predominant action in the agent’s sample (e.g., in a sample of size k in which all
observations in the sample are of the same action).

This reasoning suggests that owing to the possibility of information cascades,
learning with random sampling may be quite slow. Indeed, a stronger claim is true: so
long as all agents observe a sample size of at least 1, asymptotic learning fails (Smith
and Sørensen (2020)).

19However, in general a shift in model structure can have different types of effects on the quality of
information aggregation. For example, within the SBM, if each agent’s private signal became more precise,
cascades will tend to be more informative.
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To see why, consider the case of a sample size of N = 1, where private signals
are symmetric and binary. Consider a setting as in the SBM, except with the departure
that each agent observes the action of one randomly selected predecessor instead of
all predecessors. Suppose that a point is reached where for some agent In this random
observation is more informative than a single private signal. (If this never happens, of
course asymptotic learning fails.) Then agent In would be in an information cascade,
so In’s action would be exactly as informative as a sample of one action from among
In’s predecessors. In consequence, the sample observed by In+1 is also more informative
than In+1’s signal, so In+1 would also be in a cascade. A similar argument holds for
all later agents, so information stops accumulating. Consequently, asymptotic learning
does not occur. This failure is similar to the fashion leader version of the SBM in §4.4. A
similar intuition also applies to the random sampling model of Banerjee and Fudenberg
(2004), in which it is possible that past payoffs as well as actions are observed.20

A further interesting implication of the sequential sampling setting of (Smith
and Sørensen (2020)) is that assuming each agent does not observe too many predeces-
sors, once different agents take different actions, herds never occur. This is because there
is always a chance that an agent observes a set of predecessors who did not follow the
currently-predominant action (Smith and Sørensen (2020)). The chance of observing
such a deviant action does not decline rapidly enough with n to bring about herding.
Similarly, if payoff information is also observed and if an early agent adopted a popular
action and experienced low payoffs from doing so, there is always a chance that this
agent is later observed, causing a later agent to deviate from the popular action.

If agents observe samples of payoff outcomes but not the past actions that led to
these outcomes, it is again possible that agents do not converge to the same action. The
need to simultaneously draw inferences about what actions predecessors have taken and
the performance of those actions can confound inferences. Wolitzky (2018) considers a

20Monzón and Rapp (2014) consider a sampling setting in which agents also do not know their own
positions in the decision queue. In this setting, under a stationarity assumption on sampling rules,
incorrect cascades can last forever.
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setting with two actions: action R(isky) has a probability of success that depends on
the state, and action S(afe) has a fixed probability of success that is state independent.
If action R always has lower probability of success (but has lower cost) than action S,
then even for very large samples, there is not asymptotic learning.

Observation 6. Agents can incorrectly herd on rejection even when agents observe
the aggregate number of adopts, but do not observe rejects.

Consider a scenario in which each agent observes only the aggregate count of
the number of past adopts. In this setting, sequencing information is lost. In general
this induces loss of two types of information. First, an agent does not know the order in
which past actions were taken. Second, an agent does not know how many predecessors
have acted—i.e., agents do not know their own positions in the queue. This occurs when
an agent does not observe all past actions, one example being when an agent observes
only adopts, not rejects; it is not hard to obtain information about how many Teslas
have been sold, but we do not see how many people considered Teslas but opted not to
buy.

In the setting of Guarino, Harmgart and Huck (2011), observation is asym-
metric (we will refer to this as only observing past adopts, not rejects), there is a finite
number of agents, agents cannot see the order of predecessors’ actions, and they have
no direct information about their own positions in the queue (though they can draw
inferences about this from their observations of others). Since all that an agent observes
is how many predecessors adopted, there is no way for a cascade on reject to get started.
(If it could, then even I1 would reject, since I1 does not see any past adopts nor does
I1 know that no agent preceded her. In consequence, all agents would always reject,
which is not consistent with equilibrium.) So the possibility of cascading is limited to
just one action, and indeed, with a large (finite) population, such a cascade occurs with
a probability that approaches one regardless of state.

In sharp contrast, when agents do have some idea about their own positions
in the queue (based, for example, on observation of own-arrival-time), cascades on
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either action can occur. This is because an agent who is probably late in the queue
and who observes few adopts infers that others probably arrived earlier and chose to
reject (Herrera and Horner (2013)). Since inferences are noisy, cascade outcomes can
be incorrect, resulting in incorrect herding on either adopt or reject.

Observation 7. Contrarian actions can reveal that an agent has high precision.

Consider a setting like the influencer model of § 4.4, in which each agents has
a high or low precision binary signal, and this precision is private information. Then
the decision of an agent to deviate from a cascade indicates that the agent has high
precision. This can potentially cause subsequent agents to follow contrarians.

In this setting an observer knows that the minority choice was made in op-
position to predecessors, which is indicative of strong private information. What is
more surprising, as shown by Callander and Hörner (2009), is that agents who only
observe a count of past adopts and rejects sometimes act in opposition to the majority
of the actions they observe: Intuitively, the very presence of a minority action can be an
indicator of a late, high precision deviator, as early adoption of an action tends to cause
it to not be in the minority.

Observation 8. Even with partial observation of past signals, asymptotic learning
can fail and incorrect cascades can occur.

The additional social information that agents obtain may be about the private
signals of predecessors through conversation. Indeed, it is sometimes argued that owing
to such communication, in the long run agents will learn the state, and that even in the
short run that incorrect cascades will never occur. However, in practice people often do
not pass on the full set of reasons for their actions—especially reasons that they have
acquired from others. In settings with limited communication of past private signals,
incorrect cascades may form and, with positive probability, last forever. We provide an
example of this that extends the SBM in the Online Appendix, § A.1.3. Intuitively, being
able to observe a predecessor’s signal is much like having an extra endowed private
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signal, which in turn is much like having a more precise endowed signal. But (as in the
SBM), increasing the precision of private signals does not eliminate incorrect cascades.

Observation 9. Reduced social network connectivity can improve social learning

BHW and Banerjee (1992b) point out in information cascades settings that
there is a benefit to quarantining early agents so that some make decisions without
observing others. We call such agents sacrificial lambs. The advantage of having
nonsocial agents in social learning settings is that their actions are sensitive to their own
signals. This makes their actions more informative to later observers. More generally,
weaker social network connectivity can result in better social learning outcomes (see,
e.g., the references in Wu, O’Connor and Smaldino (2023)).

A similar effect can derive from psychological biases that cause agents to use
their own signals more heavily instead of imitating others. By bringing more private
information to bear, such bias can improve learning and welfare.

6.2 Models with Imperfect Rationality

In models of individual decision making, irrationality makes an agent worse off. In
contrast, in a social learning setting, irrationality can make most agents better off,
because mistaken actions are sometimes more informative to later observers than
correct ones. So psychological bias can help remedy information externalities, resulting
in more accurate social beliefs. This is an example of the general phenomenon that
irrationality can make interacting agents better off (Kreps et al. (1982)).

6.2.1 Overconfidence

Even if an agent is not a sacrificial lamb, the agent may place greater weight upon
her own private information because she is overconfident about its precision. Such
overconfident agents can break incorrect cascades, improving long-run learning. In
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Bernardo and Welch (2001), occasional overconfident “entrepreneurs” overestimate
the precisions of their own signals. This can cause them to make use of their own
signals instead of following the actions of predecessors in an information cascade. So
overconfidence can improve learning and outcomes for later agents. Arieli et al. (2023)
similarly show that “condescending” agents who underestimate the precision of their
peers’ signals can improve aggregate outcomes.

To illustrate overconfidence, suppose, for example, that everyone’s private
signal has the same precision, known to all, except that I1 to I10 each substantially
overestimates their own precision. Then each acts based solely upon the agent’s own
signal, so the first 10 signals are revealed through their actions. In consequence the
expected welfare of all later agents is improved.

A possible direction for future research is understanding the conditions under
which overconfidence harms social learning instead of helping. For example, if overcon-
fidence were growing rapidly with later agents, all agents would act based only on their
private signals, and there would be no information aggregation.

6.2.2 Neglect of Social Observation by Predecessors

Other psychological biases can also influence social learning. An important one is
that agents may neglect the fact that others are making social observations. As with
overconfidence, such neglect can cause an agent to underweigh predecessors and rely
excessively on her own signal instead of cascading, thereby improving welfare.

Alternatively, an agent may neglect the fact that the actions of two predeces-
sors derive from a common source. This induces correlation neglect (also known as
persuasion bias), the phenomenon that people sometimes treat the information of others
as independent even when it is not—a type of double-counting (Enke and Zimmermann
(2019)). These forms of neglect follow naturally from limited attention and cognitive
processing power, since inferences about observation of others who in turn observe
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others can require extensive computation.

However, neglect of observation by predecessors can also make agents more
prone to cascading. To see why, consider a setting in which an agent observes multiple
predecessors who chose the same action, and mistakenly believes that these predecessors
acted independently. Some of these predecessors may be in a cascade, making their
actions uninformative. The mistaken belief that these actions are all informative can
cause the agent to imitate predecessors and cascade instead of following the agent’s
own signal. This can happen even if the agent has higher private signal precision than
do predecessors, so that if the agent were rational the agent would not be in a cascade.

In a social network, heavily connected agents provide correlated information
to many observers, who are in turn observed by others. In consequence, correlation
neglect increases the influence of agents who are more heavily connected in the social
network (see DeMarzo, Vayanos and Zwiebel (2003) and the review of Golub and Sadler
(2016)).

Neglect of predecessor’s observation of others is captured in a sequential
quasi-Bayesian setting in Bohren (2016). In Bohren’s model, states are equiprobable,
signals are bounded, and there is a given probability that each agent is social (observes
the actions of predecessors) or nonsocial (does not observe any predecessor actions).
Whether an agent is social is unknown to others. Agents may either underestimate this
probability (resulting in correlation neglect) or overestimate it (which could be called
correlation overestimation).

In the case of rational agents, this is a model of fragility in cascades and social
learning. When enough agents take the same action, a cascade forms, in the sense
that a social agent follows the social information implicit in the actions of predecessors.
However, when a nonsocial agent arrives, this agent provides an information shock by
taking an independent action. This is informative to later social agents, so that initial
cascading may be broken. In the rational case, eventually social agents make correct
decisions, since there is an infinite stream of nonsocial sacrificial lambs.
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To understand outcomes in imperfectly rational cases, let q be the probability
that any agent observes the actions of predecessors, and let q̂ be agents’ perception of
that probability. If the possible values of q̂ are in an intermediate interval (an interval
which includes q), then Bohren shows that, just as in the rational case, with probability
one the social agents eventually make correct choices.

When q̂ is below this intermediate interval, agents severely underestimate the
probability of agents being social, and therefore overestimate how informative are these
actions. When, by chance, a strong enough preponderance of agents favors one of the
available actions, agents fall into a cascade. So the preponderance of one action tends to
grow over time. Since agents think this growing preponderance is coming largely from
independent private signals, social agents grow increasingly confident in the accuracy
of the latest cascade. In the limit agents become sure of either the wrong state or the
correct one.

This possibility of strongly held faith in the wrong state provides an interesting
contrast with the information cascades setting of BHW, in which there is also a failure of
asymptotic learning, but agents have low confidence about the state, making cascades
fragile. It also contrasts with a rational benchmark with continual arrival of nonsocial
agents, in which asymptotically the beliefs of the social agents become arbitrarily strong,
but always converge to the correct state.

When q̂ is large (i.e., to the right of the above-mentioned interval), beliefs
fluctuate forever, so again there is not asymptotic learning. Even if, at some date, there
were a very strong preponderance of action H, for example, agents would believe that
this derives almost entirely from cascading by predecessors. This makes the system
fragile. When by chance (as must eventually happen) even a few nonsocial agents
take the opposite action, the next social agent will no longer be in a cascade, and will
sometimes choose L.

In the social learning model of Eyster and Rabin (2010), correlation neglect
takes a more extreme form—observers think that each predecessor decided indepen-
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dently based only upon that agent’s private information signal.21 In their model, state
and actions are continuous. Beliefs about others are analogous to q = 1 and q̂ = 0 in
the Bohren (2016) model. In consequence, the views of early agents are very heavily
overweighted by late agents, convergence to the correct belief is blocked (even with
sharing of continuous beliefs or actions), and agents become highly confident about
their mistaken beliefs.

A lesson that comes from analyses of imperfect rationality and social learning
is that biases that cause agents to be more aggressive in using their own signals, such as
overconfidence, or such as overestimation of how heavily others have observed their
predecessors, tend to promote the use of private signals. Under appropriate conditions,
this improves social information aggregation. In contrast, correlation neglect tends to
have an opposite effect, causing agents to defer too much to history.

6.2.3 Other Heuristics and Psychological Biases

So far in this section we have discussed models that explicitly analyze the effects of
psychological biases such as correlation neglect and overconfidence on social learning.
Such models fully endogenize beliefs and behaviors. Another approach is to make
exogenous assumptions about the agent’s mapping from observed actions and payoffs
into the agent’s actions. Ellison and Fudenberg (1993, 1995) provide pioneering analyses
using this heuristic agent approach (see the Online Appendix, § A.1 for details).

Bohren and Hauser (2019) examine a setting that allows for a variety of types
of possible psychological biases in social learning, including correlation neglect. In
this model, signals are continuous (and may be unbounded). They focus on settings
in which enough information arrives so that if agents were rational there would be
asymptotic learning (via the arrival of either public signals or nonsocial agents). However,
owing to psychological bias, asymptotic learning can fail, which can take the form of

21Hirshleifer and Teoh (2003) and Eyster, Rabin and Vayanos (2018) apply such neglect of the signal-
dependent behavior of others to financial markets.
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convergence to a mistaken action, permanent disagreement over action, or infinite
cycling. For example, when agents overreact to private signals, and where there is a
positive probability of nonsocial types, there can be infinite cycling between actions.
When agents underreact, there can be fixation upon a mistaken action. Furthermore,
when there are incorrect herds, beliefs converge almost surely to the incorrect state.
So, consistent with Bohren (2016), and in contrast with BHW, longer herds become
increasingly stable.

7 Costly information acquisition

People often have a choice of whether or not to acquire information. We next examine
the effects on social learning of costly acquisition of either direct private information
signals about the state (§ 7.1) or about predecessors’ actions (§ 7.2).

When agents can acquire private signals, it is unprofitable to do so if the
signal will not (or is unlikely to) affect the agent’s action. So social learning is self-
limiting. Once social information becomes sufficiently informative, it crowds out costly
information acquisition about the state. In particular, even when private signals are
unbounded, social learning can become completely blocked.

This learning blockage effect has a close parallel with settings with exogenous
private signals and long-continuing information cascades, such as the SBM. In such
cascades settings, the signals of late agents do not contribute to social knowledge,
because once a cascade forms, such signals do not affect actions. This results in a similar
conclusion, that late agents do not contribute to social knowledge.

If private signals are costless, then asymptotic learning occurs when private
signals are unbounded (as noted in § 4), and may occur when the action space is
continuous (as described in § 3). Relative to these scenarios, a positive cost of observing
private signals degrades learning. As we will discuss, even in settings with unbounded
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private signals or continuous action spaces, asymptotic learning does not occur if there
is even a small cost of investigating.

On the other hand, if private signals are costless, introducing a cost of observing
predecessor’s actions can improve social learning. In such a setting, an agent with a very
informative signal realization may choose not to observe others’ actions. Thus, her
action conveys greater incremental information, which benefits later agents.

7.1 Costly Acquisition of Direct Private Signals about State

Costs of acquiring private information introduce another information externality. In
deciding whether to buy a signal, agents do not take into account the indirect benefit
that accurate decisions confer upon later observers.

The effects of this externality are illustrated simply in a setting as in the SBM
of § 2 with the addition of a choice of whether to acquire a private signal about the state.
Each agent can pay some cost c > 0 and observe a binary signal with given precision
p, or can pay nothing and observe no signal. In this setting, agents In, n > 1 will not
acquire a signal, no matter how small the cost. To see this, observe that in this binary
setting, even if I2 were to observe a private signal, following I1 would still be weakly
optimal. Agent I3 understands this, so by the same reasoning, I3 does not acquire the
signal; nor does any subsequent agent. So the social outcome incorporates even less
information than in the SBM.

In more general settings as well, when there is at least some minimal cost of
acquiring a private signal about the state, agents stop acquiring private signals, resulting
in complete blockage in the growth of social information. So only a few individuals end
up acquiring private signals. This is a version of the “Law of the Few” (see Galeotti and
Goyal (2010)). For example, in a model with a continuous state and continuous actions
studied by Burguet and Vives (2000), asymptotic learning is obtained if and only if the
marginal cost of obtaining a signal tends to zero as signals become arbitrarily weak.
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A similar outcome applies in Mueller-Frank and Pai (2016) in a setting in which
agents acquire information about finite samples of predecessors’ actions and payoffs.
Agents differ in the realizations of their costs of sampling, which is private information,
and do not see what samples were drawn by predecessors. Asymptotic learning occurs
if and only if sampling costs are not bounded away from zero in the sense that costs can
be arbitrarily close to zero for an unlimited number of agents.

As discussed in § 3, Ali (2018a) introduces a notion of responsiveness which,
loosely speaking, requires that any change in an agent’s beliefs changes the optimal
action. Ali shows that even with responsiveness, there may not be asymptotic learning if
information is costly to acquire, since the benefit of greater accuracy may not outweigh
the cost of information. Responsiveness implies asymptotic learning if and only if the
minimum across agents of the costs of gathering information is arbitrarily close to zero.
The consistent message from these papers is that asymptotic learning is not robust to
introducing non-negligible costs of acquiring (or processing) private information.

Alternatively, instead of costs of acquiring private information, there could be
costs of acquiring private information signals by discussion with predecessors. Consider
a modification to the SBM such that for a small fixed cost an agent can talk to a
predecessor to find out the rationale behind her action choice. In other words, the agent
can learn the predecessor’s belief (which may reflect information that she has acquired
in conversations with her predecessors). Nevertheless, as long as there is even a small
cost of such conversations, incorrect cascades occur with positive probability. Intuitively,
as beliefs become increasingly informative, at some point it pays for an agent to simply
follow the action of the agent’s immediate predecessor rather than paying to learn the
predecessor’s belief.
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7.2 Costly or Noisy Observation of Past Actions

It is often costly to observe the actions of others. For instance, in evaluating the decision
to invest in a startup firm, a venture capitalist can devote time and effort to gathering
information about the decisions of earlier potential investors.

To illustrate the effects of costly observation, consider a setting as in the SBM
except that there is a fixed cost for each agent of observing all predecessors’ actions.
If the cost is high enough, early agents will not incur it, and therefore will act solely
on the basis of their own private signals. However, for this very reason, at some point
the action history may become so informative that an agent finds it worthwhile to learn
the previous choices. Once this point is reached, all subsequent agents will also find
observation worthwhile. So observation costs can turn early agents into sacrificial lambs,
as defined in § 6.2, to the benefit of many later agents.

Based on this, from the viewpoint of improving the accuracy of decisions (and
perhaps welfare as well), typically the observation cost should be positive but not too
large. With a zero cost, as in the SBM, actions tend to be very inaccurate. With too high
a cost of observing predecessors, no agent will ever incur it. This insight is developed in
the model of Song (2016), who derives conditions on signals and observation costs for
asymptotic learning to occur.

7.3 Costly Information Acquisition, Limited Observation and Group-
think

Can social observation lead to decisions that are even worse than the decisions that
agents would make under informational autarky? This might seem impossible, since any
information gleaned by an agent via social observation is incremental to her own private
information. However, psychologists have emphasized (Janis and Mann (1977)) that
“groupthink” in group deliberations causes disastrous decision failures, as if interaction
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with others were harming instead of improving decisions. There is also evidence sug-
gesting that observation of others sometimes result in degradation in decision quality (a
zoological example is provided by Gibson, Bradbury and Vehrencamp (1991)).

Analytically, when there are investigation costs and noisy observation of past
actions, agents in groups can come to decisions that are on average worse than if there
were no social observation. The mechanism behind this is free-riding, which causes
agents to underinvest in information.

To see this, first consider the SBM, in which others are observed without noise,
with the modification that there is a small cost of acquiring private signals. As discussed
at the start of § 7.1, starting with I2 all agents follow I1, so the social belief reflects only
a single signal. This is no more accurate than if agents decided independently (though
welfare is higher as agents save on investigation costs).

Suppose instead that observation of predecessors is noisy, where each agent
observes binary signals about the actions of all predecessors. Suppose further that all
agents observe the same binary noisy signal about the action of any given predecessor.

If the noise is sufficiently small relative to the cost of the signal, the net gain to
I2 of investigating is still negative, so she still does not investigate. But now, owing to
observation noise, her action is less accurate than if she were to decide on her own. So
observation of others reduces decision quality relative to informational autarky. (Never-
theless, I2’s welfare is higher than under autarky, as observation of others economizes
on observation costs.)

What about later agents? Agent I3 also just follows I3’s signal about I1’s action.22

The same applies to all later agents, so everyone’s action is less accurate than if they
had decided independently.

22Agent I3 ignores her signal about I2’s action, because she knows that I2 imitated I1 based on the
same signal realization about I1’s action that I3 observes. So if I3’s signal about I2’s action differs from
I3’s signal about I1’s action, I3 knows that this discrepancy must be caused by error in observation of I2’s
action.
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Decisions in groups can become even less accurate if agents observe only the
latest predecessor. In this case noise can compound repeatedly. However, a point is
eventually reached at which an agent again pays to acquire a private signal (Cao and
Hirshleifer (1997)), so there are cyclical shifts in accuracy.

8 Social Learning in Markets

In a market for a product or financial asset of uncertain value, the decision to buy
depends on the price, the agent’s (buyer’s) private information signal, and the decisions
of predecessors that the agent has observed. This raises several questions. Does the price
setting process promote or prevent cascades, including incorrect ones? How should
a seller manage the social learning process? How does social learning affect market
efficiency? What are the welfare consequences of social learning and cascades? We first
discuss the case of monopoly pricing, in which the seller chooses prices to maximize
expected profits, and then turn to competitive price-setting.

8.1 Monopoly

A monopolist may have an incentive to set price low enough to induce a cascade of
buying. The dynamics of prices and buying depend on whether the monopolist must
commit to a single price or can adjust prices in response to observation of early purchase
decisions. We first discuss the fixed price case, which can also apply to products with
menu costs (costs of changing prices; Sheshinski and Weiss (1977)). It also applies to
the sale of equity shares of a firm in an Initial Public Offering (IPO), since a fixed price
per share is mandated by U.S. law. Much of this literature focuses on the case of a seller
who has no private information about the state. In § 8.2 we consider informed traders
in competitive markets.
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8.1.1 Fixed Price Case

Consider a setting that modifies the SBM so that, as in Welch (1992), an uninformed risk-
neutral monopolist who offers to sell one unit of a product to each agent in a sequence
at a fixed price until the monopolist’s supply of the product, n units, is exhausted. The
monopolist’s cost of production is zero. As in the SBM, each agent receives a binary
private signal about the state θ ∈ {0, 1}, which is the unknown value of the product,
and can observe the choices of all predecessors. The net gain to adopting (buying the
product) is the difference between the state and the price. This contrasts with the SBM,
in which the net value of adopting is exogenous. The monopolist is risk neutral and
does not discount the future. We assume that when indifferent the customer buys.

If the price is sufficiently low, the seller induces a buying cascade, selling the
entire inventory, but at a low price. If the price is sufficiently high, a no-buying cascade
ensues. In the intermediate range, the initial agent’s choice depends on her private
signal, in which case her choice provides information about the state to later agents.
Eventually, a cascade will ensue. This cascade can be either a buying or a non-buying
cascade.

From the monopolist’s perspective, demand is fragile. Just a few early agents
with negative signals would cause buying to collapse. In a binary setting, for a sufficiently
low signal precision, the profit-maximizing price is set just low enough that all agents
always buy.

Intuitively, with low precision, even a price just slightly below the unconditional
expected value of the product is enough to induce even an agent with an adverse signal
to buy. It is therefore not worth it to the monopolist to risk the collapse of demand
for a slightly higher price. This implication is consistent with the empirical finding of
underpricing in IPO markets (Ritter and Welch (2002)). However, for higher signal
precision, such underpricing does not occur, since selling to just a few buyers at a high
price is worth more than selling to all at a low price.
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In a setting with a uniform prior on θ, Welch (1992) shows that when the seller
is also informed, a high-signal seller sets a higher price (with higher failure probability)
to separate from a low-signal seller. Welch (1992) focused on cascades in the IPO
market. Empirically, Amihud, Hauser and Kirsh (2003) find that IPO opportunities for
investors tend to be either heavily oversubscribed or undersubscribed, with almost no
IPOs in between. This is consistent with information cascades, in which there is positive
feedback from early investor decisions to later ones.

8.1.2 Flexible Price Case

A monopolist may not be constrained to a fixed price. In Bose et al. (2008), the seller
is risk neutral, uninformed, and can modify the price after observing each buyer’s
decision.23 When buyers have binary signals, the relevant prices to consider offering to
In are a low price that leads to a certain sale and a higher price that results in a sale
only for a high signal. For each buyer, the values of the low and high prices depend on
the actions of preceding buyers.

Bose et al. show that the seller starts with a high price that induces the first
buyer to reveal her private signal. Once enough information is revealed, the value of
further information to the seller is low. Eventually, the seller fixes a low price that
induces a buying cascade. As the seller’s discount factor increases, the value discovery
phase becomes longer, and more information is revealed. In the limit, if the seller has no
time discounting, there is complete value discovery, and the seller earns E[θ] per buyer.
This is the best conceivable asymptotic outcome for the seller, as rational buyers will
never, on average, pay more than their ex ante expected valuation.

23Caminal and Vives (1996) and Caminal and Vives (1999) study social learning about product quality
via market share in a duopoly.
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8.2 Competitive Markets

In contrast with the monopolistic case, cascades do not occur under competitive price
setting when agents have common values. In securities markets, when an agent buys or
sells based on her private information, market prices should change to reflect at least
some of the agent’s private information. This makes it less attractive for an observer to
imitate the trade, which opposes the formation of a buying or selling cascade.

To see this, consider a setting in which each trader receives a signal about
an object with common value θ = 0 or 1. The trader can buy one unit at the market
makers’ ask price A, sell one unit to the market makers at bid price B ≤ A, or not trade.
If market makers are uninformed, each must set A and B such that no trade occurs, as
otherwise they would lose money in expectation. This follows from standard no-trade
results for securities markets with no noise traders (Glosten and Milgrom (1985)). Thus,
trivially, there is no trading cascade.

However, in settings with noise traders (Glosten and Milgrom (1985)), market
makers profit at the noise traders’ expense, and bid-ask spreads are set to accommodate
trading. The adjustment of the market price to reflect private information discourages
the occurrence of buy or sell cascades by making it optimal for traders to use their
private information (see Avery and Zemsky (1998)).

The reason for this is that cascading would cause market makers on average
to lose money, inconsistent with the proposed equilibrium. Specifically, a competitive
market maker must set bid and ask prices equal to the expected values of the asset
conditional on an observed buy order or sell order, respectively. In a buying information
cascade (for example), the buy of an informed trader is uninformative. A noise trader’s
action is always uninformative, and a sell order can come only from a noise trader. So
the competitive market maker must set the bid equal to the ask. The market maker
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breaks even on sells to noise traders, but on average loses money to the informed.24

Avery and Zemsky define a concept in the spirit of cascades which they call
“herds” that is adapted to financial markets. To distinguish from our usage of “herd,” we
refer to this concept as a momentum herd. In a momentum herd, agents do not ignore
their private signals, but make less use of their private signals than they would have
in the absence of social observation. Specifically, an informed trader is in a momentum
herd if the trader’s optimal action is contrary to the optimal action the trader would
have taken had she moved first, i.e., if she had the same private signal realization, no
social information, and faced the initial bid and ask prices.

Momentum herds require going beyond a setting with binary signals and states.
Avery and Zemsky present an example with three states in which momentum herds are
possible. In a more general setting, Park and Sabourian (2011) provide necessary and
sufficient conditions for momentum herds.

Cipriani and Guarino (2014) provide and test a model of momentum herds
using stock market data. They modify the Avery-Zemsky model by dividing time into
days, where each day consists of a finite number of trading periods. There is an
asset whose fundamental value remains fixed during the trading day, and receives
an independent shock at the end of each day. Agents are exogenously ordered and act
once. They observe the history of prices and actions, and in addition each receives a
private signal regarding the value on the day at which they trade. Cipriani and Guarino
estimate the prevalence of momentum herds in their setting. They calibrate their model
to NYSE stock market data and estimate that inefficiencies deriving from incorrect
momentum herds constitute 4% of asset value.25

If there are transactions costs, then in contrast with Avery and Zemsky’s finding,
24For the informed with an ℓ signal to be willing to buy, the conditional expected profit must be zero,

which implies that the informed with an h signal on average profits at the expense of the market maker.
25There is also laboratory evidence that financial professionals from the Chicago Board of Trade tend

to follow the incorrect actions of others instead of their own signals (Alevy, Haigh and List (2007)).
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there can be cascades of no-trade (see Romano (2007) and Cipriani and Guarino
(2008a)). Information asymmetry about the asset value decreases as successive traders
buy or sell. Ultimately, a no-trade cascade starts when the value of an informed trader’s
private information does not justify the expected transaction cost to be incurred.

Lee (1998) considers amodel in which each trader incurs a one-time transaction
cost (perhaps cognitive) that enables her to trade repeatedly based upon a single private
signal. Information blockage can occur, and may be temporary. Each agent In enters
in period n, and after entering, can buy or sell any amount of a risky asset. Owing to
the transaction cost, private information can be sidelined during several periods with
no trading. This quiescent interval is shattered if a later agent trades upon observing a
sufficiently extreme signal. Since multiple signal values can result in the same action
the equilibrium at a given date is an example of a partial cascade as discussed in § 4.
When agents suddenly start to trade, there is a sudden drop or jump in price. Lee calls
this phenomenon an information avalanche.

In contrast with settings with pure common values, when agents have a private
component to their valuations of assets, there can be information cascades of buying or
selling. Even though prices adjust to reflect previous trades, there are cascades wherein,
regardless of private signal realizations, informed traders with sufficiently low private
values sell and those with sufficiently high private values buy. Private values are common
for illiquid assets, such as real estate and private equity. Even for liquid assets, owing
to risk aversion, an agent that is endowed with substantial holdings in a firm places
less marginal value on a share than an agent with no holdings. Furthermore, even
under risk-neutrality, investors who value control rights can place different values on
the shares of a firm.

There are several models in which private values induce information cascades
in asset market trading. In Cipriani and Guarino (2008b), information cascades, both
incorrect and correct, may occur, with no asymptotic learning. A similar result occurs in
Décamps and Lovo (2006), who consider trader heterogeneity in the value of an asset
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deriving from differences in risk aversion and initial endowments.26

9 Learning in Social Networks

Social networks—from word of mouth networks in iron-age villages to modern online
social media—play an important role in the spread of information in human society. In
general, what an agent learns by observing others depends on the agent’s position in the
social observation network. And the overall structure of the network affects aggregate
social outcomes, such as whether there is asymptotic learning. So network structure
provides empirical implications for behavior and outcomes. Accordingly, a large recent
literature models social learning in networks.

Networks increase the complexity of the inferences that agents need to make.
When agents do not observe the whole action history, they potentially learn about the
actions of those that they do not observe from the actions of those that they do ob-
serve. Thus, calculating expected utilities may require taking into account the structure
of the entire social network (Mossel, Sly and Tamuz (2015)). As this places heavy
computational demands on agents, the rationality assumption becomes less plausible.

So, for tractability, network economists often make strong assumptions about
the geometry of the network, and for both tractability and realism, often focus on non-
Bayesian agents. Nevertheless, models with rational agents provide valuable benchmarks
for evaluating the effects of different heuristic behaviors or beliefs.

A key question is how the geometry of the social network affects learning
outcomes. As we will discuss, a general lesson from both rational and boundedly-
rational models is that egalitarian networks—loosely speaking, networks in which no
agent is much more important than others in the geometry of the network—tend to

26Also Chari and Kehoe (2004) find in a common value setting that if agents own investment projects
and have a choice as to when to trade them, information cascades can occur.
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facilitate social learning (Bala and Goyal (1998), Golub and Jackson (2010), Acemoglu
et al. (2011), and Mossel, Sly and Tamuz (2015)).

9.1 Sequential Actions

In this section, we consider models of rational social learning with sequential actions on
networks. Banerjee (1992b) and BHW assume that every agent observes the actions of
all predecessors in the queue. In this simple network structure, each agent In observes
the actions of all of her predecessors Im, where m < n.

A subsequent literature retains the exogenous ordering of actions, but relaxes
the complete observation structure, so that each agent observes only a subset of her
predecessors. We discussed models with this feature in § 6.

To further consider such settings, let In’s neighborhood, Nn, be the set of agents
whose actions In observes before acting. Çelen and Kariv (2004b) study a model in
which Nn = {In−1}: each agent observes only her immediate predecessor. In their
model, the state is equal to the sum of the agents’ private signals. With this state and
network structure, neither herding nor information cascades occurs, but the probability
that later agents mimic their immediate predecessors tends to one.

Acemoglu et al. (2011) introduce a general network structure: the neighbor-
hood Nn of agent In can be any subset of {I1, . . . , In−1}, and, moreover, can be chosen
at random, exogenously and independently. They study asymptotic learning (as defined
in § 4.2) and ask the following question: Under what conditions does In take the correct
action with a probability that tends to 1 as n becomes large? As BHW show, asymptotic
learning does not occur when agents observe all of their predecessors and there are
finitely many signals. Nevertheless, Acemoglu et al. (2011) show that asymptotic learn-
ing is possible even with bounded signals in some networks with incomplete observation
structures.

For example, the presence of sacrificial lambs as defined in § 7—agents who
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are unable to observe others—can induce asymptotic learning. To see this, suppose
that Nn = {} with probability 1/n, and that Nn = {I1, . . . , In−1} with the remaining
probability (n− 1)/n. Sacrificial lambs act according to their private signals only. The
sacrificial lambs choose the wrong action with a constant probability that does not tend
to zero with n. But these mistaken actions become exceedingly rare, as the frequency of
sacrificial lambs tends to zero. The actions of the sacrificial lambs reveal independent
information items to their successors. Because the probability of arrival of a lamb decays
slowly enough, there are infinitely many sacrificial lambs, and the rest eventually choose
correctly with probability one. Acemoglu et al. (2011) provide a more general condition
that ensures asymptotic learning. As in the sacrificial lambs example, this condition
applies to stochastic networks only. Indeed, deterministically placed sacrificial lambs
cannot produce asymptotic learning, since asymptotic learning requires that all late
players choose correctly with high probability.

Acemoglu et al. also show, conversely, that asymptotic learning cannot hold
when some agents play too important a role in the geometry of the network. This happens
when there is a set of important agents {I1, . . . , IM} that are the sole source of social
information for an infinite group of agents. When the signals of the important agents
happen to indicate the wrong action—which occurs with some positive probability—
infinitely many agents follow suit. Along these lines, Acemoglu et al. say that a network
has non-expanding observations if there is some M and ε > 0 such that, for infinitely
many agents In, the probability that Nn is contained in {I1, . . . , IM} is at least ε. In this
case, asymptotic learning does not occur.

Turning to short-term dynamics, Acemoglu et al. (2011) show that social
learning can sometimes induce beliefs that are contrarian with respect to a subset of
predecessors, and as a result, anti-imitation (see also Eyster and Rabin (2014) discussed
in § 6.2). Intuitively, suppose that both I3 and I2 observe I1 only, and that I4 observes
I1, I2 and I3. Then I4 should place positive weight on I3 and I2, and negative weight
on I1 to offset double-counting. So, within a broad stream of imitation, there can be

60



eddies of contrarian behavior.27

Until now we have considered network models in which the neighborhoods Nn

are either deterministic, or drawn independently. Less is known about the case in which
neighborhoods Nn are not independent (as analyzed by Lobel and Sadler (2015)). For
example, a given agent may have a chance of being observed by either everyone or by
no one.

In Arieli and Mueller-Frank (2019), agents are placed on a two or higher
dimensional grid, and the timing of their actions is given by their distance from the
origin. The observation structure is chosen at random according to a parameter p; each
agent is independently, with probability p, connected to each of her grid neighbors who
are closer to the origin. An agent In observes an agent Im if there is a path of connected
agents starting from In and ending in Im. This implies that if In is not observed by
any neighbor, then she would not be observed by any other agent, and so these events
cannot be independent. Therefore this setting is a special case of Lobel and Sadler
(2015), but not of the Acemoglu et al. (2011) setting, since the realized neighborhoods
are not independent.

The authors define a weaker notion of asymptotic learning, which roughly
speaking, is that a large fraction of agents in the limit choose the correct action. Their
main result is that if p < 1 sufficiently large, such learning does occur. As in Acemoglu
et al. (2011), this conclusion is based upon sacrificial lambs. For any p < 1 there is a
constant fraction of agents who observe no other action. The actions of these agents
provide independent information to observers. As p → 1 these agents become more
rare, but the network becomes more connected, delivering this information to a larger
and larger fraction of the population. Thus, learning is achieved as long as there are
some sacrificial lambs, regardless of how few.

An interesting open question is whether there exists a deterministic network
structure in which asymptotic learning is attained for some bounded private signal

27For a formal example, see “Nonmonotonicity of Social Beliefs” in Acemoglu et al. (2011, Appendix B).
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distribution. The sacrificial lamb mechanism by which asymptotic learning is achieved
in stochastic networks does not seem to have an obvious analogue in deterministic
networks. Thus, learning in deterministic networks would have to result from a different
mechanism; it is not known whether such mechanisms exist.

9.2 Repeated Actions

Often in practice people take actions more than once while observing and learning
from others bidirectionally. For example, in online social networks people observe
product choices and lifestyle choices repeatedly over time. As a major deviation from
the sequential learning setting, models of repeated action require different techniques
and generate new insights. We focus on models with rational agents.

Under highly connected observation structures (such as one where there is a
path of observation between any pair of agents), the concepts of herd behavior and
information cascades need to be generalized to apply formally. Following the literature,
we consider more general notions of agreement that capture phenomena that are similar
to herding. Here agreement is the situation in which all agents eventually agree about
what action is optimal. Likewise, we consider notions of learning that capture repeated
action analogues of information cascades. Indeed, herding in sequential models is a
form of agreement, since it occurs precisely when all agents (except a finite number, out
of infinitely many) agree on the optimal action. In an analysis covering a wide class of
social learning models, Mossel et al. (2020) find that agreement and asymptotic learning
are closely related, and provide conditions under which each of these phenomena occur.

The study of agreement in social learning goes back at least to Aumann (1976).
This seminal paper showed that two agents who have a common prior, who receive a
signal regarding a binary state, and who have common knowledge of their posteriors,
must have equal posteriors; agents cannot “agree to disagree.”

Aumann’s model does not consider the dynamics of how agents arrive at
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common knowledge of posteriors. Geanakoplos and Polemarchakis (1982) study how
agreement is reached via social learning. They consider two agents who observe private
signals about a state, and then repeatedly tell each other their posteriors. The authors
show that the agents reach common knowledge of posteriors, and hence their posteriors
will be identical.

Parikh and Krasucki (1990) extend this conclusion to a network setting. They
consider a finite set of agents connected by a network. In each period, each agent In
learns the posteriors of the members of her neighborhood Nn. Under the assumption
that the network is strongly connected,28 Parikh and Krasucki show that the agents reach
common knowledge of posteriors, and hence agree.

This result was extended by Gale and Kariv (2003) to a setting in which each
agent receives a signal at the initial date and then takes an action in each of infinitely
many periods. Agents face a common decision problem at each period: they choose an
action which results in a stage utility that depends on their action and the unknown
state.29 At each period, they observe their neighbors’ actions, but not the stage payoffs.
The agents are assumed to be myopic, so that at each period they choose an action that
maximizes their stage utility. Neighboring agents do not necessarily eventually agree
on actions, even at the limit. But any disagreement is due to indifference. This result
was extended by Rosenberg, Solan and Vieille (2009) to forward-looking agents who
maximize their discounted expected utility.

The mechanism at work here is the imitation principle (also known as the
improvement principle; see Golub and Sadler (2016)), which asserts that in the long
run an agent will be able to do at least as well as an agent that she observes, i.e., a
neighbor. So if an agent disagreed with her neighbor and was not indifferent, she would
believe that this neighbor could do better by imitating her, in contradiction with the
imitation principle.

28The network is strongly connected if there is a chain of neighbors connecting every pair of agents.
29A stage utility is a payoff received in a particular period of a dynamic game.

63



While neighboring agents who disagree must be indifferent, non-neighbors
can disagree without indifference. Consider a network of four agents I1, I2, I3, I4, who
are connected along a chain, with each observing both the agent’s predecessor and
successor (if there is one). It is possible for I1 and I2 to converge to action L, while
I3 and I4 converge to H. In this case I2 and I3 must be indifferent between L and H,
but I1 and I4 need not be indifferent. This happens in the case of binary signals and
actions, when I1 and I2 receive an ℓ signal, I3 and I4 receive an h signal, and the agents’
tie breaking rule is to stick to their preceding-period action. In this case the agents’
actions all immediately converge. After seeing that agent I3 does not change her action,
I2 concludes that I4 got an h, and thus I2 becomes indifferent. Likewise, I3 becomes
indifferent. But I1 does not know that I2 is indifferent: from I1’s point of view, it may be
that I3 is also taking action L. Thus I1 is not indifferent, and neither is I4, and yet they
disagree. In settings with sufficiently rich actions sets, indifference will not occur, but in
practical settings action sets are not always rich.

Even when the agents do converge to the same action, it may be an incorrect
one, so that the agents do not learn the state. In a quasi-Bayesian setting, Bala and
Goyal (1998) show that the learning outcome depends on the network geometry. An
important example of a strongly connected network in which agents may not converge
to the correct action is the royal family network, in which all agents directly observe a
small group, but that small group does not directly observe all others.

A similar phenomenon occurs in a setting with forward-looking, Bayesian
agents who each receive a signal at period 0, and thereafter choose in each period a
binary action with the objective of matching a binary state (Mossel, Sly and Tamuz
(2015)). In a royal family network, incorrect signals received by the royal family can
cause the entire population to eventually adopt the incorrect action. When this happens,
the early period actions of agents in the population are still dependent upon their own
private signals, but this information does not propagate through the network. The
outcome is closely related to information cascades in models with a single action, in
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that social information can eventually cause the agents to disregard their own private
signals.

Conversely, Mossel, Sly and Tamuz (2015) show that in infinite networks that
are egalitarian, even with bounded signals, agents all converge to the correct action. In
their terms, a network is said to be egalitarian if there are integers d and L such that (i)
each agent observes at most d others and (ii) if agent In observes Im, then there is a
path of length at most L from Im back to In. The first condition excludes agents who
obtain large amounts of social information. The second excludes royal families, who are
observed by many of their “subjects” but do not reciprocate by observing their subjects
directly, or even indirectly through short paths.

Thus, both Bala and Goyal (1998) and Mossel, Sly and Tamuz (2015) conclude
that networks in which a subset of agents plays too important a role can hamper the
flow of information, resulting in failures of learning, and that asymptotic learning occurs
in networks in which all agents play a similar role. The mechanism underlying the
failure of asymptotic learning in royal family networks networks is similar to the cause
of cascades in the SBM: many agents choose actions that are heavily influenced by
social information, and thus do not reveal their private signals. In the SBM, this social
information comes from the early agents, who are akin to a royal family in a repeated
actions setting.

The association of egalitarianism with information aggregation also holds in
models with heuristic updating of beliefs. For instance, Golub and Jackson (2010) use
the framework of DeGroot (1974) to study the aggregation of information. In their
model, agents follow DeGroot’s update rule in which agents calculate their posteriors
as the average of those of their neighbors. Golub and Jackson show that over time
the agents’ beliefs will converge arbitrarily close to being correct (for sufficiently large
networks) as long as no agent has too high a degree. This condition can be viewed as
another notion of egalitarianism.

When agents choose actions from a set that is rich enough to reveal their
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beliefs, information is fully aggregated regardless of the network structure (Mueller-
Frank (2014)) for reasons similar to those discussed in § 3. Similarly, information
is perfectly aggregate in the benchmark case of the model of DeMarzo, Vayanos and
Zwiebel (2003) in which agents in a connected social network are interested in a state
θ ∈ R for which all have a uniform (improper) prior. Each agent initially observes
a Gaussian signal with expectation equal to θ. In each period each agent observes
her neighbors’ posterior expectations of θ, and updates her posterior using Bayes’ Law.
Each agent’s posterior is Gaussian, and thus is completely characterized by the agent’s
posterior expectation; the variance depends on the network structure and does not
depend upon signal realizations. The agents converge to the same belief they would
have if they were to share their private signals.30

Frongillo, Schoenebeck and Tamuz (2011) and Dasaratha, Golub and Hak
(2019) consider a similar setting except that the state exogenously changes over time,
agents receive a new signal at each date, and signals have heterogeneous precisions.
Since the state changes, agents cannot learn it exactly. The efficiency of information
aggregation depends on the social network and signal structures. In Dasaratha, Golub
and Hak (2019), information is better aggregated when there is large heterogeneity in
signal precisions, which helps agents filter out stale information that is entangled with
information that is more relevant for the current state.

10 Applications and Extensions

We now turn to several extensions of the basic social learning setting that are tailored to
specific applications. In these applications, theories of social learning offer new insights
into behavior in both market and non-market settings.

30The main result of DeMarzo, Vayanos and Zwiebel (2003) describes the effects of persuasion bias,
wherein agents update beliefs under the mistaken premise that other agents do not observe others.
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10.1 Team Decisions, Optimal Contracting, and Organizational De-
sign

Teams often need to make joint decisions that can be improved by aggregating the infor-
mation of self-interested team members who may observe others’ actions. Information
externalities may hamper information aggregation. Such problems can be addressed
through the design of a communication network and an incentive scheme for the team.
We first discuss settings with rational agents.

As illustrated in the “influencers” example of § 4.4, when better-informed
agents decide first, information aggregation can be especially poor. In such situations,
anti-seniority voting systems achieve better information aggregation, when seniority is
associated with precision.31

Khanna and Slezak (2000) study the choice of network structure—teams versus
hierarchy—for a firm that seeks to aggregate the signals of multiple employees.32 Their
analysis shows that it can be desirable to assign agents to make decisions independently.
This prevents information cascades, and allows a later observer (or more generally,
observers) to obtain better social information. This is similar to the discussion of
sacrificial lambs in § 6.

In Khanna and Slezak (2000), agents can acquire a private binary signal about
the state, which gives information about the profitability of whether or not to adopt a
project. The precision of an agent’s private signal is increasing in costly private effort.
Ex ante identical agents make their investigation decisions before any social observation.
In equilibrium they all choose the same effort level. Each agent’s action consists of a
recommendation (e.g., to adopt or reject). The optimal compensation contract consists
of a wage, a bonus if an agent’s recommendation is correct ex post, and, if agents are
organized into teams, a possible team bonus for a correct recommendation by the team.

31However, Ottaviani and Sørensen (2001) show in a reputational model related to Scharfstein and
Stein (1990) that anti-seniority voting systems can perform poorly.

32We considered more generally the effects of networks on asymptotic learning in § 9.1.
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In teams, agent recommendations are announced sequentially. Owing to social
observation, in equilibrium agents tend to free ride in generating private signals, a
decision that is made ex ante. Furthermore, unless the compensation scheme is heavily
weighted toward individual accuracy, agents tend to cascade on the recommendations of
earlier agents. The compensation scheme may optimally accommodate such cascading;
first-best information generation and aggregation is not attained.

The alternative to teams is hierarchical organization, wherein each agent
reports a recommendation to a higher manager without benefit of social observation.
Hierarchies reduce free-riding in information acquisition, and prevent the formation
of incorrect cascades. This benefit is achieved so long as direct communication among
agents can be cheaply suppressed.33

In a multi-level hierarchy, an alternative to forcing early agents to make recom-
mendations without observing each other is to artificially coarsen their recommendations.
For example, the recommendations of 3 agents can be aggregated into a single overall
adopt/reject recommendation on a project. This makes it unclear to an observer whether
the preponderance in favor of an action was strong (3 to 0) or weak (2 to 1). Such
coarsening can cause a supervisor to whom the agents report to use the supervisor’s
own private information instead of cascading, potentially improving the firm’s decisions
(Arya, Glover and Mittendorf (2006)).

10.2 Stigma, Prestige, and Related Phenomena

Job seekers with gaps in their resumes may be stigmatized, as gaps can be indicative that
previous potential employers have rejected their applications. Kübler and Weizsäcker
(2003) model unemployment stigma in a setting in which employers receive noisy signals
about the quality of potential hires. Unlike the basic information cascades setting, both

33In a similar spirit, Sgroi (2002) analyzes the benefits to a firm of forcing some agents (such as a
subset of customers) to make their decisions early.
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employers and workers can take costly unilateral actions that modify signal precision.
Kübler and Weizsäcker identify an equilibrium in which only cascades of rejection can
occur. There is indeed field and other evidence that employers view gaps in resumes as
indicating previous rejections (Oberholzer-Gee (2008), Kroft, Lange and Notowidigdo
(2013)).

A similar mechanism can result in refusal of kidneys by patients who need
transplants, with kidneys rather than workers being effectively stigmatized. In the U.S.
kidney allocation mechanism, patients are sorted into a queue, in order of severity of
their conditions. When a kidney becomes available, patients are offered it in sequence.
Each patient is offered the kidney only if all predecessors reject it. In the model of Zhang
(2010), patients have heterogeneous preferences as they differ in compatibility with an
available organ and in the urgency of a transplant. There also is a common component
to value; all patients prefer a high-quality kidney. Each patient’s physician provides a
medical judgment about the suitability of an available kidney, i.e., a private signal. If a
patient is offered a kidney after refusals by earlier patients in the queue, she may be in
a reject cascade.

Using data from the United States Renal Data System, Zhang (2010) finds
strong evidence of social learning. Patients draw negative quality inferences from earlier
refusals, causing further refusals. This leads to poor kidney utilization despite a severe
shortage of available organs. There is also strong evidence of social learning in other
health related decisions, such as choice of health plans (Sorensen (2006)).

Research on cultural evolution has hypothesized that the human mind has
evolved to confer prestige upon successful individuals (Henrich and Gil-White (2001)).
In this theory, people who defer to an admired individual benefit from being granted
access to the information possessed by that individual about how to succeed in their
shared environment. If different observers observe different payoff realizations, they
will have different information about who is a good decision maker. So observers can
acquire useful information by observing whom others defer to. This perspective on
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prestige suggests that there can be information cascades in conferring prestige. If so,
prestige may be a very noisy indicator of decision ability. This is an interesting topic for
future research.

10.3 Social Information Use by Animals

Zoologists have developed and applied social learning models, including models of
information cascades, to understand the acquisition of social information by animals for
decisions about mating, navigation, predator-avoidance, foraging, and habitat selection
(see the discussion in BHW IV.B). Several empirical studies of imitation in animals
conclude that social learning and cascades are important mechanisms, as distinct, e.g.,
from payoff externalities. Dall et al. (2005) discuss several proposed examples of animal
information cascades, and Giraldeau, Valone and Templeton (2002) apply the logic of
information cascades to the conditions under which animals optimally acquire social
information.

An extensive empirical literature documents copying in mate choices in many
species, including humans (Witte, Kniel and Kureck (2015)). In an experiment on
mating decisions, female guppies switched their choice of mate to match the choices
made by other females (Dugatkin and Godin (1992)). This is suggestive of overriding of
private signals based on social information, as in information cascades, and of fragility
of behavior in response to an information shock. In a study of mate choice among
sage grouse, Gibson, Bradbury and Vehrencamp (1991) find evidence of imitation and
idiosyncrasy: choices tend to be close to unanimous yet poorly correlated with observable
characteristics of the so-called “lek displays.” In an experiment with human subjects,
seeing someone show interest in a member of the opposite sex was found to cause
observers to rate the object of attention as more appealing (see Bowers et al. (2012)
and the related evidence of Little et al. (2008)). This is consistent with social learning.

70



10.4 Sequential Voting

In primary elections for nominating party candidates for U.S. presidential elections,
early primary election wins cause later voters to support the winner. In consequence,
states that go early, such as Iowa and New Hampshire, exert a disproportionate influence
on final outcomes. This effect is often called “momentum.”

A leading explanation for political momentum is that later voters learn from the
behavior of earlier ones. To measure beliefs, studies have used "thermometer ratings,"
the degree to which survey respondents view candidates favorably. After controlling for
other determinants, more favorable poll results about a candidate are associated with
subjects evaluating the candidate more positively (see Bartels (1988)). This finding is
not explained by strategic voting motives, wherein a voter’s willingness to support a
candidate depends on the voter’s perception of the candidate’s prospects, nor by rational
conformity preference, wherein the voter desires to vote for a popular candidate.

Social learning effects in sequential voting raise the possibility of the occurrence
of some voters sometimes being in information cascades. Of course, sequential voting in
practice involves settings that are more complex than the SBM, so the SBM conclusion
that all agents start to behave identically may not hold. (As Definition 1 makes clear,
information cascades do not necessarily induce unlimited strings of identical behavior.)

While the finding that voters are influenced by poll results is intuitive, equilibria
in settings with sequential voting can be subtle. In a sequential setting in which voters
with private information seek to elect the best candidate, Dekel and Piccioni (2000)
show that there exist equilibria in which voters are not influenced by predecessors’ votes.
However, Wit (1997), Fey (2000), and Ali and Kartik (2012) show that there also exist
equilibria in sequential voting in which voters are influenced by predecessors, resulting
in information cascades.

In the cascade equilibrium, however, agents disregard the actions of prede-
cessors who take an off-the-equilibrium-path action. As Wit (1997) and Fey (2000)
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note, under the reasonable assumption that a voter who breaks a cascade (i.e., off-the-
equilibrium-path action) must have voted her signal, the cascade equilibrium is broken.
However, the cascade equilibrium becomes plausible if we think of the game as one with
even a small chance of observation error.34

Such an equilibrium is consistent with the evidence of voting momentum
mentioned at the start of this section. With sequential voting, early success of a candidate
seems to promote later success owing to favorable inferences drawn by later voters.
Knight and Schiff (2010) document such political momentum. They estimate that voters
in early states had far greater influence than voters in later states on the outcome of
the 2004 U.S. presidential primaries, and that campaign advertising choices took into
account such momentum effects. Moreover, Ali et al. (2008) provide laboratory evidence
that suggests possible cascading behavior in sequential voting.

Battaglini (2005) modifies Dekel-Piccione’s model to allow for a third choice –
to abstain, and a cost of voting. With even a small cost of voting, Dekel and Piccione’s
conclusion does not hold: equilibrium outcomes in the simultaneous voting game are not
supported as equilibria of the sequential voting game. So the argument provided by Dekel
and Piccione for the existence of a non-cascades equilibrium in the sequential voting
game does not carry through to a setting with voting costs. Furthermore, Battaglini shows
that information aggregation is worse under sequential voting than under simultaneous
voting.

Alternatively, if voting is costless, but voters have a direct preference for voting
for the winner (not just for the best candidate), social learning results in information
cascades (Callander (2007)). This illustrates a more general point: that information
cascades and preference effects can reinforce each other in producing behavioral con-
vergence. In Callander’s model the preference is for supporting a winner, which in that

34Intuitively, when an agent sees a deviation from the cascade action, the observer may conclude
that this is a false observation. Alternatively, deviations may be ignored if the observer believes that
occasionally players may have unobservable deviant preferences.
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setting is equivalent to a direct preference for conformity.

10.5 Changing States and Fads

The world is continually changing, so the best action to take also fluctuates over time.
For example, competing web browsers sometimes leapfrog each other in functionality
for users. Suppose that the state of the world determines which action is better, and
that this state shifts over time. In such a setting, the mere possibility that a shock to
the system (that is, a change in the true value of an action) could occur can be enough
to dislodge a cascade, even if the shock does not actually occur. In consequence, the
probability of actions shifting can be higher than the probability of the state shifting.

To see this, consider a setting as in the SBM except that just before I101’s
decision, the state is newly redrawn with probability 0.10, and remains fixed thereafter.
So the state changes with probability 0.05. The possibility of a value shift breaks the
cascade; I101 optimally follows her own signal. So the action often shifts even when the
state does not. Eventually the system must settle into a new cascade—one that need not
match the old one. It is easy to show that the probability of a cascade reversal is a little
over 0.0935 ≫ 0.05 (see BHW). So the probability that the cascade shifts is 87% higher
than would be the case under full information. BHW refer to such volatile outcomes as
fads.

What if there is a probability each period that the state shifts? Then if the
probability is not too large, there are still cascades. However, these cascades are transient;
over time the social information in any cascade grows stale and some agent eventually
returns to using her own signals (Moscarini, Ottaviani and Smith (1998) ). Huang
(2022) shows that the changes in action can be more frequent than the changes in
state. In settings with repeated actions, it has also been found that the probability of
change in the preponderant action can be either less than or greater than the probability
of a change in state (inertia or impulsiveness respectively; see Hirshleifer and Welch
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(2002)).

A fruitful further direction is to study whether something akin to fads occurs in
social learning settings in which information cascades do not occur. A further interesting
direction would be to study the determinants of fads and the stability of conformist
social outcomes. For example, it might seem that less stable environments would be
more fad-prone, but this is not obvious. A greater probability of state shift need not
imply a greater excess probability of action shifts relative to the probability of state shift.

10.6 Law, Politics and Revolutions

A common interpretation of the legal norm for respect for precedent (stare decisis), at
least since Oliver Wendell Holmes, is that judges acquire information from past decisions.
Several legal scholars and economists have modelled respect for precedent as a form
of social learning involving information cascades (Talley (1999) and Daughety and
Reinganum (1999); see also Vermeule (2012)). Daughety and Reinganum (1999) also
offer possible examples of actual precedential cascades among appellate courts.35 These
authors discuss the likely prevalence and stability of precedential cascades in different
contexts. We discuss legal precedent more extensively in the Online Appendix, §A.3.

Turning to politics and revolutions, when citizens publicly protest or revolt
against their government, the actions of early individuals convey information about the
prevalence of dissatisfaction, and of the risks of government sanctions. So there can be
positive feedback in submission or resistance to the regime.

In Kuran (1987, 1989), there is a pressure toward conformity, and agents have
35To the extent that stare decisis is mandated, a court may feel pressured to follow precedent rather than

doing so for purely informational reasons. However, courts do sometimes deviate from precedent, perhaps
because there can be gray areas in the applicability of a precedent. So this pressure is not absolute. The
pressure of stare decisis as a social norm presents a challenge for empirically identifying informational
effects. At a deeper level, social learning may explain why the norm of stare decisis originally emerged in
common law legal systems.

74



publicly-declared preferences that differ from their actual preferences. This can support
the survival of oppressive regimes. Lohmann (1994) models belief updating to analyze
the maintenance and collapse of political regimes as information cascades.

In Lohmann’s model, agents have different preferred policies, and derive
disutilities when the government’s policy differs from their the preferred ones. All
agents know the probability distribution of preferred policies. Each agent receives a
binary signal about the level of the future policy that will be selected by the current
regime. Each agent in sequence has the opportunity to protest to promote an alternative
regime that will implement policies that are potentially closer to the agent’s preferred
one. Each agent also has a disutility component from protesting which decreases with
the number of fellow protestors (a “safety in numbers” effect). The existing regime
collapses if enough information is revealed to show that more than some critical number
of individuals support an alternative regime.

Lohmann applies the model to the Leipzig protests against the communist
regime in East Germany during 1989-91. In her analysis, even a small protest, when
larger than expected, can reveal strong opposition to the regime, causing the size of
the protest to grow explosively. By the same token, when a large protest is expected, if
the protest falls modestly short of expectations, the movement can suddenly collapse.
Lohmann argues that a dynamic information cascades model helps explain the successful
popular uprising against the communist regime in East Germany over five cycles of
protests.

In a model of democratization, repression and regime change of Acemoglu
and Robinson (2006), a repressive regime run by the rich can to stave off revolution by
making concessions to the poor. Some fraction of the wealth is destroyed in a revolution,
which limits the incentive of the poor to rebel.

Ellis and Fender (2011) combine features of Lohmann’s model with those of
Acemoglu and Robinson (2006). In the Ellis and Fender model, the poor have private
information about regime strength. In what we call the L state, a revolution would
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destroy a higher fraction of the wealth to be appropriated by the poor than in the H

state, making it less attractive for the poor to revolt in state L. So the regime is stronger
in the H state than in the L state.

In the case of interest, the rich set the tax rate such that the poor would like to
revolt if they knew that the state was H and not revolt if they knew the state was L.
If the poor are not granted the franchise, based on their private binary signals, poor
agents (hereafter, “agents”) decide in sequence whether to rebel against the regime. All
actions are observable. By assumption, a revolution occurs only if every agent rebels.
At first, an agent with an h signal rebels, whereas an agent with an ℓ signal does not,
thereby vetoing the rebellion. However, after a sufficiently long sequence of rebels (i.e.,
h signals), even an agent with an ℓ signal rebels. So revolution occurs as an information
cascade.

10.7 Group Adoption of Conventions

Social conventions are sometimes transmitted from one group to the other. When
there is limited observation across groups, distinct cascades of individual decisions can
temporarily form. In Fisher and Wooders (2017), two SBMs (groups) run in parallel. A
single agent, is common to both groups, and observes the actions of all predecessors in
each group. Every later agent is in only one of the two groups. In the model, even very
limited overlap in membership between groups can result in an information cascade
jumping from one group to another.

10.8 Belief Cascades

Several authors have suggested that the dynamics of public opinions, such as the rise and
fall of ideologies, and conspiracy theories, and the spread of fake news, are information
cascades (Kuran and Sunstein (2000), Sunstein (2019, p.50)). In the context of social
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media, a possible pathway could be the binary decisions of whether or not to like or to
forward a news item, making information cascades possible.

However, people often express opinions going beyond a binary choice to like
or forward. This raises an important question which that we have not considered so far:
are there information cascades in publicly expressed beliefs? In Online Appendix A.2,
we provide a simple extension of the SBM in which belief cascades occur. In this setting,
the action taken by agents is to make binary public reports about their beliefs, choosing
the report that aligns most closely with their beliefs. Agents observe the reports of all
predecessors before making their decisions. We define a belief cascade as a situation
in which, having received the reported beliefs of some set of predecessors, an agent’s
reported belief is independent of the agent’s private signal. In the model here, belief
cascades occur, for the same reason that cascades occur in the SBM or in §4.

The key motivation for such a model is that people often communicate in coarse
categories, such as binary partitions. When asked about a model of car, people often say
that they like or dislike it, as opposed to reporting intensities of liking on a continuum,
detailed reasons for their opinions, or probability distributions over which model is the
best. Such digitized communication is inevitable owing to limited time and cognitive
resources of speakers and listeners.

Whether belief cascades occur in practice is an empirical question. A possible
application is to the spread of scientific claims. Since it is costly to read original source
articles in detail, scholars often rely on descriptions of the original findings in later pub-
lications. Greenberg (2009) provides bibliometric evidence from the medical literature
about the spread via chains of citations of unfounded scientific claims. The broader
message is that a rich direction for future research is the application of social learning
theory to the decision of which beliefs to publicly espouse.
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11 Further Directions

We next discuss avenues for future theoretical research on information cascades and
social learning.

11.1 Information Design

A fruitful direction for further exploration is the problem of information design with
sequential social learning. One possible purpose could be to improve social welfare. We
have seen that this can sometimes be achieved by assigning some agents to be sacrificial
lambs. Alternatively, a manager or a seller can design or influence the signal structure
or the observation network to achieve private objectives. This amounts to a form of
sequential Bayesian persuasion (Kamenica and Gentzkow (2011)).

Several of the papers we have discussed have some form of information design,
as when a monopolist sets prices to influence the decisions of early buyers who in
turn influence later buyers; or when a principal designs an organization’s observation
structure to motivate agents appropriately (Welch (1992)), Bose et al. (2008), and
Khanna and Slezak (2000). In these papers, the principal does not directly provide
signals to agents. More generally, a principal may direct information to agents, perhaps
dynamically as a function of past actions and outcomes (see, e.g., (Kremer, Mansour
and Perry (2014); Che and Hörner (2018)). This is a promising path to pursue.

As discussed later in § 11.2, public discourse can be modeled as a part of a
social learning process in which beliefs are transmitted to others. The internet has
given firms much more flexibility to design social media platforms to influence who
observes whom, and to curate what (mis)information an agent sees. This includes users’
verbal opinions, recommendations, and anecdotes, as well as visual, aural, and even
physiological traces. So the design of institutions to shape social learning is central to
modern value creation and public policy. This has led to much debate about the design
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of social media algorithms.

Several questions about information design are being actively investigated. How
does the introduction of bots and fake postings affect social learning? When do principals
benefit from the ability to commit to fix their own actions and/or platform structures?
How do the interests of social media platform owners diverge from maximizing social
welfare, and can regulatory policies address such divergence?

11.2 Imperfect Rationality

Some models of imperfect rationality in social learning allow for overconfidence or for
agents misestimating the extent to which others are observing predecessors. In models
with repeated actions on networks, the common assumption of myopia can be viewed
as weakening the assumption of forward-looking rationality (Gale and Kariv (2003)).

As discussed in § 6.2, biases that cause agents to be more aggressive in using
their own signals tend to improve social information aggregation, whereas biases in the
opposite direction worsen it. This suggests that the relative success of individuals and
groups may depend upon the group’s distribution of psychological agent types (e.g.,
Bernardo and Welch (2001)).

The distribution of psychological types affects both the speed of social learning
and whether there is asymptotic learning. In evolutionary settings, the success of indi-
vidual types depends on a balance between the direct benefit of having a psychological
trait versus the benefits to being in a group in which others have that trait. It would be
valuable to explore how this tension affects the extent to which imperfectly rational types
survive. The survival of different psychological types (e.g., the degree of neurodiversity)
can affect welfare in many ways. For example, types that heavily use their own private
signals are informationally helpful to others.

Owing in part to different assumptions about the form of imperfect rationality,
existing models (Bohren (2016), Bohren and Hauser (2019), Frick, Iijima and Ishii
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(2020)) obtain dissonant conclusions about whether small biases have large effects. In
models with large effect, biases can be socially amplified, generating even larger and
more persistent effects on social outcomes, such as failures of asymptotic learning. Such
social amplification suggests that policy interventions may also have large multiplier
effects.

Another question is how imperfectly rational social learning influences boom/bust
dynamics in activities such as investments or mergers and acquisitions. We have dis-
cussed rational models of booms and busts (Chamley and Gale (1994)), including
some within market settings (Lee (1998)). However, many observers have argued
that imperfect rationality contributes to booms and busts, as in the models of Bohren
and Hauser (2019) and Hirshleifer and Plotkin (2021). It will be valuable to perform
empirical testing with a view toward developing models that reflect the institutional
facts of applied settings in a more granular way.

An especially rich direction is to analyze how social learning and information
cascades influence public discourse. This may provide insight into the spread of spread
of political and religious ideologies, folk economic thinking, and conspiracy theories.
The wide availability of textual and social media databases in turn offers rich data to test
hypotheses about social learning and misinformation. The model of belief cascades in
§ 10.8 (in which belief reports play the roles of actions) is a possible initial step. A further
direction will be to incorporate a wider set of psychological biases that influence human
communication. These include neglect of selection in what others choose to assert, and
confirmation bias. Such analysis can provide insight into why in some domains discourse
grows ever more sophisticated (as in the scientific scholarly community), whereas in
others discourse remains persistently naïve (as with much political discourse).
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11.3 Repeated Actions

We discussed the nascent literature on repeated actions by Bayesian agents in § 9.2. It
will be useful to explore further the speed of learning in such settings (see Harel et al.
(2021)) and the question of which social networks promote more efficient information
aggregation deserves (Golub and Jackson (2010); Mossel, Sly and Tamuz (2015)).

A new strategic incentive that arises when agents act repeatedly is to induce
others to convey useful information. For example, an agent whose private information
opposes the agent’s social information can benefit from following private information,
even if that reduces the agent’s current payoff, if that can induce others to take more
informative actions. The topic of strategic information incentives is almost completely
unexplored (but see the “mad king” example in Mossel, Sly and Tamuz (2015)).

Only a handful of papers consider social learning with repeated actions and
a changing state (see Frongillo, Schoenebeck and Tamuz (2011) and § 10.5 on fads);
even fewer do so in a repeated action setting (Dasaratha, Golub and Hak (2019)). Many
interesting questions remain unexplored. In a steady state, how well attuned are actions
to state? How does this concordance depend on the private signal structure, or on
deviations from rationality? How quickly does the preponderant action change after a
change in state?

11.4 The Speed of Learning

Most existing research emphasizes whether or not asymptotic learning occurs, rather
than how quickly learning occurs (but see the recent exceptions noted in § 4.3). Under
a social welfare function with discounting, it becomes vital that learning occur quickly,
not just asymptotically. Information externalities impede that objective by delaying
learning. Research is starting to explore how closely outcomes can approach an efficient
benchmark (Chamley (2004a); Smith, Sørensen and Tian (2021)).
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An issue for further exploration is the extent to which the principle of coun-
tervailing adjustment (§ 6.1) reduces the sensitivity of the speed of learning to the
parameters of the learning process. Intuitively, parameter shifts that have a direct effect,
at a given point in time, of making social information more accurate will tend to make
the given agent’s actions depend more weakly on her own private signal. This can
oppose the direct increase in social information induced by the exogenous shift.

11.5 Payoff Externalities

In addition to the information externalities considered so far, there are sometimes also
externalities wherein an agent’s action directly affects the payoff of another agent. A topic
that merits further exploration is the interaction between direct payoff externalities,
social learning, and information cascades. Veeraraghavan and Debo (2011) model
congestion (a negative externality) as the cost of waiting in a queue with random service
times. The queue length conveys favorable information about the value of the service
provided, so under some conditions there can be cascades on joining the longer queue.
Eyster et al. (2014) describe how negative externalities prevent the convergence of
agents to one action and improve social learning despite the continued occurrence of
incorrect information cascades. Other analyses of social learning with payoff interactions
are discussed extensively in Chamley (2004b). Since queues and congestion are very
important in practice, future research is likely to explore these issues with assumptions
that are more fully attuned to various applications.

12 Conclusion and Empirical Testing

Social learning and information cascades have offered a new understanding of three
phenomena. First, individuals who learn by observing others often converge to the
same action. Second, individuals who in the aggregate possess extensive information
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converge surprisingly often on an incorrect action, or only very slowly on the right one.
Relatedly, there is path-dependence in social outcomes. Third, people are often attached
to popular actions loosely, resulting in fragility of mass outcomes, and fads.

The analysis of social learning uncovers effects that differ from most of tra-
ditional information economics. Information economics focuses mainly on strategic
motives as the actions of agents directly affect the payoffs of others. In contrast, in much
of the social learning literature, externalities are purely informational. Thus, central
topics of much of information economics, such as adverse selection and moral hazard,
are not the main drivers of most social learning models.

The social learning literature provides a rich set of insights using different
modeling assumptions, including the possibility that agents choose when to act, whether
to acquire private signals, or making trades in a marketplace. Recent work has opened
new vistas by analyzing cases in which agents take repeated actions, are imperfectly
rational, or observe others in complex social networks. Several rich directions for future
research are discussed in §11.

Although this review has focused on theoretical research, we now briefly discuss
empirical considerations. A general challenge for empirical testing of social learning
theories is that conformity can derive from many possible sources. These mechanisms
include independent observation of the same information, a direct preference for con-
forming to the behavior of others, sanctions upon deviants, positive payoff externalities,
and social learning.

Much research on testing for social influence (often called “peer effects”)
examines conditions for identification in the absence of information about the sequencing
of actions. Manski (1993) describes the “reflection problem,” which is that in certain
simple social influence settings, empiricists cannot infer from the average behavior alone
whether this average has influenced the decisions of group members. A further literature
shows, however, that relatively modest restrictions on the structure of social influence
allow identification of peer effects based on observations of individual behaviors, or
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even from average behaviors of groups (Blume et al. (2015)).

Data with information about the order in which agents act provides valuable
further restrictions, since early agents influence later ones rather than vice versa. How-
ever, sequencing information alone does not necessarily fully identify social learning
effects, since there can be unobserved external causes. Further possible partial identifi-
cation derives from examining the effects of aggregate shocks, such as the prediction
of the information cascades setting that outcomes are fragile. This contrasts sharply
with settings in which conformity derives from positive payoff externalities, positive
preference interactions, or from sanctions upon deviants; in such models, small shocks
typically have small effects.

There are other possible means of identifying social learning effects. Often
there are negative payoff externalities from following the same action, as with people
joining a queue for the same restaurant or takeover bidders vying for the same target firm.
In such contexts, observation of homogeneous behavior rules out payoff externalities as
the dominant force, though it does not uniquely pinpoint social learning as the cause of
conformity.

Some studies identify social learning using data on the structure of private
information signals, or on the observation network, or design such elements within a
laboratory or field experiment. Early laboratory experiments about social learning by
Anderson and Holt (1997) provide evidence that information cascades occur, but also
provide evidence of deviations from rational behavior.36

Several developments have created exciting opportunities for empirical testing
of social learning effects. First, social media and other electronic databases now pro-
vide information about the network of social observation, such as the Facebook Social

36Many studies find that, inconsistent with rationality, subjects tend to overuse their private signals,
which can break information cascades (see, e.g., Weizsäcker (2010)), consistent, e.g., with Bernardo and
Welch (2004)). When agents over-rely on their private signals, we still expect cascades to form, even if
there tends to be greater information aggregation.
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Connectedness Index (Bailey et al. (2018)).

Second, social learning theories have traditionally been challenging to test
because of lack of data on agents’ private information signals. However, in recent
years, textual and in some cases social-network data provide proxies for the information
signals available to different agents or the beliefs that such agents have formed. Such
proxies have been used to study the effects of language, images, and video on economic
outcomes (see the review of Nekrasov, Teoh and Wu (2023)).

Third, field experimentation promises to address the external validity of lab-
oratory tests. Salganik, Dodds and Watts (2006) provide evidence of social influence
in song downloads in a field experiment on music marketplaces. Other research tests
for social learning in the context of economic development (see, e.g., Banerjee et al.
(2013)).

For all these reasons, empirical testing is playing an increasingly important
role both for testing existing models and stimulating new theorizing. Testing the
predictions of information cascades and social learning models outside the lab remains
an important research challenge. An interesting direction for further exploration is
whether conformists or deviants from the predominant action make better decisions.
In some empirical settings, agents’ actions and payoffs are indeed observable to the
researcher. The answer to this question differs across models, so addressing it empirically,
may help distinguish alternative mechanisms of social influence.
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A Online Appendix

§A.1 provides discussion related to Section 6 on limited communication or observation of
past actions. §A.2 describes a simple model of belief cascades, relating to the discussion
in §10.8. §A.3 discusses legal precedent and information cascades, relating to the
discussion in §10.6.

A.1 Further discussion of §6 on limited communication or observa-
tion of past actions

In the next two subsections, we discuss imperfectly rational models, as referred to in
§ 6.2.3, that make direct heuristic assumptions about the agent’s mapping from observed
actions and payoffs into the agent’s actions. Then, in § A.1.3, we discuss a rational
setting with partial communication of past signals.

A.1.1 Heuristic action rules based on observation of averages of past payoffs and
of action frequency

If rational agents could observe the average payoffs experienced from possible actions
undertaken by many in a large population, they would always choose the right action.
However, it is possible that agents fall short of rationality. In the model of Ellison and
Fudenberg (1993), there is a continuum of agents, where each period some given
fraction of them has the opportunity to update their choices. Agents observe the
average payoff of the two actions in the population from the previous period, and their
popularities. Agents use rules of thumb for updating their actions, which take the form
of specified probability of switching action based on these two variables. The paper
explores conditions on the weighting of these considerations that promote or hinder
long-run correct decisions.

101



A.1.2 Heuristic action rules based on sampling of past actions and payoffs

In Ellison and Fudenberg (1995), there is a large number of agents who take simultane-
ous actions at each discrete period. Each period, some fraction of agents exogenously
stick to their current action, and the remainder observes an unbiased sample of the
latest actions and payoffs of N and choose action based on this and based on their own
latest payoff. Agents follow the following heuristic decision rule. If all the agents in an
agent’s sample takes the same action, the agent follows that action. If both actions are
selected by at least one agent in the sample, the agent chooses whichever action has
higher average payoff based on observed reports and the agent’s own latest experienced
payoff.

When the sample size N is small, learning from the experience of others causes
the system to evolve to universal adoption of the correct action. In contrast, when the
sample size is large, there is strong pressure toward diversity of behavior.37 So the
system never fixes on the correct action. This analysis is valuable in illustrating how
non-obvious interesting conclusions about efficiency derive from reasonably plausible
heuristic assumptions. On the other hand, when there is a ‘split decision’ in an agent’s
sample, it would be reasonable for an agent to take into account that a preponderance
of 99 Adopts to 1 Reject (for example) might suggest almost conclusively that adopt is
superior.38 This would tend to oppose the diversity effect discussed above.

A.1.3 Recent past signals observable

The SBM and the BHW model are based on the premise that agents do not directly
communicate their private signals. If the signals of agents are fully communicated to
their followers, learning would be efficient, and there would be asymptotic learning.

37This is because if one action is very unpopular, with large N many adherents of the more popular
action “hear about” the unpopular one and potentially convert to it.

38Ellison and Fudenberg consider a related effect which they call ‘popularity weighting.’
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In many practical contexts, more information is indeed transmitted than just
action choices. For example, people are often free to talk about their private information,
though owing to time and cognitive constraints, such communication may be imperfect.
This raises the question of whether incorrect cascades still occur, and whether there is
asymptotic learning.

We consider here the possibility of limited communication of private signals.
Every private signal is directly communicated, which in principle could bring about
asymptotic learning. However, we consider a case in which each signal is passed on to
just one other agent, and provide an example in which incorrect cascades still form and
last forever.

Consider the SBM of Section 2, except that in addition to observing all past
actions, each agent observes the private signal of the agent’s immediate predecessor. In
contrast with the SBM, we assume that when indifferent, each agent always follows her
own signal. This assumption is convenient but not crucial.

After actions HH or LL, I3 infers that the first two signals were hh or ℓℓ

respectively, and falls into a cascade which could easily be incorrect. This cascade can
be broken. To see this, suppose that the first two actions are HH, and that I3 observes
ℓ. So I3 chooses H. If I4 observes ℓ, this combines with observation of I3’s ℓ to make I4

indifferent, so I4 rejects, breaking the cascade.

Consider next the case in which I3 observes h as well. Now, I4 adopts, because
I4 knows that the first 3 signals were all h. At this point the cascade of adoption continues
forever. I5 knows that the first two signals were hh, and that the third and fourth signals
were not ℓℓ. (I.e., they were either ℓh, hh, or hℓ.) So the net evidence in favor of state
H is at least slightly stronger than two h signals. So even in the worst case in which
I5 directly observes two ℓ signals (I5’s and I4’s signals), I5 strictly prefers H. Similar
reasoning shows that all subsequent agents adopt.

The general point that inefficient cascades can form and last forever does not
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require this tie-breaking convention.39 Intuitively, the ability to observe the predecessor’s
signal is a double-edged blade. The immediate effect is to increase an agent’s information,
which increases the probability that an agent decides correctly. But to the extent that
this is the case, it later makes the action history more informative. That eventually
encourages later agents to fall into a cascade, which blocks asymptotic learning.

In particular, the action sequence becomes informative enough that agents fall
into cascades despite their access to an extra signal from the predecessor. The actions
history eventually overwhelms an agent’s information (even inclusive of observation of
a predecessor’s signal), at which point the accuracy of the social belief stops growing.

Another way to think of this is that being able to observe predecessors’ signals
is somewhat like being able to observe multiple private signals instead of one. This
does not fundamentally change the argument for why incorrect cascades form—that
the accumulation of information implicit in past actions must eventually overwhelm the
signal(s) of a single agent.

A.2 A Model of Belief Cascades

We provide here a simple model of belief cascades (cascades of reported beliefs), as
described informally in §10.8.

In the SBM, agent In’s belief p̂n about the state is a continuous variable. Suppose
that we extend the SBM by having each agent directly and truthfully communicate
a report of her belief (probability assessment) to the next agent. Then each agent’s
private signal always influences the next agent’s belief, so no agent is ever in a cascade
of reported beliefs. However, in alternative settings there can be cascades—including

39The following modification illustrates the point in a setting with no ties. Suppose that agents differ
very slightly in their precisions, and that agents act in inverse order of their precisions, from low to high.
Now agents are never indifferent. Agents who are close to indifference strictly prefer to follow their own
signals, and the same analysis holds.
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incorrect cascades—in reported beliefs. We focus on one possible source of belief
cascades, based upon discreteness in the communication channel.

People often communicate in coarse categories, such as binary partitions.40

Similarly, when asked for a suggestion about a movie or restaurant, or when discussing
political topics, people often just name the preferred option, or say that an option is
“hot” versus “sucks;” or “cool” versus “bogus.”

To capture such limited bandwidth in the communication of beliefs, we consider
a setting in which agents make decisions in a commonly known deterministic sequence,
and each agent Im observes the actions of some subset of the agent’s predecessors.41

Suppose that the action of each agent In is to report a binary indicator of state, an ∈
{L,H}.

We interpret the report an as the reported belief about the state. We will view
reported belief L as a claim that the state is probably L, and reported belief H that the
state is probably H.42 This could take the form of expressing that “Candidate H will
win the election" or “Candidate H will lose the election." Specifically, In reports belief
L if her true belief p̂n < 0.5, reports H if p̂n > 0.5, and follows some indifference rule,
such as flipping a coin between reporting L or H, if p̂i = 0.5. This reporting rule can be
endogenized if agents desire a reputation with receivers for making good reports.

As defined in the main text, a belief cascade is a situation in which, having
received the reported beliefs of some set of predecessors, an agent’s reported belief
is independent of the agent’s private signal. A belief cascade is also an information

40As the well-known hedge fund manager and self-improvement author Ray Dalio put it, “It is common
for conversations to consist of people sharing their conclusions rather than exploring the reasoning that
led to those conclusions.”

41Alternatively, each agent might also recall and pass on the history of all beliefs that have been reported
to that agent. If signals are discrete, such a setting would effectively be equivalent to the model of BHW.

42A possible behavioral extension of the model would be to have the reports sometimes understood
naively by receivers as indicating that the state is L or H for sure. If, with some probability, receivers
make this mistake, information cascades can start very quickly.
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cascade, as defined earlier, since the reported belief an can be interpreted as the agent’s
action.

In this model, if signals are bounded, then as in § 4, asymptotic learning can
fail; even in the limit, reported and actual beliefs can be incorrect. Furthermore, if
signals are also discrete, then for reasons similar to those of the model of BHW, there
are incorrect belief cascades (see footnote 41).

In themodified SBM example above, belief cascades derive from communication
bandwidth constraints. However, belief cascades may also derive from other possible
mechanisms. In models of message sending with payoff interactions, message senders
sometimes strategically report only coarsened versions of their beliefs (Crawford and
Sobel (1982)). This raises the possibility that sequential reporting might result in
cascades, which is an interesting topic for future research.43

A.3 Legal Precedent and Information Cascades

A common interpretation of the norm for respect for legal precedent (stare decisis), at
least since Oliver Wendell Holmes, is that judges acquire information from past decisions.
In the models of Talley (1999) and Daughety and Reinganum (1999), this takes the
form of imitation of decisions across courts (see also Vermeule (2012)). Daughety
and Reinganum (1999) model imitation in which courts at the same level observe

43Alternatively, in behavioral models with dual cognitive processing, an agent consists of two selves
(sometimes called the “planner” and the “doer”) who face distinct decision problems. This can correspond,
for example, to the System 2 versus System 1 thinking distinction of Kahneman (2011). Suppose that
the planner rationally updates and assesses probabilities, and, when p̂i > 0.5 instructs the doer that the
state is H, and, when p̂i < 0.5 instructs the doer that the state is L. Such simplified instructions may be
needed owing to limited cognitive processing power of the doer, who may face problems of distraction
and time constraint. If people are typically in “doer” mode when engaged in casual conversation with
others, then only the coarsened information is reported. This would again result in cascades in reported
beliefs. Furthermore, these reported beliefs correspond to the genuine beliefs of people when in doer
mode.
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private signals about a binary state. This state indicates the single correct decision
for a set of related cases to be considered by these courts. (The context is appellate
courts that receive related cases.) The courts act in exogenous sequence. If signals are
bounded, imitation across the courts results in information cascades. Even if signals
are unbounded, there is a high probability of extensive imitation, resulting in poor
information aggregation. The authors offer possible examples of actual precedential
cascades among appellate courts.44

Talley argues that the conditions for cascades to occur in the precedential
context are highly restrictive, in part because judges can relay granular information via
written opinions. However, owing to limited time and attention, later courts may place
heavier weight upon early decisions than upon the nuances of written opinions.

Daughety and Reinganum emphasize that incorrect cascades can be persistent,
despite the finding of BHW that cascades are fragile, because of the rarity of shocks that
might dislodge a judicial cascade. As discussed in § 2, informative public disclosures
can dislodge cascades. However, the authors argue that in the U.S. judicial setting, such
shocks take the form of cases being brought to the Supreme Court despite harmonious
decisions of lower courts. Such review is rare, because the Supreme Court needs to wait
for cases to be appealed, and because decisions that are harmonious across courts are
rarely reviewed.

Sunstein (2009) argues that the adoption of legislation sometimes takes the
form of information cascades across nations. Sunstein also argues that legal resolution
of constitutional questions, such as the once-common, now rejected, view that the U.S.
Constitution permits racial segregation, may be the product of information cascades.

44To the extent that stare decisis is mandated rather than just a description of court behavior, a court
may feel pressured to follow precedent rather than doing so for purely informational reasons. However,
courts do also deviate from precedent, perhaps because there can be gray areas in the applicability of a
precedent. The pressure of stare decisis as a social norm presents a challenge for empirical testing for
informational effects. At a deeper level, however, social learning may explain why the norm of stare
decisis originally emerged in common law legal systems.
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