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1 Introduction

Social media has become a major source of information for many Americans. Leading up to the

2016 US presidential election, around 14% of Americans indicated social media as their primary

source of news (Allcott and Gentzkow (2017)), and by 2019, over 70% of Americans reported receiving

at least some of their news from social media (Levy (2021)). At the same time, there is growing

concern about viral misinformation in social media, including made-up news stories such as those

claiming that there were no mass shootings under Donald Trump or that Hillary Clinton approved ISIS

weapon sales.1 Some recent evidence also suggests that misinformation on social media has impacted

critical decisions such as vaccinations against COVID-19 (see Pennycook et al. (2018); Pennycook et al.

(2020b)).

Although there is yet no consensus on what promotes the spread of falsehoods and misleading

content on social media, two sets of factors have been emphasized. The first is the presence of

echo chambers, which arise when individuals communicate and share content with like-minded users

(Sunstein (2018), Lazer et al. (2018)). Törnberg (2018) and Vicario et al. (2016) show that echo chambers

reinforce existing political viewpoints and tend to propagate misinformation. Social media, much

more than traditional media, allows individual users to choose who and what they listen to, and thus

echo chambers may be an unavoidable side effect. However, there is also evidence that echo chambers

are a result of the “filter bubbles” that platform algorithms create (see Levy (2021) on Facebook). The

second factor conjectured to have fueled misinformation is the general political polarization in many

countries, and especially the United States,2 and there is some preliminary evidence suggesting that

polarization has contributed to selective exposure to questionable content on social media as well

(Guess et al. (2018)). Despite the importance and salience of these issues, we do not currently have

a framework to understand how online interactions impact the spread of misinformation and what

factors shape incentives for sharing low-reliability content.

In this paper, we develop a parsimonious model of online sharing behavior in the presence of

misinformation, and as a first step, we focus on the behavior of fully Bayesian agents.3 Our model

is inhabited by a set of N agents, each of which has a prior about the state of the world (“ideological

bias”), and is connected to the rest of the users via a network, which is given by agents’ friends and

acquaintances, and is also shaped by the algorithms of the social media platform. A news article,

defined by an underlying type (truthful or containing misinformation), a message (right-wing or left-

wing), and a level of reliability (which determines the likelihood of misinformation), is then seeded at

one of the agents. The message and the level of reliability of the article are common knowledge, while

whether it is truthful or contains misinformation is unobserved, and agents form beliefs about this

1See https://www.snopes.com/fact-check/mass-shootings-under-trump/ and https://www.cnbc.com/2016/12/30/

read-all-about-it-the-biggest-fake-news-stories-of-2016.html, respectively.
2While there has been some debate about whether polarization has been mainly among politicians (see Fiorina et al.

(2008) and Prior (2013)), there is considerable evidence that polarization has also risen among the general public (see Pew
Research Center (2014) and Abramowitz (2010)).

3Myopic reactions and biased behavior appear to play some role, for example, via the “confirmation bias” in social media
behavior (see, e.g., Buchanan (2020) and Pennycook and Rand (2019b)), but we believe that the Bayesian benchmark we
construct already generates a number of empirically-relevant and rich results. We view incorporating realistic and relevant
behavioral biases as a next step in this research agenda.
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component.

Given these beliefs, the agent in question decides whether to ignore, dislike, or share the news

article. If it is shared, the article moves from the agent sequentially to her connections on social

media, who are then faced with the same choices. If the article is ignored or disliked, it does not

get past the agent. We assume that agents receive utility when their shared content is re-shared

and incur a cost when it is disliked. The former aspect captures the role of positive engagement in

social media, while the latter represents the reputation loss from being called out for sharing content

containing misinformation. Agents additionally receive utility from disliking (or calling out) items that

they believe contain misinformation.

We characterize the Bayesian-Nash equilibria of this sequential game and prove that these

equilibria always exist and are in cutoff strategies. In particular, our payoff structure implies that

an individual will share any item that she believes is truthful with a high probability and will dislike

articles that she believes to contain falsehoods. Items with intermediate beliefs will be ignored. Beliefs

about the truthfulness of articles are formed on the basis of the article’s reliability and message, and

agents’ prior beliefs/ideology. Moreover, we establish that ours is a game of strategic complements:

when others are more likely to share an item, each agent also becomes more likely to do so. As a result,

we show that the set of equilibria forms a lattice, with well-defined most-sharing and least-sharing

equilibria. We present a number of comparative statics that describe how these extremal equilibria

shift. For example, low-reliability articles are shared less, while articles that are more sensational are

shared more. As expected, greater reputation costs reduce sharing uniformly.

We present two main results. First, we study the implications of the (social media) network

structure. We establish non-monotone comparative statics with respect to the degree of homophily

(which determines how likely agents are to be connected to others who are ideologically similar to

them). Low levels of homophily ensure that agents are likely to be exposed to cross-cutting content,

including “counter-attitudinal articles” that advocate views opposed to theirs. This in turn ensures that

misinformation is unlikely to survive for very long. Perhaps paradoxically, for high-reliability articles,

an increase in homophily reduces content virality. This is because greater homophily makes it less

likely that an article escapes a given community, reducing its circulation throughout the network.

More interestingly and ominously, when relevant news items have low reliability, homophily

increases virality. This is because, countering the circulation effect, high homophily also creates a

perverse incentive effect: knowing that shared articles will be seen by like-minded individuals, agents

become more likely to share questionable content. Strategic complementarities amplify this effect,

because when others are expected to share, the benefits from sharing and reduces the likelihood of

being called out for spreading misinformation are greater. It is particularly telling that homophily leads

to the viral spread of low-reliability content, which are the ones more likely to contain misinformation.

We also show that political polarization and politically divisive articles are more likely to spread

virally when they are low-reliability and the level of homophily is already high, generating an echo

chamber-like social media environment. Strategic complementarities tend to amplify these pernicious

effects of political polarization and divisive content as well.

Our second main result turns to social media platforms’ algorithm design choices and establishes
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a striking result: when the relevant articles have low reliability, social media platforms that aim

to maximize engagement will tend to design algorithms that increase homophily and create filter

bubbles, propagating misinformation. Intuitively, high-reliability content tends to spread anyway

because most users recognize it as such and share it, and low homophily contributes to its spread

by increasing its circulation throughout the network. In contrast, low-reliability content will be

ignored or disliked by agents who disagree with its message and believe it to contain misinformation.

Engagement with low-reliability content can be increased if the platform ensures that it remains

among users ideologically aligned with its message, who would be willing to share it with like-minded

others without fear of being called out by users with different ideologies. Hence, creating filter bubbles

becomes an attractive strategy for engagement-maximizing platforms. It is particularly troublesome

that such filter bubbles are created precisely when the relevant content is low-reliability and likely to

contain misinformation.

If platform algorithms are propagating misinformation, can public policy counter and discourage

this type of behavior?4 The answer is yes, but with some caveats. In the last part of the paper, we

discuss four different types of regulatory policies, and in each case, we show how they may reduce

misinformation but also point out the possibility that, if they are not designed well, they can backfire

and exacerbate the problem.

First, we discuss regulations that force platforms to reveal the provenance of articles, making it

easier for users to identify falsehoods (e.g., claims originating from less reputable sources, such as

InfoWars). Though generally useful, such provenance information can backfire when it instills a sense

of “false security” that the content has been verified by previous social media users. Second, we

look at potential censorship of articles identified by a regulator as likely containing misinformation.

While censorship can help reduce the viral spread of misinformation, it also generates an “implied

truth” effect (Pennycook et al. (2020a)) that contributes to the viral spread of questionable content that

escapes censorship. Third, we discuss “performance targets”, where the regulator places limits on the

amount of misinformation that circulates on the platform. Such targets tend to better align user and

regulator preferences, but unless they appropriately target sensational content, platforms can meet

the required performance limits by focusing on less sensational material that was unlikely to become

viral in any case, and the least reliable content may still continue to circulate virally. Lastly, we show

how direct regulation of platform algorithms can reduce misinformation, but also point out that the

non-monotone effects of homophily imply that such regulations need to be finely calibrated.

Related Literature. Our paper builds on a large body of work on models of misinformation. In addition

to the literature mentioned previously, several other papers in this literature are related to our findings.

Much previous work has focused on the susceptibility of boundedly-rational agents to engage with

misinformation. In Acemoglu et al. (2010) and Acemoglu et al. (2013), the existence of persuasive

agents can impede information aggregation and enable misinformed beliefs to survive, and sometimes

even become dominant, in the population. In Mostagir et al. (2021) and Mostagir and Siderius (2021),

4As of August 2021, federal law protects social media platforms from being held responsible for content posted
by its users (see Section 230 of the Communications Decency Act of 1996, discussed by https://hbr.org/2021/08/

its-time-to-update-section-230).
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a strategic principal who wants to persuade agents of an incorrect belief can distort the learning

process by leveraging social connections and echo chambers to propagate misinformation. Similarly,

models of misinformation “contagion”— without Bayesian agents or strategic decisions — have been

studied in Budak et al. (2011), Nguyen et al. (2012), and Törnberg (2018). Our contribution relative

to this literature is the possibility that misinformation spreads because of the strategic interactions of

Bayesian agents and is exacerbated by profit-maximizing platform algorithms.

There is a growing literature on information design by platforms, building for the most part on the

concept of Bayesian persuasion (Kamenica and Gentzkow (2011) and Kamenica (2019)). Candogan

and Drakopoulos (2020) study how a platform with private knowledge of content’s accuracy should

optimally signal to rational users whether to engage with it, while Chen and Papanastasiou (2021) and

Keppo et al. (2019) consider more manipulative actions by platforms, including strategic seeding of

information or “cheap talk” signals about quality. Also related are works on reputation and media

bias. Motivated by the 2016 presidential election, Allcott and Gentzkow (2017) study the incentives

of certain outlets to present misleading news, while Gentzkow and Shapiro (2006), Hsu et al. (2020)

and Allon et al. (2021) explore other strategic reasons for media bias. Our paper contributes to this

literature by highlighting the role of ideological leaning, strategic interactions, ideological homophily,

and platform algorithms.

The most closely related work to ours is Papanastasiou (2020), who studies a model where agents

hold heterogenous ideological beliefs and digest (and potentially share) a news article sequentially.

Our work is different in three important dimensions. First, Papanastasiou (2020) focuses on costly

inspection, which makes sharing decisions strategic substitutes, while our model generates strategic

complementarities, because individuals care about further shares of the content they share.5 All of

our results and formal analysis turn on strategic complementarities. Second, and relatedly, echo

chambers play no role in Papanastasiou (2020).6 Third, our analysis of engagement-maximization

by the platform and its implications for the spread of low-reliability content has no counterpart in

Papanastasiou (2020) or any other work in this area we are aware of.7

The rest of the paper is organized as follows. The next section introduces our basic environment

and describes the information structure and payoffs. Section 3 characterizes the (Bayesian-Nash)

equilibria of this model and provides some basic comparative static results. Section 4 studies the

effects of homophily by focusing on a special class of sharing networks that correspond to a set of

“islands” of like-minded individuals who are less closely linked to those in other islands. Section 5

endogenizes the sharing network as a result of the algorithmic choices of the platform that aims to

maximize engagement. Section 6 discusses a range of regulations aimed at containing misinformation.

5Our reading of the evidence is that strategic complementarities are more relevant for social media behavior than strategic
substitutabilities. For example, Eckles et al. (2016) find evidence that feedback or “encouragement” from peers about
Facebook posts have contributed significantly to future behavior and posting. See also Taylor and Eckles (2018) and Aral
and Dhillon (2018).

6As already noted, echo chambers appear central to the spread of misinformation in practice. See, for example, Lee et al.
(2011), Törnberg (2018), Centola (2010), and Centola and Macy (2007)

7Papanastasiou (2020) also discusses platform incentives, but assumes that the platform is interested in limiting
misinformation. Our reading of the evidence in this instance, too, favors our interpretation, where platforms such as
Facebook are (or at the very least used to be before regulatory pressure mounted) fairly indifferent to the presence of
misinformation but strongly prioritize engagement maximization.
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Section 7 concludes, while all proofs are provided in the Appendix.

2 Model

There is an underlying state of the world θ ∈ {L,R}, for example, corresponding to whether the left-

wing or the right-wing candidate is more qualified for political office. Agents have heterogeneous prior

(ideological) beliefs about θ, and agent i’s prior that θ = R is denoted by bi with an ex ante distribution

Hi(·), which may or may not be the same across agents.

Sharing Network. We assume there are N agents in the population, who share a news item according

to a sharing network defined by matrix P of link probabilities:

P ≡


0 p12 · · · p1N

p21 0 · · · p2N

· · · · · · · · · · · ·
pN1 pN2 · · · 0


where pij is the probability that agent i has a link to agent j. We define agent i’s neighborhood

Ni as the set of agents attached to her with an outgoing link, and denote her degree or the size of

her neighborhood by |Ni|. The sharing network reflects both an individual’s social circle and the

algorithms the platform uses for promoting shared content. The news item in question could be a

news article or a post by one of the users, and throughout we refer to it as an “article”.

Misinformation and News Generation. Each article has a three-dimensional type (r,m, ν). Here, r ∈
[0, 1] indicates the reliability of the news, and m ∈ {L,R} is the message, which corresponds to the

article’s viewpoint, for example, whether it argues for a left-wing or right-wing idea. Finally, ν is the

article’s veracity, which can either be T , to indicate the article is truthful, orM, to indicate the article

contains misinformation.8

We assume that, at the beginning of the game, the type vector (r, ν,m) is drawn according to the

following i.i.d. process:

(i) The article’s reliability r ∈ [0, 1] is drawn from a continuous distribution F with density f .

(ii) The veracity of the article is ν = T (contains truthful content) with probability φ(r) or is

ν = M (contains misinformation) with probability 1 − φ(r). We assume that φ is increasing

and differentiable in r, and satisfies φ(0) = 0 and φ(1) = 1, so that the least reliable article

always contains misinformation, and as the degree of reliability increases, the likelihood of

misinformation monotonically declines and reaches zero.

8Our focus in this paper is on misinformation, interpreted as items containing misleading information or arguments that
can influence (a subset of) the public. Articles containing misinformation are in practice much more numerous than those
that can be classified as “fake news”, which explicitly propagate demonstrably false information (e.g., Egelhofer and Lecheler
(2019), Allen et al. (2020), Guess et al. (2019), Grinberg et al. (2019)). For example, according to this definition a news item
that favorably describes a report denying climate change, without putting this in the context of hundreds of other reports
reaching the opposite conclusion or mentioning the criticisms that it has received from experts, contains misinformation.
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(iii) If ν = T (the article is truthful), then its message is generated as m = θ with probability p > 1/2.

Conversely, if ν =M (the article contains misinformation), then its message is generated asm = θ

with probability q ≤ 1/2 and is weakly anti-correlated with the truth.

While m and r are common knowledge (for example, the message m is directly observed and

reliability depends on certain commonly-observed characteristics such as source and headline), the

third dimension, ν, is unknown to all agents. We assume that agents update their beliefs about ν using

Bayes’ rule given beliefs about the underlying state θ and the observables (r,m) of the article.

Social Media Behavior. Time is discrete t = 1, 2, . . .. Upon receipt of the article, an agent i can take one

of three actions ai ∈ {S, I,D}, as described below:

(i) Share (S): The agent decides to share the article and passes it onto others after her.

(ii) Ignore (I): The agent decides to ignore the article and does not engage with it.

(iii) Dislike (D): The agent decides to dislike the article, which means expressing disagreement or

contempt for the content contained in it.

Figure 1. Sample Tweet.

The three possible actions are depicted in Figure 1 using Twitter as a sample social media platform. A

given user sees the article and decides how to respond to it. She can (i) share it (S), which actively puts

it on other social media news feeds; (ii) ignore it (I), where the user simply scrolls past the article; or

(iii) actively dislike it (D), expressing derision for the content.

At time t = 1, we assume that some initial seed agent i∗ begins with the article. If the article is

shared by agent i, it is passed to all j ∈ Ni. In contrast, following ignore or dislike, the article does not

propagate past agent i.

Payoffs. Let us define shares after i as Si = |{j ∈ Ni : aj = S}| and dislikes after i as Di = |{j ∈ Ni :

aj = D}|. Agent i’s utility can then be written as

Ui =


0, if ai = I
ũ1ν=M − c̃, if ai = D
u1ν=T − c1ν=M + κSi − dDi, if ai = S

(1)
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where 1 is the indicator function (equal to 1 if true and 0 otherwise). Here, ũ, c̃, u, c, κ and d are strictly

positive parameters, which we discuss below.

(i) We normalize payoffs following ignore, I , to Ui = 0.

(ii) Payoffs from dislike, D, depend on whether the article contains misinformation. We assume, in

particular, that disliking has a cost of c̃ > 0, regardless of whether the article is truthful (because

of, say, the effort required to actively call out misinformation). In addition, disliking an article

containing misinformation has a benefit of ũ > c̃, because individuals like calling out misleading

articles. This formulation implies that disliking is never preferred to ignoring for an article that

is truthful with probability 1, and is always preferred to ignoring for an article that contains

misinformation with probability 1.

(iii) Following a decision to share, S, an agent receives utility from two sources. First, agents receive

utility from sharing truthful content, but incur a cost from sharing misinformation. This explains

the first component of utility following S, U (1)
i = u1ν=T − c1ν=M. Second, agents enjoy positive

feedback from their peers (such as likes, or in our setting re-shares), but are negatively affected by

dislikes. This is captured by the second component of utilityU (2)
i = κSi−dDi. In this formulation,

the parameter κ captures the importance of “popularity” for the agent’s sharing decision, while

−d represents the extent to which she cares about negative reactions.9

Information Structure and Solution Concept. Agents are not aware of when the article was first

introduced onto social media, the prior sharing process, or the structure of the social network (though

the link matrix P is common knowledge).10 Moreover, while any agent i knows the distribution {Hi}Ni=1

of beliefs in the population, she does not know any agent j’s belief (ideology) bj . We focus on Bayesian-

Nash equilibria, and refer to these as “equilibria” for short.

To eliminate trivial and unrealistic equilibria, we assume that the sensationalism of an article is

upper bounded by κ̄ = (cc̃ − u(ũ − c̃))/(ũN). This assumption guarantees that there is never an

equilibrium where every agent always shares all articles. It also eliminates equilibria where agents

may share and dislike, but never ignore.

Discussion — The basic assumptions introduced above are consistent with salient patterns of behavior

and information structure in social media. First, as documented in studies such as Pennycook et al.

(2021), users want to share content they believe to be truthful and not contain misinformation.

Second, while users derive value from peer encouragement and re-shares on social media (Eckles et al.

(2016)), they also suffer reputational costs when they get called out for sharing misinformation (see,

9Reputational loss associated with dislikes can be micro-founded straightforwardly by assuming that there are two types,
normal and careless, and normal agents would like to distinguish themselves from careless ones who always share. We do
not pursue this path, since imposing exogenous reputation costs simplifies the notation and analysis, with no major cost in
terms of insights.

10More formally, we assume that all agents have uniform priors over these objects. In this sense, agents do not know the
exact interactions and sharing patterns outside their neighborhood, which is consistent with the evidence in Breza et al.
(2018). That being said, because the equilibrium sharing process is Markovian, this assumption can be relaxed by replacing
P with the adjacency matrix.

7



for example, evidence from Facebook in Altay et al. (2020)). Finally, social media users often engage

in criticisms of available content and inform others about misinformation (see, for example, Kim et al.

(2020) for evidence in the context of 2018 midterm elections).

3 Equilibria in General Networks

In this section, we characterize the structure of equilibria for any sharing network structure P and

provide various comparative statics. Without loss of generality (and ease of exposition), we fix the

article’s message as m = R for the remainder of the paper.11

3.1 Cutoff Strategies and Strategic Complementarities

When agent i receives an article with reliability r and message m = R, she updates her (ex post) belief,

πi, that the article is truthful according to Bayes’ rule:

πi =
(pbi + (1− p)(1− bi))φ(r)

(qbi + (1− q)(1− bi))(1− φ(r)) + (pbi + (1− p)(1− bi))φ(r)
. (2)

Clearly, πi is increasing in bi since an agent is more likely to believe in an article’s veracity when its

message agrees with her prior. Moreover, πi is increasing in r, as the agent updates more on the basis

of more reliable articles.

We can also see that the payoff to sharing (S) increases in πi, since the first component of utility,

U
(1)
i , is increasing in πi (as the individual would like to share truthful articles), whileU (2)

i is independent

of πi. With a similar reasoning, the payoff to disliking (D) is decreasing in πi, whereas the payoff

to ignoring (I) is independent of πi. This monotone behavior of payoffs will lead to best-response

decision rules for agents that take the form of cutoff strategies, as we explain next.

We say that agent i employs a cutoff strategy if there exists b∗i (r) and b∗∗i (r) such that agent i chooses

S when bi > b∗∗i (r), chooses I when b∗i (r) < bi < b∗∗i (r), and chooses D when bi < b∗i (r). Cutoff

strategies in our context imply that agents who strongly agree with an article tend to share it, agents

who strongly disagree with it tend to choose dislike, and those with intermediate beliefs typically

ignore the article.

We will see in the next theorem that all equilibria will be in cutoff strategies. This means, in

particular, that an equilibrium can be summarized by cutoff vectors (b∗,b∗∗) = (b∗1, b
∗∗
1 , . . . , b

∗
N , b

∗∗
N ).

Furthermore, these cutoffs b∗i (r) and b∗∗i (r) will both be decreasing in r, so that as reliability increases,

an article becomes more likely to be shared and less likely to be disliked.

We can also note that our social media game exhibits strategic complementarities. To see this,

observe that when others share more, meaning that b∗∗i (weakly) decreases for all i, this tends to

encourage more sharing for every agent j, because the second component of utility, U (2)
j , increases,

raising the overall utility of sharing. Similarly, when others reduce their likelihood of disliking, meaning

that now b∗i (weakly) decreases for all i, this reduces the likely cost of sharing misinformation by

11To see this is without loss of generality, observe that the analysis applies identically with an m = L message but with
complementary priors b′i = 1− bi.
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mistake, also raising U
(2)
j . Strategic complementarities capture an important dimension of social

media interactions — utility feedback from others’ behavior tends to encourage agents to cohere with

those behaviors.

Equilibrium Structure. The next theorem shows that an equilibrium always exists and is in cutoff

strategies. At the same time, strategic complementarities ensure that there is a well-defined structure

to the set of equilibria. To make this more concrete, we say that an equilibrium (b∗,b∗∗) has uniformly

more sharing than other (b̂∗, b̂∗∗) ifb∗ � b̂∗andb∗∗ � b̂∗∗ (where� is the component-wise order). This,

in particular, means that all the thresholds for each agent is (weakly) lower in the former equilibrium

(recall that lower thresholds mean more sharing).

Theorem 1.

(i) There exists a Bayesian-Nash equilibrium;

(ii) All equilibria are in cutoff strategies;

(iii) The set of cutoffs (b∗,b∗∗) forms a lattice, and thus there exists a least-sharing and most-sharing

equilibrium.

The structure of equilibria characterized in Theorem 1 facilitates our analysis, enabling us to focus

on two sets of thresholds, (b∗,b∗∗) , which are themselves monotonic in the reliability of the article in

question. Because of strategic complementarities, there can be multiple equilibria: when others are

choosing to share an article with middling reliability, this further encourages sharing because one’s

own post will circulate more, increasing the utility from sharing. Conversely, if the same article with

middling reliability is not shared by others, the payoff to sharing is reduced, while the cost of being

found out to have circulated misinformation remains constant. This then discourages sharing.

Theorem 1 also shows that, despite this multiplicity, there are two focal equilibria on which we can

concentrate: the equilibrium with the smallest vector of cutoffs (most-sharing equilibrium) and the

equilibrium with the largest vector of cutoffs (least-sharing equilibrium).

Finally, the theorem’s characterization provides an explicit measure of the amount of sharing.

Recall that agent i’s prior belief bi is drawn ex ante from the distribution Hi. Hence, in an equilibrium

with cutoff b∗∗i for agent i, the ex ante likelihood that this agent will share is 1−Hi(b
∗∗
i ). Thus, clearly, the

most sharing equilibrium, which has the smallest equilibrium b∗∗i for all i, has the highest likelihood

that any agent i will share the article in question.

3.2 Comparative Statics (for Fixed P)

In this subsection we provide comparative statics for the most and least sharing equilibria as we

change the parameters of the social media game, but holding the sharing network P fixed. We discuss

comparative statics with respect to the network in the next section. Throughout this subsection, we

say that there is uniformly more sharing if sharing increases in both the most sharing and the least

sharing equilibria.
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Reputability and Quantity of Misinformation. The next proposition shows that greater reliability of

articles and less misinformation lead to uniformly more sharing. We define greater reliability as a

first-order stochastically dominant shift of the reliability distribution of articles from F to F ′ (where

F ′ �FOSD F ). We refer to less misinformation as a shift of the function φ to some φ′ ≥ φ.

Proposition 1. More reliability of articles and/or less misinformation lead to uniformly more sharing.

These results are intuitive. Holding constant the degree of misinformation, a shift towards more

reliable articles reduces the relevant vector of thresholds (b∗,b∗∗), and this means that each agent

becomes more likely to share. Holding constant the distributional reliability, less misinformation

reduces the cost associated with sharing, triggering more aggressive sharing by all agents.

The predictions summarized in Proposition 1 are consistent with the existing evidence. Pennycook

and Rand (2019a) document that social media users recognize low-reliability content sources (e.g.,

Breitbart or Infowars), and this content is not typically shared by attentive social media users,

regardless of partisanship (see Pennycook and Rand (2019b)). This proposition also clarifies that viral

spread of misinformation is not a mechanical effect in our model: if anything, less reliable articles that

are more likely to contain misinformation are less likely to become viral. We will see that other aspects

of social media interactions—sensational content and the nature of the sharing network—are often

responsible for viral spread of misinformation.

Sensational Content and Reputational Concerns. Let us next consider two key parameters of users’

utility. The first is κ, which we assume captures how sensational the article is. Higher κ implies

that agents receive greater value from future shares, because these shares are associated with others

paying more attention or perhaps being entertained more by the relevant posts. This greater utility is

independent of the content’s veracity. As an example, headlines such as “Trump Pays $2 Million to 8

Charities for Misuse of Foundation” are more sensational than headlines like: “108,000 people will get

medical debt relief after Stacey Abrams’ PAC gifts $1.34 million.”12 We think of κ varying at the level of

articles, so that some articles will be more sensational than others.

The second parameter is d, standing in for the importance of reputational concerns. Higher d

means that dislikes are more damaging, which corresponds to the agent being more concerned about

receiving many dislikes. We think of d as varying at the level of communities (certain communities of

users, for example, academics, may have more reputational concerns).

Proposition 2. More sensational articles and/or lower reputational concerns of users lead to uniformly

more sharing.

The results in this proposition are both intuitive and immediate. Nevertheless, they have important

applications. First, the results of this proposition cohere with the patterns documented in Duffy et al.

(2020), suggesting that social media participants often share a story that is “too good not to share”,

and do so even when they realize it is also “too good to be true”. Second, the link between reputational

concerns and misinformation is consistent with the evidence that in settings where reputation matters

12Sources are, respectively, https://www.nytimes.com/2019/12/10/nyregion/trump-foundation-lawsuit-attorney-general.
html and https://www.npr.org/2021/10/27/1049675704/stacey-abrams-medical-debt-relief-pac-donation.
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misinformation is less likely (Altay et al. (2020)), and when such reputational concerns are missing,

even calling out individuals sharing misinformation is fairly ineffective (Mosleh et al. (2021a)).

Finally, this proposition provides a possible pathway for low-reliability content (often containing

misinformation) to become viral. Vosoughi et al. (2018) argued that misinformation spreads farther,

faster, deeper and more broadly than truthful news on social media. This evidence was criticized

by Grinberg et al. (2019) who showed that, once the effects of sensational news items is controlled

for, misinformation does not spread faster than truthful content. Propositions 1 and 2 provide a

rationalization of these patterns. All else equal, misinformation does not spread faster than truthful

content as in Grinberg et al. (2019). However, because, as observed in Molina et al. (2021) and Kozyreva

et al. (2020), sensational content is often low-reliability, these two propositions together imply that

misinformation may be more likely to become viral. Whether this happens or not depends on the

boost from sensationalism. When this is limited, low-reliability articles containing misinformation

spread less because of concerns of users that others will call them out for sharing this content.

But when this sensationalism boost is high, misinformation can become viral. Additionally, the

strategic complementarity in sharing decisions implies that sufficiently sensational misinformation

can become viral very rapidly, because once an individual thinks others are going to share this

sensational item, she becomes much more likely to share herself, even if she has doubts about its

veracity.

4 Island Networks and the Implications of Homophily

In this section, we will conduct comparative statics with respect to the sharing network P. Throughout

this section, we take the sharing network as given, and then return to how it is shaped by the algorithms

of social media platforms in Section 5.

The focus on comparative statics with respect to the sharing network necessitates two

modifications from our analysis so far. First, we will restrict attention to island networks (or

equivalently, the stochastic block model), which are lower-dimensional than general networks we have

allowed so far. Namely, in an island network, agents are partitioned into k blocks of sizeN1, N2, . . . , Nk,

called islands each with some constant (but not necessarily equal) share of the population N . Each

agent i has a type `i ∈ {1, . . . , k} corresponding to which block (or “island”) she is in. Link probabilities

are are then given as:

pij =

{
ps, if `i = `j

pd, if `i 6= `j

where ps ≥ pd. Without loss, we assume each of the islands is weakly connected.

Furthermore, we assume the prior distribution for agents on the same island ` is the same, and

is denoted by H`. We also assume that islands are ranked according to their belief distributions. In

particular, each island ` has distribution H` with support on [b(`), b(`+1)], where 1 ≥ b(1) > b(2) > . . . >

b(k) > b(k+1) ≥ 0.13 This implies that lower-indexed islands have stronger right-wing beliefs.

13This assumption is adopted for simplicity. Our results generalize if we instead assume that these distributions are ranked
in terms of first-order stochastic dominance: H1 �FOSD H2 �FOSD · · · �FOSD Hk. However, this generalization requires
considerably more formalism and notation, motivating our focus on disjoint supports.
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An important advantage of island networks, in addition to their lower-dimensional representation,

is that, combined with this ranking assumption, they enable us to model the degree of homophily—

the extent to which an individual interacts with others that have common characteristics as herself.

Common characteristics for us are those that are relevant for prior beliefs, and therefore, by

construction, individuals have more in common with those on the same island as themselves. As

a result, homophily will be higher when most links are within islands and links between islands are

sparse (high ps and low pd).14

Second, we shift our focus from uniformly more sharing to the weaker notion of content virality

(which we define as more sharing, but not necessarily uniformly so). The reason for this is that, while

our game continues to exhibit strategic complementarities, changes in the sharing network do not

induce monotone shifts, and thus the most and least sharing equilibria do not necessarily shift in the

same direction. We will see, nevertheless, that content virality will change in well behaved ways.

Formally, we define content virality as follows. We suppose that an article is seeded at some agent

i∗ at t = 1. We then define Si∗ as the (random) proportion of the population that shares when agent

i∗ is the seed agent in the most-sharing equilibrium σ. We say σ1 has more content virality than σ2

if maxi∗ Eσ1 [Si∗ ] ≥ maxi∗ Eσ2 [Si∗ ]. In words, our notion of content virality compares the spread of an

article provided that it starts from the seed that is most favorable to its ultimate circulation. The reason

we start from the most favorable seed is that, as we will see in the next section, social media platforms

have an incentive to implement sharing algorithms that place articles in such favorable seeds. For

future reference, we also note that content virality is also the same as expected overall engagement

with an article, conditional on favorable seeding.

Finally, we define homophily more formally. We say that an island network with (ps, pd) has more

homophily than an island network with (p′s, p
′
d) and the same expected degree of each agent, but where

ps > p′s and pd < p′d.15 From Theorem 1, We know that the equilibrium is in cutoff strategies of the form

(b∗,b∗∗) ≡ (b∗1, b
∗∗
1 , . . . , b

∗
N , b

∗∗
N ). However, because there is symmetry within islands, equilibria now

take a simpler, “semi-symmetric” form as shown in the next lemma.

Lemma 1. All equilibria are semi-symmetric: for every equilibrium, there exist {(b∗` , b∗∗` )}k`=1 such that

b∗i = b∗`i and b∗∗i = b∗∗`i for all agents i in island `.

The simplification established in Lemma 1 will allow us to work with a lower dimensional cutoff

vector (just two cutoffs for each island).

4.1 Comparative Statics: Homophily

The next theorem, characterizing the effects of homophily on the spread of misinformation, is our first

main result:

Theorem 2. There exist 0 < r < r̄ < 1 such that:

14The homophilic structure and greater congruence of beliefs within islands are consistent with the evidence presented in
Bakshy et al. (2015): “friend networks” on Facebook are ideologically segregated, with the median share of friends from the
opposing ideology around only 20%. Mosleh et al. (2021b) provides evidence of similar homophily on Twitter.

15Because network density raises connectivity and can directly increase virality, we hold network density fixed in order to
isolate the effects from homophily.
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(a) If r < r, an increase in homophily increases the virality of content.

(b) If r > r̄, a decrease in homophily increases the virality of content.

Theorem 2 shows how low-reliability content can spread virally in networks with high homophily.

Intuitively, when content comes from a low-reliability source, only agents who (strongly) agree with

the article’s message share it. However, as homophily increases, users know that they will mostly

share with other like-minded people, who will also be inclined to share this content. This creates

an echo chamber-like environment: the likelihood of being called out for spreading misinformation is

now lower, making users “less disciplined” or more likely to share lower-reliability content. Strategic

complementarities then extend these incentives throughout the network. In this way, homophily leads

to the viral spread of low-reliability articles that likely contain misinformation.

However, Theorem 2 shows that homophily can have non-monotone effects. This is because

greater homophily also keeps an article circulating among the same group of like-minded users and

reduces the likelihood that it will reach other communities. Theorem 2(a) establishes that the first

effect of homophily, working through incentives to share low-reliability content, is more powerful

than the second, “circulation effect”, when we focus on particularly low-reliable content (with r < r).

This implies, in particular, that homophily’s impact is to increase the virality of especially low-quality

content, which is of course relevant for public policy (as we discuss in Section 6).

The results in Theorem 2 are in line with recent evidence highlighting the importance of echo

chambers for the spread of misinformation. Törnberg (2018) and Vicario et al. (2016), among

others, show that homophily in sharing behavior propagates ideologically-congruent ideas, with little

incentive to question the veracity of this information, while Quattrociocchi et al. (2016) document how

echo chambers on Facebook fuel conspiracy theories and the popularization of incorrect scientific

ideas, for example, on vaccines. Levy (2021) provides evidence that “filter bubbles” generated by

Facebook’s algorithms are an important source of propagation of misinformation.

4.2 Comparative Statics: Divisive Content and Belief Polarization

Figure 2. Two-Island Model.

For simplicity, for the next result, we focus on the case of just two islands, a left-wing and a right-

wing one with prior distributions HL and HR, respectively, as pictured in Figure 2. Moreover, we

suppose that there is disjoint support of prior beliefs across communities. Formally, we assume HR

has support on [bR, b̄R] and HL has support on [bL, b̄L], with b̄L < 1/2 < bR.
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Divisiveness of Content. We say content with parameters (p′, q′) is more divisive than content with

parameters (p, q) if p ≥ p′ and q ≤ q′. Divisive content has a message that is more tethered to the

true state θ when it is truthful (and more likely to argue against θ if it is misinformation). In our

case, we think of state θ as related to political ideology. Therefore, non-political content, such as

wedding photos or cat videos, has little divisiveness relative to more political ones, such as “Obama

Signs Executive Order Banning The Pledge of Allegiance in Schools Nationwide” (Fourney et al. (2017)).

Note also that, from equation (2), prior beliefs about θ matter more for updating and the assessment

of an article’s veracity when content is more divisive.

Polarization of Beliefs. We say H2 is more polarized than H1 if it satisfies the following single crossing

property: H−1
2 (α)−H−1

1 (α) is a nondecreasing function in α, crossing zero at α∗ = 1/2 withH1(1/2) =

H2(1/2) = 1/2.

An increase in polarization results in a “stretching” of the belief distribution around the most

moderate user (i.e., b = 1/2) while preserving an equal distribution of left-wing and right-wing agents

(meaning thatH(1/2) = H(1/2) = 1/2, which is applied in the island model to the average distribution

of beliefs, H = 1
N

∑N
`=1N`H`). The available evidence indicates that the US public has become more

polarized (see Pew Research Center (2014) and Abramowitz (2010)), and an important question of

debate has been whether this polarization has fueled the spread of misinformation on social media.

Virality of Content. The next theorem studies how political divisiveness and polarization impact social

media behavior and the spread of misinformation. To highlight our main insights, we focus on the

same two regimes identified in Theorem 2 (low reliability with r < r and high reliability with r > r̄)

and in addition distinguish between high and low levels of homophily (ps/pd > p̄ and ps/pd < p):

Proposition 3. There exists r∗ ∈ (0, 1) and p∗ ∈ (0, 1) such that:

(a) If r < r∗ and ps/pd > p∗, then an increase in divisiveness or an increase in polarization leads to

greater content virality.

(b) If r > r∗ and ps/pd < p∗, then a decrease in divisiveness or a decrease in polarization leads to greater

content virality.

Proposition 3 builds on and is complementary to Theorem 2. When the content in question has

high reliability (r > r̄), more divisive content or greater polarization do not accentuate virality (and

in fact may reduce content virality when homophily is limited, because in a well-connected, non-

homophilic network, controversial articles will solicit a wide range of reactions, disciplining those

tempted to share misinformation). In contrast, when the article in question has low reliability and

there is significant homophily, there are again echo chamber-like effects. More divisive content

generates more divergent behavior from individuals with different ideologies, and greater polarization

means there are sharper differences in terms of these ideologies. As a result, echo chambers matter

especially for divisive content and in the presence of polarization. The intuition of this result builds

on Theorem 2: greater polarization can trigger more negative reactions, especially for divisive content

and especially when there more polarized opinions. But when there is a high degree of homophily,
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individuals are fairly certain that their shared content will be viewed by like-minded users, and

hence become less disciplined in sharing low-reliability, divisive content. The presence of strategic

complementarities once again amplifies this effect, as users recognize that others in their community

will tend to share divisive content, and this makes them even more willing to share.

It is notable that Proposition 3, like Theorem 2, implies that greater divisiveness and

polarization increase the virality of especially low-reliability content, which is most likely to contain

misinformation. These two results together thus imply that echo chambers, greater political

polarization and divisive content all exacerbate the circulation of misinformation on social media.

5 Platform Design and Filter Bubbles

We now turn to our second main result: how platform behavior affects misinformation. Consider a

collection of social media users with beliefs distributed according to a distribution H . The platform

can identify communities of users according to prior ideological beliefs, for example, based on content

previously shared or affiliations with ideological groups. In particular, each user is binned into one of

k communities, with each community ` having a belief distribution H` with support over [b`, b`+1],

and where 1 ≥ b(1) > b(2) > · · · > b(k) > b(k+1) ≥ 0 (with at least one left-wing and one right-

wing community). The size of these bins depends on the platform’s microtargeting technology at

identifying users’ ideological beliefs (see, for example, Papakyriakopoulos et al. (2018)). Formally, we

let ε ≡ max`(b`+1 − b`), with the interpretation that lower values of ε correspond to better platform

technology for identifying ideology.

The platform’s objective is to maximize user engagement, which is equivalent to maximizing

content virality (see the definition of content virality in the previous section).16 The platform does not

directly care about whether the content users are engaging with is truthful or contains misinformation.

The platform chooses how content is shared across users. That is, for each article, the platform not

only picks the seed agent at t = 1 to whom it recommends this article, but also chooses the sharing

network—the matrix of link probabilities P.17 The platform’s choice of P can be interpreted as its

“algorithm” to determine how users are exposed to content circulating in the social media site.

5.1 Optimality of Island Networks and Filter Bubbles

We remind the reader that the island networks of Section 4 are parameterized by three components:

the within-island link probability (ps), the across-island link probability (pd), and the number of islands

(k). As special cases, we have (i) an island model that has maximal homophily, where ps > 0 but

16This objective is rooted in the fact that social media sites, like Facebook, primarily rely on advertising revenue, which
becomes more valuable as users increase their activity on the site. For example, 85% of Facebook’s total revenue in 2011
was from advertising, and from 2017-2019, around 98% was (see Andrews (2012) and https://www.nasdaq.com/articles/

what-facebooks-revenue-breakdown-2019-03-28-0).
Strictly speaking, we are modeling social media platform objectives before the more recent public backlash over

misinformation. If the platform faces potential penalties from public backlash or regulators for spreading misinformation,
its objective function will change, as we explore in greater detail in Section 6.

17Facebook’s algorithms may induce different sharing networks depending on features of the article, such as
whether it contains cat videos, wedding photos, or political content. See https://about.fb.com/news/2021/01/

how-does-news-feed-predict-what-you-want-to-see/.
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pd = 0 (and thus there is extreme ideological segregation on the network); and (ii) an island model

with maximal connectivity, where ps = pd (and there is minimal homophily and no segregation by

ideology). Our second main result is:

Theorem 3. There exists ε̄ > 0 such that if ε < ε̄, the platform’s profit-maximizing sharing network is

determined by a reliability threshold rP ∈ (0, 1) such that:

(i) If r < rP , the platform’s profit-maximizing sharing network has maximal homophily.

(ii) If r > rP , the platform’s profit-maximizing sharing network has maximal connectivity.

Part (i) of the theorem shows that when articles are mostly unreliable — and likely to contain

misinformation — the platform creates an extreme filter by designing its algorithms to achieve a

sharing network with the greatest homophily. In contrast, part (ii) demonstrates that when articles

have higher reliability, the platform refrains from introducing algorithmic homophily. This result

highlights an important channel by which misinformation spreads: it is precisely when articles

are likely to contain misinformation that the platform seeks to maximize engagement by creating

(endogenous) echo chambers, or filter bubbles, where these articles spread virally within like-minded

communities. Put differently, with low reliability content, neither the platform nor the users are

disciplined about sharing misinformation, and so these news items spread virtually uninhibited.

It is worth noting that this theorem builds on but also significantly strengthens Theorem 2. In

Theorem 2, the effects of homophily are non-monotone and are ambiguous when an article is

neither very low reliability nor very high reliability (r ∈ (r, r̄)). In contrast, Theorem 3 gives a sharp

characterization of the platform’s algorithm: when r > rP , the platform goes for maximal connectivity,

and when r < rP , it chooses maximal homophily, and in this case, misinformation spreads virally

precisely because of the echo chambers that the platform has manufactured. In both cases, the island

structure of the network considered in Section 4 arises endogenously as the profit-maximizing sharing

network for the platform.

In addition, Theorem 3 shows that when a platform can shape the network topology through its

recommendation algorithm, the echo chamber effect that arises from Theorem 2(a) is exactly what

fuels misinformation (whereas in Theorem 2(b), echo chambers were harmless). This corroborates and

extends much of the previous literature mentioned earlier on the interaction between recommender

systems, echo chambers, and misinformation.

Finally, it is notable that the platform designs its algorithms to generate filter bubbles within

ideologically-congruent groups precisely when the relevant content is low-reliability and likely to

contain misinformation. This observation generalizes to cases where the platform has less precise

microtargeting technology, albeit in a less sharp way than the result presented in Theorem 3.18

18In this case, the platform still induces echo chamber-like environments to generate viral spread of low-reliability content,
even if its choice does not take the form of an island network. For instance, if there are only three communities (with broad
ideology spectra), a misinformation right-wing article can still spread virally via the usage of filter bubbles. However, the
platform may now prefer a sharing network that lies outside the class of island networks considered in Section 4. Specifically,
user engagement may be maximized if the left-wing community is completely disconnected from all other communities,
but the moderate (middle) community has sparse connections to the right-wing community. This facilitates a strong echo
chamber within the right-wing community but also allows the article to spread to the more moderate community (while
receiving no discipline from the left-wing community).
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Remark — In Theorem 3, we assume the platform can select any network P it desires through its

recommendation algorithm. This is without loss of generality. If we assume the social network

originally begins as an arbitrary island network in Section 4, and the platform can hide and amplify

content across different links, the same result readily follows.

5.2 Comparative Statics on rP : Divisiveness and Polarization

In Theorem 3, the threshold rP fully summarizes the extent to which misinformation will spread virally

on social media. We next perform comparative statics for this threshold to understand the conditions

under which the platform will create a filter bubble and propagate misinformation.

Proposition 4. The optimal reliability threshold rP increases as message divisiveness and/or belief

polarization increases.

Proposition 4 mimics the conclusions of Proposition 3(a). As divisiveness or polarization increases,

content is consumed more aggressively within echo chambers and scrutinized more aggressively

outside of them. In these settings, filter bubbles become more advantageous to the platform, especially

when the relevant content has low reliability. This is because communities with more extreme beliefs

now feel more strongly about news in general, rarely second-guess politically-congruent news, but

often doubt and dislike counter-attitudinal news. As a result, low-reliability content would have been

quickly disliked and stopped without echo chambers, which would have discouraged its sharing even

by agents inclined to believe it. In contrast, inside of the platform’s filter bubbles, such content

continues to spread virally.

Proposition 4 also provides a possible (albeit of course speculative) interpretation for why

accelerating political polarization and identity politics in the last two decades may have come with

more aggressive filter bubble algorithms from social media sites (Apprich et al. (2018)). As the recent

documentary The Social Dilemma puts it: “The way to think about it is as 2.5 billion Truman Shows.

Each person has their own reality with their own facts. Over time you have the false sense that everyone

agrees with you because everyone in your news feed sounds just like you.” Tellingly in this context,

while Facebook cracked down on misinformation prior to the 2020 election in part due to political

pressure, its algorithms have resumed promotion of misinformation in November and December of

2020: “...the measures [Facebook] could take to limit harmful content on the platform might also limit

its growth: In experiments Facebook conducted last month, posts users regarded in surveys as ‘bad

for the world’ tended to have a greater reach — and algorithmic changes that reduced the visibility of

those posts also reduced users’ engagement with the platform...”.19

6 Regulation

Our analysis so far raises the natural question of what types of regulations might counter the viral

spread of misinformation and platform choices leading to excessive ideological homophily. We
19See Vanity Fair :
https://www.vanityfair.com/news/2020/12/with-the-election-over-facebook-gets-back-to-spreading-misinformation

and also https://www.technologyreview.com/2021/03/11/1020600/facebook-responsible-ai-misinformation/.
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now briefly discuss four distinct types of regulations that have been discussed in this context:

(1) regulations that force platforms to reveal articles’ provenance; (2) censorship or tagging of

misinformation; (3) performance targets that require the platform to keep misinformation below a

given threshold; (4) network regulations, restricting the extent of ideological homophily or segregation

introduced by platform algorithms intended to maximize engagement.

We consider the effects of these policies both on a fixed sharing network and when the platform can

optimally choose the sharing network given public policy. For simplicity, we suppose the regulator’s

objective is to decrease the virality of articles containing misinformation on the platform.20 We will say

the policy has an ambiguous effect when there exists a sharing network (and set of conditions) where

the virality of misinformation increases following the regulatory policy.

6.1 Provenance

We consider a policy that requires the platform to reveal the original context or provenance of a piece

of content. For example, provenance may point the user to a peer-reviewed medical study or the full

discourse from which a quote was pulled. Such a policy allows users to verify (or “fact-check”) social

media content easily and quickly.

We model a provenance policy by allowing some users to fact-check the article before making their

sharing and dislike decisions. In particular, we assume revealing provenance allows each agent to

check the veracity of the content instantly with probability ρ > 0, with higher values of ρ indicating

more effective provenance policies.21 For simplicity, we assume fact-checks perfectly reveal whether

the article has veracity ν = T or ν = M. The user can then make a more informed (but still strategic)

decision about whether to share the article or take one of the other two actions.

Proposition 5. There exists ρ∗ < 1 such that:

(a) If ρ > ρ∗, for any fixed sharing network, the provenance policy reduces the virality of misinformation.

(b) If ρ < ρ∗, the provenance policy has an ambiguous effect on the virality of misinformation.

(c) If ρ > ρ∗, the provenance policy reduces the virality of misinformation even when the platform

optimally chooses the sharing network conditional on the policy.

We see that an effective provenance policy, which helps users identify misinformation with high

likelihood, successfully reduces the circulation of this content. The reason is that when it is common

knowledge that a piece of content contains misinformation, incentives toward sharing are uniformly

diminished across all users on the platform. Strategic complementarities then further reduce sharing.

However, less effective provenance policies (ρ < ρ∗) are not always beneficial and can sometimes

backfire (part (b)), as illustrated in the next example.

20Formally, the regulator minimizes the virality of content conditional on the article containing misinformation; in
mathematical notation, the regulator minimizes Emax i∗ [Si∗ | ν =M].

21In practice, certain demographic groups, such as users over 65 years old, appear more likely to accept misinformation
without fact-checking, perhaps because of poor media interpretation skills (see Grinberg et al. (2019) and Guess et al. (2019)).
Thus, provenance policies which provide a less clear pathway to fact-checking may lead certain social media users to fact-
check and others to not.
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Figure 3. Ring network of Example 1.

Example 1. Without loss of generality, we fix an article that has messagem = R and some intermediate

reliability r, so that ex-ante the article may or may not contain misinformation. We also condition

condition on an article that turns out to contain misinformation. Moreover, we assume the regulator

has only a semi-effective provenance policy (ρ = 1/4) and the sharing network is a ring, as pictured in

Figure 3, so that virality is simply the expected distance between the seed agent and the first agent who

elects not to share.

We also assume that strategic complementarities play a small role (i.e., κ ≈ 0 and d ≈ 0), so sharing

decisions are mainly based on an agent’s assessment of the article’s veracity. Moreover, we assume all

prior beliefs are drawn from the same distribution H . First, we consider the virality of content with

no provenance policy. Per Theorem 1, there exists some b∗∗ such that agents with bi > b∗∗ share and

agents with bi < b∗∗ do not share. Hence, each agent shares the article with probability ζ ≡ 1−H(b∗∗),

and the expected spread of the article is given by
∑N

i=1 ζ
i. Note that this probability applies regardless

of whether the article contains misinformation, which is not observable to the agent without fact-

checking.

Next, consider the introduction of a provenance policy with ρ = 1/4, so the likelihood that an

agent fact-checks the article before choosing her action is 1/4 and the likelihood that an agent takes

her action without fact-checking is 3/4. Because, by assumption, the article contains misinformation,

a fact-check will set agent i’s belief of veracity to zero, ensuring that she does not share this article.

Therefore, the overall probability that agent 1 will share the article is (1 − ρ)ζ = 3ζ/4. While a fact-

check immediately kills the article (which occurs with probability 1/4), no fact-check leads to sharing

with probability ζ (also occurring with probability 3/4).

Given this provenance policy, we now consider agent 2, who next receives the article. Agent 2 does

not know whether the article has already been fact-checked by agent 1, but knows the provenance

policy is in place. Given the article was passed to her, she assesses that there is a higher probability that

the article is truthful relative to the case with no provenance policy. This is because the act of agent

1 sharing the article with agent 2 may have been the result of a fact-check that came back positive

(article is truthful), and so observing this action leads her to a higher posterior belief the article is

truthful. Consequently, the prior cutoff for sharing will be below b∗∗ (the cutoff without provenance),

and if she does not fact-check herself, her likelihood of sharing will be some ζ2 > ζ ≡ ζ1. As before, the

probability that agent 2 will share is (1− ρ)ζ2 = 3ζ2/4. Extending this reasoning, the probability agent

i will share is (1− ρ)ζi, where ζi > ζi−1 for all i.

Thus, to determine whether the provenance policy is effective, one needs to compare
∑N

i=1 ζ
i and
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∑N
i=1(1 − ρ)i

[∏i
j=1 ζj

]
. In general, this comparison is ambiguous. In the proof of Proposition 5(b),

we show that the latter sum is greater because ζj grows rapidly, reflecting the fact that later

users presume others before them have fact-checked and do not make independent judgments

based on the reliability of the content. In summary, while the provenance policy effectively stops

misinformation when identified quickly, it opens a potential gateway for misinformation to be much

more widespread.

The observation in Example 1 is related to the literature on informational cascades and herding

(for example, see Banerjee (1992), Bikhchandani et al. (2021), and Chen and Papanastasiou (2021)).

When provenance policies are enacted, agents tend to follow the sharing decisions of those before

them instead of making independent inferences about content veracity before sharing. This opens the

door for share cascades based on what is sometimes called a “bystander effect”—sharing based on the

belief that the content was already vetted by others.

Finally, part (c) of the proposition shows that when ρ > ρ∗, the provenance policy reduces

misinformation even when the platform responds to this policy by changing the sharing network.

This ensures that the platform cannot game the policy by choosing a different network structure that

circumvents provenance regulation.

6.2 Censorship

Next, we consider a policy where the platform can censor misinformation that appears on the

platform.22 Formally, we model this as the platform being able to adopt a censorship policy

that removes δ ∈ (0, 1) fraction of the content containing misinformation (with each piece of

misinformation removed with probability δ).23 For simplicity, we assume this content is removed at

t = 0 before it is even observed by any of the users.

Proposition 6. There exists δ∗ < 1 such that:

(a) If δ > δ∗, for any fixed sharing network, the censorship policy reduces the virality of misinformation.

(b) If δ < δ∗, the censorship policy has an ambiguous effect on the virality of misinformation.

(c) If δ > δ∗, the censorship policy reduces the virality of misinformation even when the platform

optimally chooses the sharing network conditional on the policy.

This result mimics Proposition 5: when censorship can adequately remove most misinformation,

it is an effective policy both in given sharing networks (part (a)) and in sharing networks selected by

the platform in response to the policy (part (c)). However, when the censorship policy fails to identify

some of the misinformation, there is an “implied truth” effect that kicks in for uncensored articles (as

empirically identified in Pennycook et al. (2020a)). Bayesian users believe, correctly, that articles are

22Alternately, it can “tag” the article in question as disputed by outside sources, with analogous implications. See, for
example, Facebook’s policies leading up to the 2020 election on labeling suspected misinformation: https://about.fb.

com/news/2019/10/update-on-election-integrity-efforts/.
23As in Section 6.1, we think of δ as being a technology parameter related to how effective the regulator is in identifying

misinformation. The assumption that the regulator may make type-I errors but not type-II errors (truthful articles are never
misidentified, but misinformation is identified with some probability less than one) is adopted for simplicity.
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more likely to be truthful when there is censorship of misinformation. Under certain conditions, this

policy can ultimately lead to the greater spread of misinformation (part (b)).

While provenance and censorship policies have similar features in that both are effective when

done properly (and backfire when not), they possess different comparative advantages. For instance,

provenance policies tend to perform better when most of the content on the platform is low reliability.

In this case, multiple (independent) fact-checks by social media users typically remove this content

more efficiently than just a single regulator can. In contrast, because users might share sensational

content that contains misinformation even when there is an effective provenance policy, censorship

may be more attractive relative to provenance policies in the presence of misinformation carried by

sensationalist articles.

6.3 Performance Targets

Another possible regulation, which has recently been proposed by social media platforms (see

Facebook (2020)), is to set performance targets for their content. As monitoring and removing

misinformation is imperfect, a performance target allows the platform some leeway to have “bad”

content on their site while still requiring a degree of accountability.

While in Section 6.2 we considered a policy where the regulator was responsible for removing

content, a performance target transfers the burden of content removal to the platform itself. In this

subsection, we consider how the platform would remove content when misinformation must be kept

below a given threshold. We assume that the platform can discard content (by not recommending it to

any user), and in doing so, forfeits any potential engagement this content may have with the users.

As in our previous discussion, we assume that sensational articles tend to be more associated with

misinformation (see Section 3.2). Formally, we suppose that the sensationalism of every article is

drawn as κ ∼ G(·|ν) conditional on the article’s veracity ν, whereG(·|ν =M) �FOSD G(·|ν = T ). Given

this, the regulator sets a performance target of λ, which requires the proportion of misinformation

shares (to total shares) on the platform to fall below λ.24 The regulator enforces this performance target

by auditing the platform and sampling the content to ensure it meets the required standard. Formally,

we assume that the regulator has an auditing technology α ∈ (0, 1), which represents the probability

of detecting that the platform has violated its performance target, and if so, the platform incurs a cost

due to regulatory fines.

Our next result establishes how stricter performance targets affect the spread of misinformation:

Proposition 7. There exists an auditing technology cutoff α∗ < 1 such that:

(a) If α > α∗, for a fixed sharing network, a stricter performance target (lower λ) reduces the virality of

misinformation;

24This metric for performance comes from Facebook’s own statements on platform standards: “Regulators could say that
internet platforms must publish annual data on the ‘prevalence’ of content that violates their policies, and that companies
must make reasonable efforts to ensure that the prevalence of violating content remains below some standard threshold”
(from Facebook (2020)), with the definition of prevalence being: “We care most about how often content that violates our
standards is actually seen relative to the total amount of times any content is seen on Facebook” (from https://about.fb.

com/news/2019/05/measuring-prevalence/).
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(b) If α < α∗, a stricter performance target has an ambiguous effect on the virality of misinformation;

(c) If α > α∗, a stricter performance target reduces the virality of misinformation even when the

platform optimally chooses the sharing network conditional on the policy.

This result captures similar ideas to those in Propositions 5 and 6. When performance targets are

well-enforced through auditing, reducing the target (making it stricter) necessarily curbs the spread of

misinformation. When the platform is held more accountable for misinformation shares, it reduces

the misinformation in circulation, even if it happens to be more sensational. Lower targets therefore

align regulator and platform incentives to remove the least reliable content.

However, with a lower auditing probability, the incentives of the regulator and platform diverge.

When performance targets are lax, the platform still has some incentive to comply: it can remove

low-reliability, low-sensational content and meet the performance standard without much of a hit to

engagement. However, as the performance target continues to tighten, the platform needs to remove

low-reliability sensationalist content, which would significantly reduce engagement. In this case,

relying on the moderate probability of auditing, the platform may prefer to violate the performance

target and district targets backfire.

6.4 Network Regulations

As we saw in Theorem 3, when unregulated, the platform (endogenously) chooses the island model of

Section 4 with parameters (ps, pd). Here, we consider limits on the ideological homophily induced by

the platform’s algorithm. In particular, we suppose the regulator can choose a homophily standard,

based on the ratio between within-island links to across-island links.

Proposition 8. There exists γ < ∞ such that for any p∗ ≥ γ, if the regulator imposes ps/pd ≤ p∗ then (i)

the platform chooses the island model with ps/pd ≤ p∗; and (ii) the virality of misinformation is reduced.

The regulator can thus achieve its objective by moderating the homophily that the platform can

impose on the sharing network. In particular, algorithmic choices that create extreme homophily

(as demonstrated in Theorem 3(a)), can be curbed by imposing a standard that requires content to

be shared across ideological lines. This is closely related to the “ideological segregation standard”

discussed in Sunstein (2018), which aims to restrict the extent to which content is curated specifically

to the ideology or interests of the group of users. Such standards ensure that echo chambers are broken

and users of differing ideology interact more frequently, limiting the spread of misinformation.

We note that the regulation in Proposition 8 is not always binding for the platform. In the case

of highly reliable articles (as in Theorem 3(b)), the platform maximizes engagement by implementing

a maximally-connected sharing network, so the homophily constraint is moot. However, when the

article is less reliable, the regulation will bind and the platform will be forced to maintain a minimum

level of connectivity.
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7 Conclusion

This paper has developed a simple model of the spread of misinformation over social media platforms.

A group of Bayesian agents with heterogeneous priors receive and share news items (articles)

according to a stochastic sharing network, determined by the social media platform. Articles may

be truthful and informative about an underlying state, or may contain misinformation, making them

(weakly) anti-correlated with the underlying state. Upon receiving an article, an agent can decide

to share it with others, ignore it, or actively call out another agent for propagating misinformation

(“dislike”). Misinformation spreads when agents share articles expecting positive social media

feedback and little negative reactions.

Though simple and parsimonious, the model encapsulates several rich strategic interactions.

Agents receive utility from sharing truthful articles and not misinformation, but also enjoy peer

engagement with shared content. The former force pushes agents toward sharing pro-attitudinal

content, whereas the latter force pushes agents toward pleasing those in their sharing network. The

ideological congruence between an agent and those in her sharing network, which we capture with

the notion of homophily, is critical for sharing decisions. Because individuals are more likely to dissent

against articles that disagree with their prior beliefs, an agent will be more cautious in sharing articles

that disagree with the views of those in her sharing network.

We provide several comparative static results. Some of those are very intuitive, though still

useful for interpreting a range of results in the emerging empirical literature on social media and

misinformation. For example, we find that while misinformation typically spreads less than truthful

content (holding all else constant), more sensational content tends to be shared more. Moreover,

when misinformation is correlated with sensationalism, the rapid spread misinformation can be

problematic.

Of particular interest are the comparative statics with respect to homophily—measuring whether

agents tend to share articles with others with similar or dissimilar beliefs. We show that when there is a

highly-reliable article, an increase in homophily reduces the virality of content. Because this article

is unlikely to contain misinformation, it is of broad appeal to a wide range of social media users,

independent of ideology. An increase in homophily then reduces the extent to which this article can

spread throughout the sharing network. The implications of homophily for low-reliability articles are

very different, however: in a well-connected network, such articles will be disliked and stopped by

users who disagree with their message, and anticipating this behavior and the loss of reputation they

can suffer from spreading misinformation, even those who agree with their message would not share

them widely. In contrast, high homophily creates echo chambers, where users share low-reliability

messages aligned with their beliefs, because they understand that there are few negative reputational

consequences from doing so. Misinformation contained in low-reliability articles can then spread

virally in these echo chambers.

Our framework enables a tractable study of platform incentives in designing algorithms that

determine who shares with whom. To do this, we assume that the platform aims to maximize user

engagement (which is a good approximation to the objectives of major social media platforms such

as Facebook or Twitter). Our main result is a striking one. When an article is highly reliable, the
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platform chooses a sharing network with minimal homophily to maximize the spread and appeal of the

content throughout the user community. In contrast to this case, when the relevant articles have lower

reliability, the platform chooses a network with maximal homophily and recommends articles to users

with aligned beliefs. These articles than spread rapidly in the “filter bubble” the platform’s algorithms

have created—because now ideologically like-minded individuals know that they are unlikely to be

caught sharing misinformation in their extreme echo chambers.

We also study regulations aimed at minimizing the spread of misinformation. Revealing the

provenance of a news item (for example, providing full context for a quote) can be useful, because

this additional information allows users to more easily fact-check the content for veracity. However,

we also show that this type of regulation may backfire because of a “bystander effect” whereby future

users assume content has been previously fact-checked and put more faith in it. Similarly, tagging or

censoring articles from less reliable sources may make agents more confident in those that remain on

the site untagged—thus creating a Bayesian version of the “false sense of security”. Finally, we show

that regulating platform algorithms that shape sharing network properties (in particular, homophily)

can be effective.

Our framework was purposefully chosen to be simple and several generalizations would be

interesting to consider in future work. Most importantly, our assumption that agents are Bayesian

rational should be viewed as a useful, albeit not fully realistic, benchmark. In our setting, it

brought out certain new strategic forces—highlighting how social media actions exhibit strategic

complementarity and how the degree of homophily alters agents’ strategic behavior. Nevertheless,

misinformation may be particularly damaging when agents have cognitive limitations and are only

boundedly rational. Incorporating such considerations is one of the most important directions for

future research. Interesting questions that emerge in this case relate to whether the platform, in

addition to designing algorithms that create filter bubbles, may also choose strategies that exploit the

cognitive limitations of users.

Other theoretical generalizations that might be interesting to consider include extensions to

repeated interactions with incomplete information, which would enable agents to also update their

beliefs about the ideological position of other agents in their sharing network. Fully endogenizing

reputational concerns, taking into account the network position of agents, would be another

interesting direction for future research. In this case, the existing reputational capital of an agent will

determine how likely she is to risk sharing misinformation. We can also use this extended setup with

repeated interactions to study how agents update their initial political views. When there is limited

misinformation, agents will gradually learn the true state. In contrast, when there is a significant

probability of misinformation, agents will be uncertain about how to interpret articles that disagree

with their priors and this may place an upper bound on the speed and possibility of learning (see

Acemoglu et al. (2016)).

Despite its simplicity, our model makes several new empirical predictions, most notably related to

the non-monotonic effects of homophily and polarization and to platform incentives and algorithmic

decisions. Investigating these predictions empirically as well as generating new stylized facts about

patterns of these information cascades on social media, is another important area for future research.
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A Proofs

A.1 Auxiliary Lemmas

We define a (mixed-strategy) strategy σi for agent i to be a map from priors bi to elements of the simplex

∆({D, I,S}). In others words, σi specifies for each ideological prior bi of agent i the probability that

she will play each of the three actions, D, I, and S. We let σ−i denote the (vector of) strategies of all

agents other than agent i.

Lemma A.1. Given any set of strategies σ−i, agent i’s best response is a cutoff strategy with cutoffs (b∗i , b
∗∗
i )

such that if bi < b∗i agent i dislikes (D), if b∗i < bi < b∗∗i agent i ignores (I), and if bi > b∗i agent i shares

(S).

Proof of Lemma A.1. When agent i receives an article, she forms (ex-post) belief πi about the article’s

veracity which depends only on the observables (r,m). By Bayes’ rule:

πi ≡ P[ν = T |, r,m = R] =
P[m = R | r, ν = T ]P[ν = T | r]

P[m = R | r, ν =M]P[ν =M| r] + P[m = R | r, ν = T ]P[ν = T | r]
.

By the law of total probability, we have:

P[m = R | r, ν = T ] = P[m = R | ν = T ] = P[m = R | θ = R, ν = T ]P[θ = R] + P[m = R | θ = L, ν = T ]P[θ = L]

= pbi + (1− p)(1− bi) ;

P[m = R | r, ν =M] = P[m = R | ν =M] = P[m = R | θ = R, ν =M]P[θ = R] + P[m = R | θ = L, ν =M]P[θ = L]

= qbi + (1− q)(1− bi) .

Putting these together we obtain equation (2). Moreover, πi is monotone in bi since

∂πi
∂bi

=
(1− φ(r))φ(r)(p− q)

(1− bi + q(1− φ(r))(2bi − 1)− p(φ(r)− 2φ(r)bi))2
> 0.

Note that Ui(I) and Ui(D) is independent of σ−i, and in particular D is a better response to I if and

only if πi < (ũ − c̃)/ũ. Because πi is monotone in bi, this implies there exists some b̃ where D is a

better response to I if and only if bi < b̃ (where b̃ = 1 if disliking dominates ignoring and b̃ = 0 if

ignoring dominates disliking). Next, recall that the payoff to sharing is Ui(S) = U
(1)
i + U

(2)
i , where

U
(1)
i = u1ν=T − c1ν=M and U (2)

i = κSi − dDi. Observe that, as before, U (1)
i is independent of σ−i and

has expected payoff (u+ c)πi− c, which is monotonically increasing in πi. Moreover, EP,σ−i [κSi− dDi]

does not depend on bi. Because πi is monotone in bi, we see that Ui(S) is increasing in bi, Ui(I) is

constant in bi (it is always zero), and Ui(D) is decreasing in bi (it is equal to ũ(1− πi)− c̃). This implies

that either (i) ignoring dominates sharing, (ii) sharing dominates ignoring, or (iii) Ui(S) = 0 for some

prior b′:

(i) If ignoring dominates sharing, we set (b∗i , b
∗∗
i ) = (b̃, 1).

(ii) If sharing dominates ignoring, then either sharing dominates disliking (in which case set (b∗i , b
∗
i ) =

(0, 0)), disliking dominates sharing (in which case we set (b∗i , b
∗∗
i ) = (1, 1)), or there exists some
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prior b′′ where Ui(S) = Ui(D) (in which case set (b∗i , b
∗∗
i ) = (b′′, b′′)).

(iii) Otherwise, if b̃ < b′, set (b∗i , b
∗∗
i ) = (b̃, b′); however, if b̃ ≥ b′, then we set (b∗i , b

∗∗
i ) = (b′, b′).

This is of the cutoff form claimed in the lemma.

An immediate consequence of Lemma A.1 is that any Bayesian-Nash equilibrium must be in cutoff

strategies for all agents. Hence, we can limit our attention to cutoff strategies (b∗i , b
∗∗
i ) for every agent

i, which can be represented as (b∗,b∗∗) in vector notation. This is a partially-ordered set according to

the component-wise order�. Hence, the cutoff space B = [0, 1]2N forms a complete lattice.25

Next, we define a map ψ : B → B that maps cutoffs (b∗,b∗∗) to best-response cutoffs

(b∗,BR,b∗∗,BR). This map is well-defined because (i) H is a continuous distribution, so we need not

specify the strategies of agents precisely on the cutoffs, and (ii) by Lemma A.1, for any set of strategies

σ−i (including the cutoff strategies given by (b∗,b∗∗)), all agents’ best responses are in cutoff form.

Lemma A.2. The map ψ preserves the component-wise order�.

Proof of Lemma A.2. Consider some (b̂∗, b̂∗∗) � (b∗,b∗∗). Fixing an article with observables (r,m),
Ui(D), Ui(I) and U (1)

i are independent of (b̂∗, b̂∗∗) and (b∗,b∗∗). However, for U (2)
i we have:

EP,(b̂∗,b̂∗∗)[κSi − dDi] =

N∑
j=1

pij

(
κP(b̂∗,b̂∗∗)[aj = S]− dP(b̂∗,b̂∗∗)[aj = D]

)
=

N∑
j=1

pij

(
κPH [bj > b̂∗∗j ]− dPH [bj < b̂∗j ]

)

≤
N∑
j=1

pij
(
κPH [bj > b∗∗j ]− dPH [bj < b∗j ]

)
= EP,(b̃∗,b̃∗∗)[κSi − dDi]

As a result, U (b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S). As in Lemma A.1, we define b̃ as the prior where Ui(D) = 0 if

such a b̃ exists, otherwise let b̃ = 0 if ignoring dominates disliking and b̃ = 1 if disliking dominates

ignoring. Observe that b̃ is the same for both (b̂∗, b̂∗∗) and (b∗,b∗∗). We have three cases for

the best-response cutoffs (b∗,BR,b∗∗,BR) given other agents’ cutoffs (b∗,b∗∗) (which we compare to

(b̂∗,BR, b̂∗∗,BR) given other agents’ cutoffs (b̂∗, b̂∗∗)):

(i) Ignoring dominates sharing for agent i (for given cutoffs (b∗,b∗∗)). Then by virtue of

U
(b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S), ignoring dominates sharing with (b̂∗, b̂∗∗) as well. Thus,

(b∗,BRi , b∗∗,BRi ) = (b̂∗,BRi , b̂∗∗,BRi ) = (b̃, 1).

(ii) Sharing dominates ignoring for agent i (for given cutoffs (b∗,b∗∗)). Then either sharing dominates

disliking (in which case (b∗,BRi , b∗∗,BRi ) = (0, 0) � (b̂∗,BRi , b̂∗∗,BRi ) trivially), or there exists some

prior b′′ where U
(b∗,b∗∗)
i (S) = Ui(D) denoted by b′′ and (b∗,BRi , b∗∗,BRi ) = (b′′, b′′). Moreover,

because U (b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S) = Ui(D) at prior b′′, for an agent with prior b′′, playing D is

a (weakly) better response than sharing when other agents play according to cutoffs (b̂∗, b̂∗∗). By

monotonicity of Ui(S) and Ui(D) in prior bi, this implies that b∗∗,BRi ≤ b̂∗∗,BRi . If ignoring is never

a best response when (b̂∗, b̂∗∗), then b̂∗,BRi = b̂∗∗,BRi . Otherwise, b̂∗,BRi = b̃ ≥ b∗∗,BRi = b∗,BRi .

25Note that for any collection of cutoffs {(b∗,(1),b∗∗,(1)), (b∗,(2),b∗∗,(2)), . . . , } in the cutoff space, there is a greatest lower
bound given by the component-wise infimum and a least upper bound given by the component-wise supremum.
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(iii) U (b∗,b∗∗)
i (S) = 0 for some prior b′ for agent i. Then U

(b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S) = 0 implies that

for an agent with prior b′ playing I is a (weakly) better response than sharing when other agents

play according to (b̂∗, b̂∗∗). By monotonicity of Ui(S) in prior bi, this implies that b∗∗,BRi ≤ b̂∗∗,BRi .

If b̃ < b′, then b∗,BRi = b̂∗,BRi = b̃; otherwise, if b̃ ≥ b′, b∗,BRi = b∗∗,BRi = b′ ≤ b̂∗,BRi .

This establishes that (b̂∗,BRi , b̂∗∗,BRi ) � (b∗,BRi ,b∗∗,BRi ), so the order� is preserved by ψ.

Lemma A.3. An increase in polarization of beliefs can always be constructed via the following process:

take every belief bi and either (i) add some εi > 0 to bi if bi > 1/2, or (ii) subtract some εi > 0 to bi if

bi < 1/2.

Proof of Lemma A.3. Let H2 be more polarized than H1. For part (i), note that H1(b1i ) = α > 1/2,

so by single-crossing at H−1
1 (1/2) = H−1

2 (1/2), we know that H−1
2 (α) − H−1

1 (α) > 0. Thus, for some

b2i > b1i , we have H−1
2 (α) = b2i , or in other words, H2(b2i ) = α. Setting εi = b2i − b1i > 0 in this fashion

for all bi > 1/2 accomplishes claim (i). For part (ii), note that H1(b1i ) = α < 1/2, so by single-crossing

at H−1
1 (1/2) = H−1

2 (1/2), we know that H−1
2 (α) − H−1

1 (α) < 0. Thus, for some b2i < b1i , we have

H−1
2 (α1) = b2i , or in other words, H2(b2i ) = α. Setting εi = b1i − b2i > 0 in this fashion for all bi < 1/2

accomplishes claim (ii).

Lemma A.4. If κ ≤ κ̄ ≡ (cc̃− u(ũ− c̃))/(ũN), then for any agent i:

(i) If b∗i > 0 and b∗∗i < 1, then b∗∗i > b∗i ;

(ii) For all b̄ < 1, there exists r̃ > 0 such that agent i playsD in any equilibrium for an article with r < r̃

and on any sharing network P, provided that bi < b̄.

Proof of Lemma A.4. For part (i), by way of contradiction suppose that b∗i = b∗∗i . Then for an agent with

prior b∗i (and corresponding ex-post belief π∗i that the article is truthful), it must be the case that:

ũ(1− πi)− c̃ = uπi − c(1− πi) + E[κSi − dDi] ≥ 0 .

Re-arranging we get that πi = ũ−c̃+c−E[κSi−dDi]
ũ+u+c . Plugging back into the payoff for actionD, we see that:

Ui(D) = ũ

(
u+ c̃+ E[κSi − dDi]

ũ+ u+ c

)
− c̃ ≤ ũ

(
u+ c̃+ κN

ũ+ u+ c

)
− c̃ < ũ

(
u+ c̃+ κ̄N

ũ+ u+ c

)
− c̃ ≤ 0 .

By assumption, Ui(S) = Ui(D) < 0, but since Ui(I) = 0, ignoring is the best response at prior b∗i , which

is a contradiction.

For part (ii), notice by equation (2), for a fixed b < 1, as r → 0, πi → 0, and therefore:

Ui(S) = uπi − c(1− πi) + E[κSi − dDi] < uπi − c(1− πi) + κ̄N ≤ uπi − c(1− πi) +
c

N
N

r→0
= −c+ c = 0 .

where the last inequality follows from the observation that:

κ̄ ≡ cc̃− u(ũ− c̃)
ũN

<
cc̃

ũN
<

c

N
,
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because ũ > c̃. Thus, as r → 0, ignoring is a better response than sharing. But note that Ui(D) =

ũ(1 − πi) − c̃
r→0
= ũ − c̃ > 0, so as r → 0, disliking is a better response than ignoring. As a result,

disliking is a best response for any fixed b < 1 as r → 0. The claim in (ii) thus follows from continuity

of equation (2).

A.2 Proofs from Section 3

Proof of Theorem 1. Claim (ii) follows directly from Lemma A.1 and establishes that the Bayesian-

Nash equilibria are exactly the fixed points of the map ψ. Clearly the cutoff space B is convex and

compact (it is defined by [0, 1]2N ). To see that ψ is continuous, notice that for ψ : (b∗,b∗∗) 7→
(b∗,BR,b∗∗,BR), EP,(b∗,b∗∗)[U

(2)
i ] is continuous because H is continuous (and Ui(D), Ui(I), and U

(1)
i

do not depend on (b∗,b∗∗)). Moreover, by the same reasoning as in Lemma A.2, UP,(b∗,b∗∗)
i (S) and

U
P,(b∗,b∗∗)
i (S) − Ui(D) are monotone and continuous. Because these expressions are continuous in

(b∗,b∗∗), the corresponding best-response cutoffs, (b∗,BR,b∗∗,BR) are also continuous in (b∗,b∗∗). By

Brouwer’s fixed-point theorem, there exists a Bayesian-Nash equilibrium, proving (i).

Finally, noting that the cutoff space B is a complete lattice and ψ preserves the component-

wise order � (by Lemma A.2), Tarski’s fixed-point theorem establishes that the set of equilibrium

cutoffs forms a lattice (see Tarski (1955)). By definition of a lattice order, there exists a least-sharing

equilibrium (largest b∗∗) and a most-sharing equilibrium (smallest b∗∗).

Proof of Proposition 1. Recall that πi is given by equation (2) and provides the (ex-post) belief of the

article’s veracity conditional on observables (r,m). Also observe that:

∂πi
∂r

=
(1− bi + p(2bi − 1))(1− bi + q(2bi − 1))

(1− bi + q(1− φ(r))(2bi − 1)− p(φ(r)− 2φ(r)bi))2
φ′(r) .

Because φ′(r) > 0, it is clear that when bi > 1/2, ∂πi/∂r > 0. When bi < 1/2, 1 − bi + p(2bi − 1) is

minimized when p = 1, in which case it is equal to bi ≥ 0 (and with this inequality strict whenever

p < 1). Similarly, when bi < 1/2, 1− bi + q(2bi − 1) is minimized when q = 1/2, in which case it is equal

to 1/2 > 0. Thus, ∂πi/∂r > 0 for all bi.

Similarly, when φ′ ≥ φ, a given reliability score r with misinformation structure φ′ can be translated

into a higher reliability score r′ ≥ r but with misinformation structure φ (because both φ, φ′ are

monotonically increasing). As a consequence, a decrease in misinformation is isomorphic to greater

reliability of the articles. It is thus sufficient to prove the latter leads to uniformly more sharing in both

the least and the most sharing equilibria.

Note that the social media game is supermodular and has increasing differences in reputability. To

see this, note that for all r′ ≥ r:

[
Ui(S, r′)− Ui(I, r′)

]
− [Ui(S, r)− Ui(I, r)] = Ui(S, r′)− Ui(S, r) = U

(1)
i (r′)− U (1)

i (r) = (u+ c)(πi(r
′)− πi(r)),
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which is non-negative via the above observation that ∂πi
∂r > 0. Similarly, for all r′ ≥ r:

[
Ui(S, r′)− Ui(D, r′)

]
− [Ui(S, r)− Ui(D, r)] =

[
Ui(S, r′)− Ui(S, r)

]
+
[
Ui(D, r′)− Ui(D, r)

]
= (u+ c)(πi(r

′)− πi(r)) + ũ(πi(r
′)− πi(r)) ,

which is non-negative via the same observation. Finally, for all r′ ≥ r:

[
Ui(I, r′)− Ui(D, r′)

]
− [Ui(I, r)− Ui(D, r)] = Ui(D, r′)− Ui(D, r) = ũ(πi(r

′)− πi(r)) ,

which, again, is non-negative. Thus, via Topkis’s monotone comparative statics theorem (see Topkis

(1998)), there is uniformly more sharing.

Proof of Proposition 2. The social media game is supermodular and has increasing differences in

sensationalism and (the negative of) reputational concerns. To see this, note for all κ′ ≥ κ and d′ ≤ d:

[
Ui(S, κ′, d′)− Ui(I, κ′, d′)

]
− [Ui(S, κ, d)− Ui(I, κ, d)] = U

(2)
i (κ′, d′)− U (2)

i (κ′, d′) = (κ′ − κ)Si + (d− d′)Di

which is non-negative. Moreover, note that comparing S and D is identical to comparing S and I
because parameters (κ, d) affect both I andD identically (they only factor into the payoff of action S).

For this same reason, we note that [Ui(I, κ′, d′)− Ui(D, κ′, d′)]− [Ui(I, κ, d)− Ui(D, κ, d)] = 0. Thus, via

Topkis’s theorem (see Topkis (1998)), there is uniformly more sharing.

A.3 Proofs from Section 4

Proof of Lemma 1. To obtain a contradiction, suppose that there exists an agent i and an agent j with

`i = `j but either (i) b∗i 6= b∗j or (ii) b∗∗i 6= b∗∗j .

Without loss of generality, suppose that b∗i < b∗j . By way of contradiction suppose b∗∗i > b∗i , and

consider priors b̃ ∈ (b∗i ,min{b∗j , b∗∗i }) where agent iwould ignore but agent j with that same prior would

dislike. However, both agents with prior b̃ receive payoff ũ(1−π(b̃))− c̃ from disliking and payoff 0 from

ignoring. Thus, one of them must not be playing a best response, and b∗∗i = b∗i .

Thus, when agents i and j both have some prior b′ ∈ (b∗i , b
∗
j ), agent i shares and agent j dislikes. By

symmetry of agent i and j’s network positions, it is clear that for agent i and agent j with prior b′ that

Uj(S)− Ui(S) = ps(κ+ d). Similarly, Uj(D)− Ui(D) = 0. But in this case,

[Uj(S)− Ui(S)]− [Uj(D)− Ui(D)] = [Uj(S)− Uj(D)] + [Ui(D)− Ui(S)] = ps(κ+ d) > 0 .

This implies that either [Uj(S)−Uj(D)] > 0 or [Ui(D)−Ui(S)] > 0 (or both). This yields a contradiction

because at prior b′, it is supposed to be a best response for agent j to play D and a best response for

agent i to play S. Thus, b∗i = b∗j .

Without loss of generality, suppose that b∗∗i < b∗∗j . If b∗∗i ≤ b∗j , then for priors b′′ ∈ (b∗∗i , b
∗
j ), agent i
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shares and agent j dislikes. Via the same reasoning as in the previous paragraph, this is a contradiction,

so b∗j < b∗∗i < b∗∗j . Let us consider some prior b̂ ∈ (b∗∗i , b
∗∗
j ), where agent i shares and agent j ignores. By

symmetry of agent i and j’s network positions, it is clear that for agent i and agent j with prior b̂ that

Uj(S)− Ui(S) = psκ. Similarly, Uj(I)− Ui(I) = 0. Then notice that:

[Uj(S)− Ui(S)]− [Uj(I)− Ui(I)] = [Uj(S)− Uj(I)] + [Ui(I)− Ui(S)] = psκ > 0 .

This implies that either [Uj(S) − Uj(I)] > 0 or [Ui(I) − Ui(S)] > 0 (or both). However, this is a

contradiction because at prior b′, it is supposed to be a best response for agent j to play I and a best

response for agent i to play S. Thus, b∗∗i = b∗∗j .

Proof of Theorem 2. For part (a), let us consider belief b(2) < 1 and a reliability threshold r such that for

all P, all agents with b < b(2) choose D in every equilibrium (including the most-sharing equilibrium)

whenever the article has reliability r < r. Such an r exists by Lemma A.4(ii). Thus, for all r < r, every

agent on an island ` ≥ 2 dislikes in the most-sharing equilibrium, regardless of P.

Next, we consider an increase in homophily (while holding expected degree fixed). By our choice of

r, all agents on islands ` ≥ 2 still dislike in the most-sharing equilibrium whenever r < r. We can thus

consider the social media game that only involves island 1, treating islands 2 through k as automata

that always dislike. Before the shift in homophily, consider the equilibrium cutoffs (b∗1, b
∗∗
1 ) for island 1

in the most-sharing equilibrium (the same for all agents on island 1, per Lermma 1) and let B1 denote

the modified cutoff space defined by all cutoffs (b̂∗1, b̂
∗∗
1 ) � (b∗1, b

∗∗
1 ). Finally we define a mapϕ : B1 → B1

that maps cutoffs in B1, (b̂∗1, b̂
∗∗
1 ), to best-response cutoffs (b̂∗,BR1 , b̂∗∗,BR1 ), given that agents on island 1

play according (b̂∗1, b̂
∗∗
1 ). By the arguments in Lemma A.2,ϕ preserves� and B1 is a complete sublattice,

provided that the map ϕ is well-defined in that it always maps to an element in B1.

To establish this, consider the utility U1(S) of sharing on island 1 with homophily parameters

(ps, pd), holding fixed the cutoff strategy (b̂∗1, b̂
∗∗
1 ) and the expected degree of each agent on island 1,

ζ1. Thus, we can write pd = (ζ −N1ps)/(N −N1) and observe then that

U1(S) = U
(1)
1 + κN1ps(1−H(b̂∗∗1 ))− d

(
N1psH(b̂∗1) +

ζ −N1ps
N −N1

· (N −N1)

)
,

and in particular, ∂U1(S)/∂ps = κN1(1−H(b̂∗∗1 )) +dN1(1−H(b̂∗)) > 0. Therefore, if we compare utility

U ′1(S) after the increase in homophily toU1(S) before the increase in homophily (leaving (b̂1, b̂
∗∗
1 ) fixed),

we see that U ′1(S) ≥ U1(S). Hence, ϕ necessarily maps any cutoffs in B1 into B1. Applying the same

Tarski fixed-point theorem as before (see Tarski (1955)), the set of fixed points (and thus Bayesian-Nash

equilibria) form a lattice within the space of cutoffs B1. Moreover, there is a most-sharing equilibrium

in B1, which is also the most-sharing equilibrium in B. We denote this equilibrium by (b∗
′

1 , b
∗∗′
1 ) and

note that (b∗
′

1 , b
∗∗′
1 ) � (b∗1, b

∗∗
1 ) (because it lies in B1). In particular, this means b∗∗

′
1 ≤ b∗∗1 , and more

agents share on island 1 in the most-sharing equilibrium following the rise in homophily.

To measure the change in virality, we first observe that the seed agent i∗ (that maximizes E[Si∗ ])
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is chosen from the agents on island 1. We consider the virality of the article when agents on island 1

share with probability 1−H(b∗∗1 ) under the stronger homophily structure (p′s, p
′
d) versus (ps, pd) (and all

other agents kill the article). This is sufficient to show that virality increases following the increase in

homophily, because obviously virality with b∗∗
′

1 < b∗∗1 (but the same network P) is strictly higher, given

that agents on island 1 share more often (1−H(b∗∗
′
) > 1−H(b∗∗)).

We consider the diffusion process of an article on the (p′s, p
′
d) network that starts with an agent on

island 1. Let us define a path of the diffusion process to be a chain i∗ → i1 → i2 → . . .→ iz representing

a sequence of agents who receive the article in this process, with i∗ being the seed agent, i1 through

iz−1 all being agents who shared it, and agent iz being an agent who either ignored or disliked the

article. There may be many such paths for the diffusion of the article (by assumption, all agents with

the possible exception of agent iz must be on island 1).

For each path, we define an alternative path (generated randomly) as follows. For any links to

agents other than to agent iz (i.e., links within island 1), with probability (p′s − ps)/p′s, the link instead

goes to one of islands 2, . . . , k (chosen in proportion to their population) and otherwise remains the

same. Applying this to all paths, we define an isomorphic diffusion process to one on a sharing

network with weaker homophily parameters (ps, pd). However, note that the length of every path

cannot increase following this transformation. Because any transition to islands 2, . . . , k is necessarily

the end of the path, paths can only shorten. Moreover, the number of paths must weakly decrease. As

a result, the fraction of agents who receive the article (i.e., Si∗) must be lower, and virality is less under

the (ps, pd) sharing network. This establishes part (a).

For part (b), we first note that there exists r̄ such that the most-sharing equilibrium when r > r̄

is all-share (b∗∗` = 0 for all islands `) regardless of P. Notice that equation (2) is minimized when

bi = 0, and in particular, for all agents i (regardless of their prior) πi ≥ (1−p)φ(r)
(1−q)(1−φ(r))+(1−p)φ(r) . Then,

letting π̄ = max
{

c
u+c ,

ũ−c̃
ũ

}
< 1, we note that whenever r ≥ φ−1

(
(1−q)π̄

(p−q)π̄+(1−p)

)
≡ r̄ ∈ (0, 1), πi ≥ π̄.

Of course, when all other agents (other than i) share and r > r̄, Ui(S) ≥ uπi − c(1 − πi) ≥ 0 and

Ui(D) = ũ(1− πi)− c̃ ≤ 0, so ai = S is a best response for agent i. Thus, the most-sharing equilibrium

is all-share (because it is an equilibrium and no other strategy profile can have more sharing).

Observe that when r > r̄, virality is measured simply by the expected size of the connected

component (formed by P) containing the seed agent i∗. Regardless of the homophily parameters, the

seed agent i∗ will be chosen from the largest island (call this island `∗). This is immediate from the

fact that all agents share in equilibrium, agents on island `∗ have the most connections to any other

arbitrary island `′ (in expectation), and are connected to all agents on their own island.

Lastly, we note that the probability that island ` has any connections to island `′ is given by p̃`,`′ =

1 − (1 − pd)
N`N

′
` before the decrease in homophily and p̃′`,`′ = 1 − (1 − p′d)

N`N
′
` after the decrease in

homophily, with p̃′`,`′ > p̃`,`′ for all pairs of islands (`, `′) because p′d > pd. Using the same terminology

as in the argument for part (a), we map the diffusion paths of an article under the less homophilic

sharing network with (p′s, p
′
d). Consider cycles between islands `∗ → `1 → `2 . . . → `z, where `z is the

same island as one of `∗, `1, . . . , `z (in which case, no additional engagement is obtained thereafter the
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article returns to island `z). Before the decrease in homophily (where pd < p′d), we can construct an

isomorphic diffusion process where an article remains within the same island (instead of switching to

a different one) with probability (p′d − pd)/pd. By construction of the cycle, whenever such an event

occurs, the cycle becomes complete and the islands reached thereafter in the (p′s, p
′
d) sharing network

are not (for that given cycle). Measuring across all cycles that occur in the (p′s, p
′
d) model, (weakly)

more islands are reached than under the more homophilic (ps, pd) model. Consequently, virality is

higher under the (p′s, p
′
d) sharing network (with less homophily) than with the (ps, pd) sharing network

(more homophily). This establishes part (b).

Proof of Proposition 3. Let us define r∗ as

r∗ ≡ φ−1

(
max

{
(1− q)(ũ− c̃)

(p− q)(ũ− c̃) + (1− p)ũ
,

c

u+ c

})
∈ (0, 1) .

For part (a), first consider the case of r < r∗ and pd = 0 (by continuity, the result extends to the case of

sufficiently large ps/pd). In the most-sharing equilibrium, the seed agent most conducive to the article’s

spread is on the right-wing island, and given that pd = 0, the equilibrium on the left-wing island is

immaterial to its virality. Let us denote the right-wing island cutoffs by (b∗R, b
∗∗
R ) (cutoffs are only island-

dependent, per Lemma 1). Similar to the proof of Theorem 2(a), we define a cutoff space BR such that

(b̂∗R, b̂
∗∗
R ) ∈ BR if and only if (b̂∗R, b̂

∗∗
R ) � (b∗R, b

∗∗
R ). Similarly, we define the map ϕ : BR → BR which

maps an arbitrary cutoff (b̂∗R, b̂
∗∗
R ) to best-response cutoffs (b̂∗,BRR , b̂∗∗,BRR ). To show the map is well-

defined, considerUR(S) before the increase in divisiveness or polarization andU ′R(S) after the increase

in divisiveness or polarization. Because the network structure is fixed, note that U (2)
R (S) = U

(2)′

R (S)

when the cutoffs (b̂∗R, b̂
∗∗
R ) are taken as given, so the difference U ′R(S) − UR(S) depends only on the

difference between U
(1)
R (S) and U

(1)′

R (S). Specifically, the difference in share payoff depends only on

the change in πi following the increase in divisiveness or polarization. Observe that:

∂πi
∂p

=
(2bi − 1)(1− φ(r))φ(r)(1− q − bi(1− 2q))

(bi(2pφ(r) + 2q(1− φ(r))− 1)− pφ(r)− q(1− φ(r)) + 1)2
> 0 ;

∂πi
∂q

=
(2bi − 1)(1− φ(r))φ(r)(1− p+ bi(2p− 1))

((2bi − 1)φ(r)(p− q) + 2biq − bi − q + 1)2
> 0 ,

whenever bi > 1/2. Likewise, as we showed in Lemma A.1, ∂πi/∂bi > 0 for all bi and greater polarization

increases ideological priors for agents with bi > 1/2 (by Lemma A.3). By virtue of bR > 1/2, we observe

thatU (1)′

R (S) > U
(1)
R (S), and soU ′R(S) > UR(S). Thus, as in the proof of Theorem 2(a),ϕ is well-defined.

Applying the Tarski fixed-point theorem (see Tarski (1955)), we find that the most-sharing equilibrium

leads to more sharing in the right-wing island. Because the network structure P remains constant and

there is a uniform shift in sharing, our weaker notion of virality also increases.

For part (b), consider r ≥ r∗. Note that for r ≥ r∗, ignoring is a better response to disliking for any

agent (regardless of the agent’s prior) and sharing is a better response to ignoring for all bi > 1/2. The

former follows from noting πi ≥ ũ−c̃
ũ for an agent with prior bi = 0 and the latter from noting πi ≥ c

u+c
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for agents with bi > 1/2 and observing that disliking is a dominated strategy. Therefore, the right-wing

island always shares, whereas the left-wing island has equilibrium cutoffs (0, b∗∗L ). Using the same

approach as in part (a), it is enough to show that UL(S) increases following a decrease in divisiveness

or polarization. Of course, for bi < 1/2, we see that ∂πi/∂p < 0 and ∂πi/∂q < 0, and moreover, by

Lemma A.3, decreasing polarization means that all agents on the left-wing island also have an increase

in bi. Thus, there is more sharing in the most-sharing equilibrium following a decrease in divisiveness

or polarization. By strategic complementarity, the right-wing island remains at all-share, and sharing

uniformly increases (and so does virality, naturally).

A.4 Proofs from Section 5

Proof of Theorem 3. Consider the complete sharing network where P = 1N×N − I. We claim that if

the most-sharing equilibrium involves all agents choosing S or I (with probability 1) and agents never

choosing D under this configuration, then this is the platform’s profit-maximizing sharing network.

By Lemma 1, all agents employ the same cutoffs (b∗, b∗∗) = (0, b∗∗) and 1 − H(b∗∗) determines the

proportion who share in the most-sharing equilibrium.

We focus on a modified social media game that only allows agents to ignore or share, which

necessarily increases virality of content for any sharing network P′ but does not increase the virality

for the complete sharing network, by assumption. We show that for any other sharing network P′, the

largest fixed point (the most-sharing equilibrium), must necessarily be above b∗∗1 (in the order �). To

do this, we consider the largest fixed point under P′ (call this b∗∗
′
), and use the same mathematical

arguments as before (although we disregard the dislike cutoff). Let B′ be the cutoff space where b̂∗∗

satisfies b̂∗∗ � b∗∗
′

and let the mapϕ : B′ → B′map fixed cutoff strategies b̂∗∗ to best-response sharing

cutoff strategies under the complete sharing network. It only remains to prove thatϕ indeed maps into

B′. To do this, let U cj (S) be the utility from sharing under the complete network and U ′j(S) as sharing

under P′, and note that U cj (S)− U ′j(S) = κ
∑N

j̃=1(1− p′
jj̃

)(1−H(b̂∗∗
j̃

)) ≥ 0.

Thus, by Tarski’s fixed-point theorem (Tarski (1955)), we obtain that b∗∗1 � b∗∗
′
. Finally, observe

that this necessarily implies that P′ is less viral, because for every prior realization and seed agent i∗,

Si∗ is larger in the complete network than in any other sharing network, provided that b∗∗1 � b∗∗
′

and b∗ = 0 (no agent dislikes). By Proposition 1, (uniformly more) sharing is monotone in reliability,

so there exists some rP such that for r > rP , the complete sharing network admits only shares and

ignores, whereas when r < rP , agents dislike with positive probability. When r > rP , the network takes

the form of part (ii) by setting ps = pd = 1.

Next, we consider the case where r < rP , and so (b∗, b∗∗) are the cutoffs in the most-sharing

equilibrium with a complete sharing network, but where b∗ > 0. First, notice that there must exist an

open interval where agents with priors bi ∈ (0, b̄) will never share, regardless of the sharing network

P. To see this, suppose that there exists some P′ where all agents either share or ignore, so the

equilibrium cutoffs are determined by b∗∗
′

(and b∗
′

= 0). Using the reasoning as in the previous
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paragraph (but extending it to the full cutoff space (b∗1, b∗∗1)), we conclude that the cutoffs in the

most-sharing equilibrium of the complete sharing network must satisfy (b∗1, b∗∗1) � (b∗
′
,b∗∗

′
), and in

particular, b∗1 � b∗
′

= 0. This implies that all agents share or ignore in the complete network, yielding

a contradiction. Therefore, such an interval (0, b̄) must exist, and in particular, we choose the largest

such b̄ (in the supremum sense) where agents with priors in (0, b̄) never share in any sharing network

P in the most-sharing equilibrium.

Next, we consider disconnecting (and removing) all agents in any community ` with b(`) < b̄,

but leaving all other communities connected in a (partial) complete network. We call this network

the active network. We claim that when ε is sufficiently small, all of the remaining agents in the

active network either share or ignore. By definition, an agent with b̄ would share under some sharing

network P∗ but any agent with b̄ − ε would ignore (for arbitrarily small ε) under P∗ (and by leveraging

Lemma A.4(i), not all agents with b < b̄ dislike). This implies that Ui(D) < 0 for an agent with prior

b̄ (by monotonicity), and thus an agent with this prior either shares or ignores in the active network.

Moreover, for agents with priors in a small half-open neighborhood around b̄ (i.e., an interval (b̄− η, b̄]
for some η > 0) ignoring is a better response to disliking in the active network. Thus, for sufficiently

small ε, we obtain a partial complete network (the active network) with agents who only share and

ignore (with probability 1) and never dislike (with probability 0).

Finally, with these two observations, we claim that the profit-maximizing sharing network takes

the form of part (i). First, consider all communities who participated in the active network described

above (call these the active communities) and suppose that the agents in communities outside of this

active network are non-existent in our model (call these the inactive communities). When the active

communities are arranged in a complete sharing network, we showed in the previous paragraph that

all agents either share or ignore. By the exact argument in the first two paragraphs then, engagement

(and virality) are maximized (amongst only the active communities) when these communities are

arranged in a complete sharing network. Second, by construction of the active network (and the

active communities), all agents in inactive communities never share under any sharing network P.

Therefore, removing these agents is without loss to potential virality. Hence, whenever virality is

maximized amongst only agents in active communities, it is also maximized in general.

Lastly, we note that we can form a (partial) complete network among the inactive communities, but

provide no connections to the (partial) complete network of active communities who only share and

ignore (with probability 1). By our previous observations, this is a profit-maximizing sharing network

for the platform. At the same time, it is exactly the form of a two-island model with (ps, pd) = (1, 0),

which has maximal homophily.

Proof of Proposition 4. Note by Theorem 3 that an agent i with prior bi = b(k+1) is indifferent between

ignoring and disliking when r = rP (but strictly prefers to either share or ignore for all r > rP ), so rP

increases if and only if this agent (strictly) prefers to dislike following a shift in parameters. Because

b(k+1) < 1/2, an increase in polarization means that agent i’s prior decreases (see Lemma A.3), and
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given that ∂πi/∂bi > 0 (see Lemma A.1), πi decreases for this agent. As a consequence Ui(D) increases

but Ui(I) remains the same, so agent i (strictly) prefers to dislike. Similarly, because ∂πi/∂p < 0 and

∂πi/∂q < 0 for bi < 1/2 (see Proposition 3), πi decreases for this agent (making ai = D a best response).

In both cases, we see that rP increases.

A.5 Proofs from Section 6

Proof of Proposition 5. For part (a), let V > 0 be the virality of any given article before the provenance

policy. Note by Lemma A.4 that κ ≤ c/N , so in particular it is never a best response for agent i to play

ai = S when πi = 0. Conditional on an article containing misinformation and given provenance policy

ρ, the seed agent’s probability of sharing it is bounded above 1−ρ, and the virality of the misinformation

article is thus bounded above by (1 − ρ)N . Setting ρ∗ = (N − V )/N guarantees that the provenance

policy reduces the virality of misinformation.

For part (b), we expand on some of the details in Example 1, where we fix an article that necessarily

contains misinformation. All user beliefs are uniformly distributed on [0, 2/3], the message is m = R,

φ(r) = 1/2, p = 0.7, and q = 0.3. With no provenance policy, we note that users with beliefs bi > 1/2

share the article and those with beliefs bi < 1/2 do not. Each user i sharing the article with probability

ζ = 1/4, the total virality of the article can thus be computed simply as
∑N

i=1 ζ
i ≈ ζ/(1 − ζ) = 1/3 for

large N .

Next, we consider a provenance policy with ρ = 1/4, so with probability 1/4 each user

(independently) will fact-check the content. Given our previous assumption, if a user fact-checks she

will share when the fact-check comes back as ν = T and will not share when the fact-check comes

back ν = M. We suppose the article starts at seed agent 1.26 User 1, similar to the no provenance

policy, will share the article with probability ζ = 1/4 if there is no fact-check. On the other hand, user

1 will share the article with certainty if there is a fact-check and it comes back ν = T , but will ignore

the article with certainty if there is a fact-check and it comes back ν = M. Thus, user 1 shares the

article with probability ζ(1−ρ) = 3/16. Any user i ≥ 2 will know the article might have been previously

fact-checked, and therefore will assign higher likelihood to its veracity than πi defined in equation (2).

In particular, user 2 will assign likelihood π′2 = (ρ+(1−ρ)ζ)π2

ρπ2+(1−ρ)ζ > π2 that the article is truthful. For our

parameter values, one can verify that π′2 > 1/2 regardless of bi ∈ [0, 2/3] and so user 2 shares the article

with probability 1 if she does not fact-check. Thus, the probability that agent 2 (and agents thereafter)

)shares is 1−ρ = 3/4. This implies that virality is
∑N

i=2(1−ρ)i−1 ≈ (1−ρ)/ρ = 3 for largeN . Finally, the

virality of the article after the provenance policy is 3/16 + 3/16 · 3 = 3/4 > 1/3. Thus, the provenance

policy increases the virality of a misinformation article.

For part (c), we note that the generous bound in part (a) still applies identically even if the platform

chooses a different sharing network following the provenance policy.

26We do not claim that this is an optimal seeding strategy for the platform, but establishes a lower bound on the
engagement the platform can obtain, which is sufficient to prove that the provenance policy can backfire.
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Proof of Proposition 6. Both parts (a) and (c) follow exactly from the proof of Proposition 5. This

is immediate from observing that the bound established in the proofs of Proposition 5(a) and

Proposition 5(c) only consider the first potential sharer, who in this case is just the regulator (instead

of the seeded agent). A similar example to that in Proposition 5(b) can be supplied by the authors.

Proof of Proposition 7. For both parts (a) and (c), consider a new (stricter) performance target λ∗ < λ

(where λ is the current performance target). The platform can meet the new performance standard

λ∗ by recommending any content with r ≥ φ−1(λ∗), which by continuity of φ and positive density

of f over r ∈ [φ−1(λ∗), 1] guarantees some level of expected engagement E > 0 whereas (platform-

optimal) engagement while neglecting the performance target is some Ẽ ≥ E. Setting α∗ = (Ẽ−E)/Ẽ

implies that for all α > α∗, the platform prefers to meet λ∗ than neglect it. Finally, note that to meet a

lower performance target λ∗, the total shares on the platform (in expectation) must decrease.27 Given

that the performance target is the ratio of misinformation shares to total shares, and total shares have

decreased, the platform must decrease misinformation shares to meet λ∗.

For part (b), we consider a complete sharing network with uniformly distributed beliefs on [0, 1], but

otherwise we adopt the same parameter values as in Example 1. Moreover, the auditing technology to

enforce performance targets is only α = 1/2. Suppose that there are just three types of articles: high-

reliability and low-sensationalism (type HL) articles, low-reliability and low-sensationalism articles

(type LL) articles, and low-reliability but high-sensationalism (type LH) articles. The type-HL articles

never contain misinformation (φ(r) = 1) and have no sensationalism (κ = 0). The type-LL articles

contain misinformation with probability 2/3 and have no sensationalism (κ = 0). The type-LH articles

also contain misinformation with probability 2/3, but have high sensationalism given by κ > (2c −
u)/(3N) > 0. We assume that all three article types are equally likely. In the case of type-HL and

type-LH articles, all agents necessarily share in the most-sharing equilibrium. On the other hand, only

agents with priors bi ∈ [3/4, 1] share the type-LL articles. It is straightforward to verify that when λ ∈
(34/99, 1) ∪ (0, 1/3), the platform allows all content, but when α ∈ (1/3, 34/99), the platform removes

the type-LL articles and reduces the virality of misinformation.

Proof of Proposition 8. The network regulation does not bind for an article with r > rP , so we need only

consider r < rP . Take some agent i with prior bi ∈ (b̄, b̄+ η) in a small neighborhood η > 0 of b̄ (where

b̄ is the same b̄ constructed in Theorem 3). Following the same line of reasoning as in Theorem 2(a),

agents with priors in this interval elect to ignore instead of share following the network regulation (and

when η is sufficiently small), and this necessarily reduces the virality of misinformation, showing (ii).

To prove (i), we note that agents in this neighborhood around b̄ also do not share in the most-sharing

equilibrium under any sharing network P′ (following the network regulation), per the construction of

b̄ in Theorem 3. Therefore, the platform cannot generate additional engagement by departing from the

class of island models (specifically, two-island models) while maintaining ps/pd ≤ p∗.
27For part (c), this follows from noting that with the more relaxed λ > λ∗ target, the platform could have increased

engagement with a different sharing network (and thus is not implementing a profit-maximizing sharing network).
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