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1 Introduction

Can monetary policy regulate aggregate demand? The classic by Sargent and Wallace (1975) re-

minds why the answer to this question is complicated: the same path for the nominal interest

rate can be consistent with multiple equilibrium paths for inflation, and thereby for output too.

To resolve this problem, the New Keynesian model lets monetary policy follow a feedback rule

from inflation (or output gaps) to interest rates, requires that this rule be sufficiently steep, and

shows that this pins down a unique bounded equilibrium.1 The aforementioned requirement,

known as the Taylor principle (Taylor, 1993) or as “active” monetary policy (Leeper, 1991), is often

described as follows: raise interest rates aggressively in response to inflationary pressures. But

this description confounds equilibrium selection with stabilization. Once these functions are

separated (King, 2000), it becomes clear that the Taylor principle regards only the former—and

this opens the pandora box of what the “right” approach to equilibrium selection is.

Cochrane (2011) has argued that the Taylor principle amounts to an off-equilibrium threat to

“blow up” the economy, in the sense of triggering an explosion in inflation and the output gap;

and he has pushed for the Fiscal Theory of the Price Level (FTPL), originally articulated by Sims

(1994) and Woodford (1995), as a superior alternative. But this theory, too, can be equated to a

threat to blow up the economy, now in the sense of violating the government’s intertemporal bud-

get constraint. And because off-equilibrium assumptions cannot be refuted by data, the debate

is “a fundamentally religious, not scientific, issue” (Kocherlakota and Phelan, 1999, p.22)

Cochrane (2005) objects to the above interpretation of the FTPL, arguing that the govern-

ment’s intertemporal budget constraint must be re-read as an equilibrium condition akin to the

pricing of a stock; and Bassetto (2002) offers a game-theoretic foundation that, too, bypasses the

blow-up criticism. On the other hand, Atkeson, Chari, and Kehoe (2010) offer a modification of

the conventional approach that allows monetary policy to achieve equilibrium selection without

a reliance on a blow-up threat. So the debate never ends, it only morphs in different forms.

We offer a potential way out of this conundrum. We highlight how the possibility of mul-

tiple equilibria under “passive” policy depends on strong assumptions about memory and in-

tertemporal coordination. Once we perturb these assumptions appropriately, all bounded equi-

libria unravel except for one: that known as the model’s fundamental or minimum-state-variable

(MSV) solution (McCallum, 1983, 2009). This is the same equilibrium as that selected by the

Taylor principle, except that now there is no need for it and no room for any other selection.

Determinacy obtains even with interest rate pegs.

1In this paper we study exclusively the local determinacy issue. A separate issue, outside this paper’s scope, is
the global indeterminacy issue and what policies rule out “unbounded” equilibria, i.e., self-fulfilling hyperinflation
(Obstfeld and Rogoff, 1983, 2021; Cochrane, 2011) and self-fulfilling liquidity traps (Benhabib et al., 2002).
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Preview of results. Our first result, Proposition 2, establishes the above lesson as follows. The

economy is recast as a game among overlapping generations of players. Old players are replaced

by new ones at rate λ ∈ [0,1). Players’ actions can be measurable in the shocks realized during

their life but not those before. The standard, full-information, New Keynesian model is nested

with λ= 0 and is ridden with a continuum of sunspot and backward-looking equilibria. By con-

trast, only the fundamental/MSV solution survives for λ> 0, even arbitrarily small.

Strictly speaking, this result precludes direct observation of past outcomes such as inflation

and output. But because such outcomes are functions of the past shocks, in the limit as λ →
0 nearly all agents become nearly perfectly informed about long histories of both shocks and

outcomes. And yet, all sunspot and backward-looking equilibria unravel.

Our second result, Proposition 5, offers a perturbation that works even when past outcomes

are observed perfectly. To zero in on the core issue, which is intertemporal coordination, we now

assume that there is a representative agent in each period, who observes perfectly past outcomes

but faces some uncertainty (or memory loss) about the shocks behind it. Such uncertainty, even

if minimal, causes all sunspot and backward-looking equilibria to unravel once again.

Such unravellings are emblematic of frictions in coordination (e.g., Rubinstein, 1989; Morris

and Shin, 1998; Abreu and Brunnermeier, 2003) but not a universal implication of them: the

details of what is or is not common knowledge can matter greatly. Still, our results illustrate the

potential fragility of the “infinite chain” that supports the aforementioned equilibria.

By this chain we mean the following: current agents are doing something against their in-

trinsic interest only because they expect to be rewarded appropriately by future agents, who

themselves must do something against their own intrinsic interest on the basis of a similar ex-

pectation about agents further into the future, and so on. Our first result breaks this chain by

precluding outcomes in the far future from responding to extrinsic impulses in the present; our

second breaks it by letting tomorrow’s agents be uncertain about how to “reward” today’s agents.

Together, these results suggest that the distinction between “active” and “passive” monetary

policy may be less consequential than previously thought: determinacy is possible even with

interest rate pegs. By the same token, no space is left for equilibrium selection via the FTPL:

fiscal policy can matter for inflation and output only insofar as it enters the model’s fundamental

solution.2 Last but not least, the potential conflict between macroeconomic stabilization and

equilibrium selection (e.g., Galí, 2008, p.101; Loisel, 2021) is eased: feedback rules can be used

solely for replication of the optimal contingencies on shocks.3

2E.g., this could be because the monetary authority internalizes the fiscal implications of its actions, letting in
effect the the debt burden enter the intercept of Taylor rule.

3This conflict is avoided in some works (e.g., Atkeson, Chari, and Kehoe, 2010) by assuming that the planner a
priori knows the underlying shocks, or can fully separate the policy contingencies used for equilibrium selection
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Related literature and additional discussion. Although Cochrane (2011, 2017, 2018) has been

the most vocal advocate of the FTPL recently, this theory and the associated debate on whether

equilibrium is selected by an “active” monetary policy or a “non-Ricardian” fiscal policy go back

to Leeper (1991), Sims (1994) and Woodford (1995). We refer the reader to Kocherlakota and

Phelan (1999) and King (2000) and for sharp explanations of, respectively, the non-Ricardian as-

sumption and the Taylor principle; to Atkeson, Chari, and Kehoe (2010) for monetary policies

that avoid blow-up threats; and to Canzoneri, Cumby, and Diba (2010) for a review of how this

debate fits in the broader context of the interaction between fiscal and monetary policy.4 What

distinguishes our contribution is the attempt to remove the need for equilibrium selection of any

kind, by allowing for imperfect intertemporal coordination within the private sector.

Our first result (Proposition 2), in particular, brings to mind the literature on global games

(Morris and Shin, 1998, 2003). Although the application and the formal argument are different,

there is a resemblance in terms of the discontinuity of equilibria to perturbations of informa-

tion and the underlying role of higher-order beliefs. Our second result (Proposition 5), on the

other hand, is more closely connected to Bhaskar (1998) and Bhaskar, Mailath, and Morris (2012),

which show that only Markov Perfect Equilibria survive in a class of games when a purification

in payoffs is combined with finite social memory. Together, our results hint at deep connections

between seemingly disparate literatures, which deserve further exploration.

A large literature has shown how informational frictions can improve the positive properties

of the New Keynesian model’s fundamental solution,5 but has not addressed the determinacy

issue. We add to this literature by showing that a related friction can help rule out the model’s

other solutions. A different literature has attempted to refine the model’s solutions by requiring

that they are E-stable (McCallum, 2007; Christiano et al., 2018). This approach relies on specific

assumptions about what it means for an equilibrium to be “learnable” and has had mixed success

on the topic of interest.6 Still, we view this approach and ours as complementary in that they both

contribute towards reinforcing the logical foundations of the model’s fundamental solution.

Although we commit on REE, both the indeterminacy problem and our resolution of it extend

to a larger class of solution concepts, including cognitive discounting (Gabaix, 2020), diagnostic

expectations (Bordalo et al., 2018), and Bayesian equilibrium with mis-specified priors about one

from those used for stabilization. But such separation may not be possible in general.
4Additional contributions include Buiter (2002), Canzoneri, Cumby, and Diba (2001), Christiano (2018), McCal-

lum (2001, 2007, 2009), McCallum and Nelson (2005), and Niepelt (2004).
5By letting people be inattentive to fundamentals (Mankiw and Reis, 2002; Maćkowiak and Wiederholt, 2009)

and/or by arresting higher-order beliefs (Woodford, 2003; Angeletos and Lian, 2018; Angeletos and Huo, 2021).
6For example, sunspot equilibria can be E-stable if the interest rate rule is written as a function of expected in-

flation (Honkapohja and Mitra, 2004). And there is a debate on how the E-stability of backward-looking solutions
depends on the observability of shocks (Cochrane, 2011; Evans and McGough, 2018).
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another’s knowledge or rationality (Angeletos and Sastry, 2021). Relative to REE, these concepts

relax the perfect coincidence of subjective beliefs and objective distributions and, in the case of

Gabaix (2020), can shrink the indeterminacy region. But they do not fully resolve the problem

because they preserve a fixed-point relation between beliefs and behavior.

By contrast, Level-K Thinking (García-Schmidt and Woodford, 2019; Farhi and Werning, 2019)

produces a unique solution precisely because it shuts down this fixed point relation. But when-

ever the environment admits multiple REE, the Level-K solution becomes infinitely sensitive to

the assumed Level-0 behavior as the depth of reasoning gets larger. In this sense, this concept

does not “really” resolve the indeterminacy issue; it only translates one free variable (animal spir-

its or equilibrium selection) to another free variable (the analysts’ choice of Level-0 behavior).

2 A Simplified New Keynesian Model

In this section we introduce our version of the New Keynesian model. This contains a few simpli-

fications that ease the exposition but do not drive the results.

From three equations to one

Time is discrete and is indexed by t . Each period, a continuum of consumers—who may or may

not know the history of shocks—decide how much to spend. For the main analysis, we side-step

the micro-foundations and model consumer behavior in terms of the following, ad hoc, IS curve:

ct =−σ(
it − Ēt [πt+1]

)+ Ēt [ct+1]+σ%t , (1)

We similarly impose the following, also ad hoc, Phillips curve:

πt = κ(ct +ξt ), (2)

The notation is standard: Ēt [·] ≡ ∫
i∈[0,1] Ei ,t [·]di is the average expectation in the population as

of period t ; ct , it , and πt+1 are, respectively, aggregate spending (and output) at t , the nominal

interest rate between t and t + 1, and the rate of inflation between t and t + 1, all expressed as

log-deviations from a given steady state; σ > 0 and κ ≥ 0 are fixed scalars; %t is an exogenous

“demand” or “discount-rate” shock; and ξt is an exogenous “supply” or “cost push” shock.7

In the basic New Keynesian model, equation (1) follows directly from as the representative

agent’s Euler equation, modulo the replacement of Ēt with that agent’s expectation. With multi-

ple, heterogeneously-informed agents (Angeletos and Lian, 2018; Angeletos and Huo, 2021), the

7These shocks can, but do not have to, be independent from one other. Also note that the scale of ξt is normalized
so that cnat

t =−ξt corresponds to the flexible-price outcome.
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appropriate IS equation is more complicated: it ties ct to the expectations of iτ−πτ+1 and cτ+1 at

all τ ≥ t +1, not just τ = t +1, capturing the intertemporal Keynesian cross. But as explained in

Section 5, our main result readily extends to such a more complicated IS curve, as well as to the

standard, forward-looking, New Keynesian Phillips curve in place of (2).

As in the typical textbook treatment (Galí, 2008), we next assume that monetary policy sets

interest rates according to the following Taylor rule:

it = zt +φπt , (3)

where φ is a fixed scalar, possibly zero, and zt is random variable, possibly correlated with %t and

ξt .8 Whenever φ 6= 0, equation (3) defines a feedback from inflation to interest rates. We will later

explain how this relates to equilibrium selection under the standard paradigm—but not under

our approach. Our results will indeed apply even if φ= 0, which nests interest rate pegs.

Replacing equations (3) and (2) into (1), we arrive at the following equation:

ct = θt +δĒt [ct+1] (4)

where δ is a fixed scalar and θt is a random variable, defined by, respectively,

δ≡ 1+κσ
1+φκσ and θt ≡− 1

1+φκσ
(
σzt −σ%t +σφκξt −σκĒt [ξt+1]

)
.

Clearly, solving the whole model is the same as solving (4), which is a single first-order, forward-

looking difference equation in ct alone.

In comparison, the textbook New Keynesian model maps to a system of two such equations

in the vector (ct ,πt ). What affords the present reduction in dimensionality is the omission of a

forward-looking term in the Phillips curve. But as it will become clear in Section 5, this simpli-

fication is inconsequential for our results, just as it is for the Taylor principle. All we have done

here is to reduce the standard model’s determinacy question from a two-dimensional eigenvalue

problem to the simpler question of whether δ is within or outside the (−1,+1) interval.9

Sticky vs flexible prices

Note that equation (4) holds even when prices are perfectly rigid, or κ= 0. What about the oppo-

site extreme, perfectly flexible prices?

8Such correlation can be feasible conditional on πt either because the monetary authority knows the underly-
ing shocks directly or because it extracts information about them from economic indicators other than inflation.
Whether such information is sufficient to separate the stabilization and equilibrium selection functions of monetary
policy is important for the existing literature but not for our purposes.

9Equation (4) is mathematically identical to a “dynamic beauty contest” of the form at = θt +δĒt [at+1], where at

is some average action. Various papers (e.g., Angeletos and Huo, 2021; Morris and Shin, 2006; Nimark, 2008) have
studied such games under the restriction |δ| < 1, which avoids the indeterminacy issue we are concerned with here.
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As long as κ> 0, we can use the Phillips curve (2) to replace ct with 1
κ

(πt −ξt ) and obtain the

following translation of equation (4) in terms of inflation:

πt = θ̃t +δĒt [πt+1], (5)

where δ is the same as before and θ̃t ≡ κ
1+φκσ

(−σ(
zt −%t

)+ξt − Ēt [ξt+1]
)
. Needless to say, this

change of variables does not affect the analysis. But it helps nest flexible prices as the limit for

κ→ ∞. That is, suppose that prices are flexible, which means that the Phillips curve does not

apply any more and the IS curve reduces to the Fisher equation:

it = r nat
t + Ēt [πt+1],

where r nat
t ≡ %t + 1

σ

(
Ēt [cnat

t+1]− cnat
t

)
and cnat

t ≡ −ξt are the natural rates of interest and output,

respectively. Combining the above equation with the Taylor rule (3) yields

φπt = r nat
t + Ēt [πt+1],

which is the same as the limit of (5) for κ→∞.10

Together with Section 5, where we take more “seriously” the micro-foundations of the IS and

Phillips curves, the above discussion illustrates that the specific form of equation (4), the short-

cuts behind it, and even the nominal rigidity are inessential. What is of essence is how the average

expectations, Ēt [·], are determined—which is what we will zero in on in the next few sections.

Fundamentals, sunspots, and the equilibrium concept

Aggregate uncertainty is of two sources: fundamentals and sunspots. The former are herein con-

veniently summarized in θt .11 We assume that this variable is a stationary, zero-mean, Gaussian

process, admitting a finite-state representation.

Assumption 1 (Fundamentals). The fundamental θt admits the following representation:

θt = q ′xt with xt = Rxt−1 +εx
t , (6)

where q ∈Rn is a vector, R is an n ×n matrix of which all the eigenvalues are within the unit circle

(to guarantee stationarity), εx
t ∼N (0,Σε) , and Σε is a positive definite matrix.

This directly nests the case in which (%t ,ξt , zt ) follows a VARMA of any finite length. It also

allows xt to contain “news shocks,” or forward guidance about future monetary policy in the

sense of a signal about the future value of zt . We henceforth refer to xt as the fundamental state.

10Note that equation (5) is well-defined for any φ, including φ= 0, whenever κ<∞. But the limit as κ→∞ is well
defined only for φ 6= 0. If φ= 0 and prices are perfectly flexible, there is no equation to pin down πt .

11The fact that θt contains an expectation term does interfere with our results. For instance, it suffices to assume
that the fundamental state xt , introduced below, is a sufficient statistic (zt ,%t ,ξt , Ēt [ξt+1]) and therefore also for θt .
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We next introduce a sunspot variable:

Assumption 2 (Sunspots). The only aggregate uncertainty other than that associated with xt is a

sunspot realized in each period. This is represented by a random variable ηt ∼ N (0,1), which is

independent of the fundamentals and is distributed independently and identically over time.12

Let ht denote the state of nature in period t , that is, the history of all exogenous shocks up to

that point. This begs the question of whether history is finite, starting at a commonly known date

(“t = 0”), or whether it is infinite. We opt for the latter in order to focus on stationary equilibria.

That is, we let ht ≡ {xt−k ,ηt−k }∞k=0 and we define an equilibrium as follows:

Definition 1 (Equilibrium). An equilibrium is any solution to equation (4) along which: expecta-

tions are rational, although potentially based on incomplete information about ht ; the outcome is

a stationary, linear function of the underlying shocks, or

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

γ′k xt−k (7)

where ak ∈R and γk ∈Rn are known coefficients for all k; and the outcome is bounded in the sense

that V ar (ct ) is finite.

This definition maintains the rational expectations hypothesis but makes room for imperfect

and heterogenous knowledge of ht . This definition also embeds three additional restrictions:

stationarity, linearity, and boundedness. The stationarity restriction, which comes hand-in-hand

with the assumption of infinite history, can readily be relaxed. The linearity restriction is strictly

needed for tractability, but we do not have any reason to believe that it drives our results and is

commonplace in the literature. The last restriction, that the variance of ct is finite, is our version

of “local determinacy” or “bounded equilibria.”

This restriction implies the existence of a scalar M > 0 such that |ak | ≤ M and ‖γk‖1 ≤ M for

all k, where ‖ · ‖1 is the L1-norm. Our upcoming result actually uses only this weaker form of

boundedness. Either way, the essence is that agents do not ever expect economy to drift far away

from the steady state. How policy can accomplish this in practice—e.g., by the commitments ar-

ticulated in Obstfeld and Rogoff (1983, 2021) for ruling out hyperinflation or by other means—is

beyond the scope of our paper. The relevant observation, instead, is this: whereas the afore-

mentioned restriction is not sufficient for pinning down a unique equilibrium in the standard

paradigm, it will become so under our approach.

12Even though ηt is i.i.d., persistent sunspot fluctuations are possible, because ct may depend on the history of
ηt . And as discussed at the end of Section 4, our results are robust to letting ηt itself be persistent. The absence of
persistence in ηt is merely a simplification that will help make abundantly clear how the model’s backward-looking
solutions and sunspot equilibria are formally related—and how they all disappear with our perturbations.
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3 The Standard Paradigm

In this section we review the standard, full-information, New Keynesian model, which herein

maps to a representative agent that knows the entire ht . We first identify the model’s fundamen-

tal solution; we next show how its determinacy hinges on the Taylor principle; and we finally

contextualize our two, complementary departures from this benchmark.

The fundamental or MSV Solution

With a representative, fully-informed, rational agent, equation (4) rewrites

ct = θt +δEt [ct+1], (8)

where Et [·] ≡ E[·|ht ] is the rational expectation conditional on full information. Because this

equation is purely forward looking and xt is a sufficient statistic for θt and its expected future

values, it is natural to look for a solution in which ct is a function of xt . Thus guess ct = γ′xt for

some γ ∈Rn ; use this to compute Et [ct+1] = γ′Rxt ; and substitute into (8) to get ct = θt +δγ′Rxt =
[q ′+δγ′R]xt . Clearly, the guess is verified if and only if γ′ solves γ′ = q ′+δγ′R, which in turn is

possible if and only if I−δR is invertible (where I is the n×n identity matrix) and γ′ = q ′(I−δR)−1.

To guarantee the existence of this solution, we henceforth impose the following assumption:

Assumption 3. The matrix I −δR is invertible.

And we write this solution as ct = cF
t , where

cF
t ≡ q ′ (I −δR)−1 xt . (9)

This is known as the model’s “fundamental” or “minimum-state-variable (MSV)” solution (Mc-

Callum, 1983). It is the solution customarily used to offer a structural interpretation of the data

or to guide policy. But it is not necessarily the model’s only solution.

We will address determinacy momentarily. But let us first note the following properties. Sup-

pose that the infinite sum
∑∞

k=0δ
k Rk exists. Then, (I −δR)−1 =∑∞

k=0δ
k Rk and

cF
t =

∞∑
k=0

δkEt [θt+k ].

This illustrates that cF
t can depend on the economy’s history only insofar as this pins down the

current θt or helps forecast its future values. And it verifies that cF
t maps to what Blanchard (1979)

calls the “forward-looking solution,” namely the solution of iterating (8) forward.

What if
∑∞

k=0δ
k Rk does not exist? In this case, cF

t remains an REE but is no more solvable

by forward induction. This relates to whether the MSV solution can feature “neo-Fisherian” ef-

fects (Cochrane, 2017; García-Schmidt and Woodford, 2019), a question that is interesting but
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separate from that considered here. For our purposes, the relevant quality of the MSV solution is

this: along it, history matters only insofar as it is part of xt , the fundamental state variable. This

contrasts with the model’s other solutions, along which history serves as a correlation device.

Determinacy and the Taylor Principle

We now turn attention to the question of whether the fundamental solution is determinate and,

if not, what are the other solutions. Let us first fix language:

Definition 2 (Taylor principle). The Taylor principle is satisfied if |δ| < 1.

Note that |δ| < 1 if and only if φ > 1 or φ < −1− 2
κσ . Had we restricted φ to be positive, we

would have equated the Taylor principle to φ> 1, which is more standard. Our definition shines

the spotlight on |δ|, which measures the absolute slope of today’s average best response with

respect to tomorrow’s average action. Intuitively, the equilibrium is unique if and only if this kind

of dynamic strategic complementarity is weak enough. This intuition is verified below.

Proposition 1 (Full-information benchmark). Suppose that ht is known to every i for all t , which

means in effect that there is a representative, fully informed, agent. Then:

(i) There always exist an equilibrium, given by the fundamental/MSV solution cF
t , as in (9).

(ii) When the Taylor principle is satisfied (|δ| < 1), the above equilibrium is the unique one.

(iii) When this principle is violated |δ| > 1), there exist a continuum of equilibria, given by

ct = (1−b)cF
t +bcB

t +acηt , (10)

where a,b ∈R are arbitrary scalars,

cB
t ≡−

∞∑
k=1

δ−kθt−k , and cηt ≡
∞∑

k=0
δ−kηt−k . (11)

This result contains two lessons. The first is that, in the standard, full-information bench-

mark, |δ| < 1 is necessary and sufficient for equilibrium uniqueness. The second is a characteri-

zation of the type of equilibria that emerge in addition to the fundamental solution once |δ| > 1.

We already explained the first point, so let us focus on the second.

Take equation (8), backshift it by one period, and rewrite it as follows:

Et−1[ct ] = δ−1(ct−1 −θt−1). (12)

Since ηt is unpredictable at t −1, the above is clearly satisfied with

ct = δ−1(ct−1 −θt−1)+aηt , (13)

9



for any a ∈R. Because |δ| > 1, we can iterate backwards to obtain

ct =−
∞∑

k=1
δ−kθt−k +a

∞∑
k=0

δ−kηt−k , (14)

or equivalently ct = cB
t +acηt . Note that this is both bounded, thanks to |δ| > 1, and a solution to

(12), by construction, which verifies that it constitutes an equilibrium, for any a ∈R.13

When there are no fundamental shocks, cB
t = 0 and the solution obtained above reduces to a

pure sunspot equilibrium, of arbitrary aptitude a. Along it, agents respond to the current sunspot

because and only because they expect future agents to keep doing the same, in perpetuity.

In the presence of fundamental shocks, the indeterminacy takes an additional, perhaps more

disturbing, form: the same path for interest rates and other fundamentals can result to different

paths for aggregate spending and inflation even if we switch off the sunspots. Consider, for exam-

ple, the solution given by ct = cB
t . Along it, the outcome is pinned down by past fundamentals and

is invariant to both the current innovation in θt and any news about future fundamentals—which

is the exact opposite of what happens along cF
t , the MSV solution.

The logic behind cB
t is basically the same as that behind sunspot equilibria: agents respond

to payoff-irrelevant histories only because they expect future agents to keep doing the same, in

perpetuity. This statement extends to any equilibrium of the form (10) for b 6= 0, and explains

why all such equilibria can be thought of as both non-fundamental and backward-looking.14

What’s next: beyond the full-information benchmark

Cleary, (13) and (14) are equivalent representations of the same equilibrium: one is recursive, the

other is sequential. This equivalence itself hinges on perfect knowledge of past shocks and/or

past outcomes. But how can we understand equilibria if such information is imperfect?

In general, such a friction can preclude simple recursive representations of REE because of

the familiar infinite-regress problem (Townsend, 1983). But in this paper we are not interested

in this issue. Instead, we are interested in the fact that both (13) and (14) represent an infinite

chain based on “think air,” a self-fulfilling prophesy that must last in perpetuity. And we want to

illustrate how fragile this chain can be.

To accomplish this goal, in the rest of the paper we follow two distinct but complementary

strategies. The first one, in Sections 4–5, takes off from (14); the second, in Section 6, circles back

to (13). Both strategies illustrate the fragility of all non-fundamental equilibria, each one from a

different perspective. And they both avoid the unwanted infinite-regress problem.

13Part (iii) of the Proposition adds that the same is true if we replace cB
t with any mixture of it and the MSV solution.

14Blanchard (1979) refers to the analogue of cB
t in his analysis as a “backward-looking fundamental equilibrium;”

but this is not really fundamental, in the sense we just explained.
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Parenthesis: equilibrium selection vs stabilization

Before proceeding, it is useful to clarify that φ, or δ, has so far played a dual role: one in shaping

the MSV solution, via equation (9); and another in the argument about determinacy. The for-

mer relates to macroeconomic stabilization, the latter to equilibrium selection. But note that the

monetary authority can not only pick a value of φ but also design the process of zt . To the extent

that the optimal policy response to the underlying demand and supply shocks can be achieved

via the design of zt , this leaves φ free to serve only equilibrium selection.15

Such a sharp separation of the stabilization and equilibrium selection functions may be hard

to accomplish in practice. We will return to this point in Section 7. But let us clarify the following

point about the upcoming analysis. Once we perturb the model below, the MSV solution will be

the unique equilibrium regardless of φ, indeed even if φ= 0. This will not only remove the need

for equilibrium selection but also guarantee that φ can matter only via the MSV solution.

4 Uniqueness with Fading Memory

We now depart from the standard paradigm by relaxing the assumption of full information. As

mentioned in the Introduction, this brings to mind a large literature on informational frictions,

but there is a crucial difference. The existing literature bypasses the equilibrium selection is-

sue, by explicitly or implicitly imposing the Taylor principle,16 and focuses instead on how the

MSV solution is “distorted” by removing perfect knowledge of the current value of xt . We abstract

from this familiar issue, and isolate our innovation, by introducing incomplete information solely

about the economy’s payoff-irrelevant history, namely the past values of xt and ηt .

The main assumption and the main result

For the purposes of this and the next section, we replace the assumption of a representative,

fully-informed agent with the following, incomplete-information variant:

Assumption 4 (Memory). In each period, a randomly selected fraction λ ∈ (0,1] of agents are re-

placed by newborn agents. Agents know the values of the fundamental state and the sunspot vari-

able during their lifetime but not those before: the period-t information set of an agent born s

periods ago is given by I s
t ≡ {(xt ,ηt ), ..., (xt−s ,ηt−s)}.

Three elements of this assumption are worth emphasizing. The first was already anticipated:

the information set of every agent in period t contains xt , helping guarantee, as we will verify

15Similar arguments can be found in King (2000), Atkeson et al. (2010) and Cochrane (2011).
16In Angeletos and Lian (2018), e.g., the Taylor principle is imposed once the economy exits the ZLB.
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shortly, that the frictionless MSV solution remains an equilibrium. If we relax this assumption,

the MSV solution itself has to be modified, but this does not interfere with our main point, which

is that all other solutions disappear. The second element is that an agent’s information is com-

prised of only the exogenous shocks and not of any endogenous past outcomes. This relates to

the point made in the Introduction about whether memory of sunspots can be stored in the en-

dogenous state variables along a recursive equilibrium. We return to this point at the end of this

section. The last element to note that the OLG structure serves one and only one purpose: to

remove knowledge of past shocks from an increasing fraction of the population as time passes.17

This form of friction in “aggregate memory” is consistent with a long, rational-expectations

tradition in macroeconomics, which rules out bounded recall at the individual level but allows

information to be heterogeneous across agents. That said, we welcome a behavioral reinterpre-

tation of Assumption 4 (and of Proposition 2 below), in which agents are infinitely-lived but for-

get the past with probability λ.18 Under either interpretation, λ parameterizes the rate at which

memory decays, or the degree of the informational friction.

In the limit as λ→ 0, the informational friction becomes vanishingly small. One may have

expected the equilibria of the full-information benchmark to be only marginally affected by such

a perturbation. But this is not the case: there is a discontinuity atλ= 0, reminiscent of that shown

in the global games literature (Morris and Shin, 1998, 2003).

Proposition 2 (Determinacy without the Taylor principle). Suppose that memory is imperfect in

the sense of Assumption 4, for any λ > 0. Regardless of φ, or δ, the equilibrium is unique and is

given by the MSV solution, that is, by ct = cF
t where cF

t remains the same as in (9).

The full result is proved in the Appendix. Here, we illustrate the main idea for the special case

in which there are no fundamental disturbances, so the task reduces to checking for the existence

of pure sunspot equilibria. That is, we specialize our equilibrium condition to

ct = δĒt [ct+1]; (15)

search for solutions of the form ct =∑∞
k=0 akηt−k ; and verify that ak = 0 for all k.

By Assumption 4, we have that, for all k ≥ 0,

Ēt [ηt−k ] =µkηt−k

where µk ≡ (1−λ)k measures the fraction of the population at any given date that know, or re-

member, a sunspot realized k periods earlier. Future sunspots, on the other hand, are known to

17This is unlike Del Negro et al. (2015), Farhi and Werning (2019) and Angeletos and Huo (2021), where an OLG
structure is used to modify the Keynesian cross and, thereby, the MSV solution.

18This suggests a possible link to the literature on bounded recall (e.g., Bordalo et al., 2020; da Silveira et al., 2020;
and Afrouzi et al., 2020).
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nobody. It follows that, along any candidate solution, expectations satisfy

Ēt [ct+1] = Ēt

[
a0ηt+1 +

∞∑
k=1

akηt+1−k

]
= 0+

+∞∑
k=0

ak+1µkηt−k .

and condition (15) rewrites as
+∞∑
k=0

akηt−k = δ
+∞∑
k=0

ak+1µkηt−k .

For this to be true for all sunspot realizations, it is necessary and sufficient that, for all k ≥ 0,

ak =µkδak+1, (16)

or equivalently

ak = a0

δkµ0µ1...µk−1
= a0

δk (1−λ)
k(k−1)

2

. (17)

Unless a0 = 0, this explodes to infinity as k →∞, for any δ and any λ ∈ (0,1). It follows that the

unique bounded solution has ak = 0 for all k, which corresponds to the applicable MSV solution.

We expand on the intuition behind this argument momentarily. But first, it is useful to repeat

the above argument for the knife-edge case with λ = 0, which corresponds the full-information

benchmark. In this case, µk = 1 for all k and condition (17) becomes

ak = δ−k a0.

When |δ| < 1, this still explodes to infinity as k →∞ unless a0 = 0, which means that the unique

bounded solution is once again ak = 0 for all k. But when |δ| > 1, the above remains bounded, and

indeed converges to zero as k →∞, for arbitrary a0. This recovers the previous section’s sunspot

equilibria: the “normalized” sunspot equilibrium cηt = ∑
k δ

−kηt−k is herein nested with a0 = 1,

and all its rescaling is nested by letting a0 = a, for arbitrary a 6= 0.

Note how both of the above arguments, the one with λ > 0 and the one with λ = 0, use the

requirement that ak does to explode to infinity. But whereas this requirement alone suffices for

ruling out sunspot equilibria under our perturbation (λ> 0), the standard case (λ= 0) it must be

complemented by the Taylor principle. This verifies the point anticipated at the end of Section 2:

Corollary 1. Consider the assumption that there is a known steady state and there cannot exist

“unbounded” deviations from it. This is insufficient for pinning down a unique equilibrium in the

standard paradigm (λ= 0), but becomes sufficient under our perturbation (λ> 0).

To put it differently, policymakers should worry about “anchoring expectations” in the sense

of the above assumption, but need not worry about communicating off-equilibrium threats of

the type embedded in the Taylor principle.19

19By the same token, the extensive, state-contingent, escape clauses articulated in Atkeson et al. (2010) are not
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Intuition and additional remarks

The following heuristic helps build additional intuition. Let
{
∂ct
∂η0

}∞
t=0

stand for the Impulse Re-

sponse Function (IRF) of ct with respect to η0. Since ∂ct
∂η0

= at for all t , we can rewrite (16) as

∂ct

∂η0
=µtδ

∂ct+1

∂η0
.

This is the same condition as that characterizing the IRF of ct to η0 in a “twin” economy in which

memory is perfect but condition (4) is modified as follows:

ct =µtδEt [ct+1].

Under this prism, it is as if the degree of strategic complementary between generations t and

t +1 has been reduced from δ to µtδ. Furthermore, because t large enough suffices for |µtδ| < 1

to hold regardless of δ, or φ, there is necessarily a finite period T after which ct cannot depend

on η0. By induction then, ct cannot depend on η0 before T either.

This interpretation of our result brings to mind Angeletos and Lian (2018) and Angeletos and

Huo (2021). These papers have emphasized how higher-order uncertainty helps attenuate GE

feedbacks, especially so when over longer horizons, or longer chains of reasoning. A similar logic

applies here, but there are two main differences. First, whereas these papers limit attention to

how this logic influences the model’s MSV solution (e.g., its response to fundamental shocks or

to news about future monetary policy) under the Taylor principle, here we show how a similar

logic helps rule out the model’s other, non-fundamental solutions even without that principle.

And second, whereas these papers allow the economy-wide information about past shocks only

to improve over time (due to learning), here we let it deteriorate, at least eventually.

The see why such eventual deterioration is the key to our result, relax Assumption 4 in the

following way: suppose that the fraction of the population that is aware of a sunspot that occurred

k periods ago is given by an arbitrary, possibly non-monotonic, sequence {µk }∞k=0 ∈ (0,1]∞. Such

a generalization allows us to capture the following three possibilities at once: not all agents are

attentive to the sunspot at the beginning (µ0 < 1); more and more agents learn about it in the

short run (µk is initially increasing in k); and more and more agents forget it in the long run (µk is

eventually decreasing). The aforementioned papers and the broader literature on informational

frictions have focused on the first two possibilities. We instead leverage the third: our uniqueness

argument goes through as long as limk→∞µk = 0, regardless of what happens in the short run.

That is, the key assumption is that memory vanishes asymptotically.20

needed in their entirety; what is needed is only an escape clause for “unusually large” deviations.
20What if µk = µ̄ for all k, which maps to the benchmark scenario of Angeletos and Lian (2018), or more generally

limk→∞µk = µ̄ for some µ̄ ∈ (0,1)? In this case, the equilibrium is now unique if and only if |µ̄δ| < 1, which means
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Also note that the offered translation of our result in terms of strategic complementarity was

conditional on η0. This means that µtδmeasures the strategic complementarity between periods

t and t +1 in a very specific sense: as perceived from agents in period 0, when they contemplate

whether to react to η0. In other words, this is about higher-order beliefs—or how current agents

think, or reason, about future agents.

Let us explain. Because η0 is payoff irrelevant in every single period, period-0 agents have an

incentive to respond to it if and only if they are confident that period-1 agents will also respond

to it, which can be true only if they are also confident that period-1 will themselves be confident

that period-2 agents will do the same, and so on, ad infinitum. It is this kind of “infinite chain”

that supports sunspot equilibria when λ = 0. And conversely, the friction we have introduced

here amounts to the typical period-0 agent reasoning as follows:

“I can see η0. And I understand that it would make sense to react to it if I were con-

fident that all future agents will keep conditioning their behavior on it in perpetuity.

But I worry that future agents will fail to do so, either because they will have forgotten

it, or because they may themselves worry that agents further into the future will not

react to it. It therefore makes sense not to react to η0 myself.”

And the same logic rules out all sunspot and backward-looking equilibria.

Three remarks help complete the picture. First, the reasoning articulated above reminds the

global games literature (Morris and Shin, 1998, 2003). Although in our context there are no dom-

inance regions of the kind assumed in that literature, the assumption that memory vanishes

asymptotically plays a similar role: it triggers a chain of contagion effects from “remote types”

(uninformed agents in the far future) to “nearby types” (informed agents in the immediate fu-

ture) and thereby to present behavior.

Second, the aforementioned worries don’t have to be “real” (objectively true). That is, we can

reinterpret Assumption 4 as follows: agents don’t necessarily forget themselves but believe that

others will forget. Strictly speaking, this requires a departure from REE to PBE with heteroge-

neous and misspecified priors about one another’s knowledge, along the lines of Angeletos and

Sastry (2021). But the essence is similar and highlights the role of higher-order beliefs.

Finally, our result does not rest on the sunspot ηt being uncorrelated over time. In particular,

Proposition 2 readily extends to an arbitrary ARMA process of the sunspot, except for one knife-

edge case: when ηt follows an AR(1) process with autocorrelation exactly equal to δ−1. In this

that the Taylor principle is relaxed but not completely removed. This reminds Gabaix (2020) and can indeed be
interpreted as a complementary foundation of that paper’s approach, with µ̄ here playing the same role as the degree
of cognitive discounting in that paper. That said, even if memory of sunspots does not vanish asymptotically, we can
induce uniqueness for every δ, or φ, via the perturbation considered in Section 6.
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case, ct = cF
t +aηt is an equilibrium for any a and is supported by knowledge of (xt ,ηt ) alone. Of

course, such a situation is exceedingly unlikely: it requires an exogenous variable that, by pure

magic, eliminates the need of any memory. But could it be that an endogenous state variable,

such as the past outcome, ct−1, replicates this magic when agents can observe this variable?

We return to this question in Section 6. But we give a preliminary answer here:

Proposition 3 (Nearly perfect knowledge of past outcomes). Under Assumption 4, almost all

agents become arbitrarily well informed about arbitrarily long histories of ct asλ→ 0: for any map-

ping from ht to ct as in Definition 1, any K <∞ arbitrarily large but finite, and any ε,ε′ > 0 arbi-

trarily small but positive, there exists λ̂> 0 such that, whenever λ ∈ (0, λ̂), V ar
(
E i

t [ct−k ]− ct−k
)≤ ε

for all k ≤ K , for at least a fraction 1−ε′ of agents, and for every period t .

In this sense, our uniqueness result is compatible with indirect but almost perfect knowledge

of past outcomes: it is as if agents have received arbitrarily precise signals about {ct−1, ...,ct−K },

and by extension for {πt−1, ...,πt−K }, too, for arbitrarily large K . In Section 6, we will show that

uniqueness is compatible even with perfect, direct observation of past outcomes, provided that

we consider a different perturbation; and we will finally speculate on which perturbations may or

may not work more generally. In the next section, we first comment on how the present approach

extends to a larger class of forward-looking, rational-expectations models.

5 A Generalization

Consider the following, multi-dimensional version of equation (4):

yt =Qxt +∆Ēt [yt+1], (18)

where yt is an `×1 vector, Q is an `×n matrix, and ∆ is an `×` matrix. In this case, the MSV

solution requires inevitability of I −∆R (this is the analogue of Assumption 3) and is given by

yF
t =Q(I −∆R)−1xt .

In the full-information benchmark, this solution is the unique bounded equilibrium if and only

if all eigenvalues of ∆ are within the unit circle (this is the analogue of the Taylor principle). But

once we replace full information with Assumption 4, this solution becomes the unique bounded

solution regardless the eigenvalues of ∆.

This hints at the broader applicability of our insights. And it underscores that the omission of

a forward looking term in our Phillips curve (2) was inessential on its own right. But there was a

more heroic simplification behind our IS curve (1), which we now address.
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If we take our OLG, incomplete-information version of the New Keynesian model “seriously,”

equation (1) must be replaced by the following:

ct =−βωσ
{+∞∑

k=0

(
βω

)k Ēt [it+k −πt+k+1]

}
+ (

1−βω){+∞∑
k=0

(
βω

)k Ēt [ct+k ]

}
+σ%t , (19)

where β ∈ (0,1) is the subjective discount factor and ω = 1−λ ∈ (0,1] is the survival probability.

This equation is basically the aggregate consumption function, combined with market clearing:

the first term captures the effect of the real interest rate path, the second term captures perma-

nent income, and 1−βω measures the marginal propensity to consume. A detailed derivation

can be found in Angeletos and Lian (2018) and Angeletos and Huo (2021).21 For our purposes,

the key observation is that equation (19) lets ct depend on expectations of ct+k , πt+k , and it+k−1

for all k ≥ 1, whereas (1) had artificially restricted this dependence to k = 1.

Suppose, next, that we replace our ad-hoc Phillips curve (2) with the standard, NKPC:

πt = κct +βEt [πt+1]+κξt . (20)

And finally, let the Taylor rule be

it = zt +φc ct +φππt , (21)

for arbitrary, possibly zero or even negative, coefficients φc ,φπ ∈ R. Solving (20) and (21) for πt

and it and replacing these solutions into (19), we infer that the model reduces to the following

single, forward-looking equation in aggregate spending:

ct = θt + Ēt

[+∞∑
k=0

δk ct+k

]
(22)

for some random variable θt and some fixed scalars δk .22

Compared to equation (4), equation (22) allows for more complex GE, or strategic, feedbacks

across time. There are three such feedbacks: between income and spending; between spending

and inflation; and between inflation/spending and interest rates. The first feedback is param-

eterized by the MPC, or βω; the second by κ and β; and the third by φπ and φc . This explains

why the δk coefficients are convolutions of all these parameters and suggests the following re-

interpretation: for appropriate such coefficients, equation (22) can nest any linear but otherwise

arbitrary “intertemporal Keynesian cross” (Auclert et al., 2018). Similarly, equation (22) can nest

a more flexible Taylor rule that ties interest rates not only to current inflation and output but also

21That derivation requires perfect recall (equivalently, a law of iterated expectations) at the individual level. This is
consistent with Assumption 4, which explains why we can import equation (19) from these works to our setting.

22In particular, θt ≡ σ%t −βωσ(zt + znews
t )−φπβωσκξt +σ

(
1−φπβω

)
κξnews

t , where znews
t ≡ ∑+∞

k=1

(
βω

)k Ēt [zt+k ]

and ξnews
t ≡∑+∞

k=1

(
βω

)k Ēt [ξt+k ]; and δk ≡ (
1−βω−βωσφc

)(
βω

)k +ωσκ
(
−φπβ+ (

1−ωφπβ
) 1−ωk

1−ω
)
βk , for all k.
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to the monetary authority’s expectations of future inflation and future output.23

To guarantee the existence of the MSV solution, we now require that I −∑+∞
k=0δk Rk is invert-

ible; this is the analogue of Assumption 3. We can then verify that Proposition 2 goes through

despite the added complexity in how current outcomes depend on expectations of the future.

Proposition 4 (Generalized result). Maintain Assumption 4 but let the equilibrium condition for

ct take the richer form of equation (22), for arbitrary {δk }∞k=0 such that
∑∞

k=0 |δk | exists (is finite).

The equilibrium remains unique and is still given by the applicable MSV solution.

The logic is the same as in our main analysis. There, |δ| > 1 supported multiple equilibria

when λ = 0; but as soon as λ > 0, the multiplicity vanished, because λ > 0 meant that the effec-

tive degree of strategic complementarity fell below 1 eventually, in the sense that µk |δ| < 1 for

sufficiently high k. The same properties hold here modulo the replacement of |δ| with
∑∞

k=0 |δk |.
It is a safe guess that, similarly Proposition 2, the above result extends to a multi-variate ver-

sion of equation (22). In other words, our insights readily extend to a large class of linear, purely

forward-looking, rational expectations models, like that studied by Blanchard (1979) under the

full-information assumption. What is left for future work is the extension to models that add

payoff-relevant state variables (e.g., capital), as in Blanchard and Kahn (1980).

6 Observing Past Outcomes

We now pay closer attention to Assumption 4, which has been the catalyst for uniqueness in the

preceding analysis. Literally taken, this assumption precluded direct observation of past out-

comes, such as output or inflation. But as shown in Proposition 3, such a literal interpretation

could be misleading: in the limit as λ→∞, agents were arbitrarily well informed about arbitrar-

ily long histories of past outcomes, albeit in an indirect way.

Under this prism, the uniqueness result of Propositions 2 and 4 seems compatible with noisy

observation of past outcomes. Still, the key assumption behind this result is hard to square with

a long tradition in macroeconomics that represents equilibria in recursive form, along which a

small set of state variables serve as sufficient statistics for the entire history of shocks. In this sec-

tion, we first illustrate how the recursive logic poses a challenge for us; we next explain why this

logic itself has its own limitations; and we finally show how a different perturbation can induce

basically the same result even when past outcomes are observed perfectly.

23This detail matters for other approaches, such as E-stability (Honkapohja and Mitra, 2004), but not for ours.
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Recursive equilibria: a challenge for us, and their own limitations

Go back to the full-information, representative-agent benchmark of Section 3, let |δ| > 1, shut

down momentarily the fundamentals, and focus on the following, pure sunspot equilibrium:

ct = cηt ≡
∞∑

k=0
δkηt−k .

This can be represented in recursive form as

ct = ηt +δ−1ct−1. (23)

It follows that perfect knowledge of yesterday’s outcome can readily substitute for perfect knowl-

edge of the infinite history of past sunspots.

This logic extends if agents observe only a noisy, public signal of ct−1.24 But what about the

more general case, in which agents’ information is contaminated with idiosyncratic noise, either

because of decentralized market interactions or because of rational inattention? This amounts

to introducing private information, which, if we extrapolate from the literature on global games,

is probably the key behind our earlier uniqueness result. But the presence of such information

opens a pandora box in dynamic settings: rational expectations equilibria generally cease to be

recursive on a small set of state variables, due to the infinite regress problem (Townsend, 1983).

Under this prism, one can re-read Assumption 4 as the means for illustrating the potential dis-

continuity of recursive, non-fundamental equilibria to incomplete information, while bypassing

the infinite regress problem. Still, we find it instructive to show that the MSV solution can emerge

as the unique equilibrium even with perfect knowledge of ct−1, which is what we do next.

Breaking the infinite chain, again

The recursive equilibrium described in (23) amounts to an “infinite chain” in the following sense:

current agents are conditioning their behavior on ct−1, which is payoff-irrelevant from their per-

spective, only because they expect to be “rewarded” appropriately by future agents; but for this

to be the case, future agents must themselves condition their behavior on ct , which is payoff-

irrelevant for them, on the basis of a similar expectation about the behavior of agents further into

the future; and so on, ad infinitum.

This chain is based on “thin air” in the sense that there is no agent along this chain whose

behavior is ever anchored to fundamentals. This contrasts with the dynamic GE feedbacks that

24In particular, suppose that all agents at t observe only the current sunspot ηt and a public signal c̃t ,t−1 ≡ ct−1+mt ,
where mt is zero-mean measurement error, i.i.d. across time, and independent of the sunspots. Then, the strategy
ct = aηt +δ−1c̃t ,t−1, which is the same as that in (23) modulo the replacement of ct−1 with c̃t ,t−1, continues to be an
equilibrium for any a and no matter the variance of the measurement error.
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operate behind the MSV solution, which, too, work via expectations of future behavior but are

ultimately triggered by intrinsic forces (or PE effects).25 What is more, once behavior is anchored

to fundamentals and fundamentals themselves are not common knowledge, thin air may loose

its hold on beliefs: the aforementioned infinite chain may collapse.

To illustrate what this means, bring back the fundamental shocks and consider any of the

equilibria of the form cB
t + acηt , which, recall, were obtained by “solving the model backwards.”

These are replicated by the following recursive strategy:

ct = δ−1(ct−1 −θt−1)+aηt . (24)

Contrary to that in (23), this strategy requires that the agents at t know not only ct−1 but also θt−1.

Why is such knowledge necessary? Because this what it takes for agents at t to know how to undo

the direct, intrinsic effect of θt−1 on the behavior of the agents at t −1 and, thereby, to “reward”

them to play the above strategy.

This suggests that the chain can break if the agents at t do not know what exactly it takes to

reward the agents at t −1. To make this point crisply, we proceed as follows.

First, we introduce a new fundamental disturbance, denoted by ζt , which can be arbitrar-

ily small but is not observed by future agents. This allows us to maintain knowledge of θt−1 (or

xt−1) itself, for symmetry with the earlier analysis, and at the same time parameterize the afore-

mentioned uncertainty by the support of ζt . In particular, we let ζt be drawn independently over

time, as well as independently of any other shock in the economy, from a uniform distribution

with support [−ε,+ε], where ε is positive but arbitrarily small.

Second, we abstract from informational heterogeneity and think of the economy as a se-

quence of representative agents, or a sequence of players, one for each period. This abstracts

from the question of how behavior is coordinated within a period and, instead, zeros in on the

aforementioned infinite chain between current and future behavior.

Accordingly, we write the equilibrium condition at t , or equivalently the best response of the

period-t representative agent, as

ct = θt +ζt +δE[ct+1|It ]. (25)

where E [·|It ] is the rational expectation conditional on It , the information set of the period-t

representative agent.

And finally, we require that It contains both the concurrent fundamentals (which explains

why these are outside the expectation operator in the equation above) and the past outcome ct−1

25Think, for example, the response of the economy at t to news about zt+1, monetary policy a period later. This
has a GE effect today via the expectations of future income and future inflation, which are themselves driven by the
direct, PE effect of tomorrow’s interest rates on spending.
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(in order to accommodate how perfect knowledge of the past outcome). But we also let It not to

nest It−1, and in particular not to contain ζt−1, even though it may contain a long history of the

“main” fundamental shocks and the sunspots. Formally:

Assumption 5. For each t , there is a representative agent whose information is given by

It = {ζt }∪ {xt ..., xt−Kθ
}∪ {ηt ...,ηt−Kη}∪ {ct−1, · · · ,ct−Kc }

for finite but possibly arbitrarily large Kη, Kc , and Kθ.

When ε= 0 (the ζt shock is absent), Assumption 5 allows replication of all sunspot and backward-

looking equilibria with extremely short memory, i.e., with Kη = 0 and Kθ = Kc = 1. This is precisely

the recursive representation of these equilibria in the standard paradigm. But there is again a

discontinuity: once ε > 0, all the non-fundamental equilibria unravel, no matter how long the

memory of outcomes and all other shocks may be.

Proposition 5. Suppose that Assumption 5 holds and ε> 0. Regardless of δ, there is unique equi-

librium and is given by ct = cF
t +ζt , where cF

t is the same MSV solution as before.

To further illustrate the logic behind this result, abstract from the θt shock (but of course keep

the ζt shock) and let It = {ζt ,ηt ,ct−1}. In this case, “solving the model backwards,” which literally

means having the agents at t +1 create indifference for the agents t , requires that

E [ct+1|It ] = δ−1(−ζt + ct ).

Since the only “news” contained in It+1 relative to It are ηt+1 and ζt+1, the above is true if and

only if ct+1 satisfies

ct+1 = aηt+1 +dζt+1 +δ−1(−ζt + ct )

for some a,d ∈ R. As noted before, the agents at t + 1 may extract information about ζt from

their knowledge of ct . But since ζt is not directly known and ct+1 has to be measurable in It+1 =
{ζt+1,ηt+1,ct }, the above condition can hold only if ct itself is measurable in ζt and not in any

other shock, such as the sunspots realized at t or earlier. In short, because the agents at t + 1

does not know a (small) component of the “preferences” of the agents at t , it is impossible to

support the aforementioned chain of indifference. The proof in the Appendix shows verifies that

an extension of this logic rules out not all equilibria but the MSV solution.26

26Noe that ct = cF
t + ζt is MSV solution of the perturbed model. This differs from cF

t , the original MSV solution,
because the relevant fundamentals now include ζt . But as ε→ 0, the new solution converges to the old one. That is,
the original MSV solution is robust to the considered perturbation, while all other solutions are not. And this is the
same message as that delivered in our main analysis.
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Remarks

The argument given above goes through even if the ζt shock occurs only every, say, 10 periods

rather than every single period, because once there is a chance that the chain will break at some

future date the whole thing unravels. Also, the argument goes through even that the agents at

t +1 know the current ζt perfectly, provided that the current agents are (incorrectly) worried that

this may not be the case—which once again highlights the role of higher-order beliefs.

Earlier work by Bhaskar (1998) and Bhaskar, Mailath, and Morris (2012) has shown that only

Markov Perfect Equilibria (which in our context translate to the unique MSV solution) survive

in a class of games when a purification in payoffs is combined with finite social memory. Even

though our environment is different, Proposition 5 is a close cousin of these earlier results, not

only because these papers adopt similar informational assumptions but also because they let a

single, representative player act in each per period, as we did above.27

An open question is how Proposition 5 and, by extension, the above literature connect to our

main result in Proposition 2 or 4. There, we built a bridge to the literature on global games. Under

that prism, the essence of Assumption 4 was that it removed common knowledge of the payoff-

irrelevant histories, thus also breaking their potency as coordination devices. The global games

literature suggests that, more generally, determinacy hinges on whether information is private

versus public. The results of Mailath and Morris (2002) and Pęski (2012) seem consistent with

this logic, as the former relies on “almost public monitoring” to support multiple, non-Markovian

equilibria and the latter goes in the opposite direction. But the exact connections are elusive.

7 Discussion

In this section, we first discuss the applied lessons of our paper. We next comment on how both

the indeterminacy issue and our approach to it extend from REE to a larger class of solution

concepts, as well as how Level-K Thinking fits in this picture. We finally circle back to the role of

common knowledge and the precise interpretation and robustness of our results.

Interest rate pegs, feedback rules and Ramsey optimum

Suppose that the monetary authority does not even follow a feedback rule, or φ = 0. Ask then

the following, classic question: is there a unique equilibrium mapping from interest rate paths to

inflation and output paths? The standard answer is “no.” Ours is “yes.”

27This assumption is not innocuous; see Section 5.2 of Bhaskar, Mailath, and Morris (2012). But the results in Pęski
(2012) suggest that it can be relaxed.
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This is the heart of our contribution, and can be translated in terms of optimal policy is

follows. Let {i o
t ,πo

t ,co
t } denote the interest rate, inflation, and output along the best possible

bounded equilibrium, as functions of the underlying shocks. And ask the following question:

what does it take for this to be implemented as the unique bounded equilibrium?

The textbook answer goes as follows. If the monetary authority observes the underlying shocks,

then the Ramsey optimum can be implemented with the following rule:

it = i o
t +φ(πt −πo

t ),

where φ is any number that satisfies the Taylor principle.28 Note then that the feedback from πt

to it serves exclusively the function of equilibrium selection: it does not affect the properties of

the optimum, it merely makes sure that no other equilibrium is possible.

But what if the monetary authority does not observe the underlying shocks? Feedback rules

may then be useful for the purpose of replicating the optimal contingency of interest rates on

shocks, or for optimal stabilization. And at least in principle, this function could be at odds with

that of equilibrium selection. See Galí (2008, p.101) for an illustration with cost-push shocks, and

Loisel (2021) for a general formulation.29

Clearly, our results help ease this conflict: because feedback rules are no more needed for

equilibrium selection, they are “free” to be used for stabilization.

On the Fiscal Theory of the Price Level

So far we have abstracted from fiscal policy, because it did not enter equations (1)-(3). Continue

to assume that this is the case, but take into account the government’s intertemporal budget

constraint. Under the simplifying assumption that the government issues only one-period, non-

contingent, nominal bonds, this constraint can be written (in levels) as follows:

Bt−1

Pt
= PV St , (26)

where Bt−1 denotes the outstanding nominal debt, Pt denotes the nominal price level, and PV St

denotes the present discounted value of primary surpluses. Does the incorporation of this equa-

tion make a difference for the determination of inflation and output?

While the conventional approach says no by selecting the MSV solution, the FTPL argues the

opposite by selecting a different solution. To illustrate, consider a shock to tax revenue that does

not enter equations (1)-(3). This shock counts as a sunspot vis-a-vis the preceding analysis and

28This is nested in (3) with zt = i o
t −φπo

t , which is indeed feasible as long as the monetary authority observes the
shocks that drive the Ramsey optimum.

29We suspect that a similar conflict may emerge under the “sophisticated” implementation of Atkeson et al. (2010),
or that of Bassetto (2005), once the policymaker faces sufficient uncertainty about the underlying shocks.
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does not affect Pt under the MSV solution. But there is a sunspot equilibrium that features an

increase in Pt and a fall of the real debt burden, whenever the aforementioned shock is high. This

sunspot equilibrium provides the fiscal authority with valuable insurance. Suppose then that

the fiscal authority threatens to “blow up” its budget—i.e., violate (26)—unless this equilibrium

is selected. In the face of such a “non-Ricardian” fiscal policy, the standard paradigm predicts

that an equilibrium cannot exist unless the monetary authority becomes “passive” (abandons

the Taylor principle) and allows this equilibrium to obtain. This is the crux of the FTPL.

This discussion puts the Taylor principle and the FTPL at equal footing: they are different but

seemingly equally logical assumptions about off-equilibrium policy threats. And because such

assumptions are inherently untestable, one can argue that the debate reduces to a “religious”

matter (Kocherlakota and Phelan, 1999).

Cochrane (2005) disagrees with the interpretation of the non-Ricardian assumption given

above. He argues that (26) must be read as an equilibrium condition, akin to the pricing of a

company’s stock; and that such conditions are only defined on equilibrium, so the blow-up logic

does not apply to the FTPL even though it applies to the Taylor principle. This translates the

debate in another form: that about the exact meaning of (26).

Atkeson, Chari, and Kehoe (2010), on the other hand, consider a class of “sophisticated” mon-

etary policies that allow the monetary authority to select its preferred equilibrium without a re-

liance on either the Taylor principle or any other blow-up threat. This represents an improvement

over the conventional approach, but does not really address the debate with the FTPL: Bassetto

(2002, 2005) effectively shows that the fiscal authority could also select a possibly very different

equilibrium by engaging in similarly sophisticated strategies.

Our paper helps avoid these conundrums. Under our perturbations, the fundamental/MSV

solution emerges as the only possible equilibrium regardless of whether monetary policy is “ac-

tive” or “passive.” By the same token, there is no space for equilibrium selection by means of a

“non-Ricardian” fiscal policy; no meaningful connection between the FTPL and Ricardian equiv-

alence (Barro, 1974); and no reason to debate whether (26) is a real constraint or merely an equi-

librium condition.

But of course there is room for fiscal considerations—such as seigniorage or the real debt

burden—to enter the monetary authority’s choice of {zt } and thereby the MSV solution. In other

words, this solution itself is logically consistent with the “unpleasant arithmetic” of Sargent and

Wallace (1981), the evidence in Sargent (1982), and the Ramsey literature on how monetary policy

can substitute for fiscal policy and/or ease tax distortions (e.g.,Chari et al., 1994; Benigno and

Woodford, 2003; Correia et al., 2008).

24



Discounted Euler equations

Suppose we replace our IS equation (1) with the following variant:

ct =−mi it +mπĒt [πt+1]+mc Ēt [ct+1]+%t , (27)

for some positive scalars mi ,mπ,mc . When mc < 1, this nests the “discounted” Euler equations

generated by liquidity constraints in McKay et al. (2017) and by cognitive discounting in Gabaix

(2020). The opposite case, mc > 1, is consistent with the broader HANK literature (Werning, 2015;

Bilbiie, 2020), as well as with over-extrapolation or “cognitive hyperopia”. Finally, mi 6= mπ could

capture differential attention to (or salience of) nominal interest rates and inflation.

With these modifications, the entire analysis goes through modulo the following adjustment

in the definition of δ :

δ= mπσκ+mc

1+miσφκ

The Taylor principle is still the same in the δ space, but of course changes in the φ space: we now

have that |δ| < 1 if and only if φ ∈ (−∞,φ)∪ (φ,+∞), where

φ≡−mπ

mi
− 1+mc

σκmi
and φ≡ mπ

mi
+ mc −1

σκmi

Depending on the m′s, these thresholds can be either smaller or larger than the ones in the main

analysis. In this sense, the model’s region of indeterminacy may either shrink or expand by the

above modifications. For instance, Gabaix (2020) assumes mi = mπ and mc < 1, obtains φ < 1,

and uses this to argue that cognitive discounting relaxes the Taylor principle and, thereby, eases

the potential conflict between the stabilization and equilibrium selection functions of monetary

policy. From this perspective, that paper and ours are complements. But none of these enrich-

ments changes the fact that indeterminacy remains for sufficiently “passive” monetary policy,

and this is where our approach offers a potential way out.

Alternative Solution Concepts

Throughout, we have preserved Rational Expectations Equilibrium (REE), relaxing only the as-

sumption of perfect information about the past. REE is defined by the requirement that the

agents’ subjective model of the economy exactly coincides with the true model generated by

their behavior. One can capture bounded rationality by allowing a discrepancy between the for-

mer and the latter. But as long as one allows for a two-way feedback between them, the kind of

indeterminacy we have studied here remains possible, and so does our resolution to it.

This circles back our earlier discussion of Gabaix (2020): the solution concept in that paper

allows the objective model to feed into the subjective model, albeit with a distortion relative to
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REE. The same is true for Diagnostic Expectations (Bordalo et al., 2018); for Perfect Bayesian Equi-

librium with mis-specified priors (Angeletos and Sastry, 2021); and for Woodford (2019)’s model

of “finite planning horizons,” at least once learning is allowed (Xie, 2019). All these concepts are

close cousins of REE in the sense that they preserve the two-way feedback between beliefs and

outcomes, thus also preserving the indeterminacy problem we have addressed in this paper.

Contrast this class of concepts with Level-K Thinking (García-Schmidt and Woodford, 2019;

Farhi and Werning, 2019). The latter pins down a unique solution by shutting down the feedback

from objective truth to subjective beliefs. But this begs the question of how agents adjust their

behavior over time, in the light of repeated, systematic discrepancies between what they expect

to happen and what actually happens. Accordingly, we believe that Level-K Thinking is more

appropriate for unprecedented experiences (e.g., the recent ZLB experience) than for the kind of

stationary environments we are concerned with in this paper.

Furthermore, one may argue that Level-K Thinking does not “really” resolve the indetermi-

nacy problem and, instead, only translates it to a different dimension: whenever |δ| > 1, the level-

k outcome becomes infinitely sensitive to the arbitrary level-0 outcome as k →∞. In this sense,

one free variable (the sunspot) is replaced by another free variable (the level-0 outcome).30 By

contrast, our approach leaves neither kind of freedom in specifying beliefs.

Determinacy and common knowledge

Our results do not mean that sunspot and backward-looking equilibria are fragile to all kinds of

“noise.” We gave a counter-example with noisy but public observation of ct−1 in the previous

section. Furthermore, the results of Weinstein and Yildiz (2007) underscore that, although mul-

tiple equilibria may be “degenerate” in an appropriate topology, this statement by itself can be

vacuous: with enough freedom in choosing priors and information structures, one can recast

equilibrium indeterminacy as strategic uncertainty along a unique equilibrium.

Under this prism, a key task for theory is to understand how a model’s determinacy and its

predictions more generally depend on common knowledge. The global games literature has ac-

complished this task quite comprehensively for static coordination games, offering, inter alia, a

30To clarify this point, consider what Level-K Thinking means in our setting. First, level-0 behavior is exogenously
specified, by a random process {c0

t }. Level-1 behavior is then defined as the best response to the belief that others play
according to level-0 behavior, that is, c1

t ≡ θt +δEt [c0
t+1],where Et is the full-information expectation operator. This

amounts to using the “wrong” beliefs about what other players do but the “correct” beliefs about the random vari-
ables θt and c0

t+1. Iterating K times, for any finite K , gives the level-K outcome as cK
t ≡∑K

k=0δ
kEt [θt+k ]+δK Et [c0

t+K ].

The solution concept says that actual behavior is given by ct = cK
t for all periods and states of nature, where both K

and {c0
t } are free variables for the modeler to choose. Clearly, {cK

t } is uniquely determined for any given K and any
given {c0

t }. But because {c0
t } is a free variable, the original indeterminacy issue is effectively transformed to the mod-

eler’s (or the reader’s) uncertainty about {c0
t }. Furthermore, the bite of this uncertainty is most severe precisely when

the indeterminacy issue is present: whenever |δ| > 1, the sensitivity of {cK
t } to {c0

t } explodes to infinity as K →∞.
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sharp understanding of how determinacy in such games depends on assumptions about private

versus public information. An analogue for dynamic games, or dynamic macroeconomic mod-

els, is missing. But our results have illustrated the ramifications of this research agenda for the

specific context of interest.

To sum up, we invite the following reading of our results: not as an unequivocal resolution of

the New Keynesian model’s indeterminacy issue, but rather as a sharp illustration of how fragile

its sunspot and backward-looking solutions can be to appropriate relaxations of common knowl-

edge and, therefore, as a rationale for paying less attention to, if not entirely dispensing with,

these solutions.

8 Conclusion

In this paper we revisited the local indeterminacy issue of the New Keynesian model. We high-

lighted how all sunspot and backward-looking equilibria hinge on an infinite chain between cur-

rent and future behavior. And we showed how “easy” it can be to break this chain by relaxing the

model’s assumptions about memory and intertemporal coordination.

To keep the analysis tractable, we followed two stark but complementary approaches: our first

result (Proposition 2) allowed rich information heterogeneity within each period at the expense

of abstracting from endogenous learning; our second result (Proposition 5) considered the op-

posite extreme. We discussed the limits of these approaches; we suggested links to the literatures

on global games and the fragility of non-Markovian equilibria; and we speculated that, in gen-

eral, determinacy is likely to depend on the subtler question of how much common knowledge is

afforded both within and across time.

Notwithstanding the last point, our results lend support to the practice of focusing on its fun-

damental/MSV solution regardless of whether monetary policy is “active” or “passive.” To put

it differently, our results provided a rationale for why equilibrium can be determinate even with

interest rate pegs—or why monetary policy may be able to regulate aggregate demand without a

strict reliance on off-equilibrium threats of the kind embedded in the Taylor principle.

At the same time, our findings shined a new spotlight on the familiar boundedness assump-

tion. This assumption is customarily justified by an implicit policy commitment to kill a self-

fulling hyperinflation or any other large deviation from a given steady state. But whereas in the

standard paradigm such a commitment is insufficient for pinning down a unique equilibrium

in the neighborhood of any given steady state, it becomes sufficient in our context. Under this

prism, the notion of “anchoring expectations” takes a new meaning: there is no need to engage

in the kind of off-equilibrium threats that are needed for equilibrium selection in the standard
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paradigm; it suffices to anchor expectations in the sense of establishing common knowledge of

a steady state and of the aforementioned commitment. How this is accomplished in practice is

beyond the scope of our paper. But it is an integral part of our contribution to shift attention from

the Taylor principle, or the debate with the FTPL, to exactly this question.

Let us close with a comment on the strategic interaction between the monetary and the fis-

cal authority. Specifying a proper game between the two authorities requires a unique mapping

from those player’s actions—interest rates and government deficits, respectively—to their pay-

offs. Such a mapping is missing in the standard paradigm, because the same paths for interest

rates and government deficits can be associated with multiple equilibria within the private sector.

By providing such a mapping, our paper opens a new way for studying this interaction.
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Appendix: Proofs

As discussed after Definition 1, our proofs use a weaker boundedness criterion than the require-

ment of a finite V ar (ct ). The next lemma verifies that that the latter implies the former. The rest

of the Appendix provides the proofs for all the results.

Lemma 1. Consider any candidate equilibrium, defined as in Definition 1. There exist a finite

scalar M > 0 such that |ak | ≤ M and ‖γk‖1 ≤ M for all k, where ‖ ·‖1 is the L1-norm.

Substituting (6) into (7), we have that any candidate equilibrium can be rewritten as

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

Γ′kε
x
t−k , (28)

where, for all k ≥ 0,

Γ′k ≡
k∑

l=0
γ′k−l R l . (29)

Since ηt and εx
t are independent of each other as well as independent over time, we have

V ar (ct ) =
∞∑

k=0

(
a2

k +Γ′kΣεΓk
)

.

This can be finite only if limk→+∞ |ak | = 0 and limk→+∞ ‖Γk‖1 = 0.31 From (29), γ′k = Γ′k −Γ′k−1R

for all k ≥ 1. It follows that limk→+∞ ‖γk‖1 = 0 as well. We conclude that there exist a scalar M > 0,

large enough but finite, such that |ak | ≤ M and ‖γk‖1 ≤ M for all k.

Proof of Proposition 1

Suppose that memory is perfect (λ= 0). The equilibrium condition (8) becomes

ct = θt +δEt [ct+1], (30)

where Et [·] ≡ E[·|ht ] is the full-information rational expectation operator.

Part (i) follows directly from the fact that cF
t ≡ q ′ (I −δR)−1 xt satisfies (30).

Consider part (ii). Let {ct } be any equilibrium and define ĉt = ct − cF
t . From (30),

ĉt = δEt [ĉt+1]. (31)

From Definition 1,

ĉt =
∞∑

k=0
âkηt−k +

∞∑
k=0

γ̂′k xt−k ,

31To prove the latter statement, note that, because Σε is positive definite, there exists an invertible L such that
Σε = L′L by Cholesky decomposition. The finiteness of V ar (ct ) then implies limk→+∞ ‖LΓk‖1 = 0, which implies
limk→+∞ ‖Γk‖1 = 0.
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with |âk | ≤ M̂ and ‖γ̂′k‖1 ≤ M̂ for all k, for some finite M̂ > 0. From Assumptions 1–2, we have

Et [ĉt+1] =
+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂′k+1xt−k + γ̂′0Rxt .

The equilibrium condition (31) can thus be rewritten as

∞∑
k=0

âkηt−k +
∞∑

k=0
γ̂′k xt−k = δ

(+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂′k+1xt−k + γ̂′0Rxt

)
.

For this to be true for all t and all states of nature, the following restrictions on coefficients are

necessary and sufficient:

âk = δâk+1 ∀k ≥ 0, γ̂′0 = δγ̂′1 +δγ̂′0R and γ̂′k = δγ̂′k+1 ∀k ≥ 1.

When the Taylor principle is satisfied (|δ| < 1), âk and γ̂k explodes unless â0 = 0 and γ̂′1 = 0. Since

I −δR is invertible from Assumption 3, γ̂′0 = 0 too. We know that the only bounded solution of

(31) is ĉt = 0. As a result, cF
t is the unique equilibrium.

Finally, consider part (iii). cB
t ≡ −∑∞

k=1δ
−kθt−k and cηt ≡ ∑∞

k=0δ
−kηt−k are bounded (the in-

finite sums converge) when the Taylor principle is violated (|δ| > 1). cB
t satisfies (30). So does

ct = (1−b)cF
t +bcB

t +acηt for arbitrary b, a ∈R.

Proof of Proposition 2

Since the sunspots {ηt−k }∞k=0 are orthogonal to the fundamental states {xt−k }∞k=0, the argument in

the main text proves that ak = 0 for all k. We can thus focus on solutions of the following form:

ct =
∞∑

k=0
γ′k xt−k . (32)

And the remaining task is to show that γ′0 = q ′(I −δR)−1 and γ′k = 0 for all k ≥ 1, which is to say

that only the MSV solution survives.

To start with, note that, since xt is a stationary Gaussian vector given by (6), the following

projections apply for all k ≥ s ≥ 0 :

E
[
xt−k |I s

t

]=Wk,s xt−s ,

where I s
t ≡ {xt , ..., xt−s} is the period-t information set of an agent born s periods before and

Wk,s = E
[
xt−k x ′

t−s

]
E
[
xt x ′

t

]−1 = E[
xt x ′

t

](
R ′)k−s

E
[
xt x ′

t

]−1

is an n ×n matrix capturing the relevant projection coefficients.

Next, note that

‖Wk,s‖1 ≤ ‖E[
xt x ′

t

]‖1‖
(
R ′)k−s ‖1‖E

[
xt x ′

t

]−1 ‖1, (33)
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where ‖ · ‖1 is the 1-norm. Since all the eigenvalues of R are within the unit circle, we know the

spectral radius ρ (R) = ρ (
R ′)< 1. From Gelfand’s formula, we know that there exists Λ̄ ∈ (0,1) and

M1 > 0 such that

‖(
R ′)k−s ‖1 ≤ M1Λ̄

k−s ,

for all k ≥ s ≥ 0. Together with the fact that E
[
xt x ′

t

]
is invertible (because Σε is positive definite

and ρ (R) < 1), we know that there exists M2 > 0 such that

‖Wk,s‖1 ≤ M2Λ̄
k−s . (34)

Now, from Assumption 4, we know

Ēt [xt−k ] = (1−λ)k xt−k +
k−1∑
s=0

λ (1−λ)s E
[
xt−k |I s

t

]≡ k∑
s=0

Vk,s xt−s , (35)

where, for all k ≥ s ≥ 0,

Vk,k = (1−λ)k In×n and Vk,s =λ (1−λ)s Wk,s .

Together with (34), we know that there exits M3 > 0 andΛ= max
{
1−λ,Λ̄

} ∈ (0,1) such that for all

k ≥ s ≥ 0,

‖Vk,s‖1 ≤ M3Λ
k . (36)

Now consider an equilibrium in the form of (32). From equilibrium condition (8), we know

+∞∑
k=0

γ′k xt−k = θt +δĒt

[+∞∑
k=0

γ′k xt+1−k

]

= (
q ′+δγ′0R +δγ′1

)
xt +δĒt

[+∞∑
k=1

γ′k+1xt−k

]

= (
q ′+δγ′0R +δγ′1

)
xt +δ

+∞∑
k=1

γ′k+1

(
k∑

s=0
Vk,s xt−s

)
,

where we use the fact that all agents at t know the values of the fundamental state xt .

For this to be true for all states of nature, we can compare coefficients on each xt−k , we have

γ′0 = q ′+δγ′0R +δγ′1
γ′k = δ

+∞∑
l=k

γ′l+1Vl ,k ∀k ≥ 1. (37)

From Definition 1, we know that there is a scalar M > 0 such that ‖γ′k‖1 ≤ M for all k ≥ 0, where

‖ ·‖1 is the 1-norm. From (36) and (37), we know that, for all k ≥ 1,

‖γ′k‖1 ≤ δ
+∞∑
l=k

‖Vl ,k‖1M ≤ δM3
Λk

1−ΛM . (38)
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Because limk→∞Λk = 0, there necessarily exists an k̂ finite but large enough δM3
Λk̂

1−Λ < 1. So we

know that, for all k ≥ k̂,

‖γ′k‖1 ≤ δM3
Λk̂

1−ΛM .

Now, we can use the above formula and (37) to provide a tighter bound of ‖γ′k‖1: for all k ≥ k̂,

‖γ′k‖1 ≤
(
δM3

Λk̂

1−Λ

)2

M .

We can keep iterating. For for all k ≥ k̂ and l ≥ 0,

‖γ′k‖1 ≤
(
δM3

Λk̂

1−Λ

)l

M .

Since δM3
Λk̂

1−Λ < 1, we then have γ
′
k = 0 for all k ≥ k̂. Using (37) and doing backward induction,

we then know γ′k = 0 for all k ≥ 1 and

γ′0 = q ′+δγ′0R,

which means γ′0 = q ′ (I −δR)−1 . Together, this means that the equilibrium is unique and is given

by ct = cF
t , where cF

t is defined in (9).

Proof of Proposition 3

Consider a candidate equilibrium ct in Definition 1. We first notice that, for the period-t agent

born s periods ago, her information set I s
t in Assumption 4 can be written equivalently as

I s
t =

{
ηt−s , ...,ηt , xt−s ,εx

t−s+1, · · · ,εx
t

}
,

where εx
t is the innovation in xt in Assumption 1. From (28) in the proof of Lemma 1, we know

that ct can be written as

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

Γ′kε
x
t−k ,

where Γ′k is given by (29). From the law of total variances, we have

V ar
(
Et

[
ct |I s

t

]− ct
)≤V ar

( ∞∑
k=s+1

akηt−k +
∞∑

k=s
Γ′kε

x
t−k

)
.

Since ηt and εx
t are independent of each other as well as independent over time, the finiteness of

V ar (ct ) implies that

lim
s→+∞V ar

( ∞∑
k=s+1

akηt−k +
∞∑

k=s
Γ′kε

x
t−k

)
= 0.
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As a result, for any ε> 0 arbitrarily small but positive, there exists ŝ0, such that

V ar
(
Et

[
ct |I s

t

]− ct
)≤ ε

for all s ≥ ŝ0 and every t . Similarly, for each k ≤ K , there exists ŝk , such that

V ar
(
Et

[
ct−k |I s

t

]− ct−k
)≤ ε

for all s ≥ ŝk and every t . Now, for any ε′ > 0 arbitrarily small but positive, we can find λ̂ > 0

such that
(
1− λ̂)ŝk ≥ 1− ε′ for all k ∈ {0, · · · ,K } . Together, this means that whenever λ ∈ (0, λ̂),

V ar
(
E i

t [ct−k ]− ct−k
)≤ ε for all k ≤ K , for at least a fraction 1−ε′ of agents, and for every period t .

Proof of Proposition 4

We first find the MSV solution cF
t = γ′xt for some γ ∈Rn . From (4), we have

γ′ = q ′+γ′
(+∞∑

k=0
δRk

)
.

Since I −∑+∞
k=0δk Rk is invertible, the unique solution is γ′ = q ′(I −δ∑+∞

k=0 Rk )−1. We henceforth

denote this solution as

cF
t ≡ q ′(I −δ

+∞∑
k=0

Rk )−1xt . (39)

Consider an equilibrium taking the form of (7). We use (4):

+∞∑
l=0

alηt−l +
∞∑

l=0
γ′l xt−l = q ′xt + Ēt

[+∞∑
k=0

δk

(+∞∑
l=0

alηt+k−l +
∞∑

l=0
γ′l xt+k−l

)]
. (40)

We know

Ēt [ηt−l ] =

µlηt−l if l ≥ 0

0 otherwise

where µl = (1−λ)l is the measure of agents who remember a sunspot realized l periods earlier as

in the proof of Proposition 2. Comparing coefficient in front of ηt−l and using the facts that each

sunspot is orthogonal to all fundamentals:

al =µl

+∞∑
k=0

δk ak+l ∀l ≥ 0. (41)

Because liml→∞µl = 0, there necessarily exists an l̂ finite but large enough µl̂

∑∞
k=0 |δk | < 1.

Since we are focusing bounded equilibria as in Definition 1, there exists a scalar M > 0, arbi-

trarily large but finite, such that |al | ≤ M for all l . From (41), we then know that, for all l ≥ l̂ ,

|al | ≤µl̂ M
+∞∑
k=0

|δk | , (42)
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where we also use the fact that the sequence {µl }∞l=0 is decreasing. Now, we can use (41) and (42)

to provide a tigehter bound of |al |. That is, for all l ≥ l̂ ,

|al | ≤
(
µl̂

∞∑
k=0

|δk |
)2

M .

We can keep iterating. Sinceµl̂

∑∞
k=0 |δk | < 1, we then have al = 0 for all l ≥ l̂ . Using (41) and doing

backward induction, we then know al = 0 for all l .

Now, (40) can be simplified as

∞∑
l=0

γ′l xt−l = q ′xt + Ēt

[+∞∑
k=0

δk

∞∑
l=0

γ′l xt+k−l

]
. (43)

= q ′xt +
+∞∑
k=0

δk

k∑
l=0

γ′l Rk−l xt + Ēt

[+∞∑
l=1

(+∞∑
k=0

δkβ
′
k+l

)
xt−l

]
.

For this to be true for all states of nature, we can compare coefficients on each xt−l :

γ′0 = q ′+
+∞∑
k=0

δk

k∑
l=0

γ′l Rk−l (44)

γ′l =
+∞∑
s=l

(+∞∑
k=0

δkγ
′
k+s

)
Vs,l ∀l ≥ 1, (45)

where Vs,l is defined in (35).

From Definition 1, we know that there is a scalar M > 0 such that ‖γ′l‖1 ≤ M for all l ≥ 0, where

‖ ·‖1 is the 1-norm. From (45), we know, for all l ≥ 1

‖γ′l‖1 ≤
(+∞∑

k=0

|δk |
)(+∞∑

s=l
‖Vs,l‖1

)
M ≤

(+∞∑
k=0

|δk |
)

M3
Λl

1−ΛM , (46)

where M3 andΛ are defined in (35) Because liml→∞Λl = 0, there necessarily exists an l̂ finite but

large enough such that
(∑+∞

k=0 |δk |
)

M3
Λl̂

1−Λ < 1. So we know that, for all l ≥ l̂ ,

‖γ′l‖1 ≤
(+∞∑

k=0

|δk |
)

M3
Λl̂

1−ΛM .

Now, we can use the above formula and (45) to provide a tighter bound of ‖γ′l‖1: for all l ≥ l̂ ,

‖γ′l‖1 ≤
((+∞∑

k=0

|δk |
)

M3
Λl̂

1−Λ

)2

M .

We can keep iterating. Since
(∑+∞

k=0 |δk |
)

M3
Λl̂

1−Λ < 1, we then have γ′l = 0 for all l ≥ l̂ . Using (45)

and doing backward induction, we then know γ′l = 0 for all l ≥ 1 and, from (44),

γ′0 = q ′+γ′0
(+∞∑

k=0
δk Rk

)
,
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which means γ′0 = q ′ (I −δ∑+∞
k=0δk Rk

)−1
. Together, this means that the equilibrium is unique and

is given by ct = cF
t , where cF

t is defined in (39). This proves the Proposition.

Proof of Proposition 5

Given Assumption 5, an possible equilibrium takes the form of

ct =
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γ′k xt−k +χζt .

From (25), we have that

Kη∑
k=0

akηt−k +
Kβ∑

k=1
βk ct−k +

Kθ∑
k=0

γ′k xt−k +χζt = θt +ζt +δE[
Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=0

βk+1ct−k +
Kθ−1∑
k=0

γ′k+1xt−k |It ]

= q ′xt +ζt +δ
[

Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=1

βk+1ct−k +
Kθ−1∑
k=0

γ′k+1xt−k +γ′0Rxt

]

+δβ1

[
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γ′k xt−k +χζt

]
where we use Assumptions 1–2 and the fact that ζt is drawn independently over time. For this to

be true for all states of nature, we can compare coefficients:

ak = δak+1 +δβ1ak ∀k ∈ {
0, · · · ,Kη−1

}
and aKη = δβ1aKη (47)

βk = δβk+1 +δβ1βk ∀k ∈ {
1, · · · ,Kβ−1

}
and βKβ

= δβ1βKβ
(48)

γ′k = δγ′k+1 +δβ1γ
′
k ∀k ∈ {1, · · · ,Kθ−1} and γ′Kθ

= δβ1γ
′
Kθ

(49)

γ′0 = q ′+δγ′1 +δβ1γ
′
0 +γ′0R and χ= 1+δβ1χ. (50)

First, from the second equation in (50), we know δβ1 6= 1. Then, from the second parts of (47)–

(49), we know aKη = 0, βKβ
= 0, and γ′Kθ

= 0. From backward induction on (47)–(50), we know that

all a,b,γ are zero except for the following:

γ′0 = q ′+γ′0R,

which means γ′0 = q ′ (I −R)−1 . We also know that χ= 1. We conclude that the unique solution is

ct = cF
t +ζt ,

where cF
t is given by (9).
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