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1 Introduction

“Progress in combating disease depends upon an expanding body of new scientific knowledge.”

Vannevar Bush, 1945

What factors drive innovation? This question has actively engaged scholars dating back to

Schumpeter (1939). While the importance of this question is obvious for firms and policymak-

ers, the answer is neither singular nor simple. Among others, Mowery and Rosenberg (1979)

suggested that both supply-side (‘technology push’) and demand-side (‘demand pull’) factors

may impact the innovation process. In general, the technology push view suggests that accu-

mulated knowledge from research and development (R&D) activities drives the introduction of

new products. In contrast, the demand pull view relies on the notion that demand character-

istics (e.g., population, disposable income, and preferences) shape the pattern of investments

in innovation and in research (Kyle, 2020).

Focusing on demand-side factors, early work by Griliches (1957) and Schmookler (1966)

recognized the importance of profit incentives and market size as drivers of innovation. This

recognition has been carried forward into more recent work. Two seminal papers have estab-

lished a causal link between market size and pharmaceutical innovation (Acemoglu and Linn,

2004; Finkelstein, 2004). Since then, a steady stream of empirical studies has examined how

demand affects drug development (e.g., Agarwal and Gaule, 2021; Blume-Kohout and Sood,

2013; Dranove et al., 2020; Dubois et al., 2015; Garthwaite et al., 2021; Kyle and McGahan,

2012; Lichtenberg and Waldfogel, 2009).1

These studies, however, focus on the ‘D’ as opposed to the ‘R’ in pharmaceutical R&D. They

consider molecules entering (pre-)clinical trials, new drug approvals, or various other defini-

tions that generally fall within the traditional rubric of ‘development’ as opposed to ‘research’.

Heretofore, efforts to establish a link between downstream demand and upstream research

have been met with limited success. Acemoglu and Linn (2004) and Finkelstein (2004), for

example, were unable to find a relationship between patenting and demographic-driven expan-

sions or policy-induced expansions in market size, respectively.2,3 In contrast, Bhattacharya

1A few studies confirm these results on innovation responses following market size shocks outside the pharma-
ceutical industry (e.g., Aghion et al., 2018).

2They provide a variety of reasons for this result. First, they highlight the imperfection of their patent match.
Second, they describe attenuation issues resulting from the delay in the research process. Third, they point
towards companies being more responsive to profit incentives in later development stages.

3In her paper, Finkelstein (2004) argues that “[..] the quick initial response in development suggests the existence
of a substantial reservoir of technologically feasible products ‘on the shelf’. The decision to begin clinical trials
is responsive, on the margin, to increases in the expected economic return to the clinical trial.”
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and Packalen (2011) use a similar identification strategy as Acemoglu and Linn (2004) and

identify a positive relationship between disease prevalence and upstream research, but cannot

disentangle the increase in societal importance from pure profit incentives. Their finding was

driven by applied research and argued to be conducted at academic medical centers.4 This is

precisely where one would expect clinical studies to occur and the corresponding results to be

published. Hence, the broader link, if it exists, between downstream market size and upstream

(basic) scientific research remains elusive.

In this paper, we fill this gap and use the introduction of Medicare Part D to examine the

effects of market size on science. For this purpose, we use novel data on scientific publications,

patent-paper links, and drug development efforts mapped to disease categories. Moreover,

while we use similar measures of disease exposure to Medicare Part D (i.e., Medicare market

share) as the extant literature, the use of scientific publications necessitates a categorization

of research at the disease level, as opposed to the therapeutic class level.5 To demonstrate

that our data construction choice does not bias the results, we start by replicating the main

findings of the prior literature exploring the impact of the introduction of Medicare Part D on

drug development (e.g., Blume-Kohout and Sood, 2013; Dranove et al., 2020).

We make several important contributions to the literature. First, over the decade following

the implementation of Medicare Part D, we find no evidence for a causal relationship between

market size and research. An increase of one standard deviation in the exposure to Medicare

Part D leads to an insignificant increase in scientific publications by only 6.9%. This is sub-

stantially smaller than any effect on drug ‘development’ activities found in the prior literature

and in our replication (+20.2%). These findings support Finkelstein’s (2004) assertion that

the link between market size and increases in drug development is driven by a reordering of

products already ‘on the shelf’. This is also consistent with Dranove et al. (2020), who show

that the upsurge in development is driven by clinical trials of less scientifically novel drugs.

Second, there exists extensive literature on scientist motivations. For example, scientists

respond to external funding or rewards (e.g., Cohen et al., 2020; Foray and Lissoni, 2010;

Hvide and Jones, 2018; Thursby and Thursby, 2011), altruism and prestige (Stern, 2004),

recognition by the scientific community (Stephan, 2012), research opportunities and academic

freedom (Aghion et al., 2008), public funding (Azoulay et al., 2019; Myers, 2020), and the

desire to work on topics useful for society (Merton, 1973). It also appears that some scientists

are motivated by monetary incentives (Levin and Stephan, 1991; Stephan, 1996), incentivizing

4Academic medical centers are hospitals that are linked to medical schools and engage in clinical trials.
5In the course of the analysis, we account for demographic changes, public research funding, and new research

opportunities.
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them to engage in patenting (Lach and Schankerman, 2008; Owen-Smith and Powell, 2001;

Thursby et al., 2001). Our findings suggest that these upstream motivations are disconnected

from the direct link to the opportunities created by shifts in downstream demand in the form

of market size changes.

Third, the degree of product market orientation depends on the type of research affiliation.

For example, on one end of the spectrum, the objectives of corporate scientists will be aligned

with their firms, while on the other end of the spectrum, scientists at the National Institutes

of Health (NIH) may be more interested in basic science research. To explore this variation,

we categorize research activities by four different types of affiliation: the NIH, universities,

academic medical centers, and corporations. Consistent with our core findings, we illustrate

substantial differences in semi-elasticities. A statistically significant increase can only be found

in corporate research (+22.7% in the tenth year after the Medicare Part-D introduction) and

decreases in magnitude by distance to the market (e.g., universities show an insignificant de-

mand response of only +5.8%).

Fourth, we further refine our analysis by also focusing on the type of research (e.g., applied

or basic). With this refinement, we find that Medicare Part D primarily caused an increase

in corporate affiliated publications linked to both clinical trials and pharmaceutical products,

which are residuals from drug development activities (i.e., applied research). The increase

disappears for corporate affiliated publications that are more basic, which is broadly consistent

with Arora et al. (2018). Similarly, we do not find any causal relationship between the type of

research and market size for universities or academic medical centers. The divergence between

our results and those of Bhattacharya and Packalen (2011) suggests that the differences in the

types of downstream demand matter. In their case, research appears to respond to disease

prevalence, while in our case, it does not respond to changes in disposable income within

those diseases.

Fifth, not all publications are equal so we generate three different measures of impact. Our

first measure are publications weighted by journal impact factors. Second, we map publications

to patents to approximate whether scientific research was referenced in commercially relevant

applications (Marx and Fuegi, 2020). Finally, we weight the number of publications by the

patent family size associated with the publication. Overall, results remain robust with our core

findings – changes in downstream demand have no impact on upstream research.

Interestingly, there is one exception. In the years directly following the enactment of Medi-

care Part D, a one standard deviation increase in the exposure to Medicare Part D caused an

immediate but transitory 15.8 percent increase in corporate-affiliated patent-weighted research.
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This is consistent with the idea that corporate publishing is used strategically in commercial-

ization activities such as patenting (Della Malva and Hussinger, 2012). Finally, we conclude

with a series of robustness tests that redefine the dependent variable, use alternative calcula-

tions of Medicare market size, alternative controls, alternative specifications, alternative event

windows, and different aggregation levels. In all cases, our core results hold.

Our work has important implications for firms and policymakers. The pharmaceutical in-

dustry is highly dependent upon external technology markets (Higgins and Rodriguez, 2006),

with much of that research emanating from universities (Cockburn and Henderson, 2000).

While drug development (i.e., drugs in clinical trials) appears to respond to downstream shifts

in market demand, our results suggest that upstream research fails to do so. Firms face the

prospect that the flow of research may not meet the kinds of development needs they may

require. This problem is even more significant given the slow decline in corporate-level basic

science research (Arora et al., 2018). This disconnect suggests that a more active role for poli-

cymakers may be needed. For example, in their recent work analyzing the innovation response

to COVID-19, Agarwal and Gaule (2021) argue that policymakers may want to complement a

market expansion with early-stage research incentives.

2 Medicare Modernization Act

In the United States, Medicare is the national health insurance program for the elderly. Prior

to 2006, it only covered drugs administered during in-patient hospital stays or at doctor of-

fices, but it did not cover out-patient prescription drugs. In December 2003, Congress passed

the Medicare Prescription Drug, Improvement, and Modernization Act (MMA), which imple-

mented the Medicare Part D prescription drug benefit as of January 2006.6 This coverage is

available for U.S. residents age 65 and older who fulfill the eligibility criteria of Medicare Part

A and B. In contrast to other Medicare programs, Part D contracts with private companies that

are authorized to sell insurance coverage. It is both regulated and subsidized, especially for

low-income individuals.7

Medicare Part D covers all drugs that are also covered under Medicaid, which is a federal

program that assists with medical costs for people with limited income, and that fulfill the

following criteria. First, the drug has been approved by the Food and Drug Administration

6More details can be found here: https://www.congress.gov/bill/108th-congress/house-bill/1 [last accessed on
March 8, 2021].

7See for more information: https://www.medicareadvocacy.org/medicare-info/medicare-part-d/ [last accessed
on March 8, 2021].
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(FDA). Second, it must be available only by prescription. Third, the drug is medically necessary

for on-label indications (i.e., this limits off-label usage). Finally, Medicare Part D also covers

biological drugs, insulin, smoking cessation drugs, and vaccines. While insurance plans do not

have to cover all drugs mentioned above, there are certain ‘protected classes’ for which most

drugs are required to be included (e.g., anti-cancer, anti-convulsant, anti-depressants, anti-

psychotic, immuno-suppressant, HIV and AIDS drugs). The program excludes, for example,

drugs that may be covered under Medicare Part A or B and over-the-counter drugs.8

The implementation of Medicare Part D was one of the most significant recent changes in

the U.S. healthcare system. It was projected to benefit 29 million people in 2006 and 44 million

people by 2015. The expected total public expenditures in the first 10 years were estimated

to be $800 billion.9 This expenditure corresponded to approximately 0.42% of GDP in 2006,

increasing to 0.76% in 2015.10 The program can be categorized as a demand subsidy.

As expected, Medicare Part D considerably increased prescription drug use by elderly pa-

tients. In Figure 1 we illustrate this development. At the extensive margin, drug use by

Medicare-insured patients increased substantially after 2006, especially in the quartile of dis-

eases most likely to afflict older patients. This implies that previously uninsured elderly are

now able to purchase prescription drugs. The same applies when looking at prescription quan-

tities for both existing and newly insured patients (Appendix Figure A-4). Thus, we can see

that the MMA differentially increased the market size for drugs that are developed to treat

diseases more prevalent among older individuals. This will be a fundamental aspect of our

empirical strategy, which we outline in the next section.

3 Data and Methodology

We are interested in the causal effect of Medicare Part D (i.e., changes in downstream market

demand) on upstream research. If upstream research responded to demand pull effects in the

same way as downstream drug development, we would expect to find an increase in the number

of scientific publications, all else equal. Further, we would also expect to see an increase in

patent-paper links, which can be viewed as an output of basic science research.

8It further excludes drugs for weight loss or gain, cough and cold preparations, fertility, erectile dys-
function, cosmetic and hair growth, as well as vitamins and minerals. For more information, see:
https://www.medicareadvocacy.org/medicare-info/medicare-part-d/ [last accessed on March 8, 2021].

9Own calculations based on the 2006 Medicare Trustees Report using an annual inflation rate of 5%.
10https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/ReportsTrustFunds/downloads/tr2006.pdf [last accessed on March 8, 2021].
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Figure 1: Evolution of Medicare beneficiaries
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Notes: The figures show the evolution of patient counts of each ICD-9 group aggregated by Medicare market
share quartiles. These are patients who received a prescription drug designated to a ICD-9 group disease at least
once in a given year. Our exposure measure to Medicare Part D is described in Section 3.3. The grey bars display
the number of Medicare patients, the blue bars display the non-Medicare patients. Patients are counted multiple
times if they appear in more than one ICD-9 group. MMS quartiles are based on the pre-2004 weighted average of
patient-based MMS. The red line represents the relative increase in the number of Medicare patients with respect
to the baseline year 2003. The figures depict a discrete increase in Medicare patients after 2006 in the highest
age quartile.

3.1 Sample Selection

To create a link between Medicare Part D and R&D activities, we combine data on biomedical

scientific publications from the NIH’s MEDLINE/PubMed database and Web of Science (WoS),

patent information from Patstat, and drug development activities from the Clarivate Analyt-

ics’ Cortellis Investigational Drugs database by ICD-9 disease categories and their exposure to

Medicare Part D based on the Medical Expenditure Panel Survey (MEPS).

However, matching publications to disease categories is not straight forward because the

keywords in biomedical publication databases do not correspond one-to-one to standard in-

ternational disease classifications. We take advantage of an existing crosswalk introduced by

Bhattacharya and Packalen (2011), which we update and present in Table A-1. This cross-

walk provides a mapping of Medical Subject Headings (MESH) terms with a range of ICD-9

three-digit codes.11 Since some MeSH terms relate to multiple ICD-9 three-digit codes and

11MeSH is a hierarchical medical vocabulary administered by the NLM and consists of approximately
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vice versa, MeSH and ICD-9 three-digit codes are grouped at the level of mutually exclusive

ICD-9 groups that comprise similar diseases.12 The crosswalk is not exhaustive. It excludes the

majority of ICD-9 three-digit categories that comprise the words ‘other’ or ‘unspecified’ since

those categories typically include various very distinct diseases.13

Our final sample includes 129 separate matches at the ICD-9 group level, which corresponds

to 272 unique ICD-9 three-digit codes and 192 high-level MeSH terms.14 We take advantage of

the stringent MeSH hierarchy to extend the initial set of MeSH terms to all synonyms and lower-

level terms. Ultimately, our sample contains 1,563 MeSH terms. Our independent variables

are calculated based on the selected mutually exclusive ICD-9 groups.

3.2 Empirical Strategy

We illustrate our empirical strategy through a case study (Figure 2). We select two disease

categories from our panel, one with a very high Medicare market share (MMS), Alzheimer’s

disease, and one with a very low MMS, inflammatory skin diseases. We show that the trends in

the number of scientific publications and number of preclinical trials (drug discoveries) related

to either Alzheimer’s or inflammatory skin diseases are parallel before the passage of Medicare

Part D in 2003. While the low-MMS inflammatory skin diseases seem to be uncorrelated with

the MMA in the science and technology sphere, the high-MMS Alzheimer’s disease increases

disproportionately from 20 to 60 drug candidates (i.e., drug development). This, however,

does not occur with publications (i.e., research), where the trends remain parallel after 2003.

In our multivariate analyses, we exploit the passage of the MMA by using the variation

in exposure measured by the 1997-2003 MMS. To this end, we use a panel data model that

30.000 different terms in 2020 (https://meshb.nlm.nih.gov/search) [last accessed on March 8, 2021].
The International Statistical Classification of Diseases and Related Health Problems (ICD) is adminis-
tered by the World Health Organization. The 9th version (ICD-9) comprises around 13,000 codes
(https://www.cdc.gov/nchs/icd/icd9cm.htm) [last accessed on March 8, 2021].

12There exists no official publicly administrated crosswalk between ICD-9 and MeSH terms. NIH resources like
the UMLS Metathesaurus (https://www.ncbi.nlm.nih.gov/books/NBK9684/ [last accessed on March 8, 2021])
only include selected 1-to-1 matches. The usage of the PubMed search algorithm, which searches for terms
in titles and abstracts, is infeasible because it requires the user to search for all possible synonyms. Further-
more, identifying appropriate MeSH terms for each ICD-9 category using the MeSH on demand algorithm
(https://meshb.nlm.nih.gov/MeSHonDemand [last accessed on March 8, 2021]) requires an expert assess-
ment in case of multiple results.

13The match is further limited to ICD-9 codes that appear more than 100 times in the MEPS data from 2007.
It excludes the following ICD-9 categories: pregnancy (class 11), congenital (class 14), perinatal (class 15),
symptoms (class 16), injuries (class 17), and services (class V).

14In addition to the 127 disease categories in Bhattacharya and Packalen (2011), we include two major diseases
that they excluded: HIV and Alzheimer’s disease. Our results are not sensitive to their inclusion.
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Figure 2: Trends in R&D activities in Alzheimer’s and inflammatory skin diseases
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Notes: The left-hand Figure presents the number of publication counts, the right-hand Figure the number of
newly discovered new molecular entities for the Alzheimer’s disease (ICD-9 code: 331; MMS is 97%) versus
inflammatory skin diseases like Acne (ICD-9 codes: 690/706; MMS is 4%) between 1997 and 2016.

observes each disease-related MeSH term by year. The MeSH terms m are nested within ICD-

9 disease groups i(m) (defined as i in the following), which in turn constitute the level of

treatment exposure. To capture the dynamics of the effect, we amend the standard Difference-

in-Differences framework by replacing the post-period dummy with three-year binned sets of

leads from 2004 onward. Hence, we compare research-related outcome variables before and

after the introduction of Medicare Part D between more and less affected MeSH terms. Our

empirical model can be written as follows:

E[Nmt| X it] = exp[α+
2016
∑

t=2004

β t Medicare Market Sharei × 1{δt=t} (1)

+µ

 

f
∑

lead=1

Mi,t+lead

!

+λ

 

l
∑

lag=1

NIHi,t-lag

!

+ γ

 

t
∑

t=0

Ki,t

!

+ δt + θm],

where Nmt represents the dependent variable (e.g., the number of publications per MeSH term

in year t). The interaction terms MMSi×1{δt=t} indicate the exposure to the MMA and whether

we are in the pre- or in the post-MMA periods (i.e., t ≥ 2004). Consistent with prior literature

on market size and R&D, our empirical model includes controls for the future demographic

driven market size, Mit, past public research funding, NIHit, and research opportunities, Kit.

Given the differences in the level of R&D activities between diseases, we include MeSH term

fixed effects, θm. The inclusion of this large set of fixed effects (>1,500) reduces our sample of
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analysis: 29 MeSH terms are dropped from our main specification due to lack of variation in the

dependent variable.15 We show the robustness of our results to the full sample by substituting

the MeSH term fixed effects with the smaller set of ICD-9 group fixed effects, θi. Furthermore,

we control for time trends using calendar year effects, δt . In alternative specifications, we

interact the MMS with a full set of two-year binned leads and lags,
∑2016

t=1997 β
t MMSi× 1{δt=t}.

16

In this setting, we normalize the coefficient β t=2002/3 to zero and express the dynamic treatment

effects relative to this pre-treatment year. This will also allow us to examine whether the

parallel trends assumption holds.

We estimate the relative change of R&D activity using Poisson pseudo-maximum likelihood

regressions. Since our dependent variables are count data, Poisson is the preferred econometric

model in panels (Hausman et al., 1984). Under our identification assumption, β t gives us

the average causal effect of the MMA in year t. The coefficients can be interpreted as semi-

elasticities and we cluster standard errors at the MeSH term level.17

When replicating prior findings relating the effect of Part D on drug development, we turn

to an analysis at the ICD-9 three-digit code level, Nct. This is the most fine-grained level of

observation for our clinical trial data. ICD-9 three-digit codes, c, are again nested in ICD-9

groups i(c). In these specifications, we include ICD-9 three-digit code fixed effects, θc (as a

robustness check: ICD-9 group fixed effects, θi), while all other parts of Equation 1 remain the

same.18

Lastly, we investigate other variation by splitting the dependent variable along several cat-

egories, such as affiliation, journal type, clinical relevance, and funding source. We use this

battery of dependent variables to explore treatment effects along the entire scientific and in-

novation value chain.

3.3 Medicare Market Share

We exploit variation across disease categories in their pre-Medicare Part D market share (MMS),

expecting larger increases in scientific research in disease categories with higher MMS. Follow-

ing prior studies on Medicare Part D (e.g., Blume-Kohout and Sood, 2013; Dranove et al., 2020;

15When investigating sub-samples of the outcome variable, in some cases a larger number of MeSH terms are
dropped due to lack of variation.

16Our post-treatment period overlaps with the passage of the Affordable Care Act (ACA) in 2010. However, this
is not a concern because ACA involved only low reimbursement for pharmaceuticals and, thus, small revenue
increases and incentives from market size (Garthwaite et al., 2021).

17A one percentage point higher MMSi leads to a change of the dependent variable Nmt of β t × 100 percent.
18Again, some ICD-9 three-digit codes are dropped from our main specification due to lack of variation in the

dependent variable.
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Duggan and Scott Morton, 2010; Hermosilla and Wu, 2018; Krieger et al., 2018), we build a

measure of a disease category’s exposure to Medicare Part D based on MEPS.19 Unlike most of

these studies, we use ICD-9 disease categories as our level of observations and not therapeutic

classes because scientific articles are typically indexed by keywords corresponding to diseases.

In MEPS, each patient-level drug prescription is associated with a designated disease, an in-

dicator of whether the beneficiary was insured by Medicare, and the patient’s age. Using this

data we calculate the MMS for each disease at the ICD-9 three-digit level and the more aggre-

gated ICD-9 group level. The latter corresponds with the level of our match between ICD-9

and MeSH terms, and, thus, with the level of our empirical analysis on biomedical science.

It is plausible that researchers could anticipate the market size increase since the authoriza-

tion of the MMA in December 2003. Thus, we calculate the fraction of patient counts, prescrip-

tion counts, and quantity weighted prescription counts filed by Medicare-covered individuals

compared to all individuals for each disease category as a weighted-average between 1997

and 2003.20 The categories with the highest MMS are Alzheimer, Retinal Diseases, Cataract,

and Angina Pectoris. Among the diseases with the lowest MMS are Hyperkinetic Syndrome of

Childhood, Scarlet Fever, Infantile Cerebral Palsy, and Inflammatory Skin Diseases. The distribu-

tion of our MMS at the ICD-9 group level is presented in Figure 3, has a mean of 32%, and is in

line with other studies (e.g., Dranove et al., 2020; Hermosilla and Wu, 2018). Critically, it does

not vary with the ICD-9 level, sample selection, or the use of (quantity weighted) prescription

counts (Appendix Figure A-3). We are confident in our sample of 129 ICD-9 disease groups as

our level of analysis since we are able to replicate the main results of the prior literature.21

3.4 Dependent Variables

Scientific Publications

NIH’s MEDLINE/Pubmed database includes the entire universe of references to journal articles

in the biomedical sciences from the early 20th century to the present. We retrieve all publica-

19MEPS data is available here: https://www.meps.ahrq.gov/mepsweb [last accessed on March 8, 2021].
20We weight each survey respondent in MEPS by their representativeness, thereby creating a person-level sampling

weight.
21Our disease level data allows us to replicate the development of quantities, drug prices, and revenues. We

document the positive effect of Medicare Part D on drug consumption (Appendix Figure A-4). Moreover, in
line with Duggan and Scott Morton (2010) and Duggan and Scott Morton (2011), drug prices decrease between
2006 and 2009 since patients were able to switch to cheaper insurance plans. However, prices increased after
2009 (holding the 2003-2005 drug basket for each disease constant). Despite the initial price declines, by
2006 revenues increased disproportionately for high MMS diseases. This suggests that the quantity increase
outweighs the initial price decline (Appendix Figure A-5).
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Figure 3: Distribution of Medicare market shares (1997-2003)
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Notes: The figure presents the distribution of MMS scores among ICD-9 groups that are included in the MeSH-
ICD-9 crosswalk by Bhattacharya and Packalen (2011). We use the patient-weighted average of each year between
1997-2003. The annual MMS are calculated using the total number of patients in Medicare relative to all patients
for each ICD-9 group.

tions (also referred to as PMIDs) with at least one of the 1,563 MeSH terms linked to the 129

ICD-9 groups. We then restrict our sample to U.S. publications. Next, we match these publi-

cations with bibliographic data from Web of Science (WoS) to take advantage of WoS’s proper

author name and affiliation disambiguation. The WoS data enables us to look at various splits

in the publication data, such as the affiliation type (i.e., NIH, university, corporate, academic

medical centers),22 and appliedness of the journal.23 Moreover, the WoS bibliographic infor-

mation allows us to add information regarding forward citations and journal impact factors.

The coverage of PMIDs in WoS is high, which gives confidence in capturing all relevant

papers related to medical science. Moreover, we extract for each paper all indexed MeSH

terms from the Pubmed database to classify whether a publication is related to disease terms

that are not in our sample. Since we do not know the exposure of these additional disease-

related MeSH to the MMA, we treat them as potentially confounding and cautiously drop them

from the sample. Beyond that, we use all indexed MeSH terms to classify whether a publication

22We infer the affiliation type from the disambiguated Web of Science publication data based on the string name
of each affiliation. Academic medical center are identified using the string ‘hospital’. Corporate affiliations are
identified using legal forms like ‘Corp.’ or ‘Inc.’.

23We use a classification of journals based on the proportion of published research coming from a general hospital
and industry using the publicly available data set provided by Tijssen (2010). For more information, see:
https://www.vosviewer.com/journal-application-domain-map [last accessed on March 8, 2021].
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is related to clinical trials or pharmaceutical products.24,25

Next, we measure the extent of the research efforts related to a disease group by counting

the number of matched scientific publications at the MeSH term level. Publications might be

associated with more than one ICD-9 group, so that we account for this in two alternative

ways: we treat them either as simple counts for each disease group separately or weight them

by the inverse number of linked diseases that sum up to one across all disease groups. The

resulting final data set spans from 1997 to 2016 and includes 449,996 unique publications.

Patents

We use references in patents to the scientific non-patent literature (SNPL) to identify knowledge

diffusion between upstream research and more downstream innovation activities, like patent-

ing (e.g., Ahmadpoor and Jones, 2017; Marx and Fuegi, 2020; Poege et al., 2019; Watzinger

and Schnitzer, 2019).26 We locate publications that are directly cited in a patent by matching

the Pubmed-patent link constructed by Marx and Fuegi (2020) to our sample of scientific pub-

lications. Thus, we weight U.S. scientific publications by an indicator variable that specifies

whether a publication was cited as a SNPL within a 5-year window.27 This applies to 19,891

biomedical scientific publications.28

Clinical Drug Development

To measure the impact of Medicare Part D on drug development activities, we use time-series

data from Cortellis on all clinical drug development events by disease categories at each stage

in the pharmaceutical development process. We link the Cortellis targeted conditions to ICD-9

24The category ‘clinical trials’ includes all MeSH terms that are related to the MeSH ID ‘D016430’ (Clinical Trial)
and the entire set of MeSH terms at the hierarchy levels below, such as ‘Adaptive’, ‘Phase I’, ‘Phase II’, ‘Phase
III’, ‘Phase IV’, ‘Controlled Clinical Trial’ or ‘Randomized Controlled Trial’.

25The category ‘pharmaceutical products’ includes all MeSH terms that are related to the MeSH ID ‘D004364’
(Pharmaceutical Preparations) and the entire set of MeSH terms at the hierarchy levels below, such as ‘Dosage
Forms’, ‘Drug Combinations’, ‘Drugs, Generic’, ‘Drugs, Investigational’, ‘Pharmaceutic Aids’ or ‘Prescription
Drugs’.

26Patents reference various types of documents that relate to the protected invention by either determining novelty
(prior art) or explaining the content of the underlying invention. A subset of these references relates to scientific
articles, called SNPL references (Poege et al., 2019).

27We aggregate all citing patent applications at the DOCDB family level and calculate the 5-year window from
the year of the scientific publication to the year of the priority year of the patent family.

28The publication-patent link may suffer from attrition because late publications have not yet been cited in patents.
However, we have little reason to expect that the time to patent varies systematically by MMS. This is supported
by our finding that the minimum time lag between a scientific article’s publication year and a patent’s priority
year is uncorrelated with the MMS (i.e., the pairwise correlation is −0.0365).
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codes using the crosswalk by Dranove et al. (2020) and identify unique new molecular entities

(NME) entering Phase I, Phase II, or Phase III clinical testing, as well as being submitted to the

FDA for approval.29 The data comprises 201 ICD-9 three-digit codes and 121 ICD-9 groups. We

then limit the sample to NMEs that are discovered/tested/approved in the U.S., and include

information on the target-based action and at least one designated disease. If a clinical trial

occurs more than once for a NME-disease link, we use the first event. To be consistent with our

science level analysis, we count the number of NMEs at the more fine-grained ICD-9 three-digit

code level, which is nested within our ICD-9 groups. In total, we identify 9,943 NMEs entering

at least one phase of the drug development process.

3.5 Control Variables

The empirical model includes a set of additional determinants of R&D: projected market size,

public research funding, and research opportunities. A detailed description of the control vari-

ables construction can be found in the Appendix A. First, we control for the projected mar-

ket size due to U.S. population growth (Acemoglu and Linn, 2004; Blume-Kohout and Sood,

2013). For this purpose, we use demographic (projection) data from the UN World Population

Prospects. Figure 4a illustrates the average development of the population-growth driven pro-

jected market size before and after the introduction of Medicare Part D. While market size will

increase in all disease categories, diseases in the highest quartile of MMS exhibit the sharpest

growth due to an aging population.30

Second, we control for previous years’ public research funding related to each disease cat-

egory. Therefore, we calculate for each of our 129 ICD-9 groups the exposure to the NIH

budget over time by linking each group to the relevant NIH Institute/Center (e.g., ICD-9 162

malignant neoplasm of trachea, bronchus, and lung to the National Cancer Institute).31 Figure

4b presents the normalized average NIH spending by ICD-9 groups in each MMS quartile. It

becomes apparent that diseases in the lowest quartile of MMS are associated with the largest

relative increase of NIH funding. However, high MMS diseases receive a substantially higher

level of NIH funding.32

29Dranove et al. (2020) had two expert medical coders independently code the concordance between Cortellis
indications and ICD-9 codes.

30We also calculate projected market size at the OECD level. Figure A-1 illustrates the evolution.
31Since grants are distributed within Institutes primarily by scientific merit (see discussion on NIH funding rules

by Azoulay et al. (2019)) and not by allocation to narrower disease categories, we attribute the full Institute’s
budget to each ICD-9 group. We retrieve NIH spending data (Mechanism Detail by IC, FY 1983-2019) from
https://officeofbudget.od.nih.gov/spending_hist.html [downloaded on February 17, 2020].

32In an alternative approach we attribute budgets based on the share of all publications in a disease category that
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Figure 4: Control variables over time
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Notes: The three figures present the normalized annual control variables by MMS quartiles over time. In Figure
4a, we aggregate the U.S. population-growth driven market size (in 2003 values) of each ICD-9 group. In Figure
4b, we average the NIH spending (in 2003 values) of all Institutes/Centers, which are related to our ICD-9 groups.
In Figure 4c, we accumulate the number of new MESH terms associated with our ICD-9 groups.

Third, we account for the availability of research opportunities.33 We develop a direct mea-

sure of new research opportunities in a disease area based on the introduction of new terms in

the respective branch of the MeSH tree. New terms are added for emerging diseases, break-

downs of existing diseases, and additional terminology to reflect topical areas that are not well

represented in MeSH. Figure 4c shows substantial heterogeneity in new research opportunities

across ICD-9 groups. High MMS diseases exhibit greater increases in research opportunities

around 2000.

acknowledge a specific Institute. Appendix Figure A-2 illustrates the evolution.
33In similar fashion, Bhattacharya and Packalen (2011) construct a measure of research opportunities based on

the content of research inputs and the first appearance of the idea in a scientific publication. The disadvantage
of the approach is that it relies on a very narrow set of research inputs that relate primarily to drug-related
medical research but not basic science.
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4 Descriptive Analysis

Our final data set consists of 129 disease groups from 1997 to 2016. This allows us to investi-

gate the possible effects of Medicare Part D on scientific research over a period of 13 post-MMA

years. Each of the 129 ICD-9 groups in our sample is associated with, on average, 12.1 disease

MeSH terms. For 121 of these ICD-9 groups, we find drug development activities in around

1.7 ICD-9 three-digit codes per group.

Table 1 provides summary statistics for the full set of independent and dependent vari-

ables in the year 2003. The average MeSH term has 16.86 scientific publications, which totals

around 204 per ICD-9 group. The majority of publications (77.8%) have at least one author

with a university affiliation, 13.6% have at least one author with an academic medical center

affiliation, 5.4% have a corporate affiliation, and 4.9% are published with NIH participation.

Moreover, 6.2% of these publications are cited in patent applications. This share, however, is

substantially larger for corporate publications (14.3%). At the same time, 2.03 NMEs enter

pre-clinical trials per ICD-9 three-digit code. This number decreases throughout the clinical

trial process resulting in 0.09 new drug approvals per ICD-9 group in 2003.

A simple comparison between ICD-9 groups split at the MMS median illustrates that both

groups are very similar regarding the pre-MMA levels in the majority of dependent variables

(Appendix Table A-2). This also applies to the distribution of dependent variables (Appendix

Figure A-6). An important exception is that diseases prevalent among the elderly are more

related to clinically relevant journals and patents. This is not surprising since the overall market

size is larger, in levels, before the MMA. Moreover, the MMS is positively correlated with the

level of all independent variables. This supports our decision to control for these factors in our

multivariate analysis.

Descriptively, the total yearly log-transformed number of scientific publications in low or

high MMS ICD-9 disease groups develops in a parallel fashion until 2003. This provides visual

support for our parallel trends assumption of our Difference-in-Differences framework (see

Figure 5a).34 These trends also hold across other dependent variables, like corporate publica-

tions (see Figure 5b).35 After 2004, the log number of publications associated with high-MMS

diseases increase disproportionately, but only to a small degree. This divergence is more pro-

nounced for publications from corporate affiliates.

Parallel trends are also supported by the annual count of drug discoveries and approvals

34Formal tests for parallel trends, e.g., by splitting the pre-period and testing whether there are differential changes
in the slope, are employed and found supportive (Appendix Tables A-3 and A-7).

35Further univariate graphs with other dependent variables can be found in Appendix Figure A-7.
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Table 1: Summary statistics

N Mean Median Std. Dev. Min Max

ICD9 group level

MMS (cases) 129 31.81 27.32 23.22 0 97
MMS (prescription counts) 129 34.42 30.21 24.53 0 98
MMS (prescription quantity) 129 35.18 29.28 25.31 0 97
Cumul. US Market Sizet to t+12 129 13575.14 2695.54 40242.85 29 343211
Cumul. NIH fundingt-1 to -12 129 16.72 14.38 10.97 3 46
Cumul. New MeSH termst 129 0.23 0.00 0.70 0 4

MeSH term level

Scientific publications 1563 16.86 2.00 69.33 0 1128
Publications - fractional 1563 13.11 1.00 58.95 0 1000
NIH publications 1563 0.82 0.00 4.14 0 70
University publications 1563 13.28 1.00 54.87 0 890
Hospital publications 1563 2.29 0.00 8.63 0 151
Corporate publications 1563 0.91 0.00 4.41 0 80
NIH funded publications 1563 6.67 0.00 32.87 0 565
Clinical trial university publications 1563 1.27 0.00 5.75 0 110
Clinical trial corporate publications 1563 0.21 0.00 1.16 0 25
Pharmaceutical university publications 1563 0.33 0.00 1.74 0 27
Pharmaceutical corporate publications 1563 0.07 0.00 0.46 0 9
Citation-weighted publications 1563 353.33 16.00 1646.59 0 29351
JIF-weighted publications 1563 60.88 4.28 266.30 0 4518
Patent-weighted publications 1563 1.05 0.00 6.26 0 125
Patent-weighted university publications 1563 0.83 0.00 4.99 0 102
Patent-weighted corporate publications 1563 0.13 0.00 0.75 0 14
Patent family size-weighted publications 1563 9.17 0.00 53.45 0 1082

ICD9 3-digit code level

Drug discoveries 201 2.03 0.00 5.43 0 47
Phase 1 clinical trials 201 0.54 0.00 1.32 0 8
Phase 2 clinical trials 201 0.82 0.00 1.97 0 17
Phase 3 clinical trials 201 0.26 0.00 0.67 0 4
Drug approval 201 0.09 0.00 0.37 0 3

Notes: This table presents summary statistics linked to the 129 ICD-9 groups in 2003. The unit of observation
is at the ICD-9 group level for both the treatment and control variables; at the MeSH term level for the depen-
dent publication variables; and at the ICD-9 three-digit code level for dependent drug development variables.
Some MeSH terms and ICD-9 three-digit codes lack variation in the dependent variable so that the corresponding
observations are dropped from the estimations.

in Figures 5c and 5d, which evolve in a similar fashion for low- and high-MMS diseases until

2003. The number of drug discoveries and drug approvals increases after 2003. As such,

we can replicate the prior literature (Blume-Kohout and Sood, 2013; Dranove et al., 2020)

descriptively within our sample of ICD-9 groups.
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Figure 5: Trends in scientific publications and drug development by MMS
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(c) Drug discoveries
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(d) Drug approvals
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Notes: Figure 5a presents the log-transformed average number of annual publication counts associated with
all affiliations and Figure 5b selects only publications from corporate affiliations. Figure 5c displays the log-
transformed average number of annual drug discoveries and Figure 5d the log-transformed average number of
annual drug approval. For reasons of comparability, the unit of observation is the unique ICD-9 group level in all
four graphs.

This descriptive analysis suggests that the introduction of Medicare Part D and, thus, the

sudden insurance-induced increase of market size for diseases more prevalent among the el-

derly, has led to more commercial drug development activities. Upstream research activities,

in general, seem to be more resilient to these changes in downstream market size. However,

upstream research conducted by corporations appears more elastic in high MMS disease cate-

gories after the MMA.

The following multivariate analysis will investigate this pattern in more detail, accounting
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for other factors like demographic trends, public funding, and new research opportunities that

may have an impact on R&D outcomes besides Medicare Part D.

5 Empirical Results – Clinical Drug Development

We start by replicating prior results showing the effect of the MMA on clinical drug develop-

ment. This replication exercise provides validation for our sample selection and variable con-

struction. Moreover, the results of this analysis will enable us to compare the effects among

scientific research and drug development activities within our sample. Figure 6 shows the

event study results similar to Equation 1. The dependent variables are the number of newly

discovered NMEs and the number of drug approvals, respectively.

Figure 6: Event study – drug development
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the ICD-9 three-digit code level, with MMS being calculated based on patient counts at the ICD-9 group level.
The sample includes all ICD-9 groups appearing in the Bhattacharya and Packalen (2011) crosswalk. Standard
errors are clustered at the ICD-9 three-digit code level.

In line with our descriptive analysis, the number of new drug discoveries and the number

of drug approvals display broadly similar patterns independent of the pre-MMA MMS. This

suggests the absence of confounding pre-trends. After the passage of the MMA in 2003, dis-

ease categories with higher exposure to Medicare Part D exhibit a relative increase in drug

discoveries. The effect becomes larger over time and is statistically significant. The same holds

true for drug approvals. However, there is a significant up-tick directly after the introduction

of Medicare Part D in 2004 and 2005.36

36We show the event study results of other drug related outcome variables in Appendix Figure A-8.
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Next, Table 2 presents the dynamic treatment effect of our Difference-in-Differences esti-

mation in the post-period. Columns 1 and 2 present the results on drug discoveries with and

without control variables. In Columns 3 and 4 we present NMEs in all stages of the clinical

development process. Finally, Columns 5 and 6 present clinical trials in Phase I-III and drug

approvals separately. We find a positive and significant effect of a higher MMS on early drug

development, accelerating over time. In our preferred specification, in which we control for

the future market size, past NIH funding, and research opportunities, the effect becomes sig-

nificant after 2011. This is consistent with the long discovery process in the pharmaceutical

industry. The point estimate in 2015-2016 has a magnitude of 0.87%. This implies that one

standard deviation (23.2 percentage points) increase in MMS leads to 20.2% more drug dis-

coveries. These effects are similar in magnitude compared to Dranove et al. (2020) and slightly

smaller than the results of Blume-Kohout and Sood (2013).

The effects are smaller and occur later when looking at drug development in all stages

of clinical development or NMEs in Phase I-III clinical trials. However, this is not surprising

given the staggered fashion of drug development (from preclinical to clinical trials to approval)

and supported by other studies on drug development (Blume-Kohout and Sood, 2013). An

exception are drug approvals, which show a positive significant increase immediately after the

introduction of the MMA in 2004-2005 by 2.5% per additional percentage point of MMS. These

results strongly support Finkelstein (2004) and suggest that pharmaceutical companies reacted

by pushing forward advanced drug candidates already in their development pipeline.

6 Empirical Results – Biomedical Research

In this section, we evaluate whether Medicare Part D affected scientific research (measured by

publications) for disease categories with higher MMS. Importantly, we differentiate by the type

of affiliation as well as type of research and investigate the (commercial) impact.

6.1 Main Effect

First, we evaluate whether Medicare Part D differentially affected scientific research in MeSH

categories associated with high MMS ICD-9 disease groups from all types of affiliations. Our

event study results in Figure 7 are based on a Poisson pseudo-maximum likelihood regression

with the full set of control variables, MeSH term and calendar year fixed effects (adapting

Equation 1). Overall, we see no pre-MMA effect on scientific publications suggesting the ab-
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Table 2: Drug development

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Drug Development

Early Development All Development Stages Phase 1-3 Approval

MMS × 2004-05 −0.0011 −0.0007 −0.0011 −0.0007 −0.0044∗ 0.0256∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.003) (0.009)
MMS × 2006-08 0.0006 0.0013 0.0000 0.0007 −0.0017 0.0070

(0.002) (0.003) (0.002) (0.002) (0.003) (0.008)
MMS × 2009-11 0.0009 0.0020 0.0001 0.0012 −0.0004 0.0138

(0.002) (0.002) (0.002) (0.003) (0.004) (0.009)
MMS × 2012-14 0.0035 0.0053∗ 0.0024 0.0040 0.0016 0.0198∗

(0.002) (0.003) (0.002) (0.003) (0.004) (0.011)
MMS × 2015-16 0.0065∗∗ 0.0087∗∗ 0.0046 0.0066∗ 0.0043 0.0191

(0.003) (0.004) (0.003) (0.004) (0.006) (0.012)
Cumul. US Market Sizet to t+12 No Yes No Yes Yes Yes
Cumul. NIH fundingt-1 to -12 No Yes No Yes Yes Yes
Cumul. New MeSH termst No Yes No Yes Yes Yes
ICD9 code FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 3340 3340 3740 3740 3360 2380
ICD9-codes 167 167 187 187 168 119
ICD9-groups 110 110 114 114 110 87
Log-likelihood −4811 −4801 −6644 −6634 −4353 −1184

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the ICD-9 three-digit code by year. The dependent variable
is the annual number of newly discovered NMEs in Columns (1) and (2), NMEs in all clinical development stages
(i.e., preclinical, clinical trials, registrations, approvals) in Columns (3) and (4), NMEs in Phase I-III clinical trials
in Column (5), and approved NMEs in Column (6). The control variables are log-transformed. Standard errors
are clustered at the ICD-9 three-digit code level and shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

sence of confounding pre-trends. After the passage of Medicare Part D, we observe only a slight

divergence for the average MeSH category, which is neither significantly different from zero

nor large in magnitude.

We quantify the changes in scientific research in response to the Part D demand shock in

Table 3. In Columns 1 and 2, we report the results from a simple Difference-in-Differences

regression. The post-treatment period is defined to start in 2004 and to last until the end

of our sample’s observation period in 2016. Again, there is no significant effect on scientific

publications, independent of the usage of control variables.

In Columns 3 to 6, we estimate the dynamic changes in science. The first time period shows

the transitional effect between the passage and the implementation of Medicare Part D. The
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Figure 7: Event study – scientific publications
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Notes: The figure shows the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the MeSH term level, with MMS being calculated based on patient counts at the ICD-9 group level. Standard
errors are clustered at the MeSH term level.

post-implementation effects are divided in three-year bins. Column 3 presents the effect of the

MMA on MeSH categories related to high MMS diseases without controls. Results are close to

zero and insignificant. Adding control variables in Columns 4 to 6 increases the coefficients

but not the interpretation of the results. Our preferred specification (Equation 1) in Column 6

includes the full set of controls and serves as the baseline for the further analysis.

Under the assumption that there was no relationship between MMS and scientific activity

prior to 2003, positive coefficients would indicate that the Part D demand shock led to an

increased number of scientific publications in a given time period. This does not seem to be

the case. Ten years from the passage of Medicare Part D, the point estimate can be interpreted

as one additional percentage point in MMS resulting in 0.3% additional publications. This

is considerably below the effect size on drug discoveries.37 Taking the point estimate at face

value, a MMS increase of one standard deviation (23.2 percentage points) leads to only 6.9%

additional scientific publications compared to 20.2% additional drug discoveries. This can be

considered as fairly inelastic.

37The 95th percentile confidence interval rules out an increase greater than 0.9%, which is approximately the
effect of drug discoveries in Table 2.
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Table 3: Scientific publications

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML DV: Scientific Publications

MMS × post 2003 0.0003 0.0002
(0.001) (0.001)

MMS × 2004-05 0.0002 0.0006 0.0006 0.0006
(0.001) (0.001) (0.001) (0.001)

MMS × 2006-08 −0.0008 −0.0002 −0.0001 −0.0001
(0.001) (0.001) (0.001) (0.001)

MMS × 2009-11 0.0003 0.0013 0.0013 0.0013
(0.001) (0.002) (0.002) (0.002)

MMS × 2012-14 0.0004 0.0018 0.0017 0.0017
(0.002) (0.003) (0.003) (0.003)

MMS × 2015-16 0.0016 0.0032 0.0030 0.0030
(0.002) (0.003) (0.003) (0.003)

Cumul. US Market Sizet to t+12 No Yes No Yes Yes Yes
Cumul. NIH fundingt-1 to -12 No Yes No No Yes Yes
Cumul. New MeSH termst No Yes No No No Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30680 30680 30680 30680 30680 30680
MeSH terms 1534 1534 1534 1534 1534 1534
ICD-group 129 129 129 129 129 129
Log-likelihood −90077 −90007 −90000 −89974 −89923 −89923

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications. The control variables are log-transformed. Standard errors are clustered at the
MeSH term level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

6.2 Type of Affiliation

We expect the relationship between market size and scientific research to depend on prod-

uct market orientation. Biomedical scientists with corporate affiliations have direct financial

ties to the market for prescription drugs. Their objectives should be aligned with those of the

pharmaceutical industry (Henderson and Cockburn, 1996). Moreover, corporate scientists par-

ticipate in the publication of the results of clinical trials in scientific journals. The latter also

applies to scientists and practitioners at academic medical centers, who play an intermediary

role between industry and academia (Lander and Atkinson-Grosjean, 2011; Lander, 2013).

For scientists at universities is the relationship more subtle since market orientation differs

across scientists and depends on a variety of factors (elaborated in Foray and Lissoni, 2010),

but should be overall less pronounced compared to corporate scientists.
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Figure 8: Event study – scientific publications by affiliation type

(a) NIH
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(c) Academic Medical Centers
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the MeSH term level. The dependent variable is the annual number of scientific publications split by at least
one author’s affiliation. Standard errors are clustered at the MeSH term level.

In the following analysis, we split our dependent variable by whether the publication was

coauthored by at least one scientist who was affiliated with the NIH, a university, an academic

medical center, or a corporation. Figure 8 shows the event study results, displaying the yearly

excess publications in high MMS relative to low MMS MeSH categories. The effects go along

with our predictions: the increase is least pronounced in the public research sphere at the NIH

and most pronounced in the private research sphere at corporations. This is consistent with

the idea that the market orientation of scientists matters.

Table 4 quantifies the Medicare Part D demand responses by affiliation subgroup. We find

a statistically significant positive effect only among scientific publications with at least one

corporate affiliation following the introduction of Medicare Part D, which increases gradually

over time. The timing of the effect is consistent with the results of Blume-Kohout and Sood

(2013), where the response magnifies through 2009 and appears to stabilize after 2012. In

contrast, scientific publications with at least one university scientist have substantially smaller
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coefficients.38 The demand response from academic medical centers sits plausibly in-between

universities and industry.

The point estimates of our analysis suggest that scientific research at non-corporate affili-

ations is less responsive to changes in market size compared to drug development within the

same sample of ICD-9 groups. For instance, a MMS increase of one standard deviation (23.2

percentage points) leads to only 5.8% (7.9%) of additional scientific publications from univer-

sity (academic medical center) scientists. The effect on scientific research directly conducted

at the NIH is essentially zero. However, the same market size expansion leads to an increase

of scientific publications coming from industry by 22.7%. This resembles the magnitude of our

findings on drug development from Section 5. In the following sections, we will investigate

which type of research drives this effect.

As outlined in Section 2, private insurance plans, which fall under the scope of Medicare

Part D, do not have to cover all approved drugs. However, there are certain ‘protected drug

classes’ for which most drugs are required to be included (e.g., anti-cancer, anti-convulsant,

anti-depressants, anti-psychotic, immuno-suppressant, HIV and AIDS drugs). Hence, we dis-

tinguish between ICD-9 groups that correspond to ‘unprotected’ or ‘protected’ drug classes. Our

results in Appendix Figure A-12 correspond with our expectations and the previous literature

(Blume-Kohout and Sood, 2013; Dranove et al., 2020): the only specification that contains

statistically significant effects is the model focused on corporate affiliated scientists publishing

in ‘protected’ ICD-9 groups.

6.3 Type of Research

Given the rise of corporate science in response to Medicare Part D, we investigate the vertical

orientation of these research publications. To this end, we differentiate between scientific

publications that are related to the development of drugs (i.e., more applied in nature) and

more basic science. We add the full set of MeSH terms to each publications and identify those

MeSH terms that are related to clinical trials and those that are related to pharmaceutical

products. We interpret the residual as fairly basic research. Finally, we split the dependent

variable by the appliedness of the journal.

We show in Table 5 that the increases in corporate scientific publishing are more articulated

among publications that relate to clinical trials and pharmaceutical products but less so in basic

38These results are quantitatively similar but less precise for publications from only corporate affiliations. This is
consistent with the idea that pharmaceutical industry and university research are interlinked (Henderson and
Cockburn, 1996).
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Table 4: Scientific publications by affiliation type

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

NIH University No University Hospital Corporate All US

MMS × 2004-05 −0.0006 0.0004 0.0007 0.0001 −0.0001 0.0004
(0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

MMS × 2006-08 −0.0021 −0.0005 −0.0002 −0.0002 0.0010 −0.0004
(0.002) (0.002) (0.001) (0.002) (0.002) (0.001)

MMS × 2009-11 −0.0014 0.0010 0.0014 0.0011 0.0036 0.0009
(0.003) (0.002) (0.002) (0.002) (0.003) (0.002)

MMS × 2012-14 −0.0018 0.0012 0.0020 0.0020 0.0059 0.0011
(0.004) (0.003) (0.003) (0.003) (0.004) (0.003)

MMS × 2015-16 −0.0001 0.0025 0.0034 0.0030 0.0098∗∗ 0.0018
(0.005) (0.003) (0.003) (0.004) (0.004) (0.003)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 16880 30560 30220 27500 19880 30460
MeSH terms 844 1528 1511 1375 994 1523
ICD-group 111 129 129 128 125 129
Log-likelihood −15174 −79980 −70035 −36845 −18220 −77282

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications split by at least one author’s affiliation. In Column (1) at least one
author is affiliated with the NIH, in Column (2) with a university, in Column (4) with an academic medical center,
and in Column (5) with a firm. Column (3) includes publications that have at least one author not affiliated with
a university. In Column (6), we count only publications, for which all authors have U.S. affiliations. The control
variables are log-transformed. Standard errors are clustered at the MeSH term level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

science. The latter is supported by the fact that there is no increase in publications, for which

the scientists received a NIH grant, a good proxy for the basicness of research. There is also

no demand response on clinical trial and pharmaceutical product-related scientific research at

universities or academic medical centers (Appendix Table A-17).39 These results are supported

by our event study analyses (Appendix Figure A-13) indicating that the disproportionate in-

creases in clinical trials and pharmaceutical product publications for corporation are not driven

by pre-existing trends but by the introduction of Medicare Part D. The magnitudes of the effects

on corporate applied science are substantially larger compared to all (other) types of research.

39If at all, there is evidence for crowding out in those areas with the strongest increase among corporate publica-
tions: pharmaceutical products related publications.
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Table 5: Scientific publications by type of research

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML University Corporate

Basic CT Pharma Basic CT Pharma

MMS × 2004-05 0.0008 −0.0010 −0.0044∗∗ −0.0020 0.0045 0.0090∗∗

(0.001) (0.001) (0.002) (0.002) (0.003) (0.004)
MMS × 2006-08 −0.0002 −0.0015 −0.0056∗∗ 0.0001 0.0042 0.0060

(0.002) (0.002) (0.003) (0.002) (0.003) (0.005)
MMS × 2009-11 0.0013 −0.0006 −0.0056 0.0008 0.0104∗∗ 0.0161∗∗∗

(0.002) (0.003) (0.003) (0.003) (0.005) (0.006)
MMS × 2012-14 0.0015 0.0010 −0.0052 0.0028 0.0125∗∗ 0.0209∗∗∗

(0.003) (0.004) (0.005) (0.003) (0.005) (0.008)
MMS × 2015-16 0.0029 0.0018 −0.0059 0.0066 0.0162∗∗∗ 0.0236∗∗

(0.003) (0.005) (0.006) (0.004) (0.006) (0.009)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30520 19960 14600 18900 10820 6800
MeSH terms 1526 998 730 945 541 340
ICD-group 129 124 120 124 109 95
Log-likelihood −75698 −21005 −11027 −15285 −7589 −3811

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1) to (3), the dependent
variable is the number of university scientific publications and in Column (4)-(6) the number of corporate scientific
publications, both split by the type of research. Columns (2) and (5) include only publications that are associated
with MeSH terms related to clinical trials, and Columns (3) and (6) with MeSH terms related to pharmaceutical
products. Column (1) and (4) include the residual. The control variables are log-transformed. Standard errors
are clustered at the MeSH term level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, ***
p<0.01.

These results are consistent with our findings on the appliedness of journals. The demand

response is most pronounced for research published in clinical practice, industry practice, and

clinical-industrial journals driven by corporate research activity (Appendix Table A-16) and not

by universities (Appendix Table A-15). We view our findings as evidence for the interpretation

that a majority of corporate scientific publications, which result from the increase in market

size, are related to actual drug development activities (e.g., published clinical trial results) and

do not constitute basic research. It supports the notion that demand pull effects are not strong

enough to encourage true basic science – not even within industry.
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6.4 Research Impact

In the last part of the analysis, we explore the impact of scientific research both within the

scientific domain and beyond. As outlined in Section 3.4 we trace scientific publications to

patents. These patent-paper linkages approximate whether scientific research got referenced

in commercially relevant applications (Marx and Fuegi, 2020), in our context pharmaceutical

and biomedical patents. Thus, we weight scientific publications by the journal impact factor

(which is less affected by truncation compared to forward citations), by the 5-year availability

of patents, and by the patent family size.

Our impact-weighted results in Table 6 show a similar but more noisy pattern with smaller

magnitudes than the overall unweighted publication counts. Within the science domain, there

is a disproportionate increase in corporate JIF-weighted publications (although not significant),

which is substantially smaller for university publications. The magnitude of the corporate effect

is around 50% of the effect on simple counts. This suggests that the effects on corporate science

are more pronounced at the extensive (quantity) margin and less so when quality-weighted.

Patent-weighted publications increase primarily among corporate affiliations. The strongest

effect is found initially after the passage of Medicare Part D. Corporate scientific research that

ends up cited in a patent, increases by 0.68% in the years 2004-2005. This corresponds to an

increase of 15.8% given a MMS increase of one standard deviation. The effect size decreases

in the following years but reaches similar levels after 2011. The quick initial response suggests

the existence of a reservoir of scientific research ‘on the shelf’ available for commercialization.

This is consistent with prior literature, which suggests that publishing corporate science is

used strategically in the patenting process (Della Malva and Hussinger, 2012). An alternative

explanation is that industry became more likely to patent ideas from scientific publications as

a reaction to the discrete increase in market size.40

7 Robustness Checks

We conduct a variety of robustness checks, which can be found in the Appendix. The demand

response of corporate scientific research to the increase in market size is robust across a va-

riety of changes, unless otherwise stated. The same applies to the inelastic response of all

publications, across all other types of affiliation.

40Family-size weighted publications show a similar pattern, except for an arbitrary decrease in 2015-2016. All
results are more pronounced when looking at event studies (Appendix Figure A-14).
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Table 6: Impact/patent-weighted scientific publications

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML JIF-Weighted Patent-Weighted Family Size-Weighted

Uni Corporate Uni Corporate Uni Corporate

MMS × 2004-05 −0.0001 −0.0002 0.0020 0.0068∗∗ 0.0001 0.0049
(0.001) (0.002) (0.002) (0.003) (0.002) (0.004)

MMS × 2006-08 −0.0015 −0.0011 0.0009 0.0016 0.0000 0.0045
(0.002) (0.003) (0.002) (0.002) (0.002) (0.003)

MMS × 2009-11 0.0004 0.0028 0.0011 0.0025 −0.0003 0.0044
(0.002) (0.004) (0.002) (0.003) (0.003) (0.004)

MMS × 2012-14 0.0006 0.0039 0.0008 0.0058∗ −0.0013 0.0078∗

(0.003) (0.004) (0.003) (0.003) (0.004) (0.005)
MMS × 2015-16 0.0017 0.0058 0.0003 0.0062 −0.0019 −0.0013

(0.003) (0.005) (0.004) (0.006) (0.005) (0.006)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30420 19720 16460 7960 16460 7960
MeSH terms 1521 986 823 398 823 398
ICD-group 129 125 114 92 114 92
Log-likelihood −246132 −55995 −13166 −4419 −66536 −25953

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1) to (2), the dependent
variable is the journal impact factor-weighted number of university/corporate scientific publications. In Columns
(3) to (4), the dependent variable is the number of university/corporate scientific publications that are associated
with at least one patent application (patent-weighted). In Columns (5) to (6), we weight the number of scientific
publications by the size of the average patent family associated with the publication. A patent/family size-weight is
calculated based on the patent family’s first application being filed within five years from the scientific publication.
The control variables are log-transformed. Standard errors are clustered at the MeSH term level and shown in
parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

First, we redefine the dependent variable as a count of the annual number of scientific pub-

lications weighted by the inverse number of linked diseases (fractional counts) to account for

multiple disease MeSH terms per publication. We also winsorize the dependent variable to

deal with outliers (Figure A-10, Table A-8 and A-12).

Second, we calculate different exposure variables, for example, MMS based on prescription

counts/quantity, binary indicators, and MMS based on 2003 values only (Figure A-11).

Third, we use alternative control variables such as the OECD market size or NIH funding

calculated as a share of all publications in a disease category that acknowledge a specific Insti-

tute. Moreover, we include control variables that do not accumulate future/past periods but
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only consider year t (Table A-9 for all publications, Table A-13 for university publications, and

Table A-14 for corporate publications).

Fourth, we estimate our model with different specifications, e.g., using ICD-9 group fixed

effects and cluster standard errors at the ICD-9 group level as elaborated in Section 3.2. Addi-

tionally, we employ linear regression with count dependent variables. In the latter specification,

we find a significant increase in overall scientific publications, which suggests that MeSH terms

with a high number of pre-MMA publications profit from a larger market in absolute counts

but not relatively (Table A-9). The magnitude of this effect is substantially lower for university

publications (Table A-13) than for corporate publications (Table A-14) when comparing the

coefficients to the pre-MMA sample mean.

Fifth, we restrict our dependent variable to publications in which all authors are affiliated

with universities or firms, respectively. While the effect sizes remain quantitatively similar,

the estimation becomes less precise (Figure A-10) since we lose variation in the dependent

variables. We also restrict the sample to publications in which all authors have a U.S. affiliation.

This does not change the results (Table A-11).

Sixth, we re-investigate the effects including the year of the MMA implementation (2005)

into our baseline period. This does not change the results regarding the type of affiliations or

the type of research. The effects on patent-weighted publications disappear. This, however, is

not surprising given that our initial findings showed primarily a disproportionate increase in

2004-2005 (Table A-18).

Seventh, we include all publications in our sample regardless of whether they include addi-

tional disease-related MeSH terms with unknown MMS. In our default specifications, we cau-

tiously drop these publications since we do not know the exposure of these additional disease-

related MeSH terms to the MMA (potentially confounding). Including them does not change

the results (Table A-19).

Lastly, we chose different aggregation levels for our analysis. In Table A-20, we aggregate

the dependent variable to the ICD-9 group level. Our results are robust to this aggregation.

Our results on drug development are robust to estimations using all ICD-9 three-digit codes

available instead of the subset mentioned in Bhattacharya and Packalen (2011), ICD-9 group

level fixed effects instead of ICD-9 three-digit code level fixed effects (both in Table A-4), al-

ternative controls (Table A-5), alternative MMS calculations (Figure A-9), and including the

MMA implementation in 2005 into our baseline period (Table A-6).
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8 Thought Experiment – Incentivizing Upstream Research

We conclude with a thought experiment. For this example and the ensuing back-of-the-

envelope calculation, we will take our results at face value. The goal is to explore the magnitude

of the linkage between changes in downstream demand and upstream research. We start by

assuming that scientific publications are mutually exclusive, meaning they are either catego-

rized as a university, academic medical center, or corporate publication. From our preferred

specification, a MMS increase of one standard deviation (23.2 percentage points) in exposure

to Medicare Part D, leads to around 1,830 additional publications per year.41 These additional

publications break down broadly as follows: 1,200 authored by scientists with university af-

filiations, 250 with academic medical center affiliations, and 320 with corporate affiliations.

Although the quantitative majority of these publications are focused in the subcategories where

one would expect basic science to occur, it remains open whether this response is meaningful.

The direct costs of Medicare Part D, paid as subsidies to private insurances, during the

program’s first ten years was expected to be $80 billion annually (Medicare Trustees Report,

2006). When comparing our estimates to these direct costs, our results suggest that a subsidy-

driven expansion of market size by $43 million would only lead to one additional scientific

publication. This is substantially lower than, for example, the direct benefits of public funding,

for which Myers (2020) reports that the average cost per publication is between $344,000 and

$665,000 depending on the grant regime. At the midpoint of this range, this suggests that

direct public funding of research would generate about 85 publications for each additional

publication from our findings.

In the pre-MMA period, only about 5.4% of publications were authored by scientists af-

filiated with corporations. This rises to about 17.6% in the post-MMA period. If the whole

scientific domain was as responsive as corporations, the ‘cost’ of one additional publication

would fall from $43 million to $13.4 million. Direct public funding of research would still gen-

erate about 26 publications for every one from our findings. Thus, even considering the most

responsive case, it does not appear that changes in downstream demand serve as sufficient

incentives for upstream research.

Putting the results from this thought experiment into a broader context, Finkelstein’s (2004)

assertion appears to be correct – the post-MMA change in development was driven by a reorder-

ing of technology already in the development pipeline. Even in the context of our thought

experiment, the impact on research seems insufficient, especially compared to public funding.

41We take the point estimate of our preferred specification and multiply it with the standard deviation in MMS
and the 2003 number of scientific publications from Table 1.
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9 Conclusion

R&D consists of two separate, but equally important components: research and development.

The extant literature has conclusively found a link between changes in downstream market

size and drug development – i.e., ‘D’ – (e.g., Acemoglu and Linn, 2004; Blume-Kohout and

Sood, 2013; Dranove et al., 2020; Finkelstein, 2004). Heretofore, however, efforts to extend

this linkage back to research – i.e., ‘R’ – have been met with limited success. Acemoglu and

Linn (2004), for example, were unable to find a relationship between demographic-driven

expansions in market size and patenting. Using a similar identification strategy, Bhattacharya

and Packalen (2011) find a positive relationship between disease prevalence and upstream

research, but do not explicitly account for profit incentives. By exploiting the effects of quasi-

experimental variation in market size introduced by Medicare Part D, we do not find a causal

relationship between market size and research. We identify one limited exception to our core

findings, however, and that involves corporate scientists conducting applied research.

Why does it appear that scientists are not incentivized by these changes in downstream

market size? We can only conjecture as to what might explain the inelastic response. First,

this type of demand pull incentive may attenuate by market distance so that it never reaches

scientists (e.g., Acemoglu and Linn, 2004). For example, if firms respond to demand shocks

with ‘off the shelf’ projects (Finkelstein, 2004), new scientific discoveries may not be necessary

to fuel the clinical pipeline. Similarly, the existing knowledge stock may be large enough to

accommodate (for some time) the industry’s higher demand for scientific discoveries. Our

findings, however, suggest no response from university science even more than a decade later.

Thus, a disconnect appears to exist between the kind of research industry uses as knowledge

inputs and the kind of research upstream scientists conduct. Such exploration of this disconnect

is left for future work.

Second, scientists may react to market size changes only if these changes affect the sci-

entists’ incentives through indirect channels, such as altruism, funding, or prestige. This is

perhaps more likely the case if the market size increase is due to disease prevalence (e.g.,

epidemics) as opposed to insurance coverage (e.g., Medicare Part D).

Third, scientists may respond to demand pull differently, for example, by providing tacit

knowledge through training (junior) scientists for industry (Roach and Sauermann, 2010).

Unfortunately, we are unable to explore the above mechanisms with our data. Future research

is necessary to understand the inelastic response of scientists. Survey evidence would be most

helpful and may shed light on the mechanisms driving the disconnect between research and

market size.
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Finally, our study has important implications for policymakers. To the extent that there is

a disconnect between the direction of academic research and the requirements of downstream

markets, additional incentives may be needed to close this gap. NIH grants and public sector

funding would appear to be the obvious choice as they are effective tools in fostering scientific

research (Azoulay et al., 2019). It may also be the case that an expansion of R&D tax credits

could be used to help incentivize companies to re-engage in and reverse the trend away from

basic science research (Arora et al., 2018). These issues are left for future research.
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A Data Construction

A.1 Control Variables

This data appendix describes the construction of our control variables: projected market size,

NIH funding, and research opportunities.

Projected Market Size

We build a measure of the exogenous components of U.S. market size (Acemoglu and Linn,

2004; Blume-Kohout and Sood, 2013). Each disease group has a different age profile and,

hence, is differently affected by both domestic and global demographic trends. Therefore, we

use demographic (projection) data from the UN World Population Prospects42 for the United

States between 1997 and 2040 in order to calculate how the potential future market size would

develop if only population growth mattered.

To this end, we keep the age profile of each disease constant and calculate the average

expenditure share of drugs associated with each five-year age bin for each ICD-9 group in the

pre-MMA period. Drug expenditures are measured in real-terms (base year of 2003) based on

the MEPS data. We then attribute the US population growth to each age bin until 2040. Hence,

our measure for projected US market size Mit displays the annual expected drug expenditures

in each ICD-9 group i in year t. In concordance with Blume-Kohout and Sood (2013), we

accumulate the projected market size Mit over a period of 12 lead years as of year t. This

reflects the average market exclusivity term of new drugs (Adams and Brantner, 2006).

Since pharmaceutical markets are typically considered as global (Acemoglu and Linn,

2004), we build the same measure for the potential market size in all OECD countries.

NIH Funding

We control for previous years’ public research funding related to each disease category. Many

scholars have shown the importance of public research funding, e.g., from the NIH, for progress

in biomedical research and pharmaceutical innovation.43,44 Since Congress doubled the NIH

budget in the five years preceding the MMA from $13.6 billion in 1998 to $27.1 billion in

42The data can be found here: https://population.un.org/wpp/Download/Standard/Population/.
43See Jacob and Lefgren (2011) on scientific productivity, Myers (2020) on the direction of science, and Packalen

and Bhattacharya (2018) on novelty.
44See Azoulay et al. (2019) on patenting and Blume-Kohout and Sood (2013) on NMEs entering clinical trials,

and Toole (2012) on new drugs approved.
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2003, it becomes an especially important determinant of R&D in any analysis of Part D (Smith,

2006). The NIH consists of twenty-seven Institutes and Centers, where each receives its own

Congressional appropriation (Azoulay et al., 2019). However, the historical doubling of re-

search funding was distributed unequally between these Institutes. In order to control for any

disproportionate increase in funding correlated with the MMA, we calculate for each of our

129 ICD-9 groups the exposure to the NIH budget over time.45

To this end, we assign each ICD-9 group to one of these Institutes (e.g., ICD-9 162 malignant

neoplasm of trachea, bronchus, and lung to the NCI National Cancer Institute). Since research

grants are distributed within Institutes primarily by scientific merit (see discussion on NIH

funding rules by Azoulay et al. (2019)) and not by allocation to narrower disease categories, we

attribute the full annual Institute’s budget to each ICD-9 group.46 In an alternative approach we

attribute budgets based on the share of all publications in a disease category that acknowledge

a specific Institute. According to aforementioned studies, the effect of funding on research

typically materializes within the first years from the grant. Therefore, we accumulate the NIHit

funding over a period of 12 lagged years until year t.47

Research Opportunities

Scientists may switch research projects to take advantage of greater research opportunities.

We therefore account for the availability of research opportunities.48

We develop a direct measure of new research opportunities taking advantage of the de-

velopment of the MeSH hierarchy over time.49 The MeSH vocabulary in its current form was

introduced in 1963 (Rogers, 1963) and was intended as a dynamic list that incorporates new

concepts in the medical field.50 The NLM introduces annually hundred new MeSH terms based

45We retrieve NIH spending data (Mechanism Detail by IC, FY 1983-2019) from https://officeofbudget.od.nih.
gov/spending_hist.html [downloaded on February 17, 2020].

46In rare cases we assign more then one Institute or Center to an ICD-9 group. In these cases we attribute both
budgets to the disease category.

47We use the Biomedical Research and Development Price Index in order to calculate real values with the base
year of 2003. The data can be found here: https://officeofbudget.od.nih.gov/gbipriceindexes.html.

48Bhattacharya and Packalen (2011) construct a measures of research opportunities based on the content of
research inputs and the first appearance of the idea in a scientific publication. Using the set of approved active
ingredients as an input factor for future scientific research, they estimate structural productivity parameters,
which takes into account diffusion and exhaustion of knowledge, in order to infer the quality of associated
opportunities. The disadvantage of the approach is that it relies on a very narrow set of research inputs that
relate primarily to drug-related medical research but not basic science.

49MeSH terms are organised into a hierarchy called the MeSH tree. Disease groups are first defined very broadly,
but become more narrow with every sub-type of a disorder. The bulk data can be found here: https://www.
nlm.nih.gov/databases/download/mesh.html.

50See https://www.nlm.nih.gov/mesh/intro_preface.html#pref_rem.
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on the need to appropriately describe concepts being discussed in the literature. New terms are

added for emerging diseases, breakdowns of existing diseases, and additional terminology to

reflect topical areas that are not well represented in MeSH.51 We interpret the introduction of a

new MeSH term as an emerging research opportunity since NLM employees collect new terms

that begin to appear in the scientific literature, for example in emerging areas of research.52 In

2003, the NLM added, for instance, the following MeSH terms to the vocabulary: Retinoschisis

reflects a more detailed conceptualisation of an existing disease (Retinal Degeneration) and

Severe Acute Respiratory Syndrome describes a newly occurring disease related to the 2000s

outbreaks of the SARS-Coronavirus. All together, the introduction of each term approximates

the beginning of a new research field.

We measure new research opportunities Kit that are associated with an ICD-9 group by

calculating the number of new MeSH terms that occur below the hierarchy level of our ICD-

9-MeSH crosswalk, introduced in a given year t.53 Since new research opportunities likely

become obsolete over time, we add a discount factor of 0.8.54 This approach is novel to the

literature, which typically uses MeSH terms statically as keywords to understand shifts in the

direction of science, but not the dynamic development of opportunities.

51The list of new MeSH Headings for 2020 published by the NLM is available here: https://www.nlm.nih.gov/
mesh/2020/download/2020NewMeSHheadingsSingleColumn.pdf.

52See for more information: https://www.nlm.nih.gov/pubs/factsheets/mesh.html.
53We use the date of establishment since this is not sensitive to the transformation of the analogue MeSH vocabu-

lary to the digital vocabulary in 1999. For more details on the variables, see: https://www.nlm.nih.gov/mesh/
xml_data_elements.html.

54Estimated depreciation rates of knowledge capital vary in the literature. Common values lie between 15%
(Griliches, 1981; Hall and Mairesse, 1995) and 25% (Pakes and Schankerman, 1984). Our results are robust
to applying different depreciation rates.
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A.2 Evolution Alternative Controls

Figure A-1: OECD market size growth
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driven by population growth (in 2003 values)
based on ICD9 groups in B&P 2011

Evoluation of potential market size

MMS quartile 1, observed
MMS quartile 2, observed
MMS quartile 3, observed
MMS quartile 4, observed

MMS quartile 1, prediction
MMS quartile 2, prediction
MMS quartile 3, prediction
MMS quartile 4, prediction

Notes: The left figure presents the annual OECD population-growth driven market size (in 2003 values) of each
ICD-9 group, aggregated by MMS quartiles, and normalized in 1990. The right figure shows the annual change
in OECD market size relative to the prior year.

Figure A-2: NIH funding trends (proportionally by the share of acknowledgements)

0

1

2

3

N
or

m
al

iz
ed

 N
IH

 s
pe

nd
in

g 
- b

as
e 

19
83

1980 1990 2000 2010 2020

MMS quartile 1

MMS quartile 2

MMS quartile 3

MMS quartile 4

Institutes & Centers proportionally allocated to ICD9 groups in B&P 2011
Normalized average NIH spending (in 2003 values)

Notes: The figure presents the annual NIH spending (in 2003 values) attributed to each ICD-9 group, averaged
by MMS quartiles, and normalized in 1990. We attribute NIH budgets based on the share of all publications in
an ICD-9 group that acknowledge a specific Institute/Center.
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B Figures

B.1 Figures – Medicare Market Shares

Figure A-3: Distribution of Medicare market shares in 1997-2003

(a) Based on number of Medicare patients
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(b) Based on number of Medicare prescriptions
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Notes: The figures in the top row present the distribution of MMS scores among ICD-9 three-digit codes. Figure
(a) shows all 272 ICD-9 three-digit codes, which are included in the MeSH-ICD-9 crosswalk by Bhattacharya and
Packalen (2011). Figure (b) shows all 752 ICD-9 three-digit codes in the 1997-2003 MEPS. We use the patient-
weighted average of each year between 1997-2003. The annual MMS are calculated using the total number
of patients in Medicare relative to all patients for each ICD-9 three-digit code. Both figures in the bottom row
present the distribution of MMS scores among the 129 ICD-9 groups, which are included in the MeSH-ICD-9
crosswalk by Bhattacharya and Packalen (2011). In Figure (c) we use the prescription count-weighted average of
each year between 1997-2003. The annual MMS are calculated using the total number of prescriptions financed
by Medicare relative to all prescriptions for each ICD-9 group. In Figure (d) we use the prescription quantity-
weighted average of each year between 1997-2003. The annual MMS are calculated using the quantity-weighted
prescriptions financed by Medicare relative to all quantity-weighted prescriptions for each ICD-9 group.
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Figure A-4: Evolution of Medicare drug prescriptions by MMS quartiles
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based on ICD9 groups in B&P 2011
 

Evolution of prescription quantity by MMS quartiles

Notes: The figure shows the evolution of prescription quantities for each ICD-9 group aggregated by MMS quar-
tiles. The grey bars display the quantity of prescriptions financed by Medicare, the blue bars display the non-
Medicare prescription quantities. Prescriptions are counted multiple times if they appear in more than one ICD-9
group. The red line represents the relative increase in the quantity of Medicare prescriptions with respect to the
baseline year 2003.
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Figure A-5: Evolution of drug prices and total revenue

(a) Evolution of drug price indices
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(b) Composition of total revenue
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(c) Evolution of total revenue
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Evolution of total revenue

Notes: The top figure presents the evolution of a price index by MMS quartile. It is calculated based on a prescrip-
tion quantity-weighted basket of drugs (1000 most sold drugs in total) following the procedure outlined in Duggan
and Scott Morton (2010). Drug-level prices are inferred from the MEPS, winsorized, and imputed/extrapolated
if missing. We drop a drug-form-disease combination if it does not appear in at least 2/3 of the sample periods, in
3 consecutive years, and exhibits price growth in the top 1% of the distribution. The index is set to one by using a
1997-2003 divisor. The bottom left figure presents the composition of total drug revenues by MMS quartile over
time. Revenues are calculated based on the total payment of all drugs which are prescribed for a certain ICD-9
group. The bottom right figure shows the normalized evolution of total revenues. 2003 serves as the baseline
year. 44



B.2 Figures – Descriptive Analysis

Figure A-6: Distribution of pre-MMA dependent/independent variables
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Notes: The figures compare the Kernel density of dependent and independent variables split at the Median MMS
in the year 2003. The unit of observation is the MeSH level for publication related variables, the ICD-9 three-digit
code level for drug related variables, and the ICD-9 group level for MMS/control variables.
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Figure A-7: Trends in scientific publications and drug development by MMS

(a) NIH Publications
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Notes: Figures (a)-(c) present the log-transformed average number of annual publication counts (a) with NIH
participation, (b) with university participation, and (c) with academic medical center participation. Figure (d)
presents the log-transformed average number of patent-weighted publications from all affiliations. Figures (e)-(f)
present the log-transformed average number of annual NME (e) in phase I-III clinical trials and (f) in all drug
development stages (preclinical, phase I-III clinial trials, registration, approval). For reasons of comparability, the
unit of observation is the unique ICD-9 group level in all graphs.
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B.3 Figures – Multivariate Analysis Clinical Drug Development

Figure A-8: Event study – drug development (alternative outcomes)

(a) Phase I-III clinical trials
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the ICD-9 three-digit code level, with MMS being calculated based on patient counts at the ICD-9 group level.
Standard errors are clustered at the ICD-9 three-digit code level.
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Figure A-9: Event study – drug development (alternative MMS)

MMS based on prescription counts
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the ICD-9 three-digit code level. In the top figures, the MMS is calculated based on the number of prescriptions,
in the bottom figures the MMS is calculated based on prescription quantity (Rx-quantity), both at the ICD-9 group
level. Standard errors are clustered at the ICD-9 three-digit code level.
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B.4 Figures – Multivariate Analysis Biomedical Science

Figure A-10: Event study – scientific publications (alternative outcomes)

(a) Publications (fractional)
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(e) Corporate publications (fractional)
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the MeSH term level. In the left figures, the dependent variable is the annual number of scientific publications
weighted by the number of distinct ICD-9 per publications (thus, counted fractional). In the right figures, the
number of scientific publications is winsozired at the annual 99th percentile. Standard errors are clustered at the
MeSH term level.
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Figure A-11: Event study – scientific publications (alternative MMS)

MMS based on patient counts (2003 only)
(a) University publications
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MMS based on patient counts (above median)
(g) University publications
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Notes: The figures show the event study estimates of Poisson pseudo-maximum likelihood regressions. The
dependent variable is the annual number of scientific publications. In the top figures, the MMS is calculated based
on 2003 patients counts. In the middle figures, the MMS is calculated based on prescription counts/quantity. In
the bottom figures, the treatment variable is binary based on patients counts. Standard errors are clustered at the
MeSH term level.
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Figure A-12: Event study – scientific publications (protected classes)
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the MeSH term level. The dependent variable is the annual number of scientific publications. In the top figures,
we exclude all ICD-9 groups related to protected drug classes. In the bottom figures, we include only ICD-9 groups
related to protected drug classes. Standard errors are clustered at the MeSH term level.
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Figure A-13: Event study – scientific publications by type of research

Clinical trial publications
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the MeSH term level. In the top figures, the dependent variable is the annual number of scientific publications,
which are associated with a MeSH term related to ‘clinical trials’. In the middle figure, the dependent variable is
the annual number of scientific publications, which are associated with a MeSH term related to ‘pharmaceutical
products’. In the bottom figures, the dependent variables is the residual, thus scientific publications neither related
to clinical trials nor pharmaceutical products. Standard errors are clustered at the MeSH term level.
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Figure A-14: Event study – weighted scientific publications

JIF-weighted counts
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Notes: The figures show the event study estimates and the 90 percent confidence bands of Poisson pseudo-
maximum likelihood regressions with high-dimensional fixed effects following Equation 1. The unit of observation
is the MeSH term level. In the top figures, the dependent variable is the journal impact factor-weighted number of
university/corporate scientific publications. In the middle figure, the dependent variable is the number of univer-
sity/corporate scientific publications that are associated with at least one patent application (patent-weighted).
In the bottom figures, we weight the number scientific publications by the size of the average patent family associ-
ated with the publication. A patent/family size-weight is calculated based on the patent family’s first application
being filed within 5 years from the scientific publication. Standard errors are clustered at the MeSH term level.
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C Tables

C.1 Tables – Data Overview

Table A-1: Updated ICD-9/MeSH crosswalk – based on Bhattacharya and Packalen (2011)

ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

Infectious and parasitic diseases

011 011 Pulmonary tuberculosis Tuberculosis, Pulmonary D014397

034 034 Streptococcal sore throat/scarlet fever Scarlet Fever D012541

052 052 Chickenpox Chickenpox D002644

053 053 Herpes zoster Herpes Zoster D006562

054 054 Herpes simplex Herpes Simplex D006561

070 070 Viral hepatitis Hepatitis D006505

075 075 Infectious mononucleosis Infectious Mononucleosis D007244

110 110 Dermatophytosis Tinea D014005
111 Dermatomycosis (unspecified) Tinea Versicolor D014010

112 112 Candidiasis Candidiasis D002177

132 132 Pediculosis/phthirus infestation Lice Infestations D010373

133 133 Acariasis Mite Infestations D008924

No Match 038 Septicemia
074 Specific diseases due to Coxsackie virus

Neoplasms

150 150-159 Malignant neoplasm digestive organs Digestive System Neoplasms D004067
211 Benign neoplasm digestive system Abdominal Neoplasms D000008

Anal Gland Neoplasms D000694

162 162 Malignant neoplasm bronchus/lung Respiratory Tract Neoplasms D012142
163 Malignant neoplasm pleura

171 171 Malignant melanoma skin Soft Tissue Neoplasms D012983
214 Lipoma
215 Benign neoplasm connective tissue

172 172 Malignant melanoma skin Skin Neoplasms D012878
173 Malignant neoplasm skin
216 Benign neoplasm skin

174 174 Malignant neoplasm female breast Breast Neoplasms D001943
175 Malignant neoplasm male breast
217 Benign neoplasm breast

179 179 Malignant neoplasm uterus Genital Neoplasms, Female D005833
180 Malignant neoplasm cervix uteri Genital Neoplasms, Male D005834
181 Malignant neoplasm placenta Urologic Neoplasms D014571
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

182 Malignant neoplasm body of uterus
183 Malignant neoplasm ovary
184 Malignant neoplasm female genitals
218 Uterine leiomyoma
219 Benign neoplasm uterus
220 Benign neoplasm ovary
221 Benign neoplasm female genitals
185 Malignant neoplasm prostate
186 Malignant neoplasm testis
187 Malignant neoplasm penis/male genitals
222 Benign neoplasm male genital organs
188 Malignant neoplasm bladder
189 Malignant neoplasm kidney
223 Benign neoplasm kidney

200 200-208 Malignant neoplasm lymphatic tissue Leukemia D007938
Lymphoma D008223

230 230-234 Carcinoma in situ Carcinoma in Situ D002278

Endocrine, nutritional and metabolic diseases, and immunity disorders

240 240 Simple goiter Goiter D006042
241 Nontoxic nodular goiter

242 242 Thyrotoxicosis with/without goiter Hyperthyroidism D006980

243 243 Congenital hypothyroidism Hypothyroidism D007037
244 Acquired hypothyroidism

250 250 Diabetes mellitus Diabetes Mellitus D003920

265 265 Thiamine/niacin deficiency states Vitamin B Deficiency D014804
266 Deficiency B-complex components

272 272 Disorders lipoid metabolism Lipid Metabolism Disorders D052439

274 274 Gout Gout D006073

275 275 Disorders mineral metabolism Hemochromatosis D006432
Hepatolenticular Degeneration D006527
Hypophosphatemia, Familial D007015
Hypercalcemia D006934
Hypocalcemia D006996

276 276 Disorders acid-base balance Hypokalemia D007008
Hypernatremia D006955
Acidosis D000138
Alkalosis D000471

279 279 Disorders immune mechanism Agammaglobulinemia D000361
DiGeorge Syndrome D004062
Dysgammaglobulinemia D004406
Wiskott-Aldrich Syndrome D014923

No Match 256 Ovarian dysfunction
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

Diseases of blood and blood-forming organs

280 280 Iron deficiency anemias Anemia D000740
281 Deficiency anemias
282 Hereditary hemolytic anemias
283 Acquired hemolytic anemias
284 Aplastic anemia
285 Anemias

288 288 Diseases white blood cells Agranulocytosis D000380
Granulomatous Disease, Chronic D006105
Eosinophilia D004802
Leukocytosis D007964

Mental disorders

295 295 Schizophrenic psychoses Schizophrenia D012559

296 296 Affective psychoses Mood Disorders D019964
309 Adjustment reaction Adjustment Disorders D000275

299 299 Psychoses with origin in childhood Child Development Disorders D002659

300 300 Neurotic disorders Anxiety Disorders D001008
Dissociative Disorders D004213
Feeding/Eating Disorders D001068
Somatoform Disorders D013001

301 301 Personality disorders Personality Disorders D010554

302 302 Sexual deviations/disorders Sexual and Gender Disorders D019968

303 303 Alcohol dependence syndrome Substance-Related Disorders D019966
304 Drug dependence
305 Nondependent drug abuse

314 314 Hyperkinetic syndrome (childhood) Attention Deficit Disorder D001289

315 315 Specific delays in development Developmental Disabilities D002658
Communication Disorders D003147

No Match 308 Acute reaction to stress
306 Physiological malfunction

Diseases of the nervous system and sense organs

320 320 Bacterial meningitis Meningitis D008581
321 Meningitis (other organisms) Central Nervous System - D020805

Viral Diseases
322 Meningitis Myelitis D009187
323 Encephalitis/myelitis/encephalomyelitis

332 332 Parkinson’s disease Parkinsonian Disorders D020734

340 340 Multiple sclerosis Multiple Sclerosis D009103

343 343 Infantile cerebral palsy Cerebral Palsy D002547
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

345 345 Epilepsy Epilepsy D004827

346 346 Migraine Migraine Disorders D008881

350 350-359 Disorders peripheral nervous system Peripheral Nervous - D010523
System Diseases

361 361 Retinal detachments/defects Retinal Diseases D012164
362 Retinal disorders

363 360 Disorders of the globe Uveal Diseases D014603

363 363 Chorioretinal inflammations/scars

363 364 Disorders iris/ciliary body

365 365 Glaucoma Glaucoma D005901

366 366 Cataract Cataract D002386

367 367 Disorders of refraction Refractive Errors D012030

368 368 Visual disturbances Vision Disorders D014786
369 Blindness/low vision

371 371 Corneal opacity/disorders of cornea Corneal Diseases D003316

372 372 Disorders conjunctiva Conjunctival Diseases D003229

373 373 Inflammation eyelids Eyelid Diseases D005141
374 Disorders eyelids

375 375 Disorders lacrimal system Lacrimal Apparatus Diseases D007766

380 380 Disorders external ear Otitis Externa D010032

381 381 Nonsuppurative otitis media Otitis Media D010033
382 Suppurative otitis media
383 Mastoiditis/related conditions

386 386 Vertiginous synd. vestibular system Labyrinth Diseases D007759

389 389 Hearing loss Hearing Loss D034381

Diseases of the circulatory system

401 401-405 Hypertensive disease Hypertension D006973

410 410 Acute myocardial infarction Myocardial Infarction D009203
412 Old myocardial infarction

413 413 Angina pectoris Angina Pectoris D000787

414 414 Chronic ischemic heart disease Arteriosclerosis D001161
440 Atherosclerosis Aneurysm D000783
441 Aortic aneurysm/dissection
442 Aneurysm

426 426 Conduction disorders Arrhythmias, Cardiac D001145
427 Cardiac dysrhythmias

428 428 Heart failure Heart Failure D006333
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

430 430-438 Cerebrovascular disease Cerebrovascular Disorders D002561

444 444 Arterial embolism/thrombosis Embolism and Thrombosis D016769
451 Phlebitis/thrombophlebitis Phlebitis D010689
452 Portal vein thrombosis
453 Venous embolism/thrombosis

454 454 Varicose veins lower extremities Varicose Veins D014648
456 Varicose veins other sites

455 455 Hemorrhoids Hemorrhoids D006484

458 458 Hypotension Hypotension D007022

Diseases of the respiratory system

460 460 Acute nasopharyngitis Nasopharyngitis D009304
462 Acute pharyngitis Pharyngitis D010612
472 Chronic pharyngitis/nasopharyngitis

461 461 Acute sinusitis Sinusitis D012852
473 Chronic sinusitis

463 463 Acute tonsillitis Tonsillitis D014069
474 Chronic disease tonsils/adenoids

464 464 Acute laryngitis/tracheitis Laryngitis D007827
476 Chronic laryngitis/laryngotracheitis Tracheitis D014136

Epiglottitis D004826
Croup D003440

466 466 Acute bronchitis/bronchiolitis Bronchitis D001991
490 Bronchitis
491 Chronic bronchitis

477 477 Allergic rhinitis Rhinitis D012220

480 480 Viral pneumonia Pneumonia D011014
481 Pneumococcal pneumonia
482 Bacterial pneumonia
483 Pneumonia (other specified organism)
484 Pneumonia in infectious diseases
485 Bronchopneumonia
486 Pneumonia
514 Pulmonary congestion/hypostasis

487 487 Influenza Influenza, Human D007251

492 492 Emphysema Emphysema D004646

493 493 Asthma Asthma D001249

511 511 Pleurisy Pleurisy D010998

No Match 470 Deviated nasal septum

Diseases of the digestive system

520 520 Disorders tooth development Tooth Abnormalities D014071

58



ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

521 Diseases hard tissues of teeth Tooth Erosion D014077
524 Dentofacial anomalies Tooth Abrasion D014072

Malocclusion D008310

522 522 Diseases pulp/periapical tissues Periapical Diseases D010483
523 Gingival/periodontal diseases Dental Pulp Diseases D003788

Periodontitis D010518
Gingival Diseases D005882

526 526 Diseases jaws Jaw Cysts D007570
Granuloma, Giant Cell D006101

527 527 Diseases salivary glands Salivary Gland Diseases D012466

528 528 Diseases oral soft tissues Stomatitis D013280
Noma D009625

530 530 Diseases esophagus Esophageal Diseases D004935

531 531 Gastric ulcer Peptic Ulcer D010437
532 Duodenal ulcer Peptic Ulcer Hemorrhage D010438
533 Peptic ulcer Gastrointestinal Hemorr. D006471
534 Gastrojejunal ulcer
578 Gastrointestinal hemorrhage

535 535 Gastritis/duodenitis Gastritis D005756
555-558 Noninfective enteritis/colitis Duodenitis D004382

Enteritis D004751
Colitis D003092

536 536 Disorders function of stomach Achlorhydria D000126
Gastric Dilatation D013271
Dyspepsia D004415

540 540 Acute appendicitis Appendicitis D001064
541 Appendicitis, unqualified
542 Appendicitis

550 550-553 Hernia of abdominal cavity Hernia D006547

560 560 Intestinal obstruction Intestinal Obstruction D007415

562 562 Diverticula of intestine Diverticulum, Colon D004241
Diverticulum, Stomach D013273

574 574 Cholelithiasis Cholelithiasis D002769

577 577 Diseases pancreas Pancreatitis D010195
Pancreatic Cyst D010181

No Match 571 Chronic liver disease/cirrhosis

Diseases of the genitourinary system

590 590 Infections kidney Nephritis D009393

592 592 Calculus kidney/ureter Nephrolithiasis D053040
Ureterolithiasis D053039
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

595 595 Cystitis Cystitis D003556

600 600 Hyperplasia prostate Prostatic Diseases D011469
601 Inflammatory diseases prostate
602 Disorders prostate

607 607 Disorders penis Penile Diseases D010409

610 610 Benign mammary dysplasias Breast Diseases D001941
611 Disorders breast

614 614 Inflammatory disease ovary Adnexal Diseases D000291
620 Noninflammatory disorders ovary

615 615 Inflammatory diseases uterus Uterine Diseases D014591
616 Inflammatory disease cervix/vagina/vulva Vaginal Diseases D014623
618 Genital prolapse Vulvar Diseases D014845
621 Disorders uterus
622 Noninflammatory disorders cervix
623 Noninflammatory disorders vagina
624 Noninflammatory disorders vulva/perineum
625 Pain associated with female genital organs

617 617 Endometriosis Endometriosis D004715

628 628 Infertility, female Infertility, Female D007247

No Match 627 Menopausal/postmenopausal disorders

Diseases of the skin and subcutaneous tissue

680 680 Carbuncle/furuncle Furunculosis D005667

681 681 Cellulitis/abscess finger/toe Cellulitis D002481
682 Cellulitis/abscess

684 684 Impetigo Impetigo D007169

690 690 Erythematosquamous dermatosis Dermatitis, Seborrheic D012628
706 Diseases sebaceous glands Acne Vulgaris D000152

691 691 Atopic dermatitis/related conditions Dermatitis, Atopic D003876
692 Contact dermatitis/eczema Dermatitis, Contact D003877

696 696 Psoriasis/similar disorders Psoriasis D011565
Pityriasis D010915
Parapsoriasis D010267

698 698 Pruritus/related conditions Pruritus D011537
Prurigo D011536
Neurodermatitis D009450

700 700 Corns/callosities Callosities D002145

703 703 Diseases nail Nail Diseases D009260

704 704 Diseases hair/hair follicles Hair Diseases D006201

705 705 Disorders sweat glands Sweat Gland Diseases D013543
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ICD group ICD code ICD entry/entries MeSH entry/entries MeSH ID

708 708 Urticaria Urticaria D014581

No Match 707 Chronic ulcer skin
695 Erythematous conditions
693 Dermatitis (substances taken internally)

Diseases of the musculoskeletal system and connective tissue

710 710 Diffuse diseases connective tissue Sjogrens Syndrome D012859
728 Disorders muscle/ligament/fascia Scleroderma, Systemic D012595

Scleroderma, Localized D012594
Dermatomyositis D003882
Myositis D009220

715 715 Osteoarthrosis/allied disorders Osteoarthritis D010003
721 Spondylosis/allied disorders

722 722 Intervertebral disc disorders Intervertebral Disk Displac. D007405

726 726 Peripheral enthesopathies Bursitis D002062

734 734 Flat foot Flatfoot D005413

735 735 Acquired deformities toe Hallux Valgus D006215
Hallux Varus D050488

737 737 Curvature spine Spinal Curvatures D013121

No Match 717 Internal derangement knee
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Table A-2: Summary statistics by high/low MMS

High MMS vs Low MMS (1) (2) (3) (4) (5) (6) (7) (8)
High MMS (N= 778) Low MMS (N= 785)

Mean Median Std. Error Mean Median Std. Error Diff. p-value

MMS (cases) 56.22 54.73 14.27 18.29 18.38 9.22 −37.94 0.0000∗∗∗

MMS (prescriptions) 58.41 61.08 16.01 20.40 18.28 10.60 −38.02 0.0000∗∗∗

MMS (Rx quantity) 59.23 58.15 17.49 21.60 19.48 12.26 −37.64 0.0000∗∗∗

Scientific publications 19.16 2.00 69.47 14.59 2.00 69.17 −4.57 0.1922
Publications - fractional 14.85 1.33 60.16 11.38 1.00 57.72 −3.47 0.2454
University publications 15.09 2.00 55.31 11.48 1.00 54.41 −3.61 0.1940
Corporate publications 1.04 0.00 4.25 0.79 0.00 4.56 −0.25 0.2624
Hospital publications 2.63 0.00 8.63 1.97 0.00 8.63 −0.66 0.1299
NIH publications 1.01 0.00 4.32 0.63 0.00 3.94 −0.38 0.0678∗

Academic journal publications 0.17 0.00 0.72 0.26 0.00 1.04 0.09 0.0564∗

Clinical journal publications 7.41 1.00 26.88 6.36 1.00 26.68 −1.06 0.4359
Clinical-practice journal publications 4.08 0.00 13.16 2.34 0.00 9.90 −1.74 0.0032∗∗∗

Industry-Clinical journal publications 4.96 0.00 21.49 3.35 0.00 22.34 −1.61 0.1471
Industrial journal publications 0.44 0.00 2.45 0.23 0.00 1.93 −0.20 0.0697∗

Industry-practice journal publications 0.17 0.00 0.83 0.09 0.00 0.66 −0.08 0.0387∗∗

NIH funded publications 7.31 0.00 30.65 6.03 0.00 34.94 −1.28 0.4405
Clinical trial university publications 1.25 0.00 5.20 1.28 0.00 6.25 0.02 0.9399
Clinical trial corporate publications 0.21 0.00 0.93 0.21 0.00 1.35 −0.01 0.9222
Pharmaceutical university publications 0.31 0.00 1.50 0.35 0.00 1.95 0.04 0.6346
Pharmaceutical corporate publications 0.07 0.00 0.39 0.07 0.00 0.52 0.00 0.8903
Citation-weighted publications 429.17 19.50 1777.20 278.17 15.00 1503.38 −151.01 0.0698∗

JIF-weighted publications 76.29 5.33 285.15 45.61 3.34 245.43 −30.68 0.0227∗∗

Patent-weighted publications 1.47 0.00 7.05 0.63 0.00 5.32 −0.83 0.0085∗∗∗

Patent-weighted university publications 1.15 0.00 5.57 0.51 0.00 4.33 −0.64 0.0118∗∗

Patent-weighted corporate publications 0.17 0.00 0.82 0.09 0.00 0.68 −0.09 0.0224∗∗

Patent family size-weighted publications 12.79 0.00 59.95 5.59 0.00 45.87 −7.20 0.0077∗∗∗

Cumul. US Market Sizet to t+12 28700.49 6105.04 64374.47 10778.88 3040.69 20202.34 −17921.61 0.0000∗∗∗

Cumul. NIH fundingt-1 to -12 22.57 21.46 12.50 12.75 11.98 8.21 −9.82 0.0000∗∗∗

Cumul. New MeSH termst 0.83 0.00 1.01 0.30 0.00 0.66 −0.53 0.0000∗∗∗

Notes: This table compares observations split at the MMS Median with t-tests. The unit of observation is the MeSH term level in the year 2003.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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C.2 Tables – Multivariate Analysis Clinical Drug Development

Table A-3: Drug development – parallel trends

All ICD9 Groups (1) (2) (3) (4)
Count/PPML Drug Development

Early All Stages Phase 1-3 Approval

MMS × 2000-02 −0.0014 −0.0008 −0.0017 −0.0035
(0.002) (0.002) (0.003) (0.009)

ICD9 code FE Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 750 876 702 348
ICD9-codes 125 146 117 58
ICD9-groups 93 100 83 52
Log-likelihood −1099 −1458 −927 −226

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The time period of these regressions is the pre-MMA period 1997-2002. We employ
placebo tests (2000-2002 x MMS with 1997-1999 as the baseline period) in order to test the parallel trends
assumption. The dependent variable is the annual number of newly discovered NME in Column (1), NME in all
development stages in Column (2), NME in phase I-III clinical trials in Column (3), and the annual number of
approved drugs in Column (4). The unit of observation is the ICD-9 three-digit level by year. Standard errors are
clustered at the ICD-9 three-digit code level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05,
*** p<0.01.
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Table A-4: Drug development – alternative ICD-9 levels

All ICD9 codes (1) (2) (3) (4) (5) (6)
Count/PPML Drug Development

Early Development All Development Stages Approval

MMS (ICD9 level) × 2004-05 −0.0005 0.0005 0.0195∗∗∗

(0.002) (0.001) (0.006)
MMS (ICD9 level) × 2006-08 0.0007 0.0001 0.0052

(0.002) (0.002) (0.005)
MMS (ICD9 level) × 2009-11 0.0015 0.0006 0.0112∗∗

(0.002) (0.002) (0.005)
MMS (ICD9 level) × 2012-14 0.0032 0.0018 0.0066

(0.002) (0.002) (0.005)
MMS (ICD9 level) × 2015-16 0.0051∗ 0.0037 0.0104∗∗

(0.003) (0.003) (0.005)
MMS × 2004-05 −0.0007 −0.0007 0.0256∗∗∗

(0.002) (0.002) (0.009)
MMS × 2006-08 0.0013 0.0007 0.0070

(0.003) (0.002) (0.008)
MMS × 2009-11 0.0020 0.0012 0.0138

(0.003) (0.003) (0.010)
MMS × 2012-14 0.0053∗ 0.0040 0.0198∗

(0.003) (0.003) (0.012)
MMS × 2015-16 0.0087∗∗ 0.0066∗ 0.0191

(0.004) (0.004) (0.012)
Cumul. US Market Sizet to t+12 No Yes No Yes No Yes
Cumul. NIH fundingt-1 to -12 No Yes No Yes No Yes
Cumul. New MeSH termst No Yes No Yes No Yes
ICD9 code FE Yes No Yes No Yes No
ICD9 group FE No Yes No Yes No Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 6980 3800 7740 3880 4260 3220
ICD9-codes 349 190 387 194 213 161
ICD9-groups 349 110 387 114 213 87
Log-likelihood −9333 −6723 −12764 −10449 −2067 −1316

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. Columns with odd numbers include a broader set of ICD-9 codes, namely all ICD-9
three-digit codes available in Cortellis (>300). Here the MMS is calculated at the ICD-9 three-digit code level
and controls are excluded for data availability reasons. Columns with even numbers are at the ICD-9 group level
again and include ICD-9 group level fixed effects instead of ICD-9 three-digit code level fixed effects. Here
the MMS is calculated at the ICD-9 group level and log-transformed ICD-9 group level controls are included.
The dependent variable is the annual number of newly discovered NME in Columns (1) and (2), NME in all
development stages (preclinicals, clinical trials, registrations, approvals) in Columns (3) and (4), and approved
NME in Column (5) and (6). In Columns with odd numbers standard errors are clustered at the ICD-9 three-digit
code level, in Columns with even numbers at the ICD-9 group level. They are shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-5: Drug development – alternative controls

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Drug Development

Early Development All Develop. Stages Approval

MMS × 2004-05 −0.0004 −0.0006 −0.0010 −0.0007 0.0275∗∗∗ 0.0241∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.009) (0.008)
MMS × 2006-08 0.0019 0.0011 0.0004 0.0004 0.0098 0.0046

(0.003) (0.002) (0.002) (0.002) (0.009) (0.007)
MMS × 2009-11 0.0029 0.0012 0.0008 0.0004 0.0179∗ 0.0096

(0.003) (0.002) (0.003) (0.002) (0.010) (0.008)
MMS × 2012-14 0.0063∗ 0.0039∗ 0.0035 0.0027 0.0253∗∗ 0.0140

(0.004) (0.002) (0.004) (0.002) (0.012) (0.009)
MMS × 2015-16 0.0099∗∗ 0.0066∗∗ 0.0060 0.0046 0.0261∗∗ 0.0117

(0.005) (0.003) (0.004) (0.003) (0.013) (0.010)
Cumul. OECD Market Sizet to t+12 Yes No Yes No Yes No
Cumul. NIH funding (Share)t-1 to -12 Yes No Yes No Yes No
Cumul. New MeSH termst Yes No Yes No Yes No
US Market Sizet No Yes No Yes No Yes
NIH fundingt-1 No Yes No Yes No Yes
New MeSH termst No Yes No Yes No Yes
ICD9 code FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 3320 3340 3720 3740 2360 2380
ICD9-codes 166 167 186 187 118 119
ICD9-groups 109 110 113 114 86 87
Log-likelihood −4759 −4795 −6563 −6632 −1176 −1183

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. Column (1), (3), and (5) include alternative control variables such as OECD market
size and NIH funding calculated as a share of all publications in a disease category that acknowledge a specific
Institute/Center. Column (2), (4), and (6) include control variables that do not accumulate future/past periods
but only consider year t. In both cases, control variables are log-transformed and the MMS is calculated at the
ICD-9 group level. The unit of observation of the dependent variable is the ICD-9 three-digit code by year. It is
the annual number of newly discovered NME in Columns (1) and (2), NME in all development stages (preclini-
cals, clinical trials, registrations, approvals) in Columns (3) and (4), and approved NME in Column (5) and (6).
Standard errors are clustered at the ICD-9 three-digit code level and shown in parentheses. Significance levels: *
p<0.1, ** p<0.05, *** p<0.01.
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Table A-6: Drug development – pre-MMS period until 2005

All ICD9 Groups (1) (2) (3) (4)
Count/PPML Drug Development

Early All Stages Phase 1-3 Approval

MMS × 2006-08 0.0015 0.0009 −0.0003 −0.0025
(0.002) (0.002) (0.002) (0.007)

MMS × 2009-11 0.0022 0.0014 0.0012 0.0028
(0.002) (0.002) (0.003) (0.007)

MMS × 2012-14 0.0056∗∗ 0.0043∗ 0.0034 0.0073
(0.002) (0.002) (0.004) (0.009)

MMS × 2015-16 0.0090∗∗∗ 0.0070∗∗ 0.0063 0.0054
(0.003) (0.003) (0.005) (0.010)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes
ICD9 code FE Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 3340 3740 3360 2380
ICD9-codes 167 187 168 119
ICD9-groups 110 114 110 87
Log-likelihood −4801 −6634 −4355 −1188

Notes: Columns (1) to (4) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The pre-MMA period includes the years 1997-2005 (until the implementation of the
MMA). The dependent variable is the annual number of newly discovered NME in Column (1), NME in all develop-
ment stages in Column (2), NME in phase I-III clinical trials in Column (3), and the annual number of approved
drugs in Column (4). The unit of observation is the ICD-9 three-digit level by year. The control variables are
log-transformed. Standard errors are clustered at the ICD-9 three-digit code level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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C.3 Tables – Multivariate Analysis Biomedical Science

Table A-7: Scientific publications – parallel trends

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

All All Fractions University Corporate Patent-Weighted

MMS × 2000-02 0.0002 −0.0002 0.0002 −0.0007 −0.0008
(0.001) (0.001) (0.001) (0.001) (0.001)

MMS > Median × 2000-02 0.0239
(0.043)

MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 7440 7440 7440 7314 3342 3444
MeSH terms 1240 1240 1240 1219 557 574
ICD-group 127 127 127 127 108 107
Log-likelihood −17026 −17024 −14660 −15270 −3586 −3694

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The time period of these regressions is the pre-MMA period 1997-2002. We employ
placebo tests (2000-2002 x MMS with 1997-1999 as the baseline period) in order to test the parallel trends
assumption. The dependent variable is the annual number of scientific publications from all affiliations (1)-
(2), disease weighted (fractional) number of scientific publications from all affiliations (3), number of scientific
publications from at least one author affiliated with an university (4), affiliated with a corporation (5), and patent-
weighted number of scientific publications (6). A patent-weight is calculated based on the patent family’s first
application being filed within 5 years from the scientific publication. The unit of observation is the MeSH term
by year. Standard errors are clustered at the MeSH level and shown in parentheses. Significance levels: * p<0.1,
** p<0.05, *** p<0.01.
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Table A-8: Scientific publications – fractional counts/winsorized

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Scientific Publications - fractions

winsorized winsorized count count winsorized winsorized

MMS × post 2003 0.0001 0.0001 0.0002
(0.001) (0.001) (0.001)

MMS × 2004-05 0.0004 0.0005 0.0003
(0.001) (0.001) (0.001)

MMS × 2006-08 0.0000 −0.0001 0.0002
(0.001) (0.002) (0.001)

MMS × 2009-11 0.0012 0.0007 0.0013
(0.001) (0.002) (0.001)

MMS × 2012-14 0.0016 0.0009 0.0015
(0.002) (0.003) (0.002)

MMS × 2015-16 0.0030 0.0018 0.0026
(0.002) (0.003) (0.002)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30680 30680 30680 30680 30680 30680
MeSH terms 1534 1534 1534 1534 1534 1534
ICD-group 129 129 129 129 129 129
Log-likelihood −87272 −87212 −76337 −76313 −74086 −74055

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications winsorized at the 99 percentile in Columns (1) and (2), the number of
scientific publications weighted by the inverse number of linked diseases (fractional counts) in Columns (3) and
(4), and the winsorized number of scientific publications weighted by the inverse number of linked diseases in
Columns (5) and (6). The control variables are log-transformed. Standard errors are clustered at the MeSH level
and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-9: Scientific publications – alternative controls/different models

All ICD9 Groups (1) (2) (3) (4)
DV: Scientific Publications Count/PPML Count/Linear

ICD Group FE Different Controls OLS

MMS × 2004-05 0.0006 0.0014 0.0005 0.0908∗∗

(0.001) (0.001) (0.001) (0.044)
MMS × 2006-08 −0.0001 0.0010 −0.0004 0.1174∗

(0.001) (0.002) (0.001) (0.068)
MMS × 2009-11 0.0013 0.0030 0.0009 0.2071∗∗

(0.002) (0.002) (0.002) (0.101)
MMS × 2012-14 0.0017 0.0039 0.0012 0.2695∗∗

(0.003) (0.003) (0.002) (0.127)
MMS × 2015-16 0.0030 0.0058∗ 0.0024 0.3414∗∗

(0.003) (0.003) (0.003) (0.150)
Cumul. US Market Sizet to t+12 Yes No No Yes
Cumul. NIH fundingt-1 to -12 Yes No No Yes
Cumul. New MeSH termst Yes Yes No Yes
Cumul. OECD Market Sizet to t+12 No Yes No No
Cumul. NIH funding (Share)t-1 to -12 No Yes No No
US Market Sizet No No Yes No
NIH fundingt-1 No No Yes No
New MeSH termst No No Yes No
ICD9 group FE Yes No No No
MeSH FE No Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 31260 30600 30680 31260
MeSH terms 1563 1530 1534 1563
ICD-group 129 126 129 129
Log-likelihood −894319 −89792 −89963 −149546

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the annual
number of scientific publications. In Column (1), we use ICD-9 group level fixed effects instead of MeSH level
fixed effects and cluster standard errors at the ICD-9 group level instead of the MeSH level. Column (2) includes
alternative control variables such as OECD market size and NIH funding calculated as a share of all publications
in a disease category that acknowledge a specific Institute/Center. Column (3) includes control variables that
do not accumulate future/past periods but only consider year t. In Column (4), we show the estimates of linear
regressions with high-dimensional fixed effects. The control variables are always log-transformed. Standard
errors are shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-10: Scientific publications by affiliation type – all authors from same type

All ICD9 Groups (1) (2) (3) (4) (5)
Count/PPML Scientific Publications

NIH only Uni only No Uni only Hospital only Corp only

MMS × 2004-05 −0.0007 0.0003 0.0011 0.0027 −0.0022
(0.003) (0.001) (0.001) (0.002) (0.003)

MMS × 2006-08 −0.0056 −0.0003 0.0003 0.0028 0.0028
(0.004) (0.002) (0.001) (0.003) (0.003)

MMS × 2009-11 −0.0029 0.0007 0.0012 0.0036 0.0009
(0.005) (0.002) (0.002) (0.004) (0.004)

MMS × 2012-14 −0.0035 0.0008 0.0018 0.0042 0.0058
(0.006) (0.003) (0.003) (0.004) (0.004)

MMS × 2015-16 −0.0047 0.0022 0.0030 0.0063 0.0081
(0.008) (0.003) (0.003) (0.006) (0.005)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes

Observations 9420 29580 28060 17580 8840
MeSH terms 471 1479 1403 879 442
ICD-group 91 129 127 120 111
Log-likelihood −5704 −53080 −38851 −10902 −4783

Notes: Columns (1) to (5) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications split by all author’s affiliations. In Column (1) all authors are affiliated
with the NIH, in Column (2) with a university, in Column (4) with an academic medical center, and in Column
(5) with a firm. Column (3) includes publications that have all authors not affiliated with a university. The
control variables are log-transformed. Standard errors are clustered at the MeSH level and shown in parentheses.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-11: Scientific publications by affiliation type – US only

All ICD9 Groups (1) (2) (3) (4) (5)
Count/PPML Scientific Publications - US only

NIH University No University Hospital Corporate

MMS × 2004-05 −0.0011 0.0003 0.0006 0.0003 −0.0002
(0.002) (0.001) (0.001) (0.002) (0.002)

MMS × 2006-08 −0.0042 −0.0006 −0.0004 −0.0002 0.0013
(0.003) (0.002) (0.001) (0.002) (0.002)

MMS × 2009-11 −0.0026 0.0008 0.0009 0.0011 0.0037
(0.004) (0.002) (0.002) (0.003) (0.003)

MMS × 2012-14 −0.0032 0.0007 0.0014 0.0026 0.0064∗∗

(0.005) (0.003) (0.003) (0.004) (0.003)
MMS × 2015-16 −0.0027 0.0014 0.0022 0.0030 0.0113∗∗∗

(0.006) (0.003) (0.003) (0.004) (0.004)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes

Observations 14880 30260 29640 25340 17440
MeSH terms 744 1513 1482 1267 872
ICD-group 108 129 128 125 121
Log-likelihood −11779 −67210 −57989 −27910 −14092

Notes: Columns (1) to (5) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications split by at least one author’s affiliation. All authors have US affiliations.
In Column (1) at least one author is affiliated with the NIH, in Column (2) with a university, in Column (4) with
an academic medical center (AMC), and in Column (5) with a firm. Column (3) includes publications that have
at least one author not affiliated with a US university. The control variables are log-transformed. Standard errors
are clustered at the MeSH level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-12: Scientific publications by affiliation type – fractional count/winsorized

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications - fractional winsorized

NIH University Hospital Corporate University Corporate

MMS × 2004-05 −0.0008 0.0003 −0.0003 −0.0003 0.0003 −0.0005
(0.002) (0.001) (0.002) (0.002) (0.001) (0.001)

MMS × 2006-08 −0.0016 −0.0004 −0.0003 0.0012 −0.0001 −0.0002
(0.002) (0.002) (0.002) (0.002) (0.001) (0.002)

MMS × 2009-11 −0.0017 0.0005 0.0003 0.0024 0.0010 0.0026
(0.003) (0.002) (0.002) (0.003) (0.001) (0.002)

MMS × 2012-14 −0.0023 0.0005 0.0009 0.0048 0.0015 0.0037
(0.004) (0.003) (0.003) (0.004) (0.002) (0.003)

MMS × 2015-16 −0.0013 0.0013 0.0016 0.0081∗ 0.0029 0.0068∗∗

(0.005) (0.003) (0.004) (0.004) (0.002) (0.003)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 16880 30560 27500 19880 30560 19880
MeSH terms 844 1528 1375 994 1528 994
ICD-group 111 129 128 125 129 125
Log-likelihood −12559 −67979 −30470 −15438 −77648 −17708

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. In Columns (1) to (4), the dependent
variable is the annual number of scientific publications weighted by the inverse number of linked diseases (frac-
tional counts) split by at least one author’s affiliation. In Columns (5) to (6), the dependent variable is the annual
number of scientific publications winsorized at the 99 percentile. The control variables are log-transformed. Stan-
dard errors are clustered at the MeSH level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05,
*** p<0.01.
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Table A-13: University publications – alternative controls/different models

All ICD9 Groups (1) (2) (3) (4)
DV: University Publications Count/PPML Count/Linear

ICD Group FE Different Controls OLS

MMS × 2004-05 0.0004 0.0012 0.0004 0.0808∗∗

(0.001) (0.001) (0.001) (0.040)
MMS × 2006-08 −0.0005 0.0009 −0.0006 0.1059∗

(0.001) (0.002) (0.001) (0.062)
MMS × 2009-11 0.0010 0.0029 0.0007 0.1885∗∗

(0.002) (0.002) (0.002) (0.092)
MMS × 2012-14 0.0012 0.0038 0.0009 0.2456∗∗

(0.003) (0.003) (0.002) (0.116)
MMS × 2015-16 0.0025 0.0057∗ 0.0021 0.3103∗∗

(0.003) (0.003) (0.003) (0.136)
Cumul. US Market Sizet to t+12 Yes No No Yes
Cumul. NIH fundingt-1 to -12 Yes No No Yes
Cumul. New MeSH termst Yes Yes No Yes
Cumul. OECD Market Sizet to t+12 No Yes No No
Cumul. NIH funding (Share)t-1 to -12 No Yes No No
US Market Sizet No No Yes No
NIH fundingt-1 No No Yes No
New MeSH termst No No Yes No
ICD9 group FE Yes No No No
MeSH FE No Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 31260 30480 30560 31260
MeSH terms 1563 1524 1528 1563
ICD-group 129 126 129 129
Log-likelihood −742561 −79872 −80013 −146052

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications with at least one author affiliated with an university. In Column (1), we
use ICD-9 group level fixed effects instead of MeSH level fixed effects and cluster standard errors at the ICD-9
group level instead of the MeSH level. Column (2) includes alternative control variables such as OECD market
size and NIH funding calculated as a share of all publications in a disease category that acknowledge a specific
Institute/Center. Column (3) includes control variables that do not accumulate future/past periods but only
consider year t. In Column (4), we show the estimates of linear regressions with high-dimensional fixed effects.
The control variables are always log-transformed. Standard errors are shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table A-14: Corporate publications – alternative controls/different models

All ICD9 Groups (1) (2) (3) (4)
DV: Corporate Publications Count/PPML Count/Linear

ICD Group FE Different Controls OLS

MMS × 2004-05 −0.0001 0.0012 −0.0012 0.0047
(0.002) (0.002) (0.002) (0.003)

MMS × 2006-08 0.0010 0.0031 −0.0005 0.0088∗

(0.002) (0.002) (0.002) (0.005)
MMS × 2009-11 0.0036 0.0065∗∗ 0.0014 0.0151∗∗

(0.003) (0.003) (0.002) (0.007)
MMS × 2012-14 0.0059 0.0096∗∗∗ 0.0031 0.0206∗∗

(0.004) (0.003) (0.003) (0.009)
MMS × 2015-16 0.0098∗ 0.0142∗∗∗ 0.0064∗ 0.0295∗∗

(0.005) (0.004) (0.004) (0.011)
Cumul. US Market Sizet to t+12 Yes No No Yes
Cumul. NIH fundingt-1 to -12 Yes No No Yes
Cumul. New MeSH termst Yes Yes No Yes
Cumul. OECD Market Sizet to t+12 No Yes No No
Cumul. NIH funding (Share)t-1 to -12 No Yes No No
US Market Sizet No No Yes No
NIH fundingt-1 No No Yes No
New MeSH termst No No Yes No
ICD9 group FE Yes No No No
MeSH FE No Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes

Observations 31120 19860 19880 31260
MeSH terms 1556 993 994 1563
ICD-group 125 124 125 129
Log-likelihood −68090 −18191 −18233 −68469

Notes: Columns (1) to (3) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications with at least one author affiliated with a corporation. In Column (1), we
use ICD-9 group level fixed effects instead of MeSH level fixed effects and cluster standard errors at the ICD-9
group level instead of the MeSH level. Column (2) includes alternative control variables such as OECD market
size and NIH funding calculated as a share of all publications in a disease category that acknowledge a specific
Institute/Center. Column (3) includes control variables that do not accumulate future/past periods but only
consider year t. In Column (4), we show the estimates of linear regressions with high-dimensional fixed effects.
The control variables are always log-transformed. Standard errors are shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table A-15: University publications by journal type

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

Academic Clinical Clin. Pract Ind./Clin. Industrial Ind. Pract

MMS × 2004-05 0.0012 −0.0011 0.0017 0.0020 0.0006 0.0050
(0.002) (0.001) (0.001) (0.002) (0.001) (0.003)

MMS × 2006-08 −0.0052∗∗ −0.0023 0.0011 0.0002 0.0011 0.0015
(0.002) (0.002) (0.002) (0.002) (0.002) (0.004)

MMS × 2009-11 −0.0038 −0.0001 0.0017 0.0008 0.0026 −0.0012
(0.003) (0.002) (0.002) (0.003) (0.002) (0.005)

MMS × 2012-14 −0.0027 −0.0004 0.0027 0.0011 −0.0012 0.0020
(0.004) (0.003) (0.003) (0.003) (0.003) (0.007)

MMS × 2015-16 −0.0037 −0.0002 0.0049 0.0018 −0.0025 0.0030
(0.004) (0.004) (0.004) (0.004) (0.003) (0.006)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 12020 28540 26660 23640 11840 6560
MeSH terms 601 1427 1333 1182 592 328
ICD-group 111 127 128 124 107 86
Log-likelihood −7563 −49038 −34207 −31761 −7866 −3667

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the number
of scientific publications with at least one author affiliated with an university in academic journals in Column
(1), in clinically relevant journals in Column (2), in clinical practice journals in Column (3), in industry-clinical
journals in Column (4), in industrial journals in Column (5), and in industry practice journals in Column (6).
Journal classification is based on the proportion of published research coming from general hospitals and industry
using the publicly available data set provided by Tijssen (2010). The control variables are log-transformed.
Standard errors are clustered at the MeSH level and shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.
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Table A-16: Corporate publications by journal type

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications

Academic Clinical Clin. Pract Ind./Clin. Industrial Ind. Pract

MMS × 2004-05 0.0015 −0.0037 0.0029 0.0017 −0.0003 −0.0046
(0.015) (0.002) (0.004) (0.002) (0.005) (0.005)

MMS × 2006-08 −0.0048 −0.0011 0.0069 0.0003 −0.0054 −0.0109∗

(0.013) (0.003) (0.004) (0.003) (0.004) (0.006)
MMS × 2009-11 −0.0129 0.0031 0.0038 0.0021 0.0056 −0.0127∗∗

(0.014) (0.004) (0.005) (0.005) (0.006) (0.006)
MMS × 2012-14 −0.0113 0.0024 0.0085 0.0062 −0.0080 −0.0046

(0.017) (0.005) (0.005) (0.006) (0.006) (0.007)
MMS × 2015-16 −0.0205 0.0060 0.0133∗ 0.0101 −0.0131 0.0035

(0.023) (0.006) (0.007) (0.007) (0.008) (0.008)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 2260 14280 9940 11860 3820 3620
MeSH terms 113 714 497 593 191 181
ICD-group 53 109 111 111 76 66
Log-likelihood −598 −9329 −5287 −9054 −1452 −1587

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the number
of scientific publications with at least one author affiliated with a corporation in academic journals in Column
(1), in clinically relevant journals in Column (2), in clinical practice journals in Column (3), in industry-clinical
journals in Column (4), in industrial journals in Column (5), and in industry practice journals in Column (6).
Journal classification is based on the proportion of published research coming from general hospitals and industry
using the publicly available data set provided by Tijssen (2010). The control variables are log-transformed.
Standard errors are clustered at the MeSH level and shown in parentheses. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.
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Table A-17: Academic Medical Center publications – type of research/impact

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML MeSH-Weighted JIF-Weighted Patent-Weighted

Hospital Basic CT Pharma JIF Patent Family Size

MMS × 2004-05 0.0005 −0.0015 −0.0029 −0.0012 −0.0011 −0.0053
(0.001) (0.002) (0.004) (0.002) (0.003) (0.004)

MMS × 2006-08 −0.0001 −0.0003 −0.0037 −0.0015 0.0028 0.0042
(0.002) (0.003) (0.005) (0.002) (0.004) (0.004)

MMS × 2009-11 0.0014 0.0005 −0.0016 −0.0005 0.0023 0.0030
(0.002) (0.004) (0.005) (0.003) (0.005) (0.006)

MMS × 2012-14 0.0019 0.0029 0.0025 0.0010 0.0049 0.0061
(0.003) (0.005) (0.007) (0.004) (0.005) (0.006)

MMS × 2015-16 0.0029 0.0038 0.0015 0.0021 0.0019 −0.0003
(0.003) (0.006) (0.008) (0.005) (0.006) (0.008)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 27220 14880 8100 27400 9780 9780
MeSH terms 1361 744 405 1370 489 489
ICD-group 128 117 105 128 104 104
Log-likelihood −34582 −10813 −3947 −116402 −5186 −26975

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the number
of scientific publications from at least one author affiliated with an academic medical center that are associated
with MeSH terms related to clinical trials in Column (2) and pharmaceutical products in Column (3). In Column
(1), we include the residual academic medical center publications (non CT/non pharmaceutical products). In
Columns (4), the dependent variable is the journal impact factor-weighted number of scientific publications from
at least one author affiliated with an academic medical center. In Column (5), the dependent variable is the
number of academic medical center publications that are associated with at least one patent application (patent-
weighted). In Column (6), we weight the number of academic medical center publications by the size of the
average patent family associated with the publication. A patent/family size-weight is calculated based on the
patent family’s first application being filed within 5 years from the scientific publication. The control variables are
log-transformed. Standard errors are clustered at the MeSH level and shown in parentheses. Significance levels:
* p<0.1, ** p<0.05, *** p<0.01.
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Table A-18: Scientific publications – pre-MMS period until 2005

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Patent-Weighted

All Fractions University Corporate University Corporate

MMS × 2006-08 −0.0004 −0.0003 −0.0006 0.0011 0.0001 −0.0009
(0.001) (0.001) (0.001) (0.002) (0.001) (0.002)

MMS × 2009-11 0.0010 0.0005 0.0008 0.0037 0.0002 −0.0003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

MMS × 2012-14 0.0014 0.0006 0.0010 0.0060∗∗ −0.0002 0.0025
(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

MMS × 2015-16 0.0027 0.0015 0.0023 0.0098∗∗ −0.0009 0.0026
(0.003) (0.003) (0.003) (0.004) (0.003) (0.005)

Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 30680 30680 30560 19880 16460 7960
MeSH terms 1534 1534 1528 994 823 398
ICD-group 129 129 129 125 114 92
Log-likelihood −89928 −76315 −79982 −18220 −13168 −4423

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The pre-period lasts until 2005,
which is the year before the implementation of the MMA. The dependent variable is the annual number of scientific
publications from all affiliation types in Column (1), weighted by the inverse number of linked diseases in Column
(2), with at least one author being affiliated with an university in Column (3), and with a corporation in Column
(4). In Columns (5) and (6), the dependent variable is the number of university/corporate scientific publications
that are associated with at least one patent application (patent-weighted). A patent-weight is calculated based on
the patent family’s first application being filed within 5 years from the scientific publication. The control variables
are log-transformed. Standard errors are clustered at the MeSH level and shown in parentheses. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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Table A-19: Scientific publications – all PMID (incl. confounded)

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Patent-Weighted

All Fractions University Corporate University Corporate

MMS × 2004-05 0.0014∗ 0.0009 0.0013∗ 0.0011 0.0034∗∗∗ 0.0044∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)
MMS × 2006-08 0.0007 0.0003 0.0005 0.0006 0.0024∗ 0.0028

(0.001) (0.001) (0.001) (0.002) (0.001) (0.002)
MMS × 2009-11 0.0014 0.0010 0.0014 0.0018 0.0019 0.0022

(0.001) (0.002) (0.001) (0.002) (0.001) (0.002)
MMS × 2012-14 0.0016 0.0011 0.0014 0.0035 0.0016 0.0063∗∗

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)
MMS × 2015-16 0.0026 0.0019 0.0025 0.0065∗∗ 0.0033 0.0098∗∗

(0.002) (0.002) (0.002) (0.003) (0.002) (0.004)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
MeSH FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 31200 31200 31160 24460 20940 10820
MeSH terms 1560 1560 1558 1223 1047 541
ICD-group 129 129 129 128 122 107
Log-likelihood −142854 −95031 −125441 −28223 −20699 −6861

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the MeSH term by year. The dependent variable is the
annual number of scientific publications including PMID, which are associated with a disease MeSH term with
unknown MMS (confounded). It includes publications from all affiliation types in Column (1), weighted by the
inverse number of linked diseases in Column (2), with at least one author being affiliated with an university in
Column (3), and with a corporation in Column (4). In Columns (5) and (6), the dependent variable is the number
of university/corporate scientific publications (including confounded PMID) that are associated with at least one
patent application (patent-weighted). A patent-weight is calculated based on the patent family’s first application
being filed within 5 years from the scientific publication. The control variables are log-transformed. Standard
errors are clustered at the MeSH level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, ***
p<0.01.
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Table A-20: Scientific publications – ICD-9 group level

All ICD9 Groups (1) (2) (3) (4) (5) (6)
Count/PPML Scientific Publications Patent-Weighted

All Fractions University Corporate University Corporate

MMS × 2004-05 0.0005 0.0004 0.0003 −0.0002 0.0013 0.0056∗

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
MMS × 2006-08 −0.0003 −0.0002 −0.0006 0.0010 0.0002 0.0018

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
MMS × 2009-11 0.0007 0.0008 0.0005 0.0030 0.0003 0.0013

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)
MMS × 2012-14 0.0010 0.0011 0.0006 0.0052 −0.0003 0.0038

(0.002) (0.003) (0.003) (0.004) (0.003) (0.003)
MMS × 2015-16 0.0021 0.0022 0.0016 0.0082∗ −0.0011 0.0031

(0.003) (0.003) (0.003) (0.005) (0.004) (0.005)
Cumul. US Market Sizet to t+12 Yes Yes Yes Yes Yes Yes
Cumul. NIH fundingt-1 to -12 Yes Yes Yes Yes Yes Yes
Cumul. New MeSH termst Yes Yes Yes Yes Yes Yes
ICD group FE Yes Yes Yes Yes Yes Yes
Calendar Year FE Yes Yes Yes Yes Yes Yes

Observations 2580 2580 2580 2500 2280 1840
ICD-group 129 129 129 125 114 92
Log-likelihood −13270 −12351 −12072 −5187 −3917 −1931

Notes: Columns (1) to (6) show the estimates of Poisson pseudo-maximum likelihood regressions with high-
dimensional fixed effects. The unit of observation is the ICD-9 group level (MeSH terms aggregated to the ICD-9
group in the Bhattacharya and Packalen (2011) ICD-9-MeSH crosswalk presented in Table A-1). The dependent
variable is the annual number of scientific publications from all affiliation types in Column (1), weighted by the
inverse number of linked diseases in Column (2), with at least one author being affiliated with an university
in Column (3), and with a corporation in Column (4). In Columns (5) and (6), the dependent variable is the
number of university/corporate scientific publications that are associated with at least one patent application
(patent-weighted). A patent-weight is calculated based on the patent family’s first application being filed within
5 years from the scientific publication. The control variables are log-transformed. Standard errors are clustered
at the ICD-9 group level and shown in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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