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1.0  Introduction 

Research and development (R&D) is often viewed as a linear process as exemplified by 

the adage “yesterday’s research becomes today’s development and tomorrow’s products”. In 

the pharmaceutical industry, for example, university technologies are often commercialized 

by small, research-intensive firms and ultimately licensed or acquired by larger, downstream 

firms for development prior to being taken to market. This technology push view of 

innovation (e.g., Mowery and Rosenberg, 1979) is long and expensive with high rates of 

failure (e.g, DiMasi et al, 2016). Shocks to this kind of system ripple, for example, from 

(yesterday’s) research through (today’s) development before impacting (tomorrow’s) product 

market. But what if the innovation process is not linear (e.g., Higgins et al., 2014)? Would 

this imply that shocks to one aspect of R&D could directly impact some other non-connected 

part of the innovation ecosystem?   

 It is not surprising that shocks to research will impact future development activities. 

Prior research has explored the impact of development shocks on future development 

activities (e.g, Krieger et al., 2018; Hermosilla and Wu, 2018; Higgins and Rodriguez, 2006; 

Danzon et al., 2005) development shocks on product markets (e.g., Higgins et al., 2021); and, 

product market shocks on development activities (e.g., Agarwal and Gaule, 2021; Manso et 

al., 2019; Branstetter et al., 2014; Blume-Kohout and Sood, 2013; Dranove et al., 2013; 

Dubois et al., 2013; Acemoglu and Linn, 2004; Finkelstein, 2004). The relationships from 

these more demand-pull (e.g., Mowery and Rosenberg, 1979) studies, however, are not 

unexpected as the focal shocks occur between connected parts of the R&D process. More 

recently researchers have considered the impact of downstream product market shocks on 

disconnected but related upstream research activities (e.g., Byrski et al, 2021). Missing from 

the literature is a clear understanding whether a causal relationship exists in the opposite 

direction; do upstream research shocks directly and contemporaneously impact related but 

disconnected downstream product markets?  

 Using a natural experiment involving the publication of the discovery of the broad 

spectrum antibiotic resistant New Delhi Metallo-Beta-Lactamase (NDM-1) superbug in India, 

we fill this gap in the literature. Prior to the publication in Lancet Infectious Diseases 

(Kumarasamy et al., 2010) little attention was paid to this particular superbug (Figure 1). 

Using this event as a plausibly exogenous shock to research, coupled with unique and 

disaggregate data from the pharmaceutical industry, we are able to examine the direct and 

contemporaneous impacts of this event on unconnected but related downstream antibiotic 
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product markets. Importantly, we are able to exploit variation across product markets (i.e., 

broad spectrum and narrow spectrum antibiotics), firm types (i.e., domestic and multinational 

firms) and countries (e.g., India and U.S.). 

 We start with a theoretical model to hypothesize about ex post strategic behavior of 

multinational and domestic firms in reaction to the NDM-1 research shock. We adopt a 

duopoly model with differentiated goods and linear demand and apply a solution concept 

from Cournot competition in terms of quantity choice (Dixit, 1979). Using this model, we are 

able to ask important research questions that contribute to the literature. First, we find that the 

effects of the NDM-1 research shock were dramatic and immediate in the downstream Indian 

antibiotic market. More specifically, multinational firms withdrew drugs from the affected 

antibiotic market. Within the context of our model, this pivot away from the Indian market 

can be explained by decreases to expected revenues coupled with increases in marginal costs. 

The lost revenues are driven by the withdraw from the market while the increase in marginal 

cost is driven by changes to reputational costs faced by multinational firms.   

 The behaviors observed by these multinational firms aligns with the extant literature 

focused on the trade-offs firms face in deciding between ethics and profits, especially in the 

presence of negative market shocks (e.g., Cheah et al., 2007; Rhee and Haunschild, 2006). 

Relatedly, multinationals also face a “liability of foreignness” amidst calls for corporate 

social responsibility in host countries (e.g., Crilly et al., 2016; Campbell et al., 2012; Zaheer 

and Mosakowski, 1997). This is especially pertinent given the reputational costs 

multinationals potentially face by selling “dodgy” products in host markets, in this case India, 

once a shock credibly reveals negative information about a product. Since multinationals may 

not have the same institutional backing as domestic firms, they will need a higher rate of 

responsiveness to scientific evidence to avoid possible sanction by regulators (Kostova et al., 

2008).  

 Corresponding to this withdraw from the market, we find that the average number of 

prescriptions for multinational firm drugs in the affected markets also declines relative to 

domestic firm antibiotic prescriptions. This suggests that the change in physician behavior 

that we observe occurred through the intensive margin. We know from prior literature that 

pharmaceutical advertising and detailing impacts physician behavior (e.g., Datta and Dave, 

2017; Manchanda and Honka, 2005); this is no different in the Indian pharmaceutical market. 

Moreover, we are able to track ‘bonus quantities’ that firms provide as a direct incentive to 
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sellers (Bhaskarabhatla et al., 2016). In the post-treatment period, we find a significant 

reduction in bonus quantities by multinational firms compared to domestic firms.   

 Within affected markets, variation also exists in terms of drug age or vintage. 

Pharmaceutical innovation within antibiotics has been relatively sparse (e.g., Spellberg and 

Gilbert, 2014). Thus, in the face of newly discovered resistance, firms should respond more 

rapidly within newer classes of drugs in order to protect them. Dividing drugs in affected 

markets by vintage (e.g., Chahine et al., 2010; Papp-Wallace et al., 2011), we find that 

multinational firms reacted more sharply in pulling newer drugs from the Indian market. 

More broadly, this finding provides evidence of the nature of how an upstream research 

shock impacts downstream product markets. In our context, this suggests that newer 

innovations are impacted more severely than older innovations. This has significant 

implications for firms as newer innovations (i.e., drugs) tend to be higher priced as they are 

still covered by some type of regulatory or patent protection versus older drugs that most 

likely already face generic competition. To the extent that current revenues are used to fund 

future R&D (e.g., Branstetter et al., 2016), our results suggest there could be implications for 

future innovation.      

 Next, we find that the void in the market left by multinational firms is filled by 

domestic firms who increase production. Within the context of our model, the intuition is that 

given the demand function from the unit mass of consumers and a given degree of 

substitutability, any reduction in one firm’s output (i.e., multinational firm), due to their 

strategic interaction, creates an opportunity for the other firm (i.e., domestic firm) to step in 

and increase their own output. Importantly, domestic firms are manufacturers and are not 

involved in novel R&D so their business is driven primarily by quantity considerations. 

Domestic firms, therefore, do not face the same global reputational concerns as multinational 

firms. The important distinction here is that multinational firms are producing branded, novel 

drugs while domestic firms are producing generic versions of previously branded drugs. In 

most countries, branded drugs are held responsible for harm to patients, as long as generics 

versions were truly bioequivalent.1 

 This finding, worryingly, implies that downstream demand for drugs in affected 

markets does not wane. Antibiotic overuse is a global public health crisis (e.g., Ackerman and 

                                                           
1 For example, in 2011the U.S. Supreme Court ruled in favor of protecting generic firms from being sued for 

failing to provide adequate label warning about side effects because federal law requires them to use the branded 

versions’ labels. 
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Gonzales, 2012; Davies et al., 2013) and is even more acute in India (e.g., Thakolkaran et al., 

2017).2 Our results suggest, however, that some combination of downstream actors, including 

physicians, pharmacists and/or patients are either choosing to act in a medically irrational 

manner or are oblivious to the shock.3 Sadly, survey evidence appears to support both 

explanations. In one survey, 89 percent of physicians believed that providers were 

overprescribing antibiotics (Thakolkaran et al., 2017). In the same survey, however, 80 

percent of physicians stated that they did not receive periodic information on trends in 

bacterial resistance. Of those that did receive information, 8 percent reported receiving 

information from clinical laboratories, 2 percent from medical journals and 1 percent from 

the pharmaceutical industry. Combined with our core findings, this would imply that as 

multinational firms pulled out of the Indian market, they failed to sufficiently inform 

physicians as to why they were leaving. 

 The heterogeneous firm reaction between multinationals and domestic firms also 

relates to the broader literature on technology choice and product abandonment (e.g., Bayus 

and Agarwal, 2007; Klepper and Simons, 1997). Much of this literature has focused on how 

technologies emerge and diffuse (Murmann and Frenken, 2006; Rogers, 2003) while usually 

finding they are welfare enhancing (e.g., Trajtenberg, 1989). Less investigated is why firms 

reduce their commitment to existing technologies. Reducing market commitment to existing 

technologies is difficult because it entails foregoing sunk cost investments (Finkelstein and 

Gilbert, 1985) and conceding the product market to competitors (Younkin, 2016). Our results 

provide a new, plausible channel – increased reputational costs in the face of negative 

upstream research shocks - that may help explain why firms abandon a product or market.  

 Along with our core findings we conduct numerous robustness and placebo tests to 

ensure the validity of our results. First, our results are robust with respect to pre-trends; both 

synthetic control analysis and event-study plots show that pre-trends do not exist. We have 

also tested for placebo treatment in April 2008 to rule out pre-trend due to the diagnosis of 

the first-ever patient with NDM-1, which is also insignificant. Second, our findings are robust 

with respect to an alternate control group comprising all broad-spectrum antibiotic molecules, 

                                                           
2 The WHO just recently (re-)sounded the alarm on drug-resistant bacteria: 

https://www.ft.com/content/f04275a3-5095-4f9e-a711-6fe7d59216dc.  
3 To contrast with our focal analysis on the Indian market, we have estimated the market impact using data from 

the U.S. as well; the effects are not significant. This is in line with the explanation that such aggressive 

reorientation in market structure combined with overprescription of antibiotics, is predicated on a weaker 

regulatory body. Results are described more fully in the main text. 

https://www.ft.com/content/f04275a3-5095-4f9e-a711-6fe7d59216dc
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excluding carbapenems. Third, our results are robust to controlling for regional heterogeneity 

within India. Fourth, we truncated our sample of molecules by excluding Ertapenem which 

was sold only by an Indian domestic firm; results remain robust. Fifth, we consider whether 

this research shock spilled over into other markets that were not exposed to the levels of 

NDM-1 antibiotic resistance found in India. Using data from the U.S., we find no evidence of 

any impact on antibiotic markets.   

 Finally, our findings also have important policy implications given the Red Queen 

Effect in antibiotics resistance (Baquero et al., 2009; Dieckmann et al., 1995). The Red 

Queen Effect depicts a situation where - it takes all the running you can do, to keep in the 

same place.4 In the context of antibiotics, pharmaceutical firms are globally running a 

(difficult) R&D race to produce newer antibiotics, but at the same time, as more antibiotics 

are consumed (often indiscriminately prescribed) it increases the probability of resistance 

thereby destroying incentives for innovation. This horse race between economics and clinical 

externalities is at the heart of designing optimal health and innovation policies (Eswaran and 

Gallini, 2019), prompting infectious disease experts like Dr. Anthony Fauci to comment: 

“Resistant microbes outstrip new antibiotics. It's an ongoing problem. It's not like we can fix 

it, and it's over. We have to fight continued resistance with a continual pipeline of new 

antibiotics and continue with the perpetual challenge”.5 

2.0 Institutional Background  

2.1 Antibiotic discovery, consumption and resistance 

 Alexander Fleming discovered penicillin in 1928. By 1940, scientists had already 

discovered the existence of resistant bacterial strains and acknowledged the fear of over-use 

(Spellberg and Gilbert, 2014).6 By the mid-1940s, streptomycin, a successful drug for 

tuberculosis was introduced, but very soon after resistant bacteria were discovered. The 

1950s saw the development of many classes of antibiotics that are still used today (e.g., 

tetracyclines, macrolides/lincosamides/streptogramins, glycopeptides, rifamycins and 

nitroimidazoles). Besides the discovery of quinolones and trimethoprim in the 1960s there 

                                                           
4 The Red Queen Effect is aptly pulled from Lewis Carroll’s Through the Looking Glass, a sequel to Alice’s 

Adventures in Wonderland. 
5 See: https://www.post-gazette.com/healthypgh/2014/05/25/Medical-marathon-Race-is-on-to-develop-new-

antibiotics-Medical-marathon-U-S-Centers-for-Disease-Control-and-Prevention-employ-shotgun-approach-to-

bring-antibiotic-resistance-under-control/stories/201405250015  
6 See: https://www.nytimes.com/1945/06/26/archives/penicillins-finder-assays-its-future-sir-alexander-fleming-

says.html 

https://www.post-gazette.com/healthypgh/2014/05/25/Medical-marathon-Race-is-on-to-develop-new-antibiotics-Medical-marathon-U-S-Centers-for-Disease-Control-and-Prevention-employ-shotgun-approach-to-bring-antibiotic-resistance-under-control/stories/201405250015
https://www.post-gazette.com/healthypgh/2014/05/25/Medical-marathon-Race-is-on-to-develop-new-antibiotics-Medical-marathon-U-S-Centers-for-Disease-Control-and-Prevention-employ-shotgun-approach-to-bring-antibiotic-resistance-under-control/stories/201405250015
https://www.post-gazette.com/healthypgh/2014/05/25/Medical-marathon-Race-is-on-to-develop-new-antibiotics-Medical-marathon-U-S-Centers-for-Disease-Control-and-Prevention-employ-shotgun-approach-to-bring-antibiotic-resistance-under-control/stories/201405250015
https://www.nytimes.com/1945/06/26/archives/penicillins-finder-assays-its-future-sir-alexander-fleming-says.html
https://www.nytimes.com/1945/06/26/archives/penicillins-finder-assays-its-future-sir-alexander-fleming-says.html
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was a long development gap until the oxazolidinones in the early 2000s (see Conly and 

Johnston, 2005; Davies and Davies, 2010). The early triumphs of the global pharmaceutical 

industry over infectious diseases was captured by Nobel laureate M. Burnet’s quip “…the 

virtual elimination of the infectious diseases as a significant factor in social life…” (Burnet et 

al., 1972).  

 A large set of global pharmaceutical firms including Novartis, AstraZeneca, Sanofi, 

Allergen, Merck, Roche, GlaxoSmithKline and Pfizer are active in antibiotics development 

and manufacturing. While antibiotics have been shown positively impact long-run economic 

development (Acemoglu and Johnson, 2007), the supply of new antibiotics has slowly dried 

up. Unfortunately, bacteria continue to evolve (Spellberg and Gilbert, 2014). For example, 

per the World Health Organization’s list of antibiotics in clinical development, only three of 

them can potentially target the NDM-1 bacteria. This bacterium is the focus of our analysis 

and has shown resistance towards carbapenems, the broad-spectrum antibiotic also known as 

the ‘last line of defense’ for bacterial infections.7,8  

High levels of antibiotic consumption and the related rise in antibiotic resistance is a 

globally well-recognized problem (e.g., Goff et al., 2016). Antibiotic resistance kills more 

than 700,000 people each year with projected deaths exceeding 10 million per year by 2050 

(O’Neill, 2014). While the dangers have been recognized since the 1940s, it has proven 

difficult to reduce the use of the antibiotics. Between 2000 and 2015, global antibiotic 

consumption has increased by 65 percent (Klein et al., 2018). Much of this increase, and 

resulting rise in resistance, has occurred in low-and-middle income countries. India is an 

important contributor to this global rise in antibiotic resistance, including the presumed 

source of the broad spectrum antibiotic resistant NDM-1 superbug.9 NDM-1 has now spread 

to more than 70 countries and the latest report of its outbreak has emerged from as far away 

as a remote Norwegian archipelago.10 Important, however, for our analysis is the fact that 

during our sample period the spread of NDM-1 to the U.S. was extremely limited (and mostly 

as a result of patients having come into the U.S. from foreign countries).  

                                                           
7 See: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-

contain-drug-resistant-infections 
8 See: https://www.theguardian.com/business/2020/jan/17/big-pharma-failing-to-invest-in-new-antibiotics-says-

who 
9 See: https://www.downtoearth.org.in/blog/health/india-the-antibiotic-capital-of-the-world-63097  
10 See: https://www.wsj.com/articles/superbug-from-india-spread-far-and-fast-study-finds-11548633600 and 

http://outbreaknewstoday.com/italy-superbug-ndm-1-outbreak-reported-in-tuscany-24484/ 

https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections
https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections
https://www.theguardian.com/business/2020/jan/17/big-pharma-failing-to-invest-in-new-antibiotics-says-who
https://www.theguardian.com/business/2020/jan/17/big-pharma-failing-to-invest-in-new-antibiotics-says-who
https://www.downtoearth.org.in/blog/health/india-the-antibiotic-capital-of-the-world-63097
https://www.wsj.com/articles/superbug-from-india-spread-far-and-fast-study-finds-11548633600
http://outbreaknewstoday.com/italy-superbug-ndm-1-outbreak-reported-in-tuscany-24484/
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With respect to India, antibiotic consumption has dramatically outpaced the growth in 

global consumption, expanding by 103 percent over the same 2000 to 2015 time period 

(Klein et al., 2018). On a relative basis, India’s share in the global antibiotics market 

increased from 15.1 percent in 2000 to 18.6 percent in 2015. While it is impossible to pin 

down a single reason to explain this trajectory in India, there are several demand-side culprits 

contributing to this problem. First, rising incomes and economic growth in India do not 

appear to have translated into improvements in water, sanitation and public health 

(Laxminarayan and Heymann, 2012). Second, physicians continue to prescribe antibiotics for 

upper respiratory infections and diarrheal diseases for which they have limited value 

(Thakolkaran et al., 2017; Chatterjee et al., 2015; Laxminarayan and Heymann, 2012). Third, 

physicians routinely receive compensation in exchange for prescribing antibiotics (Roy et al., 

2007).11 Fourth, some antibiotics are available over-the-counter allowing patients easy (and 

often uninformed) access to drugs (Laxminarayan and Chaudhury, 2016). Finally, there is 

increased use of antibiotics in the animal sector driven by demand for meat and poultry (Van 

Boeckel et al., 2015).  

2.2 The supply side of the Indian pharmaceutical industry 

 From the supply side, the Indian pharmaceutical industry is marked by over-

dependence on antibiotics as the source of revenue. In 2006, most of the best selling drugs in 

India were antibiotics (Duggan, et al., 2016). Some of the highest selling brands in India 

includes products from both multinationals and domestic firms like GlaxoSmithKline’s 

AugmentinTM and Alkem Laboratories’ ClavamTM (both having the active ingredient 

amoxicillin and clavulanic acid), and Aristo Pharmaceuticals’ MonocefTM (active ingredient 

being ceftriaxone, a cephalosporin).12  

In developed countries, antibiotics account for around 8 percent of total 

pharmaceutical sales, however, in developing countries, such as India, their share is around 

20 percent (Chaudhuri et al., 2006).13 Prior to the identification of the NDM-1 superbug in 

India, it would be safe to suggest that neither the demand nor the supply side were paying 

                                                           
11 Competition between physicians also play a role. Physicians report feeling pressured by patients for a quick 

remedy otherwise they risk losing the patient to other physicians (Kotwani et al., 2010). In conversations with 

physicians they report to us that they believe it is better to err on the side of caution because they feel that a 

Type-I error is more acceptable, both psychologically and socially. 
12 See: https://www.livemint.com/news/india/dcgi-moves-to-curb-sales-of-antibiotics-without-prescriptions-

11577380637918.html  
13 Based on AIOCD reports, we find that anti-infective accounts for 17 percent of sales in 2012. 

https://www.livemint.com/news/india/dcgi-moves-to-curb-sales-of-antibiotics-without-prescriptions-11577380637918.html
https://www.livemint.com/news/india/dcgi-moves-to-curb-sales-of-antibiotics-without-prescriptions-11577380637918.html
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enough attention to the brewing problem of drug-resistance. Luckily, rationalizing drug usage 

in India has slowly started to take hold (Pulcini et al., 2012). In 2014, the Indian government 

instructed pharmacists to set up registers to maintain detailed record of drug sales and also 

implemented other comunnity surveillance programs to monitor medically irrational 

prescribing behavior.14  

Adding to the complexity of the problem, the Indian pharmaceutical industry is highly 

fragmented with over 5,000 (multinational and domestic) firms operating in the market ( 

Adbi et al., 2019; Adbi et al., 2018). Traditionally, the market has been dominated by generic 

manufacturers due to India relaxing their intellectual property regime in the 1970s. The 

liberalization of the Indian economy in the 1990s led many of these generic manufacturers to 

begin to export to other developing economies (Hafner and Popp, 2011). Coupled with the 

passage of The Drug Price Competition and Patent Term Restoration Act (otherwise known 

as the “Hatch-Waxman Act”) in 1984, Indian generic manufacturers also began to export to 

the U.S. market (Branstetter et al., 2016; Chatterjee, 2009; Chaudhuri, 2005). This dynamic 

shifted in 2005 with the implementation of the World Trade Organization’s Trade Related 

Intellectual Property Rights (WTO-TRIPs) requirements which re-strengthened the 

intellectual property regime in India. One major implication of WTO-TRIPs has been the rise 

of multinational firms within the domestic Indian market (e.g., Duggan et al., 2016; 

Chatterjee et al., 2015; Kapczynski, 2009).  

3.0  Theoretical Model 

We use a theoretical model to help explain and illustrate possible firm-level reactions 

in downstream product markets to upstream research shocks. Fundamentally, the main 

mechanism involves strategic behavior between domestic and multinational firms in the 

presence of an adverse event. For this purpose, we adopt a duopoly model with differentiated 

goods and linear demand, and we will apply the solution concept from Cournot competition 

in terms of quantity choice.15 The baseline framework is built on Dixit (1979). For simplicity 

and to retain tractability, we treat the multinational firms as one composite set of firms and 

the domestic firms as another composite set of firms. This assumption not only simplifies the 

model considerably, but is also consistent with our econometric approach. We denote the 

                                                           
14 See: http://origin.searo.who.int/india/topics/antimicrobial_resistance/amr_containment.pdf 
15 Product differentiation can either be real or perceived. 

http://origin.searo.who.int/india/topics/antimicrobial_resistance/amr_containment.pdf
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aggregate quantities produced by the multinational firms and domestic firms as qf and qd, 

respectively.  

 We start by defining the demand side and assume a continuum of consumers with a 

quasi-linear utility function (Singh and Vives, 1984) in terms of quantity supplied by 

multinationals (𝑞𝒇) and domestic firms (𝑞𝒅) as follows: 

 𝑈(𝑞𝑓,𝑞𝑑, 𝑍) =  𝛼 (𝑞𝑓 + 𝑞𝑑) −  
𝛽

2
  (𝑞𝑓

2  +  𝑞𝑑
2  + 2𝛿𝑞𝑓𝑞𝑑) +  𝑍    (1) 

where α and β are shape parameters of the utility function. The parameter δ represents the 

degree of product differentiation. As δ goes up, the products become more identical. All 

parameters are positive and, in particular, δ has a magnitude between 0 and 1. The parameter 

restrictions in the current representation are standard (e.g., Haraguchi and Matsumura, 2014). 

Z represents a bundle of outside consumption goods that are competitively provided. We 

assume that the price of commodity bundle Z is normalized to 1. We can generate the inverse 

demand functions for the multinational and domestic firms, respectively, by equating 

marginal utilities to prices: 

      𝑝𝑓 = 𝛼 – β 𝑞𝑓 – β δ 𝑞𝑑              and            𝑝𝑑 = 𝛼 – β 𝑞𝑑 – β δ 𝑞𝑓.  (2) 

 On the producer side, we assume that the marginal cost of production is constant for 

both the multinational and domestic firms. We denote these marginal costs by 𝑐𝑓 and 𝑐𝑑, 

respectively. Assuming that α > 𝑐𝑓,𝑑 , the profit functions of these firms are given by: 16  

        𝜋𝑓 = (𝑝𝑓 −  𝑐𝑓)𝑞𝑓                 and             𝜋𝑑 = (𝑝𝑑 −  𝑐𝑑)𝑞𝑑.   (3) 

By maximizing profits, we can write 

 
𝜕𝜋𝑓

𝜕𝑞𝑓
= 𝛼𝑓 − 2𝛽𝑞𝑓 − 𝛽𝛿𝑞𝑑 = 0         and            

𝜕𝜋𝑑

𝜕𝑞𝑑
= 𝛼𝑑 − 2𝛽𝑞𝑑 − 𝛽𝛿𝑞𝑓 = 0, (4) 

where  𝛼𝑓 =   𝛼 −  𝑐𝑓 and  𝛼𝑑 =   𝛼 −  𝑐𝑑. 17  

 From (4) we can generate the reaction functions for the multinational and the 

domestic firms, respectively: 

                                                           
16 The autonomous component is greater than the marginal costs for both multinational and domestic firms. This 

is a necessary condition for ensuring an interior solution. 
17 The second-order conditions are satisfied.  
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 𝑅𝑓(𝑞𝑑) =
𝛼𝑓 − 𝛿𝑞𝑑𝛽

2𝛽
           and          𝑅𝑑(𝑞𝑓) =

𝛼𝑑 − 𝛿𝑞𝑓𝛽

2𝛽
  .    (5) 

 Finally, by solving the reaction functions, we can generate the equilibrium quantities 

in terms of exogenous parameters as: 

 𝑞𝑓
∗ =

2𝛼𝑓−𝛿 𝛼𝑑

𝛽(4−𝛿2)
                   and             𝑞𝑑

∗ =
2𝛼𝑑−𝛿 𝛼𝑓

𝛽(4−𝛿2)
 .    (6) 

It is important to analyze equilibrium quantity choices and their relationships. We 

note that the equilibrium quantity choices for both the multinational and domestic firms arise 

from the strategic interactions in a duopoly set up. In particular, the cost of production as well 

as the degree of product differentiation is embedded in the equilibrium quantity choices. In 

order to understand the dynamics of the model we engage in a series of simulations. We start 

by assuming 𝛼 = 1 and 𝛽 = 2 throughout. Three panels in Figure 2 describe the firm-level 

response functions.  

In Panel (a), we further assume that the degree of substitutability is δ = 0.5, marginal 

costs for domestic firms are fixed at 𝑐𝑑  = 0.5, and the marginal costs for the multinational 

firms, 𝑐𝑓, vary from 0 to 1. On the y-axis we plot the equilibrium output of the multinational 

firms, 𝑞𝑓
∗ . As marginal costs, 𝑐𝑓, increase the decrease in the output by multinational firms, 𝑞𝑓

∗ , 

is evident. Importantly, beyond a threshold of approximately 0.85, multinational firm 

equilibrium output falls to zero (i.e., 𝑞𝑓
∗  = 0).  

In Panel (b), we fix the marginal costs for both multinational and domestic firms at 

0.5 (i.e., c𝑓 and c𝑑 = 0.5) and we vary δ from 0 (complete product differentiation) to 1 (zero 

product differentiation). As can be seen, low product differentiation is associated with smaller 

output in equilibrium as the products compete closely against each other, whereas high 

product differentiation reduces competition across firms and therefore leads to higher output.  

Finally, in Panel (c), we plot the multinational firm’s output in equilibrium as a 

function of marginal cost, 𝑐𝑓 , as well as the degree of product differentiation, δ. The shade of 

the color (color online) is scaled with respect to the quantity; a lighter shade indicates higher 

output. As can be seen for very high marginal cost and high product substitutability, the 

equilibrium output is zero (as is indicated by the flat region). 

We posit that the NDM-1 research shock leads to two major changes for these firms’ 

strategic choices. First, the reputational cost for multinational firms go up for selling a 
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potentially controversial product in a foreign market (i.e., the domestic market of India is a 

foreign market for the multinational firms), reflected by an increase in marginal costs, 𝑐𝑓. Our 

model generates a clear prediction for such a change. If 𝑐𝑓 goes up, then 𝛼𝑓 goes down (since 

𝛼𝑓 = 𝛼 −  𝑐𝑓). Thus, the output of multinational firms, 𝑞𝑓
∗ , goes down and simultaneously the 

output of the domestic firms, 𝑞𝑑
∗ , goes up. We note that the first part of the result is intuitively 

obvious that if the marginal cost of production goes up for multinational firms, it is natural to 

expect that they will produce and sell less.  

The less-obvious result, however, arises from the response by domestic firms, who 

increase sales by producing more. The intuition is that given the demand function from the 

unit mass of consumers and a given degree of substitutability, any reduction in one firm’s 

output, due to their strategic interaction, creates an opportunity for the other firm to step in 

and increase their own output. For multinational firms, reducing production is perfectly 

consistent with exiting the market. In terms of the model, we see both the reduction in output 

(intensive margin) and market exit (extensive margin) as inducing effectively the same 

downward adjustment in equilibrium output, 𝑞𝑓
∗ . The opposite is true for the domestic firms. 

These observations lead to our first research question: Will an upstream research shock cause 

multinational firms to abandon downstream product markets and induce domestic firms to fill 

this void? 

Next, it is important to note that the NDM-1 research shock alters the degree of 

product substitutability between the antibiotics produced by multinational and domestic 

firms. In the presence of a reputational cost, multinational firms may behave differently than 

domestic firms with respect to the demand side. Since markets can be reciprocal, it is 

conceivable that there will be differences from the demand side in terms of how domestic and 

multinational firm antibiotics are treated. Upon publication of the article in Lancet, there 

were multiple high-profile discussions among policymakers and within the relevant medical 

community in India. As such, it is natural to expect the degree of substitutability between the 

focal antibiotic (i.e., carbapenems) produced by domestic and multinational firms to go down.  

This mechanism can be modelled by a fall in δ and the resulting effect can be readily 

seen by considering the signs of the cross-partial derivatives 
𝜕2𝑞𝑓

𝜕𝛼𝑓𝜕𝛿
 (the sign is positive) and 
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𝜕2𝑞𝑑

𝜕𝛼𝑓𝜕𝛿
 (the sign is negative).18 The intuition is as follows. A fall in substitutability will 

positively impact both firms’ output. However, the direct effect of a rise in marginal cost is 

much larger for multinational firms and hence, the net impact will be negative. Domestic 

firms, on the other hand, gain on both counts due to higher product differentiation as well as 

an increase in competitor marginal cost. This observation leads to our second research 

question: To what extent do upstream research shocks induce differential impacts on supply- 

and demand-side factors that shift the composition of downstream product markets?          

4.0 Data 

For this study, we utilize two main sources of data. First, we use the Pharmatrac 

database maintained by the All India Organisation of Chemists and Druggists (AIOCD) for 

drug sales data at the molecule-region-time level in India. This data is collected from more 

than 500,000 retailers representing about 60 percent of drug sales in India. Sales are reported 

at the stock-keeping unit (SKU)-region-month level and includes price at which drugs are 

supplied to the retailer, maximum retail price and quantity sold. This dataset has become the 

standard source of sales data to study the Indian pharmaceutical market (e.g., Adbi et al., 

2019; Adbi et al., 2018; Bhaskarabhatla et al., 2016). Our time frame covers the period from 

April 2007 to October 2013, with monthly data consisting of a total of five carbapenems and 

sixteen narrow-spectrum antibiotics sold by more than 100 firms.  

In our baseline specification, the treatment group consists of the carbapenem 

antibiotics (ATC codes J01DH03, J01DH04, J01DH02 and J01DH51) and the control group 

consists of narrow-spectrum antibiotics. 19 Important for our identification strategy, narrow 

spectrum antibiotics are not an effective treatment for the NDM-1 superbug. To compile our 

control group of narrow spectrum antibiotics, we follow the medical literature. In particular, 

following Kristensen et al. (2019), the narrow spectrum antibiotics consist of: (1) β-lactamase 

sensitive penicillin (J01 CE with suffix 01, 02); (2) β-lactamase resistant penicillin (J01CF 

with suffix 01, 02); (3) first-generation cephalosporins (J01DB with suffix 01, 04, 05; and, 

                                                           
18 The function is continuous in both 𝛿 and  𝛼𝑓 (along with having first and second derivatives). Thus, 

differentiating with respect to 𝛼𝑓 and then with respect to 𝛿 makes the calculations easier. One can change the 

order and check that the result is identical.   
19 ATC is Anatomical Therapeutic Code, a standard code used in the pharmaceutical economics literature specified 

by the World Health Organization. For details see: https://www.whocc.no/atc_ddd_index/  

https://www.whocc.no/atc_ddd_index/
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(4) macrolides (J01FA with suffix 01). All molecules along with their corresponding ATC 

classification are given in Appendix Table A1.20  

Second, we are also interested in physician prescribing behavior. For this purpose, we 

utilize a unique dataset drawn from the IQVIA Prescription Audit Database that consists of 

approximately 1 million physician prescriptions, at a monthly frequency, covering all of 

India. IQVIA is a well-recognized, global provider of pharmaceutical data. As before, this 

dataset has been used in prior work (Adbi et al., 2019; Bhaskarabhatla and Chatterjee, 2017; 

Dutta, 2011; Farooqui et al., 2019).  

In our robustness analysis we examine whether the NDM-1 research shock impacted 

market structures outside India. For this analysis we picked the U.S., which has a low level of 

reported carbapenem-resistance (see Figure 3). Thus, we obtain additional sales data from 

IQVIA for the U.S. market. More specifically, we obtain sales data at the molecule-time level 

for the antibiotics market for the period April 2007 to October 2013. The antibiotics cover 10 

molecules; four of them are carbapenems and the remaining are six narrow spectrum 

antibiotics. 

Finally, a detailed listing of all of our variables along with a description of how they 

were constructed are given in Table 1. We also identify the data source for each variable.  

5.0  Identification and Empirical Strategy  

        5.1 Multinational shares in the downstream carbapenem product market 

 Building on our theoretical arguments in Section 3.0 and in order to understand the 

causal effect of the upstream NDM-1 research shock on downstream multinational firm 

product markets, we estimate the following specification:  

𝑀𝑁𝐶𝑠ℎ𝑎𝑟𝑒𝑚𝑡 = 𝛽0  + 𝛽1𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚  + 𝛽2𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡  + 𝛽3𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡 ×

𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚  + 𝛽4𝑇𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑠𝑎𝑙𝑒𝑠𝑚𝑡 + 𝛽5𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 +  𝛽6𝑇𝑖𝑚𝑒𝑡 + 𝜖𝑚𝑡  (7)  

 

The dependent variable, 𝑀𝑁𝐶𝑠ℎ𝑎𝑟𝑒𝑚𝑡, is defined as multinational firm market share 

at the molecule (m) and monthly time unit (t) level. The variable Carbapenemm is defined as 

a dummy variable equal to one if a molecule belonging to the treatment group, zero 

otherwise. NDMdummyt is defined as a time-varying dummy that differentiates between the 

pre- and post-Lancet publication (i.e., research shock) periods. The coefficient of interest, 𝛽3, 

provides the estimate for the impact of the NDM-1 research shock on downstream 

                                                           
20 As a robustness check we have also tested all other broad-spectrum antibiotics (i.e., other than carbapenems) 

as an alternate control group. All results hold qualitatively and quantitatively. 
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multinational firm market share in the carbapenem market (i.e., treated group) relative to 

narrow spectrum antibiotics (i.e., control group). We anticipate this coefficient of interest to 

be negative based on our theoretical discussion in Section 3.0.  

Next, 𝑇𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑠𝑎𝑙𝑒𝑠𝑚𝑡 represent monthly molecule sales and controls for 

molecule-time varying effects, like variation in market sizes and any associated firm-level 

incentives to enter and exit. Molecule specific idiosyncrasies are accounted for by 

incorporating molecule-level fixed effects, Moleculem. In order to account for time-specific 

variations in our data we also control for time specific fixed effects, Timet. We use both OLS 

and fractional probit methods for estimation (Papke and Wooldridge, 2008) and standard 

errors are clustered at the molecule level. 

In order to capture inter-firm heterogeneity, we follow Dutta (2011) and estimate firm 

sales based on Defined Daily Dosages (DDD).21 Our unit of observation changes to the firm-

molecule-month level and we estimate the following triple differences specification: 

 

log (𝑆𝑎𝑙𝑒𝑠𝑓𝑚𝑡) =  𝛼0 +  𝛽1𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚  +  𝛽2𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡  + 𝛽3𝑀𝑁𝐶𝑓  +

 𝛽4(𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡 ×  𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚) + 𝛽5(𝑀𝑁𝐶𝑓 ×  𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚) + 𝛽6(𝑀𝑁𝐶𝑓 ×

𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡) + 𝛽7(𝑀𝑁𝐶𝑓 × 𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡 × 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚) + 𝛽8 log ( 𝑃𝑟𝑖𝑐𝑒𝑓𝑚𝑡) +

𝛽9𝑇𝑖𝑚𝑒𝑡 + 𝛽10𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 + 𝛽11𝐹𝑖𝑟𝑚𝑓 + 𝛽12(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 × 𝐶𝑎𝑙𝑒𝑛𝑑𝑒𝑟𝑚𝑜𝑛𝑡ℎ𝑡) +

𝛽13(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 × 𝐹𝑖𝑟𝑚𝑓) +  𝜖𝑚𝑓𝑡        (8) 

 

where the dependent variable, 𝑆𝑎𝑙𝑒𝑠𝑓𝑚𝑡, corresponds to the sales of a particular firm, f, in 

molecule, m, in period t. The interpretations of the dummy variables remain identical to those 

in Equation (7), except MNCf which is defined as a dummy equal to one if a firm is 

multinational, zero otherwise. The coefficient of interest in this specification, 𝛽7, provides the 

estimate of change of multinational sales in carbapenems post-NDM-1 research shock.  

 In Equation (8) we also control for the log of molecule prices, 𝑃𝑟𝑖𝑐𝑒𝑓𝑚𝑡. To account 

for potential endogeneity of prices we utilize the richness of our data. The final cost paid by 

consumers is broken down into retailer price and margin. Retailer margin influences the 

profit of the manufacturer and their marketing expense (Lal and Narasimhan, 1996; Sudhir, 

                                                           
21 While computing the Defined Daily Dosage (DDD) in the paper, we followed the recommendation of the 

World Health Organisation (WHO). For example, as per WHO, DDD of Doripenem is 1500 mg per day for a 

person weighing 70 kg. Thus, for Q mg of Doripenem, the DDD units would be Q/1500. In the case of 

intravenous injections for antibiotics as well as oral administration, we convert the mg content into DDD counts 

following the above method. Thus, all medicines are comparable in terms of DDD.   
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2001) and thus acts as a cost shifter (Ellison et al., 1997; Nevo, 2001).22 Hence, retail margin 

influences the price but not sales thereby satisfying the exclusion criteria. Building on this 

insight, we use it as an instrumental variable for prices.23  

We also control for unobserved heterogeneity at the month, molecule and firm level 

with respective fixed effects. We account for any seasonal changes in molecule sales (e.g., 

due to weather) with a control for seasonality using an interacted fixed effect, (𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 ×

𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟𝑚𝑜𝑛𝑡ℎ𝑡), where 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟𝑚𝑜𝑛𝑡ℎ𝑡 is a representation of calendar month (January, 

February, etc.). To account for molecule-firm level idiosyncrasies, such as time-invariant 

heterogeneity in historical capabilities of some firms in producing some molecules over 

others, we also control for molecule-firm paired fixed effects. Standard errors in this 

specification are clustered at the molecule-firm level. 

5.2  Physician prescription behavior 

In order to unpack the intensive margin mechanisms of our overall market structure 

effects, we explore the impact of the NDM-1 research shock on physician prescription 

behavior. Physicians are a major stakeholder in this phenomenon as they directly influence 

patients (Guan et al., 2019; Ahmadi and Zarei, 2017; Basu et al., 2008). It is not unreasonable 

to suggest that they would understand the problem of over-prescription of antibiotics and the 

consequent growth of antibiotic resistant strains. Additionally, drug companies regularly 

engage in detailing by sending sales personnel to interface with physicians. This should, 

theoretically, create a clear channel for information to flow from firms to physicians. In order 

to understand if and how physicians prescribing behavior changed in reaction to the NDM-1 

research shock, we test the following specification: 

𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠ℎ𝑎𝑟𝑒𝑚𝑡 = 𝛽0  + 𝛽1 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚  + 𝛽2𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡  +

𝛽3𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡 × 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 + 𝛽4𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 + 𝛽5𝑇𝑖𝑚𝑒𝑡 + 𝜖𝑚𝑡 (9)  

  

Equation (9) is the same as Equation (7) except we replace the dependent variable 

with 𝑃rescriptionsharemt, defined as share of prescriptions written for molecule (m) in month 

(t). As before, our coefficient of interest is 𝛽3 which captures the impact of the treatment on 

                                                           
22 The demand of a particular product is directly related to the price paid by consumer. The final price consists 

of two factors, price at which the drug is procured by the retailer and retailer margin which includes the retailer 

profit along with marketing, distributional and other expenses borne by the retailer. This variable represents a 

cost shifter for the firm, as the consumer will be unaware of the mark-up but the firm needs to incorporate this 

margin in their profit maximising exercise as this represents a cost for them to distribute and sell their product. 
23 The first stage F-statistic was 520 which is substantially more than recommended value of 10 (Staiger and 

Stock, 1994) in our instrumental variable estimations. 
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the prescription share for multinationals in the post-treatment period. To account for the 

presence of excess zeroes and the bounded nature of the dependent variable (between 0 to 1), 

we use a fractional probit model (Papke & Wooldridge, 2008).  

Next, we consider an analogue of the quantity model described in Equation (8) but at 

the prescription level: 

 

log (𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠𝑓𝑚𝑡) =  𝛽0 +  𝛽1𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚  +  𝛽2𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡  +      𝛽3𝑀𝑁𝐶𝑓 +

𝛽4(𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡 ×  𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚) + 𝛽5(𝑀𝑁𝐶𝑓 × 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚) + 𝛽6(𝑀𝑁𝐶𝑓 ×

 𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡) + 𝛽7(𝑀𝑁𝐶𝑓 × 𝑁𝐷𝑀𝑑𝑢𝑚𝑚𝑦𝑡 × 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚) + 𝛽8𝑇𝑖𝑚𝑒𝑡 +

 𝛽9𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 + 𝛽10𝐹𝑖𝑟𝑚𝑓 + 𝛽11(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 × 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟𝑚𝑜𝑛𝑡ℎ𝑡) + 𝛽12(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 ×

𝐹𝑖𝑟𝑚𝑓) +  𝜖𝑚𝑓𝑡               (10) 

 

 Equation (10) is the same as Equation (8) except we replace the dependent variable 

with 𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠𝑓𝑚𝑡 defined as prescriptions of a particular firm, f, in molecule, m, in 

period t. We take the natural log of this variable and add one. As before, our coefficient of 

interest is 𝛽7,which provides the estimate of change of multinational prescriptions in 

carbapenems post-NDM-1 research shock. 

 

 5.3 Analysis of pre-trends 

Following Angrist and Pischke (2008), we check for the existence of pre-trends using 

the following derivative of Equation 7:24  

𝑀𝑁𝐶𝑠ℎ𝑎𝑟𝑒𝑚𝑡 = 𝛽0  + 𝛽1 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚  + 𝛽2𝑌𝑒𝑎𝑟2008 + 𝛽3𝑌𝑒𝑎𝑟2009 + 𝛽4𝑌𝑒𝑎𝑟2010  +

𝛽5𝑌𝑒𝑎𝑟2011 + 𝛽6𝑌𝑒𝑎𝑟2012 + 𝛽7𝑌𝑒𝑎𝑟2013 + 𝛽8(𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 × 𝑌𝑒𝑎𝑟2008) +

𝛽9(𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 × 𝑌𝑒𝑎𝑟2009) + 𝛽10(𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 × 𝑌𝑒𝑎𝑟2010) +

𝛽11(𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 × 𝑌𝑒𝑎𝑟2011) + 𝛽12(𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 × 𝑌𝑒𝑎𝑟2012) +

 𝛽13(𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚𝑚 × 𝑌𝑒𝑎𝑟2013) + 𝛽14𝑇𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑠𝑎𝑙𝑒𝑠𝑚𝑡 + 𝛽15𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑚 +

𝛽16𝑇𝑖𝑚𝑒𝑡 + 𝜖𝑚𝑡   (11) 

                                                           
24 A question arises about the correct timing of the NDM-1 shock as the super-bug was first discovered in 2008 

(Kumarasamy et al., 2010). While correct, its discovery did not get public attention until the Lancet paper was 

published 2010. This pattern is clear from Google search data (Figure 1) and is also supported by Saliba et al. 

(2016). To further ensure our pre-treatment period is not contaminated, we conduct the same estimation with a 

placebo treatment in 2008. Results are presented in Appendix Table A7 and show no evidence of pre-trends. We 

thank Philippe Gorry for insightful comments on this issue. 
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 Insignificant coefficients in the pre-trend periods (i.e., 𝛽8, 𝛽9, 𝛽10) would signify the 

absence of pre-trends between our treatment and control markets in our estimated results. We 

find that the coefficients in the pre-treatment period are near zero and insignificant. We also 

plot the coefficients 𝛽8 to  𝛽13 in Figure 6. In the post-treatment period, the coefficients are 

negative and significant. As a robustness check, we introduce placebo treatment in 2008 

(prior to the true shock). There is no significant effect due to this placebo treatment (see 

Appendix Tables A7). We perform a second robustness check with a subsample of data for 

the 36 month period April 2009 to March 2012.25 Our results are qualitatively similar and 

reported in Appendix Table A3.  

6.0  Empirical Findings       

            6.1  Descriptive analysis 

We start by examining the overall market trends over our sample period, 2007-2013. 

Figure 4 plots sales in DDDs over this period.26 We note that even after the NDM-1 research 

shock (i.e., paper publication) in August 2010, the overall market for carbapenems expanded 

in India.27 However, in Figure 5, we observe that the multinational market share both in terms 

of quantity sold (from 71.5 percent in April 2007 to 29.5 percent in October 2013) and 

monetary sales (from 74.4 percent in April 2007 to 33.8 percent in October 2013) declined in 

the post NDM-1 research shock period.28 In the market for narrow spectrum antibiotics, 

however, multinational firms maintained their presence with a relatively stable market share 

of approximately 10 to 20 percent, both in quantity and monetary sales. 

In Table 2, we provide descriptive statistics. We see that in terms of the narrow 

spectrum antibiotic market (Panels 1 and 2), fewer firms were operating in the market after 

the research shock, while the size of the market substantially expanded in terms of share and 

monetary sales. Changes in the level of competition (measured by a Hirschman-Herfindahl 

                                                           
25 Due to introduction of Doripenem by multinationals firms in June 2009, there is an upward bump in Figure 4. 

We try to address this issue by focussing on a sample with a smaller time period, and find our results to be 

consistent. It may also be noticed that Ertapenem was introduced in 2010 and this drug was sold only by 

domestic firms, which might bias the MNC shares downward in the post-treatment period. We have estimated 

the main model after taking out Ertapenem. The results continue to hold (see Appendix Figure 2 and Appendix 

Table A6). 
26 The observe cyclicality in sales due to monsoon season which is strongly associated with infections. 
27 Sales of carbapenems in our data in April 2007 were 57.3 million DDDs which amounted to around $7.4 

million USD whereas in October 2013, the combined sales were 113.5 million DDD resulting in sales of around 

$9.5 million USD. 
28 We also observe a bump in the pre-treatment period, which is attributable to introduction of Doripenem in 

early 2009 followed by Lupin’s introduction of Ertapenem. 
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index computed over sales in DDD) were minor. In contrast, in the carbapenem market 

(Panels 3 and 4), we see that the multinational share declines and monetary sales decrease. 

The level of competition, however, remains stable. A complementary analysis in terms of 

prescribing behaviour of physicians, indicates a very similar scenario. In Panels 5 and 6, the 

market share for narrow spectrum antibiotics increases while in Panels 7 and 8, the market 

share for carbapenems declines.  

            6.2  Impact of the upstream research shock on downstream product markets 

We start by estimating Equation (7). In Model 1, Table 3 we report OLS regression 

results with multinational market share as the dependent variable. Model 2 reports results 

using a fractional probit specification. Models 3 and 4 report corresponding results using a 

second dependent variable, monetary market share, using OLS and fractional probit 

specifications. In short, we find strong support across all the models that the market share of 

multinationals went down for carbapenems in the post-treatment period. Interpreting Model 

1, we observe that the NDM-1 research shock led to a reduction of 13.9 percent in 

multinational firm market share for an average carbapenem molecule. Given average sales of 

20.29 million DDD per month for an average carbapenem molecule, this 13.9 percent 

reduction in market share translates into a 2.63 million DDD reduction per month, per 

carbapenem molecule.  

Along similar lines, in Model 3, we observe a market share reduction of 11.42 percent 

in terms of monetary share, which translates into a reduction of Indian Rs. 9.35 million or 

about $128,000 USD per carbapenem molecule, per month. In order to test the effects at the 

intensive margin, we redefine the dependent variable as the multinational share of 

prescriptions by physicians. The results are presented in Model 5 and the effect is even 

stronger. We will discuss this physician behavior more fully below.  

Finally, we present the results from Equation (8) in Model 1, Table 4. Here the 

dependent variable is firm level sales measured in DDD and prices are instrumented. In this 

triple difference setting, we observe a sharp drop in the quantity of carbapenems sold by 

multinationals in the post-treatment period. Collectively, and consistent with theory, the 

results across Tables 3 and 4 point to a causal decline in terms of sales and market shares of 

carbapenems by multinational firms in the post NDM-1 research shock period. 
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6.3 Unpacking underlying heterogeneous mechanisms 

6.3.1 Impact on physician prescribing behavior 

        As noted above, in Table 3, Model 5, we find a decline in the share of multinational 

firm prescriptions by physicians. This result holds in a quantity-model specification, Model 3, 

Table 4. In this triple difference setting, our coefficient of interest is again negative and 

significant. Combined, these results provide convincing evidence that the total number of 

prescriptions for carbapenems went down in the post-treatment period for multinational firms 

compared to domestic firms. We can conjecture on why this occurs. First, it is probable that 

fewer physicians were prescribing carbapenems after the shock. Second, on average, 

physicians may have written fewer prescriptions after the shock.  

 Unfortunately, our dataset does not allow us to track individual physician 

prescriptions. However, we can extract the average number of carbapenem prescriptions, per 

physician, for a particular firm. In Model 4, Table 4 we estimate Equation (8) but with a 

dependent variable defined as the log of prescriptions per physician. In this triple difference 

setting, we see that the average number of multinational firm carbapenem prescriptions, per 

physician, declined significantly compared to domestic firms. This suggests that the shift in 

physician behavior occurred through the intensive margin. 

To summarize our results so far, we have established two major points. First, in the 

post-treatment period, multinational firms were significantly reducing their market presence. 

Second, physicians exhibited a complementary response, they prescribed fewer carbapenems 

produced by multinationals relative to domestic firms. These findings are consistent with the 

predictions of our theoretical model and also clearly demonstrate that upstream research 

shocks can have contemporaneous impacts on downstream product markets.  

6.3.2 Vintage: Old versus new carbapenems 

Thus far in our investigation we have considered carbapenems as one homogeneous 

group of molecules that belong to the same class. But there are generational differences 

within carbapenems in terms of vintage of the active ingredient. Broadly, we can divide 

carbapenems into “old” versus “new” following prior work (e.g., Chahine et al., 2010; Papp-

Wallace et al., 2011; Shah and Isaacs, 2003). We divide our treatment group into two sub-

groups consisting of newer carbapenems (Ertapenem and Doripenem) and older carbapenems 

(combination of Imipenem and Cilastatin, combination of Meropenem and Sulbactam, and 
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only Meropenem) and examine which sub-group within carbapenems saw higher reduction of 

market shares for  multinationals.29  

This division is important for a number of reasons. Newer drugs are more likely to 

still be under patent protection and hence may be more valuable to a firm. Because of this 

they would likely want to protect newer drugs from exposure to drug resistant bacteria. If 

bacteria indeed became resistant to newer drugs then there are fewer incentives left at the 

margin, especially for global multinational innovator firms. This is highly problematic given 

that antibiotic innovation is already limited (Spellberg and Gilbert, 2014). On the flip side, 

older drugs will be more stable in the sense that their side-effects are known. It is also more 

likely that older drugs are generics, thus the reputational costs for selling them should be 

muted, at least with respect to newer drugs.  

In order to explore whether multinational firms react more aggressively with respect 

to their newer drugs we estimate Equation (7) with this split sample in Table 5. Models 1 and 

2 present results for multinational sales share in newer carbapenems, while Models 3 and 4 

show the same for older carbapenems. Models 5 and 6 present results for prescription-level 

regressions for newer and older carbapenems, respectively. Across all models, we find that 

multinational firms reacted more sharply with respect to their newer carbapenems. In all 

cases, they actively reduced their sales. Similarly, in Model 5 physicians reduced 

prescriptions for newer carbapenems.  

           6.3.3 Supply-side responses to the NDM-1 research shock 

So far, our analyses have focused on firm choices and physician behavior. It is 

conceivable that the supply-side would also react to the NDM-1 research shock. As a 

mechanism of the average multinational firm’s revealed preferences, we can analyze the level 

of bonus quantities that firms provide as a direct way to incentivize sellers. This strategic use 

of bonus quantities has been highlighted earlier to be a pervasive phenomenon in Indian 

pharmaceutical markets (Bhaskarabhatla et al., 2016). Bonus quantity represents the extra 

quantity provided to retailers to increase sales of a particular molecule. For example, a firm 

may give a retailer one extra strip of a drug for free for every 100 strips of drugs they are able 

                                                           
29 See Appendix Table A1 for the set of molecules along with the ATC classification. Ertapenem and 

Doripenem were introduced after 2000 whereas Imipenem and Meropenem were patented in the 1970s and 

1980s and marketed long before 2000. Appendix Table A2 lists the introduction dates of carbapenem in the U.S. 

Imipenem and Meropenem were introduced before 2000 and Ertapenem and Doripenem were introduced after 

2000. 
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to sell within a fixed time period. We examine this issue using Equation (8) in Model 2, 

Table 4. To estimate the effects on bonus quantities, we use an inverse hyperbolic sine 

transform (Bahar et al., 2020; Bellemare and Wichman, 2020) which is well-defined for 

zeros. We find that in the post-treatment period, multinational firms reduced bonus quantities 

of carbapenems compared to domestic firms. This reduction in incentives is entirely 

consistent with a firm that is pulling a product out of a market. 

6.3.4 Is there regional heterogeneity in India?  

 Previous studies (e.g., Adbi et al., 2019; Dandona et al., 2017) identify the importance 

of regional heterogeneity in India. In order to account for this spatial component, we 

incorporate three sets of dummies into Equation (7): (1) Geography; (2) Molecule-

Geography; and, (3) Geography-Time. Geography is defined as 23 regions in India as per 

AIOCD database broadly corresponding to state boundaries in India. Results are presented in 

Table 6a for sales and Table 6b for monetary sales. Across Models 1 to 6, we find that our 

baseline results hold both qualitatively and quantitatively. In summary, after controlling for 

regional heterogeneity sales of carbapenems by multinational firms declined in the post-

treatment period. 

 6.4 Robustness 

 6.4.1. Alternative control groupings 

 Our current control group consists of narrow spectrum antibiotics. In an effort to 

ensure that our results are not driven by this choice, we re-examine our core results using an 

alternate control group comprised of other broad spectrum antibiotics, excluding 

carbapenems. The rationale for considering this alternate control group comes from the 

Lancet publication itself. More specifically, the paper explicitly mentioned carbapenem in its 

abstract: “Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by 

New Delhi metallo-beta-lactamase 1 (NDM-1) are potentially a major global health 

problem.” (Kumarasamy et al. 2010). Thus, there is a possibility that physicians might 

consider carbapenems as a separate entity within the group of broad-spectrum antibiotics.  

 We re-estimate Equation (7) using the rest of the broad spectrum antibiotics, 

excluding carbapenems (eighty six broad spectrum molecules barring five carbapenems) as 

the control group and present results in Table 7.30 Results are robust in Models 1 and 2 when 

                                                           
30 As an alternate specification we took all the antibiotic molecules (more than 150 molecules) minus 

carbapenems as control group. Results are reported in Appendix Table A4 and are quantitatively and 

qualitatively robust. 
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we consider multinational market share. However, in Models 3 and 4 when we consider 

multinational monetary market share, results are negative but not significant. This result is 

not entirely unexpected because this control group is closer to our treatment group, i.e, they 

are all broad spectrum antibiotics.   

 Next, we explore a second alternate control group based on the synthetic control 

method (Abadie et al., 2010; Abadie and Gardeazabal, 2003). The synthetic control method is 

a matching technique, which creates an artificial control group matched to the characteristic 

of the treated group in the pre-treatment period. This data-driven approach makes the 

synthetic control method a more objective way to create a counterfactual, as opposed to more 

subjective choices. The advantages of the synthetic control method had led to wide-spread 

use in recent studies (e.g., Adbi et al., 2019; Peng et al., 2018; Greene et al., 2014). For our 

analysis, the outcome of interest is the mean multinational market share of carbapenems in 

the pre- and post-NDM-1 research shock time period. Using the synthetic control method, we 

assign weights to narrow-spectrum molecules to create an artificial matched sample of 

carbapenem molecules. Our new synthetic control group along with our treatment group is 

plotted in Figure 7. As can be seen from this non-parametric analysis our core results are 

supported; there is a negative and significant effect on our treatment sample in the post-shock 

period.     

6.4.2. Did the research shock spill over to other markets? 

Given that antibiotics are globally available; one can reasonably ask whether the 

structural shift in the Indian market spilled over into other countries. To answer this question, 

we obtain data for the U.S. as it represents a lower antibiotic resistant market (see Figure 3). 

If our focal research shock was general in nature, then we would expect to see similar kinds 

of effects in lower antibiotic resistant markets. Physicians, in the U.S. for example, may 

begin to proactively prescribe fewer carbapenems. Regulators and/or multinational firms may 

also begin to limit the sale of these ‘last line of defense’ drugs. If so, we would expect to see 

a negative impact at the aggregate level in US antibiotics markets.  

To better understand this we use IQVIA data for the U.S. market. Our treatment group 

matched with the Indian sample, consists of four carbapenem molecules sold in US while our 

control group consists of six narrow spectrum molecules. These are plotted in Appendix 

Figure 1. From this plot there is no visual evidence of any impact from the NDM-1 research 

shock. Regression results are reported in Appendix Table A8 and are consistent with the lack 

of visual evidence, our interaction term of interest is not significant in either model. While we 

do not have access to global antibiotic data, it is not a stretch to conjecture that we would 
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anticipate similar non-responses in other low-antibiotic resistant markets, such as Canada or 

the European Union. From a policy perspective, this non-response suggests that U.S. 

regulators do not (yet) appear concerned that this particular antibiotic resistance will spread 

to the U.S. or at least the concern does not rise to the level of trying to protect these particular 

antibiotics.  

7.0  Conclusion and Discussion  

The effects of market structure on R&D are well documented; however, the impacts of 

research directly on market structure are less established. We fill this gap by exploring the 

contemporaneous, causal impacts of a shock to upstream research on related but unconnected 

downstream market structure. We use a natural experiment involving the publication of the 

discovery of the broad spectrum antibiotic resistant New Delhi Metallo-Beta-Lactamase 

(NDM-1) superbug in India. The focal article was published in August 2010 in highly 

prestigious Lancet Infectious Diseases, with little evidence that much attention was paid to 

NDM-1 prior to that event (Figure 1). This publication stirred an intense policy debate in 

India ranging from speculation about regional discrimination (similar to what was witnessed 

with the “Wuhan” coronavirus (Hu et al., 2020; Masters-Waage et al., 2020; Wang et al., 

2020)) to the potential adverse impact on medical tourism in India (Saliba et al., 2016), and 

what this finding meant for health policy in India – especially given that these particular 

drugs are the ‘antibiotics of last resort’.  

We start with a theoretical model to conjecture about ex post strategic behavior of 

multinational and domestic firms in reaction to this research shock. Using this model, we 

make several contributions to the literature. First, we find that the upstream NDM-1 research 

shock caused multinational firms to withdraw products from the downstream domestic Indian 

market. We theorize that multinational firms suffer a reputational cost due to their ‘liability of 

foreignness’ (Zaheer and Mosakowski, 1997). This in turn increases a firm’s marginal cost 

leading them to exit the downstream product market. This result contributes to the 

abandonment literature by providing a new channel by which firms may choose to exit a 

market. We bolster this finding by showing that, at the physician level, prescriptions for 

multinational firm drugs declined, relative to domestic drugs. Importantly, we show that these 

effects do not carry over into markets with low-antibiotic resistance. 

While declining antibiotic use in the post-treatment period may be viewed positively 

for public health and antibiotic stewardship reasons, this was not meant to be. Instead, the 
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void created in the market by multinational firms was filled by domestic producers; antibiotic 

use did not wane. Again, these actions are consistent with our theoretical model. Domestic 

firms are manufacturers and not involved in novel R&D so their business is driven primarily 

by quantity considerations. Domestic firms, therefore, do not face the same global reputation 

concerns as multinational firms. An important distinction here is that multinational firms 

produce branded, novel drugs while domestic firms are producing generics. In most 

countries, branded drug producers are held responsible for any harm to patients, even if 

generics are also being sold. 

Our findings have profound public health policy implications. Antibiotic overuse is a 

global public health crisis (Ackerman and Gonzales, 2012) and the resulting issues with 

resistance do not stop at national borders. While 89 percent of physicians believe antibiotics 

are overprescribed (Thakolkaran et al., 2017), in the face of this shock, our results suggest 

that the volume of prescriptions did not decline. The only change in physician behavior 

observed was the rotation from prescribing multinational firm products to domestic firm 

products. It would be easy to blame physicians, especially given some of the financial 

incentives to prescribe drugs, however this ignores the demand from patients (consumers) 

and the role of government. Patients continually demand antibiotics, even in cases when they 

are not medically necessary (e.g., most ear infections in children). Furthermore, governments 

could take more aggressive actions with respect to antibiotic stewardship and limit their use 

in other areas, such as farming. Lest we believe the implications of antibiotic resistance are 

not serious, in one study (CDC, 2016) 2 million illnesses and 23,000 deaths were attributed to 

antibiotic resistance in just the U.S. That same study assigned a direct cost of $20 billion plus 

an additional $35 billion in lost productivity; global costs are even higher. 

Our results also have implications for innovation policy. To the extent that sales from 

current products fund future R&D (e.g., Branstetter et al, 2016), as multinational firms 

withdraw from India, this could dampen future innovation. Antibiotics also suffer from the 

Red Queen Effect – the innovation-resistance cycle is never ending. Multinational firms are 

globally running a (difficult) R&D race to produce newer antibiotics, while at the same time, 

as more antibiotics are consumed there is the probability of increased resistance. This creates 

the situation where the newest antibiotics may be held back in reserve, which may be 

appropriate from a stewardship perspective, but this limits revenues thereby creating 

disincentives for companies to undertake their development. Recent procurement policies 

from COVID-19 may offer a new path forward. In the COVID-19 response governments 
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directly funded both push (i.e., direct funding of R&D) and pull (i.e., rewards for successful 

development of products) mechanisms instead of relying on traditional market mechanisms, 

such as patents (Sampat and Shadlen, 2021).  

It is worth noting that the pathogenic outbreak we explore here is markedly different 

than the one caused by COVID-19. In our case, we were dealing with an established product 

market that experienced an upstream research shock. This upstream shock caused 

contemporaneous responses in downstream product markets. In the case of COVID-19, in 

contrast, there was no established market, this was a shock to the entire system. And while 

we know see new research (‘R’) taking place, the strongest initial response was in 

development (‘D’) as the underlying technologies used for the vaccines (e.g., viral vectors 

and mRNA) were already developed for use in other areas (Agarwal and Gaule, 2021). But 

the greatest take-away from COVID-19, in terms of innovation policy, as Sampat and 

Shadlen (2021) point out are the extraordinary measures taken by governments. It is yet to be 

seen whether governments will use those bold measures to combat other problems, such as 

antibiotic resistance. 

Our work is not without limitations. First, while we test and find that there were no 

effects of the Indian NDM-1 shock in U.S. antibiotics market, it would be worth investigating 

if there are variations in this result by the entirety of the “global north” and “global south”. 

Data for such a study would be costly but a more complete analysis could help coordinate 

global policy responses. Second, our results suggest a more detailed analysis on upstream 

innovation is warranted. Given the public welfare importance of antibiotics, more fully 

understanding possible disincentives for innovation is critical. Finally, it may be worthwhile 

for future work to understand more deeply the speed of exit between heterogeneous firms. As 

with all research, more is left to be done.  
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Figure 1. Patterns in Google Search: Cumulative frequency of Google searches within India 

for NDM-1 from April 2007 to October 2013. The sudden surge around August 2010 (NDM-

1 paper’s publication) illustrates increased public awareness about NDM-1. The vertical bar 

denotes the treatment (i.e., publication of NDM-1 article in The Lancet Infectious Diseases) in 

August 2010. 

      

                         

 

Figure 2. Firm-level Reactions: Firm-level reaction functions in a market characterized by 

Cournot competition with multinational and domestic firms. Panel (a): Optimal quantity choice 

(𝑞𝑓) of the multinational firm decays as a function of increasing marginal cost (𝑐𝑓). Panel (b): 

Optimal quantity choice of the multinational and domestic firms (𝑞𝑓 and 𝑞𝑑) decay as a 

function of increasing product differentiation (δ). Panel (c): Optimal quantity choice for the 

multinational firms as a function of the degree of product substitutability and cost. 
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Figure 3. Resistance to Carbapenems across Countries all over the World: India has the 

highest resistance. Resistance has been measured by randomly testing bacteria with respect to 

treatment in carbapenems and noting the frequency of resistant bacteria. Used with permission 

from The Center for Disease, Dynamics Economics & Policy. Resistance Map: Antibiotic 

resistance. 2019. Source: https://resistancemap.cddep.org/AntibioticResistance.php. Date 

accessed: Dec 30, 2019 
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Figure 4. Total Sales of Carbapenems in India from April 2007 to October 2013, in terms 

of log of Defined Daily Dosages (DDD): The total sales time series shows an increasing trend 

in the post-treatment period. The vertical bar denotes the treatment (i.e., publication of NDM-

1 article in The Lancet) in August 2010. Source: AIOCD Pharmatrac. 

    

 

 

Figure 5. Multinational Share in Sales and Monetary terms during pre- and post-

treatment periods (separated by the vertical line) in the Carbapenems and Narrow-

spectrum Antibiotics Markets. Multinational market shares show a steep decline both in 

terms of sales (left panel) and monetary sales (right panel) in the post-treatment period while 

the corresponding share in the market for narrow spectrum antibiotics remain stable. The x-

axis denotes the number of months (data spans over 79 months from April 2007 to October 

2013). Source: AIOCD Pharmatrac. 
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Figure 6. Coefficient Estimates from Equation 11 of year-Carbapenem Interaction 

Dummies: In the pre-treatment period, the coefficients are statistically zero and in the post-

treatment period, they are negative. We conclude an absence of pre-trends in multinational 

sales (left panel) and monetary shares (right panel). 

 

     

 

 

Figure 7. Synthetic Control Results for Multinational Sales Share (left panel) and 

Monetary Share (right panel). In both cases, the simulated series (synthetic control) is 

substantially above the realized sales path, indicating a substantial decay in sales in the 

multinational share in the post-treatment period (treatment period is indicated by the vertical 

line) compared to the counterfactual of no treatment. 
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Table 1. Variable description 

Dependent variables  Description Data Source 

MNCshare We measure MNCshare in two different 

ways. 

(a) sales:-Aggregated market share of 

multinational firms in a particular 

molecule in particular month in terms 

of sales in Defined Daily Dosage 

(DDD). 

(b) monetary sales:-Aggregated market 

share of multinational firms in a 

particular molecule in particular 

month in terms of sales revenue (Rs). 

AIOCD 

Pharmatrac 

log (Sales) Logarithm of sales in Defined Daily Doses 

(DDD) of a particular firm for a particular 

molecule in a particular month. 

AIOCD 

Pharmatrac 

Prescriptionshare Aggregated market share of multinational 

firms in a particular molecule in particular 

month in terms of prescriptions written. 

IQVIA 

Prescription 

Audit Database- 

India 

Invsine (Bonus) Inverse sine transform of Bonus in Defined 

Daily Doses (DDD) of a particular firm for 

a particular molecule in a particular month. 

AIOCD 

Pharmatrac 

log (Prescriptions) Logarithm of prescriptions of a particular 

firm for a particular molecule in a 

particular month. 

IQVIA 

Prescription 

Audit Database- 

India 

log (Prescription per Physician) Logarithm of prescriptions per physician of 

a particular firm for a particular molecule 

in a particular month.  

IQVIA 

Prescription 

Audit Database- 

India 

log (Sales (US))  Logarithm of focal molecule sales in 

standard units in a particular month.  

IQVIA US drug 

sales database 

log (Revenue (US)) Logarithm of focal molecule revenue (US 

$) in a particular month.  

IQVIA US drug 

sales database 

Independent variables Description  

NDMdummy 0 for months before August 2010 and 1 

after August 2010 (NDM-1 article 

appeared online in August 2010). 

 

Carbapenem Molecules belonging to the carbapenem 

(ATC code J01DH) have a value of 1, 

otherwise 0. 

 

NDMdummy × Carbapenem Interaction term between variables 

NDMdummy and Carbapenem. It takes the 

value one for carbapenem from August 

2010. 

 

MNC 1 if a firm had majority foreign ownership 

as on August 2010, otherwise 0. 

IQVIA 

Prescription 

Audit Database-

India and CMIE 

Prowess 

MNC × NDMdummy × Carbapenem Interaction term between variables, MNC, 

NDMdummy and Carbapenem. It takes the 

value one for carbapenem molecules sold 

by MNC from August 2010. 

 

Year Dummy variable for each year from 1 

(2007) to 7(2013). 

 

Placebotreatmentapril2008 0 for months before April 2008 and 1 after 

April 2008.  
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Placebotreatmentapril2008 × Carbapenem Interaction term between variables 

Placebotreatmentapril2008 and 

Carbapenem. It takes the value one for 

carbapenem from April 2008. 

 

Control variables Description  

Total monetary sales Total revenue of a particular molecule in a 

particular month aggregated over all the 

firms (in Rs. million). 

AIOCD 

Pharmatrac 

log (Price) Logarithm of average maximum retail price 

in Rs. per DDD of molecule. 

AIOCD 

Pharmatrac 

Time  Dummy variable for each month t where t 

ranges from 1 (April 2007) to 79 (October 

2013). 

 

Molecule Dummy variable for each molecule m.  AIOCD 

Pharmatrac 

Firm Dummy variable for each firm.  AIOCD 

Pharmatrac 

Molecule × Firm Interaction between molecule dummies and 

firm dummies. 

AIOCD 

Pharmatrac 

Molecule × Calendar month Interaction of calendar month with 

molecule to account for seasonality. 

AIOCD 

Pharmatrac 

Geography Dummy variable for each geographical 

region g covering 23 geographical markets 

in India. 

AIOCD 

Pharmatrac 

Molecule × Geography Interaction between molecule dummies and 

geography dummies. 

AIOCD 

Pharmatrac 

Geography × Time Interaction between geography dummies 

and time dummies. 

AIOCD 

Pharmatrac 
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Table 2. Summary Statistics. This table presents summary statistics of the narrow-spectrum 

and carbapenem antibiotics for the pre- and post-treatment period. We note that during the 

post-treatment period, market share of carbapenems sold by multinationals decreased in terms 

of sales, monetary sales and prescriptions compared to narrow-spectrum antibiotics. 

 (1) (2) 

 Narrow spectrum pre-treatment Narrow spectrum post-treatment 

 mean sd Count mean sd Count 

MNCshare (sales) 0.1076 0.2487 591 0.1471 0.2865 461 

MNCshare (monetary 

sales) 
0.1119 0.2646 591 0.1498 0.3016 461 

HHI (sales) 0.6843 0.2986 591 0.7030 0.3172 461 

Number of firms 11.529

6 
19.9636 591 9.0868 13.0937 461 

Total monetary sales 

(Rs. million) 
26.4 55.0 591 34.8 63.7 461 

 

 (3) (4) 

 Carbapenem pre-treatment Carbapenem post-treatment 

 mean sd Count mean sd Count 

MNCshare (sales) 0.5992 0.3447 100 0.3636 0.3263 179 

MNCshare 

(monetary sales) 
0.6280 0.3317 100 0.3948 0.3304 179 

HHI (sales) 0.4496 0.3273 100 0.4777 0.3527 179 

Number of firms 15.3100 11.3464 100 14.2011 12.9165 179 

Total monetary sales 

(Rs. million) 
148.0 102.0 100 106.0 109.0 179 

 

 (5) (6) 

 Narrow spectrum pre-treatment 

(prescription) 

Narrow spectrum post-treatment 

(prescription) 

 mean sd Count mean sd Count 

Prescriptionshare 0.0260 0.1324 353 0.0673 0.2483 258 

Number of firms 10.9518 19.0459 353 8.5271 11.6566 258 

HHI (Prescriptions) 0.5956 0.2974 353 0.5718 0.2968 258 

Total prescriptions 438897 900373 353 431824 682620 258 

 

 (7) (8) 

 Carbapenem pre-treatment 

(prescription) 

Carbapenem post-treatment 

(prescription) 

 mean sd Count mean sd Count 

Prescriptionshare 0.2628 0.4069 56 0.1544 0.3401 41 

Number of firms 2.3929 1.3028 56 1.4390 0.7433 41 

HHI (Prescriptions) 0.5794 0.2641 56 0.4485 0.2808 41 

Total prescriptions 687.3036 615.1142 56 528.1951 519.7750 41 
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Table 3. Multinational Shares in Sales, Monetary Sales and Prescriptions fall in 

Carbapenems after NDM-1 publication. We estimate impact of NMD-1 publication on 

Multinationals’ market shares as per Equation 7 in terms of sales (Models 1 and 2) and 

monetary sales (Models 3 and 4) and find that market share decreased significantly in the post-

treatment period compared to the pre-treatment period, in both OLS and fractional probit 

estimation. Quantitatively and qualitatively similar effects are seen in physicians’ prescribing 

pattern (Equation 9) as well (Model 5). Constant term is included in all the specifications but 

not reported. Time horizon is April 2007- October 2013.    

 

 (1) (2) (3) (4) (5) 

 MNCshare 

(sales) 

 (OLS) 

MNCshare 

(sales) 

(fractional 

probit) 

MNCshare 

(monetary 

sales)  

(OLS) 

MNCshare 

(monetary 

sales) 

(fractional 

probit) 

Prescription 

Share 

(fractional 

probit) 

NDMdummy 0.0000 -0.5292* 0.0000 -0.6089** 4.5358*** 

 (.) (0.2771) (.) (0.2660) (1.4715) 

      

Carbapenem 0.0000 4.5050*** 0.0000 4.7591*** 4.2116*** 

 (.) (0.3514) (.) (0.3820) (1.0533) 

      

NDMdummy ×  

Carbapenem 

-0.1391*** -0.6501*** -0.1142** -0.5655** -4.7347*** 

(0.0463) (0.2174) (0.0530) (0.2389) (1.4736) 

      

Total monetary 

sales 

0.0006*** 0.0040*** 0.0007*** 0.0047***  

(0.0001) (0.0013) (0.0002) (0.0016)  

      

Time dummies  Yes Yes Yes Yes Yes 

Molecule 

dummies  

Yes Yes Yes Yes Yes 

R2 0.96  0.97   

Log pseudo 

likelihood 

 -244.77  -231.32 -35.23 

N 1331 1331 1331 1331 708 
Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table 4. Decline in Multinational Sales, Bonus Quantity, Prescriptions & Prescriptions 

per Physician in Carbapenems after NDM-1 discovery. We estimate impact of NDM-1 

publication on firm sales according to Equation 8 and find significantly negative coefficient 

for the triple interaction term indicate that in the post-treatment period sales of carbapenems 

decreased for multinational firms in absolute value (Model 1). In our model we instrumented 

price with retailer margin. Model 2 shows multinational firms offered lesser bonus quantity to 

retailers compared to local firms, in the post-treatment period. We also estimated impact of 

NDM-1 publication on prescriptions as per Equation 9 and find that number of prescriptions 

of carbapenems produced by multinationals decreased in the post-treatment period (Model 3). 

Similarly, average number of prescriptions per physician (Model 4) also decreased for 

carbapenems produced by multinationals in the post-treatment period. Constant term is 

included in all the specifications but not reported. Time horizon is April 2007- October 2013. 

 (1) (2) (3) (4) 

 log 

 (Sales) 

Invsine 

(Bonus) 

log 

(Prescriptions) 

log 

(Prescription 

per 

Physician) 

Log (Price) -0.3228**    

 (0.1452)    

     

MNC × NDMdummy 0.8045** 1.2301 0.0455 0.2301 

 (0.3380) (0.8980) (0.2761) (0.2107) 

     

NDMdummy ×  Carbapenem 0.7105*** 0.8314 0.9073*** -0.3711 

 (0.1835) (0.5208) (0.2335) (0.2744) 

     

MNC ×  NDMdummy ×  Carbapenem -1.0394*** -4.0140*** -1.4791*** -1.2693*** 

 (0.3908) (1.4190) (0.5657) (0.3288) 

     

Time dummies Yes Yes Yes Yes 

     

Molecule dummies Yes Yes Yes Yes 

     

Firm dummies Yes Yes Yes Yes 

     

 Molecule × Calendarmonth dummies Yes Yes Yes Yes 

     

  Molecule × Firm dummies Yes Yes Yes Yes 

R2 0.02 0.01 0.86 0.51 

First stage F 520.24    

N 15047 15050 6232 6232 
Note: Robust clustered standard errors at the molecule-firm level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table 5. Vintage Effect - Multinational Shares in Sales, Monetary sales and Prescriptions 

fall more in newer Carbapenems after NDM-1 discovery. We estimate multinationals’ 

market shares as per Equation 7 for with subsample of newer and older carbapenems in terms 

of sales and monetary sales and find that the market share decreased significantly post the 

publication of NDM-1 article more in newer carbapenems (Models 1 and 2) compared to older 

carbapenems (Models 3 and 4). The same feature is seen more aggressively in prescription 

patterns (Models 5 and 6). Constant term is included in all the specifications but not reported. 

Time horizon is April 2007- October 2013. All models have been estimated via fractional probit 

specification. 

 

 (1) (2) (3) (4) (5) (6) 

 MNCshare (sales) 

(newer     

   carbapenems) 

MNCshare 

(monetary 

sales) (newer 

carbapenem) 

MNCshare 

(sales) (older 

carbapenems) 

MNCshare 

(monetary 

sales) (older 

carbapenems) 

Prescription 

share (newer 

carbapenems) 

 

Prescription

share (older 

carbapenems) 

 

       

NDMdummy -0.2923 -0.3870 -0.3072 -0.3694** 2.2926*** 3.4384*** 

 (0.3114) (0.2925) (0.2063) (0.1726) (0.7679) (0.7670) 

       

Carbapenem 0.4832* 0.5243** 4.1933*** 4.3066*** 13.2898*** 2.1961** 

 (0.2602) (0.2660) (0.2076) (0.2136) (0.9205) (0.8948) 

       

NDMdummy ×  

Carbapenem 

-5.3337*** -5.2912*** -0.4342*** -0.3149** -12.1298*** -1.7108 

(0.1818) (0.1817) (0.1273) (0.1278) (0.9489) (1.0545) 

       

Total monetary 

sales 

0.0015 0.0013 0.0026*** 0.0030***   

(0.0018) (0.0016) (0.0005) (0.0004)   

       

Time dummies  Yes Yes Yes Yes Yes Yes 

       

Molecule 

dummies  

Yes Yes Yes Yes Yes Yes 

Log pseudo 

likelihood 

-156.29 -139.93 -218.49 -204.69 -17.65 -28.82 

N 1150 1150 1233 1233 629 690 
Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01. 
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Table 6a.  Robustness of Baseline Results for sales after accounting for Regional 

Heterogeneity. Even after accounting for regional heterogeneity expanding the unit of 

observation at the regional level within India, multinationals’ market share in carbapenems is 

seen to be significantly reduced in the post-treatment period in both OLS (Models 1 to 3) and 

fractional probit estimation (Models 4 to 6) with respect to sales. Constant term is included in 

all the specifications but not reported. Time horizon is April 2007- October 2013. 

 (1) (2) (3) (4) (5) (6) 

 MNCshare 

(sales) 

(OLS) 

MNCshare 

(sales) 

(OLS) 

MNCshare 

(sales) 

(OLS) 

MNCshare 

(sales) 

(fractional 

logit) 

MNCshare 

(sales) 

(fractional 

logit) 

MNCshare 

(sales) 

(fractional 

logit) 

NDMdummy 0.0000 0.0000 0.0000 -0.2423** -0.2698** -0.5988* 

 (.) (.) (.) (0.1111) (0.1284) (0.3236) 

       

Carbapenem 0.0000 0.0000 0.0000 5.0376** 0.6827* 0.5116 

 (.) (.) (.) (1.9969) (0.3616) (0.4294) 

       

NDMdummy 

×  Carbapenem 

-0.1490*** -0.1406*** -0.1393*** -0.5633*** -0.5856*** -0.5825*** 

(0.0247) (0.0241) (0.0241) (0.0992) (0.1102) (0.1037) 

       

Total 

monetary sales 

0.0056*** 0.0035* 0.0037*    

(0.0016) (0.0021) (0.0020)    

       

Geography  

dummies  

Yes Yes Yes Yes Yes Yes 

Molecule-

Geography 

dummies  

No Yes Yes No Yes Yes 

Geography-

Time dummies 

No No Yes No No Yes 

R2 0.78 0.86 0.87    

Log pseudo 

likelihood 

   -5464.03 -4783.45 -4608.88 

N 22540 22528 22528 22540 22540 22540 
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Table 6b.  Robustness of Baseline Results in terms of monetary sales after accounting 

for Regional Heterogeneity. Even after accounting for regional heterogeneity expanding the 

unit of observation at the regional level within India, multinationals’ market share in 

carbapenems is seen to be significantly reduced in the post-treatment period in both OLS 

OLS (Models 1 to 3) and fractional probit estimation (Models 4 to 6) with respect to 

monetary sales. Constant term is included in all the specifications but not reported. Time 

horizon is April 2007- October 2013. 

 (1) (2) (3) (4) (5) (6) 

 MNCshare 

(monetary 

sales) (OLS) 

MNCshare 

(monetary 

sales) 

(OLS) 

MNCshare 

(monetary 

sales) 

(OLS) 

MNCshare 

(monetary 

sales) 

(fractional 

logit) 

MNCshare 

(monetary 

sales) 

(fractional 

logit) 

MNCshare 

(monetary 

sales) 

(fractional 

logit) 

NDMdummy 0.0000 0.0000 0.0000 -0.2973*** -0.3332** -0.9559*** 

 (.) (.) (.) (0.1140) (0.1319) (0.2841) 

       

Carbapenem 0.0000 0.0000 0.0000 4.8518 0.5215 0.4141 

 (.) (.) (.) (.) (0.3643) (0.4383) 

       

NDMdummy 

×  Carbapenem 

-0.1209*** -0.1122*** -0.1112*** -0.4278*** -0.4325*** -0.4227*** 

(0.0257) (0.0251) (0.0252) (0.1039) (0.1153) (0.1099) 

       

Total 

monetary sales 

0.0056** 0.0037* 0.0039*    

(0.0019) (0.0024) (0.0023)    

       

Geography  

dummies  

Yes Yes Yes Yes Yes Yes 

Molecule-

Geography 

dummies  

No Yes Yes No Yes Yes 

Geography-

Time dummies 

No No Yes No No Yes 

R2 0.79 0.87 0.88    

Log pseudo 

likelihood 

   -5260.68 -4611.71 -4429.51 

N 22540 22528 22528 22540 22540 22540 

Note: Robust clustered standard errors at the Molecule-Geography level in parentheses; * p<.1, ** p<.05, *** p<.01. All 
models include time and molecule fixed effects
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Table 7. Robustness of Baseline Results with Alternate Control Group of Other Broad 

Spectrum Antibiotics. Instead of narrow spectrum antibiotics, here we consider broad 

spectrum antibiotics (86 molecules) other than carbapenem itself, to constitute the control 

group and estimate impact of NDM-1 publication on MNCshare (Equation 7) Since this is a 

within group comparison, the effects are expected to be muted. We see that multinationals’ 

sales share in carbapenem has decreased significantly (Models 1 and 2), the results for 

monetary sales share are negative but insignificant (Models 3 and 4). Constant term is included 

in all the specifications but not reported. Time horizon is April 2007- October 2013. 

 

 (1) (2) (3) (4) 

 MNCshare (sales) 

(OLS) 

MNCshare (sales) 

(fractional probit) 

MNCshare 

(monetary sales) 

(OLS) 

MNCshare 

(monetary sales) 

(fractional 

probit) 

NDMdummy 0.0000 -0.3928 0.0000 -0.3532 

 (.) (0.2427) (.) (0.2357) 

     

Carbapenem 0.0000 -1.0567*** 0.0000 -1.0789*** 

 (.) (0.2583) (.) (0.2840) 

     

NDMdummy ×  

Carbapenem 

-0.1146** -0.4040* -0.0933 -0.3309 

(0.0533) (0.2235) (0.0606) (0.2491) 

     

Total monetary 

sales 

0.0000 0.0003 0.0000 0.0004 

(0.0001) (0.0006) (0.0001) (0.0006) 

     

Time dummies  Yes Yes Yes Yes 

     

Molecule 

dummies  

Yes Yes Yes Yes 

R2 0.94  0.95  

Log pseudo 

likelihood 

 -1299.14  -1343.92 

N 6057 6057 6057 6057 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Online Appendix  

Figure A1. Carbapenems and Narrow-spectrum Antibiotics Sales during pre- and post-

treatment periods (separated by the vertical line) in the US market. The quantity difference 

between carbapenems and narrow spectrum remain stable, apart from a dip in the carbapenem 

sales  

in the beginning of the observed time period. However, there is no visible impact of the NDM-

1 shock on the US market. The x-axis denotes the number of months (data spans from April 

2007 to October 2013 i.e. over 79 months) and y-axis denotes sales in standard units 

(logarithm). Source: IQVIA US drug sales database. 
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Figure A2. Multinational Share in Sales and Monetary terms during pre- and post-

treatment periods (separated by the vertical line) in the Carbapenems and Narrow-

spectrum Antibiotics Market, without the newly introduced molecule (Ertapenem). As in 

the full sample, multinational market shares show a steep decline both in terms of sales (left 

panel) and monetary sales (right panel) in the post-treatment period while the corresponding 

share in the market for narrow spectrum antibiotics remain stable. The x-axis denotes the 

number of months (data spans from April 2007 to October 2013 i.e. over 79 months). Source: 

AIOCD Pharmatrac. 
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Table A1. Molecule Classification based on ATC-code 

Molecule ATC_code Classification 

US FDA 

Approval 

year 

US patent 

year 

structure 

AMBROXOL + CEFADROXIL J01DB05 narrow-spectrum 
Before 1982 1978 First-generation cephalosporins 

CEFADROXIL + CLAVULANIC ACID J01DB05 narrow-spectrum 
Before 1982 1978 First-generation cephalosporins 

CEFADROXIL + LACTOBACILLUS ACIDOPHILUS J01DB05 narrow-spectrum 
Before 1982 1978 First-generation cephalosporins 

CEFADROXIL + PROBENECID J01DB05 narrow-spectrum 
Before 1982 1978 First-generation cephalosporins 

CEFADROXIL COMBINATIONS J01DB05 narrow-spectrum 
Before 1982 1978 First-generation cephalosporins 

CEFADROXIL J01DB05 narrow-spectrum 
Before 1982 1978 First-generation cephalosporins 

CEFALEXIN + BROMHEXINE J01DB01 narrow-spectrum 
Before 1982 1975 First-generation cephalosporins 

CEFALEXIN + CARBOCISTEINE J01DB01 narrow-spectrum 
Before 1982 1975 First-generation cephalosporins 

CEFALEXIN + PROBENECID J01DB01 narrow-spectrum 
Before 1982 1975 First-generation cephalosporins 

CEFALEXIN J01DB01 narrow-spectrum 
Before 1982 1975 First-generation cephalosporins 

CEFAZOLIN J01DB04 narrow-spectrum 
Before 1982 1967 First-generation cephalosporins 

CLOXACILLIN J01CF02 narrow-spectrum 
Before 1982 1962 First-generation cephalosporins 

DICLOXACILLIN J01CF01 narrow-spectrum 
Before 1982 1971 Beta-lactamase resistant penicillins 

DORIPENEM J01DH04 carbapenem 
2007 1994 Carbapenems 

ERTAPENEM J01DH03 carbapenem 
2001 1993 Carbapenems 

ERYTHROMYCIN J01FA01 narrow-spectrum 
1985 1966 Macrolides 

IMIPENEM + CILASTATIN J01DH51 carbapenem 
1985 1975 Carbapenems 

MEROPENEM + SULBACTAM J01DH02 carbapenem 
1996 1983 Carbapenems 

MEROPENEM J01DH02 carbapenem 
1996 1983 Carbapenems 

PENICILLIN G J01CE01 narrow-spectrum 
Before 1982 NA Beta-lactamase sensitive penicillins 

PENICILLIN V J01CE02 narrow-spectrum 
Before 1982 NA Beta-lactamase sensitive penicillins 
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Table A2: Antibiotic Classification (orange denotes Broad-spectrum, blue denotes Carbapenems and yellow denotes Narrow-spectrum) 

J01A TETRACYCLINES 

J01AA Tetracyclines 

(1950s)      

J01B AMPHENICOLS 

J01BA Amphenicols 

(1950s)      

J01C BETA-LACTAM 

ANTIBACTERIALS, 

PENICILLINS 

J01CA Penicillins with 

extended spectrum 

(1950s) 

J01CE Beta-

lactamase sensitive 

penicillins (1940s) 

J01CF Beta-

lactamase resistant 

penicillins (1960s) 

J01CG Beta-

lactamase 

inhibitors 

(1970s) 

J01CR Combination

s of penicillins, incl. 

beta-lactamase 

inhibitors  

J01D OTHER BETA-

LACTAM 

ANTIBACTERIALS 

J01DB First-generation 

cephalosporins (1960s) 

J01DC Second-

generation 

cephalosporins 

(1970s) 

J01DD Third-

generation 

cephalosporins 

(1980s) 

J01DE Fourth-

generation 

cephalosporins 

(1980s) 

J01DF Monobactam

s (1980s) 

J01DH Carbapenem

s (1980s) 

J01E SULFONAMIDES 

AND TRIMETHOPRIM 

J01EA Trimethoprim 

and derivatives (1960s) 

J01EB Short-acting 

sulfonamides 

1940s) 

J01EC Intermediate-

acting sulfonamides 

(1960s) 

J01ED Long-

acting 

sulfonamides 

(1960s) 

J01EE Combination

s of sulfonamides 

and trimethoprim, 

incl. derivatives  

J01F MACROLIDES, 

LINCOSAMIDES AND 

STREPTOGRAMINS 

J01FA Macrolides 

(1950s) 

J01FF Lincosamide

s (1960s) 

J01FG Streptogramin

s (1990s)    

J01G AMINOGLYCOSID

E ANTIBACTERIALS 

J01GA Streptomycins 

(1960s) 

J01GB Other 

aminoglycosides     
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J01M QUINOLONE 

ANTIBACTERIALS 

J01MA Fluoroquinolone

s (1960s) 

J01MB Other 

quinolones     

J01R COMBINATIONS 

OF ANTIBACTERIALS 

J01RA Combinations of 

antibacterials      

J01X OTHER 

ANTIBACTERIALS 

J01XA Glycopeptide 

antibacterials (1980s) 

J01XB Polymyxins 

(1970s) 

J01XC Steroid 

antibacterials (1960s) 

J01XD Imidazol

e derivatives 

(1960s) 

J01XE Nitrofuran 

derivatives (1950s) 

J01XX Other 

antibacterials 

 

 



Table A3: Robustness of Baseline Results in Truncated Sample. This table provides the 

findings from a truncated sample with an 18 months pre and 18 months post truncated sample 

as per Equation 7. Results are consistent with our baseline findings in Table 3, where there 

continues to be decrease in multinationals’ market share both in terms of sales and monetary 

sales. Constant term is included in all the specifications but not reported. Time horizon is April 

2009 to March 2012, i.e. 3 years in total. 

 (1) (2) (3) (4) (5) 

 MNCshare 

(sales) 

(OLS) 

MNCshare 

(sales) 

(fractional 

probit) 

MNCshare 

(monetary 

sales) (OLS) 

MNCshare 

(monetary 

sales) 

(fractional 

probit) 

Prescription 

share 

(fractional 

probit) 

NDMdummy 0.0000 -0.0386 0.0000 -0.0379 1.9746 

 (.) (0.1357) (.) (0.1402) (1.5489) 

      

Carbapenem 0.0000 0.5642 0.0000 0.5392 4.3304** 

 (.) (0.4417) (.) (0.4725) (1.8183) 

      

NDMdummy ×  

Carbapenem 

-0.0728** -0.3573* -0.0615 -0.3125 -5.1442*** 

(0.0325) (0.2139) (0.0365) (0.2290) (1.7228) 

      

Total monetary 

sales 

0.0008* 0.0051 0.0009* 0.0056  

(0.0005) (0.0032) (0.0005) (0.0036)  

      

Time dummies  Yes Yes Yes Yes Yes 

      

Molecule 

dummies  

Yes Yes Yes Yes Yes 

R2 0.98  0.99   

Log pseudo 

likelihood 

 -105.73  -99.24 -10.19 

N 601 602 601 602 311 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table A4: Robustness of Baseline Results with wild cluster bootstrap error. We have 

replicated the same model estimation with wild clustered bootstrap error. P-value for 

coefficient of interest NDMdummy × Carbapenem are reported separately for OLS model. 

Overall our results are robust even with wild cluster bootstrap error (p-value .001 and .036). 

We have also controlled for number of firms and our results remain consistent and significant. 

Constant term is included in all the specifications but not reported. Time horizon is April 2007- 

October 2013. 

 

 (1) (2) (3) (4) (5) 

 MNCshare 

(sales) 

 (OLS) 

MNCshare 

 (sales) 

(fractional probit) 

MNCshare 

(monetary 

sales) (OLS) 

MNCshare 

(monetary 

sales) 

(fractional 

probit) 

Prescription 

share (fractional 

probit) 

      

NDMdummy -0.0643 -0.0636* -0.6016** -0.6667** 4.5358*** 

 (0.0379) (0.0363) (0.2669) (0.2654) (1.4715) 

      

Carbapenem 0.1484*** 0.1434** 4.3801*** 4.6481*** 4.2116*** 

 (0.0495) (0.0571) (0.2904) (0.3120) (1.0533) 

      

NDMdummy ×   -0.1133** -0.0920* -0.3865* -0.3324* -4.7347*** 

Carbapenem (0.0408) (0.0462) (0.2020) (0.1900) (1.4736) 

      

Total Monetary 

Sales 

0.0007*** 0.0007*** 0.0041*** 0.0048***  

(0.0001) (0.0002) (0.0013) (0.0017)  

      

Number of firms -0.0023 -0.0020 -0.0168* -0.0150  

 (0.0015) (0.0014) (0.0102) (0.0101)  

      

Time dummies  Yes Yes Yes Yes Yes 

      

Molecule dummies Yes Yes Yes Yes Yes 

R2 .96 .97    

Log pseudo 

likelihood 

  -244.10 -230.82 -32.66 

wildbootpvalue 0.0010 0.0360    

N 1331 1331 1331 1331 708 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table A5: Robustness Of Baseline Results with Alternate Control Group of all other 

Antibiotics (WHO ATC J01 class). Instead of narrow spectrum antibiotics, we consider all 

other antibiotics other than carbapenems itself, to constitute the control group. Since this is a 

within group comparison, the effects are expected to be muted. We see that multinationals’ 

sales share in carbapenems has decreased significantly (Models 1 and 2), the results for 

monetary sales share (Model 3 and 4) and Prescriptionshare (Model 5) are negative but 

insignificant. Constant term is included in all the specifications but not reported. Time horizon 

is April 2007- October 2013. 

 

 (1) (2) (3) (4) (5) 

 MNCshare 

 (sales) 

 (OLS) 

MNCshare 

 (sales) 

 (fractional 

probit) 

MNCshare 

(monetary 

sales) (OLS) 

MNCshare 

(monetary 

sales) 

(fractional 

probit) 

Prescription 

share 

(fractional 

probit) 

NDMdummy 0.0000 -0.3104** 0.0000 -0.2961* -0.3034*** 

 (.) (0.1559) (.) (0.1519) (0.1173) 

      

Carbapenem 0.0000 4.6156*** 0.0000 4.7825*** 0.5484*** 

 (.) (0.2785) (.) (0.3005) (0.1483) 

      

NDMdummy ×  

Carbapenem 

-0.1142** -0.4076* -0.0917 -0.3260 -1.4535 

(0.0527) (0.2217) (0.0601) (0.2475) (1.1067) 

      

Total monetary 

sales 

0.0000 0.0004 0.0001 0.0006  

(0.0001) (0.0005) (0.0001) (0.0005)  

      

Time dummies  Yes Yes Yes Yes Yes 

      

Molecule 

dummies  

Yes Yes Yes Yes Yes 

R2 0.93  0.93   

Log pseudo 

likelihood 

 -2246.52  -2321.69 -1963.14 

N 10426 10426 10426 10426 8785 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table A6: Robustness of Baseline Results without Ertapenem (the molecule with zero 

presence of MNCs). In this exercise, we replicate the main estimation (Equation 7) exercise 

by taking out Ertapenem from the group of molecules. The reason is that Ertapenem was 

introduced in 2010 and were sold exclusively by domestic firms, thereby potentially biasing 

the MNC shares. All results continue to hold in the truncated sample. Constant term is included 

in all the specifications but not reported. Time horizon is April 2007- October 2013. 

 

 (1) (2) (3) (4) 

 MNCshare 

 (sales) 

 (OLS) 

MNCshare 

 (sales) 

 (fractional 

probit) 

MNCshare 

(monetary 

sales) (OLS) 

MNCshare 

(monetary 

sales) 

(fractional 

probit) 

NDMdummy 0.0000 -0.5292* 0.0000 -0.6089** 

 (.) (0.2775) (.) (0.2663) 

     

Carbapenem 0.0000 4.5051*** 0.0000 4.6638*** 

 (.) (0.3518) (.) (0.3833) 

     

NDMdummy ×  

Carbapenem 

-0.1538*** -0.6500*** -0.1266** -0.5656** 

(0.0504) (0.2177) (0.0589) (0.2392) 

     

Total monetary 

sales 

0.0007*** 0.0040*** 0.0007*** 0.0047*** 

(0.0001) (0.0013) (0.0002) (0.0016) 

     

Time dummies  Yes Yes Yes Yes 

Molecule 

dummies  

Yes Yes Yes Yes 

R2 0.96  0.97  

Log pseudo 

likelihood 

 -244.77  -231.32 

N 1286 1286 1286 1286 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table A7: Robustness of Baseline Results with respect to Placebo Treatment date (before 

the actual treatment). In this exercise, we replicate the main estimation (Equation 7) with an 

additional alternate placebo treatment dated April 2008, to rule out pre-trends. The first 

appearance of the NDM-1 was in April 2008 which may potentially create a treatment effect 

before the Lancet publication, resulting in a pre-trend. The results are pre-dominantly 

insignificant with the OLS estimates (Models 1 and 3) or marginally significant with the 

fractional probit estimates (Models 2 and 4). Constant term is included in all the specifications 

but not reported. Time horizon is April 2007- October 2013. 

 

 (1) (2) (3) (4) 

 MNCshare 

 (sales) 

 (OLS) 

MNCshare 

 (sales) 

 (fractional 

probit) 

MNCshare 

(monetary 

sales) (OLS) 

MNCshare 

(monetary sales) 

(fractional 

probit) 

     

Placebotreatmentapril2008 0.0000 -0.0726 0.0000 -0.1243 

 (.) (0.1670) (.) (0.1802) 

     

Carbapenem 0.0000 4.7091*** 0.0000 4.9197*** 

 (.) (0.3436) (.) (0.3636) 

     

Placebotreatmentapril2008 

×  Carbapenem 

-0.0547 -0.2734 -0.0316 -0.2159 

(0.0395) (0.1986) (0.0432) (0.1728) 

     

NDMdummy 0.0000 -0.3904* 0.0000 -0.4307* 

 (.) (0.2308) (.) (0.2413) 

     

NDMdummy ×  Carbapenem -0.1253** -0.5859** -0.1062 -0.5162** 

 (0.0580) (0.2428) (0.0651) (0.2634) 

     

Total monetary sales 0.0006*** 0.0041*** 0.0006*** 0.0048*** 

 (0.0002) (0.0014) (0.0002) (0.0017) 

     

Time dummies  Yes Yes Yes Yes 

     

Molecule dummies Yes Yes Yes Yes 

R2 .96  .96  

Log pseudo 

likelihood 

 -244.60  -231.22 

N 1331 1331 1331 1331 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  
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Table A8: Discovery of NDM-1 does not Impact US Markets for Antibiotics.  We estimate 

the main model with the US data with impact on overall sales (in standard units) and revenue 

(US $) for the matched list of four carbapenem molecules and six narrow-spectrum molecules. 

The results are insignificant indicating there is no response to NDM-1 publication in the US 

market. Constant term is included in all the specifications but not reported. Time horizon is 

April 2007- October 2013. 

 

 (1) (2) 

 log (Sales (US)) log (Revenue (US)) 

NDMdummy 0.0000 0.0000 

 (.) (.) 

   

Carbapenem 0.0000 0.0000 

 (.) (.) 

   

NDMdummy × 

Carbapenem 

-0.2404 0.0754 

(0.4015) (0.3636) 

   

Time dummies Yes Yes 

   

Molecule 

dummies 

Yes Yes 

R2 0.93 0.86 

N 779 780 

Note: Robust clustered standard errors at the molecule level in parentheses; * p<.1, ** p<.05, *** p<.01.  

 

 

 




