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ABSTRACT

Unlike demand studies in other industries, models of provider demand in health care often must 
omit a price or any other factor that equilibrates the market. Estimates of the consumer response 
to quality may consequently be attenuated, if the limited capacity of individual providers prevents 
some consumers from obtaining higher quality. We propose a tractable method to address this 
problem by adding a congestion effect to standard discrete-choice models. We show analytically 
how this improves forecasts of the consumer response to quality. We then apply this method to 
the market for heart surgery, and find that the attenuation bias in estimated quality effects can be 
important empirically.
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How demand responds to quality is a major concern in healthcare markets.  The 

economics literature often points to low responsiveness to quality as a source of inefficiency, and 

a variety of public quality measures have been adopted in attempts to improve market 

allocations.1  However, healthcare markets are unusual in that consumers often do not face the 

full prices of the products or services they acquire, and this has important implications for 

demand estimation.  Without a price or other equilibrating factor in consumer utility, estimates of 

the effect of quality on demand may be biased toward zero and demand forecasts may similarly 

be attenuated, when standard discrete-choice models are used.  This is particularly relevant for 

studies on the demand for individual providers, such as in the literature on the effects of public 

“report cards” for heart surgeons.  Because of the usual institutional features and data limitations, 

several important studies in that literature have estimated discrete-choice models without 

equilibrating factors such as prices or wait times, and so their conclusions may be partially 

affected by this attenuation bias.  As a consequence, the value of investments in provider quality 

may be greater than indicated by these and similar results, because the market response to quality 

improvements may be greater than their models would predict. 

The intuition behind the potential attenuation bias is simple: if more patients want to see 

providers of higher quality, but the providers have limits on the number of patients they can 

treat—e.g., some form of capacity constraints—then higher quality providers may be harder to 

see.  Hence there may be a congestion effect among patients, which does not appear in standard 

models.  A market-clearing price or wait times would capture this effect, but the price may not 

exist and good data on wait times are often not available.  Absent an equilibrating factor such as 

these in the demand model, the congestion effect could generate a downward bias in the estimate 

of the effect of a quality measure on demand (or the effect any desirable characteristic, for that 

matter).  In theory, this bias could be present any time the supply from individual providers is not 

perfectly elastic, because the negative spillover from the congestion effect would be larger for 

higher quality providers.  It is natural to expect the supply from individual producers of skilled 

services would not be perfectly elastic, because of fixed capacity or time constraints, or any other 

 
1 Surveys by Kolstad and Chernew (2009), Dranove (2011), and Skinner (2011) discuss the limited response to 
quality in healthcare markets, although recent work by Chandra et al. (2016) provides important evidence of a 
positive relationship between hospital quality and market shares.  Public “report cards” have been issued on 
physicians, hospitals, and insurance plans since the 1990s (e.g., surgeon report cards in Pennsylvania and New York, 
Medicare’s “Hospital Compare,” and National Committee for Quality Assurance ratings). 



3 

source of increasing marginal costs.  Hence this issue would be particularly relevant for studies 

about the effect of quality on demand for individual specialists. 

Without an equilibrating factor, the standard models of provider choice cannot be 

interpreted structurally as representing consumer demand (unless supply is perfectly elastic).2  

Instead, these models fit the equilibrium probabilities that patients with certain characteristics 

receive services from physicians with certain characteristics.  Fitting and forecasting these 

probabilities is nevertheless important, for example to measure the consumer responsiveness to 

quality and to predict the effect of quality improvements on patient outcomes.  However, as we 

show, without accounting for the congestion effect among patients, forecasts of changes in 

equilibrium outcomes given changes in the quality or number of physicians in a market are also 

systematically biased—not just the parameter estimates themselves.  For some intuition, consider 

a simple example where a multinomial logit is used for an entry simulation.  Suppose the model 

includes an observable quality measure (e.g., the 30-day mortality rate of patients in the prior 

year) but no equilibrating factor.  Then, if each provider were “cloned” (i.e., the number of 

alternatives were doubled, with identical characteristics) the model would predict that the market 

share for each original physician would be cut in half, and the clones would have the same 

market shares as their originals.3  There would be no aggregate shift toward higher quality 

physicians, even though there is a large increase in supply relative to demand.  This is clearly 

contrary to economic intuition.  Our goal in this paper is to understand and address this problem. 

We propose a relatively simple and tractable way to incorporate a congestion effect 

among consumers into discrete-choice models of provider choice, and thereby to obtain more 

accurate estimates of the effects of changes in provider quality on equilibrium outcomes.  The 

approach is to include the number or proportion of patients treated by each provider in a market 

as an explanatory variable in the model.  In a similar spirit as Ackerberg and Rysman (2005), we 

develop a stylized equilibrium model that would yield this specification—a queuing model 

where wait times are linear in the number of patients—but our emphasis is on the improvement 

in forecasts of changes in market shares given changes in quality.  We argue that these 

counterfactual forecasts can be useful even if the structural interpretation is not maintained, and 

 
2 Consequently, for example, such models should not be used to compute consumer welfare. 
3 This is not simply a consequence of the IIA assumption; we find the same result in simulations with a mixed logit 
model in Section 3.3. 
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in the application we show that the improvements are empirically relevant.  Naturally, this 

approach is not needed if complete data on wait times are available, but typical sources (e.g., 

claims or discharge records) do not show a patient’s prospective wait times at every provider in 

the market. 

Our econometric specification and estimation procedure is based on Bayer and Timmins 

(2007), which develops an equilibrium discrete-choice model for location choices.  Their 

framework is similar to the demand model from Berry, Levinsohn, and Pakes (1995), but it 

replaces the price of each alternative with a peer effect that reflects various possible spillovers 

(positive or negative) among household or firms at the same location.  In our case, this spillover 

is the negative congestion effect among patients seeking services from the same provider.  As 

with prices in the Berry et al. (1995) framework, the peer effect (e.g., the market share of each 

alternative) is endogenous and requires an instrument.  In models of provider choice, the 

distances between patients and providers in a market offer a natural instrument.  While the 

distance between a patient and a given provider directly affects the propensity to see that 

provider, the distances between other patients and that provider only affect the propensity 

through that provider’s patient volume.  Our empirical application demonstrates the performance 

of this instrument.  Additionally, we show that the two-step estimation procedure from Bayer and 

Timmins (2007) can be implemented using standard commands in econometric software such as 

Stata, making this approach readily available for applied research. 

We then use this method to estimate quality effects in the market for heart surgery, a 

context where there appears to be meaningful variation in provider quality and where highly 

relevant quality measures (surgeon-level mortality rates) have been collected and publicized in 

several states.4  There is a substantial literature on this topic, and several important studies have 

applied discrete-choice models to estimate the effect of publicly-reported quality measures on the 

demand for heart surgeons (e.g., Dranove and Sfekas 2008, Epstein 2010, Wang et al. 2011, 

Kolstad 2013, Gaynor et al. 2016).5  The results in this literature are consistent with a possible 

congestion effect limiting patients’ ability to see higher quality surgeons.  In particular, Dranove 

and Sfekas (2008) and Wang et al. (2011) find that low quality scores have negative effects on 

 
4 To be clear, our paper is about the market response to quality, not the effect of public reporting per se. 
5 Gaynor et al. (2016) include a measure of wait times. Other important studies such as Dranove et al. (2003) do not 
involve demand estimation and forecasts, so they would not be impacted by the congestion effect considered here. 
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market share, but high quality scores do not have positive effects.  This suggests that capacity 

constraints may be limiting the ability of high-quality surgeons to increase their supply, but may 

not be affecting low-quality surgeons because they are not binding.  On the other hand, Chandra 

et al. (2016) estimate a stronger relationship between hospital quality and market share in cardiac 

care.  This would be consistent with a smaller congestion effect for hospitals, because capacity 

constraints are less likely to be binding for organizations than for individual physicians.   

Using data from Pennsylvania, our analysis finds a large congestion effect for heart 

surgeons, and it shows that the attenuation bias in estimates of the market response to quality can 

be economically important.  In one regional market, the estimated quality parameter is biased 

downward by 40% to 80%, and a standard model without congestion underpredicts the aggregate 

consumer response to surgeon quality improvements by 25% or more.  This suggests that the 

returns to investments in provider quality may be greater than what is indicated by models that 

do not account for a potential congestion effect among patients.  In two other regional markets, 

we do not find a significant response to provider quality overall (although we do find a modest 

response by patients with more comorbidities).  In those two markets, interestingly, we see 

evidence that referrals for heart surgery are more likely to be kept within health systems, which 

may limit patients’ ability to see higher quality surgeons (see, e.g., Baker, Bundorf, and Kessler 

2016, and Gaynor, Propper, and Seiler 2016). 

To be clear, we are not the first to recognize the potential importance of supply 

constraints in this context.  Mukamel, Weimer, and Mushlin (2007) and Epstein (2010) also note 

that typical models of demand for heart surgery do not account for supply constraints and may 

therefore produce biased estimates.  However they do not propose a method to address the issue.  

Ching, Hayashi, and Wang (2015) develop a novel demand model based on the Berry et al. 

(1995) framework that allows for fixed capacity constraints, and they apply it to nursing 

homes—another context where variation in quality is thought to be important.  For identification 

their model requires that there is a known market segment where the constraints do not bind and 

the prices are observed (in their case, private-pay patients), which may be restrictive in other 

applications.  In contexts that are substantially different from ours, Conlon and Mortimer (2013) 

and Geyer and Seig (2013) develop other methods to estimate discrete-choice models where 

consumers face unobserved limitations in supply (e.g., stock outs and wait lists).6  Last, although 

 
6 Carlton (1989) provides a summary of earlier work on non-price market clearing mechanisms. 
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not on demand estimation, Cutler, Huckman, and Kolstad (2010) consider the impact of the 

supply of heart surgeons on hospital entry into the heart surgery market, and they find evidence 

that the relatively inelastic supply of surgeons has affected entry. 

In what follows, there are three main sections.  The first develops our approach: it 

extends a standard discrete-choice model of provider choice to include a congestion effect, then 

presents an equilibrium model that would yield this specification, and finally describes the 

estimation procedure.  The second section analyzes the potential attenuation bias in forecasts 

from standard models and provides a simple numerical example.  The third section presents the 

empirical analysis, which uses data on heart surgeries in Pennsylvania in 2010 and 2011. 

 

1. Model and Estimation 

 The market in our application consists of three sets of individuals: patients, referring 

physicians (cardiologists), and specialists (heart surgeons).  The specialists are the providers 

being chosen.  Their supply decisions are not modeled, but we assume that they have increasing 

marginal costs, so their supply is not perfectly elastic and hence a congestion effect may be 

present.  Also, in the background we have in mind a matching process, where the equilibrium 

probability that a patient sees a particular specialist depends on the payoffs on both sides, and so 

we refer to outcomes in terms of matches and match probabilities. 

To develop the model we start with a standard discrete-choice framework.  The utility 

that patient i would obtain from specialist j is a function of a quality measure, !", other specialist 

characteristics, #", and observable attributes of the patient-specialist pair, $%", such as distance, 

along with an unobservable term, &%".  We also incorporate information about the referring 

physician r by including attributes of the pair of physicians, $'", such as the distance between 

their offices and whether they attended the same medical school.7  Last, we allow for a common 

unobserved factor affecting the demand for specialist j, denoted (" (e.g., quality factors that are 

unobserved to the analyst).  With the standard linear specification, utility is thus 

 

)%'" = *+!" , #"-*. , $%"- */ , $'"- *0 , (" , &%'"12222222222345 
 

7 Under an assumption that referring physicians are perfect agents for their patients, these pairwise attributes might 
capture the effects of informational frictions, for example. 
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This can be interpreted as the utility that the referring physician r expects patient i to receive 

from specialist j. 

Specification (1) yields a probabilistic choice model, given some distribution for &.  

Assuming independent extreme value shocks yields the common multinomial logit model:8 

 

Pr36|{!78 #78 $%78 $'78 (7}79:25 = exp;*+!" , #"-*. , $%"- */ , $'"- *0 , ("<> exp3*+!7 , #7-*. , $%7- */ , $'7- *0 , (757 2822222222223?5 
 

where the set M collects the specialists available in patient i’s market.  However, this model only 

captures demand-side factors.  Notably absent, especially in comparison with similar models 

applied to other industries, is a price or any other equilibrating factor.  The insurance payments 

to heart surgeons, for example, are not highly relevant for consumer choices.  Nevertheless, as 

discussed in the introduction, it is important to account for the role of the supply side in 

determining equilibrium match probabilities.  A fully developed structural model would 

approach this by specifying the utility that surgeons receive from treating patients and then 

applying an equilibrium concept to predict market outcomes.  We do not model the supply side 

in this way, but rather we extend the probabilistic choice model (2) to include a congestion effect 

among patients.  In the next section we show that this specification could arise from a simple 

equilibrium queuing model.  However we believe the main value of this specification does not 

come from the possible structural interpretation.  Rather, this specification can capture the effects 

of specialist supply decisions and capacity constraints on equilibrium match probabilities in a 

simple and flexible manner, and thereby yield more accurate forecasts of changes in market 

shares given changes in provider quality. 

The congestion effect is incorporated by adding a measure of the specialist’s patient 

volume, @", to the model.  This can be specified as the number or proportion of patients treated in 

a given time period, or with a more complex measure that accounts for heterogeneity in capacity 

(e.g., due to academic or administrative responsibilities).  In the empirical analysis we use the 

proportion of patients treated by each surgeon (i.e., the market shares), because it is a common 

 
8 We also use a mixed logit model in the empirical analysis. 
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and easily interpreted measure.  When estimation is done within a single market, as in our 

analysis, this is essentially equivalent to using the number of patients.9 

Other factors that influence specialist utility and supply decisions may also be included in 

this extended model.  Particularly, because models of physician utility often include 

compensation (e.g., Ellis and McGuire 1986, Chandra, Cutler, and Song 2011), it would be 

natural to include the insurance payment to the specialist.  In our empirical application, the 

sample consists entirely of Medicare and Medicaid beneficiaries, so we can assume that 

payments are fairly uniform from each payer within each market.10  Therefore we can reasonably 

account for the effect of different insurance payment amounts on the match probabilities by 

including indicator(s) for insurance type—here we use an indicator for Medicaid coverage, A%.  
The main effect of this variable drops out, but its interactions with other variables are 

identifiable.   Specifically, we include the interaction of the Medicaid indicator with the 

surgeon’s volume, A%@", because we expect surgeons facing higher demand to be less likely to see 

patients whose insurance offers lower payments.11 

Given these extensions to (2), the econometric specification is as follows: 

 

Pr36|B8 C8 D5 = exp;*+!" , #"-*. , $%"- */ , $'"- *0 , E+@" , E.A%@" , ("<> exp3*+!7 , #7-*. , $%7- */ , $'7- *0 , E+@7 , E.A%@7 , (757 22222222223F5 
 

(here “B8 C8D” is shorthand for the characteristics of the patient, cardiologist, and all the surgeons 

in the market).  To be clear, the terms inside the exponents do not necessarily have a structural 

interpretation as patient utility.  Instead, this model is designed to measure and forecast the effect 

of quality on equilibrium match probabilities more accurately than models without an 

equilibrating factor.  The next section briefly describes a queuing model that would in fact 

provide a structural interpretation for this specification, while Sections 2 and 3 show how 

including the congestion effect improves forecasts of the market response to quality changes. 

 
9 Within each market, the proportion equals the number of patients divided by a constant (i.e., the total number of 
patients in the market), so the parameter is simply rescaled.  
10 We have verified this with our available data on payment amounts. 
11 Medicaid generally pays about 70% as much as Medicare (http://kff.org/medicaid/state-indicator/medicaid-to-
medicare-fee-index/).  
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1.1. Queuing model 

We develop a simple equilibrium queuing model that yields specification (3), because it 

is useful to have a clear economic interpretation for the congestion effect (i.e., a negative peer 

effect) in a model of provider choice.12  The model has similarities to a spatial equilibrium model 

with local spillovers, such as in Bayer and Timmins (2007), where individuals choose among a 

set of alternative locations, and equilibrium obtains when the population sizes that affect utility 

(e.g., @") equal the choice probabilities (e.g., Pr36|B8 C8D5).   
In this stylized model, all the patients in the market simultaneously choose a provider, 

and then they wait to be treated based on how many other patients chose the same provider.  

Specifically, suppose that the patients choose their surgeons in period 0, and the surgeons then 

treat one patient per period (e.g., day) from t = 1 to T.  Further suppose that patients are treated in 

random order, and the choice of surgeon is irrevocable.  Hence if the number of patients who 

choose surgeon j is Yj, the expected wait time for surgeon j is Yj/2 (this assumes Yj < T, for all j).   

The utility function (1) can be extended to include disutility from the wait time, Wij, 

which equals the period t when the patient is treated.  Then the utility that patient i receives from 

specialist j is 

 

)%'" = *+!" , #"-*. , $%"- */ , $'"- *0 , GH%" , (" , &%'"22222222223I5 
 

with G J K.  Because patients are treated in random order, they and their referring physicians 

consider the expected wait time, Yj/2, when choosing a surgeon.  A pure-strategy Nash 

equilibrium among patients then yields the match probabilities specified in (3), where E+ = G ?L  

(absent the insurance term, E.A%@").13  Moreover this equilibrium is unique because G J K (see 

Bayer and Timmins 2005). 

While this model is highly stylized, it shows how wait times (rather than prices) can clear 

a market for services from individual physicians.  Models where wait times or delivery lags serve 

 
12 Ackerberg and Rysman (2005) similarly use a stylized structural model to provide interpretation for their method, 
which also works by adding a variable to a standard discrete-choice model—in their case the number of alternatives. 
13 The insurance term would arise in a model where patients with different insurance types are given different 
positions in the queue.  For example, with two insurance types where one is relatively uncommon and its holders are 

treated last, the parameter E. would equal G. 
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as equilibrating mechanisms have been well developed in the theoretical literature since at least 

Zarnowitz (1962). 

1.2. Estimation with a congestion effect 

To estimate the model in equation (3), we use the two-step procedure developed by Bayer 

and Timmins (2007), which is similar to methods for estimating the Berry et al. (1995) demand 

model with micro data (e.g., Berry et al., 2004).  First a multinomial logit model is estimated that 

includes fixed effects for each provider.  Denoting these as M", the model is 

 

Pr36|B8 C8D5 = exp;M" , $%"- */ , $'"- *0 , E.A%@"<> exp3M7 , $%7- */ , $'7- *0 , E.A%@757 122222222223N5 
 

The remaining parameters are then estimated using the identity 

 

M" = *+!" , #"-*. , E+@" , (" 122222222223O5 
 

This defines a linear regression model for the provider fixed effects, which is estimated via two-

stage least squares because the measure of surgeon volume (@") is endogenous to the unobserved 

demand factors ((") by construction.14   

Following Bayer and Timmins (2007), the instrument for @" is a predicted market share, 

generated using a multinomial logit model with only the exogenous variables.  In other words, 

we estimate a logit like (2) without the unobserved factor (("), and use it to generate a predicted 

market share for each provider (e.g., @Q").  In our application, the crucial exogenous variation for 

the instrument comes from the distances between all the patients and providers in the market.  

While the distance between the reference patient i and provider j is included in the main model 

(3), the distances between all other patients and provider j are excluded and therefore can provide 

 
14 Note that, if the additive specification of the index within the probability model is correct, the endogeneity of the 

interaction term AR@"  is addressed by the surgeon fixed effects.  Hence E. can be consistently estimated in the first 

step where there are no instruments.  This also follows Bayer and Timmins (2007) and Berry et al. (2004). 
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identifying variation.15  The key identifying assumption is that the locations of patients and 

providers are exogenous.  This is a standard assumption in models of demand for healthcare 

providers (see Gaynor and Town 2011), and it may be less problematic than the common 

approach in other industries of using characteristics of competing products or services as 

instruments for prices. 

We also estimate an alternative specification of (5) as a mixed logit model, where the 

distance variables have random coefficients.16  For both specifications, the estimation of (6) uses 

weights that account for the variance of the estimated surgeon fixed effects.  These procedures 

are all readily available in Stata.  To generate predictions and counterfactuals from the estimated 

model, which requires computing new equilibrium market shares, we wrote a simple program in 

Stata that iterates on the vector of predicted market shares,  @Q , until convergence is achieved. 

 

2. Analysis of Forecast Bias 

This section demonstrates how discrete-choice models without an equilibrating factor can 

produce systematically biased forecasts of the market response to quality changes.  We provide 

an analytic result to show one way the bias can arise, and we use a numerical example to 

illustrate this and a similar result.  We also discuss more generally when the bias can occur, in 

regards to the identification approaches (i.e., data and estimation) used to generate the forecasts. 

Intuitively, the market shares of providers with substantial congestion (e.g., heart 

surgeons working at full capacity) should be less sensitive to changes in their competitive 

environment, because they have a surplus of potential customers.  We formalize this in the 

context of our model by showing that when a congestion effect is present, the (negative) 

substitution effect from quality improvements at other providers is smaller for providers with 

larger market shares, compared to the substitution effect predicted by a model without 

congestion.  This implies that the market shares of higher quality providers would remain larger 

than predicted by a standard model, because higher quality providers tend to have larger market 

shares initially.  As a consequence, forecasts from a standard model may underpredict the 

 
15 These distances between the other patients and the providers in the market represent additional information used 
by the congestion model over the standard model.  Hence the differences between the forecasts from the two models 
are driven by this additional information, not simply functional form. 
16 We also evaluated a version of (5) with random coefficients on all variables, but most of the estimated standard 
deviations for the random coefficients on the other variables were not statistically significant. 
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increase in the aggregate consumption of quality, given an increase in the quality of one or more 

individual providers in a market.  

To focus this analysis, we use a simplified version of model (3) where the quality 

measure (Q) is the only exogenous variable, and we assume the market shares (Y) are known.  

Accordingly, suppose the data are generated by the following model: 

 

@" = exp3*!" , E@"5> exp3*!7 , E@757 822222222223S5 
 

where * T K and E J K, and Yj is the market share of provider j.  However a standard model 

without a congestion effect is fit to the data: 

 

@" = exp3*U!"5
> exp3*U!757

122222222223V5 
 

We will show that the substitution effect from quality improvements at other providers (
dWX
dYZ) is 

relatively smaller for providers with larger market shares, in the true “congestion model” (7) 

compared to the predictions from the “standard model” (8).  Appendix A provides a similar 

analysis about the effect of entry, also showing that the substitution away from providers with 

larger market shares is relatively smaller than predicted by the standard model. 

First, a useful closed-form expression for *U  can be obtained from a linear regression of 

the log-ratio of market shares, ln;@" @+L <, on quality differences, !" [ !+.  (This would be a 

consistent estimator if the standard model were correct.)  Denote the quality differences as 

\!" ] !" [ !+, and similarly define \@" ] @" [ @+.  Then, in the true congestion model, we have 

ln;@" @+L < = *\!" , E\@".  The value of *U  recovered using the standard model is therefore 

 

*U = > \!" ^ ln;@" @+L <"
> ;\!"<."

= > \!" ^ ;*\!" , E\@"<"
> ;\!"<."

= * , E> \!"\@""
> ;\!"<."

122222222223_5 
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This is the true value, *, plus E times the slope of the regression of market shares on quality 

differences.  Hence *U  is less than *, because E is negative while the covariance of Y and Q is 

positive.  In addition, this indicates that *U  is not invariant to changes in the distribution of 

provider quality, so it should not be interpreted as representing consumer preferences. 

Rather than the value and interpretation of the quality parameter, however, our main 

interest is in the model’s forecasts of changes in market shares given changes in the quality or 

number of providers in a market.  To analyze this, we consider the marginal substitution effect of 

competitor quality on own market share.  As shown in Appendix A, this is 

 

d@"d!7 = [@"@7 `* , E d@7d!7a ^ ;4 [ E@"<
b+12222222222234K5 

 

By comparison, in the standard model, we have the usual result for a multinomial logit:  

dWX
dYZ = [@"@7*U . 

Now we can examine the differences in the predicted substitution effect between models 

(7) and (8).  Using the expression for *U , the prediction from the standard model is  

 

d@"d!7 = [@"@7 c* , E> \!f\@ff> 3\!f5.f g2822222222223445 
 

while the actual substitution effect is as expressed in (10).  One difference is that the standard 

model uses the average marginal effect of own quality on market share (i.e., the regression slope, 

> hYihWii
> 3hYi5ji ) where the congestion model uses the individual marginal effect for provider k (

dWZ
dYZ).  

But the key difference is that, given any provider k, the effect on provider j is deflated by 

;4 [ E@"<b+ in the congestion model.  Hence the (negative) substitution effect is smaller in 

magnitude for providers with larger market shares (because E J K).  Therefore, because market 

shares are larger when quality is higher (because * T K), the market share losses are smaller for 

higher quality providers.  This makes it possible for the congestion model to have larger market 

shares for higher quality providers, compared to the predictions from the standard model, in a 

counterfactual where quality increases for one provider (or more). 
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This result, and the result on entry in Appendix A, indicate that a model without an 

equilibrating factor could underpredict the increase in the aggregate consumption of quality, 

given an increase in the quality or number of providers in a market.  The empirical analysis 

demonstrates that this is indeed the case in a salient application.  Below we first provide a simple 

numerical example to illustrate these results. 

Figure 1 shows a simulation of models (7) and (8) using parameter values * = ,4 and 

E = [4.  The baseline scenario has three providers with quality levels 0, 1, and 2.  Panel A plots 

the log-ratio of market shares (ln;@" @+L <) against provider quality differences (!" [!+) from the 

true congestion model, along with the fitted values from the misspecified standard model.  (The 

log-ratios and quality differences are useful quantities because the standard model assumes they 

have an invariant linear relationship: ln;@" @+L < = *U;!" [ !+<, as indicated in the plots.)  Panel 

B then shows a scenario where the quality of provider two increases from 1 to 1.5.  The standard 

model predicts the new log-ratios to be on the same line as in the baseline, because *U  is 

invariant, but the congestion model shows that the true log-ratios for the higher quality providers 

are above this line.  Hence the aggregate consumption of quality would be higher than is 

predicted by the standard model.  Panels C and D show the results of entry by a relatively low 

(panel C) or high (panel D) quality provider.  These add a fourth provider with Q4 = 0.5 or 1.5, 

respectively.  In both cases the true log-ratios for the higher quality providers are above the 

predictions from the standard model, again showing that the aggregate consumption of quality 

would be higher than is predicted by the standard model. 

We finish this section with a more general discussion of why the forecast bias occurs, 

which stems from how the model is recovered and then used to generate counterfactual forecasts.  

First, if data were available from many markets, where many different distributions of provider 

quality are observed, this issue would be irrelevant.  A nonparametric model could be estimated, 

at least in concept, and the desired marginal effects and counterfactual forecasts could be 

computed simply by comparing outcomes between markets with the appropriate realizations of 

the distribution of provider quality.  This is not the usual empirical setup, however.  The analyst 

typically has data from one or a limited number of markets, and must rely on a parametric model 

to compute the quantities of interest.  In this setup, quality parameters are recovered from 

observed differences in quality and market shares across providers within a market, which holds 

fixed the market-wide distribution of quality.  But even a basic counterfactual forecast, such as 
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the marginal effect of increasing the quality of one provider while holding the others constant, 

typically contemplates a change in the aggregate supply of quality.  Without an equilibrating 

factor, a standard model misses how this can affect all the alternatives.  By contrast, a model 

with prices (e.g., Berry, Levinsohn, and Pakes 1995) would allow for changes in the prices of all 

alternatives when one alternative is improved.  The congestion effect is like a price in that it can 

incorporate such spillovers across alternatives—in this case, how an increase in quality of one 

provider reduces congestion at another provider. 

 

3. Empirical Application 

3.1 Data and Measures 

The data for our empirical application come from Pennsylvania, where highly relevant 

quality measures are available in heart surgeon “report cards” published every one or two years.  

The patient sample consists of Medicare fee-for-service beneficiaries with Part D coverage and 

Medicaid beneficiaries with any plan type (but not dually eligible for Medicare).  We identify 

those beneficiaries who underwent coronary artery bypass graft (CABG) or heart valve repair 

surgeries in 2010 and 2011, using the same procedure list as the report card.  The surgeon who 

performed the procedure is identified on the insurance claim.  The referring physician is then 

inferred by searching through the patient’s claims records for a specific diagnostic procedure: the 

cardiologist who provides a left heart catheterization to the patient most recently before the 

surgery (and within 180 days) is treated as the referring physician.  This procedure is required 

before a CABG or valve repair surgery, in order to determine which vessels are to be repaired. 

Using data on patient flows, specifically the zip codes of residence and of the hospital 

where surgery occurred, we construct three regional markets in Pennsylvania: Central, 

Southeastern, and Western.17  These markets are largely self-contained: about 90% of the 

patients residing in these regions have heart surgery in their home regions.  Our main results on 

the congestion effect come from the Central region, but we present results from all three regions 

both to show how they are comparable and to examine the lack of response to quality in the other 

regions. 

 
17 Parts of the state, such as the Scranton HRR, are omitted. 
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The characteristics of the surgeons, patients, and cardiologists in our sample are 

summarized in Table 1, separately by region.  There are respectively 22, 71, and 49 heart 

surgeons in the Central, Southeastern, and Western regions.  On average, these surgeons treated 

about 33 patients each from our sample of Medicare and Medicaid beneficiaries in 2010 and 

2011.  To find the total number of heart surgeries performed by each surgeon (across all payers), 

we also obtained hospital discharge records from the Pennsylvania Health Care Cost 

Containment Council (PHC4).  Over the two-year period each of these surgeons performed an 

average of about 175 CABG and/or valve repair surgeries in total.18 

The key variable of interest in our model is the quality measure, !".  For this we use a 

risk-adjusted mortality rate (RAMR) that is derived from the 30-day mortality rates provided in 

the report card, based on surgeries performed in 2008 and 2009.  The summary dataset released 

with the report card lists the raw mortality rates for CABG and valve repair surgeries separately 

for each surgeon, along with the expected mortality rates for each surgeon derived from a risk-

adjustment model.19  We construct a combined RAMR for CABG and valve repair by first 

subtracting the expected mortality rates from the raw rates for each type of surgery, and then 

taking a weighted average of the two using the number of surgeries of each type.  If the mortality 

rate for one type of surgery is not listed (because a surgeon has too few cases), we simply use the 

RAMR for the type that is reported.  Of the 142 surgeons in our sample, 115 have CABG 

mortality rates and 91 have valve repair mortality rates listed in the report card, and 119 have at 

least one of the two.  (We also include two indicator variables for surgeons without each of the 

mortality rates in the report card.)  The average of the observed 30-day mortality rate is 3.15 per 

100, while the average of the combined RAMR is 0.2 per 100. 

The other key variable in our model is the measure of patient volume, @".  We use the 

market share, computed from all CABG and/or valve repair surgeries in the hospital discharge 

data.  As noted previously (footnote 9), this is equivalent to using the number of patients because 

the models are estimated within market.  More complex measures that account for an individual 

surgeon’s availability or capacity are possible, for example by using information on academic or 

 
18 Most of the additional patients either have private insurance or are Medicare beneficiaries in managed care (40% 
of Medicare beneficiaries in PA) and/or without Part D coverage (about 30% nationally).  See 
http://kff.org/medicare/state-indicator/enrollees-as-a-of-total-medicare-population/ and Donohue (2014).  Also 
patients are excluded from our analytic sample if they cannot be matched to a cardiologist or if they have surgery 
outside their home region. 
19 Available at: http://www.phc4.org/reports/cabg/09/download.htm  
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administrative duties, or on historical working patterns, but we have not found these to improve 

the performance of the model in our current application.   

 There are 4,690 patients in the sample.  We use the Elixhauser index (Elixhauser et al. 

1998) as a measure of the overall health status of patients.  This counts the number of certain 

comorbidities observed using diagnosis codes in health insurance claims over the 365 days prior 

to the surgery.  Also, each patient is associated with a referring cardiologist as described earlier, 

and there are 479 unique cardiologists in the sample.  The distances between patients and 

surgeons, and between cardiologists and surgeons, are measured using zip code centroids.  We 

also collect data on the medical schools and current hospital affiliations of the cardiologists and 

surgeons in our sample, and include three indicators for whether a cardiologist and surgeon 

attended the same school, work at the same hospital, or work in the same health system. 

3.2. Model Estimates 

Key parameter estimates from the standard model (2) and the congestion model (3) are 

presented in Table 2.  The table shows the coefficients on the RAMR and market share variables 

estimated for the Central region using both multinomial logit and mixed logit specifications.  

(The full sets of parameters for all three regions appear in supplemental tables B1-B3).  We 

focus on this region for the congestion effect because in the other regions the predicted market 

share is too weak as an instrument (F-stat < 10, see column 8 of tables B2 and B3).20   

In the Southeastern and Western regions, the coefficients on the RAMR are smaller and 

statistically insignificant (and often positive).  The lack of any estimated response to quality is 

somewhat surprising, and it suggests that other features of these two markets may be affecting 

patient choices to a greater extent.  Because we observe the referring physician, we are able to 

examine the possible role of health systems by using our indicators for whether the referring 

cardiologist and the surgeon work in the same system, and whether they work in the same 

hospital.  Controlling for the latter (which may reflect many factors), we see that working in the 

same health system has a much stronger effect in the Southeastern and Western regions, 

compared to the Central region (tables B2 and B3, compared to B1).  The estimated coefficients 

in those regions give average partial effects about twice as large as those in the Central region.  

 
20 We evaluated alternative measures patient volume (Yj) that adjusted for the average number of days per month on 
which the surgeon performed an operation in the prior year, but these did not improve the power of the instrument. 
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For example, using the mixed logit, two-step estimates of the standard model (column 5 in each 

table), patients in the Southeastern and Western regions are respectively 1.8 and 1.6 percentage 

points more likely to see each surgeon who is in the same health system as their cardiologist, 

compared to 0.9 percentage points in the Central region.  This apparently greater propensity to 

refer patients within a health system may have limited patient choices to some degree, thereby 

reducing the response to quality.  Additionally, it is useful to note that the seven hospitals with 

heart surgery programs in the Central region were in each in a different health system (or 

independent) at the time, making it a relatively unconcentrated market in that regard. 

Now turning to the congestion effect in the Central region, the coefficient on the 

surgeon’s market share in either specification of the congestion model (table 2, columns 5 and 6) 

indicates a substantial congestion effect among patients.  These coefficients can be interpreted 

roughly as semi-elasticities, so for example the estimate in column 5 implies that a one 

percentage-point increase in a surgeon’s market share reduces an individual patient’s probability 

of seeing that surgeon by 20% (in relative terms).  The congestion effect is even greater for 

Medicaid beneficiaries, whose insurance offers surgeons a lower payment, which implies that 

Medicaid beneficiaries are less likely to see high-volume surgeons, all else equal. 

Comparing the estimates in the first two columns with the last two columns, we see that 

the standard model has a substantial attenuation bias in the estimate of *+ (the parameter on 

quality).  In columns 1 and 2 the coefficient on the RAMR is five or six times smaller in 

magnitude than in columns 5 and 6.  To examine whether this is a consequence of the different 

estimation procedures, columns 3 and 4 show the results from estimating the standard model 

using the two-step procedure (with OLS rather than 2SLS in the second step).  The coefficient on 

the RAMR is still much smaller in magnitude than in columns 5 or 6, with a bias toward zero of 

over 40%. 

Figure 2 plots the observed and predicted market shares for each surgeon in the Central 

region against their RAMR.  This is useful to show the baseline distributions that will be 

manipulated in the simulations below, and to illustrate the fit of the estimated models.  The 

predicted market shares from both the standard and congestion models are quite close to the 

observed shares for most surgeons (the predictions have the same horizontal position as the 

observed share for each surgeon because they use the same RAMR), and their correlations with 

the observed shares are above 0.85 for both models. 
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3.3 Effects of Quality Improvements 

As discussed in the introduction and Section 1, our focus is not on the attenuation bias in 

the parameter estimates themselves, but rather in the predicted effects of quality changes on 

equilibrium match probabilities and the aggregate consumption of quality.  Here we present two 

simulation exercises that empirically demonstrate the extent of the bias in such forecasts from the 

standard model.  One simulates entry by duplicating surgeons in the market, the other simulates 

quality improvements by decreasing the historical RAMRs (i.e., from 2008-09) of the existing 

surgeons.  Each exercise consists of a sequence of simulations, where first one surgeon is 

duplicated or improved, then two, then three, and so on. 

The first exercise starts by duplicating the surgeon with the lowest RAMR, meaning that 

there is an additional alternative with the same characteristics as this surgeon.  New match 

probabilities are computed, which is immediate for the standard model and involves converging 

to a new vector of market shares for the congestion model.  Then going in sequence of increasing 

RAMR, the other surgeons are duplicated and the match probabilities are recomputed.21  The 

second exercise uses the original set of surgeons, but decreases the historical RAMRs by one 

standard deviation (1.32) for surgeons in the middle range of quality, whose original RAMRs 

were within one standard deviation from 0.22  In relation to Figure 2, this would appear as a 

leftward shift of the points that are currently between -1.32 and +1.32 on the x-axis (and with 

new predicted market shares for all surgeons). 

Figure 3 shows the forecasted changes in the average quality consumed in these two 

exercises.  Each panel plots the change in average quality (y-axis), measured as the average 

historical RAMR of the chosen surgeons, against the combined baseline market share of the 

surgeons who were duplicated or improved at that point in the sequence of simulations (x-axis).23  

For example in the first exercise, the first surgeon duplicated has a market share of 14% at 

baseline.  In Panel A, the values of the plotted lines below that point on the x-axis show that the 

standard model predicts the RAMR of chosen surgeons decreases by 0.22 on average while the 

 
21 The five surgeons without an observed RAMR are duplicated last. 
22 We do not change the RAMR of surgeons who are already more than one standard deviation below zero because 
that may be unrealistic, and for symmetry we do not change the RAMR of surgeons who are more than one standard 
deviation above zero. 
23 The average historical RAMR of the chosen surgeons equals > > km%"" !"% oL , where km%"  is the predicted match 

probability and N is the number of patients. The combined baseline market share is the same as the weighted 
proportion of surgeons who are altered, using their baseline market shares as weights.  This is superior to the simple 
proportion because it reflects differences in surgeon market shares due to location and other factors. 
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congestion model predicts it decreases by 0.27.  With more entry, the difference between these 

forecasts grows larger, ultimately exceeding 0.15.  Also, as discussed in the introduction, when 

all surgeons are duplicated the standard model predicts the same average quality consumed as at 

baseline, which entirely fails to reflect the increase in the aggregate supply of quality. 

Similar differences between the forecasts are seen in the in exercise that decreases the 

historical RAMRs (Panel B).  For example, when four surgeons (with 24% baseline market 

share) have their RAMRs improved, the standard model predicts the RAMR of chosen surgeons 

decreases by 0.38 on average while the congestion model predicts it decreases by 0.47.  This 

reflects the smaller market share losses for higher quality surgeons, discussed in Section 2. 

The differences between the forecasts from the standard model and the congestion model 

in these exercises are roughly 10% of a standard deviation of the quality measure (i.e., 0.10-0.15 

vs. 1.32).  Although somewhat small relative to the variation across surgeons, these differences 

nevertheless have substantial economic value.  For example, assuming that the current RAMRs 

are generally close to the previous RAMRs, a difference of 0.1 in the average RAMR of the 

chosen surgeons means a difference of 1 per 1000 in the 30-day mortality risk.  Even with a 

conservative value of statistical life of $2 million, this is worth $2,000 per patient—or $2 million 

total in a market with 1,000 patients.  The $2,000 difference in value per patient is also not trivial 

relative to the average cost of a CABG, which is $45,000 (Birkmeyer et al.,  2010).  Broadly, this 

suggest that the social value of investments in quality improvement for heart surgery may be 

larger than what is indicated by standard models without an equilibrating factor, because the 

market response to quality improvements may be greater than their forecasts would predict. 

 

4. Conclusion 

We have shown that discrete-choice models of demand are subject to attenuation bias if 

they omit an equilibrating factor, and we have proposed a straightforward way to address the bias 

by allowing for a congestion effect among consumers.  Empirically we find that the congestion 

effect is substantial in the market for heart surgery, and the resulting biases in predicted 

responses to quality improvements can be economically important.   

Our approach could be applicable to many healthcare services, because the relevant 

equilibrating factors are often difficult to define or observe, and because the supply from 
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individual providers typically is not perfectly elastic.  The method requires an instrument that is 

sufficiently predictive of provider market shares.  This can be a limitation in some markets, as 

we have seen, but the distances between patients and providers offer good candidate instruments 

and are usually available in research datasets.  The method is easy to implement in econometric 

software such as Stata, and so our hope is that it may be useful for applied researchers studying 

the market response to quality in healthcare and possibly other industries. 
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Figure 1. Numerical Example of Differences in Forecasts 

Notes: Figure shows the log-ratio of market shares, ln;q" q+L <, from the congestion model (filled circles) 

and the standard model (open squares) in an example with three providers at baseline. Predictions from 

the standard model fall on the line *U;st [s+<, where *U  is recovered from the baseline market shares. 
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Figure 2. Surgeon Market Shares and Risk-Adjusted Mortality Rates,  

Central PA Market 

 
Notes: Observed market shares are computed from the analytic sample of Medicare and Medicaid 
beneficiaries.  Predicted market shares are generated from the mixed logit specifications of the models.  
The prediction from the congestion model is in equilibrium (i.e., the predicted vector of shares has 
converged).  Five surgeons without an observed RAMR are plotted at a RAMR of 0. 
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Panel A. Entry simulation by duplicating surgeons 

 
 

Panel B. Quality improvement simulation by decreasing historical RAMRs 

 
 

Figure 3. Forecasts of Quality Improvements 

 
Notes: This figure plots differences in the average quality consumed between simulated markets and the 
baseline market, in a sequence of simulations.  The average quality consumed in each scenario equals > > km%"" !"% oL , where km%" is the predicted match probability, !" is the 2008-09 RAMR, and N is the 

number of patients.  The predicted quality differences (y-axis) are plotted against proportion of surgeons 
who were altered in each simulation, weighted by their baseline market shares (x-axis). 
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Table 1. Sample Descriptive Statistics 

 

 Central PA 

Region 
 

Southeastern PA Western PA 

    

Surgeons  (N) 22 71 49 

Surgeries performed (2010-11):    

    Analytic sample (Medicare/Medicaid) 38.9 ± 35.6 33.5 ± 25.3 29.6 ± 18.3 

    Discharge data (all payers) 219 ± 162 162 ± 138 182 ± 109 

Market share (pct., discharge data) 4.5 ± 3.4 1.4 ± 1.2 2.0 ± 1.2 

Risk-adj. mortality rate (pct., 2008-09) 0.1 ± 1.3 0.2 ± 2.4 0.2 ± 2.3 

     

Cardiologists  (N) 74 217 188 

Number of patients in sample 11.6 ± 10.4 11.0 ± 10.1 7.7 ± 7.7 

Number of surgeons referred to 2.9 ± 1.8 3.3 ± 1.9 2.6 ± 1.5 

    

Patients  (N)  856 2382 1452 

Elixhauser comorbidity index 5.2 ± 2.9 5.5 ± 2.9 5.5 ± 3.0 

Age  69.7 ± 11.7 70.0 ± 11.4 67.3 ± 12.3 

Female (pct.) 43.9 41.3 43.9 

     

Patient/Cardiologist – Surgeon Pairs (N)* 17,601 143,613 67,039 

Patient-surgeon distance  55.9 ± 32.7 48.1 ± 28.7 83.3 ± 50.7 

Cardiologist-surgeon distance  49.6 ± 33.4 45.9 ± 27.2 77.8 ± 55.3 

Cardiologist and surgeon:    

    Attended same medical school (pct.) 1.5 1.9 1.3 

    Admit to same hospital (pct.) 11.2 7.9 11.2 

    Work in same hospital system (pct.)  15.4 13.3 23.3 
Notes: Data from Medicare and Medicaid insurance claims, hospital discharge records, Healthcare 
Organization Services from IMS Health, and the AMA Physician Masterfile. Standard deviations are 
shown after ± where appropriate. 
* Surgeons without any surgeries in the quarter when a patient has surgery are excluded. 
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Table 2. Key Parameter Estimates, Central PA Market 

 

 
Standard 
Model  

Congestion 
Model 

Variables 
ML / MSL 
Estimation  

2-Step 
Estimation  

2-Step 
Estimation 

 (1) (2)  (3) (4)  (5) (6) 

         

Risk-adjusted mort. rate -0.110 -0.136  -0.379 -0.396  -0.661 -0.716 

 (0.061) (0.063)  (0.263) (0.261)  (0.303) (0.283) 

Elixhauser x RAMR -0.037 -0.039  -0.038 -0.039  -0.035 -0.037 

 (0.010) (0.010)  (0.010) (0.011)  (0.010) (0.011) 

         

Surgeon’s market share       -0.198 -0.238 

       (0.083) (0.088) 

Medicaid x mkt. share       -0.073 -0.074 

       (0.031) (0.032) 

         

Specification MNL Mixed  MNL Mixed  MNL Mixed 

         
Notes: Models are defined in equations (2) and (3), for multinomial logit (MNL) specifications. Mixed 
logit specifications include random coefficients on distance variables.  All models include: distance 
between patient and surgeon, distance between cardiologist and surgeon, indicators for cardiologist and 
surgeon attending same medical school, working at same hospital, and working in same hospital system, 
and two indicators for surgeons without CABG mortality rates or without valve repair mortality rates 
listed in the report card.  Standard errors shown in parentheses.  Full results are presented in Appendix 
Tables B1-B3. 
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Appendix A. Analysis of Forecast Bias 

Here we first provide the derivation of one result presented in Section 2 and then develop 

a related result on entry.  The result reported in equation (10) is found as follows: 

 

d@"d!7 =
exp3*!" , E@"5 E d@"d!7> exp3*!f , E@f5f [ exp;*!" , E@"< exp3*!7 , E@75 `* , E

d@7d!7au> exp3*!f , E@f5f v.
= E@" d@"d!7 [ @"@7 `* , E

d@7d!7a2w 22222222223y45 
hence, 

d@"d!7 = [@"@7 `* , E d@7d!7a ^ ;4 [ E@"<
b+1222222222223y?5 

 

This is the marginal effect of the quality of provider k on the market share of provider j; i.e., the 

marginal substitution effect of competitor quality on own market share 

To analyze entry with a similar approach, we include distance in the simple model from 

Section 2 so that entry can be represented as a (substantial) decrease in the distance between 

provider k and the patients in the market.  Suppose that all the patients and all the providers, 

except provider k, are at the same location, and let the variable Xj be the distance between 

provider j and all the patients (Xj = 0 for all providers except k).  The model is now: 

 

@" = exp3*!" , M$" , E@"5> exp3*!f , M$f , E@f5f 822222222223yF5 
 

with * T K, M J K, and E J K.  The marginal effect of the distance between provider k and the 

patients in the market, on the market share of some provider j ≠ k, is found as follows: 

 

d@"d$7 =
exp3*!" , M$" , E@"5 E d@"d$7> exp3*!f , M$f , E@f5f [ exp;*!" , M$" , E@"< exp3*!7 , M$7 , E@75 `M , E

d@7d$7au> exp3*!f , M$f , E@f5f v.
= E@" d@"d$7 [ @"@7 `M , E

d@7d$7a2w 22222222223yI5 
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hence, 

d@"d$7 = [@"@7 `M , E d@7d$7a ^ ;4 [ E@"<
b+1222222222223yN5 

 

By contrast, in a model without a congestion effect, the predicted marginal effect would be: 

dWX
dzZ = [@"@7MU, where MU is the estimated coefficient on distance.  As with the marginal effects of 

competitor quality, the key difference between these marginal effects in the standard model and 

the congestion model is the factor ;4 [ E@"<b+ in (A5).  Given some provider k, (i.e., the one 

entering the market), this factor makes the magnitude of the substitution effect be relatively 

smaller for providers with larger market shares.  Thus when a new provider “enters” the market 

(i.e., gets closer to the patients) the substitution away from higher quality providers, which have 

larger market shares, is relatively smaller in the congestion model, compared to what is predicted 

by the standard model. 

 

Appendix B. Supplemental Tables 

The tables that follow contain the full sets of parameter estimates for the multinomial 

logit and mixed logit models estimated in each regional market.  



Table B1. Parameter Estimates, Central PA Market

Mult. Mult. Mult.

Variables Logit Mean Std. Dev. Logit Mean Std. Dev. Logit Mean Std. Dev.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Risk-adjusted mort. rate -0.110 -0.136 -0.379 -0.396 -0.661 -0.716

(0.061) (0.063) (0.263) (0.261) (0.303) (0.283)

Elixhauser x RAMR -0.037 -0.039 -0.038 -0.039 -0.035 -0.037

(0.010) (0.010) (0.010) (0.011) (0.010) (0.011)

Surgeon’s market share -0.198 -0.238

(0.083) (0.088)

Medicaid x mkt. share -0.073 -0.074

(0.031) (0.032)

Patient-surgeon dist. -0.058 -0.075 -0.032 -0.017 -0.032 0.020 -0.017 -0.032 0.020

(0.006) (0.008) (0.018) (0.010) (0.012) (0.011) (0.010) (0.012) (0.011)

Card.-surgeon dist. -0.095 -0.178 0.091 -0.145 -0.202 -0.067 -0.144 -0.202 -0.067

(0.007) (0.017) (0.014) (0.012) (0.019) (0.011) (0.012) (0.019) (0.011)

Card.-surg. same med. sch. -0.171 0.066 0.202 0.230 0.219 0.250

(0.492) (0.485) (0.484) (0.491) (0.484) (0.492)

       …same hospital 0.413 0.221 0.585 0.601 0.585 0.601

(0.223) (0.234) (0.240) (0.253) (0.241) (0.254)

       …same hospital sys. -0.171 -0.280 0.421 0.203 0.417 0.196

(0.203) (0.207) (0.261) (0.265) (0.261) (0.265)

CABG mort. not reported -0.478 -0.255 -1.270 -1.084 -1.912 -1.802

(0.167) (0.176) (0.725) (0.766) (0.683) (0.655)

Valve mort. not reported -0.264 -0.272 0.757 0.675 0.580 0.393

(0.151) (0.152) (0.666) (0.705) (0.476) (0.478)

First-stage F-stat. 49.94 36.46

Observations 17,601 17,601 17,601 17,601 17,601 17,601

Notes: Estimated standard deviations of random coefficients in mixed logit models are reported in separate columns, as indicated.  First-stage F-statistics refer to 

2SLS estimation of equation (6). Standard errors shown in parentheses.  

ML/MSL Estimation 2-Step Estimation 2-Step Estimation

Mixed Logit Mixed Logit Mixed Logit



Table B2. Parameter Estimates, Southeastern PA Market

Mult. Mult. Mult.

Variables Logit Mean Std. Dev. Logit Mean Std. Dev. Logit Mean Std. Dev.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Risk-adjusted mort. rate 0.057 0.057 0.098 0.044 0.116 0.070

(0.024) (0.026) (0.090) (0.090) (0.156) (0.168)

Elixhauser x RAMR -0.005 -0.005 -0.010 -0.008 -0.009 -0.008

(0.004) (0.004) (0.005) (0.005) (0.005) (0.005)

Surgeon’s market share -1.852 -2.389

(0.750) (1.076)

Medicaid x mkt. share -0.285 -0.302

(0.052) (0.055)

Patient-surgeon dist. -0.083 -0.125 0.085 -0.079 -0.136 -0.077 -0.080 -0.137 -0.078

(0.004) (0.006) (0.009) (0.005) (0.009) (0.016) (0.005) (0.009) (0.016)

Card.-surgeon dist. -0.081 -0.148 -0.081 -0.117 -0.208 -0.119 -0.116 -0.207 -0.119

(0.003) (0.007) (0.007) (0.005) (0.011) (0.010) (0.005) (0.011) (0.010)

Card.-surg. same med. sch. -0.057 -0.094 -0.300 -0.322 -0.282 -0.305

(0.133) (0.139) (0.139) (0.143) (0.139) (0.144)

       …same hospital 0.706 0.482 0.779 0.538 0.785 0.541

(0.086) (0.093) (0.112) (0.127) (0.112) (0.127)

       …same hospital sys. 0.616 0.700 1.160 1.292 1.149 1.282

(0.089) (0.093) (0.122) (0.136) (0.121) (0.136)

CABG mort. not reported 0.160 0.238 1.191 1.052 1.781 1.623

(0.076) (0.079) (0.389) (0.460) (0.868) (1.047)

Valve mort. not reported -0.589 -0.751 -0.305 -0.641 -3.089 -4.260

(0.060) (0.066) (0.442) (0.447) (1.361) (1.870)

First-stage F-stat. 11.43 6.95

Observations 143,613 143,613 143,613 143,613 143,613 143,613

Notes: Estimated standard deviations of random coefficients in mixed logit models are reported in separate columns, as indicated.  First-stage F-statistics refer to 

2SLS estimation of equation (6). Standard errors shown in parentheses.  

ML/MSL Estimation 2-Step Estimation 2-Step Estimation

Mixed Logit Mixed Logit Mixed Logit



Table B3. Parameter Estimates, Western PA Market

Mult. Mult. Mult.

Variables Logit Mean Std. Dev. Logit Mean Std. Dev. Logit Mean Std. Dev.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Risk-adjusted mort. rate -0.014 0.007 -0.006 0.055 0.020 0.092

(0.032) (0.033) (0.074) (0.096) (0.143) (0.131)

Elixhauser x RAMR 0.001 -0.001 0.001 -0.003 0.001 -0.003

(0.005) (0.005) (0.005) (0.006) (0.005) (0.006)

Surgeon’s market share -1.160 -0.705

(0.749) (0.459)

Medicaid x mkt. share -0.072 -0.069

(0.065) (0.069)

Patient-surgeon dist. -0.042 -0.066 -0.049 -0.051 -0.109 0.064 -0.051 -0.109 0.064

(0.003) (0.005) (0.006) (0.004) (0.009) (0.010) (0.004) (0.009) (0.010)

Card.-surgeon dist. -0.042 -0.084 -0.047 -0.050 -0.126 -0.076 -0.050 -0.126 -0.076

(0.002) (0.006) (0.006) (0.003) (0.012) (0.010) (0.003) (0.012) (0.010)

Card.-surg. same med. sch. -0.084 -0.194 -0.343 -0.278 -0.346 -0.283

(0.255) (0.266) (0.272) (0.288) (0.272) (0.288)

       …same hospital 1.149 1.075 1.425 1.314 1.426 1.315

(0.107) (0.113) (0.127) (0.137) (0.127) (0.137)

       …same hospital sys. 0.411 0.620 0.712 0.797 0.713 0.798

(0.106) (0.116) (0.140) (0.156) (0.140) (0.156)

CABG mort. not reported -0.192 -0.113 -0.757 -0.714 -1.187 -0.863

(0.185) (0.187) (0.905) (1.146) (1.464) (1.431)

Valve mort. not reported -0.904 -0.914 -0.524 -0.481 -1.799 -1.449

(0.139) (0.141) (0.600) (0.645) (1.217) (0.956)

First-stage F-stat. 3.98 6.57

Observations 67,039 67,039 67,039 67,039 67,039 67,039

Notes: Estimated standard deviations of random coefficients in mixed logit models are reported in separate columns, as indicated.  First-stage F-statistics refer to 

2SLS estimation of equation (6). Standard errors shown in parentheses.  

ML/MSL Estimation 2-Step Estimation 2-Step Estimation

Mixed Logit Mixed Logit Mixed Logit




